JP2010098457A - Method of manufacturing element for crystal vibrator, and element for crystal vibrator - Google Patents

Method of manufacturing element for crystal vibrator, and element for crystal vibrator Download PDF

Info

Publication number
JP2010098457A
JP2010098457A JP2008266588A JP2008266588A JP2010098457A JP 2010098457 A JP2010098457 A JP 2010098457A JP 2008266588 A JP2008266588 A JP 2008266588A JP 2008266588 A JP2008266588 A JP 2008266588A JP 2010098457 A JP2010098457 A JP 2010098457A
Authority
JP
Japan
Prior art keywords
crystal
forming
crystal resonator
wafer
element group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008266588A
Other languages
Japanese (ja)
Other versions
JP5434042B2 (en
Inventor
Kenji Shimao
憲治 島尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2008266588A priority Critical patent/JP5434042B2/en
Publication of JP2010098457A publication Critical patent/JP2010098457A/en
Application granted granted Critical
Publication of JP5434042B2 publication Critical patent/JP5434042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an element for a crystal vibrator that prevents foreign matter from sticking on a formation area for a group of elements for crystal vibrators and the area from damaging in a process of forming the elements for the crystal vibrators. <P>SOLUTION: The method of manufacturing elements for crystal vibrators includes: a process of using a wafer W having the element group formation area 50 made thinner than other areas by entirely forming hollow portions 21 and 41, forming laminate masks in the element group formation area 50 at borders between section areas 50a of elements for crystal vibrators, and adjusting the thickness of the wafer W in each element group formation area 50 to a size corresponding to a frequency; and a process of forming a mask for external shape formation of a crystal piece in each element group formation area 50 and forming an external shape of the crystal piece along the mask for external shape formation. The hollow portions 21 and 41 are provided in the element group formation area 50 to prevent the element formation area 50 from coming into contact with a stage, etc., and to prevent sticking of foreign matter on and damage to an element for a crystal vibrator formed of a section area 50a. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水晶振動子用素子を製造する技術と、その技術により製造される水晶振動子用素子に関する。   The present invention relates to a technology for manufacturing a crystal resonator element and a crystal resonator element manufactured by the technology.

従来、ATカットの水晶ウェハから多数の水晶片を形成し、この水晶片に励振電極と引き出し電極を形成して多数の水晶振動子用素子を製造している。水晶振動子の周波数特性は、水晶振動子の水晶片の厚さによって決定される。近年求められている周波数特性は10MHzから数百MHzであり、その特性を達成するためには水晶片の厚みを数μmから数十μmにする必要がある。この水晶片を形成する際、水晶ウェハの厚さを水晶片の厚さに合わせると、薄過ぎて作業性と生産性が低下するので、水晶片を形成する際には図9に示すように、作業し易い厚さ、例えば300μmのウェハW1を使用して水晶片を形成する。   Conventionally, a large number of crystal pieces are formed from AT-cut crystal wafers, and excitation electrodes and lead electrodes are formed on the crystal pieces to manufacture a large number of crystal resonator elements. The frequency characteristic of the crystal unit is determined by the thickness of the crystal piece of the crystal unit. In recent years, the required frequency characteristics are from 10 MHz to several hundred MHz, and in order to achieve the characteristics, the thickness of the crystal piece needs to be several μm to several tens μm. When forming this crystal piece, if the thickness of the crystal wafer is adjusted to the thickness of the crystal piece, the workability and productivity will be reduced because it is too thin, so when forming the crystal piece, as shown in FIG. A crystal piece is formed using a wafer W1 having a thickness that is easy to work, for example, 300 μm.

ウェハW1のような水晶基板から水晶片を形成する場合、エッチングにより凹部103を形成して凹部103の底部103aと裏面104との間の厚みを、周波数に応じて予め定められた水晶片の厚さに調整して底部103aに水晶片を形成する。そのためウェハW1では凹部103の形成後に、底部103aと裏面104間の厚みが所望の周波数特性を有する厚さかどうか調べる必要がある。そこで底部103aと裏面104間の水晶に対してプローブ110による周波数測定を行う。この周波数測定は、ウェハW1をステージ111(図9参照)に載置し、プローブ110を凹部103の底部に接触させることによって行われる。   When a crystal piece is formed from a crystal substrate such as the wafer W1, the recess 103 is formed by etching, and the thickness between the bottom 103a and the back surface 104 of the recess 103 is set to a thickness of the crystal piece determined in advance according to the frequency. Then, a crystal piece is formed on the bottom 103a. Therefore, in the wafer W1, after forming the recess 103, it is necessary to check whether the thickness between the bottom 103a and the back surface 104 has a desired frequency characteristic. Therefore, frequency measurement is performed by the probe 110 on the crystal between the bottom 103a and the back surface 104. This frequency measurement is performed by placing the wafer W1 on the stage 111 (see FIG. 9) and bringing the probe 110 into contact with the bottom of the recess 103.

