JP2010105270A - Apparatus and method for manufacturing resin molding - Google Patents

Apparatus and method for manufacturing resin molding Download PDF

Info

Publication number
JP2010105270A
JP2010105270A JP2008279568A JP2008279568A JP2010105270A JP 2010105270 A JP2010105270 A JP 2010105270A JP 2008279568 A JP2008279568 A JP 2008279568A JP 2008279568 A JP2008279568 A JP 2008279568A JP 2010105270 A JP2010105270 A JP 2010105270A
Authority
JP
Japan
Prior art keywords
resin molded
sealed tank
molded body
mold
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008279568A
Other languages
Japanese (ja)
Inventor
Jun Watabe
順 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008279568A priority Critical patent/JP2010105270A/en
Publication of JP2010105270A publication Critical patent/JP2010105270A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for manufacturing a resin molding which enable the ready and high-precision transfer of a mold transfer surface having a fine irregular pattern to the surface of the resin molding without use of a complicated driver for driving while keeping a high pressure of carbon dioxide gas. <P>SOLUTION: A mold 2 having a transfer surface 3 and a resin molding holding portion 9 holding a resin molding 101 to be transferred with the transfer surface 3 are housed in the first closed vessel 6. A movable member 8 moving through a middle wall 5 is arranged, and a pressing portion 8b pressing the movable member 8 toward the transfer surface 3 of the mold 2 is arranged in the second closed vessel 7 in a movable way. Carbon dioxide gas is supplied into the first and second closed vessels 6 and 7. While the surface of the resin molding 101 is plasticized with the carbon dioxide gas in the first closed vessel 6, the movable member 8 is moved by adjusting the pressures of the carbon dioxide gas in the first and second closed vessels 6 and 7 so as to press the resin molding 101 toward the transfer surface 3 of the mold 2, and then the resin molding 101 is released. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高精度な転写面を有する樹脂成形品を製造するのに好適な製造装置及び製造方法に係り、特に、表面に高精度な光学鏡面や微細パターンを有する光学素子として好適な樹脂成形品を製造するのに好適な樹脂成形品の製造装置及び製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method suitable for manufacturing a resin molded product having a highly accurate transfer surface, and in particular, a resin molding suitable as an optical element having a highly accurate optical mirror surface or fine pattern on the surface. The present invention relates to a resin molded product manufacturing apparatus and a manufacturing method suitable for manufacturing a product.

樹脂成形品の製造方法としては、一般的に射出成形法が用いられている。射出成形法は、溶融した樹脂を、その軟化温度以下の温度に加熱維持された金型のキャビティ内に充填して、固化させるといった方法である。この方法によれば、キャビティ内に樹脂を充填した直後に冷却固化が始まり、非常に速い成形サイクルで、3次元形状の成形品を作製することができる。しかし、この場合、樹脂がキャビティ内に充填された直後に冷却され、固化層が形成されるために、特に回折レンズや導光板のように表面に微細な凹凸パターンを有する成形品においては、樹脂がその微細な凹凸パターンに充填する前に固化してしまい、樹脂成形品に微細な凹凸パターンを精度良く形成することができないという問題が生じる。   As a method for producing a resin molded product, an injection molding method is generally used. The injection molding method is a method in which a molten resin is filled in a mold cavity that is heated and maintained at a temperature equal to or lower than its softening temperature and solidified. According to this method, cooling and solidification starts immediately after the resin is filled in the cavity, and a three-dimensional shaped molded product can be produced with a very fast molding cycle. However, in this case, since the resin is cooled immediately after being filled in the cavity and a solidified layer is formed, the resin is formed particularly in a molded product having a fine uneven pattern on the surface such as a diffraction lens or a light guide plate. However, it solidifies before filling the fine concavo-convex pattern, resulting in a problem that the fine concavo-convex pattern cannot be accurately formed on the resin molded product.

他の樹脂成形品の製造方法としては、上述した微細パターンを樹脂表面に転写する方法があり、この転写方法として熱インプリント法が知られている。これは、樹脂をその軟化温度以上に加熱して、微細パターンが形成された金型の転写面を押圧し、樹脂表面に転写し、その後軟化温度以下まで冷却して成形品を転写面から離型する方法である。この場合は、押圧時に樹脂はその軟化温度以上に加熱されているため、微細パターンを精度良く樹脂表面に転写することが可能となるが、樹脂の加熱及び冷却の工程が必要であり、非常に成形時間が長くなるといった問題がある。   As another method for producing a resin molded product, there is a method of transferring the above-described fine pattern onto the resin surface, and a thermal imprint method is known as this transfer method. This is because the resin is heated above its softening temperature to press the transfer surface of the mold on which the fine pattern is formed, transferred to the resin surface, and then cooled to below the softening temperature to release the molded product from the transfer surface. It is a way to mold. In this case, since the resin is heated to the softening temperature or higher at the time of pressing, it becomes possible to transfer the fine pattern to the resin surface with high accuracy. However, the steps of heating and cooling the resin are necessary. There is a problem that the molding time becomes long.

このような問題点に対して、近年では二酸化炭素気体を成形加工に応用する試みが複数なされている。二酸化炭素気体のような不活性ガスを高圧にして樹脂中に溶解させると、樹脂が可塑化され、その軟化温度が低下することが知られており、この性質を応用して微細な凹凸パターンを樹脂表面に形成する試みがなされている。   In recent years, a plurality of attempts have been made to apply carbon dioxide gas to the molding process for such problems. It is known that when an inert gas such as carbon dioxide gas is dissolved in a resin at a high pressure, the resin is plasticized and its softening temperature is lowered. Attempts have been made to form on the resin surface.

例えば、特許文献1には、金型キャビティ内に予め二酸化炭素気体を充填し、その後金型キャビティ内に樹脂を充填して射出成形する方法が提案されている。この場合は、金型キャビティ内に充填された二酸化炭素気体によって、キャビティ内の樹脂の軟化温度が低下し、それにつれて樹脂の粘度が低下し、金型の微細パターン(転写面)への充填が促進されて樹脂表面に精度よく微細パターンを形成することが可能となる。しかしながら、樹脂の流動を伴って二酸化炭素気体が溶解されるため、樹脂の流動が不安定になり、それに伴う外観不良が成形品に生じる。また、高圧二酸化炭素気体で加圧されたキャビティ内に樹脂を充填するために、成形品の未充填といった問題が生じ易くなる。   For example, Patent Document 1 proposes a method in which a mold cavity is filled with carbon dioxide gas in advance, and then a resin is filled in the mold cavity and injection molding is performed. In this case, the carbon dioxide gas filled in the mold cavity decreases the softening temperature of the resin in the cavity, and the viscosity of the resin decreases accordingly, and the fine pattern (transfer surface) of the mold is not filled. The fine pattern can be accurately formed on the resin surface by being promoted. However, since the carbon dioxide gas is dissolved with the flow of the resin, the flow of the resin becomes unstable, and the appearance defect associated therewith occurs in the molded product. Further, since the resin is filled in the cavity pressurized with the high-pressure carbon dioxide gas, a problem such as unfilling of the molded product is likely to occur.

一方、上記のような問題を解消するために、特許文献2においては、金型のキャビティ内に樹脂を充填して樹脂成形体を形成した後に、金型の転写面と樹脂成形体表面のスキン層の間に隙間を形成し、この隙間に二酸化炭素気体を注入してスキン層を可塑化し、再度保圧を高めて可塑化されたスキン層と転写面を再密着させ、転写面の微細凹凸パターンを精度良く転写させることが提案されている。この方法では、樹脂の流動を伴わずに二酸化炭素気体をスキン層に溶解させることができるため、上述のような流動に伴う外観不良等を低減させることができる。しかしながら、この方法では、金型の転写面と樹脂成形体表面のスキン層の間に隙間を形成し、その後、転写面を再密着させるために転写面周囲に可動部が必要となり、気密性を保つことが難しく、可動部からの二酸化炭素気体のリーク等の問題が生じ、安定して、高圧ガスを注入することができない。さらに、樹脂流動後に保圧によって圧力を負荷させると、樹脂の流入口であるゲート部近傍のみに応力が集中し、転写面に均一に圧力を負可させることができないといった問題が生じる。   On the other hand, in order to solve the above problems, in Patent Document 2, after the resin is filled in the mold cavity to form the resin molded body, the transfer surface of the mold and the skin on the surface of the resin molded body are formed. A gap is formed between the layers, carbon dioxide gas is injected into this gap to plasticize the skin layer, the holding pressure is increased again, the plasticized skin layer and the transfer surface are brought into close contact, and fine irregularities on the transfer surface It has been proposed to transfer a pattern with high accuracy. In this method, since the carbon dioxide gas can be dissolved in the skin layer without causing the resin to flow, it is possible to reduce the above-described poor appearance due to the flow. However, in this method, a gap is formed between the transfer surface of the mold and the skin layer on the surface of the resin molded body, and then a movable part is required around the transfer surface to re-adhere the transfer surface. It is difficult to maintain, and problems such as leakage of carbon dioxide gas from the movable part occur, and high pressure gas cannot be injected stably. Furthermore, when pressure is applied by holding pressure after the resin flows, the stress concentrates only in the vicinity of the gate portion which is the resin inlet, so that the pressure cannot be uniformly applied to the transfer surface.

また、特許文献2記載の方法による問題点を改善するために、特許文献3に示すように、樹脂母材シートを金型に形成された転写面に押し付けるためのトグル式プレス駆動部を使用し、密閉された金型キャビティ内に二酸化炭素気体を注入して樹脂母材シート表面を可塑化し、次いでプレス駆動部によって金型転写面に樹脂母材シートを押し付けて転写面の微細パターンを樹脂母材シート表面に転写させることが提案されている。この場合は、樹脂母材シートに二酸化炭素気体を含浸させることで可塑化が促進されるため、従来の熱インプリント法のように、樹脂や金型を高温に加熱せずに低温で微細パターンを転写することができるため、成形時間の短縮が期待できる。しかしながら、高圧ガスに耐えるだけの密閉金型キャビティ内に、樹脂母材シートを金型に形成された転写面に押し付けるためのトグル式プレス駆動部が必要であり、しかも、高圧を維持するために、その密閉性を確保したまま駆動させる必要があるために装置が複雑かつ高価となるといった問題が生じる。   Further, in order to improve the problems caused by the method described in Patent Document 2, as shown in Patent Document 3, a toggle-type press drive unit for pressing the resin base material sheet against the transfer surface formed on the mold is used. Then, carbon dioxide gas is injected into the sealed mold cavity to plasticize the surface of the resin base material sheet, and then the resin base material sheet is pressed against the mold transfer surface by a press drive unit to form a fine pattern on the transfer surface. It has been proposed to transfer to the surface of the material sheet. In this case, since the plasticization is accelerated by impregnating the resin base material sheet with carbon dioxide gas, a fine pattern can be formed at a low temperature without heating the resin or mold to a high temperature as in the conventional thermal imprint method. Therefore, the molding time can be shortened. However, there is a need for a toggle-type press drive for pressing the resin matrix sheet against the transfer surface formed on the mold in a sealed mold cavity that can withstand high-pressure gas, and to maintain high pressure. The problem arises that the device is complicated and expensive because it needs to be driven with its sealing performance secured.

