JP2010097105A - Polarizing plate, liquid crystal display apparatus, and ips mode liquid crystal display apparatus - Google Patents

Polarizing plate, liquid crystal display apparatus, and ips mode liquid crystal display apparatus Download PDF

Info

Publication number
JP2010097105A
JP2010097105A JP2008269510A JP2008269510A JP2010097105A JP 2010097105 A JP2010097105 A JP 2010097105A JP 2008269510 A JP2008269510 A JP 2008269510A JP 2008269510 A JP2008269510 A JP 2008269510A JP 2010097105 A JP2010097105 A JP 2010097105A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
layer
polarizing plate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008269510A
Other languages
Japanese (ja)
Other versions
JP5217892B2 (en
Inventor
Masaru Okano
賢 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008269510A priority Critical patent/JP5217892B2/en
Publication of JP2010097105A publication Critical patent/JP2010097105A/en
Application granted granted Critical
Publication of JP5217892B2 publication Critical patent/JP5217892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing plate through which light does not break even when the polarizing plate is used at high temperature, for example, in the open air or even when the polarizing plate warmed by the heat generated from a backlight is viewed from the oblique direction and to provide an IPS (in-plane switching) mode liquid crystal display apparatus using the polarizing plate. <P>SOLUTION: The polarizing plate is obtained by layering, at the least, a first protective film, a polarizing film and a second protective film in this order. The second protective film is composed, at the least, of a transparent film and an optically anisotropic layer containing a substantially vertically-oriented polymerizable liquid crystal compound. The first protective film has, at the least, a void holding layer of ≥30% void ratio on the surface opposite to the polarizing film-layered surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は偏光板、及びそれを用いた液晶表示装置に関し、より詳しくはIPS(インプレーンスイッチング)モード型液晶表示装置に適する偏光板に関する。   The present invention relates to a polarizing plate and a liquid crystal display device using the same, and more particularly to a polarizing plate suitable for an IPS (in-plane switching) mode type liquid crystal display device.

液晶表示装置の方式としては、通称TN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等がよく知られているが、中でも IPS(インプレーンスイッチング)モード型液晶表示装置(以下、簡単にIPS型液晶表示装置ともいう)は、液晶層及び該液晶層を挟持する一対の基板とを有する液晶セルと、偏光膜と、保護膜とがこの順序で配置され、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向することにより黒表示性能に優れ、上下左右方向から画面を見るときは、十分なコントラストが得られる。   Commonly known TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type, etc. are well known as the liquid crystal display device, and among them, IPS (in-plane switching) mode Type liquid crystal display device (hereinafter also referred to simply as IPS liquid crystal display device) includes a liquid crystal cell having a liquid crystal layer and a pair of substrates sandwiching the liquid crystal layer, a polarizing film, and a protective film in this order. In black display, the liquid crystal molecules of the liquid crystal layer are aligned in parallel with the surfaces of the pair of substrates, so that black display performance is excellent, and sufficient contrast is obtained when viewing the screen from the top, bottom, left, and right directions.

しかし、上下左右から外れた斜め方向から画面を見ると、透過光が複屈折を生じて光が洩れるために、十分な黒が得られず、コントラストが低下してしまう。   However, when the screen is viewed from an oblique direction deviating from the top, bottom, left, and right, the transmitted light causes birefringence and the light leaks, so that sufficient black cannot be obtained and the contrast is lowered.

このために、例えば、IPS型液晶表示装置では、下記のような配置構成で液晶表示装置に光学補償手段を加えて、画面を斜め方向から見た際の黒表示の光漏れ防止やコントラスト低下に関する改善の試みがなされている。   For this reason, for example, in an IPS liquid crystal display device, optical compensation means is added to the liquid crystal display device with the following arrangement configuration to prevent light leakage of black display and contrast reduction when the screen is viewed from an oblique direction. Attempts to improve are being made.

例えば、偏光板の吸収軸と位相差フィルムの遅相軸が直交または平行となるように積層した光学フィルムにおいて、位相差フィルムが、フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nz、フィルムの厚さd(nm)とした場合に、Nz=(nx−nz)/(nx−ny)で表されるNz値が、0.4〜0.6を満足し、かつ面内位相差Re=(nx−ny)×dが、200〜350nmである光学フィルムが加持されている(例えば、特許文献1参照。)。 For example, in an optical film that is laminated so that the absorption axis of the polarizing plate and the slow axis of the retardation film are orthogonal or parallel, the retardation film has a direction in which the in-plane refractive index in the film plane is maximized as the X axis. When the direction perpendicular to the X axis is the Y axis, the thickness direction of the film is the Z axis, and the refractive indexes in the respective axial directions are nx 1 , ny 1 , nz 1 , and the film thickness d 1 (nm) to, Nz = (nx 1 -nz 1 ) / Nz value represented by (nx 1 -ny 1) is satisfied 0.4-0.6, and in-plane retardation Re 1 = (nx 1 - An optical film having ny 1 ) × d 1 of 200 to 350 nm is held (for example, see Patent Document 1).

前記技術は、位相差フィルム(光学補償フィルム)として熱可塑性樹脂フィルム(ポリカーボネートフィルム)を用いる事で、斜め方向から見た際の黒表示の光漏れを防止し、視野角の向上及びコントラストの向上を図っている。   The technology uses a thermoplastic resin film (polycarbonate film) as a retardation film (optical compensation film), thereby preventing light leakage of black display when viewed from an oblique direction, improving viewing angle and improving contrast. I am trying.

近年は、液晶表示装置の用途の拡大により、デジタルサイネージと呼ばれる公共の場で表示装置が用いられるようになっており、屋外での使用に耐えられる液晶表示装置が求められている。屋外で液晶表示装置を用いる場合は、激しい温度変化に加え、照度の高い(明るい)環境で十分な視認性を得る為、バックライトの出力も高める必要があり、更に過酷な環境下でも使用に耐え得ることが求められている。   In recent years, display devices have been used in public places called digital signage due to the expansion of applications of liquid crystal display devices, and there is a demand for liquid crystal display devices that can withstand outdoor use. When using a liquid crystal display device outdoors, it is necessary to increase the output of the backlight in order to obtain sufficient visibility in an environment with high (bright) illuminance in addition to severe temperature changes. It needs to be able to withstand.

しかしながら、前記した技術は、熱可塑性フィルムのみを用いて光学補償フィルムを製造している為、温度変化が激しい場合や、高熱に晒される場合、更には、高出力のバックライトが用いられた場合には、熱による収縮や変形により位相差のムラが大きくなり、結果として斜め方向から見た際の黒表示の光漏れを十分に防止できず、視野角やコントラストが低下する問題が発生する。特に、最近は液晶表示装置のバックライトとしてLEDが用いられる場合があり、LEDを用いた場合は、ON/OFFで発生する熱のムラ等の影響が更に大きく、斜め方向から見た際の黒表示の光漏れ防止やコントラスト低下の防止については、不十分であった。   However, since the above-described technology produces an optical compensation film using only a thermoplastic film, when the temperature change is severe, when exposed to high heat, and when a high-power backlight is used. However, the unevenness of the phase difference becomes large due to the contraction or deformation due to heat, and as a result, there is a problem that the light leakage of black display when viewed from an oblique direction cannot be sufficiently prevented, and the viewing angle and contrast are lowered. In particular, an LED is recently used as a backlight of a liquid crystal display device. When an LED is used, the influence of heat unevenness generated by ON / OFF is further large, and black when viewed from an oblique direction. Prevention of light leakage of display and prevention of contrast reduction was insufficient.

また、IPS液晶表示装置の斜め方向から見た際の黒表示の光漏れによる視野角やコントラストの低下を防止する為の技術としては、二軸性の位相差フィルムに実質的に垂直配向した重合性液晶化合物を含有する層を積層する技術が知られている(例えば、特許文献2参照。)。特許文献2に記載の技術は、垂直配向能を有する基材にホメオトロピック配向性の液晶組成物を二軸性フィルム上に塗布し、固化または硬化させることにより、該位相差フィルム上にポジティブCプレートを形成させる、ポジティブCプレートの製造方法である。   In addition, as a technique for preventing the viewing angle and the contrast from being lowered due to light leakage of black display when viewed from an oblique direction of the IPS liquid crystal display device, polymerization that is substantially vertically aligned on a biaxial retardation film is possible. A technique for laminating layers containing a conductive liquid crystal compound is known (for example, see Patent Document 2). In the technique described in Patent Document 2, a homeotropic alignment liquid crystal composition is applied onto a biaxial film on a substrate having a vertical alignment ability, and solidified or cured, whereby positive C on the retardation film. It is a manufacturing method of the positive C plate which forms a plate.

特許文献2に記載の技術によれば、特許文献1の技術に比べ、熱収縮や変形は低減できるものの、実質的に垂直配向した重合性液晶化合物は、僅かな硬化収縮の影響で、大きな配向の乱れが生じやすく位相差のムラが発現してしまう為、やはり斜め方向から見た際の黒表示の光漏れ防止やコントラスト低下は満足できるレベルではなかった。従って、屋外等の温度変化が激しく、高温に晒される場合や、高出力のバックライトが用いられる場合であっても、黒表示の光漏れによる視野角の低下やコントラストの低下を十分に抑制できる偏光板が求められている。
特開2004−4642号公報 特開2007−148099号公報
According to the technique described in Patent Document 2, although the thermal shrinkage and deformation can be reduced as compared with the technique of Patent Document 1, the substantially vertically aligned polymerizable liquid crystal compound has a large alignment due to the effect of slight curing shrinkage. Therefore, it is easy to cause disturbance of the phase difference, so that the light leakage prevention and the contrast reduction of the black display when viewed from the oblique direction are not satisfactory. Therefore, even when the temperature changes drastically outside and is exposed to high temperatures, or when a high-power backlight is used, it is possible to sufficiently suppress a decrease in viewing angle and contrast due to black display light leakage. There is a need for polarizing plates.
Japanese Patent Application Laid-Open No. 2004-4642 JP 2007-148099 A

特許文献2に記載の技術によれば、特許文献1の技術に比べ、熱収縮や変形は低減できるものの、実質的に垂直配向した重合性液晶化合物は、僅かな硬化収縮の影響で、大きな配向の乱れが生じやすく位相差のムラが発現してしまう為、やはり斜め方向から見た際の黒表示の光漏れ防止やコントラスト低下は満足できるレベルではなかった。従って、屋外等の温度変化が激しく、高温に晒される場合や、高出力のバックライトが用いられる場合では、黒表示の光漏れによる視野角の低下やコントラストの低下を十分に抑制できる偏光板が求められている。   According to the technique described in Patent Document 2, although the thermal shrinkage and deformation can be reduced as compared with the technique of Patent Document 1, the substantially vertically aligned polymerizable liquid crystal compound has a large alignment due to the effect of slight curing shrinkage. Therefore, it is easy to cause disturbance of the phase difference, so that the light leakage prevention and the contrast reduction of the black display when viewed from the oblique direction are not satisfactory. Therefore, a polarizing plate that can sufficiently suppress a decrease in viewing angle and a decrease in contrast due to light leakage of black display when the temperature changes drastically outside and is exposed to high temperatures or when a high-power backlight is used. It has been demanded.

従って本発明の目的は、屋外使用のような熱がかかる条件や、バックライトから発生する熱により斜め方向から見た場合でも光漏れがない偏光板、及びそれを用いたIPS型液晶表示装置を提供することにある。   Accordingly, an object of the present invention is to provide a polarizing plate that does not leak light even when viewed from an oblique direction due to heat applied for outdoor use, heat generated from a backlight, and an IPS liquid crystal display device using the same. It is to provide.

本発明者らは上記課題に対し鋭意検討した結果、光学補償機能を有する偏光板として、実質的に垂直配向した重合性液晶化合物を含有する光学異方性層を設けた偏光板とし、偏光板の前記光学異方性層が設けられた側とは反対側に、空隙を有する層を設けることで、温度変化が大きく、高温条件に晒される場合や、高出力のバックライトが用いられる場合であっても、黒表示の光漏れを防止することができ、十分に視野角の低下やコントラストの低下を抑制できる偏光板が得られることが明らかになった。   As a result of intensive studies on the above problems, the present inventors have made a polarizing plate provided with an optically anisotropic layer containing a polymerizable liquid crystal compound substantially vertically aligned as a polarizing plate having an optical compensation function. By providing a layer having a void on the side opposite to the side where the optically anisotropic layer is provided, the temperature change is large, and when exposed to high temperature conditions or when a high output backlight is used. Even in such a case, it has been revealed that a polarizing plate can be obtained that can prevent light leakage of black display and can sufficiently suppress a decrease in viewing angle and a decrease in contrast.

原理の詳細については明らかではないが、高温の加熱条件に曝された場合には、上述のように高温となる部分の光学異方性層の重合性液晶化合物の配向が乱れて光漏れが発生する。一方で、空隙を有する層(空隙保持層)は、偏光板の視認側のフィルム上に設けることで、反射防止層としての機能を果たしているが、高温の加熱条件に曝された場合は、空隙保持層を構成する樹脂が収縮することで、実質的に空隙保持層の空隙率が部分的に低下し屈折率が上昇する。これにより、空隙保持層の反射率が変化し部分的に上昇する。この部分的な反射率の上昇により、光学異方性層の位相差ムラの影響が判りにくくなる結果、光漏れが低減するものと推察している。   The details of the principle are not clear, but when exposed to high-temperature heating conditions, as described above, the alignment of the polymerizable liquid crystal compound in the optically anisotropic layer at the high temperature portion is disturbed and light leakage occurs. To do. On the other hand, a layer having a void (void retaining layer) functions as an antireflection layer by being provided on the film on the viewing side of the polarizing plate, but when exposed to high temperature heating conditions, By shrinking the resin constituting the holding layer, the porosity of the gap holding layer is substantially lowered and the refractive index is raised. Thereby, the reflectance of a space | gap holding layer changes and it raises partially. As a result of this partial increase in reflectivity, the effect of retardation unevenness of the optically anisotropic layer becomes difficult to understand, and it is assumed that light leakage is reduced.

また、重合性液晶化合物を光学異方性層に用いるとカールが強く偏光板を作製する際に張り合わせのシワやムラが入りやすい問題があったが、最表面層に空隙を有する層を設けることで、カールのバランスが取れ、偏光板を作製する際に張り合わせのシワやムラといった問題も合わせて解決できることが判明した。   In addition, when a polymerizable liquid crystal compound is used for the optically anisotropic layer, there is a problem that the curling is strong and the wrinkles and unevenness of the lamination tend to occur when the polarizing plate is produced. However, a layer having voids should be provided on the outermost surface layer. Thus, it has been found that the curl can be balanced, and problems such as wrinkles and unevenness of the lamination can be solved when the polarizing plate is produced.

本発明の上記課題は以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.少なくとも第1の保護フィルムと、偏光膜と、第2の保護フィルムがこの順で積層された偏光板において、該第2の保護フィルムが少なくとも透明フィルム及び実質的に垂直配向した重合性液晶化合物を含む光学異方性層から構成され、かつ該第1の保護フィルムが少なくとも空隙率30%以上の空隙保持層を該偏光膜から遠い側に有することを特徴とする偏光板。   1. In a polarizing plate in which at least a first protective film, a polarizing film, and a second protective film are laminated in this order, the second protective film comprises at least a transparent film and a polymerizable liquid crystal compound that is substantially vertically aligned. A polarizing plate comprising an optically anisotropic layer including the first protective film and a void-holding layer having a porosity of at least 30% on the side far from the polarizing film.

2.前記空隙保持層が微細凹凸構造体を有し、該微細凹凸構造体の頂部における周期Pmaxが、380nm以下であることを特徴とする前記1に記載の偏光板。   2. 2. The polarizing plate according to 1 above, wherein the gap retaining layer has a fine concavo-convex structure, and the period Pmax at the top of the fine concavo-convex structure is 380 nm or less.

3.前記微細凹凸構造体の外周面が、頂部から底部に傾きを有する錐体形状からなることを特徴とする前記2に記載の偏光板。   3. 3. The polarizing plate according to 2 above, wherein the outer peripheral surface of the fine concavo-convex structure has a cone shape having an inclination from the top to the bottom.

4.前記錐体形状が、楕円錐形状または楕円錐台形状からなることを特徴とする前記3に記載の偏光板。   4). 4. The polarizing plate according to 3 above, wherein the cone shape is an elliptical cone shape or an elliptical truncated cone shape.

5.前記空隙保持層が、カチオン性重合化合物を含有することを特徴とする前記1〜4のいずれか1項に記載の偏光板。   5. 5. The polarizing plate according to any one of 1 to 4, wherein the void retaining layer contains a cationic polymerization compound.

6.前記1〜5のいずれか1項に記載の偏光板を液晶セルの少なくとも一方の面に用いたことを特徴とする液晶表示装置。   6). 6. A liquid crystal display device using the polarizing plate according to any one of 1 to 5 on at least one surface of a liquid crystal cell.

7.前記1〜5のいずれか1項に記載の偏光板を、IPS(インプレーンスイッチング)モード型液晶セルの少なくとも一方の面に用いたことを特徴とするIPS(インプレーンスイッチング)モード型液晶表示装置。   7). 6. An IPS (in-plane switching) mode liquid crystal display device, wherein the polarizing plate according to any one of 1 to 5 is used on at least one surface of an IPS (in-plane switching) mode liquid crystal cell. .

