JP2010098316A - 集積回路において静電放電を防止し放散する方法 - Google Patents

集積回路において静電放電を防止し放散する方法 Download PDF

Info

Publication number
JP2010098316A
JP2010098316A JP2009238271A JP2009238271A JP2010098316A JP 2010098316 A JP2010098316 A JP 2010098316A JP 2009238271 A JP2009238271 A JP 2009238271A JP 2009238271 A JP2009238271 A JP 2009238271A JP 2010098316 A JP2010098316 A JP 2010098316A
Authority
JP
Japan
Prior art keywords
solid electrolyte
integrated circuit
ionizable metal
electrically connected
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009238271A
Other languages
English (en)
Inventor
Jean-Francois Nodin
ジャン−フランソワ・ノダン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of JP2010098316A publication Critical patent/JP2010098316A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】従来技術の素子よりも少ない構成部品しか必要とせずおよび/または複雑でない構造を備え、集積回路がオンまたはオフになったときにそれを保護することを可能にし、保護される集積回路に対する非常に低い寄生容量を有する、かさ高にならない保護素子を提供すること。
【解決手段】少なくとも1つの集積回路を静電放電から保護するための素子(100)は、少なくとも、イオン化可能金属部分(106)と、イオン化可能金属部分に接して配置され、前記イオン化可能金属部分の金属と同様の性質の金属イオンを有する固体電解質(104)と、この固体電解質に電気的に接続された電極(102)とを備えており、固体電解質中の金属イオン濃度が、固体電解質中の金属イオン飽和濃度より小さい。
【選択図】図2