このときウェハW1の裏面104は、全面がステージ111と接触する。ウェハW1から形成される水晶片は、裏面104がその一面となるように形成されるため、ステージ111に異物等がある場合、裏面104に異物が付着し、その結果異物が付着した水晶片が形成される虞がある。またステージ111上に微細な突出部が形成されていた場合、ウェハW1を載置すると裏面104と突出部とが接触して裏面104に接触痕が付き、その結果接触痕のついた水晶片が形成される虞がある。またステージ111の角に裏面104をぶつけて損傷する可能性があり、これによって損傷した水晶片が形成される虞がある。またレジストをウェハW1の表面102に塗布して露光を行い、その後レジストをウェハW1の裏面104に塗布して露光を行うような場合でも、同様の問題が発生する。このような水晶片では所望の周波数特性を得ることができないため、これらの水晶片は不良となり、水晶振動子用素子の生産効率低下の要因となっている。従って水晶片を形成するための形成領域に対する異物の付着や、他の部材の接触を防止することができる水晶振動子用素子の形成方法が求められている。   At this time, the entire back surface 104 of the wafer W1 is in contact with the stage 111. Since the crystal piece formed from the wafer W1 is formed so that the back surface 104 becomes one surface thereof, when there is a foreign substance or the like on the stage 111, the foreign substance adheres to the back surface 104, and as a result, the crystal piece to which the foreign substance adheres is formed. There is a risk of formation. Further, when a fine protrusion is formed on the stage 111, when the wafer W1 is placed, the back surface 104 and the protrusion come into contact with each other, and a contact mark is formed on the back surface 104. As a result, a crystal piece with a contact mark is formed. There is a risk of formation. Further, there is a possibility that the back surface 104 will be hit against the corner of the stage 111 to cause damage, and there is a risk that a damaged crystal piece will be formed. The same problem occurs even when a resist is applied to the front surface 102 of the wafer W1 for exposure, and then the resist is applied to the back surface 104 of the wafer W1 for exposure. Since such a crystal piece cannot obtain a desired frequency characteristic, these crystal pieces are defective, which causes a reduction in production efficiency of the crystal resonator element. Accordingly, there is a need for a method for forming an element for a crystal resonator that can prevent foreign matter from adhering to a forming region for forming a crystal piece and contact with other members.

一方特許文献1には、予め中央部分を薄くして、周辺部を落とすだけで半導体ウェハの裏面研磨工程を省略すると共に、周辺部で中央部を保護して中央部を割れ難くした半導体ウェハが記載されている。しかしながら特許文献1に記載されているものは、半導体ウェハであり、水晶のウェハW1のように両面に積層マスクを形成してエッチングにより水晶片を個片化するものではない。そして特許文献1に記載されているように単純に中央部を薄くしただけでは、薄くした部分と外周部の厚い部分との厚みの差でフォトリソ工程時にギャップが生じて所望のレジストマスクが得られない可能性がある。またウェハは半導体ウェハであるため、ウェハを薄くすることによって割れ易くなるという課題があり、これを解決するために周辺部の厚さを厚くしている。しかしながら水晶ウェハは割れ難く、このような課題は存在しない。   On the other hand, Patent Document 1 discloses a semiconductor wafer in which the central portion is thinned in advance and the peripheral portion is simply dropped to omit the backside polishing process of the semiconductor wafer, and the central portion is protected at the peripheral portion and the central portion is difficult to break. Are listed. However, what is described in Patent Document 1 is a semiconductor wafer, and does not form a single crystal piece by etching by forming a laminated mask on both sides like a quartz wafer W1. Then, as described in Patent Document 1, if the central portion is simply thinned, a gap is generated during the photolithography process due to the difference in thickness between the thinned portion and the thick outer peripheral portion, and a desired resist mask can be obtained. There is no possibility. Further, since the wafer is a semiconductor wafer, there is a problem that the wafer is easily broken by thinning the wafer. In order to solve this problem, the thickness of the peripheral portion is increased. However, quartz wafers are difficult to break, and such a problem does not exist.

実開昭61−186230号公報(2頁下部)Japanese Utility Model Publication No. 61-186230 (lower part of page 2)

本発明はこのような事情に鑑みてなされたものであり、その目的は、水晶振動子用素子の形成工程で、水晶振動子用素子群の形成領域に異物が付着することやその領域に傷がつくことを防止できる水晶振動子用素子の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to prevent foreign matter from adhering to the formation region of the crystal resonator element group or scratching the region in the crystal resonator element formation step. An object of the present invention is to provide a method for manufacturing an element for a crystal resonator that can prevent the occurrence of sag.

本発明の水晶振動子用素子の製造方法では、
水晶基板に複数の水晶片の外形を形成するときに、電極を形成し、その後当該水晶片を個片化する水晶振動子用素子の製造方法において、
その両面側における水晶振動子用素子群の形成領域全体を窪ませて他の領域よりも薄くした水晶基板を用い、
前記水晶振動子用素子群の形成領域に水晶振動子用素子の各々の形成領域間の境界部位にマスクを形成して、前記各々の形成領域における前記水晶基板の厚さをエッチングにより周波数に対応する寸法に調整する工程と、
次いで前記各々の形成領域に水晶片の外形形成用マスクを形成し、当該外形形成用マスクに沿って形成領域の水晶をエッチングにより除去し、水晶片の外形を形成する工程と、を含むことを特徴としている。
In the method for manufacturing a crystal resonator element of the present invention,
In the manufacturing method of the element for a crystal resonator that forms an electrode when forming the outer shape of a plurality of crystal pieces on a crystal substrate, and then separates the crystal pieces,
Using a quartz substrate that has been made thinner than the other regions by denting the entire formation region of the crystal resonator element group on both sides,
A mask is formed at the boundary between the formation regions of the crystal resonator elements in the formation region of the crystal resonator element group, and the thickness of the crystal substrate in each formation region corresponds to the frequency by etching. Adjusting the dimensions to be
Forming a crystal piece outline forming mask in each of the formation regions, and removing the crystal in the formation region by etching along the outline formation mask to form an outline of the crystal piece. It is a feature.

また前記水晶振動子用素子群の形成領域は、複数の水晶振動子用素子の形成領域が縦横に配列された領域である。また前記各々の形成領域における水晶基板の厚さを調整する工程の前の、水晶振動子用素子群の形成領域は、その深さが0.5ないし5μmである。そして本発明の水晶振動子用素子は、上記各水晶振動子用素子の製造方法により製造されたことを特徴としている。   The formation region of the crystal resonator element group is a region where a plurality of crystal resonator element formation regions are arranged vertically and horizontally. Further, the depth of the formation region of the crystal resonator element group before the step of adjusting the thickness of the crystal substrate in each of the formation regions is 0.5 to 5 μm. The crystal resonator element of the present invention is manufactured by the above-described method for manufacturing a crystal resonator element.

