JP2009214298A - Resin molding and method for producing resin molding - Google Patents

Resin molding and method for producing resin molding Download PDF

Info

Publication number
JP2009214298A
JP2009214298A JP2008057039A JP2008057039A JP2009214298A JP 2009214298 A JP2009214298 A JP 2009214298A JP 2008057039 A JP2008057039 A JP 2008057039A JP 2008057039 A JP2008057039 A JP 2008057039A JP 2009214298 A JP2009214298 A JP 2009214298A
Authority
JP
Japan
Prior art keywords
resin
resin molded
molded body
carbon dioxide
resin member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008057039A
Other languages
Japanese (ja)
Inventor
Jun Watabe
順 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008057039A priority Critical patent/JP2009214298A/en
Publication of JP2009214298A publication Critical patent/JP2009214298A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a resin molding which can accurately transfer a mold transfer surface in which minute unevenness, an optical specular surface, etc., are formed in a resin surface without heating a mold at a high temperature by using a plasticization effect by carbon dioxide dissolved in the resin, control the generation of bubbles, and materialize the shortening of a cycle time to be equivalent to that in injection molding. <P>SOLUTION: In the method for producing the resin molding in which by impregnating the resin molding with carbon dioxide and pushing the transfer surface of the mold to the surface of the resin molding, the pattern of the transfer surface is transferred to the surface of the resin molding, the resin molding which is composed of a laminate of at least two layers and composed of a laminate of at least two resin members different in carbon dioxide diffusion speed at the same temperature and pressure is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表面に高精度な光学鏡面や微細パターンを有する光学素子の製造方法及び製造装置に関する。   The present invention relates to a method and apparatus for manufacturing an optical element having a highly accurate optical mirror surface or fine pattern on the surface.

樹脂成形品の製造方法としては、一般的に射出成形法が用いられている。射出成形法は、溶融した樹脂を、その軟化温度以下の温度に加熱維持された金型のキャビティ内に充填して、固化させるといった方法である。キャビティ内に樹脂を充填した直後に冷却固化が始まり、非常に速い成形サイクルで、3次元形状の成形品を作製することができる。但しこの場合は、樹脂がキャビティ内に充填された直後に冷却されて固化層が形成されるために、回折レンズや導光板のように表面に微細な凹凸パターンを有する成形品においては、樹脂がその微細な凹凸パターンに密着して充填される前に固化してしまうといった問題が生じる。
上述した微細パターンを樹脂表面に転写する方法として熱インプリント法が知られている。これは、樹脂をその軟化温度以上に加熱して、微細パターンが形成された転写面を樹脂表面に押しつけてパターンを転写し、その後軟化温度以下まで冷却して離型する方法である。この場合は、転写面を押しつける際に樹脂はその軟化温度以上に加熱されているため、微細パターンへの充填は可能となるが、加熱/冷却の工程が必要であり、非常に成形時間が長くなるといった問題が生じる。
As a method for producing a resin molded product, an injection molding method is generally used. The injection molding method is a method in which a molten resin is filled in a mold cavity that is heated and maintained at a temperature equal to or lower than its softening temperature and solidified. Immediately after the resin is filled in the cavity, cooling and solidification starts, and a molded article having a three-dimensional shape can be produced with a very fast molding cycle. However, in this case, the resin is cooled immediately after the resin is filled in the cavity to form a solidified layer. Therefore, in a molded product having a fine concavo-convex pattern on the surface, such as a diffraction lens or a light guide plate, the resin is There arises a problem that the fine concavo-convex pattern is solidified before being closely packed.
A thermal imprint method is known as a method for transferring the fine pattern described above to the resin surface. This is a method in which the resin is heated to the softening temperature or higher, the transfer surface on which the fine pattern is formed is pressed against the resin surface to transfer the pattern, and then cooled to the softening temperature or lower to release. In this case, since the resin is heated to the softening temperature or higher when the transfer surface is pressed, the fine pattern can be filled, but a heating / cooling process is required, and the molding time is very long. Problem arises.

このような問題を解決するために、近年では二酸化炭素を成形加工に応用する試みが複数なされている。二酸化炭素のような不活性ガスを高圧にして樹脂中に溶解させると、樹脂が可塑化され、その軟化温度が低下することが知られており、この性質を応用したものである。
例えば、特許文献1では、金型キャビティ内に予め二酸化炭素ガスを充填し、その後金型キャビティ内に樹脂を充填する方法が提案されている。
また、特許文献2では、金型と樹脂表面のスキン層の間に隙間を形成し、この隙間に二酸化炭素ガスを注入し、再度保圧を高めてスキン層と転写面を再密着させ、転写面を転写させている。
また、特許文献3では、インプリント法に二酸化炭素を応用している。ここでは、密閉容器内に高圧二酸化炭素導入させることで、熱可塑性樹脂の母材に二酸化炭素を含浸させ、次いで母材のガラス転移温度より低温の金型転写面を母材に押し付けて転写させる。その後、密閉容器内を減圧させることで、母材から二酸化炭素を排出している。
この場合は、母材に二酸化炭素を含浸させることで可塑化が促進されるため、母材や金型を高温にあげることなく微細パターンを転写することができ、成形時間の短縮が期待できる。
特許第3096904号 特許第3445778号 特開2006−175756公報
In order to solve such problems, in recent years, a plurality of attempts have been made to apply carbon dioxide to molding processing. It is known that when an inert gas such as carbon dioxide is dissolved in a resin at a high pressure, the resin is plasticized and its softening temperature is lowered, and this property is applied.
For example, Patent Document 1 proposes a method of filling a mold cavity with carbon dioxide gas in advance and then filling a resin into the mold cavity.
In Patent Document 2, a gap is formed between the mold and the skin layer on the resin surface, carbon dioxide gas is injected into the gap, the holding pressure is increased again, the skin layer and the transfer surface are brought into close contact, and the transfer is performed. The surface is transferred.
In Patent Document 3, carbon dioxide is applied to the imprint method. Here, by introducing high-pressure carbon dioxide into the sealed container, the base material of the thermoplastic resin is impregnated with carbon dioxide, and then the mold transfer surface lower than the glass transition temperature of the base material is pressed against the base material to be transferred. . Thereafter, the inside of the sealed container is depressurized to discharge carbon dioxide from the base material.
In this case, since the plasticization is promoted by impregnating the base material with carbon dioxide, the fine pattern can be transferred without raising the base material or the mold to a high temperature, and the molding time can be expected to be shortened.
Patent No. 3096904 Japanese Patent No. 3445778 JP 2006-175756 A

しかし、特許文献1記載の発明では、樹脂の粘度が低下し、微細パターンへの充填は促進されるが、樹脂の流動を伴って二酸化炭素が溶解されるため、流動が不安定になり、それに伴って成形品に外観不良が生じる。また、高圧ガスで加圧されたキャビティ内へ樹脂を充填するために、樹脂の未充填といった問題が生じやすくなる。
また、特許文献2記載の発明では、樹脂の流動を伴わずに二酸化炭素を溶解させることができるが、再密着させるために転写面周囲に摺動部が必要となり、そこからのガスのリーク等の問題で安定して、高圧ガスを注入することができない、また、保圧によって圧力を負荷させると、樹脂の流入口であるゲート部近傍のみに応力が集中し、転写面に均一に圧力を負荷させることができないといった問題が生じる。
However, in the invention described in Patent Document 1, the viscosity of the resin is reduced and the filling of the fine pattern is promoted. However, since the carbon dioxide is dissolved along with the flow of the resin, the flow becomes unstable. Along with this, appearance defects occur in the molded product. In addition, since the resin is filled into the cavity pressurized with the high-pressure gas, a problem such as unfilling of the resin tends to occur.
Further, in the invention described in Patent Document 2, carbon dioxide can be dissolved without causing resin flow. However, a sliding portion is required around the transfer surface in order to re-adhere, and a gas leak or the like therefrom. If high pressure gas cannot be injected stably and pressure is applied by holding pressure, stress concentrates only in the vicinity of the gate, which is the resin inlet, and the pressure is uniformly applied to the transfer surface. There arises a problem that it cannot be loaded.