Description

本発明は、集積回路の分野に関し、より詳細には、集積回路を、前記集積回路の接続線上に現れる可能性のあるESD(静電放電)から保護する分野に関する。
集積回路内に埋め込まれる現在の電子構成部品の大部分は、MOS(金属酸化膜半導体)トランジスタをベースとする。これらのトランジスタでは、その電源電圧より数ボルト大きい、一般に約3.3V〜5Vである電圧が、これらのトランジスタのゲート酸化物に損傷を与える可能性がある。したがって、これらの構成部品の電源電圧が低くなるほど、これらの構成部品は過電圧によって損傷しやすくなる。
集積回路の通常環境における静電放電(ESD)の電圧値は、一般に数十ボルト、さらには数百ボルトにさえ達する可能性がある。これらの電圧は、集積回路内に低電荷が存在し、したがってこうした放電中に低電流が集積回路中を流れる場合でも、破壊的になることがある。
図1は、例えばCMOS構成部品を備える集積回路16の入出力間にESD保護素子10が配置された一構成例を表しており、これらの入出力は、電気的入出力線12およびアース線14で表される。このESD保護素子10は、電気的入出力線12上に現れる静電放電または過電圧を、こうした放電に集積回路16を通過させずに、直接アース線14に向けて追い出し、それによって集積回路16をこうした過電圧から保護することを可能にする。
このような集積されたESD保護素子は一般に、多くの構成部品(ダイオード、MOSトランジスタおよびバイポーラトランジスタ、抵抗器など)の組立体を備える。米国特許第7,242,558号は例えばこのようなESD保護素子を開示している。その形成に必要な構成部品が多い場合、この保護素子はかさ高になり、このことは、保護することが望まれる回路内にこの保護素子を集積しなければならないとき重大な欠点である。さらに、多くの構成部品を備えるこのようなESD保護素子は、保護される集積回路の通過帯域が、高い寄生容量によって制限されるという欠点を有する。最後に、少なくともこの保護素子のトランジスタに給電する必要があることを考えると、この保護素子は、保護される集積回路がオンになった場合にのみ動作する。
米国特許第7,164,566号は別のタイプのESD保護素子を開示している。同明細書に開示された素子は、それを形成するために多くの技術的ステップを必要とする複雑な構造を備える。
米国特許第7,242,558号 米国特許第7,164,566号
本発明の一目的は、従来技術の素子よりも少ない構成部品しか必要とせずおよび/または複雑でない構造を備え、集積回路がオンまたはオフになったときにそれを保護することを可能にし、保護される集積回路に対する非常に低い寄生容量を有する、かさ高にならない保護素子を提供することにある。
このために、本発明は、少なくとも1つの集積回路を静電放電から保護するための素子を提案しており、この素子は少なくとも、
− イオン化可能金属部分と、
− イオン化可能金属部分に接して配置され、前記イオン化可能金属部分の金属と同様の性質の金属イオンを有する固体電解質と、
− この固体電解質に電気的に接続または結合された電極とを備えており、
固体電解質中の金属イオン濃度が、固体電解質中の金属イオン飽和濃度より小さい。
このような保護素子は、集積回路を静電放電から効率的に保護することを可能にし、周辺の分極構成部品を必要としない。前記保護素子はまた、非常にかさ高になることはなく、一般に、保護素子の寸法は約300nmに等しく、イオン化可能金属部分および固体電解質の厚さは、約100nmより薄くすることができる。このような素子により、例えば、約1秒間、約10mAに等しい電流を放散することが可能になる。
また、この保護素子は、保護される集積回路に対する寄生容量が非常に低く(例えば約100pF未満)、したがって保護される集積回路の動作用通過帯域に対する影響が低くなる。
最後に、保護素子は、静電放電にさらされていないとき、インピーダンスが非常に大きくなり(R>10オーム)、それによって漏れ電流を引き起こさず、または非常に低い漏れ電流を引き起こす。
有利には、保護素子はさらに、イオン化可能金属部分に電気的に接続または結合された第2の電極を備えることができる。
有利には、イオン化可能金属部分は、銅および/または銀をベースとすることができ、および/または固体電解質はカルコゲニドをベースとすることができ、および/または1つまたは複数の電極はニッケルおよび/またはタングステンをベースとすることができる。
1つまたは複数の電極の厚さは、約100nm〜300nmとすることができ、および/または固体電解質の厚さは、約10nm〜100nmとすることができ、および/またはイオン化可能金属部分の厚さは、約5nm〜100nmとすることができる。またイオン化可能金属層が、電極の役割を保証するとき(この場合は、第2の電極がイオン化可能金属部分それ自体によって形成される)、その厚さは約500nmより薄く、例えば約300nmに等しく、またはその代わりに約300nm〜500nmの厚さでもよい。
保護素子はさらに、1つまたは複数の電極の材料が、イオンを固体電解質中に拡散させるのに適しているとき、イオン拡散を防ぐ材料からなる部分を含み、それによって1つまたは複数の電極と固体電解質との間に配置されるイオン拡散バリアを形成する。
保護素子はさらに、電極とイオン化可能金属部分との間、または電極同士の間に配置される、1つまたは複数の電極の材料からなる部分よりも導電率の低い抵抗性材料からなる部分を備えることができる。このような材料からなる部分により、保護素子中を流れる可能性のある最大電流を制限することが可能になる。
保護素子はさらに、その抵抗性材料からなる前記部分の材料が、イオンを固体電解質中に拡散させるのに適しているとき、その材料からなる前記部分と固体電解質の間に配置されるイオン拡散バリアを備えることができる。
保護素子の各部品は、電気的絶縁材料からなる部分によって囲むことができる。
本発明はまた、少なくとも1つの集積回路を静電放電から保護する方法に関し、この方法は、集積回路の電気的入力線および/または出力線に、上記の少なくとも1つの保護素子を電気的に接続または結合するステップを含み、保護素子の電極またはイオン化可能金属部分の一方が、集積回路の電気的入力線および/または出力線に電気的に接続または結合され、他方がアース線に電気的に接続または結合される。
