JP2010109221A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2010109221A
JP2010109221A JP2008280953A JP2008280953A JP2010109221A JP 2010109221 A JP2010109221 A JP 2010109221A JP 2008280953 A JP2008280953 A JP 2008280953A JP 2008280953 A JP2008280953 A JP 2008280953A JP 2010109221 A JP2010109221 A JP 2010109221A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
trench
region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280953A
Other languages
Japanese (ja)
Inventor
Yuuki Nakano
佑紀 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2008280953A priority Critical patent/JP2010109221A/en
Publication of JP2010109221A publication Critical patent/JP2010109221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a trench structure that allows circuit size reduction. <P>SOLUTION: The semiconductor device A includes: a first n-type semiconductor layer 11; a second n-type semiconductor layer 12; a p-type semiconductor layer 13; a trench 3 that penetrates the p-type semiconductor layer 13 and reaches the second n-type semiconductor layer 12; an n-type semiconductor region 14; a gate insulating portion 5; a gate electrode 41 which is insulated from the second n-type semiconductor layer 12, the p-type semiconductor layer 13, and the n-type semiconductor region 14 by the gate insulating portion 5, and at least a portion of which is formed in the trench 3; and a source electrode 42 that is electrically continuous with the n-type semiconductor region 14. The semiconductor device A also includes a Schottky electrode d1 that is electrically continuous with the source electrode 42 and is insulated from the p-type semiconductor layer 13, the n-type semiconductor region 14, and the gate electrode 41. The Schottky electrode d1 and the second n-type semiconductor layer 12 are joined to each other in the trench 3, thereby forming a diode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、トレンチ構造を有する半導体装置に関する。   The present invention relates to a semiconductor device having a trench structure.

図11は、従来のトレンチ構造を有する縦型の絶縁ゲート型半導体装置の断面の一例を示している。この半導体装置9Aは、MOSFETとして、一般にスイッチング回路に用いられる。半導体装置9Aは、第1n型半導体層911、第2n型半導体層912、p型半導体層913、n型半導体領域914、トレンチ93、ゲート電極941、ゲート絶縁層95、ソース電極942およびドレイン電極943を備えている。   FIG. 11 shows an example of a cross section of a vertical insulated gate semiconductor device having a conventional trench structure. The semiconductor device 9A is generally used as a MOSFET in a switching circuit. The semiconductor device 9A includes a first n-type semiconductor layer 911, a second n-type semiconductor layer 912, a p-type semiconductor layer 913, an n-type semiconductor region 914, a trench 93, a gate electrode 941, a gate insulating layer 95, a source electrode 942, and a drain electrode 943. It has.

第1n型半導体層911は、半導体装置9Aの土台となっている。第2n型半導体層912は、第1n型半導体層911の上に形成されている。p型半導体層913は、第2n型半導体層912の上に形成されている。n型半導体領域914は、p型半導体層913の上に形成されている。トレンチ93は、p型半導体層913を貫通し、第2n型半導体層912まで達している。ゲート絶縁層95は、ゲート電極941と、第2n型半導体層912、p型半導体層913およびn型半導体領域914とを絶縁している。   The first n-type semiconductor layer 911 is a base of the semiconductor device 9A. The second n-type semiconductor layer 912 is formed on the first n-type semiconductor layer 911. The p-type semiconductor layer 913 is formed on the second n-type semiconductor layer 912. The n-type semiconductor region 914 is formed on the p-type semiconductor layer 913. The trench 93 penetrates the p-type semiconductor layer 913 and reaches the second n-type semiconductor layer 912. The gate insulating layer 95 insulates the gate electrode 941 from the second n-type semiconductor layer 912, the p-type semiconductor layer 913, and the n-type semiconductor region 914.

半導体装置9Aを含む回路には、半導体装置9Aと、この半導体装置に逆並列接続されたダイオードとが設けられている。ゲート電極941に一定値以上の電圧を印加した場合、トレンチ93に沿って、p型半導体層913内にチャネル領域が形成される。このとき、ソース電極942に対するドレイン電極943の電圧が正の値になった場合に、上記チャネル領域を電流が流れる。一方、ソース電極942に対するドレイン電極943の電圧が負の値になったとき、上記ダイオードを電流が流れ、上記チャネル領域に電流が流れないようになっている。   A circuit including the semiconductor device 9A is provided with the semiconductor device 9A and a diode connected in reverse parallel to the semiconductor device. When a voltage higher than a certain value is applied to the gate electrode 941, a channel region is formed in the p-type semiconductor layer 913 along the trench 93. At this time, when the voltage of the drain electrode 943 with respect to the source electrode 942 becomes a positive value, a current flows through the channel region. On the other hand, when the voltage of the drain electrode 943 with respect to the source electrode 942 becomes a negative value, current flows through the diode, and current does not flow through the channel region.

従来の半導体装置9Aを含む回路においては、上記ダイオードを設けるために、半導体装置9Aが設けられたチップの占める領域のみでなく、それ以外の領域も必要となっていた。そのため、半導体装置9Aを含む回路を小型化したいといった要望が、十分に満たされていなかった。   In a circuit including the conventional semiconductor device 9A, in order to provide the diode, not only the region occupied by the chip provided with the semiconductor device 9A but also other regions are required. For this reason, the demand for downsizing the circuit including the semiconductor device 9A has not been sufficiently satisfied.