本発明によれば、屋外使用のような熱がかかる条件や、バックライトから発生する熱により斜め方向から見た場合でも光漏れがない偏光板、及びそれを用いたIPS液晶表示装置を提供することができる。   According to the present invention, there are provided a polarizing plate which does not leak light even when viewed from an oblique direction due to heat applied under outdoor use, heat generated from a backlight, and an IPS liquid crystal display device using the same. be able to.

また、重合性液晶化合物を光学異方性層に用いた際にカールにより発生する偏光板作成時のシワやムラの発生のない偏光板を提供することができる。   In addition, it is possible to provide a polarizing plate that does not cause wrinkles or unevenness during the production of a polarizing plate that is generated by curling when a polymerizable liquid crystal compound is used for the optically anisotropic layer.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

本発明の偏光板は、少なくとも第1の保護フィルムと、偏光膜と、第2の保護フィルムがこの順で積層された偏光板において、該第2の保護フィルムが少なくとも透明フィルム及び実質的に垂直配向した重合性液晶化合物を含む光学異方性層から構成され、かつ該第1の保護フィルムが少なくとも空隙率30%以上の空隙保持層を該偏光膜から遠い側に有することを特徴とする。   The polarizing plate of the present invention is a polarizing plate in which at least a first protective film, a polarizing film, and a second protective film are laminated in this order, and the second protective film is at least a transparent film and substantially vertical. It is composed of an optically anisotropic layer containing an oriented polymerizable liquid crystal compound, and the first protective film has a void holding layer having a porosity of at least 30% on the side far from the polarizing film.

<空隙率>
本発明の第1の保護フィルム上に設けられる空隙保持層の空隙率は30%以上であることを一つの特徴としている。空隙率が30%より小さいと本願発明の効果を十分に得ることが困難である。また、好ましい空隙率は、50%〜95%であり、該範囲において、より過酷な耐久性試験を実施した際、特に好ましい効果を発揮する。
<Porosity>
One feature of the present invention is that the void ratio of the void retaining layer provided on the first protective film of the present invention is 30% or more. If the porosity is less than 30%, it is difficult to sufficiently obtain the effects of the present invention. Moreover, a preferable porosity is 50% to 95%, and when the more severe durability test is performed in this range, a particularly preferable effect is exhibited.

本発明の空隙保持層とは層がその一部または全部に空気相を有している状態にあることを意味しており、該空気相の形成方法は特に限定されるものではないが、例えば、フィルム基材上に微細な凹凸形状を有する層を形成させ、凸部間の凹み部分に空気相を付与する方法、層内にミクロボイドを形成し空気相を付与する方法、中空もしくは気泡を内在する有機粒子や無機粒子を配合して空気相を付与する方法等が挙げられる。   The void-retaining layer of the present invention means that the layer has an air phase in part or all, and the method for forming the air phase is not particularly limited, for example, , A method of forming a layer having a fine concavo-convex shape on a film substrate, and imparting an air phase to the indented portion between the convex portions, a method of forming a microvoid in the layer and imparting an air phase, And a method of adding an air phase by blending organic particles and inorganic particles.

また空隙率はミクロトームを用いて第1の保護フィルムの断面を切り出し、該第1の保護フィルムの空隙を有する層を電子顕微鏡(透過型電子顕微鏡、走査型電子顕微鏡)により観察し、観察した断面部分の粒子間の空隙面積、或いは/及び粒子の中空もしくは気泡部分の面積と膜厚面積の割合からの計算、空隙を有する層の凹み面積と膜厚面積の割合から求めることができる。   In addition, the porosity is obtained by cutting out a cross section of the first protective film using a microtome, observing the layer having the void of the first protective film with an electron microscope (transmission electron microscope, scanning electron microscope), and observing the cross section. It can be calculated from the ratio of the void area between the particles in the portion, or / and the ratio of the area of the hollow or bubble portion of the particle and the film thickness area, and the ratio of the recessed area and the film thickness area of the layer having voids.

《第1の保護フィルム》
第1の保護フィルムは、以下空隙保持層を有するフィルムとも言う。先ずは本発明の特徴の一つである空隙保持層について説明する。
<< first protective film >>
Hereinafter, the first protective film is also referred to as a film having a void retaining layer. First, the void retaining layer that is one of the features of the present invention will be described.

<空隙保持層>
本発明における空隙保持層とは、層内に空隙(空気相)を有することでフィルム基材の屈折率より低い層を形成し、該屈折率は23℃、波長550nm測定で、屈折率が1.30〜1.45の範囲であることが好ましい。
<Void retention layer>
The void retaining layer in the present invention forms a layer lower than the refractive index of the film substrate by having voids (air phase) in the layer, the refractive index is 23 ° C., the wavelength is measured at 550 nm, and the refractive index is 1. It is preferably in the range of 30 to 1.45.

また、空隙保持層の膜厚は、特に限定されるものではないが、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることが更に好ましく、30nm〜0.2μmであることが最も好ましい。   The film thickness of the void retaining layer is not particularly limited, but is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and 30 nm to 0.2 μm. Is most preferred.

以下、空隙の形成について具体的に説明する。   Hereinafter, the formation of voids will be specifically described.

空隙の形成には例えば以下の方法が挙げられる。   For example, the following method can be used to form the void.

(1)空隙保持層が微細凹凸構造体を有し、該微細凹凸構造体が可視光波長以下の大きさを有し、微細凹凸構造体の外周面が、頂部から底部に傾きを有する楕円錐形状または楕円錐台形状からなるように設計されることで、凸部間にある凹部に空気領域(空気相)を有することで空隙を形成する方法。   (1) The void retaining layer has a fine concavo-convex structure, the fine concavo-convex structure has a size equal to or smaller than the visible light wavelength, and the outer peripheral surface of the fine concavo-convex structure has an inclination from the top to the bottom. The method of forming a space | gap by having an air area | region (air phase) in the recessed part between convex parts by designing so that it may consist of a shape or an elliptic frustum shape.

(2)空隙保持層内に、ミクロボイドを形成して空隙を形成する方法。   (2) A method of forming voids by forming microvoids in the void holding layer.

(3)空隙保持層内に、中空もしくは気泡を内在する有機粒子や無機粒子を配合して空隙を形成する方法。   (3) A method of forming voids by blending organic particles or inorganic particles containing hollow or bubbles in the void holding layer.

以下、順次説明する。   Hereinafter, description will be made sequentially.

〔微細凹凸構造体の形成〕
特開2004−205990号公報、特開2008−158013号公報、特開2008−176076号公報記載の原理、方法に従って空隙保持層に空隙を形成することができる。
[Formation of fine uneven structure]
Voids can be formed in the gap holding layer according to the principles and methods described in JP-A Nos. 2004-205990, 2008-158013, and 2008-176076.

図1は、本発明により形成される微細凹凸構造体の一例を模式的に示す斜視図である。本発明により形成される微細凹凸構造体は、微細凹凸の頂点における周期Pmaxが、可視光の波長帯域の最小波長λminである380nm以下の非常に微細な凹凸パターンを有する構造体であることが好ましい。   FIG. 1 is a perspective view schematically showing an example of a fine concavo-convex structure formed according to the present invention. The fine concavo-convex structure formed by the present invention is preferably a structure having a very fine concavo-convex pattern in which the period Pmax at the apex of the fine concavo-convex is 380 nm or less which is the minimum wavelength λmin of the visible light wavelength band. .

このような微細凹凸構造体を反射防止物品の表面に設けることによって、空気相との境界部における急激で不連続な屈折率変化を、連続的で漸次推移する屈折率変化に変えることが可能となるため、該物品の表面における光反射が減少する。   By providing such a fine concavo-convex structure on the surface of an antireflection article, it is possible to change a sudden and discontinuous refractive index change at the boundary with the air phase into a continuous and gradually changing refractive index change. Thus, light reflection on the surface of the article is reduced.

微細凹凸構造体1は、図1の如く、その最凸部1tにおける周期をPmaxとしたときに、このPmaxが、可視光の波長帯域の最小波長λminである380nm以下とすれば、微細凹凸構造体の形成面への到達光は、媒質(支持体及び空気)の屈折率に空間的な分布があっても、その分布が直接に光に作用せず、平均化されたものとして作用する。従って、平均化された後の屈折率(有効屈折率)を光が進行すると連続的に変化する分布となり、光の反射を低下できる。   As shown in FIG. 1, the fine concavo-convex structure 1 has a fine concavo-convex structure if Pmax is 380 nm or less, which is the minimum wavelength λmin of the visible light wavelength band, where Pmax is the period of the most convex portion 1t. Even if the refractive index of the medium (support and air) has a spatial distribution, the light reaching the surface on which the body is formed does not directly affect the light, but acts as an average. Therefore, the distribution changes continuously as the light advances the averaged refractive index (effective refractive index), and the reflection of light can be reduced.

なお、ここで、より厳密に言うと、物体中での光の波長は、真空中の波長をλ、物体の屈折率をnとしたときに、λ/nとなり、λよりは一般にある程度小となる。但し、物体が空気の場合の屈折率は、n≒1のため、本発明では、λ/n≒λと考えている。   Strictly speaking, the wavelength of light in the object is λ / n where λ is the wavelength in vacuum and n is the refractive index of the object, and is generally somewhat smaller than λ. Become. However, since the refractive index when the object is air is n≈1, in the present invention, it is considered that λ / n≈λ.

微細凹凸構造体は、これを凹凸方向と直交する面(XY平面)で切断したと仮定したときに、断面内における微細凹凸構造体の材料部分の断面積占有率が、最凸部(頂上)から最凹部(谷底)に行くに従って漸次増加していく形状、すなわち凹凸の側面の少なくとも一部が、谷底に向かって広がる斜面形状、または最凸部(頂上)から最凹部(谷底)に行くに従って漸次減少していく形状、すなわち凹凸の側面の少なくとも一部が、谷底に向かって狭まる斜面形状、のどちらの形状でもよいが、微細凹凸構造体の外周面が、頂部から底部にある傾きを有する錐体形状が、成形しやすく、厚み方向の屈折率を連続的に変化させ、反射率の低減効果が得られやすい事から、好ましい。   When it is assumed that the fine concavo-convex structure is cut by a plane (XY plane) orthogonal to the concavo-convex direction, the cross-sectional area occupancy of the material portion of the fine concavo-convex structure in the cross section is the most convex (top) The shape that gradually increases from the top to the most concave part (valley bottom), that is, the slope shape in which at least part of the side surface of the unevenness extends toward the bottom of the valley, or from the most convex part (top) to the most concave part (valley bottom) The shape that gradually decreases, that is, the slope shape in which at least part of the side surface of the unevenness narrows toward the bottom of the valley may be used, but the outer peripheral surface of the fine uneven structure has an inclination from the top to the bottom. The cone shape is preferable because it is easy to mold, and the refractive index in the thickness direction is continuously changed, and the effect of reducing the reflectance is easily obtained.

錐体形状としては、四角推、三角推といった多角推、楕円錐形状または楕円錐台形状等が挙げられ、特に好ましくは楕円錐形状または楕円錐台形状であり、具体的には、水平断面の材料部分の断面積占有率が最凸部において0に収束し、最凹部において1に収束する形状とする例えば、図2の(A)、(C)、(E)及び(F)が挙げられる。また、特開2008−176076号公報図9〜11、図22の形状を有する微細凹凸構造体であることが好ましい。   Examples of the pyramid shape include a quadrilateral guess such as a square guess and a triangular guess, an elliptical cone shape or an elliptical truncated cone shape, and particularly preferably an elliptical cone shape or an elliptical truncated cone shape. For example, (A), (C), (E), and (F) in FIG. 2 may be used, in which the cross-sectional area occupation ratio of the material portion converges to 0 at the most convex portion and converges to 1 at the most concave portion. . Moreover, it is preferable that it is a fine concavo-convex structure which has the shape of FIGS. 9-11 and FIG. 22 of Unexamined-Japanese-Patent No. 2008-176076.

微細凹凸構造体は、凹凸の高さが高いほど反射防止性能が高いとされており、照射光の波長と同一か又はそれ以上の高さであることが好ましい。そのため、狭く且つ/又は深い微細凹凸構造体を形成するために、周期及び高さの再現性が求められる。   The fine concavo-convex structure is said to have higher antireflection performance as the height of the concavo-convex is higher, and is preferably the same as or higher than the wavelength of the irradiation light. Therefore, in order to form a narrow and / or deep fine concavo-convex structure, the reproducibility of the period and height is required.

微細凹凸構造体を再現性よく形成するには、例えば、フィルム基材上に固体状の硬化性樹脂組成物からなる凹凸構造形成層を設け、スタンパーを圧接してエンボス加工を行うことにより、微細凹凸構造を賦形することができる。   In order to form a fine concavo-convex structure with good reproducibility, for example, by providing a concavo-convex structure forming layer made of a solid curable resin composition on a film substrate and pressing the stamper to perform embossing, An uneven structure can be formed.

フィルム基材が連続フィルム状である場合には、ロールストック形態に巻き取り、必要に応じて保管、移動した後でフィルム基材を繰り出し、凹凸構造体形成層を設け、次いでエンボス工程に供給しながら連続的にエンボス加工を行うことでができるので、大量生産に非常に適している。   When the film substrate is in the form of a continuous film, it is wound into a roll stock form, stored and moved as necessary, then fed out of the film substrate, provided with a concavo-convex structure forming layer, and then supplied to the embossing process However, it can be done by embossing continuously, so it is very suitable for mass production.

用いられるフィルム基材としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、(メタ)アクリル酸メチル−(メタ)アクリル酸ブチル共重合体等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィン系高分子(代表的にはノルボルネン系樹脂等があるが、例えば、日本ゼオン株式会社製の製品名「ゼオノア」、JSR株式会社製の「アートン」等がある)等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂、ポリアミド、ポリイミド、ポリスチレン、アクリロニトリル−スチレン共重合体、ポリエーテルスルフォン、ポリスルフォン、トリアセチルセルロース等のセルロース系樹脂、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、塩化ビニル、ポリ塩化ビニリデン、ポリエーテルエーテルケトン、ポリウレタン等の熱可塑性樹脂、或いは、ガラス(セラミックスを含む)等が挙げられるが、後述するセルロース系樹脂が透明性、光学的等方性、鹸化処理等の加工適性が優れるため好ましい。   Examples of the film base used include acrylic resins such as poly (meth) methyl acrylate, poly (meth) ethyl acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, polyethylene, and polypropylene. , Polymethylpentene, cyclic olefin polymers (typically norbornene resins, etc., for example, product name “ZEONOR” manufactured by ZEON CORPORATION, “ARTON” manufactured by JSR Corporation, etc.) Polyolefin resins, polycarbonate resins, thermoplastic polyester resins such as polyethylene terephthalate, polyethylene naphthalate, etc., polyamide resins, polyimide resins, polystyrene, acrylonitrile-styrene copolymers, polyether sulfone, polysulfone, triacetyl cellulose and other cellulose resins Examples thereof include polyvinyl acetate, ethylene-vinyl acetate copolymer, vinyl chloride, polyvinylidene chloride, polyetheretherketone, thermoplastic resins such as polyurethane, and glass (including ceramics). Is preferable because it is excellent in transparency, optical isotropy, and processability such as saponification.

硬化性樹脂組成物は、エンボス加工により形成した微細凹凸構造を固定すると共に、強度等の充分な被膜物性を得るために硬化性を必要とする。硬化性を発揮するための反応としては、例えば、光硬化性、熱硬化性等が挙げられる。光硬化性樹脂組成物は、エンボス加工のプロセス温度よりも低い温度で硬化させることができ、硬化工程でのパターン崩れを起こし難いので好ましい。   The curable resin composition needs to be hardened in order to fix a fine uneven structure formed by embossing and to obtain sufficient film properties such as strength. As reaction for exhibiting sclerosis | hardenability, photocurability, thermosetting, etc. are mentioned, for example. The photo-curable resin composition is preferable because it can be cured at a temperature lower than the embossing process temperature and hardly causes pattern collapse in the curing step.

硬化性樹脂組成物は、バインダーポリマーに、必要に応じて光硬化性や熱硬化性等の硬化反応を引き起こし、促進し又は調節する成分及び他の成分を配合することにより調製される。   The curable resin composition is prepared by blending a binder polymer with a component that causes, accelerates, or regulates a curing reaction such as photo-curing property or thermosetting property and other components as necessary.

バインダーポリマーは、それ自体が硬化性を有しているもの及び有していないもののいずれを用いてもよく、また、2種類以上のバインダーポリマーを組み合わせて用いても良い。バインダーポリマーが硬化性を有しない場合には、硬化性を有するモノマー又はオリゴマーを1種以上使用することで、樹脂組成物に硬化性を付与することができる。   As the binder polymer, either one having curable property itself or one having no curable property may be used, or two or more binder polymers may be used in combination. When the binder polymer does not have curability, curability can be imparted to the resin composition by using at least one monomer or oligomer having curability.