アース線に電気的に接続または結合された電極またはイオン化可能金属部分は、アースに直接接続または結合してもよく、あるいはフィルタ、電源、トランス、さらにはカプラなどの少なくとも1つの電子デバイスによってアースに接続または結合してもよい。
保護素子が、イオン化可能金属部分に電気的に接続または結合された第2の電極を備える場合、イオン化可能金属部分は、この第2の電極によって、集積回路の電気的入力線および/または出力線に、またはアース線に、電気的に接続または結合することができる。
この方法はさらに、集積回路の電気的入力線および/または出力線に、上記の少なくとも1つの第2の保護素子を電気的に接続および/または結合するステップを含むことができる。第1の保護素子のイオン化可能金属部分が、集積回路の電気的入力線および/または出力線に電気的に接続または結合されるとき、第2の保護素子の電極は、集積回路の電気的入力線および/または出力線に、電気的に接続または結合することができ、第2の保護素子のイオン化可能金属部分はアース線に電気的に接続または結合することができる。第1の保護素子のイオン化可能金属部分が、アース線に電気的に接続または結合されるとき、第2の保護素子のイオン化可能金属部分は集積回路の電気的入力線および/または出力線に電気的に接続または結合することができ、第2の保護素子の電極はアース線に電気的に接続または結合することができる。
好ましくは、第2の保護素子が、第2の保護素子のイオン化可能金属部分に電気的に接続または結合された第2の電極を備える場合、第2の保護素子のイオン化可能金属部分は、第2の電極によって、集積回路の電気的入力線および/または出力線に、またはアース線に電気的に接続または結合することができる。
本発明はまた、少なくとも1つの集積回路の少なくとも1本の電気的入力線および/または出力線上に現れる静電放電を放散する方法に関し、この方法は少なくとも、
− 静電放電から生じる電流を、集積回路の電気的入力線および/または出力線、またはアース線に電気的に接続された保護素子の電極またはイオン化可能金属部分によって、上述の保護素子に運ぶステップと、
− イオン化可能金属部分から生じ、イオン化可能金属部分に接して配置された保護素子の固体電解質中に拡散された金属イオンを固体電解質中に移動させ、それにより少なくともイオン化可能金属部分および固体電解質によって形成される組立体の固有抵抗を低下させ、電極とイオン化可能金属部分の間に導電経路を形成するステップと、
− 静電放電から生じる電流を、アース線に電気的に接続または結合された電極またはイオン化可能金属部分によって、保護素子を介して追い出すステップとを含む。
金属イオンの移動中、イオン化可能金属部分および固体電解質によって形成される組立体の固有抵抗を、約10オームより大きいRHI値から約10オームより小さいRBI値に低下させることができる。
本放散方法はさらに、静電放電から生じる電流を追い出すステップの後、それまでに固体電解質中に移動された金属イオンを分散させる(dispersing)ステップであって、それによりイオン化可能金属部分および固体電解質によって形成される組立体の固有抵抗を増大させることができるステップを含むことができる。
この場合、金属イオンの分散中、イオン化可能金属部分および固体電解質によって形成される組立体の固有抵抗を、約10オームより小さいRBI値から約10オームより大きいRHI値に増大させる。
本発明はまた、少なくとも1つの集積回路を、集積回路の少なくとも1本の電気的入力線および/または出力線上に現れる静電放電から保護するための半導体素子の使用に関し、この半導体素子は少なくとも、
− イオン化可能金属部分と、
− イオン化可能金属部分に接して配置され、前記イオン化可能金属部分から生じる金属イオンを含む固体電解質と、
− 固体電解質に電気的に接続または結合された電極とを備え、
固体電解質中の金属イオン濃度が、固体電解質中の金属イオンの飽和濃度より小さく、
電極またはイオン化可能金属部分の一方が、集積回路の電気的入力線および/または出力線に電気的に接続または結合され、他方がアース線に電気的に接続または結合される。
本発明は、決して限定するものではなく、純粋に指示として示す、諸実施形態の説明を、添付の図面を参照して読めば、よりよく理解されよう。
従来技術によるESD保護素子によって集積回路を保護するための構成を表す図である。 集積回路を静電放電から保護するために使用される第1の実施形態による保護素子を表す図である。 集積回路を静電放電から保護するために使用される第2の実施形態による保護素子を表す図である。 第1または第2の実施形態による保護素子の導電率の変動を、前記保護素子の電極同士の間に印加される電圧の値の関数としてグラフで表す図である。 集積回路が2つの保護素子によって保護される構成を表す図である。 集積回路が6つの保護素子によって保護される構成を表す図である。
以下で説明する様々な図の同一の、同様の、または等価な部分は、1つの図から次の図に移りやすくなるように、同じ参照番号を付けてある。
図を見やすくするために、図に表される様々な部分は、必ずしも同じ縮尺で示されていない。
様々な可能な形態(代替形態および実施形態)は、相互に排他的なものではなく、互いに組み合わせることができるものとして理解すべきである。
最初に図2を参照すると、図2は、集積回路を静電放電から保護するために使用される第1の実施形態による保護素子100を表す。
この素子100は、導体材料をベースとする、例えばタングステンおよび/またはニッケルなどの不活性金属をベースとする下部電極102を備えており、その下部電極102上に、例えばGeSeおよび/またはGeSおよび/またはWOxなどのドープされた、または非ドープのカルコゲニドをベースとする、および/またはテルルをベースとする固体電解質104が配置される。下部電極102は、例えば約100nm〜300nmの厚さを有する。固体電解質104は、例えば約10nm〜100nmの厚さを有する。下部電極102の材料がイオンを固体電解質104中に拡散させるのに適している場合(そのとき、これは「可溶」電極と呼ばれる)、下部電極102と固体電解質104の間にイオン拡散バリアを配置することができる。このようなイオン拡散バリアは、例えば、下部電極102から固体電解質104中にイオンが拡散されるのを防ぐように適合されるWnおよび/またはTiNおよび/または他の任意の材料からなる部分によって形成される。このイオンバリアの厚さは、例えば約10nm〜20nmである。