特開平01−102174号公報Japanese Patent Laid-Open No. 01-102174

本発明は、上記した事情のもとで考え出されたものであって、回路の小型化を可能とする、トレンチ構造を有する半導体装置を提供することをその課題とする。   The present invention has been conceived under the circumstances described above, and an object thereof is to provide a semiconductor device having a trench structure that enables a circuit to be miniaturized.

本発明によって提供される半導体装置は、第1の導電型をもつ第1半導体層と、この第1半導体層上に設けられ、上記第1の導電型と反対の第2の導電型を持つ第2半導体層と、この第2半導体層を貫通して上記第1半導体層に達するトレンチと、上記第2半導体層上に、かつ、上記トレンチの周囲に形成された上記第1の導電型をもつ半導体領域と、上記トレンチ内部に形成された絶縁部と、この絶縁部により、上記第1半導体層、上記第2半導体層および上記半導体領域と絶縁されており、少なくとも一部が上記トレンチ内部に形成されたゲート電極と、この半導体領域と導通しているソース電極と、を備えた半導体装置であって、導電体、または、上記第2の導電型をもつ半導体から構成される追加の領域をさらに備え、この追加の領域は、上記ソース電極と導通しており、かつ、上記第2半導体層、上記半導体領域および上記ゲート電極と絶縁されており、上記追加の領域と上記第1半導体層とが上記トレンチ内で接合されることにより、ダイオードを形成していることを特徴とする。   A semiconductor device provided by the present invention includes a first semiconductor layer having a first conductivity type and a second conductivity type provided on the first semiconductor layer and having a second conductivity type opposite to the first conductivity type. Two semiconductor layers, a trench that passes through the second semiconductor layer and reaches the first semiconductor layer, and has the first conductivity type formed on the second semiconductor layer and around the trench. A semiconductor region, an insulating portion formed inside the trench, and the insulating portion are insulated from the first semiconductor layer, the second semiconductor layer, and the semiconductor region, and at least a part is formed inside the trench. A semiconductor device comprising a gate electrode and a source electrode electrically connected to the semiconductor region, and further comprising an additional region made of a conductor or a semiconductor having the second conductivity type. Prepare for this additional region Is electrically connected to the source electrode and insulated from the second semiconductor layer, the semiconductor region, and the gate electrode, and the additional region and the first semiconductor layer are joined in the trench. Thus, a diode is formed.

このような構成においては、上記トレンチの外部に、上記ダイオードに相当するダイオードを設ける必要がない。そのため、上記半導体装置を用いた回路の小型化を図ることができる。   In such a configuration, it is not necessary to provide a diode corresponding to the diode outside the trench. Therefore, the size of the circuit using the semiconductor device can be reduced.

本発明の好ましい実施の形態においては、上記第1半導体層、上記第2半導体層、および、上記半導体領域は、SiC、GaN、ダイヤモンド、ZnO、またはAlGaNから構成されており、上記追加の領域は、上記導電体からなり、上記ダイオードは、ショットキーバリヤダイオードである。   In a preferred embodiment of the present invention, the first semiconductor layer, the second semiconductor layer, and the semiconductor region are composed of SiC, GaN, diamond, ZnO, or AlGaN, and the additional region is The diode is a Schottky barrier diode.

本発明の好ましい実施の形態においては、上記導電体は、上記トレンチの底面から上記トレンチの側面にわたって接している。このような構成によれば、上記半導体装置を使用する際、上記底面から上記側面までの部分に電界集中することを抑止できる。そのため、上記半導体装置において、絶縁破壊が起こりにくくなる。   In a preferred embodiment of the present invention, the conductor is in contact from the bottom surface of the trench to the side surface of the trench. According to such a configuration, when the semiconductor device is used, it is possible to prevent the electric field from being concentrated on the portion from the bottom surface to the side surface. Therefore, dielectric breakdown is less likely to occur in the semiconductor device.

本発明の好ましい実施の形態においては、上記追加の領域と上記ソース電極とを導通させる導電部をさらに備え、この導電部は、上記トレンチの開口部から、上記トレンチの深さ方向に沿って延びており、かつ、上記ゲート電極を貫通している。このような構成によれば、上記ダイオードが上記トレンチ内部に形成されているにもかかわらず、上記第2半導体層におけるチャネルの形成が妨げられにくい。そのため、上記トレンチの内部に上記ダイオードが形成されていない場合と比べて、上記チャネルの抵抗を同程度に維持できる。   In a preferred embodiment of the present invention, the semiconductor device further includes a conductive portion that conducts the additional region and the source electrode, and the conductive portion extends from the opening of the trench along the depth direction of the trench. And penetrates through the gate electrode. According to such a configuration, although the diode is formed inside the trench, formation of a channel in the second semiconductor layer is hardly hindered. Therefore, the resistance of the channel can be maintained at the same level as compared with the case where the diode is not formed inside the trench.

