JP2008155521A - Method and apparatus for thermal transfer molding - Google Patents

Method and apparatus for thermal transfer molding Download PDF

Info

Publication number
JP2008155521A
JP2008155521A JP2006348047A JP2006348047A JP2008155521A JP 2008155521 A JP2008155521 A JP 2008155521A JP 2006348047 A JP2006348047 A JP 2006348047A JP 2006348047 A JP2006348047 A JP 2006348047A JP 2008155521 A JP2008155521 A JP 2008155521A
Authority
JP
Japan
Prior art keywords
chamber
fixed
movable
workpiece
side member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006348047A
Other languages
Japanese (ja)
Inventor
Katsuichi Kikuchi
勝市 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUDA KOKI KK
Original Assignee
YASUDA KOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUDA KOKI KK filed Critical YASUDA KOKI KK
Priority to JP2006348047A priority Critical patent/JP2008155521A/en
Publication of JP2008155521A publication Critical patent/JP2008155521A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for thermal transfer molding enabling stable transfer by pressing a to-be-worked material uniformly. <P>SOLUTION: The thermal transfer molding method comprises arranging a diaphragm member 50 above a fixed heat plate 21 to partition a chamber 40 into a fixed-side chamber 41 and a movable-side chamber 46, reducing the pressures of the fixed-side chamber 41 and the movable-side chamber 46 and then pressurizing the fixed-side chamber 41 while reducing the pressure of the movable chamber 46 in order to heat and press the to-be-worked material M and a pattern-forming means S uniformly in an integrated way via the diaphragm member 50. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、パターン形成手段を用いて被加工材に対して熱転写する熱転写成形方法及び熱転写成形装置に関する。   The present invention relates to a thermal transfer molding method and a thermal transfer molding apparatus that perform thermal transfer on a workpiece using a pattern forming unit.

一般に、熱可塑性樹脂等からなる被加工材に対してパターン形成手段によって熱転写成形する場合には、固定熱板を有する固定側部材上に被加工材を載置し、前記固定側部材に対して可動熱板を有する可動側部材を前進させて被加工材を加熱加圧することによって行われる。このような熱転写成形を行う装置としては、例えば、可動側部材の前進時に真空チャンバーを形成し、該真空チャンバー内を減圧した状態で被加工材を加熱加圧するように構成されたものが知られている(例えば、特許文献1参照。)。   In general, in the case where thermal transfer molding is performed by a pattern forming unit on a workpiece made of a thermoplastic resin or the like, the workpiece is placed on a fixed side member having a fixed hot plate, and the fixed side member is This is performed by advancing a movable side member having a movable hot plate to heat and pressurize the workpiece. As an apparatus for performing such thermal transfer molding, for example, an apparatus configured to form a vacuum chamber when the movable member moves forward, and to heat and press the workpiece while the vacuum chamber is decompressed is known. (For example, refer to Patent Document 1).

ところで、熱転写が行われる熱可塑性樹脂等からなる被加工材では、材料の段階で成型ロットによる板厚にばらつきが生じたり、1枚の樹脂板内においても厚さのばらつきが生じる等によって、板厚の約±5〜10%程度の厚さの精度となる。そのため、固定側部材や可動側部材の精度をよくしても、被加工材に対して均一に押圧することが困難となる。   By the way, in a workpiece made of thermoplastic resin or the like to which thermal transfer is performed, the plate thickness varies depending on the molding lot at the material stage, or the thickness varies within a single resin plate. The accuracy is about ± 5 to 10% of the thickness. Therefore, even if the accuracy of the fixed side member and the movable side member is improved, it is difficult to press the workpiece uniformly.

このように、不均一な押圧状態で被加工材に対して加熱加圧が行われると、図14に示すように、被加工材Mへの熱の移動は固定側部材120や可動側部材130と接しているところからしか行われず(図中の矢印参照)、接していないところでの熱移動が悪くなる。そして、固定側部材120や可動側部材130が接していない部分の被加工材Mを成形温度まで加熱するためには、過剰に加圧を行って前記被加工材Mを押しつぶして徐々に変形させながら成形する必要がある。なお、図14において、符号S1は被加工材Mの一面側にパターンを熱転写成形する第一パターン形成手段、S2は被加工材Mの他面側にパターンを熱転写成形する第二パターン形成手段である。   In this way, when heat and pressure are applied to the workpiece in a non-uniform pressing state, the movement of heat to the workpiece M is caused by the fixed member 120 and the movable member 130 as shown in FIG. (Refer to the arrow in the figure), and the heat transfer at the point where it is not in contact is worsened. And in order to heat the workpiece M of the part which the fixed side member 120 and the movable side member 130 are not in contact with to the forming temperature, the workpiece M is crushed and gradually deformed by applying excessive pressure. It is necessary to mold while. In FIG. 14, reference numeral S <b> 1 is a first pattern forming unit for thermally transferring and molding a pattern on one surface side of the workpiece M, and S <b> 2 is a second pattern forming unit for thermally transferring and molding a pattern on the other surface side of the workpiece M. is there.

しかしながら、上記の如く不均一な押圧状態での熱転写成形では、被加工材が必要以上に変形することがあるため、製品の品質が低下することが問題となる。一方、被加工材を変形させないように加圧力を調整すると、転写が不安定となることが問題であった。また、これらの問題は、被加工材が大型になるほど板厚のばらつきも大きくなるため、より大きな影響を及ぼすことが懸念されている。
2006−167788号公報
However, in the thermal transfer molding in the non-uniform pressing state as described above, the work material may be deformed more than necessary, so that the quality of the product is deteriorated. On the other hand, if the pressure is adjusted so as not to deform the workpiece, there is a problem that the transfer becomes unstable. In addition, these problems are concerned that the larger the workpiece, the greater the variation in plate thickness.
2006-167788

本発明は前記の点に鑑みなされたものであり、被加工材を均一に押圧して安定した転写を実施することができる熱転写成形方法及び熱転写成形装置を提供するものである。   The present invention has been made in view of the above points, and provides a thermal transfer molding method and a thermal transfer molding apparatus capable of performing stable transfer by uniformly pressing a workpiece.

すなわち、請求項1の発明は、可動熱板を有する可動側部材の前進時に固定熱板を有する固定側部材との間に形成されるチャンバー内の前記固定熱板と可動熱板との間に被加工材をパターン形成手段とともに配置し、前記チャンバー内を減圧して前記被加工材を加熱加圧しその表層に前記パターン形成手段によるパターンを熱転写成形するに際して、前記固定熱板の上部にダイヤフラム部材を配置して前記チャンバーを固定側チャンバーと可動側チャンバーに区画するとともに、前記固定側チャンバー及び可動側チャンバーを減圧した後、前記固定チャンバーを加圧しかつ前記可動チャンバーを減圧することによって、前記ダイヤフラム部材を介して前記被加工材及び前記パターン形成手段を一体かつ均一に加熱押圧して成形することを特徴とする熱転写成形方法に係る。   That is, the invention of claim 1 is provided between the fixed hot plate and the movable hot plate in the chamber formed between the fixed hot plate having the fixed hot plate when the movable hot plate having the movable hot plate moves forward. When a workpiece is arranged together with pattern forming means, the inside of the chamber is depressurized, the workpiece is heated and pressed, and a pattern formed by the pattern forming means is thermally transferred to the surface layer of the diaphragm member on the fixed hot plate The diaphragm is divided into a fixed side chamber and a movable side chamber, and the fixed side chamber and the movable side chamber are depressurized, and then the fixed chamber is pressurized and the movable chamber is depressurized to thereby form the diaphragm. The workpiece and the pattern forming means are integrally and uniformly heated and pressed through a member, and formed. According to the thermal transfer molding method for.

請求項2の発明は、成形前に前記固定側チャンバーを加圧して前記ダイヤフラム部材を押し上げ、前記被加工材を持ち上げて前記固定熱板を加熱する工程を含む請求項1に記載の熱転写成形方法に係る。   The invention according to claim 2 includes the steps of pressurizing the stationary chamber before molding to push up the diaphragm member, and lifting the workpiece to heat the fixed hot plate. Concerning.