特許第3096904号公報Japanese Patent No. 3096904 特許第3445778号公報Japanese Patent No. 3445778 特開2006−175755号公報JP 2006-175755 A

本発明は、このような従来の問題点を考慮してなされたものであり、二酸化炭素気体の高圧を維持しながら駆動させるための複雑な駆動装置を用いずに、短時間で、樹脂成形体表面に微細な凹凸パターンが形成された金型転写面を高精度に転写できる樹脂成形品を製造する製造装置及び製造方法を提供することを目的とする。   The present invention has been made in consideration of such conventional problems, and without using a complicated driving device for driving while maintaining the high pressure of carbon dioxide gas, the resin molded body can be obtained in a short time. It is an object of the present invention to provide a manufacturing apparatus and a manufacturing method for manufacturing a resin molded product capable of transferring a mold transfer surface having a fine concavo-convex pattern formed thereon with high accuracy.

上記課題を解決するために、請求項1に記載の発明は、少なくとも1つ以上の転写面を有する金型と、前記金型の転写面に対向して配設されかつ前記金型の転写面が転写される樹脂成形体を保持する樹脂成形体保持部とを収容する第1密閉槽と、前記樹脂成形体保持部を一端に有し、前記樹脂成形体保持部を前記金型の転写面に対して移動可能に取り付けられる可動部材と、前記可動部材の一端と反対側の他端である押圧部を前記金型の転写面に向けて押圧する押圧手段と、前記第1密閉槽内に前記樹脂成形体に含浸させる二酸化炭素気体を供給する供給口と前記二酸化炭素気体を第1密閉槽から排出する排出口とを有する樹脂成形品の製造装置であって、
前記可動部材の他端は、前記第1密閉槽と中間壁を介して連結された第2密閉槽内に収容され、
前記可動部材の前記樹脂成形体保持部と前記押圧部との間の中間部は、前記中間壁を貫通して移動可能に前記中間壁に取り付けられ、
前記押圧手段は、前記第2密閉槽内に供給される気体の圧力によって前記可動部材の前記押圧部を押圧して前記可動部材を移動させる押圧手段であり、
前記可動部材を移動させて前記樹脂成形体保持部上に保持された樹脂成形体の表面に前記金型の転写面を転写して樹脂成形品を製造することを特徴とする。
In order to solve the above problems, the invention described in claim 1 is a mold having at least one transfer surface, a transfer surface of the mold that is disposed opposite to the transfer surface of the mold, and A resin molded body holding portion that holds a resin molded body holding the resin molded body to be transferred, and the resin molded body holding portion at one end, and the resin molded body holding portion is a transfer surface of the mold A movable member that is movably attached to the movable member, a pressing means that presses the pressing portion that is the other end opposite to the one end of the movable member toward the transfer surface of the mold, and the first sealed tank. An apparatus for producing a resin molded product having a supply port for supplying carbon dioxide gas to be impregnated into the resin molded body and a discharge port for discharging the carbon dioxide gas from a first sealed tank,
The other end of the movable member is accommodated in a second sealed tank connected to the first sealed tank via an intermediate wall,
An intermediate portion between the resin molded body holding portion and the pressing portion of the movable member is attached to the intermediate wall so as to be movable through the intermediate wall,
The pressing means is a pressing means that moves the movable member by pressing the pressing portion of the movable member by the pressure of the gas supplied into the second sealed tank.
A resin molded product is manufactured by moving the movable member and transferring the transfer surface of the mold onto the surface of the resin molded body held on the resin molded body holding portion.

また、請求項2の発明は、請求項1記載の樹脂成形品の製造装置において、
前記第2密閉槽に供給される気体は、二酸化炭素気体であり、前記第1密閉槽に供給される二酸化炭素気体と等圧の二酸化炭素気体を供給して前記樹脂成形体に二酸化炭素気体を含浸させることを特徴とする。
The invention of claim 2 is the resin molded product manufacturing apparatus according to claim 1,
The gas supplied to the second sealed tank is carbon dioxide gas, and the carbon dioxide gas having the same pressure as the carbon dioxide gas supplied to the first sealed tank is supplied to supply the carbon dioxide gas to the resin molding. It is impregnated.

また、請求項3の発明は、請求項1又は2記載の樹脂成形品の製造装置において、
前記第1密閉槽に供給される二酸化炭素気体のガス圧をP1、前記第2密閉槽に供給される気体のガス圧をP2としたとき、P2>P1とすることによって前記可動部材の前記押圧部を押圧して、前記金型の転写面に前記樹脂成形体を押圧し、P2<P1とすることによって前記金型の転写面から樹脂成形体を離間、剥離するように前記可動部材を移動させることを特徴とする。
The invention of claim 3 is the resin molded product manufacturing apparatus according to claim 1 or 2,
When the gas pressure of the carbon dioxide gas supplied to the first sealed tank is P1, and the gas pressure of the gas supplied to the second sealed tank is P2, the pressure of the movable member is set by P2> P1. The movable member is moved so as to separate and peel the resin molded body from the transfer surface of the mold by pressing the part, pressing the resin molded body against the transfer surface of the mold, and setting P2 <P1. It is characterized by making it.

また、請求項4の発明は、請求項1乃至3のいずれか1項記載の樹脂成形品の製造装置において、
前記可動部材における前記樹脂成形体保持部の樹脂成形体保持面の面積をS1、前記可動部材における前記押圧部の被押圧面の面積をS2としたときに、S1とS2の関係が、S1<S2であることを特徴とする。
The invention of claim 4 is the resin-molded article manufacturing apparatus according to any one of claims 1 to 3,
When the area of the resin molded body holding surface of the resin molded body holding portion of the movable member is S1, and the area of the pressed surface of the pressing portion of the movable member is S2, the relationship between S1 and S2 is S1 < It is characterized by S2.

また、請求項5の発明は、請求項1乃至4のいずれか1項記載の樹脂成形品の製造装置において、
前記中間壁と前記可動部材の押圧部との間に、弾性部材を配設し、前記第2密閉槽内に気体を供給して前記可動部材の押圧部を前記金型の転写面に向けて移動させたときに、当該弾性部材を押圧し、及び前記第2密閉槽内の気体の圧力を減圧したときに、前記弾性部材の弾性回復力によって、前記可動部材の樹脂成形体保持部上の樹脂成形体を前記金型の転写面から剥離させることを特徴とする。
The invention of claim 5 is the resin molded product manufacturing apparatus according to any one of claims 1 to 4,
An elastic member is disposed between the intermediate wall and the pressing portion of the movable member, and gas is supplied into the second sealed tank so that the pressing portion of the movable member faces the transfer surface of the mold. When moved, when the elastic member is pressed and the pressure of the gas in the second sealed tank is reduced, the elastic recovery force of the elastic member causes the elastic member on the resin molded body holding portion of the movable member. The resin molded body is separated from the transfer surface of the mold.

また、請求項6の発明は、請求項1乃至5のいずれか1項記載の樹脂成形品の製造装置において、
前記第1密閉槽と前記第2密閉槽にそれぞれ各槽内温度を制御する第1及び第2温度制御装置を備え、前記第1密閉槽と前記第2密閉槽に等圧の気体が供給された場合に、前記第1密閉槽の槽内温度T1、前記第2密閉槽の槽内温度T2としたとき、T1<T2となるように、前記第1及び第2温度制御装置を制御して前記第2密閉槽内の気体の膨張に伴って前記可動部材を移動させて前記可動部材の樹脂成形体保持部上の樹脂成形体を前記金型の転写面に押圧させて前記金型の転写面を当該樹脂成形体表面に転写させることを特徴とする。
The invention of claim 6 is the apparatus for producing a resin molded product according to any one of claims 1 to 5,
The first sealed tank and the second sealed tank are provided with first and second temperature control devices for controlling the temperature in each tank, respectively, and gas of equal pressure is supplied to the first sealed tank and the second sealed tank. In this case, the first and second temperature control devices are controlled so that T1 <T2 when the tank temperature T1 of the first sealed tank and the tank temperature T2 of the second sealed tank are set. As the gas in the second sealed tank expands, the movable member is moved and the resin molded body on the resin molded body holding portion of the movable member is pressed against the transfer surface of the mold to transfer the mold. The surface is transferred to the surface of the resin molded body.

また、請求項7の発明は、請求項1乃至6のいずれか1項記載の樹脂成形品の製造装置において、
前記中間壁は、断熱部材で形成されていることを特徴とする。
The invention of claim 7 is the resin molded product manufacturing apparatus of any one of claims 1 to 6,
The intermediate wall is formed of a heat insulating member.

また、請求項8の発明は、少なくとも1つ以上の転写面を有する金型と樹脂成形体とを収容する第1密閉槽内に二酸化炭素気体を供給して前記樹脂成形体に前記二酸化炭素気体を含浸させ、その後、前記金型の転写面に前記樹脂成形体表面を押圧して、前記転写面を前記樹脂成形体の表面に転写する樹脂成形品の製造方法において、
請求項1乃至7のいずれか1項記載の樹脂成形品の製造装置を使用し、
前記第2密閉槽内に気体を供給して前記可動部材を前記金型の転写面に向かって移動させ、前記可動部材の樹脂成形体保持部上の樹脂成形体を前記金型の転写面に押圧させて前記転写面を前記樹脂成形体の表面に転写したのち、前記第2密閉槽内の気体を減圧させて、前記可動部材を前記金型の転写面から離間する方向に移動させて、前記樹脂成形体を前記転写面から剥離することを特徴とする。
The invention according to claim 8 is characterized in that carbon dioxide gas is supplied into a first sealed tank containing a mold having at least one transfer surface and a resin molded body, and the carbon dioxide gas is supplied to the resin molded body. In the method for producing a resin molded article, after that, the resin molded body surface is pressed against the transfer surface of the mold, and the transfer surface is transferred to the surface of the resin molded body.
Using the apparatus for producing a resin molded product according to any one of claims 1 to 7,
Gas is supplied into the second sealed tank to move the movable member toward the transfer surface of the mold, and the resin molded body on the resin molded body holding portion of the movable member is moved to the transfer surface of the mold. After pressing and transferring the transfer surface to the surface of the resin molded body, the gas in the second sealed tank is depressurized, and the movable member is moved away from the transfer surface of the mold, The resin molded body is peeled off from the transfer surface.

また、請求項9の発明は、請求項8記載の樹脂成形品の製造方法において、
前記金型の転写面を前記樹脂成形体の表面に転写する工程から前記金型の転写面から前記樹脂成形体を剥離する工程の間、前記第1密閉槽の槽内温度を一定温度に維持していることを特徴とする。
The invention of claim 9 is the method for producing a resin molded article according to claim 8,
During the process of transferring the transfer surface of the mold to the surface of the resin molded body and the process of peeling the resin molded body from the transfer surface of the mold, the internal temperature of the first sealed tank is maintained at a constant temperature. It is characterized by that.

本発明によれば、可動部材の他端(押圧部)は、第1密閉槽と中間壁を介して連結された第2密閉槽内に収容され、前記可動部材の中間部は、前記中間壁を貫通して移動可能に前記中間壁に取り付けられ、押圧手段は、前記第2密閉槽内に供給される気体の圧力によって前記可動部材の他端(押圧部)を押圧して前記可動部材を移動させる押圧手段であり、前記可動部材を移動させて前記樹脂成形体保持部上に保持された樹脂成形体の表面に前記金型の転写面を転写して樹脂成形品を製造することによって、二酸化炭素気体の高圧を維持しながら駆動させるための複雑な駆動装置を用いずに、短時間で、樹脂成形体表面に微細な凹凸パターンが形成された金型転写面を高精度に転写できる樹脂成形品を製造する製造装置及び製造方法を提供することができる。   According to the present invention, the other end (pressing portion) of the movable member is accommodated in a second sealed tank connected to the first sealed tank via an intermediate wall, and the intermediate part of the movable member is the intermediate wall. The pressing means is attached to the intermediate wall so as to be movable, and the pressing means presses the other end (pressing portion) of the movable member by the pressure of the gas supplied into the second sealed tank to A pressing means for moving, by moving the movable member and transferring the transfer surface of the mold to the surface of the resin molded body held on the resin molded body holding portion, thereby producing a resin molded product, Resin that can accurately transfer a mold transfer surface with a fine concavo-convex pattern formed on the surface of a molded resin in a short time without using a complicated driving device for driving while maintaining the high pressure of carbon dioxide gas To provide a manufacturing apparatus and a manufacturing method for manufacturing a molded product It is possible.