本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1に、本発明の実施形態にかかる半導体装置Aの要部平面図を示している。なお、図2に示すソース電極は、理解の便宜上省略している。図2には、図1のII−II線に沿った要部断面図を示している。図3には、図1のIII−III線に沿った要部断面図を示している。   FIG. 1 shows a plan view of a main part of a semiconductor device A according to an embodiment of the present invention. Note that the source electrode shown in FIG. 2 is omitted for the sake of understanding. FIG. 2 shows a cross-sectional view of the main part along the line II-II in FIG. FIG. 3 shows a cross-sectional view of the main part along the line III-III in FIG.

図2に示すように、半導体装置Aは、第1n型半導体層11、第2n型半導体層12、p型半導体層13、高濃度p型半導体領域13a、n型半導体領域14、トレンチ3、ゲート電極41、ゲート絶縁部5、ショットキー電極d1、接続導電部d2、ソース電極42、ドレイン電極43および層間絶縁膜6を備えている。   As shown in FIG. 2, the semiconductor device A includes a first n-type semiconductor layer 11, a second n-type semiconductor layer 12, a p-type semiconductor layer 13, a high-concentration p-type semiconductor region 13a, an n-type semiconductor region 14, a trench 3, and a gate. The electrode 41, the gate insulating part 5, the Schottky electrode d1, the connection conductive part d2, the source electrode 42, the drain electrode 43, and the interlayer insulating film 6 are provided.

第1n型半導体層11は、SiCに高濃度の不純物が添加された材質からなる基板であり、半導体装置Aの土台となっている。第2n型半導体層12は、第1n型半導体層11の上に形成されている。第2n型半導体層12は、SiCに低濃度の不純物が添加された材質からなる。第2n型半導体層12の深さ方向xにおける大きさは、約10μmである。p型半導体層13は、第2n型半導体層12の上に形成されている。p型半導体層13の深さ方向xの大きさは、約0.7μmである。n型半導体領域14は、p型半導体層13の上に形成されている。n型半導体領域14の深さ方向xの大きさは、約0.3μmである。高濃度p型半導体領域13aは、p型半導体層13の上に形成されている。   The first n-type semiconductor layer 11 is a substrate made of a material obtained by adding a high-concentration impurity to SiC, and serves as a base for the semiconductor device A. The second n-type semiconductor layer 12 is formed on the first n-type semiconductor layer 11. The second n-type semiconductor layer 12 is made of a material obtained by adding a low concentration impurity to SiC. The size of the second n-type semiconductor layer 12 in the depth direction x is about 10 μm. The p-type semiconductor layer 13 is formed on the second n-type semiconductor layer 12. The size of the p-type semiconductor layer 13 in the depth direction x is about 0.7 μm. The n-type semiconductor region 14 is formed on the p-type semiconductor layer 13. The size of the n-type semiconductor region 14 in the depth direction x is about 0.3 μm. The high concentration p-type semiconductor region 13 a is formed on the p-type semiconductor layer 13.

トレンチ3は、p型半導体層13およびn型半導体領域14を貫通して、第2n型半導体層12に達するように形成されている。トレンチ3の内部には、ゲート電極41、ゲート絶縁部5、ショットキー電極d1および接続導電部d2が形成されている。ゲート電極41は、たとえばポリシリコンからなっている。ゲート絶縁部5は、ショットキー電極d1の上に形成されている。ゲート絶縁部5は、本実施形態においては、SiO2より構成されている。ゲート絶縁部5は、ゲート電極41を、第2n型半導体層12、p型半導体層13、n型半導体領域14、ショットキー電極d1および接続導電部d2から絶縁している。さらに、ゲート絶縁部5は、ショットキー電極d1および接続導電部d2を、p型半導体層13およびn型半導体領域14から絶縁している。 The trench 3 is formed so as to penetrate the p-type semiconductor layer 13 and the n-type semiconductor region 14 and reach the second n-type semiconductor layer 12. Inside the trench 3, a gate electrode 41, a gate insulating portion 5, a Schottky electrode d1, and a connection conductive portion d2 are formed. The gate electrode 41 is made of, for example, polysilicon. The gate insulating portion 5 is formed on the Schottky electrode d1. The gate insulating portion 5 is made of SiO 2 in the present embodiment. The gate insulating portion 5 insulates the gate electrode 41 from the second n-type semiconductor layer 12, the p-type semiconductor layer 13, the n-type semiconductor region 14, the Schottky electrode d1, and the connection conductive portion d2. Furthermore, the gate insulating part 5 insulates the Schottky electrode d1 and the connection conductive part d2 from the p-type semiconductor layer 13 and the n-type semiconductor region 14.