バインダーポリマーとしては、フィルム基材等の支持体上に塗布した時に微細凹凸構造を賦形するのに充分な厚さの皮膜とすることができる成膜性を有すると共に、硬化後において光学物品の用途に応じて、透明性、強度、耐擦傷性、耐熱性、耐水性、耐薬品性、基材に対する密着性、可とう性等の一般的性質を満足する微細凹凸の表面構造を形成し得るポリマーを用いる。   The binder polymer has a film-forming property that can be a film having a sufficient thickness to shape a fine concavo-convex structure when coated on a support such as a film substrate, and is also suitable for optical articles after curing. Depending on the application, it can form surface structures with fine irregularities that satisfy general properties such as transparency, strength, scratch resistance, heat resistance, water resistance, chemical resistance, adhesion to substrates, and flexibility. Use polymer.

例えば、アクリル樹脂、ポリエステル、エポキシ樹脂、ポリオレフィン、スチロール樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリウレタン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルブチラール、ポリカーボネート、メラミン樹脂、尿素樹脂、アルキッド樹脂、フェノール樹脂、セルロース樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ポリアリレート樹脂、ポリアセタール樹脂、スチレン−イソプレンゴム等が挙げられるが、これらに限定されない。   For example, acrylic resin, polyester, epoxy resin, polyolefin, styrene resin, polyamide, polyimide, polyamideimide, polyurethane, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polycarbonate, melamine resin, urea resin, alkyd resin, phenol resin, cellulose resin , Diallyl phthalate resin, silicone resin, polyarylate resin, polyacetal resin, styrene-isoprene rubber, and the like, but are not limited thereto.

上記の中でも本発明の空隙保持層は、後述するカチオン性重合化合物、及びカチオン重合開始剤を少なくとも含有することが好ましい。   Among these, the void retaining layer of the present invention preferably contains at least a cationic polymerization compound and a cationic polymerization initiator described later.

また、他の光重合開始剤、重合禁止剤等の光硬化系成分を配合し、さらに離型剤、有機金属カップリング剤等の他の成分を配合して調製することができる。   Moreover, it can prepare by mix | blending photocurable components, such as another photoinitiator and a polymerization inhibitor, and also mix | blending other components, such as a mold release agent and an organometallic coupling agent.

光重合開始剤は、光硬化性樹脂組成物の固形分全量に対して0.5〜10質量%の割合で配合するのが好ましい。光重合開始剤は1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   The photopolymerization initiator is preferably blended at a ratio of 0.5 to 10% by mass with respect to the total solid content of the photocurable resin composition. A photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type.

硬化性樹脂組成物に離型剤を配合することにより、硬化性樹脂組成物の層に押し付けたスタンパーを取り外す時に樹脂の版取られを防止し、スタンパーを長期間連続して使用(反復エンボス性)することができるようになる。離型剤としては従来公知の離型剤、例えば、ポリエチレンワックス、アミドワックス、テフロン(登録商標)パウダー等の固形ワックス、弗素系、リン酸エステル系の界面活性剤、シリコーン等が何れも使用可能である。特に好ましいのはシリコーン系離型剤であり、ポリシロキサン、変性シリコーンオイル、トリメチルシロキシケイ酸を含有するポリシロキサン、シリコーン系アクリル樹脂等がある。   By adding a mold release agent to the curable resin composition, it is possible to prevent the resin from being removed when the stamper pressed against the layer of the curable resin composition is removed, and to use the stamper continuously for a long period of time (repetitive embossing property). ) Will be able to. As the release agent, conventionally known release agents such as polyethylene wax, amide wax, solid wax such as Teflon (registered trademark) powder, fluorine-based, phosphate ester-based surfactant, silicone, etc. can be used. It is. Particularly preferred are silicone release agents, such as polysiloxanes, modified silicone oils, polysiloxanes containing trimethylsiloxysilicic acid, and silicone acrylic resins.

硬化性樹脂組成物には、微細凹凸構造体の耐熱性、強度、或いは、金属蒸着層との密着性を高めるために、有機金属カップリング剤を配合してもよい。また、有機金属カップリング剤は、熱硬化反応を促進させる効果も持つため有効である。有機金属カップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤、スズカップリング剤等の各種カップリング剤を使用できる。   An organic metal coupling agent may be added to the curable resin composition in order to improve the heat resistance, strength, or adhesion of the fine concavo-convex structure to the metal deposition layer. In addition, the organometallic coupling agent is effective because it has an effect of promoting the thermosetting reaction. As the organometallic coupling agent, for example, various coupling agents such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, and a tin coupling agent can be used.

また、硬化性樹脂組成物には透明性、滑り性、屈折率の調整を目的に有機粒子、無機粒子を含有させることも好ましい。特に好ましくはサブミクロンオーダーの粒径を有するコロイダルシリカ(SiO)である。 The curable resin composition preferably contains organic particles and inorganic particles for the purpose of adjusting transparency, slipperiness and refractive index. Particularly preferred is colloidal silica (SiO 2 ) having a particle size on the order of submicrons.

硬化性樹脂組成物は、通常、希釈溶剤を用いて塗布液の状態に調製し、凹凸パターン形成層の形成に用いる。上記したような各材料を、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロルベンゼン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、酢酸エチル、1,4−ジオキサン、1,2−ジクロロエタン、ジクロルメタン、クロロホルム、メタノール、エタノール、イソプロパノール等、またはそれらの混合溶剤に溶解、分散することにより、塗布液を調製することができる。塗布液は、通常、固形分濃度が10〜50質量%程度となるように調節される。   The curable resin composition is usually prepared in the state of a coating solution using a diluting solvent, and is used for forming an uneven pattern forming layer. Each material as described above is acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, benzene, toluene, xylene, chlorobenzene, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, ethyl acetate, 1,4- A coating solution can be prepared by dissolving and dispersing in dioxane, 1,2-dichloroethane, dichloromethane, chloroform, methanol, ethanol, isopropanol, or a mixed solvent thereof. The coating solution is usually adjusted so that the solid content concentration is about 10 to 50% by mass.

上記硬化性樹脂組成物をフィルム基材等の支持体の表面に塗布し、必要に応じて乾燥させて微細凹凸構造体形成層を形成することにより、凹凸構造受容体が作製される。   A concavo-convex structure receptor is produced by applying the curable resin composition to the surface of a support such as a film substrate and drying it as necessary to form a fine concavo-convex structure forming layer.

微細凹凸構造体は光の波長以下の周期構造をもつ非常に微細な構造を有することから、微細凹凸構造体形成層の厚さは、通常0.3〜5μm程度で充分であり、0.5〜3μmの範囲であることが好ましい。   Since the fine concavo-convex structure has a very fine structure having a periodic structure equal to or less than the wavelength of light, the thickness of the fine concavo-convex structure forming layer is usually about 0.3 to 5 μm, and 0.5 It is preferable to be in the range of ˜3 μm.

連続フィルム状の凹凸構造受容体を作製する一例を示すと、先ず、トリアセチルセルロース等の連続プラスチックからなるフィルム基材(支持体)をロールストックから繰り出す。繰り出したフィルム基材の上に、光硬化性樹脂組成物からなる微細凹凸構造体形成材料(例えば硬化性樹脂組成物)をグラビアコーターを用いて塗布し、次いで、組成物に含まれている有機溶剤が飛散する温度、例えば、100〜165℃に設定した加熱炉内に0.1〜1分間程度導いて乾燥させて微細凹凸構造体形成層を形成して凹凸構造受容体を作製する。上記グラビアコーター以外の塗工機としては、例えばロールコーター、カーテンコーター、フローコーター、リップコーター、ドクターブレードコーター等も使用できる。   As an example of producing a continuous film-like uneven structure receptor, first, a film base material (support) made of continuous plastic such as triacetylcellulose is fed out from a roll stock. A fine concavo-convex structure forming material (for example, a curable resin composition) made of a photocurable resin composition is applied onto the drawn film base using a gravure coater, and then the organic contained in the composition A concavo-convex structure receptor is prepared by forming the fine concavo-convex structure-forming layer by introducing it into a heating furnace set at a temperature at which the solvent scatters, for example, 100 to 165 ° C., for about 0.1 to 1 minute and drying. As a coating machine other than the gravure coater, for example, a roll coater, a curtain coater, a flow coater, a lip coater, a doctor blade coater and the like can be used.

スタンパーとしては、微細凹凸形状を最初に造形した原型は用いずに、該原型から1回、或いは2回以上の型取・反転による複製工程を経て作製した複製型を用いるのが好ましい。つまり、最初に一旦、原型(これを原版、或いはマザー版とも呼ぶ)を作製した後、この原型から複製型を作製する複製操作を1回又は2回以上行い、その結果、得られた複製型をスタンパーとして使用する。この様な複製型のスタンパーは原型から容易に再作製できるので、工業的生産性、コスト等に優れており、例えば、スタンパーが傷ついた場合の交換が容易である。   As the stamper, it is preferable to use a replication mold produced by performing a replication process by mold taking / reversing once or twice from the original mold, without using the original mold formed with the fine irregular shape first. In other words, first, once a prototype (this is also referred to as a master plate or a mother plate) is produced, a duplication operation for producing a duplicate mold from this master mold is performed once or twice, and the resulting duplicate mold is obtained. Is used as a stamper. Such a replica-type stamper can be easily re-created from the original model, so that it is excellent in industrial productivity, cost, etc. For example, it can be easily replaced when the stamper is damaged.

賦形型の元となる原型としては、必要な微細凹凸が形成されているものであれば、その作製方法には基本的には特に限定はなく、生産性、コスト等を考慮して適宜なものを使用すれば良い。原型の作製は、微細凹凸を賦形する為の凹凸形状を最初に造形する工程であり、半導体分野等に於ける微細加工技術、すなわち、光(電子ビームを含む)をパターン形成に利用する所謂露光法を利用できる。但し、半導体の場合は、凹凸形状はその側面が通常垂直面で良く、本発明の如く斜面にする必要は特に無いため、本発明では、山側が谷側よりも尖った形状となる様な斜面が形成できる様にしてアレンジして微細加工する。   The original mold for the shaping mold is not particularly limited as long as the necessary fine irregularities are formed, and the production method is appropriately determined in consideration of productivity, cost, etc. Use something. Prototype production is a process of first forming a concavo-convex shape for shaping a fine concavo-convex shape, which is a so-called microfabrication technique in the semiconductor field or the like, that is, a so-called pattern formation using light (including an electron beam). An exposure method can be used. However, in the case of a semiconductor, the side surface of the concavo-convex shape may be a vertical surface, and it is not particularly necessary to have a slope as in the present invention. Therefore, in the present invention, the slope is such that the mountain side is sharper than the valley side. Are arranged so that can be formed.

露光法に該当する微細加工技術としては、例えば、電子線描画法を利用できる。この方法による作製方法の一例を示せば、石英ガラス上にクロム膜(110nm厚)を成膜後、更にスピンコートにてレジストを400nm厚に塗布した後、電子線描画装置にて周期300nmのメッシュ状の描画データを用いて描画し、現像液を用い現像処理を施す。描画条件は5〜8μC/cmである。これにより、描画データの斜線領域に対応する領域が現像により開口する。次いで、レジストの開口から露出している金属クロム膜を、塩素系のガスを用いてドライエッチングして、これを開口する。尚、金属クロム膜のドライエッチングにはUnaxis社製ドライエッチング装置「VERSALOCK7000」が使用できる。次いで、レジストと金属クロム膜を耐エッチング層として、フッ素系のガスを用いて石英ガラスのドライエッチングを行えば、所望の微細凹凸形状が得られる。尚、加工用素材(石英ガラス)のドライエッチングには、日本真空株式会社製「MEPS−6025D」が使用できる。 As a fine processing technology corresponding to the exposure method, for example, an electron beam drawing method can be used. An example of a manufacturing method using this method is that after a chromium film (110 nm thickness) is formed on quartz glass, a resist is applied to a thickness of 400 nm by spin coating, and then a mesh having a period of 300 nm is formed by an electron beam drawing apparatus. The image is drawn using the drawn image data, and development processing is performed using the developer. The drawing condition is 5 to 8 μC / cm 2 . Thereby, an area corresponding to the hatched area of the drawing data is opened by development. Next, the metal chromium film exposed from the opening of the resist is dry-etched using a chlorine-based gas to open it. A dry etching apparatus “VERSALOCK 7000” manufactured by Unaxis can be used for dry etching of the chromium metal film. Next, by performing dry etching of quartz glass using a resist and a metal chromium film as an etching resistant layer and using a fluorine-based gas, a desired fine uneven shape can be obtained. In addition, “MEPS-6025D” manufactured by Nippon Vacuum Co., Ltd. can be used for dry etching of the processing material (quartz glass).

また、レジスト膜へのパターン形成に際しては、電子線描画法の他の露光法として、レーザ描画法も利用できる。レーザ描画法では、ホログラム、回折格子等の作製等に利用されているレーザ干渉法が利用できる。回折格子の場合は、一次元的配置であるが、角度を変えて多重露光すれば、二次元配置も可能となる。   In forming a pattern on the resist film, a laser drawing method can be used as another exposure method of the electron beam drawing method. In the laser drawing method, a laser interference method used for producing a hologram, a diffraction grating, or the like can be used. In the case of a diffraction grating, it is a one-dimensional arrangement, but a two-dimensional arrangement is also possible if multiple exposures are performed at different angles.

この方法による作製方法の一例を示せば、ガラス表面にレジスト(シプレイ社製のフォトレジスト「S1805」等)をスピンコートした後、2方向露光を角度を変えて2回行う。1回の露光量は80〜200mJである。これを20〜505%に希釈した現像液(例えば、シプレイ社製の「Developer CONC」等)で現像すれば、所望の微細凹凸形状が得られる。   If an example of the preparation method by this method is shown, after spin-coating a resist (a photoresist “S1805” manufactured by Shipley Co., Ltd.) on the glass surface, two-way exposure is performed twice at different angles. The exposure amount per time is 80 to 200 mJ. If this is developed with a developer diluted to 20 to 505% (for example, “Developer CONC” manufactured by Shipley Co., Ltd.), a desired fine uneven shape can be obtained.

尚、上記レーザ干渉法では、得られる微細凹凸は、通常規則的配置となるが、これに対して、前記電子線描画法では、予め所定の描画パターン情報を記憶装置にデジタルデータとして記憶しておき、該描画パターン情報により、走査する電子線のON、OFF、乃至は強弱を変調する。その為、規則配置の他にも、不規則配置も可能である。また、レーザ描画法及び電子線描画法には各々長所、短所が有る為、設計諸元、目的、生産性等を考慮の上、適宜な手法及び条件を選択する。   In the laser interference method, the fine irregularities obtained are usually regularly arranged. On the other hand, in the electron beam drawing method, predetermined drawing pattern information is stored as digital data in a storage device in advance. The drawing pattern information modulates ON, OFF, or intensity of the scanning electron beam. Therefore, in addition to the regular arrangement, irregular arrangement is also possible. Further, since the laser drawing method and the electron beam drawing method each have advantages and disadvantages, appropriate methods and conditions are selected in consideration of design specifications, purpose, productivity, and the like.

上記原型からスタンパーとして使用する複製型を作製する方法としては、公知の電鋳法や2P法等の公知の方法がある。   As a method for producing a replica mold used as a stamper from the above-mentioned prototype, there are known methods such as a known electroforming method and a 2P method.

微細凹凸構造体の作製は、凹凸構造受容体の凹凸構造体形成層の表面にスタンパーを圧接して微細凹凸構造体を形成した後、凹凸構造体形成層を露光又は加熱等の適切な方法で硬化させることにより、微細凹凸構造体を作製することができる。   The fine concavo-convex structure is produced by forming a fine concavo-convex structure by pressing a stamper on the surface of the concavo-convex structure-forming layer of the concavo-convex structure receiver, and then exposing the concavo-convex structure-forming layer by an appropriate method such as exposure or heating. By curing, a fine concavo-convex structure can be produced.

凹凸構造受容体がエンボスローラーの間を通過すると、凹凸構造体形成層の微細凹凸構造体が賦形された部分はスタンパーから引き剥がされ、硬化工程が行われる。凹凸構造体形成層が光硬化性樹脂からなる場合には光照射により、また、凹凸構造体形成層が熱硬化性樹脂からなる場合には加熱により硬化させる。   When the concavo-convex structure receptor passes between the embossing rollers, the portion of the concavo-convex structure forming layer where the fine concavo-convex structure is shaped is peeled off from the stamper, and a curing process is performed. When the concavo-convex structure forming layer is made of a photocurable resin, it is cured by light irradiation, and when the concavo-convex structure forming layer is made of a thermosetting resin, it is cured by heating.

硬化に用いる光としては、高エネルギー電離放射線及び紫外線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利且つ経済的に使用されるが、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、陽子線等の放射線も使用できる。紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯等が挙げられる。   Examples of the light used for curing include high energy ionizing radiation and ultraviolet rays. As the high-energy ionizing radiation source, for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used. However, radiation such as γ rays, X rays, α rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used. Examples of the ultraviolet ray source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp.