本発明によれば、水晶基板から水晶振動子用素子用の水晶片を形成する前工程で、水晶基板の両面側における水晶振動子用素子群の形成領域全体を窪ませて他の領域よりも薄くし、この形成領域にマスクを形成して水晶基板の厚さを調整すると共に水晶片を形成する。このため水晶振動子用素子群の形成領域に他の部材が接触することがなくなるので、形成領域への異物の付着や接触痕の形成及び形成領域の損傷を防止することができる。そして形成領域で形成される水晶片が、異物や形成領域の損傷等の影響を受けなくなるため、この水晶片を基に形成される水晶振動子用素子では、特性劣化が抑えられ、所望の周波数特性を備えた水晶振動子用素子を提供することができる。   According to the present invention, in the previous step of forming a crystal piece for a crystal resonator element from a crystal substrate, the entire formation region of the crystal resonator element group on both sides of the crystal substrate is recessed to make it more than other regions. The thickness is reduced, a mask is formed in this formation region, the thickness of the quartz substrate is adjusted, and a quartz piece is formed. For this reason, since other members do not come into contact with the formation region of the crystal resonator element group, it is possible to prevent adhesion of foreign matters to the formation region, formation of contact marks, and damage to the formation region. Since the crystal piece formed in the formation region is not affected by foreign matter, damage to the formation region, etc., the crystal resonator element formed based on this crystal piece can suppress the deterioration of characteristics and can achieve a desired frequency. A crystal resonator element having characteristics can be provided.

本実施形態の水晶振動子用素子の製造方法について、図1ないし図7を参照して説明する。本実施形態では、図1(a)に示すように水晶基板であるウェハWに1個の素子を形成するため形成領域となる区画領域50aを縦横に複数、例えば30×30のマトリックス状に配列している。これ区画領域50aの群の全体を素子群形成領域50と呼ぶとすると、本実施形態ではウェハWの表面20及び裏面40の素子群形成領域50に該当する部分に、例えば深さd1が0.5μmないし5μmの窪み部21、41を形成して他の領域よりも薄くし、その内部に区画領域50aを配列する。なお本実施形態では、図1(b)に示すように厚さdが30μmないし300μm、直径Rが3ないし8インチの水晶基板をウェハWとして使用しており、窪み部21、41はエッチングによって形成される。なお説明の便宜上図1(a)では、実際には目視できない区画領域50aの境界線を実線で示している。また区画領域50aは、30×30のマトリックス状に配列されているが、図1では1つの区画領域50aのみ示し、他の区画領域についてはその記載を省略している。また窪み部21、41の周縁部に形成される傾斜部についてはその記載を省略している。   A method for manufacturing a crystal resonator element according to this embodiment will be described with reference to FIGS. In the present embodiment, as shown in FIG. 1A, a plurality of partition regions 50a, which are formation regions for forming one element on a wafer W that is a quartz substrate, are arranged in a matrix form, for example, 30 × 30. is doing. If the entire group of the partition regions 50a is referred to as an element group formation region 50, in the present embodiment, the depth d1 is set to 0. 0 in the portion corresponding to the element group formation region 50 on the front surface 20 and the back surface 40 of the wafer W. 5 μm to 5 μm indentations 21 and 41 are formed so as to be thinner than other regions, and partition regions 50 a are arranged therein. In this embodiment, as shown in FIG. 1B, a quartz substrate having a thickness d of 30 μm to 300 μm and a diameter R of 3 to 8 inches is used as the wafer W, and the recesses 21 and 41 are formed by etching. It is formed. For convenience of explanation, in FIG. 1A, the boundary line of the partition region 50a that cannot be actually seen is shown by a solid line. In addition, although the partitioned areas 50a are arranged in a 30 × 30 matrix, only one partitioned area 50a is shown in FIG. 1, and description of the other partitioned areas is omitted. Moreover, the description about the inclined part formed in the peripheral part of the hollow parts 21 and 41 is abbreviate | omitted.

窪み部21、41を形成する工程は、以下のように行われる。図2(a)に示すように、ウェハWの表面20及び裏面40にCr(クロム)及びAu(金)からなる金属膜2及びレジスト膜3を夫々成膜し、図2(b)に示すようにフォトリグラフィーによりレジストマスクを形成すると共にKI(ヨウ化カリウム)溶液により金属膜2をエッチングして積層マスク4を形成する。そして図2(c)に示すように弗酸溶液にウェハWを浸漬してウェハWに対してエッチングを行い、ウェハWの表面20及び裏面40の素子群形成領域50の全域に亘って夫々窪み部21及び窪み部41を形成し、図2(d)に示すように金属膜2とレジスト膜3を剥離する。なお本実施形態では、裏面40に金属膜2やレジスト膜3を成膜する成膜処理等の処理を行う場合、ウェハWを反転させて処理を行う。また図1(b)、図2(a)ないし図2(b)は、図1(a)に示すウェハWの直径に該当する矢視A−Aの断面を模式的に示したものである。   The process of forming the hollow parts 21 and 41 is performed as follows. As shown in FIG. 2A, a metal film 2 and a resist film 3 made of Cr (chromium) and Au (gold) are formed on the front surface 20 and the back surface 40 of the wafer W, respectively, and shown in FIG. Thus, a resist mask is formed by photolithography and the metal film 2 is etched by a KI (potassium iodide) solution to form a laminated mask 4. Then, as shown in FIG. 2C, the wafer W is immersed in a hydrofluoric acid solution, and etching is performed on the wafer W, so that the entire surface of the element group forming region 50 on the front surface 20 and the back surface 40 of the wafer W is recessed. The part 21 and the hollow part 41 are formed, and the metal film 2 and the resist film 3 are peeled off as shown in FIG. In the present embodiment, when a process such as a film forming process for forming the metal film 2 or the resist film 3 on the back surface 40 is performed, the process is performed by inverting the wafer W. FIGS. 1B and 2A to 2B schematically show a cross section taken along the line AA corresponding to the diameter of the wafer W shown in FIG. .