また、特許文献3記載の発明では、上記方法を、特に厚みのある成形品に適用した場合には、二酸化炭素の含浸時間や母材からの二酸化炭素排出のための減圧時間が長くなり、前述した射出成形に匹敵するほど成形時間を短くすることはできない。また、減圧時間を短くするために急速減圧すると、内部まで浸入した二酸化炭素が抜けきれなくなり、相分離が進み、気泡が発生してしまうといった問題も生じる。
その場合には、転写面表層部だけに選択的に二酸化炭素を含浸させるようにすることで、含浸時間、減圧時間の短縮や気泡の抑制を実現することができる。二酸化炭素の含浸深さは、含浸時間、含浸圧力、含浸温度等によって決定されるが、それらがお互いに影響を及ぼしあっているために、正確に制御することが難しく、安定して、転写面表層部だけに選択的に二酸化炭素を含浸させることができないといった問題がある。
本発明は、このような従来の問題点を考慮してなされたものであり、樹脂中への二酸化炭素溶解による可塑化効果を利用して、金型を高温に上げることなく樹脂表面に微細な凹凸や光学鏡面などが形成された金型転写面を高精度に転写できるとともに、気泡の発生を抑制し、射出成形並のサイクルタイム短縮を実現することのできる樹脂成形品を製造する方法を提供することを目的とする。
Further, in the invention described in Patent Document 3, when the above method is applied to a molded article having a particularly large thickness, the impregnation time of carbon dioxide and the decompression time for discharging carbon dioxide from the base material become long. The molding time cannot be shortened to the extent comparable to injection molding. In addition, when rapid decompression is performed to shorten the decompression time, carbon dioxide that has penetrated into the interior cannot be completely removed, phase separation proceeds, and bubbles are generated.
In that case, the impregnation time and the pressure reduction time can be shortened and bubbles can be suppressed by selectively impregnating only the transfer surface layer with carbon dioxide. The impregnation depth of carbon dioxide is determined by the impregnation time, impregnation pressure, impregnation temperature, etc., but since they influence each other, it is difficult to control accurately, stably, and transfer surface There is a problem that only the surface layer portion cannot be impregnated with carbon dioxide selectively.
The present invention has been made in view of such conventional problems, and by utilizing the plasticizing effect of carbon dioxide dissolved in the resin, the resin surface has a fine structure without raising the mold to a high temperature. Providing a method for manufacturing resin molded products that can transfer mold transfer surfaces with irregularities and optical mirror surfaces with high accuracy, suppress the generation of air bubbles, and achieve cycle times as short as injection molding. The purpose is to do.

上記の課題を解決するために、請求項1に記載の発明は、二酸化炭素を含浸させた樹脂成形体の表面に、金型の転写面を押し付けて、前記転写面のパターンを転写する樹脂成形品の製造方法に用いられる樹脂成形体において、前記樹脂成形体が少なくとも2層の樹脂部材から構成される積層構造であるとともに、少なくとも温度、圧力が同条件の場合における前記各樹脂部材中の二酸化炭素の拡散速度が異なることを特徴とする。
また、請求項2に記載の発明は、請求項1において、前記樹脂成形体は、金型転写面を押し付けられる表層樹脂部材と、前記表層樹脂部材の裏面に積層された基材樹脂部材と、を備え、温度、圧力が同条件の場合において、前記基材樹脂部材中の二酸化炭素の拡散速度が前記表層樹脂部材中の二酸化炭素の拡散速度よりも遅いことを特徴とする。
また、請求項3に記載の発明は、請求項1において、前記表層樹脂部材と前記基材樹脂部材との間に、前記表層樹脂部材及び前記基材樹脂部材とは異なる材料からなる中間樹脂部材の層を備え、温度、圧力が同条件の場合において、前記中間樹脂部材中の二酸化炭素の拡散速度が前記表層樹脂部材中の拡散速度よりも遅いことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is a resin molding in which a transfer surface of a mold is pressed against a surface of a resin molded body impregnated with carbon dioxide to transfer the pattern of the transfer surface. In the resin molded body used in the manufacturing method of a product, the resin molded body has a laminated structure composed of at least two layers of resin members, and at least the temperature and the pressure are under the same conditions. It is characterized by different diffusion rates of carbon.
The invention according to claim 2 is the invention according to claim 1, wherein the resin molded body is a surface layer resin member pressed against a mold transfer surface, and a base resin member laminated on the back surface of the surface layer resin member; When the temperature and pressure are the same, the diffusion rate of carbon dioxide in the base resin member is slower than the diffusion rate of carbon dioxide in the surface resin member.
The invention according to claim 3 is the intermediate resin member according to claim 1, wherein the intermediate resin member is made of a material different from that of the surface resin member and the base resin member between the surface resin member and the base resin member. When the temperature and pressure are the same, the diffusion rate of carbon dioxide in the intermediate resin member is slower than the diffusion rate in the surface resin member.

また、請求項4に記載の発明は、請求項1乃至3の何れか一項において、前記基材樹脂部材が予め略最終形状に加工されていることを特徴とする。
また、請求項5に記載の発明は、請求項1乃至4の何れか一項において、前記樹脂成形体を構成する樹脂部材の全てが、熱可塑性樹脂材料からなることを特徴とする。
また、請求項6に記載の発明は、請求項1乃至4の何れか一項において、前記樹脂成形体を構成する樹脂部材が、熱可塑性樹脂材料又は熱硬化性樹脂材料からなることを特徴とする。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the base resin member is processed into a substantially final shape in advance.
The invention according to claim 5 is characterized in that, in any one of claims 1 to 4, all of the resin members constituting the resin molded body are made of a thermoplastic resin material.
The invention according to claim 6 is characterized in that, in any one of claims 1 to 4, the resin member constituting the resin molded body is made of a thermoplastic resin material or a thermosetting resin material. To do.

また、請求項7に記載の発明は、請求項1乃至4の何れか一項において、前記樹脂成形体を構成する樹脂部材が熱可塑性樹脂材料又は光硬化性樹脂材料からなることを特徴とする。
また、請求項8に記載の発明は、樹脂成形体に二酸化炭素を含浸させる工程と、金型の転写面を前記樹脂成形体表面に押し付けて、前記転写面のパターンを前記樹脂成形体表面に転写する工程と、を有する樹脂成形品の製造方法において、前記樹脂成形体は、請求項1乃至7の何れか一項に記載の樹脂成形体であることを特徴とする。
また、請求項9に記載の発明は、請求項8において、前記樹脂成形体に二酸化炭素を含浸させる工程と、前記金型の転写面を前記樹脂成形体表面に押し付ける工程とが、二酸化炭素を含浸させる前における前記樹脂成形体の表層樹脂部材の軟化温度以下で行われることを特徴とする。
The invention according to claim 7 is characterized in that, in any one of claims 1 to 4, the resin member constituting the resin molded body is made of a thermoplastic resin material or a photocurable resin material. .
According to an eighth aspect of the present invention, a step of impregnating a resin molded body with carbon dioxide, a transfer surface of a mold is pressed against the surface of the resin molded body, and a pattern of the transfer surface is applied to the surface of the resin molded body. And a step of transferring the resin molded product, wherein the resin molded product is the resin molded product according to any one of claims 1 to 7.
The invention according to claim 9 is the method according to claim 8, wherein the step of impregnating the resin molding with carbon dioxide and the step of pressing the transfer surface of the mold against the surface of the resin molding are carbon dioxide. It is performed below the softening temperature of the surface resin member of the resin molded body before impregnation.

また、請求項10に記載の発明は、請求項8又は9において、前記樹脂成形体に二酸化炭素を含浸させる工程と、前記金型の転写面を前記樹脂成形体表面に押し付ける工程とが、二酸化炭素を含浸させる前における前記樹脂成形体の表層樹脂部材の軟化温度以下の一定温度で行われることを特徴とする。
また、請求項11に記載の発明は、請求項8乃至10の何れか一項において、前記金型の転写面には微細な凹凸パターンが形成されていることを特徴とする。
また、請求項12に記載の発明は、請求項11において、前記金型の転写面を前記樹脂成形体表面に押し付ける前の前記表層樹脂部材の厚さが、少なくとも前記金型転写面に形成された微細な凹凸のパターンの高さより厚いことを特徴とする。
また、請求項13に記載の発明は、請求項12において、前記金型の転写面を前記樹脂成形体表面に押し付ける前の前記表層樹脂部材の厚さが、予め略最終形状に加工された基材樹脂部材と、最終形状との形状誤差以上の厚さを有することを特徴とする。
The invention according to claim 10 is the method according to claim 8 or 9, wherein the step of impregnating the resin molding with carbon dioxide and the step of pressing the transfer surface of the mold against the surface of the resin molding are as follows. It is characterized by being carried out at a constant temperature below the softening temperature of the surface resin member of the resin molded body before impregnating with carbon.
An eleventh aspect of the invention is characterized in that in any one of the eighth to tenth aspects, a fine uneven pattern is formed on the transfer surface of the mold.
According to a twelfth aspect of the present invention, in the eleventh aspect, the thickness of the surface layer resin member before pressing the transfer surface of the mold against the surface of the resin molded body is formed on at least the mold transfer surface. It is characterized by being thicker than the height of the fine uneven pattern.
The invention according to claim 13 is the substrate according to claim 12, wherein the thickness of the surface layer resin member before pressing the transfer surface of the mold against the surface of the resin molded body is processed into a substantially final shape in advance. The thickness is equal to or greater than the shape error between the material resin member and the final shape.