本発明者は、二酸化炭素気体を樹脂中に溶解させることによって生じる可塑化効果を利用して微細な凹凸パターンや光学鏡面等が形成された転写面を樹脂成形体の表面に転写して樹脂成形品を製造する場合、二酸化炭素気体の高圧を維持しながら駆動させるための複雑な駆動装置を用いずに、短時間で、樹脂成形体表面に微細な凹凸パターンが形成された金型転写面を高精度に転写できる樹脂成形品を製造する方法について種々検討を行った。   The present inventor uses a plasticizing effect generated by dissolving carbon dioxide gas in a resin to transfer a transfer surface on which a fine concavo-convex pattern or an optical mirror surface is formed to the surface of the resin molded body. When manufacturing products, a mold transfer surface with a fine uneven pattern formed on the surface of the resin molded body in a short time without using a complicated drive device to drive while maintaining the high pressure of carbon dioxide gas. Various studies were made on methods for producing resin molded products that can be transferred with high accuracy.

その結果、密閉容器内に高圧の二酸化炭素気体を注入して樹脂成形体の表面を可塑化して樹脂成形体表面に微細な凹凸パターンが形成された金型転写面を高精度に転写する際に、前記密閉容器を中間壁で第1及び第2の二つの密閉槽に分割し、樹脂成形体を転写面に押圧する可動部材をこれらの第1及び第2の密閉槽内で移動可能にした製造装置とすれば、密閉槽外に二酸化炭素気体をリークする可動部を形成する必要がなく、簡素な構造で確実に高圧を維持することができることに思い立った。   As a result, when high-pressure carbon dioxide gas is injected into the sealed container to plasticize the surface of the resin molded body and transfer the mold transfer surface with a fine uneven pattern formed on the surface of the resin molded body with high accuracy. The sealed container is divided into first and second sealed tanks by an intermediate wall, and a movable member that presses the resin molded body against the transfer surface is movable in the first and second sealed tanks. If it was set as the manufacturing apparatus, it was thought that it was not necessary to form the movable part which leaks a carbon dioxide gas outside a sealed tank, and high pressure could be reliably maintained with a simple structure.

即ち、可動部材は、一端が転写面を有する金型の前記転写面が転写される樹脂成形体を保持する樹脂成形体保持部であり、他端が可動部材を金型の転写面に向かって押圧する押圧部であり、これら樹脂成形体保持部と押圧部とを中央部で結合した構造を有するものである。ここで、樹脂成形体保持部は、転写面を有する金型とともに、第1密閉槽内に配され、押圧部は第2密閉槽内に配され、中央部は前記中間壁を貫通して可動部材が金型の転写面に向かって、又は金型の転写面から離れるように移動できるように配されている。なお、樹脂成形体保持部は第1密閉槽内での移動に限られ、押圧部は第2密閉槽内での移動に限られるものである。   That is, the movable member is a resin molded body holding portion that holds the resin molded body to which the transfer surface of the mold having one transfer surface is transferred, and the other end faces the movable member toward the transfer surface of the mold. It is a pressing part to be pressed, and has a structure in which the resin molded body holding part and the pressing part are coupled at the central part. Here, the resin molded body holding part is arranged in the first sealed tank together with the mold having the transfer surface, the pressing part is arranged in the second sealed tank, and the central part is movable through the intermediate wall. The member is arranged to be movable toward the mold transfer surface or away from the mold transfer surface. In addition, the resin molded body holding part is limited to movement in the first sealed tank, and the pressing part is limited to movement in the second sealed tank.

そして、前記第1及び第2の2つの密閉槽内に二酸化炭素気体を供給し、第1密閉槽内で、樹脂成形体保持部に保持された樹脂成形体の表面を二酸化炭素気体で可塑化するとともに、第1及び第2密閉槽内の二酸化炭素気体の圧力を調整することで、可動部材を動かし、樹脂成形体を金型転写面に押圧させ、その後剥離するようにした製造装置とすることによって、二酸化炭素気体の高圧を維持しながら駆動させるための複雑な駆動装置を用いずに、短時間で、樹脂成形体表面に微細な凹凸パターンが形成された金型転写面を高精度に転写できる樹脂成形品を製造することが可能となることを究明し、本発明を完成するに至った。   Then, carbon dioxide gas is supplied into the first and second sealed tanks, and the surface of the resin molded body held by the resin molded body holding portion is plasticized with carbon dioxide gas in the first sealed tank. At the same time, by adjusting the pressure of the carbon dioxide gas in the first and second sealed tanks, the movable member is moved, the resin molded body is pressed against the mold transfer surface, and then peeled off. Therefore, without using a complicated drive device to drive while maintaining the high pressure of carbon dioxide gas, the mold transfer surface with a fine concavo-convex pattern formed on the surface of the resin molding can be obtained with high accuracy in a short time. It has been determined that it is possible to produce a resin molded product that can be transferred, and the present invention has been completed.

以下、図面を参照して、本発明による実施形態について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は、本発明による一実施形態で使用する樹脂の構造を示す断面図であり、(a)は微細パターン転写前の樹脂成形体を示す図、(b)はパターン転写後の樹脂成型品を示す図である。本実施形態においては、図1(a)に示すようなポリメチルメタクリレート樹脂(以下PMMA:軟化温度105℃)を成形して得られた厚さ1mmのシート状樹脂成形体101を用いた。そして、この樹脂成形体101の表面に、ピッチ2μm深さ1μmのL&S(ラインアンドスペース)パターンが形成された金型転写面を押しつけて、転写させ、図1(b)に示すような樹脂成形体101表面に凹凸パターン102が転写された樹脂成形品103を作製した。なお、ここでは、図1(a)に示す転写前の樹脂と、図1(b)に示す転写後の樹脂とを区別するために、金型転写面が未転写のものを樹脂成形体101、金型転写面が転写されたものを樹脂成形品103と記すこととする。   FIG. 1 is a cross-sectional view showing the structure of a resin used in an embodiment according to the present invention, where (a) is a view showing a resin molded body before fine pattern transfer, and (b) is a resin molded product after pattern transfer. FIG. In the present embodiment, a sheet-shaped resin molded body 101 having a thickness of 1 mm obtained by molding a polymethyl methacrylate resin (hereinafter, PMMA: softening temperature 105 ° C.) as shown in FIG. Then, a mold transfer surface on which an L & S (line and space) pattern having a pitch of 2 μm and a depth of 1 μm is pressed against the surface of the resin molded body 101 to be transferred, and resin molding as shown in FIG. A resin molded product 103 in which the uneven pattern 102 was transferred to the surface of the body 101 was produced. Here, in order to distinguish between the resin before transfer shown in FIG. 1A and the resin after transfer shown in FIG. The product with the mold transfer surface transferred is referred to as a resin molded product 103.

本発明で使用される樹脂成形体101には、図1(a)に示されるように、微細パターンが形成されている必要はなく、略最終形状、すなわち微細パターンが転写される部分以外の部分が最終形状であればよい。従って、樹脂成形体101の作製においては、特別な工夫なく容易に低コストで作製することができる。更に、樹脂成形体101の作製は、微細パターンの転写工程と同時に並行して実施することが可能であり、工程が増えることによる成形サイクルの増加は生じない。   As shown in FIG. 1A, the resin molded body 101 used in the present invention does not need to be formed with a fine pattern, but has a substantially final shape, that is, a portion other than a portion to which the fine pattern is transferred. May be the final shape. Therefore, the resin molded body 101 can be easily manufactured at a low cost without any special device. Furthermore, the resin molded body 101 can be produced in parallel with the fine pattern transfer step, and an increase in the molding cycle due to an increase in the number of steps does not occur.

また、本発明においは、樹脂成形体101は、上記PMMAに限らず任意であり、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂、シクロオレフィン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリエステル樹脂等の熱可塑性樹脂を選択することができる。この場合、樹脂成形体101は、前記熱可塑性樹脂の単層体、これらの樹脂の異なる材質からなる複数の層で形成されたもの、或いは、硬化性樹脂の表面を前記熱可塑性樹脂で被覆した物等が適当に使用することができる。また、その形状もシート状に限らず、板状、レンズ状等種々の形状を採用することが可能である。   Further, in the present invention, the resin molded body 101 is not limited to the PMMA, and is optional, and a thermoplastic resin such as a polycarbonate resin, a polymethyl methacrylate resin, a cycloolefin resin, a polyethylene resin, a polystyrene resin, or a polyester resin is selected. be able to. In this case, the resin molded body 101 is a single layer of the thermoplastic resin, formed of a plurality of layers made of different materials of these resins, or the surface of a curable resin is covered with the thermoplastic resin. Goods etc. can be used appropriately. Further, the shape is not limited to a sheet shape, and various shapes such as a plate shape and a lens shape can be employed.

次に、本発明による第1実施形態に係る樹脂成形品の製造装置について、図2及び図3に基づいて説明する。図2は、本発明による第1実施形態に係る樹脂成形品の製造装置の概略構成を示す断面図である。本実施形態に係る製造装置1は、高圧の二酸化炭素気体雰囲気内で樹脂成形体101を金型2表面に形成された微細凹凸パターン(L&Sパターン)を有する転写面3に押し付け、その後、転写面3から樹脂成形体101を剥離させることができる構造となっている。   Next, the resin molded product manufacturing apparatus according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a cross-sectional view showing a schematic configuration of a resin molded product manufacturing apparatus according to the first embodiment of the present invention. The manufacturing apparatus 1 according to the present embodiment presses the resin molded body 101 against a transfer surface 3 having a fine concavo-convex pattern (L & S pattern) formed on the surface of the mold 2 in a high-pressure carbon dioxide gas atmosphere. The resin molded body 101 can be peeled from 3.

具体的には、高圧二酸化炭素気体を密閉することが可能な金属製の密閉容器4が用意され、密閉容器4は、金属材料や断熱材料(例えばセラミックス)で形成された中間壁5によって、第1密閉槽6と第2密閉槽7に分割されている。中間壁5の中央部には貫通孔5aが形成されており、この貫通孔5a内にI字状の可動部材8の中央部8aが貫通して、可動部材8が矢印で示すように上下方向に移動可能なように取り付けられている。そして、第1密閉槽6内の可動部材8の一端は樹脂成形体101を固定、保持する樹脂成形体保持部9を形成し第1密閉槽6内に収容されている。一方、樹脂成形体保持部9と対向する第1密閉槽6の内壁面6aには、微細凹凸パターンを有する転写面3を備えた金型2が固定されて第1密閉槽6内に収容されている。   Specifically, a metal sealed container 4 capable of sealing high-pressure carbon dioxide gas is prepared, and the sealed container 4 is formed by an intermediate wall 5 formed of a metal material or a heat insulating material (for example, ceramics). It is divided into a first sealed tank 6 and a second sealed tank 7. A through hole 5a is formed at the center of the intermediate wall 5. The center 8a of the I-shaped movable member 8 passes through the through hole 5a, and the movable member 8 is vertically moved as indicated by an arrow. It is attached to be movable. One end of the movable member 8 in the first sealed tank 6 forms a resin molded body holding portion 9 that fixes and holds the resin molded body 101 and is accommodated in the first sealed tank 6. On the other hand, the mold 2 provided with the transfer surface 3 having the fine uneven pattern is fixed to the inner wall surface 6 a of the first sealed tank 6 facing the resin molded body holding portion 9 and accommodated in the first sealed tank 6. ing.