こうして得られたウェハWを用い、以下のようにして水晶振動子用素子は形成される。まず図3(a)に示すように、ウェハWの窪み部21、41と表面20及び裏面40に夫々金属膜5及びレジスト膜6が成膜される。そして図3(b)に示すように、窪み部21のレジスト膜6に対してフォトリグラフィーによりレジストマスクを形成すると共にKI(ヨウ化カリウム)溶液により金属膜5をエッチングして積層マスク7を形成する。なお本実施形態ではレジストマスクの形成は縮小投影露光により行われ、露光機の初期設定は、表面20の上に成膜されたレジスト膜6に対して所望のレジストマスクを得ることが可能となるように設定されている。また図3は、図2と同じく図1(a)の矢視A−Aの断面を示している。   Using the wafer W obtained in this way, a crystal resonator element is formed as follows. First, as shown in FIG. 3A, the metal film 5 and the resist film 6 are formed on the recesses 21 and 41 and the front surface 20 and the back surface 40 of the wafer W, respectively. Then, as shown in FIG. 3B, a resist mask is formed on the resist film 6 in the depression 21 by photolithography, and the metal film 5 is etched with a KI (potassium iodide) solution to form a laminated mask 7. To do. In the present embodiment, the resist mask is formed by reduction projection exposure, and the initial setting of the exposure apparatus can obtain a desired resist mask for the resist film 6 formed on the surface 20. Is set to Moreover, FIG. 3 has shown the cross section of the arrow AA of FIG. 1 (a) similarly to FIG.

露光後に現像を行ってレジストマスクを形成し、このレジストマスクに沿ってエッチングを行うと、表面20側の各区画領域50a間の境界部位13bに金属膜5とレジスト膜6とが残り、この境界部位13bに残った金属膜5とレジスト膜6とによって厚み調整用の積層マスク7が形成される。次いで図3(c)に示すように弗酸溶液にウェハWを浸漬してエッチングを行い、区画領域50aごとにウェハWの厚みを調整するための凹部13を形成する。そして図3(d)に示すように金属膜5とレジスト膜6を剥離する。凹部13が形成されると、凹部13の底部13aの領域に対応する水晶、即ち凹部13の底部13aと裏面40側の窪み部41の底面との間の水晶の厚さが、所望の周波数特性を有しているかどうか測定を行い確認する。この測定は図4に示すような周波数を測定するためのプローブ装置10を用いて行う。まず図4(a)に示すようにウェハWを搬送し、ステージ11上に載置する。次いで、図4(b)に示すようにウェハWの上方からプローブ装置10の測定端子10aを底部13aに接触させ、底部13aの周波数測定を行う。そして底部13aと窪み部41間の厚さが所望の厚さに達していない場合には底部13aに部分的なエッチングを行い、底部13aと窪み部41間の厚さを微調整する。   After the exposure, development is performed to form a resist mask. When etching is performed along the resist mask, the metal film 5 and the resist film 6 remain in the boundary portion 13b between the partition regions 50a on the surface 20 side. A layered mask 7 for adjusting the thickness is formed by the metal film 5 and the resist film 6 remaining in the portion 13b. Next, as shown in FIG. 3C, the wafer W is immersed in a hydrofluoric acid solution and etching is performed to form the recess 13 for adjusting the thickness of the wafer W for each partition region 50a. Then, as shown in FIG. 3D, the metal film 5 and the resist film 6 are peeled off. When the recess 13 is formed, the crystal corresponding to the region of the bottom 13a of the recess 13, that is, the thickness of the crystal between the bottom 13a of the recess 13 and the bottom surface of the recess 41 on the back surface 40 side, has a desired frequency characteristic. Measure and confirm whether you have This measurement is performed using a probe apparatus 10 for measuring a frequency as shown in FIG. First, as shown in FIG. 4A, the wafer W is transported and placed on the stage 11. Next, as shown in FIG. 4B, the measurement terminal 10a of the probe apparatus 10 is brought into contact with the bottom 13a from above the wafer W, and the frequency of the bottom 13a is measured. When the thickness between the bottom portion 13a and the recess portion 41 does not reach a desired thickness, the bottom portion 13a is partially etched to finely adjust the thickness between the bottom portion 13a and the recess portion 41.

底部13aの領域に対応する水晶の厚さ(凹部13の底部13aと裏面40側の窪み部41の底面との間の水晶の厚さ)が、所望の周波数特性を得ることができる厚さに微調整されると底部13aの領域の水晶を用いて素子が形成される。まず図5(a)に示すように凹部13と、窪み部21、41、ウェハWの表面20及び裏面40に金属膜8及びレジスト膜9を成膜する。そしてこれらの金属膜8及びレジスト膜9に対して上述したフォトリソグラフィーとKI溶液によるエッチングを行い、図5(b)に示すように水晶片1の外形形成を行うための外形マスクパターン68を形成する。次いで、外形マスクパターン68に沿ってウェハWをエッチングして、図5(c)に示すようにウェハWから素子の基体となる水晶片1を形成し、残存している金属膜8とレジスト膜9を剥離する。このとき水晶片1は、細い橋形状の接続支持部15によってウェハWに接続支持された状態となる。   The thickness of the crystal corresponding to the region of the bottom portion 13a (the thickness of the crystal between the bottom portion 13a of the recess 13 and the bottom surface of the recess portion 41 on the back surface 40 side) is such that a desired frequency characteristic can be obtained. When fine adjustment is performed, an element is formed using the crystal in the region of the bottom portion 13a. First, as shown in FIG. 5A, the metal film 8 and the resist film 9 are formed on the recess 13, the recesses 21 and 41, and the front surface 20 and the back surface 40 of the wafer W. Then, the metal film 8 and the resist film 9 are etched by the above-described photolithography and KI solution to form an outer shape mask pattern 68 for forming the outer shape of the crystal piece 1 as shown in FIG. To do. Next, the wafer W is etched along the outer shape mask pattern 68 to form the crystal piece 1 as the base of the element from the wafer W as shown in FIG. 5C, and the remaining metal film 8 and resist film 9 is peeled off. At this time, the crystal piece 1 is connected and supported on the wafer W by the thin bridge-shaped connection support portion 15.