ショットキー電極d1は、トレンチ3の底部3aからトレンチ3の側部3bにわたって、トレンチ3に接するように形成されている。ショットキー電極d1は、第2n型半導体層12と接合している。これにより、ショットキーバリヤダイオードが形成されている。ショットキー電極d1は、ポリシリコンにより構成されていることが好ましい。また、ショットキー電極d1の材料に、ポリシリコン以外の導電体である、Ni、Ti、TiN、Moなどの金属を用いてもよい。   The Schottky electrode d <b> 1 is formed so as to be in contact with the trench 3 from the bottom 3 a of the trench 3 to the side 3 b of the trench 3. The Schottky electrode d1 is joined to the second n-type semiconductor layer 12. Thereby, a Schottky barrier diode is formed. The Schottky electrode d1 is preferably made of polysilicon. Further, a metal such as Ni, Ti, TiN, or Mo, which is a conductor other than polysilicon, may be used for the material of the Schottky electrode d1.

接続導電部d2は、ショットキー電極d1とソース電極42とを導電させるためのものである。接続導電部d2は、トレンチ3のほぼ中央に形成され、ソース電極42から深さ方向xに沿って延びている。また、接続導電部d2は、ゲート絶縁部5を介して2つのゲート電極41に挟まれている。すなわち、接続導電部d2は、ゲート電極41を貫通している。   The connection conductive portion d2 is for conducting the Schottky electrode d1 and the source electrode 42. The connection conductive portion d2 is formed at substantially the center of the trench 3 and extends from the source electrode 42 along the depth direction x. The connection conductive portion d2 is sandwiched between the two gate electrodes 41 with the gate insulating portion 5 interposed therebetween. In other words, the connection conductive portion d2 passes through the gate electrode 41.

ソース電極42は、たとえばAlからなり、n型半導体領域14および高濃度p型半導体領域13aと接している。ドレイン電極43も、たとえばAlからなり、第1n型半導体層11と接している。ドレイン電極43は、第2n型半導体層12が形成された側と、第1n型半導体層11を挟んで反対側に形成されている。層間絶縁膜6は、ゲート電極41を覆うように形成されている。   The source electrode 42 is made of, for example, Al and is in contact with the n-type semiconductor region 14 and the high-concentration p-type semiconductor region 13a. The drain electrode 43 is also made of, for example, Al and is in contact with the first n-type semiconductor layer 11. The drain electrode 43 is formed on the side where the second n-type semiconductor layer 12 is formed and on the opposite side across the first n-type semiconductor layer 11. The interlayer insulating film 6 is formed so as to cover the gate electrode 41.

図3には、図1のIII−III線に沿った要部断面図を示している。図3において、図2に記載した接続導電部d2は記載されていない。だが、図3に示した半導体装置Aにおけるショットキー電極d1は、図2に示した接続導電部d2によりソース電極42と導通している。   FIG. 3 shows a cross-sectional view of the main part along the line III-III in FIG. In FIG. 3, the connection conductive portion d2 shown in FIG. 2 is not shown. However, the Schottky electrode d1 in the semiconductor device A shown in FIG. 3 is electrically connected to the source electrode 42 by the connection conductive portion d2 shown in FIG.

次に、半導体装置Aの製造方法の一例について、図4〜図10を参照しつつ以下に説明する。なお、図3に示した断面部分の製造工程は、図2に示した接続導電部d2およびその周囲のゲート絶縁部5を形成する工程を除き、図2に示した断面部分の製造工程と同一である。そのため、図3に示した断面部分の製造工程の記載は省略する。   Next, an example of a method for manufacturing the semiconductor device A will be described below with reference to FIGS. 3 is the same as the manufacturing process of the cross-sectional portion shown in FIG. 2 except the step of forming the connection conductive portion d2 and the surrounding gate insulating portion 5 shown in FIG. It is. Therefore, description of the manufacturing process of the cross-sectional part shown in FIG. 3 is abbreviate | omitted.

まず、図4のように、第1n型半導体層11となる半導体基板を準備する。次に、この基板の表面側に、エピタキシャル結晶成長法により、第2n型半導体層12を形成する。次に、第2n型半導体層12の上面に所定形状のマスクを施すなどして、不純物イオン(n型またはp型)を注入し、p型半導体層13、n型半導体領域14および高濃度p型半導体領域13aを形成する。そして、トレンチ3を形成する。   First, as shown in FIG. 4, a semiconductor substrate to be the first n-type semiconductor layer 11 is prepared. Next, the second n-type semiconductor layer 12 is formed on the surface side of the substrate by an epitaxial crystal growth method. Next, impurity ions (n-type or p-type) are implanted, for example, by applying a mask having a predetermined shape on the upper surface of the second n-type semiconductor layer 12, and the p-type semiconductor layer 13, the n-type semiconductor region 14, and the high-concentration p. A type semiconductor region 13a is formed. Then, the trench 3 is formed.

次に、図5のように、ポリシリコンからなるショットキー電極d1を、トレンチ3の底部3aに形成する。次に、図6に示すように、n型半導体領域14の露出面、トレンチ3の側部3bおよびショットキー電極d1の上面を熱酸化し、ゲート絶縁部5を形成する。なお、ショットキー電極d1がTiなどの金属である場合、プラズマCVD法により、ゲート絶縁部5を形成する。   Next, a Schottky electrode d1 made of polysilicon is formed on the bottom 3a of the trench 3 as shown in FIG. Next, as shown in FIG. 6, the exposed surface of the n-type semiconductor region 14, the side portion 3 b of the trench 3, and the upper surface of the Schottky electrode d <b> 1 are thermally oxidized to form the gate insulating portion 5. When the Schottky electrode d1 is a metal such as Ti, the gate insulating portion 5 is formed by plasma CVD.