第2密閉槽7内の可動部材8の他端は、平坦な被押圧面8b1を有する押圧部8bを形成し第2密閉槽7内に収容されている。そして、押圧部8bは、図2に示すように、第2密閉槽7内に供給される二酸化炭素気体のガス圧で矢印方向に移動され、押圧部8bの移動に伴い、樹脂成形体保持部9も金型2の転写面3に向かってまた転写面3から離間して移動可能となっている。   The other end of the movable member 8 in the second sealed tank 7 forms a pressing portion 8b having a flat pressed surface 8b1 and is accommodated in the second sealed tank 7. And as shown in FIG. 2, the press part 8b is moved to the arrow direction with the gas pressure of the carbon dioxide gas supplied in the 2nd sealed tank 7, and with the movement of the press part 8b, the resin molding holding part 9 is also movable toward the transfer surface 3 of the mold 2 and away from the transfer surface 3.

第1密閉槽6及び第2密閉槽7には、それぞれ高圧の二酸化炭素気体を供給するための第1供給管10、第2供給管11及び二酸化炭素気体を排出するための第1排出管12、第2排出管13が接続されている。そして、第1供給管10、第2供給管11は1個の増圧装置14を介して1個の二酸化炭素ボンベ15に接続されている。また、第1供給管10及び第2供給管11には、それぞれ開閉可能な第1供給弁16、第2供給弁17が備えられており、第1供給弁16及び第2供給弁17の開閉によって、適宜、増圧装置14によって所定圧力、温度に制御された二酸化炭素気体がそれぞれ第1密閉槽6及び第2密閉槽7内に供給されるようになっている。一方、第1排出管12、第2排出管13の取り付け口には、それぞれ第1密閉槽6及び第2密閉槽7内の二酸化炭素気体の減圧速度調整可能な第1減圧弁18、第2減圧弁19が備えられていて、第1密閉槽6及び第2密閉槽7内の気体の圧力を一定圧力に維持、もしくは所定速度で減圧できるようになっている。また、第2排出管13には、第2密閉槽7内の気体を吸引できるような真空吸引装置20が接続されている。更に、第1密閉槽6及び第2密閉槽7の外周壁部6b,7bには、適宜、第1密閉槽6及び第2密閉槽7内の槽内温度をそれぞれ、独立して所定温度に維持可能なような第1温度調節器21及び第2温度調節器22が備えられている。本実施形態においては、これらの第1及び第2温度調節器21、22としては、カートリッジヒーターを用いている。   A first supply pipe 10 for supplying high-pressure carbon dioxide gas, a second supply pipe 11 and a first discharge pipe 12 for discharging carbon dioxide gas are respectively supplied to the first closed tank 6 and the second closed tank 7. The second discharge pipe 13 is connected. The first supply pipe 10 and the second supply pipe 11 are connected to one carbon dioxide cylinder 15 via one pressure booster 14. Further, the first supply pipe 10 and the second supply pipe 11 are respectively provided with a first supply valve 16 and a second supply valve 17 that can be opened and closed, and the first supply valve 16 and the second supply valve 17 are opened and closed. Accordingly, the carbon dioxide gas controlled to a predetermined pressure and temperature by the pressure intensifier 14 is appropriately supplied into the first sealed tank 6 and the second sealed tank 7, respectively. On the other hand, the first discharge pipe 12 and the second discharge pipe 13 have attachment ports, a first pressure-reducing valve 18 and a second pressure-reducing valve 18, respectively, capable of adjusting the pressure reduction rate of carbon dioxide gas in the first sealed tank 6 and the second sealed tank 7. A pressure reducing valve 19 is provided so that the gas pressure in the first sealed tank 6 and the second sealed tank 7 can be maintained at a constant pressure or reduced at a predetermined speed. In addition, a vacuum suction device 20 that can suck the gas in the second sealed tank 7 is connected to the second discharge pipe 13. Further, the outer wall portions 6b and 7b of the first sealed tank 6 and the second sealed tank 7 are appropriately adjusted to a predetermined temperature in the tanks in the first sealed tank 6 and the second sealed tank 7 respectively. A first temperature controller 21 and a second temperature controller 22 that can be maintained are provided. In the present embodiment, cartridge heaters are used as the first and second temperature controllers 21 and 22.

本実施形態においては、樹脂成形体101及び金型2を第1密閉槽6に配置しているが、第2密閉槽7に配置されていてもかまわない。また、樹脂成形体101と金型3の取り付け位置が反転されていてもかまわない。   In the present embodiment, the resin molded body 101 and the mold 2 are disposed in the first sealed tank 6, but may be disposed in the second sealed tank 7. Further, the mounting positions of the resin molded body 101 and the mold 3 may be reversed.

次に、上記製造装置を使用して樹脂成形品を製造する方法について、図3に基づいて説明する。図3は、本発明による第1実施形態に係る製造装置を使用して樹脂成形品を製造する工程を示す摸式図で、(A)は、第1密閉槽6及び第2密閉槽7内に二酸化炭素気体を供給する工程を示す図である。(B)は、可動部材8を上昇させて金型の転写面3を樹脂成形体101に転写する工程を示す図、(C)は、樹脂成形体101から二酸化炭素気体を放出させて固化させる工程を示す図、(D)は、金型の転写面3から樹脂成形体101を剥離する工程を示す図である。   Next, a method for producing a resin molded product using the production apparatus will be described with reference to FIG. FIG. 3 is a schematic diagram showing a process of manufacturing a resin molded product using the manufacturing apparatus according to the first embodiment of the present invention. FIG. 3A shows the inside of the first sealed tank 6 and the second sealed tank 7. It is a figure which shows the process of supplying a carbon dioxide gas to. FIG. 5B is a diagram showing a process of moving the movable member 8 and transferring the transfer surface 3 of the mold to the resin molded body 101, and FIG. 5C is a diagram in which carbon dioxide gas is released from the resin molded body 101 and solidified. The figure which shows a process, (D) is a figure which shows the process of peeling the resin molding 101 from the transfer surface 3 of a metal mold | die.

本発明による一実施形態における樹脂成形品の製造方法においては、次に示す(1)〜(4)の工程順で製造を行っている。   In the method for manufacturing a resin molded product according to an embodiment of the present invention, manufacturing is performed in the following order of steps (1) to (4).

(1)先ず、図3(A)に示すように、第1密閉槽6の上方を開放して可動部材8の一端の樹脂成形体保持部9上に樹脂成形体101を固定した後、第1密閉槽6の上方を塞ぎ、次いで、第1密閉槽6及び第2密閉槽7内に、 第1供給弁16、第2供給弁17を開放して、所定圧に増圧された二酸化炭素気体を貯蔵している増圧装置14から高圧の二酸化炭素気体(CO)を注入する。この場合、第1密閉槽6内の圧力:P1=第2密閉槽7内の圧力P2となるように第1供給弁16、第1供給弁17で供給量が調整されている。(この場合には、第1供給管10と第2供給管11とが増圧装置14と第1及び第2供給弁16、17との間で連結されているので、第1及び第2供給弁16、17は、共に全開状態にされている。)このように、第1密閉槽6内の圧力:P1=第2密閉槽7内の圧力P2となっているため、可動部材8は殆んど移動せず、樹脂成形体101の表面と金型2の転写面3とは接触していない。その結果、樹脂成形体101は、その表面から二酸化炭素気体Gが含浸され可塑化される。ここで、第1密閉槽6と第2密閉槽7内の槽内温度T1、T2は、予め使用される樹脂成形体101樹脂の軟化温度以下の所望温度となるように、温度調節器21、22で昇温してある。なお、温度調節器21及び22は、独立した別体とすることなく、一体の温度調節器であっても良い。 (1) First, as shown in FIG. 3 (A), after the upper part of the first sealed tank 6 is opened and the resin molded body 101 is fixed on the resin molded body holding portion 9 at one end of the movable member 8, the first The carbon dioxide which was closed up above the first sealed tank 6 and then opened to the predetermined pressure by opening the first supply valve 16 and the second supply valve 17 in the first sealed tank 6 and the second sealed tank 7. A high-pressure carbon dioxide gas (CO 2 ) is injected from the pressure intensifier 14 storing the gas. In this case, the supply amount is adjusted by the first supply valve 16 and the first supply valve 17 so that the pressure in the first sealed tank 6 is P1 = the pressure P2 in the second sealed tank 7. (In this case, since the first supply pipe 10 and the second supply pipe 11 are connected between the pressure increasing device 14 and the first and second supply valves 16 and 17, the first and second supply The valves 16 and 17 are both fully open.) As described above, since the pressure in the first sealed tank 6 is P1 = the pressure P2 in the second sealed tank 7, the movable member 8 is almost free. The surface of the resin molded body 101 and the transfer surface 3 of the mold 2 are not in contact with each other. As a result, the resin molded body 101 is plasticized by being impregnated with the carbon dioxide gas G from the surface thereof. Here, the temperature regulators 21, T2 and T2 in the first sealed tank 6 and the second sealed tank 7 are set to a desired temperature equal to or lower than the softening temperature of the resin molded body 101 resin used in advance. The temperature was raised at 22. Note that the temperature controllers 21 and 22 may be integrated temperature controllers without being independent of each other.

(2)次に、第1供給弁16を閉じ、第2供給弁17のみを開放し、第2密閉槽7内のガス圧力のみ更に増圧する。この時、第1密閉槽6内の圧力:P1<第2密閉槽7内の圧力:P2となるため、可動部材8は、第2密閉槽7のガス圧P2で押圧部8bが上方に押圧されて第1密閉槽6側に移動(矢印A方向)する。この可動部材8のガス圧による押圧部8bの上方への移動に伴い、可動部材8の樹脂成形体保持部9に取り付けられ、表面が二酸化炭素気体によって可塑化された樹脂成形体101が金型2の転写面3に当接し、更に、可塑化された樹脂成形体101に押圧力が負荷される。その結果、金型の転写面3に形成されたパターンが樹脂成形体101表面に転写される。この時、第1密閉槽6内の圧力が一定に維持されるように、第1減圧弁18で調整されている。 (2) Next, the first supply valve 16 is closed, only the second supply valve 17 is opened, and only the gas pressure in the second sealed tank 7 is further increased. At this time, since the pressure in the first sealed tank 6 is P1 <the pressure in the second sealed tank 7 is P2, the movable member 8 is pressed upward by the pressing portion 8b with the gas pressure P2 of the second sealed tank 7. It moves to the 1st sealed tank 6 side (arrow A direction). Along with the upward movement of the pressing portion 8b by the gas pressure of the movable member 8, the resin molded body 101 attached to the resin molded body holding portion 9 of the movable member 8 and whose surface is plasticized with carbon dioxide gas is a mold. 2 is brought into contact with the transfer surface 3, and a pressing force is applied to the plasticized resin molded body 101. As a result, the pattern formed on the transfer surface 3 of the mold is transferred to the surface of the resin molded body 101. At this time, the first pressure reducing valve 18 is adjusted so that the pressure in the first sealed tank 6 is maintained constant.