イオン化可能金属部分106、あるいは例えば銀および/または銅をベースとする活性金属部分が、固体電解質104上に配置される。この金属がイオン化可能といわれるのは、固体電解質104上へのこの金属の堆積中、または熱拡散ステップ中、または放射によって、この金属が固体電解質104中に金属イオンを拡散するからである。導体材料をベースとする、例えばタングステンおよび/またはニッケルなどの不活性金属をベースとする上部電極108が、イオン化可能金属部分106上に配置される。上部電極108の厚さは、例えば約100nm〜300nmである。上部電極108の材料がイオンを固体電解質104中に拡散させるのに適している場合、例えば前述したものと同様の拡散バリアを、上部電極108とイオン化可能金属部分106の間に配置することができる。
固体電解質104は、イオン化可能金属部分106から生じる、イオン化可能金属部分106の金属と同様の性質の金属イオンを含む。こうした金属イオンは、固体電解質104上にイオン化可能金属部分106を堆積中、および/または必要なら続いて起こる拡散(例えば、熱処理によるか、またはUV放射による)ステップの後、イオン化可能金属部分106から固体電解質104中に移動している。一代替形態では、固体電解質104を堆積中、例えば、固体電解質104とイオン化可能金属部分106の同時スパッタリングによって、固体電解質104中に金属イオンを取り込ませることができる。
固体電解質104中の金属イオン濃度は、固体電解質104の材料の金属イオン飽和濃度より小さく、概して言えば、例えば約5%〜50%である。固体電解質104中の金属イオン飽和濃度の値は、金属イオンの性質、ならびに固体電解質材料の性質に応じて変わる。例えば、GeSeをベースとする固体電解質104、およびAgをベースとするイオン化可能金属部分106の場合、固体電解質104中の銀イオン飽和濃度は、約30%に等しい。したがって、本発明では、GeSe中の銀イオン濃度として約30%未満の濃度が選択される。
下部電極102と、固体電解質104およびイオン化可能金属部分106によって形成される組立体と、上部電極108は、それぞれ保護素子100を熱的かつ電気的に分離するための誘電性部分110、114、116で囲まれる。これらの誘電性部分は、例えばSiOおよび/またはSiをベースとする。
このような素子100は寸法が小さい。例えば、両電極の厚さがそれぞれ約100nmに等しいとき、固体電解質104とイオン化可能金属部分106の合計厚さは約65nmに等しくなり、それによって約265nmに等しい厚さの保護素子100を形成することができる。保護素子100の寸法は、例えば約300nmに等しい。
図3は、第2の実施形態による保護素子100を表す。前述の第1の実施形態に比べて、第2の実施形態による保護素子100はさらに、下部電極102と固体電解質104の間に配置された抵抗性材料からなる部分112を備える。この第2の実施形態の一代替形態では、この抵抗性材料からなる部分112を、上部電極108とイオン化可能金属部分106の間に配置することもできる。この部分112の抵抗性材料としては、導電率が下部電極102および/または上部電極108の材料より低くなり、それによって素子100の内部で下部電極102と上部電極108の間に直列抵抗が形成され、電極102と108の間で保護素子100の中を流れる電流を制限することが可能になり、したがって高過ぎるESDにさらされた場合、素子100がいかなる破壊からも保護されるものが選択される。この抵抗性材料からなる部分112の寸法は、この抵抗性部分112の材料の必要な抵抗値および固有抵抗の関数として選択される。
保護素子100が耐えることができる最大電流は実験的に決められ、保護素子100が有することが意図される抵抗値は、最大継続時間中、保護される素子中を電流が流れ、あるいは保護される素子が最大ピーク電圧に耐えることができるように、この最大電流値、および保護される素子に関連するパラメータから計算される。この抵抗性部分112の材料としては、固体電解質104中にイオンを拡散しないものを選択することができる。この部分112の材料がイオンを固体電解質104中に拡散させるのに適している場合、例えば前述したものと同様の拡散バリアを、この抵抗性材料からなる部分112と固体電解質104の間に配置することができる。
素子100はその2つの電極102と108の間に導電率を有し、その値は、固体電解質104、イオン化可能金属部分106と、場合によっては抵抗性部分112とによって形成される組立体の導電率によって完全に規定される。しかし、この組立体の導電率は、その端子に印加される電圧、言い換えれば、電極102と108の間に印加される電圧に依存する。
図4は、この導電率(単位オーム)の変動を、電極102と108の間に印加される電圧(単位ボルト)の値の関数としてグラフで表している。素子100は、電極102と108の間の電圧が、閾値電圧Vthon、例えば約500mV〜5Vを超えたときに引き起こされる第1の高インピーダンスの安定状態RHI(例えば、RHI>10オーム、またはその代わりに10<RHI<10オーム)と、第2の低インピーダンス状態RBI(例えば、RBI<10オーム、またはその代わりに10<RBI<10オーム)とを有する。保護素子100に使用される材料の限界破壊電圧にできるだけ近づいた閾値電圧Vthonが選択されることが好ましい。電極102と108の間の電圧値が、閾値電圧Vthonの値より低い値の閾値Vthoff、例えば約200mV〜2Vより低くなったとき、低インピーダンス状態RBIから高インピーダンス状態RHIに自動的に戻る。図4では、Vthoffの値がVthonの値より低くなり、それによってヒステリシスdVthが形成されることが分かるであろう。