本発明は、二酸化炭素を樹脂中に溶解させる場合、樹脂種類によって二酸化炭素の拡散速度が異なることに着目し、予め同温、同圧力下における二酸化炭素拡散速度が異なる2種類以上の樹脂部材から構成される樹脂成形体を用意し、樹脂成形体を構成する樹脂の中で、二酸化炭素の拡散速度の早い樹脂部材のみに選択的に二酸化炭素を溶解させるようにすることを特徴としている。
具体的には、予め二酸化炭素の拡散速度の異なる樹脂部材が積層された樹脂成形体を用意し、転写面側表層部の所定厚みを、二酸化炭素の拡散速度の速い樹脂部材で構成させておくことで、その部分のみに優先的に二酸化炭素を含浸させ可塑化させることができる。樹脂成形体が単一樹脂部材で構成されている場合には、樹脂内部まで二酸化炭素の溶解が進行するが、本発明においては、二酸化炭素拡散速度が遅い樹脂部材のところで溶解が進まなくなるために、二酸化炭素拡散速度が速い樹脂部材のみに選択的に二酸化炭素を溶解させることができる。
従って、本発明によれば樹脂中への二酸化炭素溶解による可塑化効果を利用して、樹脂成形品を製造するに際し、樹脂部材からの気泡の発生を抑制するとともに、含浸時間、含浸圧力、含浸温度等を正確に制御することなく、転写面表層部だけに選択的に二酸化炭素を含浸させ、安定して二酸化炭素含浸時間、減圧時間の短縮、すなわちサイクルタイムの短縮を実現することができる。
In the present invention, when carbon dioxide is dissolved in a resin, attention is paid to the fact that the diffusion rate of carbon dioxide varies depending on the type of resin. From two or more types of resin members having different carbon dioxide diffusion rates under the same temperature and pressure in advance. A resin molded body is prepared, and carbon dioxide is selectively dissolved only in a resin member having a high carbon dioxide diffusion rate in the resin constituting the resin molded body.
Specifically, a resin molded body in which resin members having different carbon dioxide diffusion rates are previously prepared is prepared, and the predetermined thickness of the transfer surface side surface layer portion is configured with a resin member having a high carbon dioxide diffusion rate. Thus, carbon dioxide can be preferentially impregnated and plasticized only in that portion. When the resin molded body is composed of a single resin member, the dissolution of carbon dioxide proceeds to the inside of the resin, but in the present invention, the dissolution does not proceed at the resin member having a slow carbon dioxide diffusion rate. Carbon dioxide can be selectively dissolved only in a resin member having a high carbon dioxide diffusion rate.
Therefore, according to the present invention, in producing a resin molded product by utilizing the plasticizing effect of carbon dioxide dissolved in the resin, the generation of bubbles from the resin member is suppressed, and the impregnation time, impregnation pressure, impregnation are suppressed. Without accurately controlling the temperature or the like, carbon dioxide can be selectively impregnated only on the surface portion of the transfer surface, and the carbon dioxide impregnation time and the decompression time can be stably reduced, that is, the cycle time can be shortened.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は実施例1で使用する樹脂の構造を示す図であり、(a)はパターン転写前の樹脂成形体を示す図、(b)はパターン転写後の樹脂成型品を示す図である。
本実施例では、図1(a)に示すような表層樹脂部材102と基材樹脂部材103の積層構造を備えた樹脂成形体101を用意し、表層樹脂部材102に所定のパターンが形成された金型転写面を押しつけて、転写させ、図1(b)に示すような表層樹脂部材102表面に凹凸パターン105が転写された樹脂成形品104を作製した。尚、ここでは、図1(a)に示す転写前の樹脂と、図1(b)に示す転写後の樹脂とを区別するために、それぞれ樹脂成形体101、樹脂成形品104と記すこととする。
1A and 1B are diagrams showing the structure of a resin used in Example 1. FIG. 1A is a diagram showing a resin molded body before pattern transfer, and FIG. 1B is a diagram showing a resin molded product after pattern transfer.
In this example, a resin molded body 101 having a laminated structure of the surface resin member 102 and the base resin member 103 as shown in FIG. 1A was prepared, and a predetermined pattern was formed on the surface resin member 102. The mold transfer surface was pressed and transferred, and a resin molded product 104 having the uneven pattern 105 transferred onto the surface of the surface resin member 102 as shown in FIG. 1B was produced. Here, in order to distinguish the resin before transfer shown in FIG. 1 (a) from the resin after transfer shown in FIG. 1 (b), they are referred to as a resin molded body 101 and a resin molded product 104, respectively. To do.

具体的には、表層樹脂部材102として熱可塑性樹脂であるメタクリル樹脂(熱変形温度85〜100度、以下PMMAと記す)、基材樹脂部材103として熱可塑性樹脂であるシクロオレフィン樹脂(以下COPと記す)からなる2層構造の樹脂成形体101を用いた。樹脂成形体101の作製方法については限定されるものではないが、本実施例においては、2つの射出ユニットを有する2色成形機を用いて作製した。このように、樹脂成形体101を構成する樹脂部材が、ともに熱可塑性樹脂で構成されている場合、1つの成形機で容易かつハイサイクルで樹脂成形体101を作製することができる。また、図1に示されるように、樹脂成形体101には微細パターンが形成されている必要はなく、略最終形状、すなわち微細パターンが転写される部分以外の部分が最終形状であればよい。従って、樹脂成形体101の作製においては、特別な工夫なく容易に低コストで作製することができる。更に、樹脂成形体101の作製は、微細パターンの転写工程と同時に並行して実施することが可能であり、工程が増えることによる成形サイクルの増加は生じない。
但し、この場合、表層樹脂部材102層の厚さは、金型116の転写面115に形成された凹凸パターンの高さより厚くなるようにする必要がある。これによって、基材樹脂部材103には、二酸化炭素が溶解されず可塑化されていなくても、確実に金型116の凹凸パターンを樹脂成形品104に転写させることができる。
Specifically, methacrylic resin (thermal deformation temperature: 85 to 100 degrees, hereinafter referred to as PMMA) as the thermoplastic resin as the surface layer resin member 102, and cycloolefin resin (hereinafter referred to as COP) as the thermoplastic resin as the base resin member 103. The resin molded body 101 having a two-layer structure is used. Although the production method of the resin molded body 101 is not limited, in this embodiment, it was produced using a two-color molding machine having two injection units. Thus, when the resin member which comprises the resin molding 101 is both comprised with the thermoplastic resin, the resin molding 101 can be produced easily and with a high cycle with one molding machine. Further, as shown in FIG. 1, the resin molded body 101 does not have to be formed with a fine pattern, and the final shape may be any portion other than the substantially final shape, that is, the portion to which the fine pattern is transferred. Therefore, the resin molded body 101 can be easily manufactured at a low cost without any special device. Furthermore, the resin molded body 101 can be produced in parallel with the fine pattern transfer step, and an increase in the molding cycle due to an increase in the number of steps does not occur.
However, in this case, the thickness of the surface resin member 102 layer needs to be larger than the height of the concavo-convex pattern formed on the transfer surface 115 of the mold 116. Thereby, even if carbon dioxide is not melted and plasticized on the base resin member 103, the uneven pattern of the mold 116 can be reliably transferred to the resin molded product 104.