(3)続いて、第1減圧弁18を開放し、第1密閉槽6内の圧力を大気圧まで減圧させることで、樹脂成形体101から二酸化炭素気体Gを放出させ、固化させる。この場合に、第2密閉槽7のガス圧P2が第1密閉槽6のガス圧P1より高圧となっているため、ガス圧P2により樹脂成形体101が転写面3に押圧するので、樹脂成形体101から効果的に二酸化炭素気体Gを放出することが可能となる。 (3) Subsequently, the first pressure reducing valve 18 is opened, and the pressure in the first sealed tank 6 is reduced to atmospheric pressure, whereby the carbon dioxide gas G is released from the resin molded body 101 and solidified. In this case, since the gas pressure P2 in the second sealed tank 7 is higher than the gas pressure P1 in the first sealed tank 6, the resin molded body 101 is pressed against the transfer surface 3 by the gas pressure P2. The carbon dioxide gas G can be effectively released from the body 101.

(4)さらに、第2減圧弁19を開放し、真空吸引装置20で第2密閉槽7内の二酸化炭素気体Gを吸引して、第2密閉槽7内の圧力を大気圧以下とする。これによって、第1密閉槽6内の圧力:P1>第2密閉槽7内の圧力:P2となり、可動部材8は、第2密閉槽6側に吸引、移動され(矢印B)、樹脂成形体101を金型の転写面3から剥離する。その後、第1密閉槽6の上部を開放して表面に微細パターン102が転写された樹脂成形体101を樹脂成形体保持部9から取り出して樹脂成形品103(図1(b)参照)を得ることができる。 (4) Furthermore, the second pressure reducing valve 19 is opened, and the carbon dioxide gas G in the second sealed tank 7 is sucked by the vacuum suction device 20 so that the pressure in the second sealed tank 7 is equal to or lower than the atmospheric pressure. Thus, the pressure in the first sealed tank 6: P1> the pressure in the second sealed tank 7: P2, and the movable member 8 is sucked and moved to the second sealed tank 6 side (arrow B), and the resin molded body 101 is peeled off from the transfer surface 3 of the mold. Thereafter, the upper part of the first sealed tank 6 is opened, and the resin molded body 101 having the fine pattern 102 transferred to the surface is taken out from the resin molded body holding portion 9 to obtain a resin molded product 103 (see FIG. 1B). be able to.

なお、上述の工程においては、樹脂成形体101中への二酸化炭素気体Gの溶解、放出によって、樹脂成形体101を可塑化、固化させているため、第1密閉槽6と第2密閉槽7内の温度T1及びT2は、工程(1)〜(4)の間で金型2及び樹脂成形体101に対して従来のように加熱及び冷却処理を実施する必要はなく、一定温度を維持させているだけでも充分に樹脂成形品103を製造することが可能である。従って、上記加熱及び冷却処理を不要とするので、短時間で樹脂成形体101の表面に高精度で微細パターンを転写、形成することが可能となる。   In the above-described process, since the resin molded body 101 is plasticized and solidified by dissolving and releasing the carbon dioxide gas G in the resin molded body 101, the first sealed tank 6 and the second sealed tank 7 are used. The internal temperatures T1 and T2 need not be subjected to heating and cooling processes for the mold 2 and the resin molded body 101 between steps (1) to (4) as in the prior art, and are maintained at a constant temperature. It is possible to manufacture the resin molded product 103 sufficiently even if it is merely. Accordingly, since the heating and cooling processes are not required, it is possible to transfer and form a fine pattern with high accuracy on the surface of the resin molded body 101 in a short time.

因みに、上記実施形態においては、工程(1)では、ガス圧:10MPa、温度:40℃の二酸化炭素気体を第1密閉槽6、第2密閉槽7内の注入し、樹脂成形体101中に二酸化炭素気体を溶解させた。なお、この時の第1密閉槽6及び第2密閉槽7内の温度も40℃になるように、温度調節器21、22によって維持させた。   Incidentally, in the above embodiment, in the step (1), carbon dioxide gas having a gas pressure of 10 MPa and a temperature of 40 ° C. is injected into the first sealed tank 6 and the second sealed tank 7, and is injected into the resin molded body 101. Carbon dioxide gas was dissolved. In addition, it maintained by the temperature regulators 21 and 22 so that the temperature in the 1st sealed tank 6 and the 2nd sealed tank 7 at this time might also be 40 degreeC.

また、工程(2)では、第2密閉槽7のみを15MPaまで増圧させ、可動部材8を第1密閉槽6の方向(A方向)に移動させ、樹脂成形体101を金型の転写面3に約30秒間押し付けた。この時、第1密閉槽6と第2密閉槽7は容積が変化するが、それに伴う第1密閉槽6内の圧力に変化が生じないように第1減圧弁18で調節した。一方、第1密閉槽6及び第2密閉槽7の温度は常に40℃で一定としている。その後、工程(3)にて、第1密閉槽6を大気圧まで減圧させることで、樹脂成形体101から二酸化炭素気体を放出し固化させた。次いで、工程(4)にて、第2密閉槽7内の二酸化炭素気体Gを真空吸引装置20で吸引し、第2密閉槽7内のガス圧を大気圧以下に減圧し、可動部材8を第2密閉槽7の方向(矢印B)に吸引、移動させ、樹脂成形体101を金型2の転写面3から剥離させた。この時の転写結果をAFM(原子間力顕微鏡)で測定した結果を図4に示す。この結果から明らかなように、金型の転写面3の微細凹凸パターンAと樹脂成形品103の微細凹凸パターンBは、ほぼ100%同一パターンとなっており、金型の転写面3に樹脂成形体101が隅々まで充填できていることがわかる。   In step (2), only the second sealed tank 7 is increased to 15 MPa, the movable member 8 is moved in the direction of the first sealed tank 6 (direction A), and the resin molded body 101 is transferred to the mold transfer surface. 3 was pressed for about 30 seconds. At this time, although the volume of the first sealed tank 6 and the second sealed tank 7 changed, the first pressure reducing valve 18 was adjusted so that the pressure in the first sealed tank 6 was not changed. On the other hand, the temperature of the 1st sealed tank 6 and the 2nd sealed tank 7 is always fixed at 40 degreeC. Thereafter, in step (3), the first sealed tank 6 was depressurized to atmospheric pressure, whereby carbon dioxide gas was released from the resin molded body 101 and solidified. Next, in the step (4), the carbon dioxide gas G in the second sealed tank 7 is sucked by the vacuum suction device 20, the gas pressure in the second sealed tank 7 is reduced to the atmospheric pressure or lower, and the movable member 8 is moved. The resin molded body 101 was peeled from the transfer surface 3 of the mold 2 by sucking and moving in the direction of the second sealed tank 7 (arrow B). FIG. 4 shows the result of measuring the transfer result at this time using an AFM (atomic force microscope). As is clear from this result, the fine unevenness pattern A on the transfer surface 3 of the mold and the fine unevenness pattern B of the resin molded product 103 are almost 100% identical, and the resin molding is performed on the transfer surface 3 of the mold. It can be seen that the body 101 is filled to every corner.

本実施形態においては、樹脂成形体101中への二酸化炭素気体の溶解による可塑化効果を利用することによって、樹脂表面に微細な凹凸パターンを精度良く転写させることができた。この場合に、金型温度を使用樹脂の軟化温度以上の高温にすることなく、かつ一定温度(本実施形態では40℃)での転写が可能であるために、二酸化炭素気体Gの溶解、維持、放出、離型の工程(1)から工程(4)までのプロセスの成形時間は5分以下の非常に短時間で転写させることができた。   In the present embodiment, by using the plasticizing effect due to the dissolution of the carbon dioxide gas in the resin molded body 101, a fine uneven pattern can be accurately transferred onto the resin surface. In this case, since the mold temperature does not become higher than the softening temperature of the resin used and can be transferred at a constant temperature (40 ° C. in this embodiment), the carbon dioxide gas G is dissolved and maintained. The molding time of the process from the step (1) to the step (4) of releasing and releasing was able to be transferred in a very short time of 5 minutes or less.

また、二酸化炭素気体のガス圧を利用しているため、樹脂成形体101を金型2の転写面3に押圧するための手段としての特別な駆動装置は不要であり、装置自体をコンパクトな構成で低コストなものとすることができる。また、可動部材8は、密閉容器4内で移動するため、容易に高圧を維持し、密閉性を確保しながら可動部材8を移動させ押圧力を負荷させることができる。押圧時の速度、押圧力は、第1供給弁16、第2減圧弁19、第2供給弁17等で第2密閉槽7内のガス圧力を調整することで、適宜調整することができる。また、ガス圧を用いて可動部材8を移動、押圧させているため、圧力は、金型2の転写面3に対して均一に負荷させることができる。   Further, since the gas pressure of carbon dioxide gas is used, a special driving device as a means for pressing the resin molded body 101 against the transfer surface 3 of the mold 2 is unnecessary, and the device itself has a compact configuration. And low cost. Moreover, since the movable member 8 moves within the sealed container 4, it is possible to easily maintain a high pressure and to move the movable member 8 while applying a sealing force while applying a pressing force. The speed and pressing force during pressing can be adjusted as appropriate by adjusting the gas pressure in the second sealed tank 7 with the first supply valve 16, the second pressure reducing valve 19, the second supply valve 17, and the like. Further, since the movable member 8 is moved and pressed using the gas pressure, the pressure can be uniformly applied to the transfer surface 3 of the mold 2.

なお、上記実施形態においては、第2密閉槽7内に供給される気体として、第1密閉槽6内に供給される二酸化炭素気体Gを1個の増圧装置14から分給して使用しているが、第1密閉槽6内に供給される二酸化炭素気体Gから独立した増圧装置を使用して二酸化炭素気体Gを供給するようにしてもよい。また、第2密閉槽7内に供給される気体として、空気、窒素ガス等の二酸化炭素気体と別種の気体を使用することも可能である。しかしながら、第2密閉槽7内に供給される気体として、第1密閉槽6内に供給される二酸化炭素気体Gから分給される二酸化炭素気体Gを使用する場合には、可動部材8の中央部8aと中間壁5の貫通孔5aとのクリアランスから第2密閉槽7内の気体が第1密閉槽6内にリークしても樹脂成形体101に対する二酸化炭素気体による可塑化に悪影響を与えることを抑制することが可能となるので好適である。   In the above-described embodiment, the carbon dioxide gas G supplied into the first sealed tank 6 is used as a gas supplied into the second sealed tank 7 by being distributed from one pressure booster 14. However, the carbon dioxide gas G may be supplied using a pressure booster independent of the carbon dioxide gas G supplied into the first sealed tank 6. Further, as the gas supplied into the second sealed tank 7, it is possible to use a gas different from carbon dioxide gas such as air or nitrogen gas. However, when the carbon dioxide gas G distributed from the carbon dioxide gas G supplied into the first sealed tank 6 is used as the gas supplied into the second sealed tank 7, the center of the movable member 8 is used. Even if the gas in the second sealed tank 7 leaks into the first sealed tank 6 due to the clearance between the portion 8a and the through-hole 5a of the intermediate wall 5, the resin molded body 101 is adversely affected by plasticization by the carbon dioxide gas. Can be suppressed, which is preferable.

上記実施形態においては、第1密閉槽6と第2密閉槽7に、同圧力の二酸化炭素気体を注入し、第1密閉槽6に配置された樹脂成形体101に二酸化炭素気体を含浸させることにようにしている。このように、同圧力の二酸化炭素気体を第1密閉槽6と第2密閉槽7に注入することによって、所望のガス圧を維持させ、確実に樹脂成形体101を可塑化させることができる。   In the said embodiment, the carbon dioxide gas of the same pressure is inject | poured into the 1st sealed tank 6 and the 2nd sealed tank 7, and the resin molding 101 arrange | positioned at the 1st sealed tank 6 is made to impregnate a carbon dioxide gas. I am doing so. Thus, by injecting carbon dioxide gas of the same pressure into the first sealed tank 6 and the second sealed tank 7, a desired gas pressure can be maintained and the resin molded body 101 can be plasticized reliably.