次に、図7のように、トレンチ3内部に形成されたゲート絶縁部5上に、ゲート電極41を形成する。そして、ゲート電極41およびゲート絶縁部5の上面を平らにした後、層間絶縁膜6を積層させる。   Next, as shown in FIG. 7, the gate electrode 41 is formed on the gate insulating portion 5 formed inside the trench 3. Then, after flattening the upper surfaces of the gate electrode 41 and the gate insulating portion 5, the interlayer insulating film 6 is laminated.

次に、図8のように、図7に示した層間絶縁膜6およびゲート絶縁部5のうちトレンチ3上部以外に積層されているものを、取り除く。次に、図9のように、層間絶縁膜6における頂部の中央近傍から、ゲート絶縁部5まで、溝mを形成する。   Next, as shown in FIG. 8, the interlayer insulating film 6 and the gate insulating portion 5 shown in FIG. Next, as shown in FIG. 9, a groove m is formed from the vicinity of the center of the top of the interlayer insulating film 6 to the gate insulating portion 5.

次に、図10に示すように、ゲート電極41のうち、溝m内部で露出している部分を熱酸化する。次に、ゲート絶縁部5のうち溝mの底の部分5mを取り除く。次に、溝mに、図2に示した接続導電部d2を形成する。その後、ソース電極42、ドレイン電極43などを形成する。これにより、半導体装置Aの製造が完成する。   Next, as shown in FIG. 10, a portion of the gate electrode 41 exposed inside the groove m is thermally oxidized. Next, the bottom portion 5m of the groove m in the gate insulating portion 5 is removed. Next, the connection conductive portion d2 shown in FIG. 2 is formed in the groove m. Thereafter, the source electrode 42, the drain electrode 43, and the like are formed. Thereby, the manufacture of the semiconductor device A is completed.

次に、本実施形態にかかる半導体装置Aの作用について説明する。   Next, the operation of the semiconductor device A according to the present embodiment will be described.

本実施形態においては、トレンチ3の外部に、第2n型半導体層12とショットキー電極d1により形成されるダイオードに相当するダイオードを設ける必要がない。そのため、半導体装置Aを用いた回路の小型化を図ることができる。   In the present embodiment, it is not necessary to provide a diode corresponding to the diode formed by the second n-type semiconductor layer 12 and the Schottky electrode d1 outside the trench 3. Therefore, the circuit using the semiconductor device A can be reduced in size.

半導体装置Aを使用する際、トレンチ3の底部3aから側部3bまでの部分に電界集中することを抑止できる。そのため、半導体装置Aにおいて、絶縁破壊が起こりにくくなる。   When the semiconductor device A is used, it is possible to prevent the electric field from being concentrated on the portion from the bottom 3a to the side 3b of the trench 3. Therefore, dielectric breakdown is less likely to occur in the semiconductor device A.

上記ダイオードがトレンチ3の内部に形成されているにもかかわらず、p型半導体層13におけるチャネルの形成が妨げられにくい。そのため、トレンチ3の内部に上記ダイオードが形成されていない場合と比べて、上記チャネルの抵抗を同程度に維持できる。   Despite the formation of the diode in the trench 3, the formation of the channel in the p-type semiconductor layer 13 is difficult to be hindered. Therefore, compared with the case where the diode is not formed inside the trench 3, the resistance of the channel can be maintained at the same level.

本発明に係る半導体装置は、上述した実施形態に限定されるものではない。本発明に係る半導体装置の各部の具体的な構成は、種々に設計変更自在である。たとえば、ショットキー電極d1が、トレンチ3の底部3aの全体を覆っていなくても良い。ショットキー電極d1と第2n型半導体層12との接する幅方向yの大きさが、接続導電部d2の幅方向yの大きさと同程度でもよい。   The semiconductor device according to the present invention is not limited to the above-described embodiment. The specific configuration of each part of the semiconductor device according to the present invention can be modified in various ways. For example, the Schottky electrode d1 does not have to cover the entire bottom 3a of the trench 3. The size in the width direction y between the Schottky electrode d1 and the second n-type semiconductor layer 12 may be approximately the same as the size in the width direction y of the connection conductive portion d2.

上記実施形態では、第1半導体層、第2半導体層、および半導体領域がSiCにより構成されている例を示したが、本発明の範囲はこれに限られない。また、本発明にかかるダイオードがショットキーバリヤダイオードである場合に、上記第1半導体層、上記第2半導体層、および上記半導体領域は、SiC以外のワイドバンドギャップ半導体から構成されていてもよい。たとえば、GaN、ダイヤモンド、ZnO、または、AlGaNなどが挙げられる。   In the said embodiment, although the 1st semiconductor layer, the 2nd semiconductor layer, and the semiconductor region showed the example comprised by SiC, the range of this invention is not restricted to this. When the diode according to the present invention is a Schottky barrier diode, the first semiconductor layer, the second semiconductor layer, and the semiconductor region may be made of a wide band gap semiconductor other than SiC. For example, GaN, diamond, ZnO, AlGaN, etc. are mentioned.

