JP2006203700A - Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator - Google Patents

Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator Download PDF

Info

Publication number
JP2006203700A
JP2006203700A JP2005014792A JP2005014792A JP2006203700A JP 2006203700 A JP2006203700 A JP 2006203700A JP 2005014792 A JP2005014792 A JP 2005014792A JP 2005014792 A JP2005014792 A JP 2005014792A JP 2006203700 A JP2006203700 A JP 2006203700A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
piezoelectric
base material
substrate base
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005014792A
Other languages
Japanese (ja)
Inventor
Takeshi Yamashita
剛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005014792A priority Critical patent/JP2006203700A/en
Publication of JP2006203700A publication Critical patent/JP2006203700A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the malfunction that a characteristic variation occurs due to the occurrence of burr and deficiency on a cut surface of a diaphragm. <P>SOLUTION: This method for manufacturing a piezoelectric substrate 2 configured to form a recessed part 3 on at least one principal plane side by providing a thin diaphragm 4 and a thick reinforcing part 5 integrally surrounding at least a portion of an outer circumferential edge of the diaphragm comprises a piezoelectric substrate base material basic form processing process for manufacturing a piezoelectric substrate base material obtained by connecting a plurality of piezoelectric substrates in a sheet shape, a masking process for masking a recessed part formed plane side of the piezoelectric substrate base material and masking a plane other than elongated non-mask areas provided along boundary lines of individual piezoelectric substrate areas about the rear plane of the piezoelectric base material, an etching process for eliminating a piezoelectric substrate part in the non-mask area by etching to form a through slit, a mask eliminating process for eliminating a mask formed on the both plane sides of the piezoelectric substrate base material, and a dividing process for performing division into individual pieces of the piezoelectric substrate along the through slit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は超薄肉の振動板の少なくとも一部を厚肉の補強部で一体的に包囲、支持した構造の圧電基板の製造方法、その製造方法によって製造した圧電基板に励振電極等の導電パターンを形成した圧電振動素子、この圧電振動素子をパッケージ内に気密封止した圧電振動子、更にはこの圧電振動子を用いた圧電発振器の改良に関し、特に50MHz以上の共振周波数を出力するために大面積の圧電ウェハに対してエッチングによって複数の凹陥部を形成することによって超薄肉の振動板を有した圧電基板をバッチ処理形成する場合に、従来圧電基板母材を個片に分離する作業を機械的切断によって行っていたために発生していた不具合を解決することを可能とした技術に関する。   The present invention relates to a method for manufacturing a piezoelectric substrate having a structure in which at least a part of an ultrathin diaphragm is integrally surrounded and supported by a thick reinforcing portion, and a conductive pattern such as an excitation electrode on the piezoelectric substrate manufactured by the manufacturing method. In particular, a piezoelectric vibrator in which the piezoelectric vibrator is hermetically sealed in a package, and further improvement of a piezoelectric oscillator using the piezoelectric vibrator, especially for outputting a resonance frequency of 50 MHz or more. When a piezoelectric substrate having an ultra-thin diaphragm is formed by batch processing by forming a plurality of concave portions by etching a piezoelectric wafer having an area, the conventional work for separating the piezoelectric substrate base material into individual pieces is performed. The present invention relates to a technology that can solve a problem that has occurred due to mechanical cutting.

水晶振動子の如く、圧電振動素子をパッケージ内に気密封止した構造の表面実装型の圧電デバイスは、携帯電話機、ページャ等の通信機器や、コンピュータ等の電子機器等において、基準周波数発生源、フィルタ等として利用されているが、これらの各種機器の小型化に対応して圧電デバイスに対しても小型化が求められている。
また、表面実装用の圧電デバイスとしての圧電発振器は、例えばセラミック等から成るパッケージ本体の上面に形成された凹所内に、圧電振動素子と、発振回路を構成する回路部品を収納した状態で凹所開口を金属蓋により封止した構成を備えている。
従来から、上記の如き圧電デバイスに使用される圧電振動素子として、基本波周波数が50MHz以上の高周波化に対応できるように圧電基板の片側表面を一部掘削することにより凹陥部を形成してその底面を十数μm程度の超薄肉の振動板とすると共に、この振動板周縁を厚肉の補強部により一体的に包囲した構造の圧電基板と、この振動板の表裏両面に夫々形成した入出力用の電極と接地電極と、から成る圧電振動素子が知られている(特開平9−55635号公報)。
ところで、特開2002−33640公報には、矩形の超薄肉振動板の2辺をL字状の厚肉部によって支持し、他の2辺は厚肉部により支持せずにフリーにすることによりチップの小型化を図った圧電振動素子が開示されている。このような圧電振動素子を大面積の圧電基板母材を用いてバッチ処理によって量産する場合には、エッチングによって個々の圧電基板個片に対して凹陥部を形成する加工工程を実施してから、最終段階の切断工程において、十数μm厚の超薄肉振動板をダイシングソーによって機械的に切断する必要がある。しかし、この切断作業に伴って切断部にバリや欠損が発生し易く、また切断面のシャープさが損なわれて粗面化し、特性のバラツキの原因となる可能性がある。
特開平9−55635号公報 特開2002−33640公報
A surface-mount type piezoelectric device having a structure in which a piezoelectric vibration element is hermetically sealed in a package, such as a crystal resonator, is used as a reference frequency generation source in communication devices such as mobile phones and pagers, and electronic devices such as computers. Although used as a filter or the like, the piezoelectric devices are also required to be miniaturized in response to the miniaturization of these various devices.
In addition, a piezoelectric oscillator as a surface-mounting piezoelectric device has a recess in a state where a piezoelectric vibration element and a circuit component constituting an oscillation circuit are housed in a recess formed on an upper surface of a package body made of, for example, ceramic. The opening is sealed with a metal lid.
Conventionally, as a piezoelectric vibration element used in the piezoelectric device as described above, a concave portion is formed by excavating a part of one surface of a piezoelectric substrate so as to cope with a higher frequency of a fundamental wave frequency of 50 MHz or more. The bottom surface is an ultra-thin diaphragm with a thickness of about a dozen μm, and the piezoelectric substrate has a structure in which the periphery of the diaphragm is integrally surrounded by a thick reinforcing portion, and an input formed on both sides of the diaphragm. A piezoelectric vibration element including an output electrode and a ground electrode is known (Japanese Patent Laid-Open No. 9-55635).
In JP-A-2002-33640, two sides of a rectangular ultrathin diaphragm are supported by an L-shaped thick part, and the other two sides are not supported by a thick part and are free. Thus, there is disclosed a piezoelectric vibration element in which a chip is miniaturized. When mass-producing such a piezoelectric vibration element by batch processing using a large-area piezoelectric substrate base material, after performing a processing step of forming a recessed portion on each piezoelectric substrate piece by etching, In the final cutting process, it is necessary to mechanically cut an ultrathin diaphragm having a thickness of several tens of μm with a dicing saw. However, there is a possibility that burrs and defects are likely to occur at the cut portion along with this cutting work, and the sharpness of the cut surface is impaired and roughened, which may cause variations in characteristics.
Japanese Patent Laid-Open No. 9-55635 JP 2002-33640 A