また、上記実施形態においては、第1密閉槽6内の二酸化炭素気体のガス圧P1、第2密閉槽7内の二酸化炭素ガス圧P2としたときに、P1<P2とすることで、可動部材8を第1密閉槽6の方向に移動させ、樹脂成形体101と金型の転写面3を接触させ、押圧力を負荷させ、次いで、P1>P2として樹脂成形体101と金型の転写面3を剥離させるようにしている。このように、第1密閉槽6と第2密閉槽7内のガス圧を変化させることによって可動部材8を密閉容器4内で移動することとなるため、容易に高圧を維持し、密閉性を確保しながら可動部材8を移動させて樹脂成形体101に押圧力を負荷させることができる。   Moreover, in the said embodiment, when it is set as the gas pressure P1 of the carbon dioxide gas in the 1st airtight tank 6, and the carbon dioxide gas pressure P2 in the 2nd airtight tank 7, it is P1 <P2. 8 is moved in the direction of the first sealed tank 6, the resin molded body 101 and the transfer surface 3 of the mold are brought into contact with each other, a pressing force is applied, and then the resin molded body 101 and the transfer surface of the mold are set as P1> P2. 3 is peeled off. As described above, since the movable member 8 is moved in the sealed container 4 by changing the gas pressure in the first sealed tank 6 and the second sealed tank 7, the high pressure is easily maintained and the sealing performance is improved. The movable member 8 can be moved while securing the pressing force to the resin molded body 101.

また、上記実施形態においては、樹脂成形体101を金型の転写面3に押し付けて転写する工程から樹脂成形体101を金型の転写面3から剥離する工程の間、第1及び第2密閉槽6,7の槽内温度は一定温度としている。このように、樹脂成形体101に転写面を適切に転写するために従来行われた樹脂成形体101及び金型2の加熱及び冷却処理工程を必要としないため、非常に短い成形時間で加工することができる。   In the above embodiment, the first and second sealings are performed during the process of pressing the resin molded body 101 against the transfer surface 3 of the mold and transferring the resin molded body 101 from the transfer surface 3 of the mold. The internal temperature of the tanks 6 and 7 is constant. In this way, since the heating and cooling process steps of the resin molded body 101 and the mold 2 that are conventionally performed in order to appropriately transfer the transfer surface to the resin molded body 101 are not required, the processing is performed in a very short molding time. be able to.

以上のように、上記実施形態においては、高圧の二酸化炭素気体を注入可能な密閉容器4を固定された中間壁5で第1密閉槽6と第2密閉槽7とに分割し、第1密閉槽6と第2密閉槽7内の二酸化炭素気体のガス圧力を調整して中間壁5を貫通して配置された可動部材8を移動させ、樹脂成形体101を金型の転写面3に押し付けることによって、樹脂成形体101の表面に金型の転写面3を転写するようにしている。その結果、樹脂成形体101を金型の転写面3に押圧するための手段としての、高価な特殊構造の駆動装置が不要であり、製造装置自体をコンパクトな構成で低コストなものとすることができる。   As described above, in the above-described embodiment, the sealed container 4 capable of injecting high-pressure carbon dioxide gas is divided into the first sealed tank 6 and the second sealed tank 7 by the fixed intermediate wall 5, and the first sealed The gas pressure of carbon dioxide gas in the tank 6 and the second sealed tank 7 is adjusted to move the movable member 8 disposed through the intermediate wall 5 and press the resin molded body 101 against the transfer surface 3 of the mold. Thus, the mold transfer surface 3 is transferred onto the surface of the resin molded body 101. As a result, there is no need for an expensive special structure driving device as a means for pressing the resin molded body 101 against the transfer surface 3 of the mold, and the manufacturing apparatus itself is made compact and low-cost. Can do.

次に、本発明による第2実施形態に係る樹脂成形品の製造装置について、図5及び図6に基づいて説明する。図5は、本発明による第2実施形態に係る樹脂成形品の製造装置の概略構成を示す断面図である。図6は、本発明による第2実施形態に係る製造装置を使用して樹脂成形品を製造する工程を示す摸式図で、(A)は、第1密閉槽6及び第2密閉槽7内に二酸化炭素気体を供給する工程を示す図である。(B)は、金型の転写面から樹脂成形体を剥離する工程を示す図である。   Next, a resin molded product manufacturing apparatus according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 5: is sectional drawing which shows schematic structure of the manufacturing apparatus of the resin molded product which concerns on 2nd Embodiment by this invention. FIG. 6 is a schematic diagram showing a process of manufacturing a resin molded product using the manufacturing apparatus according to the second embodiment of the present invention. FIG. 6A shows the inside of the first sealed tank 6 and the second sealed tank 7. It is a figure which shows the process of supplying a carbon dioxide gas to. (B) is a figure which shows the process of peeling a resin molding from the transfer surface of a metal mold | die.

この第2実施形態に係る製造装置は、前述の第1実施形態に係る製造装置とは、図5に示すように、可動部材8の樹脂成形体保持部9の保持面9aの面積S1と、押圧部8bの被押圧面8b1の面積S2が異なり、S1<S2となるように構成されている点、及び、第2密閉槽7側の中間壁5と可動部材8の押圧部8bとの間に中央部に可動部材8の中央部8aを貫通する貫通孔23aを有する弾性部材23を配設している点で相違する。   The manufacturing apparatus according to the second embodiment differs from the manufacturing apparatus according to the first embodiment described above with reference to the area S1 of the holding surface 9a of the resin molded body holding portion 9 of the movable member 8, as shown in FIG. The area S2 of the pressed surface 8b1 of the pressing portion 8b is different and is configured to satisfy S1 <S2, and between the intermediate wall 5 on the second sealed tub 7 side and the pressing portion 8b of the movable member 8. Is different in that an elastic member 23 having a through hole 23a penetrating the central portion 8a of the movable member 8 is disposed at the central portion.

このように、可動部材8の樹脂成形体保持部9の保持面9aの面積S1と、押圧部8bの被押圧面8b1の面積S2とをS1<S2とすることによって、図6(A)に示すように、第1密閉槽6と第2密閉槽7に同一の圧力:Pの高圧二酸化炭素気体Gを注入したときに、S1に負荷される荷重F1とS2に負荷される荷重F2は、それぞれF1=P×S1、F2=P×S2となる。即ち、F1<F2となるため、弾性部材23が圧縮されるとともに、可動部材8を第1密閉槽(6)の方向(A方向)に移動して、可動部材8の樹脂成形体保持部9上に固定された樹脂成形体101を金型2に形成された転写面3に押圧して、樹脂成形体101の表面に高精度で転写面3を転写することが可能となる。   In this way, by setting the area S1 of the holding surface 9a of the resin molded body holding part 9 of the movable member 8 and the area S2 of the pressed surface 8b1 of the pressing part 8b to S1 <S2, FIG. As shown, when the high pressure carbon dioxide gas G having the same pressure: P is injected into the first sealed tank 6 and the second sealed tank 7, the load F1 loaded on S1 and the load F2 loaded on S2 are: F1 = P × S1 and F2 = P × S2, respectively. That is, since F1 <F2, the elastic member 23 is compressed, and the movable member 8 is moved in the direction (A direction) of the first sealed tank (6), so that the resin molded body holding portion 9 of the movable member 8 is obtained. It is possible to transfer the transfer surface 3 to the surface of the resin molded body 101 with high accuracy by pressing the resin molded body 101 fixed on the transfer surface 3 formed on the mold 2.

この場合、可動部材8を第1密閉槽(6)の方向(A方向)に移動することによって、中間壁5と可動部材8の押圧部8bとの間に配設された弾性部材23が中間壁5と可動部材8の押圧部8bとで挟圧されて圧縮される。その後、図6(B)で示すように、第1減圧弁18、第2減圧弁19を開放し、第1密閉槽6と第2密閉槽7を大気圧にした場合には、圧縮された弾性部材23が回復する力によって、可動部材8が第2密閉槽7の方向(B)に強制移動し、樹脂成形体101を金型2に形成された転写面3から適切に剥離させることができる。   In this case, the elastic member 23 disposed between the intermediate wall 5 and the pressing portion 8b of the movable member 8 is moved in the middle by moving the movable member 8 in the direction (A direction) of the first sealed tank (6). The wall 5 and the pressing portion 8b of the movable member 8 are sandwiched and compressed. Thereafter, as shown in FIG. 6B, the first pressure reducing valve 18 and the second pressure reducing valve 19 were opened, and the first sealed tank 6 and the second sealed tank 7 were compressed to atmospheric pressure. By the force that the elastic member 23 recovers, the movable member 8 is forcibly moved in the direction (B) of the second sealed tank 7, and the resin molded body 101 can be appropriately separated from the transfer surface 3 formed on the mold 2. it can.

このように、この第2実施形態においては、第1密閉槽6と第2密閉槽7の二酸化炭素気体の圧力を個々に制御する必要がなく、同じ圧力でも可動部材8を押圧移動させることが可能となる。さらに弾性部材の回復力によって、適切に剥離動作を実施することができるため、製造装置1を非常に簡素化させ低コストなものとすることができる。また、第1密閉槽6と第2密閉槽7は常に同一の圧力であるため、中間壁5と可動部材8の間の摺動面にクリアランスがあったとしても、第1密閉槽6の圧力を確実に維持することができる。樹脂成形体101を金型2に形成された転写面3から剥離する場合においても、弾性部材23の回復力によって、圧力を制御することなく、減圧するだけで実施することができる。また、本実施形態においては、S1とS2の面積比を変えること、もしくは、弾性部材23の材質(硬度)を返ることで、押圧力を任意に変えることができる。   Thus, in this 2nd Embodiment, it is not necessary to control the pressure of the carbon dioxide gas of the 1st sealed tank 6 and the 2nd sealed tank 7 separately, and the movable member 8 can be pushed and moved by the same pressure. It becomes possible. Furthermore, since the peeling operation can be appropriately performed by the recovery force of the elastic member, the manufacturing apparatus 1 can be greatly simplified and reduced in cost. Further, since the first sealed tank 6 and the second sealed tank 7 are always at the same pressure, even if there is a clearance on the sliding surface between the intermediate wall 5 and the movable member 8, the pressure in the first sealed tank 6 Can be reliably maintained. Even when the resin molded body 101 is peeled off from the transfer surface 3 formed on the mold 2, it can be carried out only by reducing the pressure without controlling the pressure by the recovery force of the elastic member 23. In the present embodiment, the pressing force can be arbitrarily changed by changing the area ratio of S1 and S2 or returning the material (hardness) of the elastic member 23.

因みにこの第2実施形態においては、弾性部材23として熱硬化性樹脂であるシリコーン樹脂を用いたがこれに限定されるものではない。   Incidentally, in this 2nd Embodiment, although the silicone resin which is a thermosetting resin was used as the elastic member 23, it is not limited to this.

次に、本発明による第3実施形態に係る樹脂成形品の製造装置について、図1に基づいて説明する。   Next, a resin molded product manufacturing apparatus according to a third embodiment of the present invention will be described with reference to FIG.