水晶片1が形成されると、図6(a)に示すように水晶片1の全面に金属膜16及びレジスト膜17が成膜され、図6(b)に示すようにフォトリソグラフィーとKI溶液によるエッチングによってマスクパターンが形成される。そして図6(c)に示すように金属膜16をエッチングして、励振電極51、52と引き出し電極53、54を形成し、レジスト膜17を除去すると共に、図6(d)に示すように例えばレーザーダイジングにより接続支持部15を切削することにより、図7に示すような個片の水晶振動子用素子が形成される。なお図5、図6は、図3に示すウェハWの+X側のウェハWの一部分のみを示している。   When the crystal piece 1 is formed, a metal film 16 and a resist film 17 are formed on the entire surface of the crystal piece 1 as shown in FIG. 6A, and photolithography and KI solution are shown in FIG. 6B. A mask pattern is formed by the etching. Then, as shown in FIG. 6C, the metal film 16 is etched to form excitation electrodes 51 and 52 and extraction electrodes 53 and 54, the resist film 17 is removed, and as shown in FIG. 6D. For example, by cutting the connection support portion 15 by laser dicing, individual crystal resonator elements as shown in FIG. 7 are formed. 5 and 6 show only a part of the wafer W on the + X side of the wafer W shown in FIG.

この水晶振動子用素子は、図7(a)、図7(b)に示すように、水晶片1の素子表面22に励振電極51、素子裏面42に励振電極52が形成され、励振電極51には引き出し電極53、励振電極52には引き出し電極54が夫々接続されている。この引き出し電極53、54は、接続している励振電極51、52が形成された素子表面22及び素子裏面42から、接続支持部15が形成されていた側面15aへと伸び、側面15aを介して対向する素子表面22及び素子裏面42へと延長されている。そのため引き出し電極53、34は側面15aで並ぶように形成されることになる。   As shown in FIGS. 7A and 7B, this crystal resonator element has an excitation electrode 51 formed on the element surface 22 of the crystal piece 1 and an excitation electrode 52 formed on the element back surface 42. Are connected to the extraction electrode 53, and the excitation electrode 52 is connected to the extraction electrode 54. The lead electrodes 53 and 54 extend from the element surface 22 and the element back surface 42 on which the connected excitation electrodes 51 and 52 are formed, to the side surface 15a on which the connection support portion 15 is formed, and through the side surface 15a. It extends to the element surface 22 and the element back surface 42 facing each other. Therefore, the extraction electrodes 53 and 34 are formed to be aligned on the side surface 15a.

上述した実施形態によれば、素子群形成領域50に窪み部21、41を形成してその全体を両面側から薄くした後、当該素子群形成領域50にフォトリソエッチングにより、区画領域50aごとに積層マスク7を形成し、各区画の厚さ調整、水晶片1の外形形成、各電極の形成を行う。そのため区画領域50aごとに積層マスク7を形成するためのフォトリソ工程による露光時や、底部13aと裏面40間の厚さの微調整を行うためのプローブ10を用いた周波数の測定時に、ステージ11等に載置されてもステージ11と対向する素子群形成領域50はステージ11から浮いた状態となってステージ11と接触しない。従って、素子群形成領域50への異物の付着や損傷を防止でき、この素子群形成領域50に配列された区画領域50aで形成される水晶振動子用素子への異物の付着や損傷を防止することができる。   According to the above-described embodiment, after the depressions 21 and 41 are formed in the element group formation region 50 and the whole is thinned from both sides, the element group formation region 50 is laminated for each partition region 50a by photolithography etching. A mask 7 is formed, and the thickness of each section is adjusted, the outer shape of the crystal piece 1 is formed, and each electrode is formed. For this reason, the stage 11 or the like is used at the time of exposure by a photolithography process for forming the laminated mask 7 for each partition region 50a, or at the time of measuring the frequency using the probe 10 for fine adjustment of the thickness between the bottom 13a and the back surface 40. The element group forming region 50 facing the stage 11 is in a state of being lifted from the stage 11 and is not in contact with the stage 11. Accordingly, the adhesion and damage of foreign matter to the element group formation region 50 can be prevented, and the adhesion and damage of foreign matter to the crystal resonator element formed by the partition region 50a arranged in the element group formation region 50 can be prevented. be able to.

またウェハWから水晶片1を形成し、励振電極51、52と、引き出し電極53、54とを形成する際に、素子群形成領域50の全面に形成された窪み部21、41によって、水晶振動子用素子は切り離されるまで全ての面が他の部材と接触しないことになるので、水晶振動子用素子の形成工程においても水晶片1に対する異物の付着、損傷等は抑止されることになる。そして形成される水晶振動子の特性劣化を防ぎ、所望の周波数特性を備えた水晶振動子用素子を形成することができる。これに対して、区画領域だけをウェハWの片面からエッチングして厚さを調整する場合には、載置台に設置される側の面に異物の付着し、また損傷しやすくなるという問題が生じるため、区画領域50aの群全体つまり素子群形成領域50の全体を予め薄くしておく方が優れている。   Further, when the crystal piece 1 is formed from the wafer W, and the excitation electrodes 51 and 52 and the extraction electrodes 53 and 54 are formed, the crystal vibration is caused by the depressions 21 and 41 formed on the entire surface of the element group formation region 50. Since all the surfaces of the child element do not come into contact with other members until the element is separated, adhesion of foreign matters to the crystal piece 1, damage, and the like are suppressed even in the process of forming the crystal oscillator element. Then, it is possible to prevent deterioration of characteristics of the formed crystal resonator and to form a crystal resonator element having desired frequency characteristics. On the other hand, when the thickness is adjusted by etching only the partition area from one side of the wafer W, there arises a problem that foreign matters adhere to the surface on the side where the mounting table is placed and are easily damaged. Therefore, it is better to thin the entire group of partition regions 50a, that is, the entire element group formation region 50 in advance.