請求項3の発明は、固定熱板を有する固定側部材と、前記固定側部材に対して進退し、前記固定熱板と対向配置された可動熱板を有する可動側部材と、前記可動側部材の前進時に前記固定側部材との間に形成され、前記固定熱板と可動熱板の間に被加工材がパターン形成手段とともに配置されるチャンバーと、前記固定熱板の上部に配置され、前記チャンバーを固定側チャンバーと可動側チャンバーとに区画するダイヤフラム部材と、前記固定側チャンバーのために前記固定側部材に設けられた減圧手段及び加圧手段と、前記可動側チャンバーのために前記可動側部材に設けられた減圧手段とを有することを特徴とする熱転写成形装置に係る。   According to a third aspect of the present invention, there is provided a fixed side member having a fixed heat plate, a movable side member having a movable heat plate that moves forward and backward with respect to the fixed side member and is disposed opposite to the fixed heat plate, and the movable side member Formed between the fixed hot plate and the fixed hot plate at the time of advancement, and a chamber in which a workpiece is placed together with the pattern forming means between the fixed hot plate and the movable hot plate, and an upper portion of the fixed hot plate, A diaphragm member partitioned into a fixed side chamber and a movable side chamber, a decompression means and a pressure means provided on the fixed side member for the fixed side chamber, and a movable side member for the movable side chamber The present invention relates to a thermal transfer molding apparatus having a decompression unit provided.

請求項1の発明に係る熱転写成形方法によれば、可動熱板を有する可動側部材の前進時に固定熱板を有する固定側部材との間に形成されるチャンバー内の前記固定熱板と可動熱板との間に被加工材をパターン形成手段とともに配置し、前記チャンバー内を減圧して前記被加工材を加熱加圧しその表層に前記パターン形成手段によるパターンを熱転写成形するに際して、前記固定熱板の上部にダイヤフラム部材を配置して前記チャンバーを固定側チャンバーと可動側チャンバーに区画するとともに、前記固定側チャンバー及び可動側チャンバーを減圧した後、前記固定チャンバーを加圧しかつ前記可動チャンバーを減圧することによって、前記ダイヤフラム部材を介して前記被加工材及び前記パターン形成手段を一体かつ均一に加熱押圧して成形するため、製品の品質の低下を防止するとともに、被加工材に対する転写を精度よくかつ安定して実施することができる。   According to the thermal transfer molding method of the first aspect of the present invention, the fixed heat plate and the movable heat in the chamber formed between the fixed side member having the fixed heat plate when the movable side member having the movable heat plate moves forward. When the workpiece is disposed between the plate and the pattern forming means, the inside of the chamber is decompressed to heat and pressurize the workpiece, and when the pattern formed by the pattern forming means is thermally transferred to the surface layer, the fixed hot plate A diaphragm member is arranged on the top of the chamber to partition the chamber into a fixed chamber and a movable chamber, and after depressurizing the fixed chamber and the movable chamber, pressurize the fixed chamber and depressurize the movable chamber. As a result, the workpiece and the pattern forming means are integrally and uniformly heated and pressed through the diaphragm member. To reason, to prevent deterioration in quality of the product, it is possible to implement transfer against the workpiece accurately and stably.

請求項2によれば、請求項1において、成形前に前記固定側チャンバーを加圧して前記ダイヤフラム部材を押し上げ、前記被加工材を持ち上げて前記固定熱板を加熱する工程を含むため、被加工材に対する転写をより精度よくかつ効率的に実施することができる。   According to claim 2, the method according to claim 1 includes the step of pressurizing the fixed-side chamber to press up the diaphragm member before forming and lifting the workpiece to heat the fixed hot plate. Transfer to the material can be performed more accurately and efficiently.

請求項3の発明に係る熱転写成形装置によれば、固定熱板を有する固定側部材と、前記固定側部材に対して進退し、前記固定熱板と対向配置された可動熱板を有する可動側部材と、前記可動側部材の前進時に前記固定側部材との間に形成され、前記固定熱板と可動熱板の間に被加工材がパターン形成手段とともに配置されるチャンバーと、前記固定熱板の上部に配置され、前記チャンバーを固定側チャンバーと可動側チャンバーとに区画するダイヤフラム部材と、前記固定側チャンバーのために前記固定側部材に設けられた減圧手段及び加圧手段と、前記可動側チャンバーのために前記可動側部材に設けられた減圧手段とを有するため、前記した熱転写成形方法を効果的にかつ連続的に効率よく実施する装置とすることができる。   According to the thermal transfer molding apparatus of the third aspect of the present invention, a fixed side member having a fixed hot plate, and a movable side having a movable heat plate that moves forward and backward with respect to the fixed side member and is arranged to face the fixed hot plate. A chamber formed between the member and the fixed side member when the movable side member advances, and a workpiece is disposed between the fixed hot plate and the movable hot plate together with a pattern forming means; and an upper portion of the fixed hot plate A diaphragm member that divides the chamber into a fixed side chamber and a movable side chamber, a decompression unit and a pressurization unit provided on the fixed side member for the fixed side chamber, and Therefore, since the pressure reducing means provided on the movable side member is provided, the above-described thermal transfer molding method can be effectively and continuously implemented.

以下添付の図面に従ってこの発明を詳細に説明する。
図1は本発明の一実施例に係る熱転写成形装置の要部断面図、図2は図1の熱転写成形装置の固定側部材及び可動側部材の断面図、図3は図2の状態から可動側部材を前進させてチャンバーを形成した状態を表す要部断面図、図4はチャンバー形成後に可動側部材を一旦停止させてチャンバー内を減圧する状態を表す要部断面図、図5は可動側部材によって被加工材を加工した状態を表す要部断面図、図6は図5の状態から固定側チャンバーを加圧した状態を表す要部断面図、図7は図6の状態から可動側及び固定側チャンバーを大気開放した状態を表す要部断面図、図8は第一実施例における熱転写成形の工程を示すタイムチャート図、図9は成形時の固定側部材及び可動側部材と被加工材との関係を表した模式図、図10は固定側チャンバーを加圧してダイヤフラム部材を押し上げた状態を表した要部断面図、図11は図10の状態から可動側部材を前進させてチャンバーを形成した状態を表す要部断面図、図12は図11の状態から固定側チャンバーを減圧した状態を表す要部断面図、図13は第二実施例における熱転写成形の工程を示すタイムチャート図である。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
1 is a cross-sectional view of a main part of a thermal transfer molding apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a fixed side member and a movable side member of the thermal transfer molding apparatus of FIG. 1, and FIG. 3 is movable from the state of FIG. FIG. 4 is a cross-sectional view of a main part showing a state where the side member is advanced to form a chamber, FIG. 4 is a main part cross-sectional view showing a state where the movable side member is temporarily stopped and the inside of the chamber is decompressed after forming the chamber, and FIG. FIG. 6 is a cross-sectional view of the main part showing a state where the workpiece is processed by the member, FIG. 6 is a cross-sectional view of the main part showing a state where the stationary chamber is pressurized from the state of FIG. 5, and FIG. FIG. 8 is a time chart showing the steps of thermal transfer molding in the first embodiment, and FIG. 9 is a fixed side member, a movable side member and a workpiece during molding. FIG. 10 is a schematic diagram showing the relationship between FIG. 11 is a cross-sectional view of an essential part showing a state in which a chamber is formed by advancing the movable side member from the state of FIG. 10, and FIG. FIG. 13 is a time chart showing the steps of thermal transfer molding in the second embodiment. FIG.

図1に示す本発明の一実施例に係る熱転写成形装置10は、熱可塑性樹脂等からなる被加工材Mの表層を加熱加圧してパターン形成手段Sによるパターンを熱転写成形するものである。この熱転写成形装置10において、符号20は固定側部材、30は可動側部材、40はチャンバー、50はダイヤフラム部材、60は固定側部材の減圧手段、65は固定側部材の加圧手段、70は可動側部材の減圧手段を表す。   A thermal transfer molding apparatus 10 according to an embodiment of the present invention shown in FIG. 1 heats and pressurizes a surface layer of a workpiece M made of a thermoplastic resin or the like to thermally transfer and mold a pattern by the pattern forming means S. In this thermal transfer molding apparatus 10, reference numeral 20 is a fixed side member, 30 is a movable side member, 40 is a chamber, 50 is a diaphragm member, 60 is a pressure reducing means for the fixed side member, 65 is a pressure means for the fixed side member, and 70 is The pressure reduction means of a movable side member is represented.