本発明は上記に鑑みてなされたものであり、50MHz以上の共振周波数を出力可能な極薄の振動板と、振動板の少なくとも一部を支持する厚肉部とを備えた圧電基板を製造する際に、圧電基板母材上の個片領域をエッチング等により所定の形状に加工してから、圧電基板個片の振動板の周縁部に沿って切断するバッチ処理を実施する場合に、振動板の切断面にバリや欠損が発生したり、粗面化することにより、特性のバラツキが発生する不具合を解消することができる圧電基板の製造方法、圧電振動素子、圧電振動子、及び圧電発振器を提供することを目的とする。   The present invention has been made in view of the above, and manufactures a piezoelectric substrate including an ultrathin diaphragm capable of outputting a resonance frequency of 50 MHz or more and a thick portion supporting at least a part of the diaphragm. In the case of performing batch processing in which the individual region on the piezoelectric substrate base material is processed into a predetermined shape by etching or the like and then cut along the peripheral portion of the diaphragm of the piezoelectric substrate piece, A method of manufacturing a piezoelectric substrate, a piezoelectric vibration element, a piezoelectric vibrator, and a piezoelectric oscillator that can eliminate the problem of variation in characteristics caused by burrs or defects on the cut surface or roughening the surface. The purpose is to provide.

上記課題を解決するため、請求項1に係る薄肉の振動板と、該振動板の外周縁に一体化した厚肉の補強部と、を備えることにより、少なくとも一方の主面側に凹陥部を形成した構成の圧電基板の製造方法であって、複数の圧電基板をシート状に連結した圧電基板母材を製作する圧電基板母材の基本形状加工工程と、前記圧電基板母材の前記凹陥部形成面側をマスクすると共に、該圧電基板母材の裏面については個々の圧電基板領域の境界線に沿って設けた細長い非マスク領域を除いた面にマスクを施すマスキング工程と、前記圧電基板母材裏面の非マスク領域内の圧電基板部分をエッチングにより除去して貫通スリットを形成するエッチング工程と、前記圧電基板母材の両面側に形成した前記マスクを除去するマスク除去工程と、前記貫通スリットに沿って圧電基板個片に分割する分割工程と、から成ることを特徴とする。
請求項2の発明は、請求項1において、前記圧電基板母材の基本形状加工工程は、圧電基板母材の表裏両面を金属マスクにより被覆する金属マスク形成工程と、前記圧電基板母材の表面側の金属マスク上に所定のパターンにて形成したレジスト膜を用いて圧電基板個片の凹陥部形成用パターン及び圧電基板個片間の境界線に沿った外形パターンを形成するパターン形成工程と、前記レジスト膜から露出する前記金属マスクを除去する金属マスク除去工程と、前記レジスト膜を除去するレジスト膜除去工程と、前記レジスト膜を除去した後に残留した金属マスクパターンを用いて、露出した圧電基板母材表面をエッチングすることにより、前記圧電基板個片の凹陥部と、各圧電基板個片間の境界線に相当する圧電基板母材表面を所要深さに掘り下げて凹所とし、各凹所内底面に薄肉部を形成する掘り下げ工程と、圧電基板母材表裏両面に夫々残留する金属マスクを除去する金属マスク除去工程と、各圧電基板個片の凹陥部内底面に位置する振動板の共振周波数を微調整する周波数微調整工程と、を備えていることを特徴とする。
請求項3の発明に係る圧電振動素子は、請求項1又は2の何れか一項に記載の製造方法によって製造されたことを特徴とする圧電基板と、該圧電基板の振動板の表裏両面に夫々形成した励振電極と、各励振電極から圧電基板の補強部に引き出されるリード電極と、を備えたことを特徴とする。
請求項4の発明に係る圧電振動子は、請求項3に記載の圧電振動素子と、該圧電振動素子を気密封止したパッケージと、を備えたことを特徴とする。
請求項5の発明に係る圧電発振器は、請求項3に記載の圧電振動素子、或いは請求項4に記載の圧電振動子と、発振回路と、を備えたことを特徴とする。
In order to solve the above-described problem, the thin diaphragm according to claim 1 and a thick reinforcing part integrated with the outer peripheral edge of the diaphragm are provided, so that a recess is formed on at least one main surface side. A method of manufacturing a piezoelectric substrate having a formed configuration, the basic shape processing step of a piezoelectric substrate base material for manufacturing a piezoelectric substrate base material in which a plurality of piezoelectric substrates are connected in a sheet shape, and the recessed portion of the piezoelectric substrate base material A masking step of masking the formation surface side, and masking the back surface of the piezoelectric substrate base material on a surface excluding the elongated non-mask region provided along the boundary line of each piezoelectric substrate region; An etching step of removing a piezoelectric substrate portion in a non-mask region on the back surface of the material by etching to form a through slit; a mask removing step of removing the mask formed on both sides of the piezoelectric substrate base material; Characterized in that it consists of a dividing step of dividing the piezoelectric substrate pieces, along Tsu bets.
According to a second aspect of the present invention, in the first aspect, the basic shape processing step of the piezoelectric substrate base material includes a metal mask forming step of covering both front and back surfaces of the piezoelectric substrate base material with a metal mask, and a surface of the piezoelectric substrate base material. A pattern forming step of forming a recess portion forming pattern of the piezoelectric substrate pieces and an outer shape pattern along a boundary line between the piezoelectric substrate pieces using a resist film formed in a predetermined pattern on the side metal mask; An exposed piezoelectric substrate using a metal mask removing process for removing the metal mask exposed from the resist film, a resist film removing process for removing the resist film, and a metal mask pattern remaining after removing the resist film By etching the surface of the base material, the concave portions of the piezoelectric substrate pieces and the piezoelectric substrate base material surface corresponding to the boundary line between the piezoelectric substrate pieces are dug to the required depth. A recessing process for forming a thin portion on the bottom surface of each recess, a metal mask removing process for removing the metal mask remaining on both the front and back surfaces of the base material of the piezoelectric substrate, and an inner bottom surface of the recess portion of each piezoelectric substrate piece And a frequency fine adjustment step of finely adjusting the resonance frequency of the diaphragm located at the position.
A piezoelectric vibration element according to a third aspect of the invention is manufactured by the manufacturing method according to any one of the first and second aspects, and on both the front and back surfaces of the vibration plate of the piezoelectric substrate. It is characterized by comprising excitation electrodes formed respectively and lead electrodes drawn out from the respective excitation electrodes to the reinforcing portion of the piezoelectric substrate.
According to a fourth aspect of the present invention, a piezoelectric vibrator includes the piezoelectric vibration element according to the third aspect and a package in which the piezoelectric vibration element is hermetically sealed.
A piezoelectric oscillator according to a fifth aspect of the invention includes the piezoelectric vibration element according to the third aspect, or the piezoelectric vibrator according to the fourth aspect, and an oscillation circuit.