また本実施形態では、素子群形成領域50を薄くするために深さ0.5μmないし5μmの窪み部21、41を形成している。一方既述のように本実施形態では縮小投影露光によりレジストマスクの形成を行い、露光機の初期設定は、表面20の上に成膜されたレジスト膜6に対して所望のレジストマスクを得ることが可能となるように設定されている。そのため露光時に窪み部21、41のレジスト膜6に照射される光の結像位置が、この窪み部21、41の深さの分だけ変化する。従って所望のレジストマスクの形状と、実際に形成されるレジストマスクの形状との間には、窪み部21、41の深さの分だけギャップが生じることになる。しかしながら窪み部21、41の深さを0.5μmないし5μmとしているため、フォトリソ時に光の幅にギャップが生じたとしてもレジストマスクの形状のギャップを許容範囲内に抑えることができる。これにより焦点深度を修正して再設定できる機能のない露光機を使用する場合でも、精度高く露光を行い、所望のレジストマスクを得ることができる。   In the present embodiment, in order to make the element group formation region 50 thin, the depressions 21 and 41 having a depth of 0.5 μm to 5 μm are formed. On the other hand, as described above, in this embodiment, a resist mask is formed by reduced projection exposure, and the initial setting of the exposure machine is to obtain a desired resist mask for the resist film 6 formed on the surface 20. Is set to be possible. For this reason, the imaging position of the light applied to the resist film 6 in the depressions 21 and 41 during exposure changes by the depth of the depressions 21 and 41. Accordingly, a gap corresponding to the depth of the recesses 21 and 41 is generated between the desired resist mask shape and the actually formed resist mask shape. However, since the depths of the recesses 21 and 41 are set to 0.5 μm to 5 μm, the gap of the resist mask shape can be kept within an allowable range even if a gap occurs in the width of light during photolithography. Thus, even when using an exposure machine that does not have the function of correcting and resetting the focal depth, exposure can be performed with high accuracy and a desired resist mask can be obtained.

また窪み部21、41は、素子群形成領域50に異物が付着したり、素子群形成領域50が損傷したりすることを防止する目的で形成されており、その深さは5μmあれば充分に効果を発揮することが知られている。つまり窪み部21、41の深さが5μm以上であっても異物の付着や損傷を防止に効果を奏する。しかしながら、この深さを深くすると窪み部21、41を形成する工程で作業時間が増大することになるため、窪み部21、41を深くすることは好ましくない。そこで本実施形態では、窪み部21、41の深さを、0.5μmないし5μm程度にすることで窪み部21、41を形成する工程で作業時間が増大することを抑えている。   The depressions 21 and 41 are formed for the purpose of preventing foreign matter from adhering to the element group forming region 50 and damaging the element group forming region 50, and the depth of 5 μm is sufficient. It is known to be effective. That is, even if the depths of the recesses 21 and 41 are 5 μm or more, there is an effect in preventing the adhesion and damage of foreign matters. However, if this depth is increased, the working time increases in the step of forming the recesses 21 and 41, and therefore it is not preferable to increase the recesses 21 and 41. Therefore, in the present embodiment, the depth of the depressions 21 and 41 is set to about 0.5 μm to 5 μm, thereby suppressing an increase in working time in the process of forming the depressions 21 and 41.

なお本発明の実施の形態としては、素子形成領域は実施形態の素子群形成領域50のようにウェハWの全体に亘る1つの領域でなくてもよい。例えば実施形態の素子形成領域を4分割して夫々の素子形成領域に窪み部を設け、各素子形成領域間が連結されないように個別化し、各素子形成領域で水晶振動子用素子を形成してもよい。また本実施形態では、矩形状の水晶振動子用素子の製造方法について説明したが、本発明の実施の形態としては、音叉型の水晶振動子用素子を製造する製造方法にも適用可能である。   In the embodiment of the present invention, the element formation region may not be one region over the entire wafer W like the element group formation region 50 of the embodiment. For example, the element formation region of the embodiment is divided into four parts, each of the element formation regions is provided with a recess, and individual element formation regions are not connected to each other, and a crystal resonator element is formed in each element formation region. Also good. In the present embodiment, the method for manufacturing a rectangular crystal resonator element has been described. However, the embodiment of the present invention can also be applied to a manufacturing method for manufacturing a tuning fork type crystal resonator element. .

次に本実施形態の水晶振動子用素子を使用した水晶振動子70について図8を参照して説明する。図8(a)、図8(b)に示すように水晶振動子70は、水晶振動子用素子の引き出し電極32、33を外装体(容器)71内に設けられた一対の電極72に導電性接着剤73によって電気的に接続する態様で固着することによって搭載する。そして外装体71の下部に設けられた外部電極74と電極72とは、外装体71内の配線を介して電気的に接続されており、この外部電極74を電子機器の電極と接続することによって水晶振動子用素子は電子部品と電気的に接続される。従って本実施形態の水晶振動子用素子を搭載した電子部品を提供することが可能となる。なおこのような電子部品としては、例えば通信機器や計測機器等がある。   Next, a crystal resonator 70 using the crystal resonator element of the present embodiment will be described with reference to FIG. As shown in FIGS. 8A and 8B, the crystal resonator 70 conducts the lead electrodes 32 and 33 of the crystal resonator element to a pair of electrodes 72 provided in an exterior body (container) 71. It mounts by adhering in the aspect electrically connected by the adhesive agent 73. FIG. And the external electrode 74 and the electrode 72 provided in the lower part of the exterior body 71 are electrically connected via the wiring in the exterior body 71, By connecting this external electrode 74 with the electrode of an electronic device, The crystal resonator element is electrically connected to the electronic component. Therefore, it is possible to provide an electronic component on which the crystal resonator element of this embodiment is mounted. Examples of such electronic components include communication devices and measuring devices.