また、実施形態におけるショットキー電極d1をp型の半導体とすることにより、pn接合のダイオードを形成してもよい。   In addition, a pn junction diode may be formed by using a Schottky electrode d1 in the embodiment as a p-type semiconductor.

本発明の実施形態にかかる半導体装置Aの要部平面図である。It is a principal part top view of the semiconductor device A concerning embodiment of this invention. 図1のII−II線に沿った要部断面図である。It is principal part sectional drawing along the II-II line of FIG. 図1のIII−III線に沿った要部断面図である。It is principal part sectional drawing along the III-III line of FIG. 本発明に係る半導体装置Aの製造工程の一工程を示す図である。It is a figure which shows 1 process of the manufacturing process of the semiconductor device A which concerns on this invention. 図4に続く製造工程の一工程を示す図である。FIG. 5 is a diagram showing a step in the manufacturing process subsequent to FIG. 4. 図5に続く製造工程の一工程を示す図である。FIG. 6 is a diagram illustrating one process of the manufacturing process subsequent to FIG. 5. 図6に続く製造工程の一工程を示す図である。FIG. 7 is a diagram showing one step in the manufacturing process following FIG. 6. 図7に続く製造工程の一工程を示す図である。FIG. 8 is a diagram showing one process of the manufacturing process following FIG. 7. 図8に続く製造工程の一工程を示す図である。FIG. 9 is a diagram showing one step in the manufacturing process following FIG. 8. 図9に続く製造工程の一工程を示す図である。FIG. 10 is a diagram showing one step in the manufacturing process following FIG. 9. 従来の半導体装置の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the conventional semiconductor device.

符号の説明Explanation of symbols

A 半導体装置
11 第1n型半導体層
12 第2n型半導体層
13 p型半導体層
14 n型半導体領域
3 トレンチ
41 ゲート電極
42 ソース電極
43 ドレイン電極
5 ゲート絶縁部
6 層間絶縁膜
x 深さ方向
y 幅方向
m 溝
d1 ショットキー電極
d2 接続導電部
A semiconductor device 11 first n-type semiconductor layer 12 second n-type semiconductor layer 13 p-type semiconductor layer 14 n-type semiconductor region 3 trench 41 gate electrode 42 source electrode 43 drain electrode 5 gate insulating portion 6 interlayer insulating film x depth direction y width Direction m Groove d1 Schottky electrode d2 Connection conductive part

Claims (4)

第1の導電型をもつ第1半導体層と、
この第1半導体層上に設けられ、上記第1の導電型と反対の第2の導電型を持つ第2半導体層と、
この第2半導体層を貫通して上記第1半導体層に達するトレンチと、
上記第2半導体層上に、かつ、上記トレンチの周囲に形成された上記第1の導電型をもつ半導体領域と、
上記トレンチ内部に形成された絶縁部と、
この絶縁部により、上記第1半導体層、上記第2半導体層および上記半導体領域と絶縁されており、少なくとも一部が上記トレンチ内部に形成されたゲート電極と、
この半導体領域と導通しているソース電極と、
を備えた半導体装置であって、
導電体、または、上記第2の導電型をもつ半導体から構成される追加の領域をさらに備え、
この追加の領域は、上記ソース電極と導通しており、かつ、上記第2半導体層、上記半導体領域および上記ゲート電極と絶縁されており、
上記追加の領域と上記第1半導体層とが上記トレンチ内で接合されることにより、ダイオードを形成していることを特徴とする、半導体装置。
A first semiconductor layer having a first conductivity type;
A second semiconductor layer provided on the first semiconductor layer and having a second conductivity type opposite to the first conductivity type;
A trench that penetrates through the second semiconductor layer and reaches the first semiconductor layer;
A semiconductor region having the first conductivity type formed on the second semiconductor layer and around the trench;
An insulating part formed inside the trench;
A gate electrode which is insulated from the first semiconductor layer, the second semiconductor layer, and the semiconductor region by the insulating portion, and at least a part of which is formed inside the trench;
A source electrode in conduction with the semiconductor region;
A semiconductor device comprising:
An additional region composed of a conductor or a semiconductor having the second conductivity type;
The additional region is electrically connected to the source electrode, and is insulated from the second semiconductor layer, the semiconductor region, and the gate electrode.
The semiconductor device, wherein the additional region and the first semiconductor layer are joined in the trench to form a diode.
上記第1半導体層、上記第2半導体層、および、上記半導体領域は、SiC、GaN、ダイヤモンド、ZnO、または、AlGaNから構成されており、
上記追加の領域は、上記導電体からなり、
上記ダイオードは、ショットキーバリヤダイオードである、請求項1に記載の半導体装置。
The first semiconductor layer, the second semiconductor layer, and the semiconductor region are composed of SiC, GaN, diamond, ZnO, or AlGaN,
The additional region is made of the conductor,
The semiconductor device according to claim 1, wherein the diode is a Schottky barrier diode.
上記導電体は、上記トレンチの底面から上記トレンチの側面にわたって接している、請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductor is in contact with a side surface of the trench from a bottom surface of the trench. 上記追加の領域と上記ソース電極とを導通させる導電部をさらに備え、
この導電部は、上記トレンチの開口部から、上記トレンチの深さ方向に沿って延びており、かつ、上記ゲート電極を貫通している、請求項1ないし3のいずれかに記載の半導体装置。
A conductive portion for electrically connecting the additional region and the source electrode;
4. The semiconductor device according to claim 1, wherein the conductive portion extends from the opening of the trench along the depth direction of the trench and penetrates the gate electrode. 5.
JP2008280953A 2008-10-31 2008-10-31 Semiconductor device Pending JP2010109221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280953A JP2010109221A (en) 2008-10-31 2008-10-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280953A JP2010109221A (en) 2008-10-31 2008-10-31 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014045925A Division JP2014132678A (en) 2014-03-10 2014-03-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2010109221A true JP2010109221A (en) 2010-05-13