図2は、実施例1で用いた樹脂成形品加工装置の断面概略図である。
本装置は、高圧二酸化炭素雰囲気内で樹脂成形体101を押圧することができる構造となっている。具体的には、予め加工された樹脂成形体101を収容可能な密閉容器6を備え、密閉容器6には、二酸化炭素を供給するためのガス供給管7及び二酸化炭素を排出するためのガス排出管8が接続され、密閉容器6と連通している。ガス供給管7は増圧装置9を介して二酸化炭素ボンベ10に接続されている。ガス供給管7には、開閉可能な供給弁11が備えられており、供給弁11の開閉により、適宜、増圧装置9によって所定圧力、温度に制御された二酸化炭素が密閉容器6内に供給される。一方、ガス排出管8取り付け口には、減圧速度調整可能な減圧弁12が備えられていて、密閉容器6内を一定圧力に維持したり、所定速度で減圧できるようになっている。更に密閉容器6の外周部には、適宜、密閉容器6内雰囲気温度を所定温度に維持可能なような温度調節器13が備えられている。本実施例においてはカートリッジヒーターを用いている。
FIG. 2 is a schematic cross-sectional view of the resin molded product processing apparatus used in Example 1.
This apparatus has a structure capable of pressing the resin molded body 101 in a high-pressure carbon dioxide atmosphere. Specifically, a sealed container 6 that can accommodate a pre-processed resin molded body 101 is provided, and the sealed container 6 includes a gas supply pipe 7 for supplying carbon dioxide and a gas discharge for discharging carbon dioxide. A tube 8 is connected and communicates with the sealed container 6. The gas supply pipe 7 is connected to a carbon dioxide cylinder 10 via a pressure intensifier 9. The gas supply pipe 7 is provided with a supply valve 11 that can be opened and closed. When the supply valve 11 is opened and closed, carbon dioxide controlled to a predetermined pressure and temperature by the pressure intensifier 9 is appropriately supplied into the sealed container 6. Is done. On the other hand, the attachment port of the gas discharge pipe 8 is provided with a pressure reducing valve 12 capable of adjusting the pressure reducing speed, so that the inside of the sealed container 6 can be maintained at a constant pressure or depressurized at a predetermined speed. Furthermore, a temperature regulator 13 is provided on the outer peripheral portion of the sealed container 6 so that the atmosphere temperature in the sealed container 6 can be maintained at a predetermined temperature as appropriate. In this embodiment, a cartridge heater is used.

また、密閉容器6内には、樹脂成形体101を固定するための下型保持部14と所定のパターンが形成された転写面115を有する金型116を固定するための上型保持部17が備えられている。本実施例で用いた加工装置においては、金型116が固定された上型保持部17が上下に移動可能であり、下型保持部14に固定された樹脂成形体101の成形面上に金型116の転写面115を所定圧力で押圧できるようになっている。
本実施形態では、下型保持部14が移動するようにしてもいいし、上型保持部17及び下型保持部14の両方が移動可能としてもよい。
Further, in the sealed container 6, there is a lower mold holding part 14 for fixing the resin molding 101 and an upper mold holding part 17 for fixing a mold 116 having a transfer surface 115 on which a predetermined pattern is formed. Is provided. In the processing apparatus used in this embodiment, the upper mold holding part 17 to which the mold 116 is fixed is movable up and down, and the mold is placed on the molding surface of the resin molded body 101 fixed to the lower mold holding part 14. The transfer surface 115 of the mold 116 can be pressed with a predetermined pressure.
In the present embodiment, the lower mold holding part 14 may be moved, or both the upper mold holding part 17 and the lower mold holding part 14 may be movable.

次いで、図2に基づいて動作について説明する。
1)予め略最終形状に加工された樹脂成形体101を、密閉容器6内に挿入する。
2)密閉容器6内の雰囲気を二酸化炭素に置換する。密閉容器6内を二酸化炭素で置換する工程は、供給弁11、減圧弁12を開き、密閉容器6内に二酸化炭素を流通させた後、供給弁11、減圧弁12を閉めることで容易に実施できるが、供給弁11に接続されている増圧装置9は、二酸化炭素が所定の温度、圧力になるように維持貯蔵されているため、別途置換用の二酸化炭素流通経路を設けておく方が好ましい。
3)供給弁11を開き、減圧弁12を閉め、所定圧力、温度に増圧増温された二酸化炭素が貯蔵された増圧装置9から二酸化炭素を密閉容器6内に充填し、樹脂成形体101中に二酸化炭素を含浸させる。この時、密閉容器6内では、常に一定圧力が維持されるように、減圧弁12で調整する。また、密閉容器6は、温度調節器13によって、密閉容器6内が所定の一定温度に維持できるようにしている。
4)金型116が固定された上型保持部17を樹脂成形体101のある下方に移動させ、樹脂成形体101を押圧し、表層樹脂部材102を構成するPMMAを変形させ、金型116の転写面115に加工されたパターンを転写する。
5)減圧弁12を開き、密閉容器6内の高圧二酸化炭素を大気圧まで減圧させた後、上型保持部17を上昇させて、パターンが転写された樹脂成形品104を取り出す。
Next, the operation will be described with reference to FIG.
1) The resin molded body 101 that has been processed into a substantially final shape in advance is inserted into the sealed container 6.
2) The atmosphere in the sealed container 6 is replaced with carbon dioxide. The process of replacing the inside of the sealed container 6 with carbon dioxide is easily performed by opening the supply valve 11 and the pressure reducing valve 12 and circulating the carbon dioxide in the sealed container 6 and then closing the supply valve 11 and the pressure reducing valve 12. However, since the pressure increasing device 9 connected to the supply valve 11 is maintained and stored so that the carbon dioxide has a predetermined temperature and pressure, it is better to provide a separate carbon dioxide circulation path for replacement. preferable.
3) The supply valve 11 is opened, the pressure reducing valve 12 is closed, and carbon dioxide is filled into the sealed container 6 from the pressure increasing device 9 in which the carbon dioxide whose pressure has been increased and increased to a predetermined pressure and temperature is stored. 101 is impregnated with carbon dioxide. At this time, the pressure reducing valve 12 is adjusted so that a constant pressure is always maintained in the sealed container 6. Further, the sealed container 6 can be maintained at a predetermined constant temperature inside the sealed container 6 by the temperature controller 13.
4) The upper mold holding part 17 to which the mold 116 is fixed is moved downward where the resin molded body 101 is located, the resin molded body 101 is pressed, the PMMA constituting the surface layer resin member 102 is deformed, and the mold 116 The processed pattern is transferred to the transfer surface 115.
5) Open the pressure reducing valve 12 and reduce the high-pressure carbon dioxide in the sealed container 6 to atmospheric pressure, then raise the upper mold holding part 17 and take out the resin molded product 104 to which the pattern is transferred.

本実施形態で用いた金型116の転写面115のパターンは開口幅350nm高さ175nmのL&Sパターンである。また、樹脂成形体101は、前述したようにPMMAとCOPの2層積層構造で構成され、厚さ5mmのCOP上に厚さ0.5mmのPMMAを積層させたものを用いた。加工条件は、二酸化炭素の圧力10MPa、温度40℃、押圧力5MPaで溶解時間は1分とし、減圧時間は10秒の急減圧とした。なお、40℃、10MPa、溶解時間1分の条件下において、二酸化炭素はCOP中へ殆ど拡散しないことを事前に実験的に確認している。また、比較例としてPMMA単体での転写も実施した。尚、本実施例において、増圧から減圧、離型までの工程を全て40℃の一定温度で実施し、昇温、降温は行っていない。   The pattern of the transfer surface 115 of the mold 116 used in this embodiment is an L & S pattern having an opening width of 350 nm and a height of 175 nm. Further, as described above, the resin molded body 101 has a two-layer laminated structure of PMMA and COP, and uses a laminate of PMMA having a thickness of 0.5 mm on a COP having a thickness of 5 mm. The processing conditions were a carbon dioxide pressure of 10 MPa, a temperature of 40 ° C., a pressing force of 5 MPa, a dissolution time of 1 minute, and a decompression time of 10 seconds. It has been experimentally confirmed in advance that carbon dioxide hardly diffuses into COP under the conditions of 40 ° C., 10 MPa, and dissolution time of 1 minute. Further, as a comparative example, transfer using PMMA alone was also performed. In this example, all steps from pressure increase to pressure reduction and mold release are performed at a constant temperature of 40 ° C., and neither temperature increase nor temperature decrease is performed.

図3は、AFMによって形状評価を行った結果を示す図であり、図3(a)は本発明におけるPMMAとCOPの2層積層構造から構成される樹脂成形品104の転写面測定結果を示す図、図3(b)はPMMA単体における転写面測定結果を示す図、図3(c)はPMMA単体で二酸化炭素の溶解時間を5分以上とした場合の転写面測定結果を示す図である。
図3(a)からわかるように、本発明におけるPMMAとCOPの2層積層構造から構成される樹脂成形品104は、金型116の転写面115に形成されたパターンをほぼ100%転写していることがわかる。一方、図3(b)に示された通り、PMMA単体の場合は、転写率10%以下と殆ど転写しないことがわかる。しかし、溶解時間を5分以上とすることで、ようやくPMMA単体でも金型116の転写面115に形成されたパターンをほぼ100%転写した(図3(c))。
PMMA単体で転写率が低い理由は、二酸化炭素の浸入が樹脂内部にまで拡散するために、表層部であっても、樹脂の可塑化に必要な二酸化炭素溶解量を満たすまでには時間がかかるためである。一方、本発明においては、表層樹脂部材102を構成するPMMAと基材樹脂部材103を構成するCOPの境界で拡散が進まなくなるために、非常に短時間で表層樹脂部材102を構成するPMMAだけに選択的に二酸化炭素を必要量溶解することができる。
FIG. 3 is a diagram showing a result of shape evaluation by AFM, and FIG. 3A shows a measurement result of a transfer surface of a resin molded product 104 composed of a two-layer laminated structure of PMMA and COP in the present invention. FIG. 3B is a diagram showing the measurement result of the transfer surface of the single PMMA, and FIG. 3C is a diagram showing the measurement result of the transfer surface when the dissolution time of carbon dioxide is 5 minutes or longer with the single PMMA. .
As can be seen from FIG. 3 (a), the resin molded product 104 having a two-layer laminated structure of PMMA and COP in the present invention transfers almost 100% of the pattern formed on the transfer surface 115 of the mold 116. I understand that. On the other hand, as shown in FIG. 3B, it can be seen that in the case of a single PMMA, the transfer rate is 10% or less and hardly transferred. However, by setting the dissolution time to 5 minutes or longer, the pattern formed on the transfer surface 115 of the mold 116 was finally transferred almost 100% even with PMMA alone (FIG. 3C).
The reason for the low transfer rate of PMMA alone is that the infiltration of carbon dioxide diffuses into the resin, so it takes time to satisfy the dissolved amount of carbon dioxide necessary for resin plasticization even at the surface layer. Because. On the other hand, in the present invention, since diffusion does not proceed at the boundary between PMMA constituting the surface resin member 102 and COP constituting the base resin member 103, only the PMMA constituting the surface resin member 102 in a very short time. The required amount of carbon dioxide can be dissolved selectively.

また、PMMA単体で5分以上の時間をかけて二酸化炭素を溶解させて、ほぼ100%転写した場合においては、樹脂から二酸化炭素を排出するために急減圧すると、樹脂内部に気泡が発生する。これは、樹脂中に溶解されていた二酸化炭素が溶けきれなくなり、樹脂が相分離した結果であり、発泡を防ぐためには10分以上かけてゆっくり減圧させる必要があった。一方、本発明による2層積層構造から構成される樹脂成形品104の場合は、PMMAから構成される薄い表層樹脂部材102だけに選択的に二酸化炭素が溶解されているため、樹脂が相分離する前に二酸化炭素が樹脂中から排出されるため、短時間で減圧させても上述のような発泡の発生は起きない。   Further, when carbon dioxide is dissolved with PMMA alone over a period of 5 minutes and transferred almost 100%, bubbles are generated inside the resin when the pressure is rapidly reduced to discharge carbon dioxide from the resin. This is a result of the carbon dioxide dissolved in the resin becoming insoluble and the phase separation of the resin. In order to prevent foaming, it was necessary to reduce the pressure slowly over 10 minutes. On the other hand, in the case of the resin molded product 104 composed of the two-layer laminated structure according to the present invention, since the carbon dioxide is selectively dissolved only in the thin surface resin member 102 composed of PMMA, the resin phase-separates. Since carbon dioxide is previously discharged from the resin, the occurrence of foaming as described above does not occur even if the pressure is reduced in a short time.

以上述べたように、本発明においては、樹脂中への二酸化炭素溶解による可塑化効果を利用して、金型温度を高温にすることなく、かつ一定温度で樹脂表面に微細な凹凸パターンを精度良く転写させることができる。更には、表層樹脂部材102のみに選択的に二酸化炭素を含浸させることができるため、含浸時間、含浸圧力、含浸温度等を正確に制御すること必要なく、二酸化炭素の溶解、排出時間を短くすることができ、その生産性及び加工安定性が向上する上、減圧時の気泡の発生をも抑制することができる。
表層樹脂部材102層の厚さは成形サイクル短縮、発泡発生の抑制の点からは、薄い方が好ましいが、基材樹脂部材103層では、樹脂の可塑化が進まないため、前述したように、少なくとも金型116の転写面115に形成された微細な凹凸のパターンの高さより厚くすることで、確実に前述した最終的に求められる凹凸パターンを転写させることができる。
As described above, in the present invention, by utilizing the plasticizing effect of carbon dioxide dissolved in the resin, a fine uneven pattern can be accurately formed on the resin surface at a constant temperature without increasing the mold temperature. Can be transferred well. Furthermore, since only the surface layer resin member 102 can be selectively impregnated with carbon dioxide, it is not necessary to accurately control the impregnation time, the impregnation pressure, the impregnation temperature, etc., and the time for dissolving and discharging carbon dioxide is shortened. In addition to improving the productivity and processing stability, it is also possible to suppress the generation of bubbles during decompression.
The thickness of the surface resin member 102 layer is preferably thinner from the viewpoint of shortening the molding cycle and suppressing the occurrence of foaming, but in the base resin member 103 layer, since plasticization of the resin does not proceed, as described above, By making the thickness at least larger than the height of the fine uneven pattern formed on the transfer surface 115 of the mold 116, the finally required uneven pattern can be transferred reliably.

また、前述したように予め作製する樹脂成形体101は、二酸化炭素雰囲気中での押圧によって最終的に所望の形状を得る(所望の形状を転写する)ことができるため、微細なパターンが形成されていなくてもいいのはもちろん、最終形状との形状誤差を有する略最終形状でいいために、樹脂成形体の作製には、前述した2色成形のような非常に安価な工法で作製することができる。   Further, as described above, since the resin molded body 101 prepared in advance can obtain a desired shape (transfer the desired shape) by pressing in a carbon dioxide atmosphere, a fine pattern is formed. Of course, it may be a nearly final shape that has a shape error with the final shape, so the resin molded body must be made by a very inexpensive method such as the two-color molding described above. Can do.

図4は、本実施例にかかる樹脂成形体201の構成を示す図である。
ここでは、表層樹脂部材202を熱可塑性樹脂であるPMMAで構成し、基材樹脂部材203を熱可塑性樹脂であるポリカーボネート樹脂(以下PCと記す)で構成し、更に、表層樹脂部材と基材樹脂部材の間に中間樹脂部材206として光硬化性樹脂の1つである紫外線硬化性樹脂(以下UV樹脂と記す)を積層した3層構造の樹脂積層体である樹脂成形体201を用意した。
FIG. 4 is a diagram illustrating a configuration of the resin molded body 201 according to the present embodiment.
Here, the surface resin member 202 is made of PMMA which is a thermoplastic resin, the base resin member 203 is made of a polycarbonate resin (hereinafter referred to as PC) which is a thermoplastic resin, and further, the surface resin member and the base resin. A resin molded body 201, which is a three-layered resin laminate in which an ultraviolet curable resin (hereinafter referred to as UV resin), which is one of photocurable resins, is laminated as an intermediate resin member 206 between the members.

実施例1と同様に樹脂成形体201の製造方法は限定されるものではないが、本実施例においては、予め射出成形によって厚さ5mmの基材樹脂部材203を構成するPC部材を作製し、その上面に中間樹脂部材206を構成するUV樹脂を厚さ50μmスピンコートし、更にその上に、表層樹脂部材202を構成する厚さ100μmのPMMAフィルムを積層し、加圧しながら、上面より紫外線を照射して、UV樹脂を硬化させると同時に、表層樹脂部材202を構成するPMMAと基材樹脂部材203を構成するPCを一体化させた。
転写は、実施例1と同様の図2に示した樹脂成形品加工装置を用いて行った。本実施例で用いた金型216の転写面215のパターンは開口幅2μm高さ1μmのL&Sパターンである。また、加工条件は、実施例1と同様に二酸化炭素の圧力10MPa、温度40℃、押圧力5MPaとし、溶解時間、減圧時間はそれぞれ30秒、10秒と非常に短くした。
Although the manufacturing method of the resin molding 201 is not limited as in Example 1, in this example, a PC member constituting the base resin member 203 having a thickness of 5 mm is prepared in advance by injection molding. A UV resin constituting the intermediate resin member 206 is spin coated with a thickness of 50 μm on the upper surface, and a PMMA film with a thickness of 100 μm constituting the surface resin member 202 is further laminated thereon, and ultraviolet rays are applied from the upper surface while pressing. Irradiation was performed to cure the UV resin, and at the same time, PMMA constituting the surface resin member 202 and PC constituting the base resin member 203 were integrated.
The transfer was performed using the resin molded product processing apparatus shown in FIG. The pattern of the transfer surface 215 of the mold 216 used in this example is an L & S pattern having an opening width of 2 μm and a height of 1 μm. The processing conditions were the same as in Example 1 except that the pressure of carbon dioxide was 10 MPa, the temperature was 40 ° C., and the pressing force was 5 MPa. The dissolution time and the decompression time were 30 seconds and 10 seconds, respectively.

図5は、パターン転写後の樹脂成形品204をAFMによって形状評価を行った結果を示す図である。本実施例における表層樹脂部材202、基材樹脂部材203、中間樹脂部材206の3層積層構造にて構成される樹脂成形品においても、金型216の転写面215に形成されたパターンをほぼ100%転写していることがわかる。
本実施例において、中間樹脂部材206としてUV樹脂を用いたのは、表層樹脂部材202、基材樹脂部材203をより強固に密着できるのはもちろんであるが、UV樹脂等の光硬化性樹脂は、熱可塑性樹脂と比較して殆ど二酸化炭素を溶解しないため、確実にPMMAだけに選択的に二酸化炭素を溶解することができるからである。その結果、本実施例のように、溶解時間30秒といった非常に短時間で微細パターンを転写させることができ、もちろん急速な減圧をしても発泡が生じることはない。
FIG. 5 is a diagram showing a result of shape evaluation of the resin molded product 204 after pattern transfer by AFM. Even in a resin molded product having a three-layer laminated structure of the surface layer resin member 202, the base resin member 203, and the intermediate resin member 206 in this embodiment, the pattern formed on the transfer surface 215 of the mold 216 is almost 100. % Transfer.
In this embodiment, the UV resin is used as the intermediate resin member 206, as well as the surface resin member 202 and the base resin member 203 can be more firmly adhered to each other. This is because carbon dioxide is hardly dissolved as compared with the thermoplastic resin, so that carbon dioxide can be selectively dissolved only in PMMA. As a result, as in this embodiment, the fine pattern can be transferred in a very short time such as a dissolution time of 30 seconds, and of course, no foaming occurs even if rapid decompression is performed.

実施例1のように基材樹脂部材203をUV樹脂で構成し、PMMAで構成される表層樹脂部材202との二層構造としてももちろん問題ないが、UV樹脂で厚肉の成形品を作製することは困難である。本実施例のように3層構造とすることで厚肉の成形品にも対応できる。
尚、中間樹脂部材206を構成しているUV樹脂で二酸化炭素の拡散が遮断され、基材樹脂部材203中には拡散しないため、基材樹脂部材203として表層樹脂部材と同じPMMAを用いても問題ない。中間樹脂部材206としてはUV樹脂に限定されるものではなく、表層樹脂部材202を構成する樹脂部材より二酸化炭素の拡散速度が遅い樹脂部材であれば熱可塑性樹脂等の樹脂を用いてもかまわない。また、中間樹脂部材を2種類以上の樹脂部材からなる積層構造としてもよい。
There is no problem even if the base resin member 203 is made of UV resin and has a two-layer structure with the surface resin member 202 made of PMMA as in Example 1, but a thick molded product is made of UV resin. It is difficult. By adopting a three-layer structure as in this embodiment, it is possible to deal with thick molded products.
In addition, since the diffusion of carbon dioxide is blocked by the UV resin constituting the intermediate resin member 206 and does not diffuse into the base resin member 203, the same PMMA as the surface resin member may be used as the base resin member 203. no problem. The intermediate resin member 206 is not limited to a UV resin, and a resin such as a thermoplastic resin may be used as long as it is a resin member having a slower carbon dioxide diffusion rate than the resin member constituting the surface resin member 202. . Further, the intermediate resin member may have a laminated structure including two or more types of resin members.

図6は、本実施例にかかる樹脂成形体301の構成を示す図であり、(a)は平面図、(b)はX−X断面図である。
ここでは、基材樹脂部材303を熱硬化性樹脂であるジエチレングリコールビスアリルカーボネート(以下CR−39と記す)で構成し、基材樹脂部材303の表裏両面に熱可塑性樹脂であるPMMAを表層樹脂部材302として積層させたものを用意した。本実施例においては、金型316の転写面315には、微細なパターンではなく、光学鏡面を加工し、光学鏡面を樹脂成形体301に高精度に転写させた。ここで、予め作製した樹脂成形体301の表面は、光学鏡面である必要はなく、また形状誤差が大きくても良いため、樹脂成形体301の作製においては、特別な工夫なく容易に低コストで作製することができる。但し、この場合、表層樹脂部材302層の厚さは、金型316の転写面315と、樹脂成形体301表面の形状誤差より厚くなるようにしている。これによって、基材樹脂部材303には、二酸化炭素が溶解されず可塑化されていなくても、確実に金型316の転写面315形状を転写させることができる。
本実施例においても、樹脂成形体301の製造方法は限定されるものではないが、本実施例においては、図6に示されるように、予めトランスファー成形によって作製した厚さ3mm〜8mmの偏肉形状をした丸レンズ型の基材樹脂部材303をCR−39にて作製した。次いで、基材樹脂部材303を構成するCR−39の両側に射出成形によって、PMMAを成形一体化させ表層樹脂部材302層を形成させた。
FIG. 6 is a diagram illustrating the configuration of the resin molded body 301 according to the present example, where (a) is a plan view and (b) is an XX cross-sectional view.
Here, the base resin member 303 is made of diethylene glycol bisallyl carbonate (hereinafter referred to as CR-39), which is a thermosetting resin, and PMMA, which is a thermoplastic resin, is applied to the front and back surfaces of the base resin member 303. What was laminated as 302 was prepared. In this embodiment, the transfer surface 315 of the mold 316 is not a fine pattern, but an optical mirror surface is processed, and the optical mirror surface is transferred to the resin molded body 301 with high accuracy. Here, the surface of the resin molded body 301 prepared in advance does not need to be an optical mirror surface, and the shape error may be large. Therefore, the resin molded body 301 can be easily manufactured at low cost without any special device. Can be produced. However, in this case, the thickness of the surface resin member 302 layer is made thicker than the shape error between the transfer surface 315 of the mold 316 and the surface of the resin molded body 301. Accordingly, the shape of the transfer surface 315 of the mold 316 can be reliably transferred to the base resin member 303 even if carbon dioxide is not dissolved and plasticized.
In this embodiment, the method for manufacturing the resin molded body 301 is not limited. However, in this embodiment, as shown in FIG. 6, the uneven thickness of 3 mm to 8 mm, which is prepared in advance by transfer molding. A round lens-shaped base resin member 303 having a shape was manufactured using CR-39. Next, PMMA was molded and integrated on both sides of CR-39 constituting the base resin member 303 by injection molding to form a surface resin member 302 layer.