本実施形態の水晶振動子用素子を得るためのウェハWについて説明するための第1の説明図である。It is the 1st explanatory view for explaining wafer W for obtaining the element for crystal oscillators of this embodiment. 本実施形態の水晶振動子用素子の製造工程について説明するための第1の説明図である。It is a 1st explanatory view for explaining the manufacturing process of the element for crystal oscillators of this embodiment. 本実施形態の水晶振動子用素子の製造工程について説明するための第2の説明図である。It is the 2nd explanatory view for explaining the manufacturing process of the element for crystal oscillators of this embodiment. 本実施形態のウェハWの周波数測定について説明するための説明図である。It is explanatory drawing for demonstrating the frequency measurement of the wafer W of this embodiment. 本実施形態の水晶振動子用素子の製造工程について説明するための第3の説明図である。It is a 3rd explanatory view for explaining the manufacturing process of the element for crystal oscillators of this embodiment. 本実施形態の水晶振動子用素子の製造工程について説明するための第4の説明図である。It is the 4th explanatory view for explaining the manufacturing process of the element for crystal oscillators of this embodiment. 本実施形態の水晶振動子用素子の斜視図である。It is a perspective view of the element for crystal oscillators of this embodiment. 本実施形態の水晶振動子の平面図である。It is a top view of the crystal oscillator of this embodiment. 従来のウェハW1の周波数測定について説明するための説明図である。It is explanatory drawing for demonstrating the frequency measurement of the conventional wafer W1.

符号の説明Explanation of symbols

1 水晶片
2、5、8、16 金属膜
3、6、9、17 レジスト膜
4、7 積層マスク
10、110 プローブ
11、111 ステージ
13、103 凹部
13a 底部
13b 境界部位
15 接続支持部
20 表面
21、41 窪み部
22 素子表面
40 裏面
42 素子裏面
50 素子群形成領域(形成領域全体)
50a 区画領域(形成領域)
51、52 励振電極
53、54 引き出し電極
68 外形マスクパターン
70 水晶振動子
W、W1 ウェハ
DESCRIPTION OF SYMBOLS 1 Crystal piece 2, 5, 8, 16 Metal film 3, 6, 9, 17 Resist film 4, 7 Laminated mask 10, 110 Probe 11, 111 Stage 13, 103 Recessed part 13a Bottom part 13b Boundary part 15 Connection support part 20 Surface 21 41 Indentation part 22 Element surface 40 Back surface 42 Element back surface 50 Element group formation area (entire formation area)
50a Partition area (formation area)
51, 52 Excitation electrode 53, 54 Extraction electrode 68 External mask pattern 70 Crystal resonator W, W1 Wafer

Claims (4)

水晶基板に複数の水晶片の外形を形成するときに、電極を形成し、その後当該水晶片を個片化する水晶振動子用素子の製造方法において、
その両面側における水晶振動子用素子群の形成領域全体を窪ませて他の領域よりも薄くした水晶基板を用い、
前記水晶振動子用素子群の形成領域に水晶振動子用素子の各々の形成領域間の境界部位にマスクを形成して、前記各々の形成領域における前記水晶基板の厚さをエッチングにより周波数に対応する寸法に調整する工程と、
次いで前記各々の形成領域に前記水晶片の外形形成用マスクを形成し、当該外形形成用マスクに沿って形成領域の水晶をエッチングにより除去し、水晶片の外形を形成する工程と、を含むことを特徴とする水晶振動子用素子の製造方法。
In the manufacturing method of the element for a crystal resonator that forms an electrode when forming the outer shape of a plurality of crystal pieces on a crystal substrate, and then separates the crystal pieces,
Using a quartz substrate that has been made thinner than the other regions by denting the entire formation region of the crystal resonator element group on both sides,
A mask is formed at the boundary between the formation regions of the crystal resonator elements in the formation region of the crystal resonator element group, and the thickness of the crystal substrate in each formation region corresponds to the frequency by etching. Adjusting the dimensions to be
Then, forming a mask for forming the outer shape of the crystal piece in each of the forming regions, and removing the crystal in the forming region by etching along the mask for forming the outer shape to form the outer shape of the crystal piece. A method for manufacturing an element for a crystal resonator.
前記水晶振動子用素子群の形成領域は、複数の水晶振動子用素子の形成領域が縦横に配列された領域であることを特徴とする請求項1に記載の水晶振動子用素子の製造方法。   2. The method for manufacturing a crystal resonator element according to claim 1, wherein the formation region of the crystal resonator element group is a region in which a plurality of crystal resonator element formation regions are arranged vertically and horizontally. . 前記各々の形成領域における水晶基板の厚さを調整する工程の前の、水晶振動子用素子群の形成領域は、その深さが0.5ないし5μmであることを特徴とする請求項1または2に記載の水晶振動子用素子の製造方法。   2. The crystal resonator element group formation region before the step of adjusting the thickness of the crystal substrate in each of the formation regions has a depth of 0.5 to 5 μm. 3. A method for producing a crystal resonator element according to 2. 請求項1ないし3の何れか一項に記載の水晶振動子用素子の製造方法により製造されたことを特徴とする水晶振動子用素子。   A crystal resonator element manufactured by the method for manufacturing a crystal resonator element according to claim 1.
JP2008266588A 2008-10-15 2008-10-15 Method for manufacturing element for crystal resonator Expired - Fee Related JP5434042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266588A JP5434042B2 (en) 2008-10-15 2008-10-15 Method for manufacturing element for crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266588A JP5434042B2 (en) 2008-10-15 2008-10-15 Method for manufacturing element for crystal resonator