〔ミクロボイドの形成〕
空隙保持層として、無機若しくは有機の微粒子を用い、微粒子間または微粒子内のミクロボイドとして形成した空隙を有する層を用いることも好ましい。微粒子の平均粒径は、0.5〜200nmであることが好ましく、1〜100nmであることがより好ましく、3〜70nmであることが更に好ましく、5〜40nmの範囲であることが最も好ましい。微粒子の粒径は、なるべく均一(単分散)であることが好ましい。
[Formation of microvoids]
As the void retaining layer, it is also preferable to use a layer having voids formed as microvoids between or within the fine particles using inorganic or organic fine particles. The average particle diameter of the fine particles is preferably 0.5 to 200 nm, more preferably 1 to 100 nm, still more preferably 3 to 70 nm, and most preferably in the range of 5 to 40 nm. The particle diameter of the fine particles is preferably as uniform (monodispersed) as possible.

無機微粒子としては、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることが更に好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。二種類の金属を含む無機化合物を用いてもよい。好ましい無機化合物の具体例としては、SiO、またはMgFであり、特に好ましくはSiOである。 The inorganic fine particles are preferably amorphous. The inorganic fine particles are preferably made of a metal oxide, nitride, sulfide or halide, more preferably a metal oxide or a metal halide, and most preferably a metal oxide or a metal fluoride. . As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable. An inorganic compound containing two kinds of metals may be used. Specific examples of preferable inorganic compounds are SiO 2 and MgF 2 , and SiO 2 is particularly preferable.

無機微粒子内にミクロボイドを有する粒子は、例えば、粒子を形成するシリカの分子を架橋させることにより形成することができる。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル−ゲル法(特開昭53−112732号、特公昭57−9051号に記載)または析出法(APPLIED OPTICS,27巻,3356頁(1988)記載)により、分散物として直接合成することができる。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることもできる。市販の多孔質無機微粒子(例えば、SiOゾル)を用いてもよい。 The particles having microvoids in the inorganic fine particles can be formed, for example, by crosslinking silica molecules forming the particles. Crosslinking silica molecules reduces the volume and makes the particles porous. (Porous) inorganic fine particles having microvoids are prepared by a sol-gel method (described in JP-A-53-112732 and JP-B-57-9051) or a precipitation method (described in APPLIED OPTICS, 27, 3356 (1988)). Can be directly synthesized as a dispersion. Further, the powder obtained by the drying / precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (for example, SiO 2 sol) may be used.

これらの無機微粒子は、空隙保持層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)が好ましい。   These inorganic fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a void retaining layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone) are preferable.

有機微粒子も非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。ポリマー中のフッ素原子の割合は、35〜80質量%であることが好ましく、45〜75質量%であることが更に好ましい。また、有機微粒子内に、例えば、粒子を形成するポリマーを架橋させ、体積を縮小させることによりミクロボイドを形成させることも好ましい。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30〜80モル%であることが更に好ましく、35〜50モル%であることが最も好ましい。上記有機微粒子の合成に用いられるモノマーとしては、含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例として、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類及びフッ素化ビニルエーテル類が挙げられる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例としては、オレフィン類(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例えば、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例えば、メチルビニルエーテル)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例えば、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類及びアクリルニトリル類が挙げられる。多官能モノマーの例としては、ジエン類(例えば、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例えば、エチレングリコールジアクリレート、1,4−シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例えば、エチレングリコールジメタクリレート、1,2,4−シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例えば、ジビニルシクロヘキサン、1,4−ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例えば、メチレンビスアクリルアミド)及びビスメタクリルアミド類が挙げられる。   The organic fine particles are also preferably amorphous. The organic fine particles are preferably polymer fine particles synthesized by polymerization reaction of monomers (for example, emulsion polymerization method). The organic fine particle polymer preferably contains a fluorine atom. The proportion of fluorine atoms in the polymer is preferably 35 to 80% by mass, and more preferably 45 to 75% by mass. It is also preferable to form microvoids in the organic fine particles by, for example, cross-linking the polymer forming the particles and reducing the volume. In order to crosslink the polymer forming the particles, it is preferable to use 20 mol% or more of the monomer for synthesizing the polymer as a polyfunctional monomer. The ratio of the polyfunctional monomer is more preferably 30 to 80 mol%, and most preferably 35 to 50 mol%. Examples of the monomer used for the synthesis of the organic fine particles include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene) as examples of monomers containing fluorine atoms used to synthesize fluorine-containing polymers. , Perfluoro-2,2-dimethyl-1,3-dioxole), fluorinated alkyl esters of acrylic acid or methacrylic acid, and fluorinated vinyl ethers. A copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used. Examples of monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate). , Methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate), styrenes (eg, styrene, vinyl toluene, α-methyl styrene), vinyl ethers (eg, methyl vinyl ether), vinyl esters ( Examples thereof include vinyl acetate and vinyl propionate), acrylamides (for example, N-tert-butylacrylamide, N-cyclohexylacrylamide), methacrylamides and acrylonitriles. Examples of polyfunctional monomers include dienes (eg, butadiene, pentadiene), esters of polyhydric alcohols and acrylic acid (eg, ethylene glycol diacrylate, 1,4-cyclohexane diacrylate, dipentaerythritol hexaacrylate), Esters of polyhydric alcohol and methacrylic acid (for example, ethylene glycol dimethacrylate, 1,2,4-cyclohexanetetramethacrylate, pentaerythritol tetramethacrylate), divinyl compounds (for example, divinylcyclohexane, 1,4-divinylbenzene), divinyl Examples include sulfones, bisacrylamides (eg, methylenebisacrylamide) and bismethacrylamides.

粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することができる。尚、粒径が等しい(完全な単分散の)球状微粒子を最密充填すると、26体積%の空隙率の微粒子間ミクロボイドが形成される。粒径が等しい球状微粒子を単純立方充填すると、48体積%の空隙率の微粒子間ミクロボイドが形成される。実際の空隙保持層では、微粒子の粒径の分布や粒子内ミクロボイドが存在するため、空隙率は上記の理論値からかなり変動する。空隙率を増加させると、空隙保持層の屈折率が低下する。微粒子を積み重ねてミクロボイドを形成すると、微粒子の粒径を調整することで、粒子間ミクロボイドの大きさも適度の(光を散乱せず、空隙保持層の強度に問題が生じない)値に容易に調節できる。更に、微粒子の粒径を均一にすることで、粒子間ミクロボイドの大きさも均一である光学的に均一な空隙保持層を得ることができる。これにより、空隙保持層は微視的にはミクロボイド含有多孔質膜であるが、光学的或いは巨視的には均一な膜にすることができる。粒子間ミクロボイドは、微粒子及びポリマーによって空隙保持層内で閉じていることが好ましい。即ち、空隙が層内に分散していることが好ましい。   Microvoids between particles can be formed by stacking at least two fine particles. When spherical particles having the same particle diameter (completely monodispersed) are closely packed, microvoids between particles with a porosity of 26% by volume are formed. When spherical fine particles having the same particle diameter are simply filled with cubic particles, microvoids between fine particles having a porosity of 48% by volume are formed. In the actual void retaining layer, the particle size distribution of the fine particles and the microvoids in the particles exist, so that the porosity varies considerably from the above theoretical value. When the porosity is increased, the refractive index of the void retaining layer is lowered. When microvoids are formed by stacking fine particles, the size of the microvoids can be adjusted to an appropriate value (does not scatter light and cause no problem with the strength of the void retaining layer) by adjusting the particle size of the fine particles. it can. Furthermore, by making the particle diameters of the fine particles uniform, it is possible to obtain an optically uniform void holding layer in which the size of the microvoids between the particles is uniform. Thereby, although the void retaining layer is microscopically a microvoided porous film, it can be optically or macroscopically uniform. The interparticle microvoids are preferably closed in the void retaining layer by the fine particles and the polymer. That is, the voids are preferably dispersed in the layer.

閉じている空隙には、空隙保持層表面に開かれた開口と比較して、空隙保持層表面での光の散乱が少ないとの利点もある。   Closed voids also have the advantage of less light scattering on the void retention layer surface compared to the openings opened on the void retention layer surface.

ミクロボイドを形成することにより、空隙保持層の巨視的屈折率は、空隙保持層を構成する成分の屈折率の和よりも低い値になる。層の屈折率は、層の構成要素の体積当たりの屈折率の和になる。微粒子やポリマーのような空隙保持層の構成成分の屈折率は1よりも大きな値であるのに対して、空気の屈折率は1.00である。その為、ミクロボイドを形成することによって、屈折率が非常に低い空隙保持層を得ることができる。   By forming the microvoids, the macroscopic refractive index of the void retaining layer becomes lower than the sum of the refractive indexes of the components constituting the void retaining layer. The refractive index of the layer is the sum of the refractive indices per volume of the layer components. The refractive index of the constituent component of the void retaining layer such as fine particles or polymer is a value larger than 1, whereas the refractive index of air is 1.00. Therefore, by forming microvoids, a void retaining layer having a very low refractive index can be obtained.

〔中空もしくは気泡を有する粒子の配合〕
本発明の空隙保持層は中空もしくは気泡を有する粒子を含有することも好ましい。特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含有することが好ましく、中でも該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子が好ましい。
[Composition of particles having hollow or bubbles]
It is also preferable that the void retaining layer of the present invention contains particles having hollow or bubbles. In particular, it is preferable to contain at least one kind of particles having an outer shell layer and porous or hollow inside. Among these, particles having the outer shell layer and porous or hollow inside are hollow silica-based fine particles. preferable.

(中空シリカ系微粒子)
中空シリカ系微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、且つ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。なお、空隙保持層には(I)複合粒子または(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
(Hollow silica fine particles)
The hollow silica-based fine particles are (I) a composite particle comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) having a cavity inside, and the content is a solvent, gas or porous It is a hollow particle filled with a porous material. Note that the void retaining layer only needs to contain either (I) composite particles or (II) hollow particles, or both.

なお、空洞粒子は内部に空洞を有する粒子であり、空洞は被覆層(粒子壁ともいう。)で覆われている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空微粒子の平均粒子径は、形成される空隙保持層の平均膜厚の3/2〜1/10好ましくは2/3〜1/10の範囲にあることが望ましい。これらの中空微粒子は、空隙保持層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)、或いはこれらを含む混合溶媒が好ましい。   Note that the cavity particles are particles having a cavity inside, and the cavity is covered with a coating layer (also referred to as a particle wall). The cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm. The average particle size of the hollow fine particles used is desirably 3/2 to 1/10, preferably 2/3 to 1/10, of the average film thickness of the void-retaining layer to be formed. These hollow fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a void retaining layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), ketone alcohol (for example, diacetone alcohol), or a mixed solvent containing these is preferable.

複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部の空隙部分に進入して粒子の屈折率を増加させ、低屈折率の効果が十分得られなくなることがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。   The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, if the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and it is easy to use a silicate monomer or oligomer having a low polymerization degree, which is a coating liquid component described later. In some cases, the refractive index of the particles is increased by entering the voids inside the composite particles, and the effect of low refractive index may not be sufficiently obtained. When the thickness of the coating layer exceeds 20 nm, the silicic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficiently obtained. It may not be possible. In the case of hollow particles, if the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. .

複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MO)で表したときのモル比MO/SiOが、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MO/SiOが0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MO/SiOが、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、更に屈折率が低いものを得ることが難しいことがある。 The coating layer of the composite particles or the particle wall of the hollow particles is preferably composed mainly of silica. Moreover, components other than silica may be contained, and specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3. , MoO 3 , ZnO 2 , WO 3 and the like. Examples of the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6 , MgF, and the like. Among these, porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly preferable. Examples of inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3. 1 type or 2 types or more can be mentioned. In such porous particles, the molar ratio MO X / SiO 2 when the silica is expressed by SiO 2 and the inorganic compound other than silica is expressed in terms of oxide (MO X ) is 0.0001 to 1.0, Preferably it is in the range of 0.001 to 0.3. It is difficult to obtain a porous particle having a molar ratio MO X / SiO 2 of less than 0.0001. Even if it is obtained, a pore volume is small and particles having a low refractive index cannot be obtained. In addition, when the molar ratio MO X / SiO 2 of the porous particles exceeds 1.0, the ratio of silica decreases, so that the pore volume increases and it is difficult to obtain a material having a lower refractive index. is there.

このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。   The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 ml / g, particles having a sufficiently reduced refractive index cannot be obtained. If the pore volume exceeds 1.5 ml / g, the strength of the fine particles is lowered, and the strength of the resulting coating may be lowered. is there.

なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。   In addition, the pore volume of such porous particles can be determined by a mercury intrusion method. Examples of the contents of the hollow particles include a solvent, a gas, and a porous substance used at the time of preparing the particles. The solvent may contain an unreacted particle precursor used when preparing the hollow particles, the catalyst used, and the like. Moreover, what consists of the compound illustrated by the said porous particle as a porous substance is mentioned. These contents may be composed of a single component or may be a mixture of a plurality of components.

このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空微粒子は製造される。   As a method for producing such hollow fine particles, for example, the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is suitably employed. Specifically, when the composite particles are composed of silica and an inorganic compound other than silica, hollow fine particles are produced from the following first to third steps.

第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
First Step: Preparation of Porous Particle Precursor In the first step, an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a silica raw material and an inorganic compound raw material other than silica are prepared in advance. A mixed aqueous solution is prepared, and this aqueous solution is gradually added to an aqueous alkaline solution having a pH of 10 or more while stirring according to the composite ratio of the target composite oxide to prepare a porous particle precursor.

シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。   As the silica raw material, alkali metal, ammonium or organic base silicate is used. Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or the organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound or the like to a silicic acid solution.

また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。   In addition, alkali-soluble inorganic compounds are used as raw materials for inorganic compounds other than silica. Specifically, an oxo acid of an element selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, etc., an alkali metal salt or alkaline earth metal salt of the oxo acid, ammonium And salts and quaternary ammonium salts. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, and sodium phosphate are suitable.

これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO、Al、TiOまたはZrO等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。 Although the pH value of the mixed aqueous solution changes simultaneously with the addition of these aqueous solutions, an operation for controlling the pH value within a predetermined range is not particularly required. The aqueous solution finally has a pH value determined by the type of inorganic oxide and the mixing ratio thereof. There is no restriction | limiting in particular in the addition rate of the aqueous solution at this time. Further, in the production of composite oxide particles, a dispersion of seed particles can be used as a starting material. The seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols are used. Can do. Furthermore, the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion. When using a seed particle dispersion, the pH of the seed particle dispersion is adjusted to 10 or higher, and then an aqueous solution of the compound is added to the above-mentioned alkaline aqueous solution while stirring. Also in this case, it is not always necessary to control the pH of the dispersion. When seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.

上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、または、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。   The silica raw material and the inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or seed particles. It grows on the top and particle growth occurs. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.

第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MO)に換算し、MO/SiOのモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MO/SiOのモル比は、0.25〜2.0の範囲内にあることが望ましい。 The composite ratio of silica and an inorganic compound other than silica in the first step is that the inorganic compound relative to silica is converted to an oxide (MO X ), and the molar ratio of MO X / SiO 2 is 0.05 to 2.0, Preferably it is in the range of 0.2-2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even when the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small. When preparing the hollow particles, the molar ratio of MO X / SiO 2 is preferably in the range of 0.25 to 2.0.

第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
Second step: Removal of inorganic compound other than silica from porous particles In the second step, inorganic compounds other than silica (elements other than silicon and oxygen) are obtained from the porous particle precursor obtained in the first step. At least a portion is selectively removed. As a specific removal method, the inorganic compound in the porous particle precursor is dissolved and removed using a mineral acid or an organic acid, or is contacted with a cation exchange resin for ion exchange removal.

なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。   The porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen. By removing the inorganic compound (elements other than silicon and oxygen) from the porous particle precursor in this way, porous particles having a larger porosity and a larger pore volume can be obtained. Further, if the amount of removing the inorganic oxide (elements other than silicon and oxygen) from the porous particle precursor is increased, the hollow particles can be prepared.

また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。   In addition, prior to removing inorganic compounds other than silica from the porous particle precursor, fluorine-substituted, obtained by dealkalizing an alkali metal salt of silica into the porous particle precursor dispersion obtained in the first step. It is preferable to add a silicic acid solution containing an alkyl group-containing silane compound or a hydrolyzable organosilicon compound to form a silica protective film. The thickness of the silica protective film may be 0.5 to 15 nm. Even if the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove inorganic compounds other than silica described above from the porous particle precursor.

このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。   By forming such a silica protective film, inorganic compounds other than silica described above can be removed from the porous particle precursor while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later is formed without reducing the pore volume. Can do. Note that when the amount of the inorganic compound to be removed is small, the particles are not broken, and thus it is not always necessary to form a protective film.

また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。   When preparing hollow particles, it is desirable to form this silica protective film. When preparing the hollow particles, the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content. When a coating layer to be described later is formed on the precursor, the formed coating layer becomes a particle wall to form hollow particles.

上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. If the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than silica from the porous particle precursor. The hydrolyzable organic silicon compound used for the silica protective film formed of the general formula R n Si (OR ') 4 -n [R, R': an alkyl group, an aryl group, a vinyl group, such as acrylic group An alkoxysilane represented by a hydrocarbon group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as fluorine-substituted tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed. The produced silicic acid polymer is deposited on the surface of the inorganic oxide particles. At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。   When the dispersion medium of the porous particle precursor is water alone or when the ratio of water to the organic solvent is high, a silica protective film can be formed using a silicic acid solution. When a silicic acid solution is used, a predetermined amount of the silicic acid solution is added to the dispersion, and at the same time an alkali is added to deposit the silicic acid solution on the surface of the porous particles. In addition, you may produce a silica protective film together using a silicic acid liquid and the said alkoxysilane.