この熱転写成形装置10は、請求項1の発明として規定したように、可動熱板31を有する可動側部材30の前進時に固定熱板21を有する固定側部材30との間に形成されるチャンバー40内の前記固定熱板21と可動熱板31との間に被加工材Mをパターン形成手段Sとともに配置し、前記チャンバー40内を減圧して前記被加工材Mを加熱加圧しその表層に前記パターン形成手段Sによるパターンを熱転写成形するに際して、前記固定熱板21の上部にダイヤフラム部材50を配置して前記チャンバー40を固定側チャンバー41と可動側チャンバー46に区画するとともに、前記固定側チャンバ41ー及び可動側チャンバー46を減圧した後、前記固定チャンバー41を加圧しかつ前記可動チャンバー46を減圧することによって、前記ダイヤフラム部材50を介して前記被加工材M及び前記パターン形成手段Sを一体かつ均一に加熱押圧して成形するように構成したものである。   As defined in the invention of claim 1, the thermal transfer molding apparatus 10 includes a chamber 40 formed between the movable side member 30 having the movable hot plate 31 and the fixed side member 30 having the fixed hot plate 21 when the movable side member 30 moves forward. The workpiece M is arranged with the pattern forming means S between the fixed hot plate 21 and the movable hot plate 31 in the inside, the inside of the chamber 40 is depressurized, and the workpiece M is heated and pressurized to the surface layer thereof. When performing thermal transfer molding of a pattern by the pattern forming means S, a diaphragm member 50 is disposed on the fixed hot plate 21 to partition the chamber 40 into a fixed chamber 41 and a movable chamber 46, and the fixed chamber 41 -After depressurizing the movable chamber 46, pressurizing the fixed chamber 41 and depressurizing the movable chamber 46, Serial is through the diaphragm member 50 that constitutes the to shape by heating pressed together and uniform workpiece M and the pattern forming means S.

また、この熱転写成形装置10では、請求項2の発明として規定したように、成形前に前記固定側チャンバー41を加圧して前記ダイヤフラム部材50を押し上げ、前記被加工材Mを持ち上げて前記固定熱板21を加熱する工程を含む。   Further, in the thermal transfer molding apparatus 10, as defined in the invention of claim 2, the fixed chamber 41 is pressurized before molding to push up the diaphragm member 50 and lift the workpiece M to lift the fixed heat. A step of heating the plate 21.

以下、上記熱転写成形方法の好ましい実施例を、熱転写成形装置10とともに具体的に説明する。図示した熱転写成形装置10は、固定側部材20と、可動側部材30と、チャンバー40と、ダイヤフラム部材50と、固定側部材の減圧手段60と、固定側部材の加圧手段65と、可動側部材の減圧手段70とを有する。この図において、符号11は機台、11Aは機台11の下板部材、11Bは機台11の上板部材、12は可動部材30を進退させるための作動機構、13は作動機構12に形成された作動シリンダ部、13a,13bは作動シリンダ部13に接続された作動流体のための流出入部、14は下板部材11Aと上板部材11Bとを連結するロッド部、15はロッド部14に進退自在に配置されたスライド部材、80は作動シリンダ部13に作動流体を供給するポンプ、81は作動流体が貯留されたタンク、82はポンプ80を作動させるサーボモータ、83は流出入部13a,13bに配置された圧力センサ、84は可動部材30の位置を検知するためにスライド部材15に配置された位置検知手段、85は圧力センサ83及び位置検知手段84に基づいてサーボモータ82を制御するコントローラ、86はそのサーボアンプである。   Hereinafter, a preferred embodiment of the thermal transfer molding method will be specifically described together with the thermal transfer molding apparatus 10. The illustrated thermal transfer molding apparatus 10 includes a stationary member 20, a movable member 30, a chamber 40, a diaphragm member 50, a decompressing means 60 for a stationary member, a pressing means 65 for a stationary member, and a movable side. Member decompression means 70. In this figure, reference numeral 11 is a machine base, 11A is a lower plate member of the machine base 11, 11B is an upper plate member of the machine base 11, 12 is an operating mechanism for moving the movable member 30 back and forth, and 13 is formed in the operating mechanism 12. 13a, 13b is an inflow / outflow part for the working fluid connected to the working cylinder part 13, 14 is a rod part connecting the lower plate member 11A and the upper plate member 11B, and 15 is a rod part 14. Slide member 80 which is arranged to be able to move forward and backward, 80 is a pump for supplying working fluid to working cylinder section 13, 81 is a tank in which working fluid is stored, 82 is a servo motor for operating pump 80, 83 is inflow / outflow sections 13a and 13b , A pressure sensor 84, 84 is a position detector disposed on the slide member 15 for detecting the position of the movable member 30, and 85 is a pressure sensor 83 and a position detector 84. A controller for controlling the servo motor 82 on the basis, 86 is its servo amplifier.

固定側部材20は、固定熱板21を有するものであって、機台11の下板部材11A上に設置された下枠体25内に配置される。実施例では、図2〜図7に示すように、固定熱板21に複数の温調流体流路21aが形成され、加熱用流体または冷却用流体が適宜流通されて固定熱板21を加熱または冷却するように構成される。なお、図中の符号22は断熱板、23は固定熱板21に配置された温度センサである。   The fixed member 20 has a fixed heat plate 21 and is disposed in a lower frame body 25 installed on the lower plate member 11 </ b> A of the machine base 11. In the embodiment, as shown in FIGS. 2 to 7, a plurality of temperature control fluid channels 21 a are formed in the fixed heat plate 21, and a heating fluid or a cooling fluid is appropriately circulated to heat or heat the fixed heat plate 21. Configured to cool. In the figure, reference numeral 22 denotes a heat insulating plate, and 23 denotes a temperature sensor disposed on the fixed hot plate 21.

可動側部材30は、固定側部材20に対して進退し、固定熱板21と対向配置された可動熱板31を有するものである。実施例では、図1〜図7に示すように、可動熱板31に複数の温調流体流路31aが形成され、加熱用流体または冷却用流体が適宜流通されて可動熱板31を加熱または冷却するように構成される。また、この可動側部材30は、スライド部材15と締結されるとともに、作動機構12に形成された作動シリンダ部13に嵌挿される作動ピストン34と一体に形成されていて、前記作動機構12によって前記スライド部材15に弾性部材36を介して懸架された上枠体35内を進退するように作動される。なお、図中の符号32は断熱板、33は可動熱板31に配置された温度センサ、37は可動側部材30の側面に圧接するように上枠体35に設けられたパッキン等からなるシール部材である。   The movable member 30 has a movable heat plate 31 that moves forward and backward with respect to the fixed member 20 and is disposed to face the fixed heat plate 21. In the embodiment, as shown in FIGS. 1 to 7, a plurality of temperature control fluid channels 31 a are formed in the movable heat plate 31, and a heating fluid or a cooling fluid is appropriately circulated to heat or move the movable heat plate 31. Configured to cool. The movable side member 30 is fastened to the slide member 15 and is integrally formed with an operating piston 34 that is fitted into an operating cylinder portion 13 formed in the operating mechanism 12. It is actuated so as to advance and retreat in the upper frame 35 suspended from the slide member 15 via the elastic member 36. In the figure, reference numeral 32 is a heat insulating plate, 33 is a temperature sensor disposed on the movable heat plate 31, and 37 is a seal made of packing or the like provided on the upper frame 35 so as to be in pressure contact with the side surface of the movable member 30. It is a member.

チャンバー40は、図1〜図7に示すように、可動側部材30の前進時に固定側部材20との間に形成されるものであって、固定側部材20の下枠体25と可動側部材30の上枠体35とが圧接して形成される。また、チャンバー40には、固定熱板21と可動熱板31の間に被加工材Mがパターン形成手段Sとともに配置される。実施例のパターン形成手段Sは、被加工材Mの一面側と固定側部材20の固定熱板21との間に配置される第一パターン形成手段S1と、被加工材Mの他面側と可動側部材30の可動熱板31との間に配置される第二パターン形成手段S2からなり、被加工材Mの両面に所定のパターンを熱転写形成するように構成される。この図において、符号26は固定側部材20の可動側部材30との圧接部分に設けられたシール枠、38は固定側部材20のシール枠26に圧接した際に下枠体25と密閉可能なように可動側部材に設けられたパッキン等からなるシール部材、39は第二パターン形成手段S2を可動側部材30の可動熱板31に固定するための保持部材である。   As shown in FIGS. 1 to 7, the chamber 40 is formed between the fixed side member 20 and the movable side member 30 when the movable side member 30 moves forward. 30 is formed in pressure contact with the upper frame 35. In the chamber 40, the workpiece M is disposed together with the pattern forming unit S between the fixed hot plate 21 and the movable hot plate 31. The pattern forming means S of the embodiment includes a first pattern forming means S1 disposed between one surface side of the workpiece M and the fixed hot plate 21 of the fixed member 20, and the other surface side of the workpiece M. The second pattern forming unit S2 is disposed between the movable side member 30 and the movable heat plate 31, and is configured to thermally transfer and form a predetermined pattern on both surfaces of the workpiece M. In this figure, reference numeral 26 denotes a seal frame provided at a pressure contact portion between the fixed side member 20 and the movable side member 30, and 38 denotes a sealable portion with the lower frame body 25 when pressed against the seal frame 26 of the fixed side member 20. Thus, a sealing member 39 made of packing or the like provided on the movable side member 39 is a holding member for fixing the second pattern forming means S2 to the movable heat plate 31 of the movable side member 30.