図7は、本発明の実施例で用いた樹脂成形品加工装置の断面概略図である。
基本的な構成が図2の樹脂成形品加工装置と同様である。但し、本実施例においては、樹脂成形体301両側を転写させる必要があるため、下型保持部14及び上型保持部17をともに可動できるようにし、樹脂成形体301は、リング状の保持部材18によって、中空保持できるようにした。
実施例2と同様の加工条件で転写させた結果を図7に示す。ここでは、金型316の転写面315の形状との形状誤差を転写前の樹脂成形体301と、転写後の樹脂成形品304について示した。樹脂成形体301では、中央部と端部の肉厚差があるところで大きな形状誤差が生じているが、転写後の樹脂成形品304では、上記形状誤差が補正され、金型316の転写面315を高精度に転写することができた。
FIG. 7 is a schematic cross-sectional view of a resin molded product processing apparatus used in an example of the present invention.
The basic configuration is the same as that of the resin molded product processing apparatus of FIG. However, in this embodiment, since it is necessary to transfer both sides of the resin molded body 301, the lower mold holding part 14 and the upper mold holding part 17 can be moved together, and the resin molded body 301 is a ring-shaped holding member. 18 can be held hollow.
The result of transfer under the same processing conditions as in Example 2 is shown in FIG. Here, the shape error from the shape of the transfer surface 315 of the mold 316 is shown for the resin molded body 301 before transfer and the resin molded product 304 after transfer. In the resin molded body 301, a large shape error occurs where there is a difference in thickness between the central portion and the end portion. However, in the resin molded product 304 after transfer, the shape error is corrected, and the transfer surface 315 of the mold 316 is corrected. Could be transferred with high accuracy.

本発明は、微細な凹凸パターンへの転写だけでなく、本実施例のように高精度な光学鏡面の転写にも適用することもできる。特に、本実施例のような厚さが場所によって異なる偏肉形状のレンズを成形する場合、場所によって圧力、温度の偏在が生じるため、高精度な形状精度を確保することが難しい。本実施例のように、基材樹脂部材表面に表層樹脂部材を積層し、表層樹脂部材のみに選択的に二酸化炭素を溶解させ可塑化させることで、基材樹脂部材の形状誤差を補うように表層樹脂部材が変形し、高精度な面転写を実現させることができる。また、昇温、降温することなく、選択的に表層樹脂部材だけを可塑化しているため非常に加工時間も短くなる。
尚、本実施例では、基材樹脂部材として熱硬化性樹脂を用いたがこれに限定されるものではなく、実施例1や実施例2のように熱可塑性樹脂や紫外線硬化性樹脂を用いることもできる。但し、熱硬化性樹脂の場合、熱可塑性樹脂のように厚肉の形状を加工することが容易で、かつ紫外線硬化樹脂のように、二酸化炭素を殆ど溶解せず、結果として表層樹脂部材のみに確実に二酸化炭素を溶解させ可塑化することができる。
以上、これまで説明してきた本発明においては、適用できる樹脂、実施例に用いたものに限定されるものではなく、また、その趣旨を逸脱しない範囲で種々変形が可能であることは言うまでもない。
The present invention can be applied not only to transfer to a fine concavo-convex pattern, but also to transfer of an optical mirror surface with high accuracy as in this embodiment. In particular, when molding a lens having an uneven thickness that varies depending on the location as in the present embodiment, pressure and temperature are unevenly distributed depending on the location, so that it is difficult to ensure high precision shape accuracy. As in this example, the surface resin member is laminated on the surface of the base resin member, and carbon dioxide is selectively dissolved and plasticized only in the surface resin member so as to compensate for the shape error of the base resin member. The surface resin member is deformed, and high-accuracy surface transfer can be realized. Further, since only the surface resin member is selectively plasticized without increasing or decreasing the temperature, the processing time is very short.
In this embodiment, a thermosetting resin is used as the base resin member, but the present invention is not limited to this, and a thermoplastic resin or an ultraviolet curable resin is used as in the first and second embodiments. You can also. However, in the case of a thermosetting resin, it is easy to process a thick shape like a thermoplastic resin, and hardly dissolves carbon dioxide like an ultraviolet curable resin, resulting in only a surface layer resin member. Carbon dioxide can be reliably dissolved and plasticized.
As described above, the present invention described so far is not limited to the resins that can be used and those used in the examples, and various modifications can be made without departing from the scope of the invention.

実施例1で使用する樹脂の構造を示す図であり、(a)はパターン転写前の樹脂成形体を示す図、(b)はパターン転写後の樹脂成型品を示す図である。It is a figure which shows the structure of resin used in Example 1, (a) is a figure which shows the resin molding before pattern transfer, (b) is a figure which shows the resin molded product after pattern transfer. 実施例1で用いた樹脂成形品加工装置の断面概略図である。It is the cross-sectional schematic of the resin molded product processing apparatus used in Example 1. FIG. AFMによって形状評価を行った結果を示す図であり、(a)は実施例1におけるPMMAとCOPの2層積層構造から構成される樹脂成形品の転写面測定結果を示す図、(b)はPMMA単体における転写面測定結果を示す図、(c)はPMMA単体で二酸化炭素の溶解時間を5分以上とした場合の転写面測定結果を示す図である。It is a figure which shows the result of having performed shape evaluation by AFM, (a) is a figure which shows the transfer surface measurement result of the resin molded product comprised from the two-layer laminated structure of PMMA and COP in Example 1, (b). The figure which shows the transfer surface measurement result in a PMMA single-piece | unit, (c) is a figure which shows the transfer surface measurement result when the melt | dissolution time of a carbon dioxide is made into 5 minutes or more in the PMMA single-piece | unit. 実施例2にかかる樹脂成形体の構成を示す図である。It is a figure which shows the structure of the resin molding concerning Example 2. FIG. 実施例2にかかる樹脂成形品についてAFMによって形状評価を行った結果を示す図である。It is a figure which shows the result of having performed shape evaluation by AFM about the resin molded product concerning Example 2. FIG. 実施例3にかかる樹脂成形体の構成を示す図であり、(a)は平面図、(b)はX−X断面図である。It is a figure which shows the structure of the resin molding concerning Example 3, (a) is a top view, (b) is XX sectional drawing. 実施例3で用いた樹脂成形品加工装置の断面概略図である。It is the cross-sectional schematic of the resin molded product processing apparatus used in Example 3. FIG. 実施例3にかかる樹脂成形品についてAFMによって形状評価を行った結果を示す図である。It is a figure which shows the result of having performed shape evaluation by AFM about the resin molded product concerning Example 3. FIG.

符号の説明Explanation of symbols

101、201、301…樹脂成形体、102、202、302…表層樹脂部材、103、203、303…基材樹脂部材、104、204、304…樹脂成形品、115、215、315…転写面、116、216、316…金型、105…凹凸パターン、206…中間樹脂部材、6…密閉容器、7…ガス供給管、8…ガス排出管、9…増圧装置、10…二酸化炭素ボンベ、11…供給弁、12…減圧弁、13…温度調節器、14…下型保持部、17…上型保持部、18…保持部材   101, 201, 301 ... resin molded body, 102, 202, 302 ... surface layer resin member, 103, 203, 303 ... base resin member, 104, 204, 304 ... resin molded product, 115, 215, 315 ... transfer surface, 116, 216, 316 ... mold, 105 ... uneven pattern, 206 ... intermediate resin member, 6 ... sealed container, 7 ... gas supply pipe, 8 ... gas discharge pipe, 9 ... pressure booster, 10 ... carbon dioxide cylinder, 11 DESCRIPTION OF SYMBOLS ... Supply valve, 12 ... Pressure reducing valve, 13 ... Temperature controller, 14 ... Lower mold holding part, 17 ... Upper mold holding part, 18 ... Holding member

Claims (13)