第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
Third step: Formation of silica coating layer In the third step, the porous particle dispersion prepared in the second step (in the case of hollow particles, the hollow particle precursor dispersion) contains a fluorine-substituted alkyl group-containing silane compound. By adding a hydrolyzable organosilicon compound or silicic acid solution, the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or silicic acid solution to form a silica coating layer.

シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The hydrolyzable organic silicon compound used for the silica coating layer formed, the above-mentioned such general formula R n Si (OR ') 4 -n [R, R': an alkyl group, an aryl group, a vinyl group, An alkoxysilane represented by a hydrocarbon group such as an acryl group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is used as a dispersion of the porous particles (in the case of hollow particles, a hollow particle precursor). In addition, the silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, hollow particle precursors). At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。   When the dispersion medium of porous particles (in the case of hollow particles, the hollow particle precursor) is water alone or a mixed solvent with an organic solvent and the mixed solvent has a high ratio of water to the organic solvent, a silicate solution You may form a coating layer using. The silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.

ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるような量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。   The silicic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursors), and at the same time, alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors). ) Deposit on the surface. In addition, you may use a silicic acid liquid for the coating layer formation in combination with the said alkoxysilane. The addition amount of the organosilicon compound or silicic acid solution used for forming the coating layer only needs to be sufficient to cover the surface of the colloidal particles, and the finally obtained silica coating layer has a thickness of 1 to 20 nm. In such an amount, it is added in a dispersion of porous particles (in the case of hollow particles, a hollow particle precursor). When the silica protective film is formed, the organosilicon compound or the silicate solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.

次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。   Next, the dispersion liquid of the particles on which the coating layer is formed is heat-treated. By the heat treatment, in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained. In the case of a hollow particle precursor, the formed coating layer is densified to form hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.

このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。   The heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C. When the heat treatment temperature is less than 80 ° C., the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time. Further, when the heat treatment temperature exceeds 300 ° C. for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.

このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。なお、中空シリカ系微粒子は触媒化成(株)から市販されているものも好ましく利用することができる。   The refractive index of the inorganic fine particles thus obtained is as low as less than 1.42. Such inorganic fine particles are presumed to have a low refractive index because the porosity inside the porous particles is maintained or the inside is hollow. As the hollow silica-based fine particles, those commercially available from Catalyst Kasei Co., Ltd. can be preferably used.

外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子の空隙保持層中の含有量は、10〜50質量%であることが好ましい。低屈折率の効果を得る上で、15質量%以上が好ましく、50質量%を超えるとバインダー成分が少なくなり膜強度が不十分となる。特に好ましくは20〜50質量%である。   The content of the hollow silica-based fine particles having an outer shell layer and being porous or hollow in the void retaining layer is preferably 10 to 50% by mass. In order to obtain the effect of a low refractive index, the content is preferably 15% by mass or more. Most preferably, it is 20-50 mass%.

空隙保持層への添加方法としては、例えばテトラアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成したケイ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。また、シリカ系微粒子は、WO2007/099814号パンフレットに記載の製造法により作製されたものを用いてもよい。   As a method for adding to the void retaining layer, for example, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of tetraalkoxysilane, pure water, and alcohol is added to the dispersion of the hollow silica-based fine particles. Silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of hollow silica fine particles. At this time, tetraalkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used. Silica-based fine particles may be those produced by the production method described in the pamphlet of WO2007 / 099814.

(カチオン重合性化合物)
前記空隙保持層は、バインダーとして、カチオン重合性化合物を含有することが、本発明の目的効果をより良く発揮する点から好ましい。カチオン重合性化合物としては、エネルギー活性線照射や熱によってカチオン重合を起こして樹脂化するものであればいずれも使用できる。具体的には、エポキシ基、環状エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル化合物、ビニルオキソ基等が挙げられる。中でもエポキシ基やビニルエーテル基などの官能基を有する化合物が本発明においては、好適に用いられる。エポキシ基またはビニルエーテル基を有するカチオン重合性化合物としては、例えば、フェニルグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ビニルシクロヘキセンジオキサイド、リモネンジオキサイド、3,4−エポキシシクロヘキシルメチル−3′,4′−エポキシシクロヘキサンカルボキシレート、ビス−(6−メチル−3,4−エポキシシクロヘキシル)アジペート、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、1,4−シクロヘキサンジメタノールジビニルエーテル等が挙げられる。また、エポキシ化合物としては、ポリマー化合物も使用することができ、例えば、特開平7−247313号公報に開示されている手法で合成することができる。
(Cationically polymerizable compound)
The void retaining layer preferably contains a cationically polymerizable compound as a binder from the viewpoint of better achieving the object effect of the present invention. Any cationically polymerizable compound can be used as long as it undergoes cationic polymerization by irradiation with energy active rays or heat to form a resin. Specific examples include an epoxy group, a cyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester compound, and a vinyloxo group. Among them, a compound having a functional group such as an epoxy group or a vinyl ether group is preferably used in the present invention. Examples of the cationically polymerizable compound having an epoxy group or a vinyl ether group include phenyl glycidyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, vinylcyclohexene dioxide, limonene dioxide, 3,4-epoxycyclohexylmethyl-3 ′. , 4'-epoxycyclohexanecarboxylate, bis- (6-methyl-3,4-epoxycyclohexyl) adipate, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, 1 , 4-cyclohexanedimethanol divinyl ether and the like. Moreover, as an epoxy compound, a polymer compound can also be used, for example, it is compoundable by the method currently disclosed by Unexamined-Japanese-Patent No. 7-247313.

また、カチオン重合性化合物として、オキセタン化合物も挙げる事ができる。オキセタン化合物としては、分子中に少なくとも1個のオキセタン環を有する化合物であればよく、このようなオキセタン化合物としては、種々のものが使用できるが、好ましい化合物として、下記の一般式(I)、一般式(II)、一般式(III)の化合物である。   Moreover, an oxetane compound can also be mentioned as a cationically polymerizable compound. As the oxetane compound, any compound having at least one oxetane ring in the molecule may be used, and various compounds can be used as such an oxetane compound. Preferred compounds include the following general formula (I), Compounds of general formula (II) and general formula (III).

Figure 2010097105
Figure 2010097105

(式中、Rは、水素、フッ素、アルキル基、フルオロアルキル基、アリル基、アリール基またはフリル基を表し、mは1〜4の整数を表し、Zは酸素または硫黄を表し、Rはmの値に応じて1〜4価の有機基を表す。) (Wherein R 7 represents hydrogen, fluorine, alkyl group, fluoroalkyl group, allyl group, aryl group or furyl group, m represents an integer of 1 to 4, Z represents oxygen or sulfur, R 8 Represents a monovalent to tetravalent organic group depending on the value of m.)

Figure 2010097105
Figure 2010097105

(式中、R及びR10は各々独立して、水素、フッ素、アルキル基、フルオロアルキル基、アリル基、アリール基またはフリル基を表す。) (In the formula, R 9 and R 10 each independently represent hydrogen, fluorine, an alkyl group, a fluoroalkyl group, an allyl group, an aryl group, or a furyl group.)

Figure 2010097105
Figure 2010097105

(式中、R11は、水素、フッ素、アルキル基、フルオロアルキル基、アリル基、アリール基またはフリル基を表し、R12は水素または不活性な1価の有機基を表し、R13は加水分解可能な官能基を表し、nは1〜5の整数を表し、pは0〜2の整数を表す。)
上記一般式(I)〜(III)において、R、R、R10、R11がアルキル基の場合、その炭素数は1〜6程度であることができ、具体的には、メチル、エチル、プロピル、ブチルなどが挙げられる。またフルオロアルキル基も、炭素数1〜6程度であることができる。更にアリール基は、典型的にはフェニルまたはナフチルであり、これらは他の基で置換されていてもよい。
(Wherein R 11 represents hydrogen, fluorine, an alkyl group, a fluoroalkyl group, an allyl group, an aryl group or a furyl group, R 12 represents hydrogen or an inert monovalent organic group, and R 13 represents water Represents a decomposable functional group, n represents an integer of 1 to 5, and p represents an integer of 0 to 2.)
In the above general formulas (I) to (III), when R 7 , R 9 , R 10 and R 11 are alkyl groups, the carbon number thereof can be about 1 to 6, specifically, methyl, Examples include ethyl, propyl, butyl and the like. The fluoroalkyl group can also have about 1 to 6 carbon atoms. Furthermore, the aryl group is typically phenyl or naphthyl, which may be substituted with other groups.

また、上記一般式(I)においてRで表される有機基は、特に限定されないが、例えば、mが1の場合は、アルキル基、フェニル基などが、mが2の場合は、炭素数1〜12の直鎖または分枝状アルキレン基、直鎖または分枝状のポリ(アルキレンオキシ)基などが、mが3または4の場合は、類似の多価官能基が挙げられる。 In addition, the organic group represented by R 8 in the general formula (I) is not particularly limited. For example, when m is 1, an alkyl group, a phenyl group, or the like, and when m is 2, the number of carbon atoms is When m is 3 or 4, 1 to 12 linear or branched alkylene groups, linear or branched poly (alkyleneoxy) groups, and the like, a similar polyvalent functional group is exemplified.

上記一般式(II)においてR12で表される不活性な1価の有機基として、典型的には炭素数1〜4のアルキル基が挙げられ、またR13で表される加水分解可能な官能基としては、例えば、メトキシやエトキシなどを包含する炭素数1〜5のアルコキシ基、塩素原子や臭素原子のようなハロゲン原子などが挙げられる。 The inactive monovalent organic group represented by R 12 in the general formula (II) typically includes an alkyl group having 1 to 4 carbon atoms, and is hydrolyzable represented by R 13. Examples of the functional group include an alkoxy group having 1 to 5 carbon atoms including methoxy and ethoxy, and a halogen atom such as a chlorine atom and a bromine atom.

更に、必要に応じて水素結合形成基を有するモノマーを含む(共)重合体で、主鎖や側鎖にオキセタニル基を有する数平均分子量が2万以上の反応性ポリマーなども使用できる。   Furthermore, if necessary, a (co) polymer containing a monomer having a hydrogen bond-forming group and a reactive polymer having an oxetanyl group in the main chain or side chain and having a number average molecular weight of 20,000 or more can also be used.

また、下記一般式で示されるような含フッ素のビニルエーテル化合物を用いてもよい。   Moreover, you may use the fluorine-containing vinyl ether compound as shown by the following general formula.

CH=CH−O−(CH)a−O−(CH)b−Rf−(CH)b−O−(CH)a−O−CH=CH
(式中、Rfはフッ素含有アルキル基、aは1〜2、bは0〜3の整数を表す。Rfは直鎖或いは分枝のアルキル基のいずれであってもよい。)
具体的化合物としては次の通りである。
CH 2 = CH-O- (CH 2) a-O- (CH 2) b-Rf- (CH 2) b-O- (CH 2) a-O-CH = CH 2
(In the formula, Rf represents a fluorine-containing alkyl group, a represents an integer of 1 to 2, and b represents an integer of 0 to 3. Rf may be a linear or branched alkyl group.)
Specific compounds are as follows.

CH=CH−O−CH−O−(CF)k−O−CH−O−CH=CH
CH=CH−O−CH−O−CH−(CF)k−CH−O−CH−O−CH=CH
CH=CH−O−CH−O−(CH−(CF)k−(CH−O−CH−O−CH=CH
CH=CH−O−CH−O−(CH−(CF)k−(CH−O−CH−O−CH=CH
CH=CH−O−(CH−O−(CF)k−O−(CH−O−CH=CH
CH=CH−O−(CH−O−CH−(CF)k−CH−O−(CH−O−CH=CH
CH=CH−O−(CH−O−(CH−(CF)k−(CH−O−(CH−O−CH=CH
CH=CH−O−(CH−O−(CH−(CF)k−(CH−O−(CH−O−CH=CH
上記において、kは好ましくは2以上12以下の整数であり、更に好ましくは、kが4以上10以下である。上記含フッ素のビニルエーテル化合物は、含フッ素ジアルコール体とハロゲン基をもつビニルエーテルをアルカリ触媒下で反応させることによって製造することができる。また、含フッ素エポキシ化合物を含有してもよく、例えば特開平11−309830号公報の一般式(1)〜(4)に記載の化合物を用いることができる。具体的には以下に示す含フッ素エポキシ化合物1〜4の化合物を挙げる事ができるが、これらに限定されない。
CH 2 = CH-O-CH 2 -O- (CF 2) k-O-CH 2 -O-CH = CH 2
CH 2 = CH-O-CH 2 -O-CH 2 - (CF 2) k-CH 2 -O-CH 2 -O-CH = CH 2
CH 2 = CH-O-CH 2 -O- (CH 2) 2 - (CF 2) k- (CH 2) 2 -O-CH 2 -O-CH = CH 2
CH 2 = CH-O-CH 2 -O- (CH 2) 3 - (CF 2) k- (CH 2) 3 -O-CH 2 -O-CH = CH 2
CH 2 = CH-O- (CH 2) 2 -O- (CF 2) k-O- (CH 2) 2 -O-CH = CH 2
CH 2 = CH-O- (CH 2) 2 -O-CH 2 - (CF 2) k-CH 2 -O- (CH 2) 2 -O-CH = CH 2
CH 2 = CH-O- (CH 2) 2 -O- (CH 2) 2 - (CF 2) k- (CH 2) 2 -O- (CH 2) 2 -O-CH = CH 2
CH 2 = CH-O- (CH 2) 2 -O- (CH 2) 3 - (CF 2) k- (CH 2) 3 -O- (CH 2) 2 -O-CH = CH 2
In the above, k is preferably an integer of 2 or more and 12 or less, and more preferably, k is 4 or more and 10 or less. The fluorine-containing vinyl ether compound can be produced by reacting a fluorine-containing dialcohol and a vinyl ether having a halogen group in the presence of an alkali catalyst. Moreover, you may contain a fluorine-containing epoxy compound, for example, the compound as described in General formula (1)-(4) of Unexamined-Japanese-Patent No. 11-309830 can be used. Specific examples include the following fluorine-containing epoxy compounds 1 to 4, but are not limited thereto.

含フッ素エポキシ化合物1   Fluorine-containing epoxy compound 1

Figure 2010097105
Figure 2010097105

含フッ素エポキシ化合物2   Fluorine-containing epoxy compound 2

Figure 2010097105
Figure 2010097105

含フッ素エポキシ化合物3   Fluorine-containing epoxy compound 3

Figure 2010097105
Figure 2010097105

含フッ素エポキシ化合物4   Fluorine-containing epoxy compound 4

Figure 2010097105
Figure 2010097105

その他、特開2007−254650号公報段落番号[116]〜[126]に記載の化合物を挙げることもできる。   In addition, the compounds described in JP-A-2007-254650, paragraph numbers [116] to [126] can also be mentioned.

上記したカチオン重合性化合物は、低屈折層塗布組成物中では固形分中の15質量%以上70質量%未満であることが、低屈折層塗布組成物の安定性の点から、好ましい。   The above-mentioned cationically polymerizable compound is preferably 15% by mass or more and less than 70% by mass in the solid content in the low refractive layer coating composition from the viewpoint of the stability of the low refractive layer coating composition.

(カチオン重合促進剤)
また、カチオン重合性化合物の重合を促進する化合物として、公知の酸や光酸発生剤を挙げる事ができる。光酸発生剤としては、カチオン重合の光開始剤、色素類の光消色剤、光変色剤、或いは、マイクロレジスト等に使用されている公知の化合物及びそれらの混合物等が挙げられる。具体的には、例えば、オニウム化合物、有機ハロゲン化合物、ジスルホン化合物が挙げられ、好ましくは、オニウム化合物である。オニウム化合物としては、以下の各式に示されるジアゾニウム塩、スルホニウム塩、ヨードニウム塩などが好適に使用される。
(Cationic polymerization accelerator)
In addition, examples of the compound that accelerates the polymerization of the cationic polymerizable compound include known acids and photoacid generators. Examples of the photoacid generator include a cationic polymerization photoinitiator, a dye photodecoloring agent, a photochromic agent, a known compound used in a microresist, and a mixture thereof. Specific examples include onium compounds, organic halogen compounds, and disulfone compounds, and onium compounds are preferable. As the onium compound, diazonium salts, sulfonium salts, iodonium salts and the like represented by the following formulas are preferably used.

ArN
(R)
(R)
式中、Arはアリール基を表し、Rはアリール基または炭素数1〜20のアルキル基を表し、一分子内にRが複数回現れる場合は、それぞれ同一でも異なっていてもよく、Zは非塩基性でかつ非求核性の陰イオンを表す。
ArN 2 + Z ,
(R) 3 S + Z ,
(R) 2 I + Z
In the formula, Ar represents an aryl group, R represents an aryl group or an alkyl group having 1 to 20 carbon atoms, and when R appears multiple times in one molecule, they may be the same or different, and Z Represents a non-basic and non-nucleophilic anion.