ダイヤフラム部材50は、固定熱板21の上部に配置され、チャンバー40を固定側チャンバー41と可動側チャンバー46とに区画するように構成される。実施例のダイヤフラム部材50としては、公知の樹脂製部材が使用され、図1〜図7に示すように、前記ダイヤフラム部材50上に第一パターン形成手段S1を介して被加工材Mが載置される。   The diaphragm member 50 is disposed on the fixed hot plate 21 and is configured to partition the chamber 40 into a fixed chamber 41 and a movable chamber 46. As the diaphragm member 50 of the embodiment, a known resin member is used. As shown in FIGS. 1 to 7, the workpiece M is placed on the diaphragm member 50 via the first pattern forming means S1. Is done.

固定側部材20の減圧手段60は、図1〜図7に示すように、固定側チャンバー41のために固定側部材20の下枠体25に設けられたものであって、切替バルブ61を介して図示しない真空ポンプに接続され、固定側チャンバー41内を脱気して減圧や大気開放、停止等を行うように構成される。図の符号62は真空ポンプと接続された通気孔である。   The pressure reducing means 60 of the fixed side member 20 is provided on the lower frame 25 of the fixed side member 20 for the fixed side chamber 41 as shown in FIGS. It is connected to a vacuum pump (not shown), and is configured to deaerate the inside of the stationary side chamber 41 to perform decompression, release to the atmosphere, stop, and the like. Reference numeral 62 in the figure denotes a vent hole connected to the vacuum pump.

固定側部材20の加圧手段65は、図1〜図7に示すように、固定側チャンバー41のために固定側部材20の下枠体25に設けられたものであって、切替バルブ66を介して図示しないコンプレッサーに接続され、固定側チャンバー41内に加圧空気の供給や停止等を行うように構成される。図の符号67はコンプレッサーと接続された通気孔である。   As shown in FIGS. 1 to 7, the pressurizing means 65 of the fixed side member 20 is provided on the lower frame 25 of the fixed side member 20 for the fixed side chamber 41, and includes a switching valve 66. And is connected to a compressor (not shown), and is configured to supply and stop pressurized air in the stationary chamber 41. Reference numeral 67 in the figure denotes a vent hole connected to the compressor.

可動側部材30の減圧手段70は、図1〜図7に示すように、可動側チャンバー46のために可動側部材30の上枠体35に設けられたものであって、切替バルブ71を介して図示しない真空ポンプに接続され、可動側チャンバー46内を脱気して減圧や大気開放、停止等を行うように構成される。図の符号72は真空ポンプと接続された通気孔である。   The pressure reducing means 70 of the movable side member 30 is provided on the upper frame 35 of the movable side member 30 for the movable side chamber 46 as shown in FIGS. It is connected to a vacuum pump (not shown), and is configured to deaerate the movable side chamber 46 and perform decompression, release to the atmosphere, stop, and the like. Reference numeral 72 in the figure is a vent hole connected to the vacuum pump.

また、図示しないが、当該熱転写成形装置10の固定側チャンバー41と可動側チャンバー46には、それぞれ各チャンバー41,46内の圧力を検出するための圧力センサが設けられている。   Although not shown, the fixed chamber 41 and the movable chamber 46 of the thermal transfer molding apparatus 10 are provided with pressure sensors for detecting the pressure in the chambers 41 and 46, respectively.

次に、図2〜図9を用いて、熱転写成形装置10による熱転写成形の工程を説明する。図8において、横軸は時間と工程を示し、縦軸には可動側部材30の移動量が示される。まず、図1,2に示すように、可動側部材30の上枠体35が固定側部材20の下枠体25から離間した状態で配置され、ダイヤフラム部材50上に被加工材Mが第一パターン形成手段S1を介して載置される(工程A)。このとき、固定側部材20は、当該熱転写成形装置10外で被加工材Mを載置した後、公知の搬送装置(図示せず)等を用いて所定位置まで移動されて、機台11の下板部材11A上に設置される。なお、この状態において、固定側部材20の減圧手段60及び可動側部材30の減圧手段70は大気開放され、固定側部材20の加圧手段65は停止されている。   Next, the thermal transfer molding process by the thermal transfer molding apparatus 10 will be described with reference to FIGS. In FIG. 8, the horizontal axis indicates time and process, and the vertical axis indicates the amount of movement of the movable member 30. First, as shown in FIGS. 1 and 2, the upper frame body 35 of the movable side member 30 is arranged in a state of being separated from the lower frame body 25 of the fixed side member 20, and the workpiece M is placed on the diaphragm member 50. It is placed via the pattern forming means S1 (step A). At this time, after the workpiece M is placed outside the thermal transfer molding apparatus 10, the fixed side member 20 is moved to a predetermined position using a known conveying device (not shown) or the like, and It is installed on the lower plate member 11A. In this state, the pressure reducing means 60 of the fixed side member 20 and the pressure reducing means 70 of the movable side member 30 are opened to the atmosphere, and the pressure means 65 of the fixed side member 20 is stopped.

機台11の下板部材11A上に固定側部材20が設置されると、作動機構12の作動シリンダ部13によって可動側部材30がスライド部材15とともに固定側部材20に向かって前進され、図3に示すように、固定側部材20の下枠体25と可動側部材30の上枠体35とが圧接して、ダイヤフラム部材50によって固定側チャンバー41と可動側チャンバー46とに区画されたチャンバー40が形成される(工程B)。その際、固定側部材20の減圧手段60によって固定側チャンバー41の減圧が行われる(工程C)。   When the fixed side member 20 is installed on the lower plate member 11A of the machine base 11, the movable side member 30 is advanced together with the slide member 15 toward the fixed side member 20 by the operating cylinder part 13 of the operating mechanism 12. FIG. As shown in FIG. 4, the lower frame body 25 of the fixed side member 20 and the upper frame body 35 of the movable side member 30 are in pressure contact with each other, and the chamber 40 partitioned into the fixed side chamber 41 and the movable side chamber 46 by the diaphragm member 50. Is formed (step B). At that time, the fixed side chamber 41 is depressurized by the depressurizing means 60 of the fixed side member 20 (step C).

チャンバー40形成後、図4に示すように、可動側部材30は一旦停止され、固定側部材20の減圧手段60によって減圧中の固定側チャンバー41が所定の圧力まで減圧されたことが図示しない圧力センサによって確認されると、該固定側チャンバー41の減圧を継続させた状態で可動側部材30の減圧手段70によって可動側チャンバー46の減圧が行われる(工程D)。   After the formation of the chamber 40, as shown in FIG. 4, the movable side member 30 is temporarily stopped, and the pressure (not shown) indicates that the fixed side chamber 41 being decompressed is decompressed to a predetermined pressure by the decompression means 60 of the fixed side member 20. When confirmed by the sensor, the movable side chamber 46 is decompressed by the decompression means 70 of the movable side member 30 while the decompression of the fixed side chamber 41 is continued (step D).

次いで、可動側チャンバー46が所定の圧力まで減圧されたことが図示しない圧力センサによって確認されると、図5に示すように、可動側部材30を再び前進させて第二パターン形成手段S2によって被加工材Mを押圧し、前記被加工材Mに対する加圧力が成形に必要な圧力に達したところで前記可動側部材30による加圧が保持される(工程E)。   Next, when it is confirmed by a pressure sensor (not shown) that the movable side chamber 46 has been depressurized to a predetermined pressure, as shown in FIG. 5, the movable side member 30 is advanced again to be covered by the second pattern forming means S2. When the workpiece M is pressed and the pressure applied to the workpiece M reaches the pressure required for molding, the pressurization by the movable member 30 is maintained (step E).