二酸化炭素を含浸させた樹脂成形体の表面に、金型の転写面を押し付けて、前記転写面のパターンを転写する樹脂成形品の製造方法に用いられる樹脂成形体において、
前記樹脂成形体が少なくとも2層の樹脂部材から構成される積層構造であるとともに、少なくとも温度、圧力が同条件の場合における前記各樹脂部材中の二酸化炭素の拡散速度が異なることを特徴とする樹脂成形体。
In the resin molded body used in the method of manufacturing a resin molded product, which presses the transfer surface of the mold onto the surface of the resin molded body impregnated with carbon dioxide, and transfers the pattern of the transfer surface,
The resin molded body has a laminated structure composed of at least two layers of resin members, and has different diffusion rates of carbon dioxide in the resin members when the temperature and pressure are at the same conditions. Molded body.
前記樹脂成形体は、金型転写面を押し付けられる表層樹脂部材と、前記表層樹脂部材の裏面に積層された基材樹脂部材と、を備え、温度、圧力が同条件の場合において、前記基材樹脂部材中の二酸化炭素の拡散速度が前記表層樹脂部材中の二酸化炭素の拡散速度よりも遅いことを特徴とする請求項1に記載の樹脂成形体。   The resin molded body includes a surface layer resin member pressed against a mold transfer surface, and a base resin member laminated on a back surface of the surface layer resin member. The resin molded article according to claim 1, wherein a diffusion rate of carbon dioxide in the resin member is slower than a diffusion rate of carbon dioxide in the surface resin member. 前記表層樹脂部材と前記基材樹脂部材との間に、前記表層樹脂部材及び前記基材樹脂部材とは異なる材料からなる中間樹脂部材の層を備え、温度、圧力が同条件の場合において、前記中間樹脂部材中の二酸化炭素の拡散速度が前記表層樹脂部材中の拡散速度よりも遅いことを特徴とする請求項1に記載の樹脂成形体。   Between the surface resin member and the base resin member, a layer of an intermediate resin member made of a material different from the surface resin member and the base resin member is provided. The resin molded body according to claim 1, wherein a diffusion rate of carbon dioxide in the intermediate resin member is slower than a diffusion rate in the surface resin member. 前記基材樹脂部材が予め略最終形状に加工されていることを特徴とする請求項1乃至3の何れか一項に記載の樹脂成形体。   The resin molded body according to any one of claims 1 to 3, wherein the base resin member is processed into a substantially final shape in advance. 前記樹脂成形体を構成する樹脂部材の全てが、熱可塑性樹脂材料からなることを特徴とする請求項1乃至4の何れか一項に記載の樹脂成形体。   The resin molded body according to any one of claims 1 to 4, wherein all of the resin members constituting the resin molded body are made of a thermoplastic resin material. 前記樹脂成形体を構成する樹脂部材が、熱可塑性樹脂材料又は熱硬化性樹脂材料からなることを特徴とする請求項1乃至4の何れか一項に記載の樹脂成形体。   The resin molded body according to any one of claims 1 to 4, wherein the resin member constituting the resin molded body is made of a thermoplastic resin material or a thermosetting resin material. 前記樹脂成形体を構成する樹脂部材が熱可塑性樹脂材料又は光硬化性樹脂材料からなることを特徴とする請求項1乃至4の何れか一項に記載の樹脂成形体。   The resin molded body according to any one of claims 1 to 4, wherein the resin member constituting the resin molded body is made of a thermoplastic resin material or a photocurable resin material. 樹脂成形体に二酸化炭素を含浸させる工程と、金型の転写面を前記樹脂成形体表面に押し付けて、前記転写面のパターンを前記樹脂成形体表面に転写する工程と、を有する樹脂成形品の製造方法において、
前記樹脂成形体は、請求項1乃至7の何れか一項に記載の樹脂成形体であることを特徴とする樹脂成形品の製造方法。
A step of impregnating a resin molded body with carbon dioxide, and a step of pressing a transfer surface of a mold against the surface of the resin molded body to transfer a pattern of the transfer surface to the surface of the resin molded body. In the manufacturing method,
The method for producing a resin molded product, wherein the resin molded product is the resin molded product according to any one of claims 1 to 7.
前記樹脂成形体に二酸化炭素を含浸させる工程と、前記金型の転写面を前記樹脂成形体表面に押し付ける工程とが、二酸化炭素を含浸させる前における前記樹脂成形体の表層樹脂部材の軟化温度以下で行われることを特徴とする請求項8に記載の樹脂成形品の製造方法。   The step of impregnating the resin molded body with carbon dioxide and the step of pressing the transfer surface of the mold against the surface of the resin molded body are equal to or lower than the softening temperature of the surface layer resin member of the resin molded body before impregnating carbon dioxide. The method for producing a resin molded product according to claim 8, wherein the method is performed. 前記樹脂成形体に二酸化炭素を含浸させる工程と、前記金型の転写面を前記樹脂成形体表面に押し付ける工程とが、二酸化炭素を含浸させる前における前記樹脂成形体の表層樹脂部材の軟化温度以下の一定温度で行われることを特徴とする請求項8又は9に記載の樹脂成形品の製造方法。   The step of impregnating the resin molded body with carbon dioxide and the step of pressing the transfer surface of the mold against the surface of the resin molded body are equal to or lower than the softening temperature of the surface layer resin member of the resin molded body before impregnating carbon dioxide. The method for producing a resin molded product according to claim 8 or 9, wherein the method is carried out at a constant temperature. 前記金型の転写面には微細な凹凸パターンが形成されていることを特徴とする請求項8乃至10の何れか一項に記載の樹脂成形品の製造方法。   The method for producing a resin molded product according to any one of claims 8 to 10, wherein a fine uneven pattern is formed on a transfer surface of the mold. 前記金型の転写面を前記樹脂成形体表面に押し付ける前の前記表層樹脂部材の厚さが、少なくとも前記金型転写面に形成された微細な凹凸のパターンの高さより厚いことを特徴とする請求項11に記載の樹脂成形品の製造方法。   The thickness of the surface layer resin member before pressing the transfer surface of the mold against the surface of the resin molded body is at least thicker than the height of the fine uneven pattern formed on the mold transfer surface. Item 12. A method for producing a resin molded article according to Item 11. 前記金型の転写面を前記樹脂成形体表面に押し付ける前の前記表層樹脂部材の厚さが、予め略最終形状に加工された基材樹脂部材と、最終形状との形状誤差以上の厚さを有することを特徴とする請求項12に記載の樹脂成形品の製造方法。   The thickness of the surface resin member before pressing the transfer surface of the mold against the surface of the resin molded body is a thickness that is equal to or greater than the shape error between the base resin member that has been processed into a substantially final shape in advance and the final shape. The method for producing a resin molded product according to claim 12, comprising:
JP2008057039A 2008-03-06 2008-03-06 Resin molding and method for producing resin molding Pending JP2009214298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057039A JP2009214298A (en) 2008-03-06 2008-03-06 Resin molding and method for producing resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057039A JP2009214298A (en) 2008-03-06 2008-03-06 Resin molding and method for producing resin molding

Publications (1)

Publication Number Publication Date
JP2009214298A true JP2009214298A (en) 2009-09-24

Family

ID=41186715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057039A Pending JP2009214298A (en) 2008-03-06 2008-03-06 Resin molding and method for producing resin molding

Country Status (1)

Country Link
JP (1) JP2009214298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090139A1 (en) * 2010-01-21 2011-07-28 Jsr株式会社 Resin molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090139A1 (en) * 2010-01-21 2011-07-28 Jsr株式会社 Resin molded body
JPWO2011090139A1 (en) * 2010-01-21 2013-05-23 Jsr株式会社 Resin molded body

Similar Documents

Publication Publication Date Title
JP3857703B2 (en) Manufacturing method and manufacturing apparatus of molded body
WO2016039373A1 (en) Light diffusion lens manufacturing device and manufacturing method
JP2010120316A (en) Manufacturing apparatus and method for resin molded product, and optical element
JP5704393B2 (en) Multilayer molding apparatus and multilayer molding method
JP4332016B2 (en) Manufacturing method of plastic laminate
JP3917362B2 (en) Molding method for precision molded products
JP5864873B2 (en) Plastic molding product molding method, plastic molding system, optical element by plastic molding system
JP2009214298A (en) Resin molding and method for producing resin molding
KR20140110596A (en) INjection Mold for LED Lens Forming
JP2009137162A (en) Two-color molding method, and mold for two-color molding
JP5311797B2 (en) Optical element manufacturing method
KR100997141B1 (en) Injection mold
JP2010105270A (en) Apparatus and method for manufacturing resin molding
JP2008230005A (en) Plastic lens molding method and lens preform
WO2018043191A1 (en) Minute shape transfer molding method and minute shape transfer molding mold
JP5649695B2 (en) Thermoplastic resin injection molding method
JP2012250379A (en) Foil transfer injection molding method and foil transfer injection molding device, and mold
KR102040701B1 (en) Method for manufacturing a lens
JP2010089293A (en) Molding method
KR100549394B1 (en) Runner device for in-mold forming
JP2001088166A (en) Laminate molding method and laminated molded article
KR100548876B1 (en) In-mold forming process and the form structure
JP2005254532A (en) Pressure control method of injection molding machine
JP5419379B2 (en) Injection molding method
KR20100112393A (en) Manufacturing method of light guide for backlight unit