ESDの出現中、素子100の電極102および108の端子での電圧は、閾値電圧Vthonを超える。このとき、固体電解質104中に見られる金属イオンは、移動現象によって固体電解質104中に導電経路を形成し、それによって素子100の導電率を第1の高インピーダンス状態RHIから第2の低インピーダンス状態RBIへ推移させる。したがって、保護素子100からESDを追い出すことができる。ESDが終結されたとき、電極102と108の間の電圧が降下して閾値Vthoffより低くなり、それまでに移動した金属イオンが電解質104中に拡散することによって電解質104中にそれまでに形成された導電経路が除去される。次いで、保護素子100は、高インピーダンスの安定状態RHIに自動的に戻る。
保護素子100のいくつかのパラメータにより、スイッチング電圧Vthon、Vthoff、およびヒステリシスdVthを変更することが可能になる。パラメータとしては、
− イオン化可能金属106の性質
− 固体電解質104の材料の性質
− 固体電解質104中に拡散される金属イオンの量
− イオン化可能金属106の拡散係数
− 固体電解質104中へのドーパントの付加
が挙げられる。
図5は、集積回路16が静電放電から保護される一構成例を表す。図1に表す構成と同様に、保護される集積回路16は、入力および/または出力線12と、アースに接続された線14とを備える。第1または第2の実施形態による、前述の第1の保護素子100.1が、入出力線12とアース線14との間で、集積回路16の上流に、集積回路16と平行に接続される。また、第2の保護素子100.2が、入出力線12とアース線14との間で、やはり集積回路16の上流に、集積回路16に平行に接続される。第1の保護素子100.1の上部電極108.1は、入出力線12に電気的に接続され、第1の保護素子100.1の下部電極102.1は、アース線14に電気的に接続される。逆に、第2の保護素子100.2の上部電極108.2は、アース線14に電気的に接続され、第2の保護素子100.2の下部電極102.2は、入出力線12に電気的に接続される。
したがって、保護素子100.1および100.2がそれぞれユニポーラ動作を有する(下部電極102と上部電極108の間で正の電圧の存在下、高インピーダンス状態RHIから低インピーダンス状態RBIへ推移する)ので、この結合により、集積回路16のバイポーラ保護を保証することが可能になり、入出力線12上に現れる等しく十分に正または負の値のESDから集積回路16が保護される。にもかかわらず、集積回路16のユニポーラ保護を保証したい場合、入出力線12とアース線14の間で、平行に、また保護される集積回路16の上流に単一の保護素子100を接続することだけが可能である。この場合、保護素子は、集積回路16をそれから保護する必要がある、静電放電のタイプに応じて、第1の素子100.1のように、または第2の素子100.2のように接続されることになる。
保護素子100は、寸法が小さいので、その中を流れる電流の最大値Imaxに耐えることができる。Imaxより大きい値の電流を引き起こすESDから集積回路を保護する必要がある場合、この場合は、互いに平行に接続されたいくつかの保護素子100を使用することが可能である。図6は、6つの保護素子100.1〜100.6が、入出力線12とアース線14の間で、集積回路16の上流に、集積回路16に平行に接続された、このような構成の一例を表す。これら6つの保護素子100.1〜100.6のうち、最初の3つの保護素子100.1〜100.3は、入出力線12に接続されたそれらの上部電極と、アース線14に接続されたそれらの下部電極とを備え、2番目の3つの保護素子100.4〜100.6は、アース線14に接続されたそれらの上部電極と、入出力線12に接続されたそれらの下部電極とを備える。それによって、6つの保護素子100による、CMOS素子16のバイポーラ保護が実現され、したがって、静電放電の強電流に耐えることが可能になり、放電電流は、静電過電圧の符号に従って、保護素子100のうち3つの素子の間で定期的に拡散される。
図6の例は一般化することができる。すなわちN個の保護素子100によって集積回路16を保護することができる。ただし、Nは厳密に正の整数である。さらに、バイポーラ保護の場合、N個の保護素子のいくつかは、図6に関して前述した構成と同様に、集積回路16に他の保護素子とは逆向けに接続することができる。その上、入出力線とアース線の間に逆向けに接続された保護素子の数は、必ずしも入出力線とアース線の間に逆向けではない形で接続された保護素子の数に等しいとは限らない。
次に、前述した保護素子100の形成方法を開示する。
最初に、下部電極102を、例えばスパッタリング、CVD(化学気相成長)、PECVD(プラズマ促進化学気相成長)、蒸着または他の任意の適切な堆積技術により、この下部電極102を形成するための導体材料を、ここでは図示されていない、例えばシリコン、ゲルマニウム、もしくはその代わりにAsGaをベースとする半導体基板上に、またはSOI型ではない半導体基板上に堆積させることによって形成する。この基板は、有機材料をベースとするものでもよく、その場合は電気絶縁性である。この導体材料は、基板上および/または保護される1つまたは複数の集積回路の接続線上に形成される他の部品との電気的接続を形成するための、基板上に配置された金属層それ自体上に堆積することも可能である。次いで、堆積された導体材料層をエッチングして、必要な寸法および形状に従って下部電極102を形成する。静電放電の電流がその中を流れることが意図される下部電極102の断面の寸法は、保護素子100中を流れることが意図される最大電流の値の関数として選択する。この下部電極は、例えば約1μmに等しい寸法、および約300nmに等しい厚さの両側部を有する。
次いで、誘電性材料を堆積させ、下部電極102上で停止する平坦化によって、下部電極102のまわりに誘電性部分114を形成する。
第2の実施形態の例では、次いで、下部電極102上に、また誘電性部分114上に抵抗性材料層を堆積させ、次いで抵抗性部分112を形成するためにその層をエッチングする。第1の実施形態の場合、抵抗性部分112を形成するこれらのステップは省略する。