上記各式において、ArまたはRで表されるアリール基も、典型的にはフェニルやナフチルであり、これらは適当な基で置換されていてもよい。また、Zで表される陰イオンとして具体的には、テトラフルオロボレートイオン(BF )、テトラキス(ペンタフルオロフェニル)ボレートイオン(B(C )、ヘキサフルオロホスフェートイオン(PF )、ヘキサフルオロアーセネートイオン(AsF )、ヘキサフルオロアンチモネートイオン(SbF )、ヘキサクロロアンチモネートイオン(SbCl )、硫酸水素イオン(HSO )、過塩素酸イオン(ClO )などが挙げられる。 In each of the above formulas, the aryl group represented by Ar or R is also typically phenyl or naphthyl, and these may be substituted with an appropriate group. Specific examples of the anion represented by Z include tetrafluoroborate ion (BF 4 ), tetrakis (pentafluorophenyl) borate ion (B (C 6 F 5 ) 4 ), and hexafluorophosphate ion. (PF 6 ), hexafluoroarsenate ion (AsF 6 ), hexafluoroantimonate ion (SbF 6 ), hexachloroantimonate ion (SbCl 6 ), hydrogen sulfate ion (HSO 4 ), perchloric acid Ion (ClO 4 ) and the like.

その他のオニウム化合物としては、アンモニウム塩、イミニウム塩、ホスホニウム塩、アルソニウム塩、セレノニウム塩、ホウ素塩等が挙げられ、例えば特開2002−29162号公報の段落番号[0058]〜[0059]に記載の化合物等が挙げられる。   Examples of other onium compounds include ammonium salts, iminium salts, phosphonium salts, arsonium salts, selenonium salts, boron salts and the like. For example, as described in JP-A-2002-29162, paragraph numbers [0058] to [0059] Compounds and the like.

中でも、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が、化合物の素材安定性等の点から好ましい。   Of these, diazonium salts, iodonium salts, sulfonium salts, and iminium salts are preferable from the viewpoint of the material stability of the compound.

好適に用いることのできるオニウム塩の具体例としては、例えば、特開平9−268205号公報の段落番号[0035]に記載のアミル化されたスルホニウム塩、特開2000−71366号公報の段落番号[0010]〜[0011]に記載のジアリールヨードニウム塩またはトリアリールスルホニウム塩、特開2001−288205号公報の段落番号[0017]に記載のチオ安息香酸S−フェニルエステルのスルホニウム塩、特開2001−133696号公報の段落番号[0030]〜[0033]に記載のオニウム塩等が挙げられる。   Specific examples of onium salts that can be suitably used include, for example, an amylated sulfonium salt described in paragraph No. [0035] of JP-A No. 9-268205, and paragraph Nos. Of JP-A No. 2000-71366. 0010]-[0011] diaryl iodonium salt or triarylsulfonium salt, thiobenzoic acid S-phenyl ester sulfonium salt described in JP-A-2001-288205, paragraph number [0017], JP-A-2001-133696 Onium salts and the like described in paragraph numbers [0030] to [0033] of the publication.

酸発生剤の他の例としては、特開2002−29162号公報の段落番号[0059]〜[0062]に記載の有機金属/有機ハロゲン化物、o−ニトロベンジル型保護基を有する光酸発生剤、光分解してスルホン酸を発生する化合物(イミノスルフォネート等)等の化合物が挙げられる。これら化合物の多くは市販されているので、そのような市販品を用いることができる。市販の開始剤としては、例えば、ダウケミカル日本(株)から販売されている“サイラキュアUVI−6990”(商品名)、各々(株)ADEKAから販売されている“アデカオプトマーSP−150”(商品名)、“アデカオプトマーSP−300”(商品名)、ローディアジャパン(株)から販売されている“RHODORSIL PHOTOINITIAOR2074”(商品名)などが挙げられる。   Other examples of the acid generator include organometallic / organic halides described in JP-A-2002-29162, paragraphs [0059] to [0062], and a photoacid generator having an o-nitrobenzyl type protecting group. And compounds such as compounds that generate photosulfonic acid to generate sulfonic acid (iminosulfonate, etc.). Since many of these compounds are commercially available, such commercially available products can be used. Commercially available initiators include, for example, “Syracure UVI-6990” (trade name) sold by Dow Chemical Japan Co., Ltd., and “Adekaoptomer SP-150” (trade name) sold by ADEKA Corporation. Product name), “ADEKA OPTMER SP-300” (product name), “RHODORSIL PHOTOINITIAOR 2074” (product name) sold by Rhodia Japan Co., Ltd., and the like.

酸としては、塩酸、硫酸、硝酸、リン酸等の無機酸、または酢酸、ギ酸、メタンスルホン酸、トリフロロメタンスルホン酸、パラトルエンスルホン酸等の有機酸等のブレンステッド酸、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、トリイソプロポキシアルミニウム、テトラブトキシジルコニウム、テトラブトキシチタネート等のルイス酸が挙げられる。   As the acid, Bronsted acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like, or organic acid such as acetic acid, formic acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, dibutyltin dilaurate, Examples thereof include Lewis acids such as dibutyltin diacetate, dibutyltin dioctate, triisopropoxyaluminum, tetrabutoxyzirconium, and tetrabutoxytitanate.

ピロメリット酸、無水ピロメリット酸、トリメリット酸、無水トリメリット酸、フタル酸、無水フタル酸などの芳香族多価カルボン酸またはその無水物やマレイン酸、無水マレイン酸、コハク酸、無水コハク酸などの脂肪族多価カルボン酸またはその無水物なども挙げられる。   Aromatic polycarboxylic acids such as pyromellitic acid, pyromellitic anhydride, trimellitic acid, trimellitic anhydride, phthalic acid, phthalic anhydride, or anhydrides thereof, maleic acid, maleic anhydride, succinic acid, succinic anhydride Aliphatic polycarboxylic acids such as or anhydrides thereof are also included.

酸としては、1種のみを用いてもよいし、2種以上を併用してもよい。   As an acid, only 1 type may be used and 2 or more types may be used together.

これらの酸や光酸発生剤は、カチオン重合性化合物100質量部に対して、0.1〜20質量部の割合が好ましく、より好ましくは0.5〜15質量部の割合で添加することである。添加量が上記範囲において、硬化性組成物の安定性、重合反応性等から好ましい。   These acids and photoacid generators are preferably added in a proportion of 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, with respect to 100 parts by mass of the cationic polymerizable compound. is there. When the addition amount is in the above range, it is preferable from the viewpoint of stability of the curable composition, polymerization reactivity, and the like.

(ラジカル重合性化合物)
また、本発明の空隙保持層は、バインダーとしてラジカル重合性化合物を含有することもできる。
(Radically polymerizable compound)
Moreover, the space | gap holding layer of this invention can also contain a radically polymerizable compound as a binder.

ラジカル重合性基としては、(メタ)アクリロイル基、ビニルオキシ基、スチリル基、アリル基等のエチレン性不飽和基等が挙げられ、中でも、(メタ)アクリロイル基を有する化合物が好ましい。また、ラジカル重合性化合物としては、分子内に2個以上のラジカル重合性基を含有する多官能モノマーを含有することが好ましい。多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、イソボロニルアクリレート等が好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。   Examples of the radical polymerizable group include ethylenically unsaturated groups such as a (meth) acryloyl group, a vinyloxy group, a styryl group, and an allyl group. Among them, a compound having a (meth) acryloyl group is preferable. The radical polymerizable compound preferably contains a polyfunctional monomer containing two or more radical polymerizable groups in the molecule. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Ritolol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate Acrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate, isobornyl acrylate and the like preferably. These compounds are used alone or in admixture of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient.

市販品の多官能アクリレートとしては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製);B420(新中村化学工業(株)製)等を適宜選択して利用できる。   Commercially available polyfunctional acrylates include Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (Asahi Denka Co., Ltd.); Hard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT-102Q8 MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Co., Ltd.); Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP-10, DP-20 DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (manufactured by Dainichi Seika Kogyo Co., Ltd.); KRM7033, RM 7039, KRM 7130, KRM 7131, UVECRYL 29201, UVECRYL 29202 (manufactured by Daicel UCB); RC-5015, RC-5016, RC-5020, RC-5031, RC-5100, RC-5102, RC-5120, RC- 5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.); 340 clear (manufactured by China Paint Co., Ltd.); Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (manufactured by Sanyo Chemical Industries); SP -1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.); RCC-15C (manufactured by Grace Japan Co., Ltd.), Aronix M-6100, M-8030, M-8060 (manufactured by Toagosei Co., Ltd.); B420 (manufactured by Shin-Nakamura Chemical Co., Ltd.) or the like can be appropriately selected and used.

ラジカル重合性化合物の添加量は、低屈折層塗布組成物中では固形分中の15質量%以上70質量%未満であることが、低屈折層塗布組成物の安定性の点から、好ましい。   The addition amount of the radical polymerizable compound is preferably 15% by mass or more and less than 70% by mass in the solid content in the low refractive layer coating composition from the viewpoint of the stability of the low refractive layer coating composition.

(ラジカル重合促進剤)
ラジカル重合性化合物の硬化促進のために、光重合開始剤をラジカル重合性化合物と併用して用いることが好ましい。光重合開始剤とラジカル重合性化合物とを併用して用いる場合には、光重合開始剤とラジカル重合性化合物とを質量比で20:100〜0.01:100含有することが好ましい。
(Radical polymerization accelerator)
In order to accelerate the curing of the radical polymerizable compound, it is preferable to use a photopolymerization initiator in combination with the radical polymerizable compound. When the photopolymerization initiator and the radical polymerizable compound are used in combination, it is preferable to contain the photopolymerization initiator and the radical polymerizable compound in a mass ratio of 20: 100 to 0.01: 100.

光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。   Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.

(珪素化合物)
空隙保持層には、下記一般式(A)で表される有機珪素化合物もしくはその加水分解物或いはその重縮合物を含有しても良い。
(Silicon compound)
The void retaining layer may contain an organosilicon compound represented by the following general formula (A), a hydrolyzate thereof, or a polycondensate thereof.

R2SiX24−m ・・・(A)
式中、R2はエポキシ基、X2は水酸基または加水分解可能な置換基であり、mは0〜3の整数である。
R2 m SiX2 4-m (A)
In the formula, R2 is an epoxy group, X2 is a hydroxyl group or a hydrolyzable substituent, and m is an integer of 0 to 3.

一般式(A)で示されるエポキシ基を有するアルコキシシラン化合物のR2は特に制限はないが、例えば2−グリシドキシエチル基、3−グリシドキシプロピル基、3−グリシドキシブチル基等のグリシドキシC1〜C4アルキル基、好ましくはグリシドキシC1〜C3アルキル基、グリシジル基、2−(3,4−エポキシシクロヘキシル)エチル基、3−(3,4−エポキシシクロヘキシル)プロピル基、2−(3,4−エポキシシクロヘプチル)エチル基、2−(3,4−エポキシシクロヘキシル)プロピル基、2−(3,4−エポキシシクロヘキシル)ブチル基、2−(3,4−エポキシシクロヘキシル)ペンチル基等のオキシラン基を持ったC5〜C8のシクロアルキル基で置換されたC1〜C3アルキル基が挙げられる。これらの中で2−グリシドキシエチル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)エチル基が好ましい。これらの置換基R2を有する一般式(1)の化合物として用いることのできる化合物の好ましい具体例として、2−グリシドキシエチルトリメトキシシラン、2−グリシドキシエチルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4)−エポキシシクロヘキシルエチルトリエトキシシラン等が挙げられる。これらは単独でも2種以上使用してもよい。   R2 of the alkoxysilane compound having an epoxy group represented by the general formula (A) is not particularly limited, but examples thereof include 2-glycidoxyethyl group, 3-glycidoxypropyl group, 3-glycidoxybutyl group and the like. Glycidoxy C1-C4 alkyl group, preferably glycidoxy C1-C3 alkyl group, glycidyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group, 2- (3 Oxiranes such as 4-epoxycycloheptyl) ethyl group, 2- (3,4-epoxycyclohexyl) propyl group, 2- (3,4-epoxycyclohexyl) butyl group, 2- (3,4-epoxycyclohexyl) pentyl group And a C1-C3 alkyl group substituted with a C5-C8 cycloalkyl group having a group. Among these, a 2-glycidoxyethyl group, a 3-glycidoxypropyl group, and a 2- (3,4-epoxycyclohexyl) ethyl group are preferable. Preferred specific examples of the compound that can be used as the compound of the general formula (1) having these substituents R2 include 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, and 3-glycidide. Xylpropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4) -epoxycyclohexylethyltriethoxysilane and the like. These may be used alone or in combination of two or more.

アルコキシシラン化合物は、例えば、特開平10−324749号、特開平6−298940号公報に記載の方法で製造する事が出来る。特開2006−348061号に記載されているように塩基触媒下で、一般式(1)のアルコキシシラン化合物を(共)縮合させて得る事も出来る。その場合、(共)縮合を促進するため、必要に応じ水を添加することができる。水の添加量は、反応混合物全体のアルコキシ基1モルに対し、通常0.05〜1.5モル、好ましくは0.1〜1.2モルである。縮合反応に使用する触媒は塩基性であれば特に限定されないが、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどの無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n−ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムヒドロキシドなどの有機塩基を使用する事が出来る。これらの中でも、特に生成物からの触媒除去が容易である点で無機塩基又はアンモニアが好ましい。触媒の添加量としては、アルコキシシラン化合物の量に対し、通常5×10−4〜7.5質量%、好ましくは1×10−3〜5質量%である。上記縮合反応は、無溶剤または溶剤中で行うことができる。溶剤を用いる場合の溶剤としては、アルコキシシラン化合物を溶解する溶剤であれば特に制限はない。このような溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトンなどの非極性溶媒、トルエン、キシレン等の芳香族炭化水素等が挙げられ、好ましくはメチルエチルケトン、メチルイソブチルケトンである。 The alkoxysilane compound can be produced, for example, by the method described in JP-A-10-324749 and JP-A-6-298940. As described in JP-A-2006-348061, it can also be obtained by (co) condensation of an alkoxysilane compound of the general formula (1) under a base catalyst. In that case, water can be added as needed to promote (co) condensation. The amount of water added is usually 0.05 to 1.5 mol, preferably 0.1 to 1.2 mol, with respect to 1 mol of alkoxy groups in the entire reaction mixture. The catalyst used for the condensation reaction is not particularly limited as long as it is basic, but an inorganic base such as sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, etc. Organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used. Among these, an inorganic base or ammonia is preferable because the catalyst can be easily removed from the product. The addition amount of the catalyst is usually 5 × 10 −4 to 7.5 mass%, preferably 1 × 10 −3 to 5 mass%, based on the amount of the alkoxysilane compound. The condensation reaction can be carried out without a solvent or in a solvent. There is no restriction | limiting in particular as a solvent in the case of using a solvent, if it is a solvent which melt | dissolves an alkoxysilane compound. Examples of such solvents include nonpolar solvents such as dimethylformamide, dimethylacetamide, tetrahydrofuran, methyl ethyl ketone, and methyl isobutyl ketone, and aromatic hydrocarbons such as toluene and xylene, preferably methyl ethyl ketone and methyl isobutyl ketone. .

更に、下記一般式(OSi−2)で表されるフッ素置換アルキル基含有シラン化合物を含有しても良い。   Furthermore, you may contain the fluorine substituted alkyl group containing silane compound represented by the following general formula (OSi-2).

Figure 2010097105
Figure 2010097105

前記一般式(OSi−2)で表されるフッ素置換アルキル基含有シラン化合物について説明する。   The fluorine-substituted alkyl group-containing silane compound represented by the general formula (OSi-2) will be described.

式中、R〜Rは炭素数1〜16、好ましくは1〜4のアルキル基、炭素数1〜6、好ましくは1〜4のハロゲン化アルキル基、炭素数6〜12、好ましくは6〜10のアリール基、炭素数7〜14、好ましくは7〜12のアルキルアリール基、アリールアルキル基、炭素数2〜8、好ましくは2〜6のアルケニル基、または炭素数1〜6、好ましくは1〜3のアルコキシ基、水素原子またはハロゲン原子を示す。 In the formula, R 1 to R 6 are alkyl groups having 1 to 16 carbon atoms, preferably 1 to 4 carbon atoms, halogenated alkyl groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and 6 to 12 carbon atoms, preferably 6 carbon atoms. 10 to 10 aryl groups, 7 to 14 carbon atoms, preferably 7 to 12 alkylaryl groups, arylalkyl groups, 2 to 8 carbon atoms, preferably 2 to 6 alkenyl groups, or 1 to 6 carbon atoms, preferably 1 to 3 alkoxy groups, a hydrogen atom or a halogen atom.

Rfは−(CaHbFc)−を表し、aは1〜12の整数、b+cは2aであり、bは0〜24の整数、cは0〜24の整数を示す。このようなRfとしては、フルオロアルキレン基とアルキレン基とを有する基が好ましい。具体的に、このような含フッ素シリコーン系化合物としては、(MeO)SiCSi(MeO)、(MeO)SiCSi(MeO)、(MeO)SiC12Si(MeO)、(HO)SiCSi(OC、(HO)SiC12Si(OCで表されるメトキシジシラン化合物等が挙げられる。 Rf represents-(CaHbFc)-, a is an integer of 1 to 12, b + c is 2a, b is an integer of 0 to 24, and c is an integer of 0 to 24. Such Rf is preferably a group having a fluoroalkylene group and an alkylene group. Specifically, examples of such fluorine-containing silicone compounds include (MeO) 3 SiC 2 H 4 C 2 F 4 C 2 H 4 Si (MeO) 3 , (MeO) 3 SiC 2 H 4 C 4 F 8 C 2 H 4 Si (MeO) 3 , (MeO) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si (MeO) 3, (H 5 C 2 O) 3 SiC 2 H 4 C 4 F 8 C 2 H 4 Si (OC 2 H 5) 3, include methoxy disilane compound or the like represented by (H 5 C 2 O) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si (OC 2 H 5) 3.

空隙保持層にはシランカップリング剤を含有してもよい。シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。   The void retaining layer may contain a silane coupling agent. Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane. Ethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltri Acetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropyltri Ethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ- Acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N- Examples include β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.

また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。   Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimeth Shishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.

これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。   Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and γ-methacryloyloxypropylmethyldiethoxy having a disubstituted alkyl group with respect to silicon Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, and γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxyp Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.

2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。   Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and its hydrolyzate.

また、空隙保持層にはCF(CF)nCHCHSi(OR1)で表される珪素化合物を含有してもよい。(式中、R1は、1〜5個の炭素原子を有するアルキル基を表し、そしてnは、0〜12の整数を表す。)具体的化合物としては、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどが挙げられ、これらは単独でまたは二種以上組み合わせて用いることができる。また、HNCONH(CH)mSi(OR2)で表される末端位にウレイド基(HNCONH−)を有する珪素化合物を含有してもよい。(式中、R2は、1〜5個の炭素原子を有するアルキル基を表し、mは、1〜5の整数を表す。)具体的化合物としては、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリプロポキシシランなどが挙げられる。これらの中でもγ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシランなどが特に好ましい。 Further, the void holding layer may contain a silicon compound represented by CF 3 (CF 2 ) nCH 2 CH 2 Si (OR 1 ) 3 . (In the formula, R1 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 12.) Specific examples of the compound include trifluoropropyltrimethoxysilane and trifluoropropyl. Examples include triethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, and these are used alone or in combination of two or more. Can be used. It may also contain H 2 NCONH (CH) mSi ( OR2) silicon compound in the terminal position represented by 3 having a ureido group (H 2 NCONH-). (In the formula, R2 represents an alkyl group having 1 to 5 carbon atoms, and m represents an integer of 1 to 5.) Specific compounds include γ-ureidopropyltrimethoxysilane and γ-ureido. Examples thereof include propyltriethoxysilane and γ-ureidopropyltripropoxysilane. Among these, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, and the like are particularly preferable.

その他、空隙保持層はバインダーとして、例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、フルオロアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂等を用いることができる。   In addition, as the binder, for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, fluoroacrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin, or the like can be used as the binder.

空隙保持層は、全体で5〜95質量%のバインダーを含むことが好ましい。バインダーは、空隙を含む空隙保持層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく空隙保持層の強度を維持できるように適宜調整する。   It is preferable that a space | gap holding layer contains 5-95 mass% binder on the whole. The binder has a function of maintaining the structure of the void holding layer including voids. The usage-amount of a binder is suitably adjusted so that the intensity | strength of a space | gap holding layer can be maintained, without filling a space | gap.

(溶媒)
空隙保持層を形成する場合は有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
(solvent)
When forming the void retaining layer, it is preferable to contain an organic solvent. Specific examples of organic solvents include alcohols (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), esters (eg, methyl acetate, ethyl acetate). , Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Group hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

空隙保持層塗布組成物中の固形分濃度は1〜4質量%であることが好ましく、該固形分濃度が4質量%以下にすることによって、塗布ムラが生じにくくなり、1質量%以上にすることによって乾燥負荷が軽減される。   The solid content concentration in the void-holding layer coating composition is preferably 1 to 4% by mass, and when the solid content concentration is 4% by mass or less, coating unevenness is less likely to occur and is 1% by mass or more. This reduces the drying load.

空隙保持層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、空隙保持層を形成する上記塗布組成物を塗布し、塗布後、加熱乾燥し、必要に応じて硬化処理することで形成される。   The gap holding layer is coated with the coating composition for forming the gap holding layer using a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method, and is heated and dried after coating. And it forms by carrying out a hardening process as needed.

塗布量は、ウェット膜厚として0.05〜100μmが適当で、好ましくは、0.1〜50μmである。また、ドライ膜厚が上記膜厚となるように塗布組成物の固形分濃度は調整される。   The coating amount is suitably 0.05 to 100 μm, preferably 0.1 to 50 μm, as the wet film thickness. Further, the solid content concentration of the coating composition is adjusted so that the dry film thickness becomes the above film thickness.

また、空隙保持層を形成後、温度50〜160℃で加熱処理を行う工程を含んでもよい。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば50℃であれば、好ましくは3日間以上30日未満の期間、160℃であれば10分以上1日以下の範囲が好ましい。硬化方法としては、加熱することによって熱硬化させる方法、紫外線等の光照射によって硬化させる方法などが挙げられる。熱硬化させる場合は、加熱温度は50〜300℃が好ましく、好ましくは60〜250℃、更に好ましくは80〜150℃である。光照射によって硬化させる場合は、照射光の露光量は10mJ/cm〜10J/cmであることが好ましく、100mJ/cm〜500mJ/cmがより好ましい。 Moreover, you may include the process of heat-processing at the temperature of 50-160 degreeC after forming a space | gap holding layer. The period of the heat treatment may be appropriately determined depending on the set temperature. For example, if it is 50 ° C., it is preferably a period of 3 days or more and less than 30 days, and if it is 160 ° C., a range of 10 minutes or more and 1 day or less is preferable . Examples of the curing method include a method of thermosetting by heating, a method of curing by irradiation with light such as ultraviolet rays, and the like. When thermosetting, the heating temperature is preferably 50 to 300 ° C, preferably 60 to 250 ° C, and more preferably 80 to 150 ° C. When curing by light irradiation, exposure of the irradiation light is preferably, 100mJ / cm 2 ~500mJ / cm 2 and more preferably 10mJ / cm 2 ~10J / cm 2 .

ここで、照射される光の波長域としては特に限定されないが、紫外線領域の波長を有する光が好ましく用いられる。具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。 Here, the wavelength range of the irradiated light is not particularly limited, but light having a wavelength in the ultraviolet region is preferably used. Specifically, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 150 mJ / cm 2 , and particularly preferably 20 to 100 mJ / cm 2 .

上述の空隙保持層とフィルム基材の間には、ハードコート層、高屈折率層、帯電防止層、また空隙保持層とはフィルム基材を挟んで反対の面にバックコート層を設けてもよい。   Between the gap holding layer and the film substrate, a hard coat layer, a high refractive index layer, an antistatic layer, or a back coat layer may be provided on the opposite side of the gap holding layer with the film substrate interposed therebetween. Good.

(ハードコート層)
ハードコート層は、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等の熱可塑性アクリル樹脂、空隙保持層に用いることのできるラジカル重合性化合物、ラジカル重合促進剤、カチオン重合性化合物、カチオン重合促進剤、その他公知の熱可塑性樹脂、熱硬化性樹脂またはゼラチン等の親水性樹脂等のバインダーなどを、バインダーとして用いることが好ましい。
(Hard coat layer)
The hard coat layer is a thermoplastic acrylic resin such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, a radical polymerizable compound that can be used for the void retaining layer, It is preferable to use a binder such as a radical polymerization accelerator, a cationic polymerizable compound, a cationic polymerization accelerator, and other known thermoplastic resins, thermosetting resins, hydrophilic resins such as gelatin, and the like.

また、ハードコート層には耐傷性、滑り性や屈折率を調整するために無機化合物または有機化合物の微粒子を含んでもよい。   Further, the hard coat layer may contain fine particles of an inorganic compound or an organic compound in order to adjust the scratch resistance, slipperiness and refractive index.

ハードコート層に使用される無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。   Examples of inorganic fine particles used in the hard coat layer include silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, and calcined kaolin. And calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.

また有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物を加えることができる。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)、フッ素含有アクリル樹脂微粒子が挙げられる。フッ素含有アクリル樹脂微粒子としては、例えば日本ペイント製:FS−701等の市販品が挙げられる。また、アクリル粒子として、例えば日本ペイント製:S−4000,アクリル−スチレン粒子として、例えば日本ペイント製:S−1200、MG−251等が挙げられる。   Organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder. An ultraviolet curable resin composition such as polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, or polyfluoroethylene resin powder can be added. Particularly preferred are cross-linked polystyrene particles (for example, SX-130H, SX-200H, SX-350H, manufactured by Soken Chemical), polymethyl methacrylate-based particles (for example, MX150, MX300, manufactured by Soken Chemical), and fluorine-containing acrylic resin fine particles. . Examples of the fluorine-containing acrylic resin fine particles include commercial products such as FS-701 manufactured by Nippon Paint. Examples of the acrylic particles include Nippon Paint: S-4000, and examples of the acrylic-styrene particles include Nippon Paint: S-1200, MG-251.

これらの微粒子粉末の平均粒径としては、0.01〜5μmが好ましく0.1〜5.0μm、更に、0.1〜4.0μmであることが特に好ましい。また、粒径の異なる2種以上の微粒子を含有することが好ましい。紫外線硬化性樹脂組成物と微粒子の割合は、樹脂組成物100質量部に対して、0.1〜30質量部となるように配合することが望ましい。   The average particle diameter of these fine particle powders is preferably 0.01 to 5 μm, more preferably 0.1 to 5.0 μm, and particularly preferably 0.1 to 4.0 μm. Moreover, it is preferable to contain 2 or more types of microparticles | fine-particles from which a particle size differs. The proportion of the ultraviolet curable resin composition and the fine particles is desirably blended so as to be 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.

ハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。   In order to increase the heat resistance of the hard coat layer, an antioxidant that does not inhibit the photocuring reaction can be selected and used. Examples include hindered phenol derivatives, thiopropionic acid derivatives, phosphite derivatives, and the like.

更にハードコート層には、シリコーン系界面活性剤或いはポリオキシエーテル化合物を含有させることが好ましい。シリコーン系界面活性剤としてはポリエーテル変性シリコーンが好ましく、具体的には、BYK−UV3500,BYK−UV3510、BYK−333、BYK−331、BYK−337(ビックケミ−ジャパン社製)、TSF4440、TSF4445、TSF4446、TSF4452、TSF4460(GE東芝シリコーン製)、KF−351、KF−351A、KF−352、KF−353、KF−354、KF−355、KF−615、KF−618、KF−945、KF−6004(ポリエーテル変性シリコーンオイル;信越化学工業社製)等が挙げられるがこれらに限定されない。   Further, the hard coat layer preferably contains a silicone surfactant or a polyoxyether compound. As the silicone surfactant, polyether-modified silicone is preferable. Specifically, BYK-UV3500, BYK-UV3510, BYK-333, BYK-331, BYK-337 (manufactured by BYK-Chemical Japan), TSF4440, TSF4445, TSF4446, TSF4452, TSF4460 (manufactured by GE Toshiba Silicone), KF-351, KF-351A, KF-352, KF-353, KF-354, KF-355, KF-615, KF-618, KF-945, KF- 6004 (polyether-modified silicone oil; manufactured by Shin-Etsu Chemical Co., Ltd.) and the like are exemplified, but not limited thereto.

また、ポリオキシエーテル化合物の中では、好ましくはポリオキシエチレンオレイルエーテル化合物であり、一般的に一般式(α)で表される化合物である。   Of the polyoxyether compounds, the polyoxyethylene oleyl ether compound is preferable, and is generally a compound represented by the general formula (α).

一般式(α) C1835−O(CO)nH
式中、nは2〜40を表す。
Formula (α) C 18 H 35 —O (C 2 H 4 O) nH
In the formula, n represents 2 to 40.

オレイル部分に対するエチレンオキシドの平均付加個数(n)は、2〜40であり、好ましくは2〜10、より好ましくは2〜9、さらに好ましくは2〜8である。また一般式(α)の化合物はエチレンオキシドとオレイルアルコールとを反応させて得られる。   The average addition number (n) of ethylene oxide with respect to the oleyl part is 2 to 40, preferably 2 to 10, more preferably 2 to 9, and further preferably 2 to 8. The compound of the general formula (α) can be obtained by reacting ethylene oxide with oleyl alcohol.

具体的商品としては、エマルゲン404(ポリオキシエチレン(4)オレイルエーテル)、エマルゲン408(ポリオキシエチレン(8)オレイルエーテル)、エマルゲン409P(ポリオキシエチレン(9)オレイルエーテル)、エマルゲン420(ポリオキシエチレン(13)オレイルエーテル)、エマルゲン430(ポリオキシエチレン(30)オレイルエーテル)以上花王社製、日本油脂製NOFABLEEAO−9905(ポリオキシエチレン(5)オレイルエーテル)等が挙げられる。   Specific products include Emulgen 404 (polyoxyethylene (4) oleyl ether), Emulgen 408 (polyoxyethylene (8) oleyl ether), Emulgen 409P (polyoxyethylene (9) oleyl ether), Emulgen 420 (polyoxy) Ethylene (13) oleyl ether), Emulgen 430 (polyoxyethylene (30) oleyl ether) or more, Kao Corporation, NOFBLEEAO-9905 (polyoxyethylene (5) oleyl ether) manufactured by NOF Corporation.

尚、( )がnの数字を表す。非イオン性のポリオキシエーテル化合物は単独或いは2種以上を併用しても良い。   Note that () represents the number n. Nonionic polyoxyether compounds may be used alone or in combination of two or more.

これらは塗布性を高め、これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。   These improve applicability | paintability and it is preferable to add these components in 0.01-3 mass% with respect to the solid content component in a coating liquid.

また、ハードコート層にはフッ素−シロキサングラフトポリマーを含有しても良い。   Further, the hard coat layer may contain a fluorine-siloxane graft polymer.

フッ素−シロキサングラフトポリマーとは、少なくともフッ素系樹脂に、シロキサン及び/またはオルガノシロキサン単体を含むポリシロキサン及び/またはオルガノポリシロキサンをグラフト化させて得られる共重合体のポリマーをいう。市販品としては、富士化成工業株式会社製のZX−022H、ZX−007C、ZX−049、ZX−047−D等を挙げることができる。またこれら化合物は混合して用いても良い。フッ素−シロキサングラフトポリマーは活性光線硬化型樹脂との含有質量比率をフッ素−シロキサングラフトポリマー:エネルギー活性線硬化樹脂=0.05:100〜5.00:100で用いることが塗布液中の安定性から好ましい。   The fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane containing siloxane and / or organosiloxane alone and / or organopolysiloxane to at least a fluorine-based resin. Examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd. These compounds may be used as a mixture. Fluorine-siloxane graft polymer should be used in a coating solution that has a mass ratio of actinic ray curable resin to fluorine-siloxane graft polymer: energy-active radiation curable resin = 0.05: 100 to 5.00: 100. To preferred.

また、ハードコート層は、2層以上の積層構造を有していてもよい。本発明においては、ハードコート層が積層体からなり、フィルム基材と隣接するハードコート層が熱可塑性アクリル樹脂を含有することは、より過酷な試験条件においても本発明の目的効果をより良く発揮される点から好ましい。   The hard coat layer may have a laminated structure of two or more layers. In the present invention, the hard coat layer is made of a laminate, and the hard coat layer adjacent to the film base contains a thermoplastic acrylic resin, so that the objective effect of the present invention can be exhibited even under more severe test conditions. This is preferable.

また、その中の1層、または全層とも、例えば導電性微粒子、π共役系導電性ポリマー、または、イオン性ポリマーを含有する所謂導電性層としてもよい。π共役系導電性ポリマーとしては、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−N−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。これらはそれぞれ単独でも良いし、2種からなる共重合体でも好適に用いることができる。   One or all of the layers may be a so-called conductive layer containing, for example, conductive fine particles, a π-conjugated conductive polymer, or an ionic polymer. Examples of the π-conjugated conductive polymer include polythiophene, poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), and poly (3-hexylthiophene). , Poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), poly (3-hydroxythiophene), poly (3-methoxythiophene), poly (3-ethoxythiophene) , Poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3 Octyloxythiophene), poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-di Ethoxythiophene), poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxythiophene), poly (3,4-dioctyloxythiophene), poly ( 3,4-didecyloxythiophene), poly (3,4-didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4 4-butenedioxythiophene), poly (3-methyl-4-methoxythiophene), poly (3-methyl-4 -Ethoxythiophene), poly (3-carboxythiophene), poly (3-methyl-4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), poly (3-methyl-4-carboxybutylthiophene) , Polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-N-propylpyrrole), poly (3-butylpyrrole), poly (3-octyl) Pyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3-carboxypyrrole), poly (3 -Methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl 4-carboxybutylpyrrole), poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole), poly ( 3-methyl-4-hexyloxypyrrole), polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-anilinesulfonic acid), poly (3-anilinesulfonic acid) and the like. . Each of these may be used alone or two types of copolymers can be suitably used.