本発明によれば、フォトリソグラフィ技術によるエッチングにより、圧電基板母材から圧電基板個片を分離するようにしたので、基板端面にバリや欠損が形成されなくなり、振動板の端縁をシャープに形成できる。また、フォトリソグラフィ技術により高精度にチップ外形寸法を形成できるので、特性のバラツキを抑えることができる。また、フォトリソグラフィ技術によれば、機械的切断では実現困難な形状の水晶基板を製作することができる。   According to the present invention, since the piezoelectric substrate piece is separated from the piezoelectric substrate base material by etching using a photolithography technique, burrs and defects are not formed on the substrate end surface, and the edge of the diaphragm is formed sharply. it can. In addition, since the outer dimensions of the chip can be formed with high accuracy by the photolithography technique, variation in characteristics can be suppressed. Further, according to the photolithography technique, it is possible to manufacture a quartz substrate having a shape that is difficult to achieve by mechanical cutting.

以下、本発明を図面に示した実施の形態により詳細に説明する。
図1(a)は本発明の一実施形態に係る圧電振動素子の一例としてのATカット水晶から成る水晶振動素子1の凹陥部側斜視図である。
この水晶振動素子(圧電振動素子)1は、薄肉の振動板4、及び振動板4の外周縁の少なくとも一部(この例では矩形振動板の三辺)を一体的に支持する厚肉部5を備えることにより、少なくとも一方の主面側に凹陥部3を形成した構成の水晶基板(圧電基板)2と、水晶基板2上に形成した励振電極10a、10bと、リード電極11a、11bと、を備えている。
更に具体的には、この水晶振動素子1は、厚み滑り振動特性を有する圧電結晶材料としてのATカット水晶から成る水晶基板2と、水晶基板2の両主面に夫々形成した励振電極10a、10b、及び各励振電極10a、10bから夫々延びるリード電極11a、11bと、各リード電極端部の接続パッド12a、12bと、を備えている。各電極、パッドは、所定の形状が得られるようマスクを用いた蒸着、スパッタリング等により圧電基板上に形成される導体膜である。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
FIG. 1A is a perspective view of a concave portion side of a crystal resonator element 1 made of an AT cut crystal as an example of a piezoelectric resonator element according to an embodiment of the present invention.
The quartz crystal vibration element (piezoelectric vibration element) 1 includes a thin vibration plate 4 and a thick portion 5 that integrally supports at least a part of the outer peripheral edge of the vibration plate 4 (three sides of the rectangular vibration plate in this example). The quartz substrate (piezoelectric substrate) 2 having a configuration in which the concave portion 3 is formed on at least one main surface side, excitation electrodes 10a and 10b formed on the quartz substrate 2, lead electrodes 11a and 11b, It has.
More specifically, the crystal resonator element 1 includes a crystal substrate 2 made of an AT-cut crystal as a piezoelectric crystal material having thickness-shear vibration characteristics, and excitation electrodes 10a and 10b formed on both main surfaces of the crystal substrate 2, respectively. And lead electrodes 11a and 11b extending from the excitation electrodes 10a and 10b, respectively, and connection pads 12a and 12b at the end portions of the lead electrodes. Each electrode and pad is a conductor film formed on the piezoelectric substrate by vapor deposition using a mask, sputtering, or the like so as to obtain a predetermined shape.

この実施形態に係る水晶基板2は、2軸方向x、z’(結晶軸zに対して35°15’に回転した軸)のうち、例えばx軸方向に長尺な矩形平板状の基板本体であり、y’軸(結晶軸yに対して35°15’回転した軸)を法線とする主面のうち一方の主面上に凹陥部3をエッチングにより形成することにより、凹陥部3の内底面に超薄肉の振動板4を位置させると共に、振動板4の外周縁の三辺を厚肉部5にて一体的に保持した構成、且つ、振動板4の一辺には厚肉部が存在せずに、凹陥部3が開放された状態となるよう外周部分をエッチングして掘り抜いた構造である。なお、図示した水晶基板は一例に過ぎず、特開2002−33640公報に開示された水晶基板のように振動板の電極パッド12a、12bが位置する辺と該辺と隣接する辺(合計2つの辺からなるL字形状の辺)だけを厚肉部により支持したタイプに本実施形態のごとくエッチングにより型抜きした構成を適用してもよい。
この水晶振動素子1の振動板4により、例えば50MHzの共振周波数を出力せんとする場合には、振動板4の肉厚は数十μm程度となる。
図1(b)はこの水晶基板を多数縦横に連結した状態(分割前)の水晶基板母材を示している。本発明方法では、ハッチングにて示した水晶基板個片の外周領域を細長くエッチングにより貫通させることにより個片を得るようにしている。従来は各個片間の境界線に沿ってダイシングソーによって切断していたため、振動板4の一端縁から厚肉部を除去するために切断する際に、振動板の切断面にバリやや欠損が発生し易く、また切断面のシャープさが損なわれて粗面化し、特性バラツキの原因となっていたが、本発明では機械的な切断を行わない点が特徴的である。
The quartz crystal substrate 2 according to this embodiment has a rectangular flat plate-like substrate body that is long in, for example, the x-axis direction among the biaxial directions x and z ′ (axis rotated at 35 ° 15 ′ with respect to the crystal axis z). The concave portion 3 is formed by etching on one main surface of the main surfaces with the y ′ axis (axis rotated by 35 ° 15 ′ with respect to the crystal axis y) as a normal line. The ultrathin diaphragm 4 is positioned on the inner bottom surface, the three sides of the outer peripheral edge of the diaphragm 4 are integrally held by the thick portion 5, and one side of the diaphragm 4 is thick. This is a structure in which the outer peripheral portion is etched and dug out so that the recessed portion 3 is opened without any portion. The illustrated quartz substrate is merely an example, and the side where the electrode pads 12a and 12b of the diaphragm are located and the side adjacent to the side (two in total) as in the quartz substrate disclosed in JP-A-2002-33640. A configuration in which only the L-shaped side consisting of the sides) is supported by the thick portion may be applied by the die cutting by etching as in the present embodiment.
When the diaphragm 4 of the crystal resonator element 1 outputs a resonance frequency of 50 MHz, for example, the thickness of the diaphragm 4 is about several tens of μm.
FIG. 1B shows a quartz substrate base material in a state (before division) in which a large number of quartz substrates are connected vertically and horizontally. In the method of the present invention, the crystal substrate pieces shown by hatching are elongated and penetrated by etching so that the pieces are obtained. Conventionally, cutting was performed with a dicing saw along the boundary line between the individual pieces, so when cutting to remove the thick portion from one end edge of the diaphragm 4, burrs were slightly generated on the cut surface of the diaphragm. However, the sharpness of the cut surface is impaired and the surface is roughened, causing variations in characteristics. However, the present invention is characterized in that mechanical cutting is not performed.

以下、本発明の一実施形態に係る水晶基板(圧電基板)2を、大面積の水晶基板母材(圧電基板母材)20をエッチングにより分離することによって特性変動させることなく量産する方法について説明する。
図2(a)乃至(j)は本発明の水晶基板(圧電基板)の製造工程の一例を示す図である。
この水晶基板の製造方法は、一枚の水晶ウェハに複数の凹陥部3を形成し、複数の水晶基板2をシート状に連結した水晶基板母材20の基本形状を製作する水晶基板母材の基本形状加工工程(a)乃至(g)と、基本形状の形成を完了した水晶基板母材20の凹陥部形成面(表面)側に金属マスク50を施すと共に、水晶基板母材の裏面については個々の水晶基板2の領域の境界線に沿って設けた細長い非マスク領域51を除いた面に金属マスク50を施すマスキング工程(h)と、水晶基板母材裏面の非マスク領域51内の水晶基板部分をエッチングにより除去して貫通スリット21を形成するエッチング工程(i)と、水晶基板母材の表裏両面に形成した金属マスク50を除去するマスク除去工程(i)と、水晶基板母材を構成する各水晶基板個片に対して励振電極10a、10b、リード電極11a、11b、及び接続パッド12a、12bを蒸着、又はスパッタリングによって形成する金属パターン形成(電極膜形成)工程(j)と、貫通スリットに沿ったラインから水晶基板個片に分割する図示しない分割工程と、から概略構成されている。
本実施形態では、水晶基板母材20を構成する個々の水晶基板2間の境界線に沿って貫通スリットをエッチングによって形成しておくことにより、切断手段を用いずに個片毎に分離することが可能となる。
Hereinafter, a method for mass-producing a quartz crystal substrate (piezoelectric substrate) 2 according to an embodiment of the present invention without changing characteristics by separating a quartz substrate matrix (piezoelectric substrate matrix) 20 having a large area by etching will be described. To do.
2A to 2J are views showing an example of the manufacturing process of the quartz crystal substrate (piezoelectric substrate) of the present invention.
In this method of manufacturing a quartz substrate, a plurality of concave portions 3 are formed on a single quartz wafer, and a basic shape of a quartz substrate base material 20 in which a plurality of quartz substrates 2 are connected in a sheet shape is manufactured. The basic shape processing steps (a) to (g) and the metal mask 50 are applied to the recessed portion forming surface (front surface) side of the crystal substrate base material 20 on which the basic shape has been formed. A masking step (h) for applying a metal mask 50 to the surface excluding the elongated non-mask region 51 provided along the boundary line of the region of each crystal substrate 2, and the crystal in the non-mask region 51 on the back surface of the crystal substrate base material An etching process (i) for removing the substrate portion by etching to form the through slit 21; a mask removing process (i) for removing the metal mask 50 formed on the front and back surfaces of the quartz substrate base material; Each water that composes A metal pattern formation (electrode film formation) step (j) in which the excitation electrodes 10a and 10b, the lead electrodes 11a and 11b, and the connection pads 12a and 12b are formed by vapor deposition or sputtering on the substrate piece, and along the through slit And a dividing step (not shown) for dividing the crystal line into individual quartz substrate pieces.
In the present embodiment, the through slits are formed by etching along the boundary lines between the individual quartz substrates 2 constituting the quartz substrate base material 20, thereby separating the individual pieces without using cutting means. Is possible.

次に、水晶基板母材の基本形状加工工程について説明する。
水晶基板母材の基本形状加工工程では、まず、ウェハ状態である水晶基板母材20の表裏両面を夫々金属マスク30により被覆する金属マスク形成工程(a)を実施する。この例では、金属マスク30として、クロムCr層と金Au層を順次蒸着によって形成した積層体を用いた。
次いで、フォトリソグラフィ技術を用いて水晶基板母材20の表面側における水晶基板個片の凹陥部形成用パターン及び水晶基板2の個片間の境界線に沿った外形パターンを形成する部分の金属マスク30を除去するパターン形成工程(b)を実施する。この工程では、フォトレジスト膜31を表面側の金属マスク30の全面に均一に被覆してから上述した所望のパターンとなる部分以外を図示しない露光用マスクにて覆い(フォトレジストがポジ型の場合)、その後露光し、感光したフォトレジスト部分を除去して凹陥部形成部分(後述する薄肉部35となる部分)と水晶基板個片間の境界線に沿った外形パターン部分(後述する凹所36となる部分)の金属マスク30を露出させる。次いで、露出した表面側金属マスク30をエッチングによって除去する金属マスク除去工程を実施して図2(b)に示す状態とする。
次いで、残された感光してない部分のレジスト膜31を除去するレジスト膜除去工程を実施する。
Next, the basic shape processing step of the quartz substrate base material will be described.
In the basic shape processing step of the quartz substrate base material, first, a metal mask forming step (a) for covering the front and back surfaces of the quartz substrate base material 20 in a wafer state with the metal mask 30 is performed. In this example, a laminated body in which a chromium Cr layer and a gold Au layer are sequentially formed by vapor deposition is used as the metal mask 30.
Next, a metal mask of a portion for forming a recess portion forming pattern of the crystal substrate piece on the surface side of the crystal substrate base material 20 and an outer shape pattern along a boundary line between the pieces of the crystal substrate 2 using the photolithography technique The pattern formation process (b) which removes 30 is implemented. In this process, the photoresist film 31 is uniformly coated on the entire surface of the metal mask 30 on the surface side, and then the portions other than the above-described desired pattern are covered with an exposure mask (not shown) (when the photoresist is a positive type). Thereafter, the exposed photoresist portion is removed to remove the exposed photoresist portion, and the outer pattern portion (recess 36 to be described later) along the boundary line between the recessed portion forming portion (a portion to be a thin portion 35 described later) and the quartz substrate piece. The metal mask 30 is exposed. Next, a metal mask removing process for removing the exposed surface-side metal mask 30 by etching is performed to obtain the state shown in FIG.
Next, a resist film removing step for removing the remaining unexposed resist film 31 is performed.

次に、レジスト膜31を除去した後に残留した表面側金属マスクパターン30aを用いて、表面側金属マスクパターン30aの開口内に露出した水晶基板母材20の表面をエッチングすることにより、水晶基板個片の凹陥部と、各水晶基板個片間の境界線に相当する水晶基板母材表面部分を所要深さに掘り下げて互いに連通した凹所35、36を形成し、各凹所内底面に薄肉部35a、36aを形成する掘り下げ工程(c)を実施する。図2(c)の右図は平面図であり、凹所35、36の間には厚肉部5となる壁部37が形成されている。
続く金属マスク剥離工程(d)では、表面側に残存していた表面側金属マスクパターン30aと、裏面側の金属マスク30を除去する。
その後、各水晶基板個片の凹陥部35内底面に位置する薄肉部(振動板)35aの共振周波数を微調整する周波数微調整工程(e)(f)(g)を実施する。この周波数微調整工程では、まず周波数測定工程(e)において、(d)工程で形成された薄肉部35a(振動板4に相当)は目標値よりも厚く形成されており、この薄肉部35aに周波数測定装置のプローブを当接させて共振周波数を測定することにより各薄肉部35aの肉厚が目標値よりもどの程度厚いか判定する。
続く、微調エッチング工程(f)では、凹所35、36を包囲する外壁38上にエッチングガイド39を積層形成してダムを形成した状態で、エッチングガイド39の内側にエッチング液を充填して各薄肉部35a、36aが目標値に達するのに要する時間が経過した時点でエッチング液を洗浄すると共に、エッチングガイド39を除去する。
その後、工程(g)において、周波数測定装置を用いて最終的な共振周波数を確認することによって水晶基板母材の基本形状加工工程を終了する。この際、薄肉部35aは振動板4となる。薄肉部36aは後述するエッチング工程(i)において貫通スリット21を形成するための領域として活用される。
Next, by using the surface-side metal mask pattern 30a remaining after removing the resist film 31, the surface of the crystal substrate base material 20 exposed in the opening of the surface-side metal mask pattern 30a is etched, so A concave portion of each piece and a quartz substrate base material surface portion corresponding to a boundary line between each quartz substrate piece are dug down to a required depth to form concave portions 35 and 36 communicating with each other, and a thin portion is formed on the bottom surface of each concave portion A drilling step (c) for forming 35a and 36a is performed. The right view of FIG. 2C is a plan view, and a wall portion 37 that becomes the thick portion 5 is formed between the recesses 35 and 36.
In the subsequent metal mask peeling step (d), the surface-side metal mask pattern 30a remaining on the front surface side and the metal mask 30 on the back surface side are removed.
Thereafter, frequency fine adjustment steps (e), (f), and (g) for finely adjusting the resonance frequency of the thin portion (diaphragm) 35a located on the inner bottom surface of the recessed portion 35 of each quartz substrate piece are performed. In this frequency fine adjustment step, first, in the frequency measurement step (e), the thin portion 35a (corresponding to the diaphragm 4) formed in the step (d) is formed thicker than the target value, and the thin portion 35a By measuring the resonance frequency by bringing the probe of the frequency measuring device into contact with each other, it is determined how thick each thin portion 35a is than the target value.
In the subsequent fine etching step (f), the etching guide 39 is stacked on the outer wall 38 surrounding the recesses 35 and 36 to form a dam, and the etching guide 39 is filled with an etching solution in the state where each dam is formed. When the time required for the thin portions 35a and 36a to reach the target value has elapsed, the etching solution is washed and the etching guide 39 is removed.
Thereafter, in step (g), the final resonance frequency is confirmed using a frequency measuring device, thereby completing the basic shape processing step of the quartz substrate base material. At this time, the thin portion 35 a becomes the diaphragm 4. The thin portion 36a is utilized as a region for forming the through slit 21 in an etching step (i) described later.

水晶基板母材の基本形状加工工程に続くマスキング工程(h)では、基本形状の形成を完了した水晶基板母材20の凹陥部形成面(表面側と裏面側と)を金属マスク50によって全面的に被覆した後、水晶基板母材20の裏面についてはフォトリソグラフィ技術によって個々の水晶基板領域の境界線(凹所36)に沿った部分の水晶表面が露出するよう金属マスク50を除去して細長い非マスク領域51を形成する。尚、金属マスク50は、クロムCr層と、金Au層を順次蒸着によって形成した積層体であり、また後述する連結部となる位置にも金属マスク50を施す。
続く、エッチング工程(i)では、マスキング工程(h)により金属マスク50が施された状態にて、水晶基板母材裏面の非マスク領域51内の水晶基板部分をエッチングにより除去して貫通スリット21を形成する。
貫通スリット21を形成した後で、表裏両面の金属マスク50を除去する。
続いて、金属パターン形成工程(j)において、各水晶基板個片の表裏両面に夫々励振電極10a、10b、リード電極11a、11b、及び接続パッド12a、12bを所定の電極形状が得られるようマスクを用いた蒸着、スパッタリングによって形成する。
以上の水晶基板母材の基本形状加工工程が終了した段階では、水晶基板母材20を構成する個々の水晶基板個片の振動板4の肉厚調整(周波数調整)が完了した状態となっている。
最後に、貫通スリット21に沿ったラインから水晶基板個片に分割する分割工程を実施することにより、水晶基板2を得ることができる。
In the masking step (h) following the basic shape processing step of the quartz substrate base material, the concave portion forming surface (front surface side and back surface side) of the quartz substrate base material 20 on which the basic shape has been formed is entirely covered by the metal mask 50. After the coating, the back surface of the quartz substrate base material 20 is stripped by removing the metal mask 50 so that the quartz surface of the portion along the boundary line (recess 36) of each quartz substrate region is exposed by photolithography. A non-mask region 51 is formed. The metal mask 50 is a laminated body in which a chromium Cr layer and a gold Au layer are sequentially formed by vapor deposition, and the metal mask 50 is also applied to a position to be a connecting portion described later.
In the subsequent etching step (i), in the state where the metal mask 50 is applied by the masking step (h), the quartz substrate portion in the non-mask region 51 on the back surface of the quartz substrate base material is removed by etching, and the through slit 21 is formed. Form.
After the through slit 21 is formed, the metal mask 50 on both the front and back surfaces is removed.
Subsequently, in the metal pattern forming step (j), the excitation electrodes 10a and 10b, the lead electrodes 11a and 11b, and the connection pads 12a and 12b are respectively masked on the front and back surfaces of each quartz substrate piece so as to obtain a predetermined electrode shape. It is formed by vapor deposition using sputtering and sputtering.
At the stage where the basic shape processing process of the quartz substrate base material is completed, the thickness adjustment (frequency adjustment) of the diaphragm 4 of each crystal substrate piece constituting the quartz substrate base material 20 is completed. Yes.
Finally, the quartz substrate 2 can be obtained by carrying out a dividing step of dividing the quartz substrate into pieces from the line along the through slit 21.

この実施形態の貫通スリット21は、水晶基板2が分割工程前にて脱落しないようコ字状の部分と、直線状の部分の2つの部分から成り、両部分は離間しているため、各貫通スリットを形成した状態では貫通スリットの内側に位置する水晶基板個片は母材に連結されたままの状態にある。そのため、完全に分離するためには、各貫通スリット間の連結部から割ればよい。
このような非連続状の貫通スリットによって各個片を包囲するようにエッチングを完了することによって、エッチングが完了した時点で個片同士が連結した状態を維持するようにしてもよいし、或いは連続した環状の貫通スリットによって個片を包囲するようにエッチングを実施することによってエッチング終了時に全ての個片が分離状態となるように構成してもよい。
なお、上記実施形態では、振動板の少なくとも一辺を厚肉部により支持していないタイプの水晶基板をエッチングにより水晶基板母材から分離する方法について説明したが、振動板の全周を厚肉部により包囲したタイプの水晶基板を母材から分離する場合に水晶基板の境界線に沿って上記の如き貫通スリットを形成することによって分離することもできる。
このように本発明によれば、エッチングにより母材から個片を分離するので、基板端面にバリや欠損が形成されなくなり、振動板の端縁をシャープに形成できる。また、フォトリソグラフィ技術により高精度にチップ外形寸法を形成できるので、特性のバラツキを抑えることができる。また、フォトリソグラフィ技術によれば、機械的切断では実現困難な形状の水晶基板を製作することができる。
The through-slit 21 of this embodiment consists of two parts, a U-shaped part and a linear part, so that the quartz crystal substrate 2 does not fall off before the dividing step, and both parts are separated from each other. In the state in which the slit is formed, the quartz substrate piece located inside the through slit is still connected to the base material. Therefore, what is necessary is just to divide from the connection part between each through slit in order to isolate | separate completely.
By completing the etching so as to surround each piece by such a discontinuous through slit, the state in which the pieces are connected to each other may be maintained at the time when the etching is completed, or continuous. The etching may be performed so that the individual pieces are surrounded by the annular through slit so that all the individual pieces are separated at the end of the etching.
In the above embodiment, the method of separating the quartz substrate of the type in which at least one side of the diaphragm is not supported by the thick portion from the quartz substrate base material by etching is described. In the case of separating the quartz substrate of the type surrounded by the base material from the base material, it can be separated by forming the through slit as described above along the boundary line of the quartz substrate.
Thus, according to the present invention, since the individual pieces are separated from the base material by etching, burrs and defects are not formed on the end face of the substrate, and the edge of the diaphragm can be formed sharply. In addition, since the outer dimensions of the chip can be formed with high accuracy by the photolithography technique, variation in characteristics can be suppressed. Further, according to the photolithography technique, it is possible to manufacture a quartz substrate having a shape that is difficult to achieve by mechanical cutting.

次に、図3は上記各実施形態に係る水晶振動素子(圧電振動素子)1を使用した表面実装型圧電デバイスとしての水晶振動子(圧電振動素子)の断面図であり、この水晶振動子60は、パッケージ61内に水晶振動素子1を気密封止した構成を備えている。パッケージ61は、絶縁材料から成る容器本体62の凹所内に水晶振動素子1を搭載した状態で金属蓋66により凹所を封止している。容器本体62の凹所内底面上に接続パッド63を備え、外底面に外部電極64を備えている。この接続パッド63上に導電性接着剤65を用いて接続パッド12a、12bを固定している。
また、図4は上記各実施形態に係る水晶振動素子(圧電振動素子)1を使用した表面実装型圧電デバイスとしての水晶発振器(圧電発振器)の断面図であり、この水晶発振器70は、パッケージ71内に水晶振動素子1と、発振回路等を構成する回路部品72を収容した構成を備えている。
なお、上記実施形態では、圧電結晶材料として水晶を例示したが、これは一例に過ぎず、本発明はあらゆる圧電結晶材料から成る水晶振動素子に対して適用することができる。
Next, FIG. 3 is a cross-sectional view of a crystal resonator (piezoelectric vibration element) as a surface-mount piezoelectric device using the crystal vibration element (piezoelectric vibration element) 1 according to each of the above embodiments. Has a configuration in which the crystal resonator element 1 is hermetically sealed in the package 61. The package 61 is sealed with a metal lid 66 in a state where the crystal resonator element 1 is mounted in the recess of the container body 62 made of an insulating material. A connection pad 63 is provided on the inner bottom surface of the recess of the container body 62, and an external electrode 64 is provided on the outer bottom surface. The connection pads 12 a and 12 b are fixed on the connection pad 63 using a conductive adhesive 65.
FIG. 4 is a cross-sectional view of a crystal oscillator (piezoelectric oscillator) as a surface-mount type piezoelectric device using the crystal resonator element (piezoelectric resonator element) 1 according to each of the above embodiments. The quartz resonator element 1 and a circuit component 72 constituting an oscillation circuit and the like are accommodated therein.
In the above embodiment, quartz is exemplified as the piezoelectric crystal material. However, this is only an example, and the present invention can be applied to a quartz crystal vibration element made of any piezoelectric crystal material.

(a)は本発明の一実施形態に係る圧電振動素子の一例としてのATカット水晶から成る水晶振動素子の凹陥部側斜視図、(b)は水晶ウェハの構成説明図。(A) is a concave side perspective view of a quartz resonator element made of an AT-cut quartz crystal as an example of a piezoelectric resonator element according to an embodiment of the present invention, and (b) is a configuration explanatory view of a quartz wafer. (a)乃至(j)は本発明の水晶基板(圧電基板)の製造工程の一例を示す図。(A) thru | or (j) is a figure which shows an example of the manufacturing process of the quartz substrate (piezoelectric substrate) of this invention. 各実施形態に係る水晶振動素子(圧電振動素子)を使用した表面実装型圧電デバイスとしての水晶振動子(圧電振動素子)の断面図。Sectional drawing of the crystal oscillator (piezoelectric vibration element) as a surface mount-type piezoelectric device using the crystal vibration element (piezoelectric vibration element) which concerns on each embodiment. 各実施形態に係る水晶振動素子(圧電振動素子)を使用した表面実装型圧電デバイスとしての水晶発振器(圧電発振器)の断面図。Sectional drawing of the crystal oscillator (piezoelectric oscillator) as a surface mount-type piezoelectric device using the crystal oscillator (piezoelectric oscillator) which concerns on each embodiment.

符号の説明Explanation of symbols

1 水晶振動素子(圧電振動素子)、2 水晶基板(圧電基板)、3 凹陥部、4 振動板、5 厚肉部、10a、10b 励振電極、11a、11b リード電極、12a、12b 接続パッド、20 水晶基板母材(圧電基板母材)、21 貫通スリット(貫通穴)30 金属マスク、31 フォトレジスト膜、35、36 凹所、35a、36a 薄肉部、38 外壁、39 エッチングガイド、50 金属マスク、51 非マスク領域、60 水晶振動子(圧電振動子)、61 パッケージ、62 容器本体、63 接続パッド、64 外部電極、65 導電性接着剤、70 水晶発振器(圧電発振器)、71 パッケージ、72 回路部品。   DESCRIPTION OF SYMBOLS 1 Quartz vibration element (piezoelectric vibration element), 2 Quartz substrate (piezoelectric board | substrate), 3 Recessed part, 4 Vibration plate, 5 Thick part, 10a, 10b Excitation electrode, 11a, 11b Lead electrode, 12a, 12b Connection pad, 20 Quartz substrate base material (piezoelectric substrate base material), 21 through slit (through hole) 30 metal mask, 31 photoresist film, 35, 36 recess, 35a, 36a thin part, 38 outer wall, 39 etching guide, 50 metal mask, 51 Non-mask area, 60 Crystal oscillator (piezoelectric oscillator), 61 package, 62 Container body, 63 Connection pad, 64 External electrode, 65 Conductive adhesive, 70 Crystal oscillator (piezoelectric oscillator), 71 package, 72 Circuit parts .

Claims (5)

薄肉の振動板と、該振動板の外周縁と一体化した厚肉の補強部と、を備えることにより、少なくとも一方の主面側に凹陥部を形成した構成の圧電基板の製造方法であって、
複数の圧電基板をシート状に連結した圧電基板母材を製作する圧電基板母材の基本形状加工工程と、
前記圧電基板母材の前記凹陥部形成面側をマスクすると共に、該圧電基板母材の裏面については個々の圧電基板領域の境界線に沿って設けた細長い非マスク領域を除いた面にマスクを施すマスキング工程と、
前記圧電基板母材裏面の非マスク領域内の圧電基板部分をエッチングにより除去して貫通スリットを形成するエッチング工程と、
前記圧電基板母材の両面側に形成した前記マスクを除去するマスク除去工程と、
前記貫通スリットに沿って圧電基板個片に分割する分割工程と、から成ることを特徴とする圧電基板の製造方法。
A method of manufacturing a piezoelectric substrate having a configuration in which a concave portion is formed on at least one main surface side by providing a thin diaphragm and a thick reinforcing portion integrated with an outer peripheral edge of the diaphragm. ,
A basic shape processing step of a piezoelectric substrate base material for manufacturing a piezoelectric substrate base material in which a plurality of piezoelectric substrates are connected in a sheet shape;
A mask is formed on the surface of the piezoelectric substrate base material except the elongated non-mask region provided along the boundary line of each piezoelectric substrate region. Masking process to be applied;
An etching step of removing the piezoelectric substrate portion in the non-mask region on the back surface of the piezoelectric substrate base material by etching to form a through slit;
A mask removing step of removing the mask formed on both sides of the piezoelectric substrate base material;
And a dividing step of dividing the piezoelectric substrate into pieces along the through slit.
前記圧電基板母材の基本形状加工工程は、
圧電基板母材の表裏両面を金属マスクにより被覆する金属マスク形成工程と、
前記圧電基板母材の表面側の金属マスク上に所定のパターンにて形成したレジスト膜を用いて圧電基板個片の凹陥部形成用パターン及び圧電基板個片間の境界線に沿った外形パターンを形成するパターン形成工程と、
前記レジスト膜から露出する前記金属マスクを除去する金属マスク除去工程と、
前記レジスト膜を除去するレジスト膜除去工程と、
前記レジスト膜を除去した後に残留した金属マスクパターンを用いて、露出した圧電基板母材表面をエッチングすることにより、前記圧電基板個片の凹陥部と、各圧電基板個片間の境界線に相当する圧電基板母材表面を所要深さに掘り下げて凹所とし、各凹所内底面に薄肉部を形成する掘り下げ工程と、
圧電基板母材表裏両面に夫々残留する金属マスクを除去する金属マスク除去工程と、
各圧電基板個片の凹陥部内底面に位置する振動板の共振周波数を微調整する周波数微調整工程と、を備えていることを特徴とする請求項1に記載の圧電基板の製造方法。
The basic shape processing step of the piezoelectric substrate base material is:
A metal mask forming step of covering both front and back surfaces of the piezoelectric substrate base material with a metal mask;
Using a resist film formed in a predetermined pattern on a metal mask on the surface side of the piezoelectric substrate base material, a pattern for forming a concave portion of the piezoelectric substrate piece and an outline pattern along the boundary line between the piezoelectric substrate pieces are formed. A pattern forming step to be formed;
A metal mask removing step of removing the metal mask exposed from the resist film;
A resist film removing step for removing the resist film;
Using the metal mask pattern that remains after removing the resist film, the exposed piezoelectric substrate base material surface is etched to correspond to the recesses of the piezoelectric substrate pieces and the boundary lines between the piezoelectric substrate pieces. Digging the piezoelectric substrate base material surface to the required depth to make a recess, and digging process to form a thin portion on the bottom surface of each recess,
A metal mask removing process for removing the metal mask remaining on the front and back surfaces of the piezoelectric substrate base material, respectively;
The method for manufacturing a piezoelectric substrate according to claim 1, further comprising: a frequency fine adjustment step of finely adjusting a resonance frequency of the diaphragm located on the inner bottom surface of the recessed portion of each piezoelectric substrate piece.
請求項1又は2の何れか一項に記載の製造方法によって製造されたことを特徴とする圧電基板と、該圧電基板の振動板の表裏両面に夫々形成した励振電極と、各励振電極から圧電基板の補強部に引き出されるリード電極と、を備えたことを特徴とする圧電振動素子。   A piezoelectric substrate manufactured by the manufacturing method according to claim 1, an excitation electrode formed on each of the front and back surfaces of the diaphragm of the piezoelectric substrate, and a piezoelectric substrate formed from each excitation electrode. A piezoelectric vibration element comprising: a lead electrode drawn out to a reinforcing portion of the substrate. 請求項3に記載の圧電振動素子と、該圧電振動素子を気密封止したパッケージと、を備えたことを特徴とする圧電振動子。   A piezoelectric vibrator comprising the piezoelectric vibration element according to claim 3 and a package in which the piezoelectric vibration element is hermetically sealed. 請求項3に記載の圧電振動素子、或いは請求項4に記載の圧電振動子と、発振回路と、を備えたことを特徴とする圧電発振器。   A piezoelectric oscillator comprising the piezoelectric vibration element according to claim 3 or the piezoelectric vibrator according to claim 4 and an oscillation circuit.
JP2005014792A 2005-01-21 2005-01-21 Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator Pending JP2006203700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014792A JP2006203700A (en) 2005-01-21 2005-01-21 Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014792A JP2006203700A (en) 2005-01-21 2005-01-21 Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator

Publications (1)

Publication Number Publication Date
JP2006203700A true JP2006203700A (en) 2006-08-03

Family

ID=36961284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014792A Pending JP2006203700A (en) 2005-01-21 2005-01-21 Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator

Country Status (1)

Country Link
JP (1) JP2006203700A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135856A (en) * 2007-12-03 2009-06-18 Epson Toyocom Corp Crystal vibrating reed and method of manufacturing crystal vibrating reed
JP2009164824A (en) * 2007-12-28 2009-07-23 Epson Toyocom Corp Quartz crystal resonator element, quartz crystal device, and method for producing quartz the crystal resonator element
JP2010093847A (en) * 2009-12-16 2010-04-22 Epson Toyocom Corp Method for manufacturing crystal oscillating piece
JP2010268498A (en) * 2010-07-08 2010-11-25 Epson Toyocom Corp At-cut crystal vibrating piece, and at-cut crystal device
JP2011217406A (en) * 2011-07-12 2011-10-27 Daishinku Corp Piezoelectric vibration piece
JP2012253630A (en) * 2011-06-03 2012-12-20 Seiko Epson Corp Piezoelectric vibration element, piezoelectric transducer, electronic device, and electronic apparatus
US8791766B2 (en) 2011-08-18 2014-07-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US8970316B2 (en) 2011-08-19 2015-03-03 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US9035709B2 (en) 2013-03-29 2015-05-19 Seiko Epson Corporation Vibration element, vibrator, oscillator, electronic apparatus, and moving object
US9048810B2 (en) 2011-06-03 2015-06-02 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
US9070863B2 (en) 2013-03-05 2015-06-30 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object
US9143113B2 (en) 2013-03-29 2015-09-22 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object
JP2016048867A (en) * 2014-08-28 2016-04-07 京セラクリスタルデバイス株式会社 Method for manufacturing crystal element
JP2016072860A (en) * 2014-09-30 2016-05-09 株式会社大真空 Manufacturing method of piezoelectric element, and piezoelectric device employing the piezoelectric element
US9337801B2 (en) 2013-03-29 2016-05-10 Seiko Epson Corporation Vibration element, vibrator, oscillator, electronic apparatus, and moving object
US9525400B2 (en) 2013-01-18 2016-12-20 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus and moving object
JP2017079438A (en) * 2015-10-22 2017-04-27 京セラクリスタルデバイス株式会社 Manufacturing method for piezoelectric piece, piezoelectric piece for vibration element, piezoelectric vibration element and piezoelectric vibration device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135856A (en) * 2007-12-03 2009-06-18 Epson Toyocom Corp Crystal vibrating reed and method of manufacturing crystal vibrating reed
JP2009164824A (en) * 2007-12-28 2009-07-23 Epson Toyocom Corp Quartz crystal resonator element, quartz crystal device, and method for producing quartz the crystal resonator element
JP4600692B2 (en) * 2007-12-28 2010-12-15 エプソントヨコム株式会社 Quartz crystal resonator element, crystal device, and crystal resonator element manufacturing method
US8026652B2 (en) 2007-12-28 2011-09-27 Epson Toyocom Corporation Quartz crystal resonator element, quartz crystal device, and method for producing quartz crystal resonator element
US8299689B2 (en) 2007-12-28 2012-10-30 Seiko Epson Corporation Quartz crystal resonator element, quartz crystal device, and method for producing quartz crystal resonator element
EP2075911A3 (en) * 2007-12-28 2013-08-28 Seiko Epson Corporation Quartz crystal resonator element, quartz crystal device, and method for producing quartz crystal resonator element
JP2010093847A (en) * 2009-12-16 2010-04-22 Epson Toyocom Corp Method for manufacturing crystal oscillating piece
JP2010268498A (en) * 2010-07-08 2010-11-25 Epson Toyocom Corp At-cut crystal vibrating piece, and at-cut crystal device
US9048810B2 (en) 2011-06-03 2015-06-02 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP2012253630A (en) * 2011-06-03 2012-12-20 Seiko Epson Corp Piezoelectric vibration element, piezoelectric transducer, electronic device, and electronic apparatus
US9923544B2 (en) 2011-06-03 2018-03-20 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP2011217406A (en) * 2011-07-12 2011-10-27 Daishinku Corp Piezoelectric vibration piece
US8791766B2 (en) 2011-08-18 2014-07-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US9225314B2 (en) 2011-08-19 2015-12-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US8970316B2 (en) 2011-08-19 2015-03-03 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US9525400B2 (en) 2013-01-18 2016-12-20 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus and moving object
US9070863B2 (en) 2013-03-05 2015-06-30 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object
US9035709B2 (en) 2013-03-29 2015-05-19 Seiko Epson Corporation Vibration element, vibrator, oscillator, electronic apparatus, and moving object
US9143113B2 (en) 2013-03-29 2015-09-22 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object
US9337801B2 (en) 2013-03-29 2016-05-10 Seiko Epson Corporation Vibration element, vibrator, oscillator, electronic apparatus, and moving object
JP2016048867A (en) * 2014-08-28 2016-04-07 京セラクリスタルデバイス株式会社 Method for manufacturing crystal element
JP2016072860A (en) * 2014-09-30 2016-05-09 株式会社大真空 Manufacturing method of piezoelectric element, and piezoelectric device employing the piezoelectric element
JP2017079438A (en) * 2015-10-22 2017-04-27 京セラクリスタルデバイス株式会社 Manufacturing method for piezoelectric piece, piezoelectric piece for vibration element, piezoelectric vibration element and piezoelectric vibration device

Similar Documents

Publication Publication Date Title
JP2006203700A (en) Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator
JP4933903B2 (en) Quartz vibrator, quartz vibrator and quartz wafer
JP4292825B2 (en) Method for manufacturing quartz vibrating piece
US8779652B2 (en) At-cut quartz-crystal vibrating pieces and devices, and methods for manufacturing same
JP2010081415A (en) Piezoelectric device and method of manufacturing the same
JP2007318350A (en) Piezoelectric vibrating reed and manufacturing method thereof
JP4241022B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP2010136202A (en) Method of manufacturing piezoelectric oscillating piece, piezoelectric oscillating piece, and piezoelectric resonator
JP5272651B2 (en) Manufacturing method of vibrating piece
JP4636170B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
CN109891744B (en) Method for adjusting frequency of piezoelectric vibration device
US8161608B2 (en) Method of manufacturing quartz-crystal resonator
JP2015177480A (en) Manufacturing method of piezoelectric vibration piece, piezoelectric vibration piece, and piezoelectric device
JP2007096369A (en) Metal mask and method of cutting piezoelectric resonator element
JP2008199660A (en) Piezoelectric substrate, piezoelectric vibrator element, piezoelectric vibrator, piezoelectric oscillator, piezoelectric wafer and its manufacturing method
JP5240913B2 (en) Method for manufacturing container for electronic component
JP3925796B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic apparatus using quartz crystal device
JP2007173906A (en) Method of manufacturing piezoelectric resonator chip and piezoelectric device
JP2016174328A (en) Wafer manufacturing method and wafer
JP4692619B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP7274386B2 (en) Crystal elements, crystal devices and electronic equipment
JP2006186847A (en) Crystal piece aggregate, its manufacturing method, photomask, and crystal oscillator
JP5024427B2 (en) Piezoelectric device
JP2010010955A (en) Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator
JP2017169081A (en) Quartz resonator and manufacturing method of the same