この第3実施形態においては、前述の図1で示す製造装置を使用するが、第1密閉槽6と第2密閉槽7は、それぞれ別々に温度制御され温度調節器21、22を使用している。そして、第1密閉槽6と第2密閉槽7の槽内温度を異なるように制御して、槽内温度差に基づいて可動部材8を移動させるようにしている。   In the third embodiment, the manufacturing apparatus shown in FIG. 1 is used, but the temperature of the first sealed tank 6 and the second sealed tank 7 is controlled separately, and the temperature regulators 21 and 22 are used. Yes. And the inside temperature of the 1st airtight tank 6 and the 2nd airtight tank 7 is controlled so that it may differ, and the movable member 8 is moved based on the temperature difference in an inside tank.

即ち、この第3実施形態においては、第1密閉槽6と第2密閉槽7に同一圧力の高圧二酸化炭素気体を注入後、温度調節器21、22によって、第1密閉槽6内の槽内温度T1と第2密閉槽7内の槽内温度T2がT1<T2となるように別々に制御している。第2密閉槽7内の温度T2が第1密閉槽6内の温度T1より高くなるため、同一圧力の二酸化炭素気体を注入した場合でも、槽内温度が高くなるように設定された第2密閉槽7においては、二酸化炭素気体が膨張して第2密閉槽の容積が大きくなるように、可動部材8は第1密閉槽6の方向に移動する。   That is, in this 3rd Embodiment, after inject | pouring the high pressure carbon dioxide gas of the same pressure into the 1st airtight tank 6 and the 2nd airtight tank 7, it is the inside of the tank in the 1st airtight tank 6 by the temperature regulators 21 and 22. The temperature T1 and the temperature T2 in the second sealed tank 7 are controlled separately so that T1 <T2. Since the temperature T2 in the second sealed tank 7 is higher than the temperature T1 in the first sealed tank 6, even when carbon dioxide gas of the same pressure is injected, the second sealed is set so that the temperature in the tank is increased. In the tank 7, the movable member 8 moves in the direction of the first sealed tank 6 so that the carbon dioxide gas expands and the volume of the second sealed tank increases.

その結果、第1密閉槽6に配置された樹脂成形体101と金型2に形成された転写面3が接触し、樹脂成形体101に押圧力を負荷することができる。また、その後は、第1実施形態の場合と同様に、第2減圧弁19を開放し、真空吸引装置20で第2密閉槽7内の圧力を大気圧以下とすることによって、樹脂成形体101と転写面3を剥離させることができる。本実施形態においても、第1密閉槽6と第2密閉槽7を別個、独立した温度に制御しているが、各々の槽の温度T1、T2は、樹脂成形体を軟化させ、硬化させるための工程中に加熱及び冷却処理を行う必要ない。その結果、二酸化炭素気体によって樹脂成形体101を可塑化しているので、前記槽内温度T1、T2は比較的低温で転写処理が可能となり、短時間での加工が可能である。   As a result, the resin molded body 101 disposed in the first sealed tank 6 and the transfer surface 3 formed on the mold 2 come into contact with each other, and a pressing force can be applied to the resin molded body 101. Thereafter, as in the case of the first embodiment, the second pressure reducing valve 19 is opened, and the pressure in the second sealed tank 7 is reduced to the atmospheric pressure or less by the vacuum suction device 20, whereby the resin molded body 101. And the transfer surface 3 can be peeled off. Also in this embodiment, the first sealed tank 6 and the second sealed tank 7 are controlled separately and independently, but the temperatures T1 and T2 of each tank are for softening and curing the resin molded body. It is not necessary to perform heating and cooling during the process. As a result, since the resin molded body 101 is plasticized with carbon dioxide gas, the tank internal temperatures T1 and T2 can be transferred at a relatively low temperature and can be processed in a short time.

また、第2密閉槽7の二酸化炭素気体を真空吸引しなくても、T1>T2として第1密閉槽6と第2密閉槽7の温度を逆転させることで、可動部材8を第2密閉槽7の方向に移動させ、剥離することも可能である。この場合は、真空吸引装置20が不要となる。   Even if the carbon dioxide gas in the second sealed tank 7 is not vacuumed, the temperature of the first sealed tank 6 and the second sealed tank 7 is reversed as T1> T2, thereby moving the movable member 8 to the second sealed tank. It is also possible to move in the direction 7 and peel off. In this case, the vacuum suction device 20 becomes unnecessary.

また、この第3実施形態の場合は、第1密閉槽6と第2密閉槽7の二酸化炭素気体の圧力を第1及び第2供給弁16,17並びに第1及び第2減圧弁18、19で個々に制御する必要がなく、第1密閉槽6と第2密閉槽7の槽内温度を変えるだけで、押圧力やそのスピードを制御することができる。   In the case of the third embodiment, the pressure of the carbon dioxide gas in the first sealed tank 6 and the second sealed tank 7 is set to the first and second supply valves 16 and 17 and the first and second pressure reducing valves 18 and 19. Thus, it is not necessary to individually control the pressure, and the pressing force and the speed thereof can be controlled only by changing the temperature in the first sealed tank 6 and the second sealed tank 7.

また、この第3実施形態においては、第1密閉槽6と第2密閉槽7を分割している中間壁5をセラミック材等の断熱部材で形成することが望ましい。それによって、第1密閉槽6から第2密閉槽7への熱伝達を低減させることができ、それぞれの温度を独立して精度良く制御することができ、確実な動作を実施することができる。   Moreover, in this 3rd Embodiment, it is desirable to form the intermediate | middle wall 5 which has divided | segmented the 1st sealed tank 6 and the 2nd sealed tank 7 with heat insulation members, such as a ceramic material. Thereby, heat transfer from the first sealed tank 6 to the second sealed tank 7 can be reduced, and the temperatures can be controlled independently and accurately, and a reliable operation can be performed.

これまで説明してきた本発明による第1〜第3実施形態については、どれか2つの組み合わせ、もしくは3つを組み合わせて実施することも可能である。また、各実施形態に示した微細パターンの形状は、転写への適用に限定されるものではなく、例えば光学鏡面への転写等その趣旨を逸脱しない範囲で種々変形が可能であることは言うまでもない。   About 1st-3rd embodiment by this invention demonstrated so far, it is also possible to implement any two combination or combining three. Further, the shape of the fine pattern shown in each embodiment is not limited to application to transfer, and it goes without saying that various modifications are possible without departing from the spirit of the transfer, for example, transfer to an optical mirror surface. .

本発明による一実施形態で使用する樹脂の構造を示す断面図であり、(a)は微細パターン転写前の樹脂成形体を示す図、(b)はパターン転写後の樹脂成型品を示す図である。It is sectional drawing which shows the structure of resin used by one Embodiment by this invention, (a) is a figure which shows the resin molding before fine pattern transfer, (b) is a figure which shows the resin molded product after pattern transfer. is there. 本発明による第1実施形態に係る樹脂成形品の製造装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the manufacturing apparatus of the resin molded product which concerns on 1st Embodiment by this invention. 本発明による第1実施形態に係る製造装置を使用して樹脂成形品を製造する工程を示す摸式図で、(A)は、第1密閉槽6及び第2密閉槽7内に二酸化炭素気体を供給する工程を示す図、(B)は、可動部材を上昇させて金型の転写面を樹脂成形体に転写する工程を示す図、(C)は、樹脂成形体から二酸化炭素気体を放出させて固化させる工程を示す図、(D)は、金型の転写面から樹脂成形体を剥離する工程を示す図である。It is a schematic diagram which shows the process of manufacturing a resin molded product using the manufacturing apparatus which concerns on 1st Embodiment by this invention, (A) is carbon dioxide gas in the 1st sealed tank 6 and the 2nd sealed tank 7 FIG. 4B is a diagram showing a process of raising the movable member and transferring the transfer surface of the mold to the resin molded body, and FIG. The figure which shows the process made to solidify, (D) is a figure which shows the process of peeling a resin molding from the transfer surface of a metal mold | die. 本発明による第1実施形態に係る製造装置を使用して樹脂成形品及び金型の転写面の断面深さをAFMで測定したグラフ図である。It is the graph which measured the cross-sectional depth of the transfer surface of a resin molded product and a metal mold | die using the manufacturing apparatus which concerns on 1st Embodiment by this invention. 本発明による第2実施形態に係る樹脂成形品の製造装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the manufacturing apparatus of the resin molded product which concerns on 2nd Embodiment by this invention. 本発明による第1実施形態に係る製造装置を使用して樹脂成形品を製造する工程を示す摸式図で、(A)は、第1密閉槽6及び第2密閉槽7内に二酸化炭素気体を供給する工程を示す図である。(B)は、金型の転写面から樹脂成形体を剥離する工程を示す図である。It is a schematic diagram which shows the process of manufacturing a resin molded product using the manufacturing apparatus which concerns on 1st Embodiment by this invention, (A) is carbon dioxide gas in the 1st sealed tank 6 and the 2nd sealed tank 7 It is a figure which shows the process of supplying. (B) is a figure which shows the process of peeling a resin molding from the transfer surface of a metal mold | die.

符号の説明Explanation of symbols

1 製造装置
2 金型
3 転写面
4 密閉容器
5 中間壁
6 第1密閉槽
7 第2密閉槽
8 可動部材
8a 中央部
8b 押圧部
8b1 被押圧面
9 樹脂成形体保持部
10 第1供給管
11 第2供給管
12 第1排出管
13 第2排出管
14 増圧装置
15 二酸化炭素ボンベ
16 第1供給弁
17 第2供給弁
18 第1減圧弁
19 第2減圧弁
20 真空吸引装置
21,22 温度調節器
23 弾性部材
101 樹脂成形体
102 凹凸パターン
103 樹脂成形品
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Mold 3 Transfer surface 4 Sealed container 5 Middle wall 6 1st sealed tank 7 2nd sealed tank 8 Movable member 8a Center part 8b Press part 8b1 Pressed surface 9 Resin molded object holding part 10 1st supply pipe 11 Second supply pipe 12 First discharge pipe 13 Second discharge pipe 14 Pressure booster 15 Carbon dioxide cylinder 16 First supply valve 17 Second supply valve 18 First pressure reducing valve 19 Second pressure reducing valve 20 Vacuum suction device 21, 22 Temperature Adjuster 23 Elastic member 101 Resin molded body 102 Concavity and convexity pattern 103 Resin molded product

Claims (9)