次いで、固体電解質104を形成するための材料、例えばカルコゲニドの層を、抵抗性部分112上または下部電極102上および誘電性部分上に堆積させる。次いで、イオン化可能金属部分106を形成するためのイオン化可能金属、例えば銅および/またはタングステンをベースとする層を、固体電解質104の材料層上に堆積させる。固体電解質層104上にイオン化可能金属106を堆積中、イオン化可能金属層106から生じる金属イオンが、固体電解質104を形成するためのカルコゲニド材料層中に拡散する。次いで、(固体電解質104およびイオン化可能金属部分106を形成するための)これらの層と、場合によっては抵抗性材料112とを、固体電解質104およびイオン化可能金属部分106を形成するために必要な寸法に従ってエッチングする。使用される(活性材料106以外の)材料の一部が、イオンを固体電解質104中に拡散させるのに適している場合、当該の部分と固体電解質104の間に例えば適切な材料層を堆積させ、必要な寸法までその材料層をエッチングすることによって、固体電解質104とこれらの材料との間に拡散バリアを形成するステップを実施することが可能である。
また、例えばこの材料が本来非ドープのとき、例えば固体電解質104上に予め堆積されたドーパント層から生じるドーパントをUV露光もしくは付加的な熱処理によって熱拡散、及び堆積中のドーパントの自己拡散により、固体電解質104をドープするステップを実施することも可能である。さらに、イオン化可能金属部分106および固体電解質104に対して実行される、熱処理またはUV放射でよい付加的な拡散ステップによって、固体電解質104中の金属イオン濃度を高めることも可能である。
固体電解質中に拡散される金属イオンの量は、固体電解質中の金属イオン濃度が、固体電解質中のこれらのイオンの飽和濃度の値より低くなるように選択される。この飽和濃度の値が未知であるとき、形成される固体電解質中の金属イオン濃度の値は、以下のテストを順次実施することによって得ることができる。
− 最初に、固体電解質中の金属イオン濃度の初期値を選択する。
− スイッチング電圧Vthonを測定する。
− Vthonが、保護される素子の破壊電圧より大きい場合、Vthon値を低くするために、固体電解質中の金属イオン濃度を増大させ、これを、保護される素子の破壊電圧より小さいVthonが得られるようになるまで(Vthonが、保護素子の動作電圧(または電源電圧)より大きくなっている間)行う。得られた濃度が、Vthonが保護される素子の破壊電圧より小さくなることを可能にするものであるとき、Vthoff>0が実際に満たされているかどうかチェックする。したがって、これらの条件が満たされている場合、固体電解質中の金属イオン濃度は飽和濃度よりもかなり低くなる。
− Vthonが、保護素子の動作電圧(または電源電圧)より小さい場合、金属イオン濃度を、Vthonが保護素子の動作電圧(または電源電圧)より大きくなるまで(Vthonが、保護される素子の破壊電圧より小さくなっている間)減らす。やはり、Vthoff>0が実際に満たされているかどうかチェックする。したがって、これらの条件が満たされている場合、固体電解質中の金属イオン濃度は飽和濃度よりもかなり低くなる。
次いで、部分112、104、106のまわりでの堆積および平坦化によって誘電性部分110を形成する。最後に、上部電極108ならびに誘電性部分116を、例えば下部電極102および誘電性部分114と同様にして形成する。
概して言えば、保護素子100の様々な部分を形成するために使用される材料は、スパッタリング、CVD(化学気相成長)、蒸着または他の任意の適切な堆積技術、またエッチングおよび/または平坦化、例えばCMP(化学的機械的研磨)によって、堆積することができる。
形成される固体電解質104の厚さは、具体的には、電解質を形成する材料(例えば、ドープされたカルコゲニド)の性質、高インピーダンス状態RHIでの抵抗値(この抵抗値は、関係式R=σe/Sに従って、材料の厚さに比例する。ただし、eは材料の厚さ、σは材料の固有抵抗、Sはイオン化可能金属と接触する材料の表面積である)、材料の幾何形状(特に表面積S)、および材料の破壊電圧(破壊電圧は素子のスイッチング電圧より大きい)の関数として計算される。
イオン化可能金属部分106の厚さは、電極102、108の材料、電解質中の溶解のタイプ(自然拡散、および/またはイオン化可能金属106のUVドーピングまたは熱処理によって刺激される拡散)、必要なスイッチング電圧Vthon、および固体電解質104の厚さの関数として決まる。イオン化可能金属部分106の厚さは、例えば約5nm〜100nmとすることができる。
さらに、固体電解質104中のイオン化可能金属部分106に由来する金属イオンの濃度を、必要なスイッチング電圧が得られるように調整することができる。このスイッチング電圧は、高インピーダンス状態に自然に戻ることを保証するために、飽和電圧より低いものを選択することが好ましい。この調整は、イオン化可能金属部分106の適切な厚さを選択することによって行うことができ、この最適な厚さは様々な実験的なテストによって決定することができる。
図2および図3に表す例では、平面(x,y)における(図2および図3に表す、軸x、y、zに沿った)、下部電極102および上部電極108の寸法は、部分112、104、106より大きい。したがって、保護素子100のアクティブゾーンの表面積(この表面積は、静電放電を放散中に電流が流れる表面積に相当する)は、平面(x,y)における固体電解質104の表面積によって規定され、この表面積は、同じ平面におけるイオン化可能金属部分106の表面積とほぼ同じである。この表面積は、例えば約700nm〜0.07μmである。
一代替形態では、平面(x,y)における電極の寸法を部分112、104、106より小さくすることが可能である。その場合、保護素子100のアクティブゾーンの表面積は、平面(x,y)における電極102、108の寸法によって決まる。
10 ESD保護素子
12 電気的入出力線
14 アース線
16 集積回路、CMOS素子
100 保護素子
100.1 第1の保護素子
100.2 第2の保護素子
100.3 保護素子
100.4 保護素子
100.5 保護素子
100.6 保護素子
102 下部電極
102.1 下部電極
102.2 下部電極
104 固体電解質
106 イオン化可能金属部分、活性材料
108 上部電極
108.1 上部電極
108.2 上部電極
110 誘電性部分
112 抵抗性部分、抵抗性材料からなる部分
114 誘電性部分
116 誘電性部分

Claims (16)

  1. 少なくとも1つの集積回路(16)を静電放電から保護するための素子(100、100.1〜100.6)であって、少なくとも、
    イオン化可能金属部分(106)と、
    前記イオン化可能金属部分(106)に接して配置され、前記イオン化可能金属部分(106)の金属と同様の性質の金属イオンを有する固体電解質(104)と、
    前記固体電解質(104)に電気的に接続された電極(102、102.1)とを備え、
    前記固体電解質(104)中の金属イオン濃度が、前記固体電解質(104)中の金属イオン飽和濃度より小さい、保護素子(100、100.1〜100.6)。
  2. 前記イオン化可能金属部分(106)に電気的に接続された第2の電極(108、108.1)をさらに備える、請求項1に記載の保護素子(100、100.1〜100.6)。
  3. 前記イオン化可能金属部分(106)が、銅および/または銀をベースとし、および/または前記固体電解質(104)が、カルコゲニドをベースとし、および/または1つまたは複数の前記電極(102、108)が、ニッケルおよび/またはタングステンをベースとする、請求項1または2に記載の保護素子(100、100.1〜100.6)。
  4. 前記電極(102、108)の厚さが、約100nm〜300nmであり、および/または前記固体電解質(104)の厚さが、約10nm〜100nmであり、および/または前記イオン化可能金属部分(106)の厚さが、約5nm〜100nmである、請求項1から3のいずれか一項に記載の保護素子(100、100.1〜100.6)。
  5. 前記電極(102、108)の材料が、イオンを前記固体電解質(104)中に拡散させるのに適しているとき、前記電極(102、108)と前記固体電解質(104)の間に配置されるイオン拡散バリアをさらに備える、請求項1から4のいずれか一項に記載の保護素子(100、100.1〜100.6)。
  6. 前記電極(102)と前記イオン化可能金属部分(106)との間、または前記電極(102、108)の間に配置される、前記電極(102、108)の材料よりも導電率の低い抵抗性材料からなる部分(112)をさらに備える、請求項1から5のいずれか一項に記載の保護素子(100、100.1〜100.6)。
  7. 抵抗性材料からなる前記部分(112)の材料が、イオンを前記固体電解質(104)中に拡散させるのに適しているとき、抵抗性材料からなる前記部分(112)と前記固体電解質(104)の間に配置されるイオン拡散バリアをさらに備える、請求項6に記載の保護素子(100、100.1〜100.6)。
  8. 電気的絶縁材料(110、114、116)からなる部分によって囲まれる部品を有する、請求項1から7のいずれか一項に記載の保護素子(100、100.1〜100.6)。
  9. 少なくとも1つの集積回路(16)を静電放電から保護する方法であって、請求項1から8のいずれか一項に記載の少なくとも1つの保護素子(100、100.1、100.3、100.4)を、前記集積回路(16)の電気的入力線および/または出力線(12)に少なくとも電気的に接続するステップを含み、前記保護素子(100、100.1、100.3、100.4)の前記電極(102)または前記イオン化可能金属部分(106)の一方が、前記集積回路(16)の前記電気的入力線および/または出力線(12)に電気的に接続され、他方がアース線(14)に電気的に接続される、保護方法。
  10. 前記保護素子(100、100.1、100.3、100.4)が、前記イオン化可能金属部分(106)に電気的に接続された第2の電極(108、108.1)を備える場合に、前記イオン化可能金属部分(106)が、前記第2の電極(108、108.1)によって、前記集積回路(16)の前記電気的入力線および/または出力線(12)に、または前記アース線(14)に電気的に接続される、請求項9に記載の保護方法。
  11. 前記集積回路(16)の前記電気的入力線および/または出力線(12)に、請求項1から8のいずれか一項に記載の少なくとも1つの第2の保護素子(100、100.2、100.5、100.6)を電気的に接続するステップをさらに含み、前記第1の保護素子(100、100.1、100.3、100.4)の前記イオン化可能金属部分(106)が、前記集積回路(16)の前記電気的入力線および/または出力線(12)に電気的に接続されるとき、前記第2の保護素子(100、100.2、100.5、100.6)の電極(102、102.2)が、前記集積回路(16)の前記電気的入力線および/または出力線(12)に電気的に接続され、前記第2の保護素子(100、100.2、100.5、100.6)の前記イオン化可能金属部分(106)が、前記アース線(14)に電気的に接続され、また前記第1の保護素子(100)の前記イオン化可能金属部分(106)が、前記アース線(14)に電気的に接続されるとき、前記第2の保護素子(100)の前記イオン化可能金属部分(106)が、前記集積回路(16)の前記電気的入力線および/または出力線(12)に電気的に接続され、前記第2の保護素子(100)の前記電極(102)が、前記アース線(14)に電気的に接続される、請求項9または10のいずれか一項に記載の保護方法。
  12. 前記第2の保護素子(100、100.2、100.5、100.6)が、前記第2の保護素子(100、100.2、100.5、100.6)の前記イオン化可能金属部分(106)に電気的に接続される第2の電極(108、108.2)を備える場合に、前記第2の保護素子(100、100.2、100.5、100.6)の前記イオン化可能金属部分(106)が、前記第2の電極(108、108.2)によって、前記集積回路(16)の前記電気的入力線および/または出力線(12)に、または前記アース線(14)に電気的に接続される、請求項11に記載の保護方法。
  13. 少なくとも1つの集積回路(16)の少なくとも1本の電気的入力線および/または出力線(12)上に現れる静電放電を放散する方法であって、少なくとも、
    前記静電放電から生じる電流を、前記集積回路(16)の前記電気的入力線および/または出力線(12)またはアース線(14)に電気的に接続された前記保護素子(100、100.1〜100.6)の電極(102、102.1)またはイオン化可能金属部分(106)によって、請求項1から8のいずれか一項に記載の保護素子(100、100.1〜100.6)に運ぶステップと、
    前記イオン化可能金属部分(106)から生じ、前記イオン化可能金属部分(106)に接して配置された前記保護素子(100、100.1〜100.6)の固体電解質(104)中に拡散された金属イオンを、前記固体電解質(104)中に移動させ、それにより少なくとも前記イオン化可能金属部分(106)および前記固体電解質(104)によって形成される組立体の固有抵抗を低下させ、前記電極(102、102.1、102.2)と前記イオン化可能金属部分(106)の間の導電経路を形成するステップと、
    前記静電放電から生じる電流を、前記アース線に電気的に接続された前記電極(102)または前記イオン化可能金属部分(106)により、前記保護素子(100、100.1〜100.6)を介して追い出すステップとを含む、放散方法。
  14. 前記金属イオンの移動中、前記イオン化可能金属部分(106)および前記固体電解質(104)によって形成される前記組立体の固有抵抗が、約10オームより大きいRHI値から約10オームより小さいRBI値に低下される、請求項13に記載の放散方法。
  15. 前記静電放電から生じる電流を追い出すステップの後、それまでに前記固体電解質(104)中に移動した前記金属イオンを分散させ、それによって前記イオン化可能金属部分(106)および前記固体電解質(104)によって形成される前記組立体の固有抵抗を増大させるステップをさらに含む、請求項13または14のいずれか一項に記載の放散方法。
  16. 前記金属イオンの拡散中、前記イオン化可能金属部分(106)および前記固体電解質(104)によって形成される前記組立体の固有抵抗が、約10オームより小さいRBI値から約10オームより大きいRHI値に増大される、請求項15に記載の放散方法。
JP2009238271A 2008-10-16 2009-10-15 集積回路において静電放電を防止し放散する方法 Pending JP2010098316A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0857033A FR2937462B1 (fr) 2008-10-16 2008-10-16 Procede de protection et de dissipation de decharges electrostatiques sur un circuit integre

Publications (1)

Publication Number Publication Date
JP2010098316A true JP2010098316A (ja) 2010-04-30

Family

ID=40577892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238271A Pending JP2010098316A (ja) 2008-10-16 2009-10-15 集積回路において静電放電を防止し放散する方法

Country Status (4)

Country Link
US (1) US20100097735A1 (ja)
EP (1) EP2178121A1 (ja)
JP (1) JP2010098316A (ja)
FR (1) FR2937462B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039284A1 (ja) * 2010-09-22 2012-03-29 独立行政法人物質・材料研究機構 電気化学トランジスタ
WO2013103122A1 (ja) * 2012-01-05 2013-07-11 日本電気株式会社 スイッチング素子及びその製造方法
WO2013146986A1 (ja) 2012-03-29 2013-10-03 宇部興産株式会社 水性ポリウレタン樹脂分散体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934711B1 (fr) * 2008-07-29 2011-03-11 Commissariat Energie Atomique Dispositif memoire et memoire cbram a fiablilite amelioree.
US9019769B2 (en) * 2012-12-11 2015-04-28 Macronix International Co., Ltd. Semiconductor device and manufacturing method and operating method for the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343085A (en) * 1966-09-20 1967-09-19 Energy Conversion Devices Inc Overvoltage protection of a.c. measuring devices
GB8623178D0 (en) * 1986-09-26 1987-01-14 Raychem Ltd Circuit protection device
US7164566B2 (en) * 2004-03-19 2007-01-16 Freescale Semiconductor, Inc. Electrostatic discharge protection device and method therefore
US7242558B2 (en) * 2004-06-01 2007-07-10 Taiwan Semiconductor Co., Ltd. ESD protection module triggered by BJT punch-through
US8492810B2 (en) * 2006-02-28 2013-07-23 Qimonda Ag Method of fabricating an integrated electronic circuit with programmable resistance cells
US8169751B2 (en) * 2006-06-27 2012-05-01 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having a structure for activating and deactivating electrostatic discharge prevention circuitry
US7751163B2 (en) * 2006-09-29 2010-07-06 Qimonda Ag Electric device protection circuit and method for protecting an electric device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039284A1 (ja) * 2010-09-22 2012-03-29 独立行政法人物質・材料研究機構 電気化学トランジスタ
JP2012069612A (ja) * 2010-09-22 2012-04-05 National Institute For Materials Science 電気化学トランジスタ
WO2013103122A1 (ja) * 2012-01-05 2013-07-11 日本電気株式会社 スイッチング素子及びその製造方法
WO2013146986A1 (ja) 2012-03-29 2013-10-03 宇部興産株式会社 水性ポリウレタン樹脂分散体

Also Published As

Publication number Publication date
EP2178121A1 (fr) 2010-04-21
US20100097735A1 (en) 2010-04-22
FR2937462A1 (fr) 2010-04-23
FR2937462B1 (fr) 2010-12-24

Similar Documents

Publication Publication Date Title
US6245600B1 (en) Method and structure for SOI wafers to avoid electrostatic discharge
US7173310B2 (en) Lateral lubistor structure and method
KR100627134B1 (ko) 반도체 제어 정류기를 이용한 정전기 방전 보호 회로
US7638857B2 (en) Structure of silicon controlled rectifier
JP3484081B2 (ja) 半導体集積回路及び保護素子
KR100517770B1 (ko) 정전기 방전 보호 소자
US6710990B2 (en) Low voltage breakdown element for ESD trigger device
US9754998B2 (en) Semiconductor device and operation method for same
US6765773B2 (en) ESD protection for a CMOS output stage
JP5740429B2 (ja) 電力トランジスタ発熱制御回路およびダイオード電力制御回路
JP2007520074A (ja) 静電放電保護デバイスを備えた集積回路チップ
JP2010098316A (ja) 集積回路において静電放電を防止し放散する方法
CN111386605B (zh) 包含场诱发切换元件的静电放电保护装置
JP2006339444A (ja) 半導体装置及びその半導体装置の製造方法
JP2013120815A (ja) Esd保護回路およびこれを備えた半導体装置
US6570226B1 (en) Device and circuit for electrostatic discharge and overvoltage protection applications
JP2008042046A (ja) 半導体装置及び半導体装置の製造方法
JP2006522460A (ja) 横型ルビスター構造(laterallubistorstructure)および形成方法
EP3288080A1 (en) Electrostatic discharge protection device and method
US20040021998A1 (en) Electrostatic discharge protection device comprising several thyristors
US8664726B2 (en) Electrostatic discharge (ESD) protection device, method of fabricating the device, and electronic apparatus including the device
TWI525783B (zh) 電子電路用的保護元件
CN109983576B (zh) 静电放电保护装置
TWI325630B (en) Circuit systems, semiconductor structures and integrated circuits
US20090080132A1 (en) Antenna diodes with electrical overstress (eos) protection