Publications (2)

Publication Number Publication Date
JP2010098457A true JP2010098457A (en) 2010-04-30
JP5434042B2 JP5434042B2 (en) 2014-03-05

Family

ID=42259845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266588A Expired - Fee Related JP5434042B2 (en) 2008-10-15 2008-10-15 Method for manufacturing element for crystal resonator

Country Status (1)

Country Link
JP (1) JP5434042B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186231A (en) * 2014-03-26 2015-10-22 京セラクリスタルデバイス株式会社 Piezoelectric vibration element, piezoelectric device and method for manufacturing piezoelectric vibration element
JP2019169511A (en) * 2018-03-22 2019-10-03 新日本無線株式会社 Method for manufacturing ultrasonic transducer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102654A (en) * 1999-10-01 2001-04-13 Toyo Commun Equip Co Ltd Method and device for manufacturing ultrathin piezoelectric resonator original plate
JP2001220293A (en) * 2000-02-14 2001-08-14 Seiko Epson Corp Method for processing quartz surface and method for producing quartz device
JP2002171008A (en) * 2000-11-30 2002-06-14 Seiko Epson Corp Piezoelectric element piece and manufacturing method of piezoelectric device
JP2002314162A (en) * 2001-04-12 2002-10-25 Toyo Commun Equip Co Ltd Crystal substrate and its manufacturing method
JP2003110388A (en) * 2001-09-28 2003-04-11 Citizen Watch Co Ltd Piezoelectric oscillator element and manufacturing method thereof, and piezoelectric device
JP2006262005A (en) * 2005-03-16 2006-09-28 Epson Toyocom Corp Piezoelectric wafer structure
JP2008011278A (en) * 2006-06-29 2008-01-17 Nippon Dempa Kogyo Co Ltd Method of manufacturing crystal piece, crystal piece, crystal vibrator, and electronic component
JP2008113382A (en) * 2006-10-31 2008-05-15 Nippon Dempa Kogyo Co Ltd Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and electronic component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102654A (en) * 1999-10-01 2001-04-13 Toyo Commun Equip Co Ltd Method and device for manufacturing ultrathin piezoelectric resonator original plate
JP2001220293A (en) * 2000-02-14 2001-08-14 Seiko Epson Corp Method for processing quartz surface and method for producing quartz device
JP2002171008A (en) * 2000-11-30 2002-06-14 Seiko Epson Corp Piezoelectric element piece and manufacturing method of piezoelectric device
JP2002314162A (en) * 2001-04-12 2002-10-25 Toyo Commun Equip Co Ltd Crystal substrate and its manufacturing method
JP2003110388A (en) * 2001-09-28 2003-04-11 Citizen Watch Co Ltd Piezoelectric oscillator element and manufacturing method thereof, and piezoelectric device
JP2006262005A (en) * 2005-03-16 2006-09-28 Epson Toyocom Corp Piezoelectric wafer structure
JP2008011278A (en) * 2006-06-29 2008-01-17 Nippon Dempa Kogyo Co Ltd Method of manufacturing crystal piece, crystal piece, crystal vibrator, and electronic component
JP2008113382A (en) * 2006-10-31 2008-05-15 Nippon Dempa Kogyo Co Ltd Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186231A (en) * 2014-03-26 2015-10-22 京セラクリスタルデバイス株式会社 Piezoelectric vibration element, piezoelectric device and method for manufacturing piezoelectric vibration element
JP2019169511A (en) * 2018-03-22 2019-10-03 新日本無線株式会社 Method for manufacturing ultrasonic transducer
JP7048030B2 (en) 2018-03-22 2022-04-05 日清紡マイクロデバイス株式会社 Manufacturing method of ultrasonic oscillator

Also Published As

Publication number Publication date
JP5434042B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US8093787B2 (en) Tuning-fork-type piezoelectric vibrating piece with root portions having tapered surfaces in the thickness direction
JP4933903B2 (en) Quartz vibrator, quartz vibrator and quartz wafer
US8156621B2 (en) Methods of producing piezoelectric vibrating devices
JP4435758B2 (en) Method for manufacturing crystal piece
US20130193807A1 (en) Quartz crystal vibrating piece and quartz crystal device
JP2006203700A (en) Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator
US20120169182A1 (en) At-cut quartz-crystal vibrating pieces and devices, and methods for manufacturing same
JP2008113382A (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and electronic component
JP5434042B2 (en) Method for manufacturing element for crystal resonator
JP2010136202A (en) Method of manufacturing piezoelectric oscillating piece, piezoelectric oscillating piece, and piezoelectric resonator
TW201304406A (en) Crystal device, method of manufacturing crystal device, piezoelectric vibrator, oscillator, electronic apparatus, and radio timepiece
JP4600140B2 (en) Method for manufacturing piezoelectric vibrating piece
TW201251315A (en) Manufacturing method of piezoelectric vibration sheet, piezoelectric vibrator, oscillator, electronic machine and electric wave clock
JP2010283805A (en) Manufacturing method of manufacturing tuning fork type piezoelectric vibration piece, tuning fork type piezoelectric vibration piece, and piezoelectric vibration device
JP2007142795A (en) Method of manufacturing piezoelectric vibration chip, and method of forming alignment marker
JP2007096369A (en) Metal mask and method of cutting piezoelectric resonator element
JP5031526B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP5362293B2 (en) Manufacturing method of component with built-in piezoelectric element
JP2014176071A (en) Piezoelectric vibration piece and piezoelectric device
JP2010010955A (en) Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator
JP2006140803A (en) Mesa-type piezoelectric vibrator and its manufacturing method
JP5002304B2 (en) Manufacturing method of crystal unit
JP2008113389A (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and electronic component
JP4864581B2 (en) Method for manufacturing piezoelectric vibrator
JP6240531B2 (en) Method for manufacturing piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees