JP2010097344A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2010097344A
JP2010097344A JP2008266589A JP2008266589A JP2010097344A JP 2010097344 A JP2010097344 A JP 2010097344A JP 2008266589 A JP2008266589 A JP 2008266589A JP 2008266589 A JP2008266589 A JP 2008266589A JP 2010097344 A JP2010097344 A JP 2010097344A
Authority
JP
Japan
Prior art keywords
generation circuit
voltage generation
circuit
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008266589A
Other languages
English (en)
Inventor
Tatsuya Matano
達哉 俣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2008266589A priority Critical patent/JP2010097344A/ja
Priority to US12/578,974 priority patent/US20100091597A1/en
Publication of JP2010097344A publication Critical patent/JP2010097344A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0038Power supply circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

【課題】切換判定回路を付加することなく負荷の状態に応じて出力能力が対応できる内部電圧発生回路を備えた半導体装置を提供する。
【解決手段】内部電圧発生回路100は、電圧発生回路110と電圧発生回路120からなる。その電圧発生回路120は、電圧発生回路110よりも電流供給能力が大きいものである。また、電圧発生回路120は、電圧発生回路110の内部信号を用いてその活性化状態が制御される。
【選択図】図1

Description

本発明は半導体装置に関し、特に、メモリ回路のような内部回路に対して動作電圧を発生して供給する(すなわち、内部回路を負荷回路として駆動電圧を供給する)内部電圧発生回路を備えた半導体装置に関する。
内部電圧発生回路では、必要とされる負荷変動に対応するためには、最大負荷電流に対応できる出力回路を備えることが必要になる。最大負荷電流に対応できる内部電圧発生回路では、内部電圧発生回路が消費する消費電力が増大する。そのため、負荷電流の少ない場合や、内部電圧発生回路を活性化させたスタンバイ状態の場合においても、内部電圧発生回路が活性化している限り、負荷電流の多い内部電圧発生回路に必要とされる消費電力が消費される。このような内部電圧発生回路の出力が必要とされるか否かを検出し、必要とされない場合において内部電圧発生回路を不活性にして消費電力を低減する技術がある(例えば、特許文献1参照)。
特開2001−117650号公報
しかしながら、上述した特許文献1では、負荷回路の電流供給の状態に応じて能力が異なる電圧発生回路を制御することは記載されているが、その手法は、負荷の状態を切換判定回路によって検出するものであり、切換判定回路の付加が必要となる。その切換判定回路の付加によって、回路が複雑化して回路面積が増大し、消費電力が増加するなどの問題がある。
本発明は、第1の電圧発生回路と、該第1の電圧発生回路よりも電流供給能力が大きい第2の電圧発生回路とを有し、該第1の電圧発生回路の内部信号を用いて該第2の電圧発生回路の活性化と非活性化の切り換えを制御することを特徴とする内部電圧発生回路、を備えたことを特徴とする半導体装置である。
この本発明によれば、半導体装置における内部電圧発生回路において、第2の電圧発生回路は、第1の電圧発生回路よりも電流供給能力が大きいものである。その第2の電圧発生回路は、第1の電圧発生回路の内部信号を用いてその活性化と非活性化状態の切り換えを制御されることとした。
これにより、第1の電圧発生回路は、第1の電圧発生回路から出力される電流が所定の電流の値より多くなると、出力される信号の電圧が低下する。第1の電圧発生回路は、所定の電流の値を超える状態となることを検出し、その内部信号を変化させる。そして、その内部信号の状態に応じて、第2の電圧発生回路を活性化させ、第2の電圧発生回路からも電流を出力させる。第1の電圧発生回路及び第2の電圧発生回路に接続されている負荷回路に供給する電流は、第1の電圧発生回路から出力される電流に、第2の電圧発生回路から出力される電流が加算された大きな出力電流とすることができる。
これにより、負荷の変動に合わせて出力する電流の値を変更することができる。すなわち、出力される電流が少ない場合には、消費電力の少ない第1の電圧発生回路のみを活性化させ、出力される電流が多い場合には、消費電力が多いが電流供給能力の大きい第2の電圧発生回路も活性化させ、それぞれの電圧発生回路の電流供給出力を切り換えることができる。このように、切換判定回路を個別に設けることなく電流供給能力に応じて、電圧発生回路における消費電力の発生を切り換えることができ、回路を簡素化することができる。
(第1実施形態)
以下、本発明の一実施形態について図面を参照して説明する。
図1は、本実施形態による内部電圧発生回路を示すブロック図である。
図に示される内部電圧発生回路100は、電圧発生回路110及びこの発生回路よりも少なくとも電流駆動能力が高い電圧発生回路120を備えている。
電圧発生回路110は、差動増幅回路111、出力回路112、分圧回路113及び活性化制御回路114を備える。
電圧発生回路110における差動増幅回路111は、nチャネル型電界効果トランジスタ(以下、nMOSFETという。)11、nMOSFET12、nMOSFET13、pチャネル型電界効果トランジスタ(以下、pMOSFETという。)14及びpMOSFET15を備える。
差動増幅回路111においてnMOSFET11は、ゲートが分圧回路113の出力端に接続されている。nMOSFET12は、ゲートに基準電圧VWLRが入力され、ソースがnMOSFET11のソースに接続されている。nMOSFET13は、ソースが接地電位に接続され、ドレインがnMOSFET11のソースに接続され、ゲートが活性化信号(ACT)が入力される入力端子に接続されている。pMOSFET14は、ソースが電源VPSに、ドレインがnMOSFET11のドレインに、ゲートが自身のドレインに接続されている。pMOSFET15は、ソースが電源VPSに、ドレインがnMOSFET12のドレインに、ゲートがpMOSFET14のゲートに接続されている。この差動増幅回路111の出力端は、nMOSFET12のドレインになる。すなわち、差動増幅回路111は、nMOSFET11及びnMOSFET12からなる差動入力部と、入力される活性化信号(ACT)によって制御され、その差動入力部の動作電流を定める定電流回路(nMOSFET13)と、その差動入力部の負荷となるpMOSFET14及びpMOSFET15とからなるカレントミラー部からなる。
出力回路112は、pMOSFET16を備える。pMOSFET16は、ゲートがnMOSFET12のドレインに接続され、ソースが電源VPSに接続され、ドレインが分圧回路の抵抗1と、電源出力端子TVWLとに接続されている。
分圧回路113は、抵抗1、抵抗2を備える。
分圧回路113は、出力回路112の出力に接続され、直列に接続された抵抗1及び抵抗2の両端に印加された出力回路112の出力電圧が分圧され、抵抗1及び抵抗2の接続点から出力される。なお、コンデンサ3及びコンデンサ4は、浮遊容量などによる寄生容量成分を示す。分圧回路113は、直列に接続された抵抗1及び抵抗2には、それぞれコンデンサ3とコンデンサ4とが並列に接続されている。すなわち、出力電圧(負荷供給電圧)に応じた帰還電圧を抵抗分圧回路により得ている。他の構成としても構わない。
活性化制御回路114は、nMOSFET17を備える。nMOSFET17は、ソースが基準電位に接続され、ドレインが分圧回路113の抵抗2に出力され、ゲートは、活性化信号(ACT)が入力される入力端子に接続されているとともに、活性化信号(ACT)を分岐して差動増幅回路111に入力する。
電圧発生回路120は、差動増幅回路121、出力回路122及び活性化制御回路124を備える。
電圧発生回路120における差動増幅回路121は、nMOSFET21、nMOSFET22、nMOSFET23、pMOSFET24及びpMOSFET25を備える。
差動増幅回路121においてnMOSFET21は、ゲートが分圧回路113の出力端に接続されている。nMOSFET22は、ゲートに基準電圧VWLRが入力され、ソースがnMOSFET21のソースに接続されている。nMOSFET23は、ソースが接地電位に接続され、ドレインがnMOSFET21のソースに接続され、ゲートが活性化制御部124の出力端に接続され、活性化信号(RACT)が入力される。pMOSFET24は、ソースが電源VPSに、ドレインがnMOSFET21のドレインに、ゲートが自身のドレインに接続されている。pMOSFET25は、ソースが電源VPSに、ドレインがnMOSFET22のドレインに、ゲートがpMOSFET24のゲートに接続されている。この差動増幅回路121の出力端は、nMOSFET22のドレインになる。すなわち、差動増幅回路121は、nMOSFET21及びnMOSFET22からなる差動入力部と、入力される制御信号によって制御され、その差動入力部の動作電流を定める定電流回路(nMOSFET23)と、その差動入力部が負荷とするpMOSFET24及びpMOSFET25からなるカレントミラー部からなる。
出力回路122は、pMOSFET26を備える。pMOSFET26は、ゲートがnMOSFET22のドレインに接続され、ソースが電源VPSに接続され、ドレインが分圧回路の抵抗1と、電源出力端子TVWLとに接続されている。
活性化制御回路124は、バッファ27を備える。バッファ27における入力端が電圧発生回路110における差動増幅回路111の出力端、すなわちnMOSFET12のドレインに接続され、バッファ27における出力端が差動増幅回路121の活性化制御入力端、すなわちnMOSFET23のゲートに接続されている。活性化制御回路124は、差動増幅回路111が出力する信号に応じて、差動増幅回路121に活性化信号(RACT)を入力する。バッファ27は、所定のバイアス電圧によってバイアスされた差動増幅回路111の活性化状態を指示する信号を出力する出力回路を備え、入力される信号の電圧が閾値電位より高い場合には、「L(ロー)」レベルを出力し、入力される信号の電圧が閾値電位より高い場合には、バイアス電圧を出力する。バイアス電圧が出力された場合に、差動増幅回路111が活性化する。かくして、電圧発生回路110のおける差動増幅回路111から出力回路112への駆動信号が、電圧発生回路110の内部信号CTとして、電圧発生回路120に供給され、同回路120はこの内部信号CTによりその活性化、非活性化が制御されることになる。
次に、内部電源回路100から出力される電圧VWLについて示す。その電圧VWLは、次の条件によって定められる。
電圧発生回路110において、出力される電圧VWLに応じて変化する帰還信号HVWLと基準電圧VWLRとを差動増幅回路111によって比較し、その差を誤差信号として検出する。この誤差信号に応じて変化し、電源回路110から出力される電圧VWLの制御に用いられる信号は、電源回路110の内部信号CTとして機能する。
電圧発生回路110は、検出された誤差信号に応じて出力される電圧VWLを制御する帰還増幅回路を用いた定電圧回路である。
電圧発生回路110における分圧回路113が、出力回路112から出力される電圧VWLを分圧した電圧を帰還信号HVWLとして出力する。差動増幅回路111は、その帰還信号HVWLの電圧と基準電圧VWLR(制御目標電圧)の電位差が示す誤差信号に基づいた信号の電力増幅を行って出力する。出力回路112がこの誤差信号に基づいて電力増幅して出力する電圧が、電圧VWLとなる。このように、出力信号の電圧VWLは、フィードバック制御回路によって定電圧を出力するように制御される。
このときの出力される信号の電圧VWLは、式(1)によって示すことができる。
VWL=VWLR×(R1+R2)/R2 ・・・(1)
式(1)において、R1、R2が抵抗1と抵抗2の値を示し、VWLRは、基準電圧VWLRの電圧値を示す。また、説明を簡略化するため、コンデンサ1とコンデンサ2で示される寄生容量の影響はないものとする。
電圧供給回路120においても、同回路120における差動増幅回路121が帰還電圧と基準電圧VWLRとを比較しているので、上記の式(1)が成立する。
かかる構成において、各電圧発生回路110、120は、その活性化状態においては、帰還電圧(分圧回路113の抵抗1,2の接続点電圧)が基準電圧VWLRと等しくなるように帰還動作が働き、出力端子TVWLの出力電圧VWLが安定化され、出力電圧VWLは式(1)の値をとる。より詳細には、出力端子TVWLにつながる負荷回路における電流消費等が大きくなって出力電圧VWLが低下すると、出力回路112(122)への差動増幅回路111(121)への駆動信号、即ち、pMOSFET16(26)のゲート電圧が低下し、その導通コンダクタンスが増加し(導通抵抗が小さくなり)、その結果、出力電圧VWLは上昇する方向に制御される。一方、出力端子TVWLにつながる負荷が軽くなる等により出力電圧VWLが上昇すると、出力回路112(122)への差動増幅回路111(121)への駆動信号、即ち、pMOSFET16(26)のゲート電圧が上昇し、その導通コンダクタンスが今度は低下し(導通抵抗が高くなり)、その結果、出力電圧VWLは低下する方向に制御される。かくして、出力電圧VWLは負荷変動に対して安定化されることになる。
そして、本実施形態においては、電圧発生回路110の電流供給能力は比較的小さく(例えば、負荷回路の最大消費電流より小さな値により)設定され、一方、電圧発生回路120のそれは比較的大きく(例えば、負荷回路の最大消費電流より大きな値により)設定されている。電流能力の設定は、pMOSFET16、26のサイズ等に基づく駆動能力によって設定できる。しかも、電圧発生回路120は、電流駆動能力が小さい電圧発生回路110からの内部信号CTにより、その活性化、非活性化が制御されている。かくして、負荷電流の大幅な増大(例えば、アイドル電流から電圧発生回路110の電流供給能力を超える電流への変化)に基づく出力電圧VWLの低下時に電流駆動能力の大きな電圧発生回路120が活性化され、その結果として、消費電力を低減させながら負荷供給電圧の安定化が実現される。
すなわち、電圧発生回路110は活性化信号ACTのアクティブハイレベルにて活性化され動作するが、定常状態においては、出力端子TVWLの出力電圧VWLが前述の(1)式によって示される電圧となるように安定化させる。負荷電流は負荷回路の動作状態に応じて変動するが、その負荷電流の変動範囲が電圧発生回路110の駆動能力範囲内であれば、同回路110自身により出力電圧VWLは安定化され続ける。このような状態においては、電圧発生回路120のバッファ27の閾値が電圧発生回路110の内部信号CTのレベルよりも低く設定されているので、バッファ27の出力はインアクティブレベルとしての「L(ロー)」レベルとなるので、nMOSFET23は遮断状態であり、電圧発生回路120は動作しない。なお、バッファ27の閾値は、目的とする回路動作や消費電力の観点から、適宜設定できる。
負荷電流が電圧発生回路110の駆動能力を超えて増大すると、同回路110による安定化制御はその増大にもはや追従することができなくなり、出力電圧VWLの低下は激しく安定化できなくなる。それに伴い、電圧発生回路110の差動増幅回路111の出力、即ち、内部信号CTのレベルは低下し、ついには、バッファ27の閾値レベルよりも小さくなる。
この結果、電圧発生回路120が活性化され、その出力回路122が動作状態となる。電圧発生回路120の電流駆動能力は負荷電流に比べ高く設定されているため、出力電圧VWLの安定化が急速に実行されることが理解されるであろう。
かくして、本内部電圧発生回路100は、消費電力を低減させながら負荷供給電圧の安定化が実現することになる。
このように、本実施形態による内部電圧発生回路(内部電圧発生回路100)は、第1の電圧発生回路(電圧発生回路110)と、第1の電圧発生回路(電圧発生回路110)よりも電流供給能力が大きい第2の電圧発生回路(電圧発生回路120)を有し、第1の電圧発生回路(電圧発生回路110)の内部信号を用いて第2の電圧発生回路(電圧発生回路120)の活性化と非活性化の切り換えを制御する機能を有している。
これにより、第1の電圧発生回路は、第1の電圧発生回路から出力される電流が、所定の電流の値(定格出力電流値)より多くなると出力される信号の電圧が低下する。第1の電圧発生回路は、所定の電流の値を超える状態となることを検出し、その内部信号を変化させる。そして、その内部信号の状態に応じて、第2の電圧発生回路を活性化させ、第2の電圧発生回路からも電流を出力させる。第1の電圧発生回路及び第2の電圧発生回路に接続されている負荷回路に供給する電流は、第1の電圧発生回路から出力される電流に、第2の電圧発生回路から出力される電流が加算された大きな出力電流とすることができる。
また、これにより、負荷の変動に合わせて出力する電流の値を変更することができる。すなわち、出力される電流が少ない場合には、消費電力の少ない第1の電圧発生回路のみを活性化させ、出力される電流が多い場合には、消費電力が多いが電流供給能力の大きい第2の電圧発生回路も活性化させ、それぞれの電圧発生回路の電流供給出力を切り換えることができる。このように、切換判定回路を個別に設けることなく電流供給能力に応じて、電圧発生回路における消費電力の発生を切り換えることができ、回路を簡素化することができる。
また、本実施形態による半導体装置における内部電圧発生回路(内部電圧発生回路100)において、第1の電圧発生回路(電圧発生回路110)は、その出力電圧を制御する出力回路(出力回路112)を有し、この出力回路(出力回路112)への駆動信号が内部信号として第2の電圧発生回路(電圧発生回路120)に供給されている。
これにより、内部電圧発生回路(内部電圧発生回路100)は、第1の電圧発生回路(電圧発生回路110)が出力する内部信号を用いて第2の電圧発生回路(電圧発生回路120)の活性化制御を行って、第2の電圧発生回路(電圧発生回路120)の電流出力を切り換える。この切り換えは、第2の電圧発生回路(電圧発生回路120)を制御して、出力される電流を加算して合成することができる。
これにより、それぞれの電圧発生回路出力の切り換えにおいて、追加の切換判定回路を設けて回路を煩雑にすることなく内部電圧発生回路(内部電圧発生回路100)を構成することができ、回路並びに消費電力を少なくした内部電圧発生回路(内部電圧発生回路100)を備えた半導体装置を提供することができる。
また、本実施形態による半導体装置における内部電圧発生回路(内部電圧発生回路100)では、第1の電圧発生回路(電圧発生回路110)は、出力電圧に基づき生成される帰還電圧と基準電圧とを比較して駆動信号を発生する差動増幅回路(差動増幅回路111)を更に備え、第2の電圧発生回路(電圧発生回路120)は、帰還電圧と基準電圧とを比較する差動増幅回路(差動増幅回路121)と、この差動増幅回路(差動増幅回路121)により駆動されると共に出力が第1の電圧発生回路(電圧発生回路110)の出力に共通接続された出力回路(出力回路122)とを備え、内部信号は第2の電圧発生回路(電圧発生回路120)の差動増幅回路(差動増幅回路121)に供給されて第2の電圧発生回路(電圧発生回路120)の活性化と非活性化の切り換えが行われる。
これにより、出力電圧の変化に応じて、第1の差動増幅回路(差動増幅回路111)において検出される誤差電圧の変化に基づいた内部信号が出力される。この内部信号を用いて、第1の出力回路(出力回路112)の出力電流を制御するとともに、第2の出力回路(出力回路112)の出力電流を制御する。第2の出力回路(出力回路112)から出力される出力電流は、第1の電圧発生回路(電圧発生回路110)が出力した内部信号に応じて、第2の差動増幅回路(差動増幅回路121)の活性化を制御する。活性化された第2の差動増幅回路(差動増幅回路121)は、第2の出力回路(出力回路112)から必要な電流を出力し、出力電圧を安定化させることができる。
また、これにより、負荷回路の負荷の変動に影響されることなく、安定した信号を出力することが、この内部電圧発生回路(内部電圧発生回路100)を用いることにより実現することができる。この内部電圧発生回路(内部電圧発生回路100)では、第1の電圧発生回路(電圧発生回路110)の内部信号を検出できる第2の電圧発生回路(電圧発生回路120)と組み合わせて構成されている。そして、切換判定回路を個別に設けることなく内部電圧発生回路(内部電圧発生回路100)に接続される負荷回路による負荷変動に対応する電流供給能力の切り替えを行うことができる。このように構成することから、内部電圧発生回路(内部電圧発生回路100)における消費電力の発生を切り換えることができ、回路を簡素化した内部電圧発生回路を提供することが可能になる。
(第2実施形態)
次に、本発明の第2実施形態につき説明するが、本実施形態は、電圧発生回路の内部信号を用いて合わせて設けられる電圧発生回路の活性化と非活性化の切り換えを制御する内部電圧発生回路を用いて、複数の記憶素子からなる記憶領域の中から特定の記憶素子を選択する制御信号を出力することによって消費電流が変動する出力回路の電源を供給する半導体装置を示す。
図2は、本実施形態による半導体装置の一部を示すブロック図である。
図に示されるメモリ回路(半導体装置)1000は、相変化メモリ素子を記憶素子(メモリセル)として用いたものであり、内部電圧発生回路100、ワードドライバ200、カラムスイッチ300、データリード/ライト回路400、メモリセル領域500、ワード線WL0、WL1、・・・、WLn(以下、ワード線WL0、WL1、・・・、WLnをまとめて表すときはワード線WLと記載する)、ビット線BL0、BL1、・・・、BLm(以下、ビット線BL0、BL1、・・・、BLmをまとめて表すときはビット線BLと記載する)を備える。この他にも、コマンド処理系、アドレス処理系、データ入出力系等の各種構成が存在するが、図面の簡単化のために省略していることは容易に理解できるであろう。また、本メモリ回路1000は、半導体メモリ装置とする単位で構成されていても、所謂システムLSIとしてロジック回路との混載におけるメモリ回路として構成されていても良い。
メモリ回路1000における内部電圧発生回路100は、図1に示した構成と同じである。
メモリ回路1000におけるメモリセル領域500は、複数のメモリセルM500−00・・・、M500−nmからなるメモリセルアレイを形成する。メモリセルM500−00〜M500−nmをまとめて表すときはM500と記載する。メモリセルM500−klは、ワード線WLkと、ビット線BLlとからなるマトリクスの交点に配置され、接続されているワード線WLkとビット線BLlによって選択される。それぞれのメモリセルM500は、メモリセルM500−00に示されるように、電界効果トランジスタ(以下、FETという。)502−00と相変化膜を用いた相変化素子501−00とからなる相変化技術を応用した記憶素子である。FET502−00は、ゲートがワード線WL0に接続され、ドレインが相変化素子502−00を介してビット線BL0に接続され、ソースが基準電位(接地)に接続されている。以下、各メモリセルM500が備える電界トランジスタをまとめて示すときには、FET502という。なお、各メモリセルM500ではビットラインBLと基準電位(接地)との間に直列接続する相変化メモリ素子501とFET502の順番を、図面で示す順番とは逆にしてもよい。
ワードドライバ200に接続されているワード線WLに接続されているメモリセルが選択され、また、選択されたメモリセルM500はビット線BLに接続されている。
ワード線WL0に、メモリセルM500−00、M500−01、・・・、M500−0nが備えるFET502のゲートが接続されている。ワード線WL1に、メモリセルM500−10、M500−11、・・・、M500−1nが備えるFET502のゲートが接続されている。同様にワード線WLに、メモリセルM500−m0、M500−m1、・・・、M500−nmが備えるFET502のゲートが接続されている。ビット線BL0に、メモリセルM500−00、M500−10、・・・、M500−m0が備えるFET502のドレインが相変化素子を介して接続されている。ビット線BL1に、メモリセルM500−01、M500−11、・・・、M500−m1が備えるFET502のドレインが相変化素子を介して接続されている。同様に、ビット線BLmに、メモリセルM500−0n、M500−1n、・・・、M500−nmが備えるFET502のドレインが相変化素子を介して接続されている。各メモリセルM500が備えるFET502のソースは基準電位に接続されている。
ワードドライバ200は、図示されないワードデコーダから入力されたメモリセル領域500の行を選択する信号WD0、WD1、・・・、WDnに応じて、対応するワード線WLにそれぞれ出力する。ワードドライバ200は、ワードドライバ200−0、200−1、・・・、200−n(まとめて表すときはワードドライバ200という。)を備える。各ワードドライバ200は対応して設けられるワード線WLに接続され、選択されたワード線WLに選択信号を出力する。
カラムスイッチ300は、ビット線BLとデータリード/ライト回路400との間に配置され、図示されないカラム選択信号に基づき選択される1つのビット線BLをデー路400に接続する。
データリード/ライト回路400は、データの書き込み時には、入力されたデータをカラムスイッチ300を介してビット線BLに入力し、データの読み出し時には、選択されたビット線BLからの信号がカラムスイッチ300を介して入力され、そのデータを外部に出力する信号とする。
なお、内部電圧発生回路100に入力される活性化信号(ACT)は、メモリ回路1000の外部から入力されるコマンド信号を検出する図示されないコマンドデコード回路から出力される信号である。
また、内部電圧発生回路100の出力端は、各ワードドライバ200を負荷回路としてそれらの電源入力端子にそれぞれ接続され、動作電圧を供給する。
各ワード線WLは、対応して設けられるワードドライバ200によって駆動される。ワード線WLを駆動するワード線ドライブ信号WDが活性化されると、対応するワード線WLは、メモリセルM500を選択する選択信号の電圧まで、ワードドライバ200により充電される。その選択信号の電圧が、内部電圧発生回路100が出力する電圧になる。
すなわち、第1の電圧発生回路(電圧発生回路110)と、該第1の電圧発生回路(電圧発生回路110)よりも電流供給能力が大きい第2の電圧発生回路(電圧発生回路120)を有し、該第1の電圧発生回路(電圧発生回路110)の内部信号CTを用いて該第2の電圧発生回路(電圧発生回路120)の活性化と非活性化の切り換えを制御する内部電圧発生回路(内部電圧発生回路100)を有し、該内部電圧発生回路(内部電圧発生回路100)が、複数の記憶素子(すなわち、メモリセルM500)からなる記憶領域(すなわち、メモリセル領域500)の中から特定の記憶素子(メモリセルM500)を選択する制御信号を出力することによって消費電流が変動する出力回路(すなわち、ワードドライバ200)の電源電圧(動作電圧)を供給する。
図3を参照して本メモリ回路(半導体装置)1000動作について説明する。
本メモリ回路1000に対してデータをリードまたはライトするためのアクセス(アクティブ)コマンド(図示せず)が入力されると、図示しないコマンドデコード回路がそのコマンドをデコードし、内部電圧発生回路100への活性化信号(ACT)を時刻t1でアクティブレベルとしての「H(ハイ)」レベルにする。これにより、内部電圧発生回路100は、活性化され、各ワードドライバ200に所望の動作電圧を供給する。
時刻t2において、図示されないワードデコーダ(ロウデコーダ)はワード線ドライブ信号WD0〜WDn中の一つの信号WDkをアクティブレベルにする。アクティブレベルにされるワード線ドライブ信号WDkは、ロウアドレスに指定されたワード線WLkに出力される。通常、ロウアドレスはアクセスコマンドと共に供給されるが、そのデコード処理等が必要となるので、内部電圧発生回路100への活性化信号ACTよりも遅れてワード線ドライブ信号WDkはアクティブレベルとなる。
アクティブレベルとなったワード線ドライブ信号WDkを受けるワードドライバ200は、内部電圧発生回路100からの電圧を動作電圧として対応するワード線WLをそのレベルまで駆動する。このとき、ワード線WLには多数のメモリセルM500が接続されているのでその負荷容量は、各メモリセルM500のそれぞれのFET502が有するゲート容量の総和となり、非常に大きなものとなる。従って、ドライバ200はワード線WLの駆動のためにかなりの電流(すなわち、各メモリセルM500が有するゲート容量を充電する電流)を必要とする。このため、内部電圧発生回路100の電圧発生回路110だけでは、その出力電圧安定化の動作に追いつけず、出力電圧(すなわち、ワード線駆動電圧)が低下し始める。
その結果、図1に関連して説明したように、駆動能力が高い電圧発生回路120が活性化され、駆動電圧の低下を抑制することになる。かくして、選択されたワード線WLkは、所望の選択電圧(すなわち、各メモリセルM500が選択されたと判定する閾値電圧を超える電圧)に急速に駆動される。選択されたワード線WLkの駆動がほぼ終了すると、電圧発生回路120は非活性化状態となる。
アクセスコマンドに続いてリードまたはライトコマンドが、カラムアドレスと共に、供給され、その結果、カラムスイッチ300は、図示しないカラムデコーダからの選択信号に基づき、選択されたビット線BLlをデータリード/ライト回路に電気的に接続する。かくして、選択されたワード線WLkおよびビット線BLlの交点に配置されたメモリセルM500−mlに対してデータリードまたはライトが実行される。
選択されたメモリセルM500−mlへの実質的なデータリードまたはライト動作が終了する時刻t3において、選択されたワード線ドライブ信号WDkはインアクティブレベルとして「L(ロー)」レベルに変化する。この後、別のワードドライブ信号がアクティブレベルに変化し場合は、上述の動作が実行されることになる。
メモリ回路1000へのアクセスが完了すると、時刻t4において、コマンドデコーダは活性化信号(ACT)をインアクティブレベルである「L(ロー)」レベルに戻される。この結果、内部電圧発生回路100も、非活性化状態に遷移して電圧の出力を停止する。
このように、本メモリ回路1000では、無駄な消費電力を伴うことなく、負荷容量が大きなワードドライバ200および選択されたワード線WLkに対して所望の電圧供給および安定化を高速に実行できる。
また、相変化素子501を備えた本メモリ回路1000は、それぞれのメモリセルM500において相変化素子501の状態変化に必要とされる電流容量をスイッチングするFET502を備えている。このFET502が複数接続されたワード線WLを駆動するワードドライバ200の駆動電圧を内部電圧発生回路100は安定させて供給することができる。
なお、本発明は、上記の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。本発明の内部電圧発生回路並びに電圧発生回路における、構成要素には、類似の機能を有する素子を適用することができ、構成数や接続形態についても特に限定されるものではない。
また、本実施形態で示した回路構成について、電源の極性と回路素子の極性をそれぞれそろえて代えることにより、極性の異なる導電型の回路素子を適用することができる。
さらにまた、駆動能力の低い電圧発生回路から取り出て駆動能力が高い電圧発生回路の活性化・非活性化に使用する内部信号は、駆動能力の低い電圧発生回路の構成に依存して適宜取り出す位置を設定できる。たとえは、ゲインを高めるために、差動増幅回路として多段の増幅回路を付加する場合があり、その場合は、図1で示した内部信号CTと違って、出力電圧VWLの低下に伴いレベルが増大する信号を駆動能力の大きい電圧発生回路のための活性化・非活性化制御に使用してよい。勿論その場合は、バッファ27の閾値は、当該信号の定常動作時のレベルよりも高く設定される。
本発明の第1実施形態における内部電圧発生回路を示すブロック図である。 第2実施形態における半導体装置を示すブロック図である。 第2実施形態における半導体装置の動作を示すタイムチャートである。
符号の説明
100 内部電圧発生回路
110、120 電圧発生回路
111、121 差動増幅回路
112、122 出力回路
113 分圧回路
114、124 活性化制御回路
1、2 抵抗
3、4 コンデンサ
11、12、13、21、22、23 nMOSFET
14、15、16、24、25、26 pMOSFET
27 バッファ
TVWL 電圧出力端子

Claims (8)

  1. 第1の電圧発生回路と、該第1の電圧発生回路よりも電流供給能力が大きい第2の電圧発生回路とを有し、該第1の電圧発生回路の内部信号を用いて該第2の電圧発生回路の活性化と非活性化の切り換えを制御する内部電圧発生回路、を備えたことを特徴とする半導体装置。
  2. 前記第1の電圧発生回路は、その出力電圧を制御する出力回路を有し、この出力回路への駆動信号が前記内部信号として前記第2の電圧発生回路に供給されている
    ことを特徴とする請求項1に記載の半導体装置。
  3. 前記第1の電圧発生回路は、前記出力電圧に基づき生成される帰還電圧と基準電圧とを比較して前記駆動信号を発生する差動増幅回路を更に備え、
    前記第2の電圧発生回路は、前記帰還電圧と基準電圧とを比較する差動増幅回路と、この差動増幅回路により駆動されると共に出力が前記第1の電圧発生回路の出力に共通接続された出力回路とを備え、
    前記内部信号は前記第2の電圧発生回路の差動増幅回路に供給されて前記第2の電圧発生回路の活性化と非活性化の切り換えが行われる
    ことを特徴とする請求項2に記載の半導体装置。
  4. 第1の電圧発生回路と、該第1の電圧発生回路よりも電流供給能力が大きい第2の電圧発生回路とを有し、該第1の電圧発生回路の内部信号を用いて該第2の電圧発生回路の活性化と非活性化の切り換えを制御する内部電圧発生回路を有し、該内部電圧発生回路が、複数の記憶素子からなる記憶領域の中から特定の記憶素子を選択する制御信号を出力することによって消費電流が変動する出力回路の電源を供給する
    ことを特徴とする半導体装置。
  5. 複数のワード線、複数のビット線、これらワード線およびビット線の交点に配置された複数のメモリセル、前記複数のワード線をそれぞれ駆動するワードドライバ、ならびに前記ワードドライバの各々を負荷回路としてこれらに動作電圧を供給する内部電圧発生回路を有するメモリ回路を備えた半導体装置であって、前記内部電圧発生回路は、第1の電圧発生回路と、この第1の電圧発生回路よりも電流供給能力が大きい第2の電圧発生回路とを含み、前記第1の電圧発生回路の内部信号を用いて前記第2の電圧発生回路の活性化と非活性化の切り換えを制御することを特徴とする半導体装置。
  6. 前記第1の電圧発生回路は前記メモリ回路に対するアクセスコマンドの発行に応答して活性化され、その後、前記複数のワードドライバの一つは対応するワード線を前記動作電圧をもって駆動することを特徴とする請求項5に記載の半導体装置。
  7. 前記対応するワード線の駆動に基づく前記動作電圧の変動に伴う前記内部信号の変化に応答して前記第2の電圧発生回路が活性化されることを特徴とする請求項6に記載の半導体装置。
  8. 前記複数のメモリセルの各々は、相変化メモリ素子を含むことを特徴とする請求項5乃至7のいずれかに記載の半導体装置。
JP2008266589A 2008-10-15 2008-10-15 半導体装置 Pending JP2010097344A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008266589A JP2010097344A (ja) 2008-10-15 2008-10-15 半導体装置
US12/578,974 US20100091597A1 (en) 2008-10-15 2009-10-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266589A JP2010097344A (ja) 2008-10-15 2008-10-15 半導体装置

Publications (1)

Publication Number Publication Date
JP2010097344A true JP2010097344A (ja) 2010-04-30

Family

ID=42098728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266589A Pending JP2010097344A (ja) 2008-10-15 2008-10-15 半導体装置

Country Status (2)

Country Link
US (1) US20100091597A1 (ja)
JP (1) JP2010097344A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755628B2 (en) * 2016-01-07 2017-09-05 Delta Electronics, Inc. Driving circuit, converter and driving method
CN113793631A (zh) * 2021-08-03 2021-12-14 特忆智能科技 使用反馈电路控制rram器件的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230837A (ja) * 1993-02-05 1994-08-19 Mitsubishi Electric Corp 中間電圧発生回路
JPH06266452A (ja) * 1993-03-12 1994-09-22 Toshiba Corp 半導体集積回路
JPH0737381A (ja) * 1990-12-19 1995-02-07 Hitachi Ltd 半導体集積回路装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766675B2 (ja) * 1987-07-14 1995-07-19 株式会社東芝 プログラマブルrom
US5394077A (en) * 1993-04-30 1995-02-28 Kabushiki Kaisha Toshiba Internal power supply circuit for use in a semiconductor device
JP3274306B2 (ja) * 1995-01-20 2002-04-15 株式会社東芝 半導体集積回路装置
US6292424B1 (en) * 1995-01-20 2001-09-18 Kabushiki Kaisha Toshiba DRAM having a power supply voltage lowering circuit
JP3516556B2 (ja) * 1996-08-02 2004-04-05 沖電気工業株式会社 内部電源回路
KR100267011B1 (ko) * 1997-12-31 2000-10-02 윤종용 반도체 메모리 장치의 내부 전원 전압 발생 회로
US6344942B1 (en) * 1998-07-16 2002-02-05 International Business Machines Corporation Method and apparatus for absolute track spacing determination for self-servowriting
JP2000347755A (ja) * 1999-06-09 2000-12-15 Mitsubishi Electric Corp 半導体装置
JP2002032988A (ja) * 2000-07-18 2002-01-31 Mitsubishi Electric Corp 内部電圧発生回路
JP2002251890A (ja) * 2001-02-26 2002-09-06 Mitsubishi Electric Corp 信号増幅回路およびそれを備える半導体記憶装置
DE10110273C2 (de) * 2001-03-02 2003-04-24 Infineon Technologies Ag Spannungsgenerator mit Standby-Betriebsart
JP2005285197A (ja) * 2004-03-29 2005-10-13 Renesas Technology Corp 半導体記憶装置
DE102004043034A1 (de) * 2004-09-06 2006-03-09 Infineon Technologies Ag Integrierte Schaltung zur Regelung eines Spannungsgenerators
KR100702766B1 (ko) * 2005-12-07 2007-04-03 주식회사 하이닉스반도체 안정적인 dll용 내부 전압을 생성하는 내부 전압발생기와 이를 포함하는 내부 클록 발생기 및 그 내부 전압발생 방법
US7512030B2 (en) * 2006-08-29 2009-03-31 Texas Instruments Incorporated Memory with low power mode for WRITE
KR100884605B1 (ko) * 2007-09-17 2009-02-19 주식회사 하이닉스반도체 반도체 메모리 소자
JP5727121B2 (ja) * 2007-10-29 2015-06-03 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 内部電圧生成回路及びこれを備える半導体装置
JP2009181638A (ja) * 2008-01-30 2009-08-13 Elpida Memory Inc 半導体記憶装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737381A (ja) * 1990-12-19 1995-02-07 Hitachi Ltd 半導体集積回路装置
JPH06230837A (ja) * 1993-02-05 1994-08-19 Mitsubishi Electric Corp 中間電圧発生回路
JPH06266452A (ja) * 1993-03-12 1994-09-22 Toshiba Corp 半導体集積回路

Also Published As

Publication number Publication date
US20100091597A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US7248525B2 (en) Semiconductor memory device and refresh method for the same
US7382674B2 (en) Static random access memory (SRAM) with clamped source potential in standby mode
US8675422B2 (en) Semiconductor device
KR102392665B1 (ko) 메모리 장치, 이를 포함하는 시스템 온 칩 및 메모리 장치의 동작 방법
US20090086555A1 (en) Voltage supply circuit and semiconductor memory
US7978559B2 (en) Semiconductor memory device and method of operating the same
US8315123B2 (en) Wordline voltage control within a memory
JP2007213637A (ja) 内部電源生成回路及びこれらを備えた半導体装置
US7978554B2 (en) Semiconductor memory device and method of operating the same
JP2011018420A (ja) 半導体記憶装置およびワード線電位の制御方法
US20070247931A1 (en) Internal voltage generator for a semiconductor memory apparatus
TWI528531B (zh) 電晶體系記憶體單元及相關之操作方法
JP2007073143A (ja) 半導体記憶装置
US20120218019A1 (en) Internal voltage generating circuit and testing method of integrated circuit using the same
US7577045B2 (en) Semiconductor memory device
KR20050049720A (ko) 센스 앰프를 구비한 비휘발성 반도체 메모리 장치
JP3869690B2 (ja) 内部電圧レベル制御回路および半導体記憶装置並びにそれらの制御方法
JP2010176742A (ja) 半導体装置及びデータ処理システム
KR20150080998A (ko) 셀프 바이어스 버퍼 회로 및 이를 포함하는 메모리 장치
JP2010097344A (ja) 半導体装置
CN111951844B (zh) 半导体装置的数据感测电路
KR100560946B1 (ko) 내부 전원 공급 회로
US7158436B2 (en) Semiconductor memory devices
JP5512226B2 (ja) 半導体記憶装置
JP2004326929A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131030

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415