Family

ID=42298353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280953A Pending JP2010109221A (en) 2008-10-31 2008-10-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2010109221A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144271A1 (en) * 2011-04-19 2012-10-26 日産自動車株式会社 Semiconductor device and method for producing same
WO2013057564A1 (en) * 2011-10-18 2013-04-25 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of producing the same
CN103262248A (en) * 2010-12-10 2013-08-21 三菱电机株式会社 Semiconductor device and production method therefor
WO2014178262A1 (en) * 2013-04-30 2014-11-06 日産自動車株式会社 Semiconductor device and method for manufacturing same
WO2015015808A1 (en) * 2013-08-01 2015-02-05 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method for same
WO2015155828A1 (en) * 2014-04-08 2015-10-15 日産自動車株式会社 Semiconductor device and method for manufacturing same
US9184286B2 (en) 2011-02-02 2015-11-10 Rohm Co., Ltd. Semiconductor device having a breakdown voltage holding region
US9252211B2 (en) 2014-05-28 2016-02-02 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and manufacturing method thereof
CN109638069A (en) * 2017-10-05 2019-04-16 富士电机株式会社 Semiconductor device
WO2019116481A1 (en) * 2017-12-14 2019-06-20 新電元工業株式会社 Wide-gap semiconductor device
JP2020043242A (en) * 2018-09-11 2020-03-19 国立研究開発法人産業技術総合研究所 Semiconductor device
CN114937692A (en) * 2022-07-25 2022-08-23 深圳市威兆半导体股份有限公司 Stepped trench gate SiC MOSFET structure with trench diode and preparation method thereof
CN117238968A (en) * 2023-11-10 2023-12-15 安建科技(深圳)有限公司 Trench gate silicon carbide MOSFET device and preparation method thereof
DE102022207273A1 (en) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Power FinFET with a two-part control electrode and method for producing a power FinFET with a two-part control electrode
WO2024038504A1 (en) * 2022-08-16 2024-02-22 三菱電機株式会社 Silicon carbide semiconductor device, electric power conversion device, and method for producing silicon carbide semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057002A (en) * 1991-06-27 1993-01-14 Mitsubishi Electric Corp Insulated gate type transistor
JP2002203967A (en) * 2000-10-23 2002-07-19 Matsushita Electric Ind Co Ltd Semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057002A (en) * 1991-06-27 1993-01-14 Mitsubishi Electric Corp Insulated gate type transistor
JP2002203967A (en) * 2000-10-23 2002-07-19 Matsushita Electric Ind Co Ltd Semiconductor element