可動側部材30による加圧が保持されると、図6に示すように、固定側部材20の減圧手段60による固定側チャンバー41の減圧が停止され、続いて、固定側部材20の加圧手段65によって固定側チャンバー41が加圧される(工程F)。このとき、可動側部材30の減圧手段70による可動側チャンバー46の減圧が継続されているため、固定側チャンバー41内の圧力が可動側チャンバー46内の圧力より大きくなり、その際の圧力差によって固定側チャンバー41と可動側チャンバー46とを区画するダイヤフラム部材50が固定側チャンバー41側から可動側チャンバー46に向かって押し上げられる。これにより、図9に示すように、ダイヤフラム部材50と被加工材Mとの間に介在される第一パターン形成手段S1が前記ダイヤフラム部材50とともに押し上げられて、厚さにばらつきがある前記被加工材Mの一面側に対して均一に圧接される。また、第一パターン形成手段S1が被加工材Mの一面側に均一に圧接することにより、図示のように第二パターン形成手段S2も被加工材Mの他面側に均一に圧接される。   When the pressurization by the movable side member 30 is held, as shown in FIG. 6, the decompression of the fixed side chamber 41 by the decompression means 60 of the fixed side member 20 is stopped, and subsequently, the pressurization means of the fixed side member 20 The stationary chamber 41 is pressurized by 65 (Step F). At this time, since the decompression of the movable side chamber 46 by the decompression means 70 of the movable side member 30 is continued, the pressure in the fixed side chamber 41 becomes larger than the pressure in the movable side chamber 46, and due to the pressure difference at that time The diaphragm member 50 that partitions the fixed side chamber 41 and the movable side chamber 46 is pushed up from the fixed side chamber 41 side toward the movable side chamber 46. As a result, as shown in FIG. 9, the first pattern forming means S <b> 1 interposed between the diaphragm member 50 and the workpiece M is pushed up together with the diaphragm member 50, and the workpiece having a variation in thickness is obtained. It is uniformly pressed against one side of the material M. Further, since the first pattern forming means S1 is uniformly pressed against one surface side of the workpiece M, the second pattern forming means S2 is also uniformly pressed against the other surface side of the workpiece M as shown in the figure.

上記の如く、固定側チャンバー41と可動側チャンバー46との差圧によって、ダイヤフラム部材50を介して被加工材Mとパターン形成手段S1,S2とが一体かつ均一に押圧されると、固定側部材20の固定熱板21及び可動側部材30の可動熱板31に対して各温調流体流路21a,31aから加熱用流体としての蒸気が流入され、前記固定熱板21及び可動熱板31がそれぞれ被加工材Mの成形が可能な所定の温度まで加熱され、固定熱板21側及び可動熱板31側の双方から被加工材Mが均一に加熱される(工程G)。その際、あらかじめ設定された適宜の制御プログラムに基づいて被加工材Mに対する加圧力や加熱温度等が制御され、最適な過熱状態が維持される。そして、一定時間の加熱,加圧が行われて、被加工材Mの表層にパターン形成手段S1,S2によるパターンが熱転写成形される。   As described above, when the workpiece M and the pattern forming means S1 and S2 are pressed together and uniformly through the diaphragm member 50 by the differential pressure between the fixed side chamber 41 and the movable side chamber 46, the fixed side member Steam as a heating fluid flows into the fixed heat plate 21 and the movable heat plate 31 of the movable side member 30 from each of the temperature control fluid flow paths 21a and 31a, and the fixed heat plate 21 and the movable heat plate 31 are The workpiece M is heated to a predetermined temperature at which the workpiece M can be formed, and the workpiece M is uniformly heated from both the fixed hot plate 21 side and the movable hot plate 31 side (step G). At that time, the pressurizing force, heating temperature, and the like on the workpiece M are controlled based on an appropriate control program set in advance, and an optimum overheated state is maintained. Then, heating and pressurization for a certain time are performed, and the pattern by the pattern forming means S1 and S2 is thermally transferred and formed on the surface layer of the workpiece M.

被加工材Mに対する均一な加熱押圧によって熱転写成形が行われた後、固定側部材20の固定熱板21及び可動側部材30の可動熱板31に対して各温調流体流路21a,31aから冷却用流体としての冷水が流入され、前記固定熱板21及び可動熱板31がそれぞれ被加工材Mの熱成形温度以下まで冷却される(工程H)。   After thermal transfer molding is performed by uniform heating and pressing on the workpiece M, the temperature control fluid flow paths 21 a and 31 a are respectively connected to the fixed heat plate 21 of the fixed side member 20 and the movable heat plate 31 of the movable side member 30. Cold water as a cooling fluid is introduced, and the fixed hot plate 21 and the movable hot plate 31 are each cooled to a temperature equal to or lower than the thermoforming temperature of the workpiece M (step H).

そして、被加工材Mが熱成形温度以下に冷却されると、図7に示すように、固定側部材20の加圧手段65による固定側チャンバー41の加圧を停止され、続いて、可動側部材30の減圧手段70による可動側チャンバー46の減圧を停止された後、固定側部材20の減圧手段60及び可動側部材30の減圧手段70がそれぞれ大気開放される(工程I)。   Then, when the workpiece M is cooled below the thermoforming temperature, as shown in FIG. 7, the pressurization of the fixed side chamber 41 by the pressurizing means 65 of the fixed side member 20 is stopped, and then the movable side After the decompression of the movable side chamber 46 by the decompression means 70 of the member 30 is stopped, the decompression means 60 of the fixed side member 20 and the decompression means 70 of the movable side member 30 are each opened to the atmosphere (Step I).

固定側部材20及び可動側部材30にそれぞれ設けられた図示しない圧力センサによって固定側チャンバー41と可動側チャンバー46の圧力が大気圧となったことが確認されると、作動機構12の作動シリンダ部13によって可動側部材30がスライド部材15とともに初期位置まで後退され(工程J)、次いで、固定側部材20が公知の搬送装置(図示せず)等を用いて当該熱転写成形装置10外まで移動されて被加工材Mの取り出しが行われ(工程K)、以後、はじめに戻って同様の工程が繰り返される。   When it is confirmed that the pressures in the fixed side chamber 41 and the movable side chamber 46 have become atmospheric pressure by pressure sensors (not shown) provided on the fixed side member 20 and the movable side member 30, respectively, the operating cylinder portion of the operating mechanism 12 is operated. 13, the movable side member 30 is retracted to the initial position together with the slide member 15 (step J), and then the fixed side member 20 is moved to the outside of the thermal transfer molding apparatus 10 using a known conveyance device (not shown). Then, the workpiece M is taken out (step K), and thereafter, returning to the beginning, the same steps are repeated.

以上説明したように、本発明の熱転写成形装置10では、固定熱板21を有する固定側部材20と、固定側部材20に対して進退し、固定熱板21と対向配置された可動熱板31を有する可動側部材30と、可動側部材30の前進時に固定側部材20との間に形成され、固定熱板21と可動熱板31の間に被加工材Mがパターン形成手段S(S1,S2)とともに配置されるチャンバー40と、固定熱板21の上部に配置され、チャンバー40を固定側チャンバー41と可動側チャンバー46とに区画するダイヤフラム部材50と、固定側チャンバー41のために固定側部材20に設けられた減圧手段60及び加圧手段65と、可動側チャンバー46のために可動側部材30に設けられた減圧手段70とを有するため、固定側チャンバー41及び可動側チャンバー46を減圧した後、固定チャンバー41を加圧しかつ可動チャンバー46を減圧することによって、ダイヤフラム部材50を介して被加工材M及びパターン形成手段Sを一体かつ均一に加熱押圧して成形することが可能となる。したがって、成形時に被加工材Mに対して過剰な圧力を加える必要がなくなって製品の品質低下を防止することができるとともに、均一な加熱押圧によって被加工材Mに対する転写を精度よくかつ安定して実施することができる。また特に、板厚のばらつきが大きくなる大型の被加工材に対して、安定した転写を好適に実施することができる。   As described above, in the thermal transfer molding apparatus 10 of the present invention, the fixed side member 20 having the fixed hot plate 21 and the movable hot plate 31 that moves forward and backward with respect to the fixed side member 20 and is disposed to face the fixed hot plate 21. Is formed between the movable side member 30 and the fixed side member 20 when the movable side member 30 moves forward, and the workpiece M is formed between the fixed hot plate 21 and the movable hot plate 31 by the pattern forming means S (S1, S1, S2). S40) and a diaphragm member 50 which is disposed above the fixed hot plate 21 and divides the chamber 40 into a fixed side chamber 41 and a movable side chamber 46, and a fixed side for the fixed side chamber 41. Since the pressure reducing means 60 and the pressure means 65 provided on the member 20 and the pressure reducing means 70 provided on the movable side member 30 for the movable side chamber 46 are provided, the fixed side chamber 41 is provided. After the pressure of the movable chamber 46 is reduced, the fixed chamber 41 is pressurized and the movable chamber 46 is depressurized, whereby the workpiece M and the pattern forming means S are integrally and uniformly heated and pressed through the diaphragm member 50. It becomes possible to mold. Therefore, it is not necessary to apply an excessive pressure to the workpiece M during molding, so that the product quality can be prevented from being deteriorated, and the transfer to the workpiece M can be accurately and stably performed by uniform heating and pressing. Can be implemented. In particular, stable transfer can be suitably performed on a large workpiece with large variations in plate thickness.

次に、図4〜図7,図10〜図13を用いて、第二実施例に係る熱転写成形を説明する。まず、ダイヤフラム部材50上に第一パターン形成手段S1を介して被加工材Mを載置した固定側部材20が、下枠体25とともに公知の搬送装置(図示せず)等を用いて所定位置まで移動させて機台11の下板部材11A上に載置され、図10に示すように、固定側部材20の加圧手段65によって固定側チャンバー41が加圧されることによってダイヤフラム部材50がわずかに押し上げられ、前記被加工材Mが持ち上げられて固定熱板21と可動熱板31がそれぞれ被加工材Mの成形が可能な所定温度に加熱される(工程A1)。なお、上記の如く固定熱板21を加熱する際、該固定熱板21とダイヤフラム部材50との間にはわずかな隙間42が形成されるため、被加工材Mが所定温度に加熱中の固定熱板21からの熱の影響を受けることがない。また、この状態において、固定側部材20の減圧手段60は停止され、可動側部材30の減圧手段70は大気開放されている。   Next, thermal transfer molding according to the second embodiment will be described with reference to FIGS. 4 to 7 and FIGS. 10 to 13. First, the fixed-side member 20 on which the workpiece M is placed on the diaphragm member 50 via the first pattern forming unit S1 is placed at a predetermined position together with the lower frame body 25 using a known transfer device (not shown) or the like. The diaphragm member 50 is placed on the lower plate member 11A of the machine base 11 and is pressurized by the pressurizing means 65 of the fixed side member 20 as shown in FIG. Slightly pushed up, the workpiece M is lifted, and the fixed hot plate 21 and the movable hot plate 31 are heated to predetermined temperatures at which the workpiece M can be formed (step A1). When the fixed hot plate 21 is heated as described above, a slight gap 42 is formed between the fixed hot plate 21 and the diaphragm member 50, so that the workpiece M is fixed while being heated to a predetermined temperature. There is no influence of heat from the hot plate 21. In this state, the decompression means 60 of the fixed side member 20 is stopped, and the decompression means 70 of the movable side member 30 is open to the atmosphere.

固定側部材20の加圧手段65による固定側チャンバー41の加圧が維持された状態で、作動機構12の作動シリンダ部13によって可動側部材30がスライド部材15とともに固定側部材20に向かって前進され、図11に示すように、固定側部材20の下枠体25と可動側部材30の上枠体35とが圧接して、ダイヤフラム部材50によって固定側チャンバー41と可動側チャンバー46とに区画されたチャンバー40が形成される(工程B1)。   The movable side member 30 is advanced together with the slide member 15 toward the fixed side member 20 by the operating cylinder portion 13 of the operating mechanism 12 in a state where the pressure of the fixed side chamber 41 is maintained by the pressurizing means 65 of the fixed side member 20. As shown in FIG. 11, the lower frame body 25 of the fixed side member 20 and the upper frame body 35 of the movable side member 30 are in pressure contact with each other, and the diaphragm member 50 partitions the fixed side chamber 41 and the movable side chamber 46. The chamber 40 thus formed is formed (step B1).

チャンバー40が形成されると、図12に示すように、可動側部材30が一旦停止され、さらに、固定側部材20の加圧手段65による固定側チャンバー41の加圧が停止されるとともに、固定側部材20の減圧手段60によって前記固定側チャンバー41の減圧が行われる(工程C1)。そして、固定側チャンバー41が所定の圧力まで減圧されたことが図示しない圧力センサによって確認されると、図4に示すように、該固定側チャンバー41の減圧を継続させた状態で可動側部材30の減圧手段70によって可動側チャンバー46の減圧が行われる(工程D1)。   When the chamber 40 is formed, as shown in FIG. 12, the movable side member 30 is temporarily stopped, and further, the pressurization of the fixed side chamber 41 by the pressurizing means 65 of the fixed side member 20 is stopped and fixed. The decompression means 60 of the side member 20 decompresses the fixed side chamber 41 (step C1). Then, when it is confirmed by a pressure sensor (not shown) that the fixed side chamber 41 has been depressurized to a predetermined pressure, the movable side member 30 is kept in a state where the depressurization of the fixed side chamber 41 is continued as shown in FIG. The depressurizing means 70 depressurizes the movable side chamber 46 (step D1).

次いで、可動側チャンバー46が所定の圧力まで減圧されたことが図示しない圧力センサによって確認されると、図5に示すように、可動側部材30を再び前進させて第二パターン形成手段S2によって被加工材Mを押圧し、前記被加工材Mに対する加圧力が成形に必要な圧力に達したところで前記可動側部材30による加圧が保持される(工程E1)。   Next, when it is confirmed by a pressure sensor (not shown) that the movable side chamber 46 has been depressurized to a predetermined pressure, as shown in FIG. 5, the movable side member 30 is advanced again to be covered by the second pattern forming means S2. When the workpiece M is pressed and the pressure applied to the workpiece M reaches the pressure required for molding, the pressurization by the movable member 30 is maintained (step E1).

可動側部材30による加圧が保持されると、図6に示すように、固定側部材20の減圧手段60による固定側チャンバー41の減圧が停止され、続いて、固定側部材20の加圧手段65によって固定側チャンバー41が加圧されて、ダイヤフラム部材50が可動側チャンバー46に向かって押し上げられて第一及び第二パターン形成手段S1,S2が被加工材Mに対して均一に圧接される(工程F1)。   When the pressurization by the movable side member 30 is held, as shown in FIG. 6, the decompression of the fixed side chamber 41 by the decompression means 60 of the fixed side member 20 is stopped, and subsequently, the pressurization means of the fixed side member 20 The fixed side chamber 41 is pressurized by 65, the diaphragm member 50 is pushed up toward the movable side chamber 46, and the first and second pattern forming means S1 and S2 are uniformly pressed against the workpiece M. (Step F1).

また、固定側部材20の固定熱板21と可動側部材30の可動熱板31とがあらかじめ被加工材Mの成形が可能な所定温度に加熱されているため、上記の如く第一及び第二パターン形成手段S1,S2が被加工材Mに対して均一に圧接されることによって、被加工材Mに対して前記固定熱板21及び可動熱板31の双方から即座に所定温度による加熱が行われ、一定時間の加熱,加圧が行われて被加工材Mの表層にパターン形成手段S1,S2によるパターンが熱転写成形される(工程G1)。その際、あらかじめ設定された適宜の制御プログラムに基づいて被加工材Mに対する加圧力や加熱温度等が制御され、最適加熱状態が維持される。   Further, since the fixed heat plate 21 of the fixed side member 20 and the movable heat plate 31 of the movable side member 30 are heated in advance to a predetermined temperature at which the workpiece M can be formed, the first and second as described above. When the pattern forming means S1 and S2 are uniformly pressed against the workpiece M, the workpiece M is immediately heated from both the fixed hot plate 21 and the movable hot plate 31 at a predetermined temperature. Then, heating and pressurization for a certain time are performed, and the pattern formed by the pattern forming means S1 and S2 is thermally transferred and formed on the surface layer of the workpiece M (step G1). At that time, the pressurizing force, the heating temperature, and the like on the workpiece M are controlled based on an appropriate control program set in advance, and the optimum heating state is maintained.