少なくとも1つ以上の転写面を有する金型と、前記金型の転写面に対向して配設されかつ前記金型の転写面が転写される樹脂成形体を保持する樹脂成形体保持部とを収容する第1密閉槽と、前記樹脂成形体保持部を一端に有し、前記樹脂成形体保持部を前記金型の転写面に対して移動可能に取り付けられる可動部材と、前記可動部材の一端と反対側の他端である押圧部を前記金型の転写面に向けて押圧する押圧手段と、前記第1密閉槽内に前記樹脂成形体に含浸させる二酸化炭素気体を供給する供給口と前記二酸化炭素気体を第1密閉槽から排出する排出口とを有する樹脂成形品の製造装置であって、
前記可動部材の他端は、前記第1密閉槽と中間壁を介して連結された第2密閉槽内に収容され、
前記可動部材の前記樹脂成形体保持部と前記押圧部との間の中間部は、前記中間壁を貫通して移動可能に前記中間壁に取り付けられ、
前記押圧手段は、前記第2密閉槽内に供給される気体の圧力によって前記可動部材の前記押圧部を押圧して前記可動部材を移動させる押圧手段であり、
前記可動部材を移動させて前記樹脂成形体保持部上に保持された樹脂成形体の表面に前記金型の転写面を転写して樹脂成形品を製造することを特徴とする樹脂成形品の製造装置。
A mold having at least one transfer surface; and a resin molded body holding portion that is disposed to face the transfer surface of the mold and holds a resin molded body to which the transfer surface of the mold is transferred. A first sealed tank to be accommodated, a movable member having the resin molded body holding portion at one end, the resin molded body holding portion being movably attached to a transfer surface of the mold, and one end of the movable member A pressing means that presses the pressing portion that is the other end opposite to the transfer surface of the mold, a supply port that supplies carbon dioxide gas to be impregnated into the resin molded body in the first sealed tank, and An apparatus for producing a resin molded product having a discharge port for discharging carbon dioxide gas from the first sealed tank,
The other end of the movable member is accommodated in a second sealed tank connected to the first sealed tank via an intermediate wall,
An intermediate portion between the resin molded body holding portion and the pressing portion of the movable member is attached to the intermediate wall so as to be movable through the intermediate wall,
The pressing means is a pressing means that moves the movable member by pressing the pressing portion of the movable member by the pressure of the gas supplied into the second sealed tank.
Manufacturing the resin molded product, wherein the movable member is moved to transfer the transfer surface of the mold onto the surface of the resin molded product held on the resin molded product holding part. apparatus.
請求項1記載の樹脂成形品の製造装置において、
前記第2密閉槽に供給される気体は、二酸化炭素気体であり、前記第1密閉槽に供給される二酸化炭素気体と等圧の二酸化炭素気体を供給して前記樹脂成形体に二酸化炭素気体を含浸させることを特徴とする樹脂成形品の製造装置。
In the manufacturing apparatus of the resin molded product according to claim 1,
The gas supplied to the second sealed tank is carbon dioxide gas, and the carbon dioxide gas having the same pressure as the carbon dioxide gas supplied to the first sealed tank is supplied to supply the carbon dioxide gas to the resin molding. An apparatus for producing a resin molded product, characterized by being impregnated.
請求項1又は2記載の樹脂成形品の製造装置において、
前記第1密閉槽に供給される二酸化炭素気体のガス圧をP1、前記第2密閉槽に供給される気体のガス圧をP2としたとき、P2>P1とすることによって前記可動部材の前記押圧部を押圧して、前記金型の転写面に前記樹脂成形体を押圧し、P2<P1とすることによって前記金型の転写面から樹脂成形体を離間、剥離するように前記可動部材を移動させることを特徴とする樹脂成形品の製造装置。
In the manufacturing apparatus of the resin molded product according to claim 1 or 2,
When the gas pressure of the carbon dioxide gas supplied to the first sealed tank is P1, and the gas pressure of the gas supplied to the second sealed tank is P2, the pressure of the movable member is set by P2> P1. The movable member is moved so as to separate and peel the resin molded body from the transfer surface of the mold by pressing the part, pressing the resin molded body against the transfer surface of the mold, and setting P2 <P1. An apparatus for producing a resin molded product, characterized in that:
請求項1乃至3のいずれか1項記載の樹脂成形品の製造装置において、
前記可動部材における前記樹脂成形体保持部の樹脂成形体保持面の面積をS1、前記可動部材における前記押圧部の被押圧面の面積をS2としたときに、S1とS2の関係が、S1<S2であることを特徴とする樹脂成形品の製造装置。
In the manufacturing apparatus of the resin molded product according to any one of claims 1 to 3,
When the area of the resin molded body holding surface of the resin molded body holding portion of the movable member is S1, and the area of the pressed surface of the pressing portion of the movable member is S2, the relationship between S1 and S2 is S1 < The apparatus for producing a resin molded product, which is S2.
請求項1乃至4のいずれか1項記載の樹脂成形品の製造装置において、
前記中間壁と前記可動部材の押圧部との間に、弾性部材を配設し、前記第2密閉槽内に気体を供給して前記可動部材の押圧部を前記金型の転写面に向けて移動させたときに、当該弾性部材を押圧し、及び前記第2密閉槽内の気体の圧力を減圧したときに、前記弾性部材の弾性回復力によって、前記可動部材の樹脂成形体保持部上の樹脂成形体を前記金型の転写面から剥離させることを特徴とする樹脂成形品の製造装置。
In the manufacturing apparatus of the resin molded product according to any one of claims 1 to 4,
An elastic member is disposed between the intermediate wall and the pressing portion of the movable member, and gas is supplied into the second sealed tank so that the pressing portion of the movable member faces the transfer surface of the mold. When moved, when the elastic member is pressed and the pressure of the gas in the second sealed tank is reduced, the elastic recovery force of the elastic member causes the elastic member on the resin molded body holding portion of the movable member. An apparatus for producing a resin molded product, wherein the resin molded body is peeled off from the transfer surface of the mold.
請求項1乃至5のいずれか1項記載の樹脂成形品の製造装置において、
前記第1密閉槽と前記第2密閉槽にそれぞれ各槽内温度を制御する第1及び第2温度制御装置を備え、前記第1密閉槽と前記第2密閉槽に等圧の気体が供給された場合に、前記第1密閉槽の槽内温度T1、前記第2密閉槽の槽内温度T2としたとき、T1<T2となるように、前記第1及び第2温度制御装置を制御して前記第2密閉槽内の気体の膨張に伴って前記可動部材を移動させて前記可動部材の樹脂成形体保持部上の樹脂成形体を前記金型の転写面に押圧させて前記金型の転写面を当該樹脂成形体表面に転写させることを特徴とする樹脂成形品の製造装置。
In the manufacturing apparatus of the resin molded product according to any one of claims 1 to 5,
The first sealed tank and the second sealed tank are provided with first and second temperature control devices for controlling the temperature in each tank, respectively, and gas of equal pressure is supplied to the first sealed tank and the second sealed tank. In this case, the first and second temperature control devices are controlled so that T1 <T2 when the tank temperature T1 of the first sealed tank and the tank temperature T2 of the second sealed tank are set. As the gas in the second sealed tank expands, the movable member is moved and the resin molded body on the resin molded body holding portion of the movable member is pressed against the transfer surface of the mold to transfer the mold. An apparatus for producing a resin molded product, wherein the surface is transferred to the surface of the resin molded body.
請求項1乃至6のいずれか1項記載の樹脂成形品の製造装置において、
前記中間壁は、断熱部材で形成されていることを特徴とする樹脂成形品の製造装置。
In the manufacturing apparatus of the resin molded product according to any one of claims 1 to 6,
The said intermediate wall is formed with the heat insulation member, The manufacturing apparatus of the resin molded product characterized by the above-mentioned.
少なくとも1つ以上の転写面を有する金型と樹脂成形体とを収容する第1密閉槽内に二酸化炭素気体を供給して前記樹脂成形体に前記二酸化炭素気体を含浸させ、その後、前記金型の転写面に前記樹脂成形体表面を押圧して、前記転写面を前記樹脂成形体の表面に転写する樹脂成形品の製造方法において、
請求項1乃至7のいずれか1項記載の樹脂成形品の製造装置を使用し、
前記第2密閉槽内に気体を供給して前記可動部材を前記金型の転写面に向かって移動させ、前記可動部材の樹脂成形体保持部上の樹脂成形体を前記金型の転写面に押圧させて前記転写面を前記樹脂成形体の表面に転写したのち、前記第2密閉槽内の気体を減圧させて、前記可動部材を前記金型の転写面から離間する方向に移動させて、前記樹脂成形体を前記転写面から剥離することを特徴とする樹脂成形品の製造方法。
Carbon dioxide gas is supplied into a first sealed tank containing a mold having at least one transfer surface and a resin molded body, and the resin molded body is impregnated with the carbon dioxide gas, and then the mold is molded. In the method for manufacturing a resin molded product, the surface of the resin molded body is pressed against the transfer surface of the resin, and the transfer surface is transferred to the surface of the resin molded body
Using the apparatus for producing a resin molded product according to any one of claims 1 to 7,
Gas is supplied into the second sealed tank to move the movable member toward the transfer surface of the mold, and the resin molded body on the resin molded body holding portion of the movable member is moved to the transfer surface of the mold. After pressing and transferring the transfer surface to the surface of the resin molded body, the gas in the second sealed tank is depressurized, and the movable member is moved away from the transfer surface of the mold, A method for producing a resin molded product, comprising peeling the resin molded body from the transfer surface.
請求項8記載の樹脂成形品の製造方法において、
前記金型の転写面を前記樹脂成形体の表面に転写する工程から前記金型の転写面から前記樹脂成形体を剥離する工程の間、前記第1密閉槽の槽内温度を一定温度に維持していることを特徴とする樹脂成形品の製造方法。
In the manufacturing method of the resin molded product of Claim 8,
During the process of transferring the transfer surface of the mold to the surface of the resin molded body and the process of peeling the resin molded body from the transfer surface of the mold, the internal temperature of the first sealed tank is maintained at a constant temperature. A method for producing a resin molded product, characterized by comprising:
JP2008279568A 2008-10-30 2008-10-30 Apparatus and method for manufacturing resin molding Pending JP2010105270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279568A JP2010105270A (en) 2008-10-30 2008-10-30 Apparatus and method for manufacturing resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279568A JP2010105270A (en) 2008-10-30 2008-10-30 Apparatus and method for manufacturing resin molding

Publications (1)

Publication Number Publication Date
JP2010105270A true JP2010105270A (en) 2010-05-13

Family

ID=42295175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279568A Pending JP2010105270A (en) 2008-10-30 2008-10-30 Apparatus and method for manufacturing resin molding

Country Status (1)

Country Link
JP (1) JP2010105270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035759A1 (en) * 2011-09-06 2013-03-14 Scivax株式会社 Fluid pressure imprinting device provided with rigid stage, and pressurizing stage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035759A1 (en) * 2011-09-06 2013-03-14 Scivax株式会社 Fluid pressure imprinting device provided with rigid stage, and pressurizing stage

Similar Documents

Publication Publication Date Title
JP2010120316A (en) Manufacturing apparatus and method for resin molded product, and optical element
US10994455B2 (en) FRP sheet press molding method and device and FRP molded article
JP2008155521A (en) Method and apparatus for thermal transfer molding
JP2010105270A (en) Apparatus and method for manufacturing resin molding
JPWO2009016990A1 (en) Mold structure, injection molding apparatus, and molding method
JP2010194941A (en) Method for manufacturing resin molding mold and mold
JP4771812B2 (en) Injection molding body molding method and injection molding apparatus
KR100997141B1 (en) Injection mold
JP2008149702A (en) Method for manufacturing molded product having thin film
JP5071794B2 (en) Injection press molding method for thin plate-shaped optical moldings
JP4942704B2 (en) Manufacturing method of synthetic resin molded products
JP4611731B2 (en) Manufacturing method of molded products
JP2012250379A (en) Foil transfer injection molding method and foil transfer injection molding device, and mold
JP2009233975A (en) Injection mold and injection molding method
JP6115894B2 (en) Method and apparatus for transferring shape to resin
JP2016000480A (en) Injection molding machine and manufacturing method of design surface molding die of the same
JP5658402B1 (en) Resin molded plate
JPWO2009016991A1 (en) Injection molding apparatus, molding method, molded product, and optical element
TW200402357A (en) Injection molding machine for lost wax casting and injection molding method for lost wax casting
JP2009214298A (en) Resin molding and method for producing resin molding
KR101435947B1 (en) A method for inmold injection using a resin laminate with micro-balls
JP2009034957A (en) Molding device and molding method
JP2009255462A (en) Disc substrate molding machine and disc substrate molding method
KR100548876B1 (en) In-mold forming process and the form structure
JP4599086B2 (en) Mold for molding