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710644B2 (en) * 2010-12-10 2015-04-30 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US9985093B2 (en) 2010-12-10 2018-05-29 Mitsubishi Electric Corporation Trench-gate type semiconductor device and manufacturing method therefor
CN103262248A (en) * 2010-12-10 2013-08-21 三菱电机株式会社 Semiconductor device and production method therefor
DE112011104322T5 (en) 2010-12-10 2013-10-02 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing a semiconductor device
US9614029B2 (en) 2010-12-10 2017-04-04 Mitsubishi Electric Corporation Trench-gate type semiconductor device and manufacturing method therefor
US9224860B2 (en) 2010-12-10 2015-12-29 Mitsubishi Electric Corporation Trench-gate type semiconductor device and manufacturing method therefor
US9698216B2 (en) 2011-02-02 2017-07-04 Rohm Co., Ltd. Semiconductor device having a breakdown voltage holding region
US9406744B2 (en) 2011-02-02 2016-08-02 Rohm Co., Ltd. Semiconductor device having a breakdown voltage holding region
US9184286B2 (en) 2011-02-02 2015-11-10 Rohm Co., Ltd. Semiconductor device having a breakdown voltage holding region
EP2701201A4 (en) * 2011-04-19 2015-04-22 Nissan Motor Semiconductor device and method for producing same
JP5862660B2 (en) * 2011-04-19 2016-02-16 日産自動車株式会社 Semiconductor device and manufacturing method thereof
RU2548058C1 (en) * 2011-04-19 2015-04-10 Ниссан Мотор Ко., Лтд. Semiconductor device and method of its manufacturing
WO2012144271A1 (en) * 2011-04-19 2012-10-26 日産自動車株式会社 Semiconductor device and method for producing same
CN103493208A (en) * 2011-04-19 2014-01-01 日产自动车株式会社 Semiconductor device and method for producing same
KR101473141B1 (en) * 2011-04-19 2014-12-15 닛산 지도우샤 가부시키가이샤 Semiconductor device and manufacturing method of the same
EP2701201A1 (en) * 2011-04-19 2014-02-26 Nissan Motor Co., Ltd Semiconductor device and method for producing same
US9252261B2 (en) 2011-04-19 2016-02-02 Nissan Motor Co., Ltd. Semiconductor device and manufacturing method of the same
WO2013057564A1 (en) * 2011-10-18 2013-04-25 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of producing the same
WO2014178262A1 (en) * 2013-04-30 2014-11-06 日産自動車株式会社 Semiconductor device and method for manufacturing same
JP5939448B2 (en) * 2013-04-30 2016-06-22 日産自動車株式会社 Semiconductor device and manufacturing method thereof
WO2015015808A1 (en) * 2013-08-01 2015-02-05 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method for same
US9825164B2 (en) 2013-08-01 2017-11-21 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method for same
JPWO2015155828A1 (en) * 2014-04-08 2017-04-13 日産自動車株式会社 Semiconductor device and manufacturing method thereof
WO2015155828A1 (en) * 2014-04-08 2015-10-15 日産自動車株式会社 Semiconductor device and method for manufacturing same
US9252211B2 (en) 2014-05-28 2016-02-02 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and manufacturing method thereof
JP7059555B2 (en) 2017-10-05 2022-04-26 富士電機株式会社 Semiconductor device
CN109638069A (en) * 2017-10-05 2019-04-16 富士电机株式会社 Semiconductor device
JP2019071313A (en) * 2017-10-05 2019-05-09 国立研究開発法人産業技術総合研究所 Semiconductor device
CN109638069B (en) * 2017-10-05 2023-10-24 富士电机株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP6554614B1 (en) * 2017-12-14 2019-07-31 新電元工業株式会社 Wide gap semiconductor device
US11342435B2 (en) 2017-12-14 2022-05-24 Shindengen Electric Manufacturing Co., Ltd. Wide-gap semiconductor device
WO2019116481A1 (en) * 2017-12-14 2019-06-20 新電元工業株式会社 Wide-gap semiconductor device
JP2020043242A (en) * 2018-09-11 2020-03-19 国立研究開発法人産業技術総合研究所 Semiconductor device
JP7127445B2 (en) 2018-09-11 2022-08-30 富士電機株式会社 semiconductor equipment
DE102022207273A1 (en) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Power FinFET with a two-part control electrode and method for producing a power FinFET with a two-part control electrode
CN114937692A (en) * 2022-07-25 2022-08-23 深圳市威兆半导体股份有限公司 Stepped trench gate SiC MOSFET structure with trench diode and preparation method thereof
CN114937692B (en) * 2022-07-25 2022-10-28 深圳市威兆半导体股份有限公司 Stepped trench gate SiC MOSFET structure with trench diode and preparation method thereof
WO2024038504A1 (en) * 2022-08-16 2024-02-22 三菱電機株式会社 Silicon carbide semiconductor device, electric power conversion device, and method for producing silicon carbide semiconductor device
CN117238968A (en) * 2023-11-10 2023-12-15 安建科技(深圳)有限公司 Trench gate silicon carbide MOSFET device and preparation method thereof
CN117238968B (en) * 2023-11-10 2024-03-15 安建科技(深圳)有限公司 Trench gate silicon carbide MOSFET device and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2010109221A (en) Semiconductor device
US10559658B2 (en) Schottky barrier diode
JP6164636B2 (en) Semiconductor device
JP5303839B2 (en) Insulated gate silicon carbide semiconductor device and manufacturing method thereof
JP6296445B2 (en) Schottky barrier diode
JP2008177335A (en) Silicon carbide insulated gate semiconductor device
JP2008251772A (en) Semiconductor device
JP2009117715A (en) Semiconductor device and its manufacturing method
JP6164604B2 (en) Semiconductor device
JP2006086354A (en) Nitride system semiconductor device
JP2006173437A (en) Semiconductor device
JP2009267032A (en) Semiconductor device and manufacturing method thereof
JP6750969B2 (en) Method for manufacturing semiconductor device
US9887286B2 (en) Semiconductor device having low impedance and method of manufacturing the same
JP2014127547A (en) Manufacturing method of semiconductor device
JP5556863B2 (en) Wide bandgap semiconductor vertical MOSFET
JP5547022B2 (en) Semiconductor device
JP2008306022A (en) Semiconductor device
JP7188230B2 (en) semiconductor equipment
US10319851B2 (en) Semiconductor device and method for manufacturing same
JP2016086002A (en) Semiconductor device and manufacturing method of the same
JP2007053226A (en) Semiconductor device and its manufacturing method
JP6647352B1 (en) SiC semiconductor device
JP2016027675A (en) Semiconductor device
JP2014132678A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210