なお、上記熱転写成形後は、固定熱板21及び可動熱板31がそれぞれ被加工材Mの熱成形温度以下まで冷却されて被加工材Mが熱成形温度以下に冷却され(工程H1)、続いて、図7に示すように、固定側部材20の加圧手段65による固定側チャンバー41の加圧が停止された後、可動側部材30の減圧手段70による可動側チャンバー46の減圧が停止されて、固定側部材20の減圧手段60及び可動側部材30の減圧手段70がそれぞれ大気開放される(工程I1)。そして、作動機構12の作動シリンダ部13によって可動側部材30がスライド部材15とともに初期位置まで後退され(工程J1)、次いで、固定側部材20が公知の搬送装置(図示せず)等を用いて当該熱転写成形装置10外まで移動されて被加工材Mの取り出しが行われ(工程K1)、以後、はじめに戻って同様の工程が繰り返される。   After the thermal transfer molding, the fixed hot plate 21 and the movable hot plate 31 are each cooled to a temperature below the thermoforming temperature of the workpiece M, the workpiece M is cooled below the thermoforming temperature (step H1), and then As shown in FIG. 7, after the pressurization of the fixed side chamber 41 by the pressurizing means 65 of the fixed side member 20 is stopped, the decompression of the movable side chamber 46 by the decompression means 70 of the movable side member 30 is stopped. Thus, the decompression means 60 of the fixed side member 20 and the decompression means 70 of the movable side member 30 are each opened to the atmosphere (step I1). Then, the movable side member 30 is retracted to the initial position together with the slide member 15 by the actuating cylinder portion 13 of the actuating mechanism 12 (step J1), and then the fixed side member 20 is used using a known transport device (not shown) or the like. The workpiece M is moved out of the thermal transfer molding apparatus 10 (step K1), and then the process returns to the beginning and the same steps are repeated.

上記の如く、第二実施例にあっては、成形前に固定側チャンバー41を加圧してダイヤフラム部材50を押し上げ、被加工材Mを持ち上げて固定熱板21を加熱する工程を含むことにより、固定熱板21を所定温度まで加熱する際に被加工材Mに対して熱の影響を与えることがなくなるため、成形時の被加工材Mに対する加熱において温度のむらが発生することがなく、しかも、即座に所定の成形温度での加熱を開始することが可能となる。したがって、被加工材Mに対する転写をより精度よくかつ効率的に実施することができる。   As described above, the second embodiment includes the steps of pressurizing the fixed-side chamber 41 to push up the diaphragm member 50 and lifting the workpiece M to heat the fixed hot plate 21 before molding, When the fixed hot plate 21 is heated to a predetermined temperature, the work material M is not affected by heat, so that temperature unevenness does not occur in the heating of the work material M during molding. Heating at a predetermined molding temperature can be started immediately. Therefore, the transfer to the workpiece M can be performed more accurately and efficiently.

なお、本発明の熱転写成形方法及びその装置は、前述の実施例のみに限定されるものではなく、発明の趣旨を逸脱しない範囲において構成の一部を適宜に変更して実施することができる。例えば、実施例では、被加工材Mと固定熱板21との間及び可動熱板31との間にそれぞれ第一及び第二パターン形成手段S1,S2を配置して前記被加工材の両面に対して転写を行ったが、被加工材Mと固定熱板21との間のみにパターン形成手段を配置することによって、被加工材Mの一面側のみに転写を行うこともできる。   The thermal transfer molding method and apparatus of the present invention are not limited to the above-described embodiments, and can be implemented by appropriately changing a part of the configuration without departing from the spirit of the invention. For example, in the embodiment, the first and second pattern forming means S1 and S2 are disposed between the workpiece M and the fixed hot plate 21 and between the movable hot plate 31 and on both sides of the workpiece. Although the transfer is performed, the transfer can be performed only on one side of the workpiece M by disposing the pattern forming means only between the workpiece M and the fixed hot plate 21.

また、第二実施例では、被加工材Mをダイヤフラム部材50に載置した後、固定側チャンバー41を加圧して前記ダイヤフラム部材50を押し上げて被加工材Mを持ち上げるように構成したが、固定側チャンバー41を加圧してダイヤフラム部材50を押し上げた状態としてから被加工材Mを載置するようにしても構わない。   In the second embodiment, after the workpiece M is placed on the diaphragm member 50, the stationary chamber 41 is pressurized to push up the diaphragm member 50 to lift the workpiece M. The workpiece M may be placed after the side chamber 41 is pressurized and the diaphragm member 50 is pushed up.

本発明の一実施例に係る熱転写成形装置の要部断面図である。It is principal part sectional drawing of the thermal transfer molding apparatus which concerns on one Example of this invention. 図1の熱転写成形装置の固定側部材及び可動側部材の断面図である。It is sectional drawing of the stationary-side member and movable side member of the thermal transfer molding apparatus of FIG. 図2の状態から可動側部材を前進させてチャンバーを形成した状態を表す要部断面図である。It is principal part sectional drawing showing the state which advanced the movable side member from the state of FIG. 2, and formed the chamber. チャンバー形成後に可動側部材を一旦停止させてチャンバーを減圧する状態を表す要部断面図である。It is principal part sectional drawing showing the state which stops a movable side member temporarily after chamber formation, and decompresses a chamber. 可動側部材によって被加工材を加工した状態を表す要部断面図である。It is principal part sectional drawing showing the state which processed the workpiece by the movable side member. 図5の状態から固定側チャンバーを加圧した状態を表す要部断面図である。It is principal part sectional drawing showing the state which pressurized the stationary side chamber from the state of FIG. 図6の状態から可動側及び固定側チャンバーを大気開放した状態を表す要部断面図である。It is principal part sectional drawing showing the state which open | released the movable side and fixed side chamber from air | atmosphere from the state of FIG. 第一実施例における熱転写成形の工程を示すタイムチャート図である。It is a time chart which shows the process of the thermal transfer molding in a 1st Example. 成形時の固定側部材及び可動側部材と被加工材との関係を表した模式図である。It is the schematic diagram showing the relationship between the to-be-processed material and the fixed side member at the time of shaping | molding, and a movable side member. 固定側チャンバーを加圧してダイヤフラム部材を押し上げた状態を表した要部断面図である。It is principal part sectional drawing showing the state which pressurized the fixed side chamber and pushed up the diaphragm member. 図10の状態から可動側部材を前進させてチャンバーを形成した状態を表す要部断面図である。It is principal part sectional drawing showing the state which advanced the movable side member from the state of FIG. 10, and formed the chamber. 図11の状態から固定側チャンバーを減圧した状態を表す要部断面図である。It is principal part sectional drawing showing the state which decompressed the stationary side chamber from the state of FIG. 第二実施例における熱転写成形の工程を示すタイムチャート図である。It is a time chart figure which shows the process of the thermal transfer molding in a 2nd Example. 従来における成形時の固定側部材及び可動側部材と被加工材との関係を表した模式図である。It is the schematic diagram showing the relationship between the fixed side member at the time of shaping | molding in the past, a movable side member, and a workpiece.

符号の説明Explanation of symbols

10 熱転写成形装置
20 固定側部材
21 固定熱板
30 可動側部材
31 可動熱板
40 チャンバー
41 固定側チャンバー
46 可動側チャンバー
50 ダイヤフラム部材
60 固定側部材の減圧手段
65 固定側部材の加圧手段
70 可動側部材の減圧手段
M 被加工材
S パターン形成手段
DESCRIPTION OF SYMBOLS 10 Thermal transfer molding apparatus 20 Fixed side member 21 Fixed hot plate 30 Movable side member 31 Movable heat plate 40 Chamber 41 Fixed side chamber 46 Movable side chamber 50 Diaphragm member 60 Depressurizing means of fixed side member 65 Pressurizing means of fixed side member 70 Movable Pressure reducing means for side member M Work material S Pattern forming means

Claims (3)

可動熱板を有する可動側部材の前進時に固定熱板を有する固定側部材との間に形成されるチャンバー内の前記固定熱板と可動熱板との間に被加工材をパターン形成手段とともに配置し、前記チャンバー内を減圧して前記被加工材を加熱加圧しその表層に前記パターン形成手段によるパターンを熱転写成形するに際して、
前記固定熱板の上部にダイヤフラム部材を配置して前記チャンバーを固定側チャンバーと可動側チャンバーに区画するとともに、前記固定側チャンバー及び可動側チャンバーを減圧した後、前記固定チャンバーを加圧しかつ前記可動チャンバーを減圧することによって、前記ダイヤフラム部材を介して前記被加工材及び前記パターン形成手段を一体かつ均一に加熱押圧して成形することを特徴とする熱転写成形方法。
A workpiece is arranged together with the pattern forming means between the fixed hot plate and the movable hot plate in the chamber formed between the fixed hot plate and the fixed hot plate when the movable hot plate having the movable hot plate moves forward. Then, when the inside of the chamber is depressurized and the workpiece is heated and pressed to thermally transfer mold the pattern by the pattern forming means on the surface layer,
A diaphragm member is disposed on the fixed hot plate to partition the chamber into a fixed chamber and a movable chamber, and after depressurizing the fixed chamber and the movable chamber, pressurize the fixed chamber and move the movable chamber. A thermal transfer molding method characterized in that the workpiece and the pattern forming means are integrally and uniformly heated and pressed through the diaphragm member by reducing the pressure of the chamber.
成形前に前記固定側チャンバーを加圧して前記ダイヤフラム部材を押し上げ、前記被加工材を持ち上げて前記固定熱板を加熱する工程を含む請求項1に記載の熱転写成形方法。   2. The thermal transfer molding method according to claim 1, further comprising a step of pressurizing the fixed chamber before molding to push up the diaphragm member, lift the workpiece, and heat the fixed hot platen. 固定熱板を有する固定側部材と、
前記固定側部材に対して進退し、前記固定熱板と対向配置された可動熱板を有する可動側部材と、
前記可動側部材の前進時に前記固定側部材との間に形成され、前記固定熱板と可動熱板の間に被加工材がパターン形成手段とともに配置されるチャンバーと、
前記固定熱板の上部に配置され、前記チャンバーを固定側チャンバーと可動側チャンバーとに区画するダイヤフラム部材と、
前記固定側チャンバーのために前記固定側部材に設けられた減圧手段及び加圧手段と、
前記可動側チャンバーのために前記可動側部材に設けられた減圧手段
とを有することを特徴とする熱転写成形装置。
A fixed side member having a fixed heat plate;
A movable side member having a movable heat plate that moves forward and backward with respect to the fixed side member and is disposed opposite to the fixed heat plate;
A chamber that is formed between the stationary member and the stationary member when the movable member advances, and a workpiece is disposed between the stationary hot plate and the movable member together with a pattern forming unit;
A diaphragm member disposed on an upper portion of the fixed hot plate and dividing the chamber into a fixed side chamber and a movable side chamber;
Decompression means and pressurization means provided in the fixed side member for the fixed side chamber;
And a pressure reducing means provided on the movable side member for the movable side chamber.
JP2006348047A 2006-12-25 2006-12-25 Method and apparatus for thermal transfer molding Pending JP2008155521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348047A JP2008155521A (en) 2006-12-25 2006-12-25 Method and apparatus for thermal transfer molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348047A JP2008155521A (en) 2006-12-25 2006-12-25 Method and apparatus for thermal transfer molding

Publications (1)

Publication Number Publication Date
JP2008155521A true JP2008155521A (en) 2008-07-10

Family

ID=39656976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348047A Pending JP2008155521A (en) 2006-12-25 2006-12-25 Method and apparatus for thermal transfer molding

Country Status (1)

Country Link
JP (1) JP2008155521A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280129A (en) * 2009-06-04 2010-12-16 Hitachi Industrial Equipment Systems Co Ltd Device for transferring fine structure
CN102555205A (en) * 2010-12-10 2012-07-11 晟铭电子科技股份有限公司 Uniform pressure forming die and uniform pressure forming method thereof
WO2013122109A1 (en) * 2012-02-14 2013-08-22 Scivax株式会社 Imprint device and imprint method
US10343312B2 (en) * 2012-08-27 2019-07-09 Scivax Corporation Imprint device and imprint method
US10357903B2 (en) * 2012-12-06 2019-07-23 Scivax Corporation Roller-type pressurization device, imprinter, and roller-type pressurization method
US10421218B2 (en) 2014-06-03 2019-09-24 Scivax Corporation Roller-type depressing device, imprinting device, and roller-type depressing method
CN111223984A (en) * 2019-11-22 2020-06-02 苏州鸿凌达电子科技有限公司 Be applied to pressure device of thermoelectric module group layer shape structure's flexible circuit substrate
JP7540767B2 (en) 2020-04-03 2024-08-27 アストラヴェウス Molding apparatus and method for embossing raw materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222658B2 (en) * 1972-11-28 1977-06-18
JP2002160250A (en) * 2000-11-27 2002-06-04 Meiki Co Ltd Laminate molding method
JP2003001705A (en) * 2001-06-22 2003-01-08 Meiki Co Ltd Press molding apparatus and method for optical product
JP2006035430A (en) * 2004-07-22 2006-02-09 Komatsu Sanki Kk Hot press and hot-pressing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222658B2 (en) * 1972-11-28 1977-06-18
JP2002160250A (en) * 2000-11-27 2002-06-04 Meiki Co Ltd Laminate molding method
JP2003001705A (en) * 2001-06-22 2003-01-08 Meiki Co Ltd Press molding apparatus and method for optical product
JP2006035430A (en) * 2004-07-22 2006-02-09 Komatsu Sanki Kk Hot press and hot-pressing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280129A (en) * 2009-06-04 2010-12-16 Hitachi Industrial Equipment Systems Co Ltd Device for transferring fine structure
CN102555205A (en) * 2010-12-10 2012-07-11 晟铭电子科技股份有限公司 Uniform pressure forming die and uniform pressure forming method thereof
WO2013122109A1 (en) * 2012-02-14 2013-08-22 Scivax株式会社 Imprint device and imprint method
JPWO2013122109A1 (en) * 2012-02-14 2015-05-18 Scivax株式会社 Imprint apparatus and imprint method
US10343312B2 (en) * 2012-08-27 2019-07-09 Scivax Corporation Imprint device and imprint method
US10357903B2 (en) * 2012-12-06 2019-07-23 Scivax Corporation Roller-type pressurization device, imprinter, and roller-type pressurization method
US10421218B2 (en) 2014-06-03 2019-09-24 Scivax Corporation Roller-type depressing device, imprinting device, and roller-type depressing method
CN111223984A (en) * 2019-11-22 2020-06-02 苏州鸿凌达电子科技有限公司 Be applied to pressure device of thermoelectric module group layer shape structure's flexible circuit substrate
JP7540767B2 (en) 2020-04-03 2024-08-27 アストラヴェウス Molding apparatus and method for embossing raw materials

Similar Documents

Publication Publication Date Title
JP2008155521A (en) Method and apparatus for thermal transfer molding
JP4827640B2 (en) Press forming apparatus and method
JP6320460B2 (en) Press molding apparatus and press molding method for molded products containing reinforcing fibers and thermoplastic resin
JP6578030B2 (en) Press molding method of a molded product containing reinforcing fiber and thermoplastic resin
JP4142674B2 (en) Mold apparatus and method for producing molded body using the same
US20070158871A1 (en) Press-molding apparatus, mold, and press-molding method
JP6021256B2 (en) Fiber composite molded product press molding method, fiber composite molded product press molding apparatus, and fiber composite molded product mold
JP2007090851A (en) Press-forming apparatus
KR20190099043A (en) Sintering Presses and Sintering Methods for Sintering Electronic Components on Substrates
JP5054412B2 (en) Hot press molding apparatus and mold system for the same
JP2008246729A (en) Molding machine and molding method using the same
JP7025499B1 (en) Laminate molding system
TW201725632A (en) Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators
JP2021100802A (en) Lamination system and control method for lamination system
JP6364684B2 (en) Roller type pressure device, imprint device, roller type pressure method
JP5194599B2 (en) Hot press apparatus, hot press method, and pattern transfer method by hot press
KR20120088094A (en) Apparatus and method for vacuum forming
US20040040644A1 (en) Micro hot embossing method for quick heating and cooling, and uniformly pressing
JP2009248481A (en) Compression molding method
JP3170628U (en) Thermal transfer molding equipment
JP4167147B2 (en) Laminating apparatus and laminating method for laminated board
JP6137851B2 (en) Heating and pressing apparatus and heating and pressing method
JP2002067073A (en) Molding apparatus
JP6319815B2 (en) Control method of compression molding machine
KR20090076774A (en) Hydraulic pressure molding method and molding device using backpressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080818

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115