ハードコート層塗布液の塗布方法としては、前述のものを用いることができる。塗布量はウェット膜厚として0.1〜40μmが適当で、好ましくは、0.5〜30μmである。また、ドライ膜厚としては1〜20μmの範囲であることが好ましい。   As the coating method of the hard coat layer coating solution, the above-described methods can be used. The coating amount is suitably 0.1 to 40 μm, preferably 0.5 to 30 μm, as the wet film thickness. Moreover, it is preferable that it is the range of 1-20 micrometers as a dry film thickness.

ハードコート層は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001〜0.1μmのクリアハードコート層、または微粒子等を添加しRaが0.1〜1μmに調整された防眩性ハードコート層であってもよい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製非接触表面微細形状計測装置WYKO NT−2000を用いて測定することができる。   The hard coat layer has a center line average roughness (Ra) defined by JIS B 0601 of 0.001 to 0.1 μm, or a fine hard coat layer and Ra is adjusted to 0.1 to 1 μm. An antiglare hard coat layer may also be used. The center line average roughness (Ra) is preferably measured by an optical interference type surface roughness measuring instrument, and can be measured, for example, using a non-contact surface fine shape measuring device WYKO NT-2000 manufactured by WYKO.

(高屈折率層)
高屈折率層には、金属酸化物微粒子が含有されることが好ましい。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあってもよい。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。
(High refractive index layer)
The high refractive index layer preferably contains metal oxide fine particles. The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.

これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。   The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.

高屈折率層の屈折率は、具体的には、支持体であるフィルムの屈折率より高く、23℃、波長550nm測定で、1.5〜2.2の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。   Specifically, the refractive index of the high refractive index layer is higher than the refractive index of the film as the support, and is preferably in the range of 1.5 to 2.2 when measured at 23 ° C. and a wavelength of 550 nm. The means for adjusting the refractive index of the high refractive index layer is that the kind and addition amount of the metal oxide fine particles are dominant, so that the refractive index of the metal oxide fine particles is preferably 1.80 to 2.60, More preferably, it is 1.85 to 2.50.

(帯電防止層)
帯電防止層は、アンチモン酸亜鉛ゾル、リン酸スズゾル、酸化スズゾル、π共役系導電性ポリマー、イオン性高分子化合物等を、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂に含有することが好ましい。
(Antistatic layer)
The antistatic layer cures zinc antimonate sol, tin phosphate sol, tin oxide sol, π-conjugated conductive polymer, ionic polymer compound, etc. through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays and electron beams. It is preferable to contain in resin.

帯電防止層は、支持体(樹脂フィルム等)の取扱の際に、フィルムが帯電するのを防ぐ機能を付与するものである。また、帯電防止層の表面比抵抗は1011Ω/□(25℃、55%RH)以下に調整されることが好ましく、更に好ましくは、1010Ω/□(25℃、55%RH)以下であり、特に好ましくは、10Ω/□(25℃、55%RH)以下である。 The antistatic layer imparts a function of preventing the film from being charged when the support (resin film or the like) is handled. The surface resistivity of the antistatic layer is preferably adjusted to 10 11 Ω / □ (25 ° C., 55% RH) or less, and more preferably 10 10 Ω / □ (25 ° C., 55% RH) or less. Particularly preferably, it is 10 9 Ω / □ (25 ° C., 55% RH) or less.

ここで、表面比抵抗値の測定の詳細は実施例に記載するが、試料を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定する。   Here, although details of the measurement of the surface specific resistance value are described in the Examples, the sample was conditioned for 24 hours under the conditions of 25 ° C. and 55% RH, and a terraohm meter model VE-30 manufactured by Kawaguchi Electric Co., Ltd. was used. Use to measure.

導電性層上には、更にオーバーコート層を最表面層として設けるが、表面比抵抗値の測定は、導電性層が設けられている側の最表面層における表面比抵抗値を実質的に導電性層の表面比抵抗値として定義する。   On the conductive layer, an overcoat layer is further provided as the outermost surface layer. The surface specific resistance value is measured by substantially conducting the surface specific resistance value on the outermost surface layer on the side where the conductive layer is provided. It is defined as the surface resistivity value of the conductive layer.

(バックコート層)
バックコート層は、空隙保持層を設けることで生じるカールを矯正するために設けられる。すなわち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。
(Back coat layer)
The back coat layer is provided in order to correct the curl generated by providing the void retaining layer. That is, the degree of curling can be balanced by imparting the property of being rounded with the surface on which the backcoat layer is provided facing inward.

なお、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために無機化合物または有機化合物の粒子が添加されることが好ましい。無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。   The backcoat layer is preferably applied also as an antiblocking layer, and in this case, particles of an inorganic compound or an organic compound are added to the backcoat layer coating composition in order to provide an antiblocking function. Is preferred. Examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, indium oxide, zinc oxide, ITO, hydrated silica Mention may be made of calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate.

これらの無機化合物は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。   These inorganic compounds are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.

バックコート層の塗布に用いられる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム、水、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノン、シクロヘキサノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、または炭化水素類(トルエン、キシレン)等が挙げられ、適宜組み合わされて用いられる。   Examples of the solvent used for coating the backcoat layer include dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, trichloroethylene, methylene chloride, ethylene chloride, tetrachloroethane, trichloroethane, Examples include chloroform, water, methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, cyclohexanone, cyclohexanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, or hydrocarbons (toluene, xylene). Are used in appropriate combinations.

これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いてハードコートフィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。   It is preferable to apply these coating compositions on the surface of the hard coat film with a gravure coater, dip coater, reverse coater, wire bar coater, die coater, spray coating, ink jet coating or the like with a wet film thickness of 1 to 100 μm. Is particularly preferably 5 to 30 μm.

バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体または共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ウレタン樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることができるが、これらに限定されるものではない。   Examples of the resin used as the binder of the backcoat layer include vinyl chloride-vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, vinyl acetate-vinyl alcohol copolymer, partially hydrolyzed vinyl chloride-vinyl acetate copolymer. Polymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, ethylene-vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, etc. Vinyl polymer or copolymer, nitrocellulose, cellulose acetate propionate (preferably acetyl group substitution degree 1.8-2.3, propionyl group substitution degree 0.1-1.0), diacetyl cellulose, cellulose Cellulose derivatives such as acetate butyrate resin, maleic acid and / or Or acrylic acid copolymer, acrylic ester copolymer, acrylonitrile-styrene copolymer, chlorinated polyethylene, acrylonitrile-chlorinated polyethylene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, acrylic resin , Polyvinyl alcohol resin, polyvinyl acetal resin, polyvinyl butyral resin, urethane resin, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amino resin, styrene-butadiene resin, butadiene-acrylonitrile Examples thereof include, but are not limited to, rubber resins such as resins, silicone resins, fluorine resins, and the like.

バインダーとしては、セルロースジアセテート、セルロースアセテートプロヒオネートなどのアセチル化セルロースとアクリル樹脂のブレンド物を用いることが好ましく、アクリル樹脂からなる微粒子を用いて、微粒子とバインダーとの屈折率差を0〜0.02未満とすることで透明性の高いバックコート層とすることができる。   As the binder, it is preferable to use a blend of acetylated cellulose such as cellulose diacetate and cellulose acetate proionate and an acrylic resin, and the refractive index difference between the fine particles and the binder is 0 to 0 using fine particles made of acrylic resin. By setting it to less than 0.02, a highly transparent back coat layer can be obtained.

上記各層を塗布する前に表面処理してもよい。表面処理方法としては、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられる。   You may surface-treat before apply | coating each said layer. Examples of the surface treatment method include a cleaning method, an alkali treatment method, a flame plasma treatment method, a high frequency discharge plasma method, an electron beam method, an ion beam method, a sputtering method, an acid treatment, a corona treatment method, and an atmospheric pressure glow discharge plasma method. It is done.

(反射率)
空隙保持層を有する第1の保護フィルムの反射率は、分光光度計、分光測色計により測定を行うことができる。その際、サンプルの測定側の裏面を粗面化処理した後に黒色スプレーでの光吸収処理や、黒色アクリル板の貼り付け等して光吸収処理を行ってから、可視光領域(400〜700nm)の反射光を測定する。
(Reflectance)
The reflectance of the 1st protective film which has a space | gap holding layer can be measured with a spectrophotometer and a spectrocolorimeter. At that time, after the surface on the measurement side of the sample is roughened, light absorption treatment with black spray or light absorption treatment by attaching a black acrylic plate is performed, and then the visible light region (400 to 700 nm). Measure the reflected light.

本発明の第1の保護フィルムは反射率は低いほど好ましいが、可視光領域の波長における平均値が2.0%以下であることが、LCD等の画像表示装置の最表面に用いた場合の外光反射防止機能が好適に得られる点から好ましい。最低反射率は0.8%以下であることが好ましい。   The first protective film of the present invention is preferably as low as possible, but the average value in the visible light region wavelength is 2.0% or less when used as the outermost surface of an image display device such as an LCD. It is preferable from the viewpoint that an external light reflection preventing function can be suitably obtained. The minimum reflectance is preferably 0.8% or less.

また、可視光の波長領域において平坦な形状の反射スペクトルを有することが好ましい。また、反射防止処理を施した表示装置表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、薄型テレビ等の最表面に使用する場合にはニュートラルな色調が好まれる。この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で0.17≦x≦0.27、0.07≦y≦0.17である。また、xy平面上の(x、y)=(0.31、0.31)の距離Δxyが、0.05以下となる範囲がより色味がないニュートラルに近いため好ましく、0.03以下が更に好ましい。色調は、各層の屈折率より、反射率、反射光の色味を考慮して膜厚を常法に従って計算できる。   Moreover, it is preferable to have a flat reflection spectrum in the wavelength region of visible light. In addition, the reflection hue on the surface of the display device that has been subjected to the antireflection treatment is often colored red or blue because the reflectance in the short wavelength region and the long wavelength region is high in the visible light region due to the design of the antireflection film. The color tone of the reflected light varies depending on the application, and when used on the outermost surface of a flat-screen television or the like, a neutral color tone is preferred. In this case, generally preferred reflection hue ranges are 0.17 ≦ x ≦ 0.27 and 0.07 ≦ y ≦ 0.17 on the XYZ color system (CIE1931 color system). Further, the range in which the distance Δxy of (x, y) = (0.31, 0.31) on the xy plane is 0.05 or less is preferable because it is closer to neutral with no color, and 0.03 or less is preferable. Further preferred. The color tone can be calculated from the refractive index of each layer in accordance with a conventional method in consideration of the reflectance and the color of reflected light.

(表面硬度)
本発明における第1の保護フィルムの表面硬度としては、鉛筆硬度で表すことができ、2H〜8HであるとLCD等の表示装置の表面における使用や偏光板化工程において傷が付きにくいことから好ましい構成であり、より好ましくは3H〜8Hであり、更に好ましくは、4H〜8Hである。
(surface hardness)
The surface hardness of the first protective film in the present invention can be expressed by pencil hardness, and is preferably 2H to 8H because it is difficult to be scratched in use on the surface of a display device such as an LCD or in a polarizing plate forming step. It is a structure, More preferably, it is 3H-8H, More preferably, it is 4H-8H.

鉛筆硬度は、作製した保護フィルム試料を温度23℃、相対湿度55%の条件で24時間以上調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価方法に従い測定した値である。   The pencil hardness is specified by JIS K 5400 using a test pencil specified by JIS S 6006 after the prepared protective film sample is conditioned at a temperature of 23 ° C. and a relative humidity of 55% for 24 hours or more. It is the value measured according to the evaluation method.

<フィルム基材>
本発明の第1の保護フィルムで用いられるフィルム基材としては、製造が容易であること、光学的に等方性であること、光学的に透明であること等が好ましい要件として挙げられる。
<Film base>
As a film base used in the first protective film of the present invention, preferable requirements include ease of production, optical isotropy, optical transparency, and the like.

ここでいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。   The term “transparent” as used herein means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.

上記の性質を有していれば特に限定はないが、例えば、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製))、ゼオネックス、ゼオノア(以上、日本ゼオン社製)、ポリビニルアセタール、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることができる。   Although it will not specifically limit if it has said property, For example, cellulose ester-type films, such as a cellulose diacetate film, a cellulose triacetate film, a cellulose acetate propionate film, a cellulose acetate butyrate film, a polyester-type film, a polycarbonate Film, polyarylate film, polysulfone (including polyethersulfone) film, polyester film such as polyethylene terephthalate and polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol Film, syndiotactic polystyrene film, cycloolefin polymer fill (Arton (manufactured by JSR)), ZEONEX, ZEONOR (manufactured by Nippon Zeon), polyvinyl acetal, polymethylpentene film, polyetherketone film, polyetherketoneimide film, polyamide film, fluororesin film, nylon film, A polymethyl methacrylate film, an acrylic film, a glass plate, etc. can be mentioned.

中でも、セルロースエステル系フィルム、ポリカーボネート系フィルム、ポリスルホン(ポリエーテルスルホンを含む)系フィルム、シクロオレフィンポリマーフィルムが好ましい。   Among these, a cellulose ester film, a polycarbonate film, a polysulfone (including polyether sulfone) film, and a cycloolefin polymer film are preferable.

特に、フィルム基材としては、セルロースエステル系フィルム(以下セルロースエステルフィルムともいう)を用いることが好ましい。   In particular, it is preferable to use a cellulose ester film (hereinafter also referred to as a cellulose ester film) as the film substrate.

セルロースエステルフィルム(例えば、コニカミノルタタック、製品名KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、KC12UR(以上、コニカミノルタオプト(株)製))は、製造上、コスト面、透明性、接着性等の観点から好ましく用いられる。   Cellulose ester film (for example, Konica Minolta Tack, product names KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC4UE, KC12UR (above, manufactured by Konica Minolta Opto Co., Ltd., cost) From the viewpoints of transparency, adhesiveness and the like, it is preferably used.

以下、好ましいフィルム基材であるセルロースエステルフィルムについて詳細に説明する。   Hereinafter, the cellulose ester film which is a preferable film substrate will be described in detail.

セルロースエステルフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。   The cellulose ester film may be a film produced by melt casting film formation or a film produced by solution casting film formation.

セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。   As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used.

特に、アセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースエステルフィルムを用いるのが、好ましい。   In particular, when the substitution degree of the acetyl group is X and the substitution degree of the propionyl group or butyryl group is Y, it is preferable to use a cellulose ester film in which X and Y are in the following ranges.

2.3≦X+Y≦3.0
0.1≦Y≦2.0
特に、
2.5≦X+Y≦2.9
0.1≦Y≦1.2
であることが好ましい。
2.3 ≦ X + Y ≦ 3.0
0.1 ≦ Y ≦ 2.0
In particular,
2.5 ≦ X + Y ≦ 2.9
0.1 ≦ Y ≦ 1.2
It is preferable that

なお、アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することができる。   In addition, the measuring method of the substitution degree of an acyl group can be measured according to the prescription | regulation of ASTM-D817-96.

セルロースエステルの数平均分子量は、50000〜250000が、成型した場合の機械的強度が強く、且つ、適度なドープ粘度となり好ましく、更に好ましくは、80000〜150000である。   The number average molecular weight of the cellulose ester is preferably 50000 to 250,000, since it has a high mechanical strength when molded and an appropriate dope viscosity, and more preferably 80000 to 150,000.

セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用い測定できるので、これを用いて数平均分子量(Mn)、質量平均分子量(Mw)を算出し、その比を計算することができる。   Since the average molecular weight and molecular weight distribution of the cellulose ester can be measured using high performance liquid chromatography, the number average molecular weight (Mn) and the mass average molecular weight (Mw) can be calculated using this, and the ratio can be calculated.

測定条件は以下の通りである。   The measurement conditions are as follows.

溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1,000,000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 1,000,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.

セルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。   The raw material cellulose of the cellulose ester may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.

例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。   For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.

また、セルロースエステルフィルムは、後述するアクリル樹脂を含有しても良い。   Moreover, a cellulose-ester film may contain the acrylic resin mentioned later.

(アクリル樹脂)
アクリル樹脂としては、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50〜99質量%、及びこれと共重合可能な他の単量体単位1〜50質量%からなるものが好ましい。
(acrylic resin)
Acrylic resin also includes methacrylic resin. Although it does not restrict | limit especially as resin, What consists of 50-99 mass% of methyl methacrylate units and 1-50 mass% of other monomer units copolymerizable with this is preferable.

共重合可能な他の単量体としては、アルキル数の炭素数が2〜18のアルキルメタクリレート、アルキル数の炭素数が1〜18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α−メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル、無水マレイン酸、マレイミド、N−置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、或いは2種以上を併用して用いることができる。   Other monomers that can be copolymerized include alkyl methacrylates having 2 to 18 carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, acrylic acid, methacrylic acid, and the like. Saturated acids, maleic acids, fumaric acids, unsaturated divalent carboxylic acids such as itaconic acid, aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene, α, β- such as acrylonitrile, methacrylonitrile, etc. Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.

これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。   Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.

アクリル樹脂は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が80000〜1000000であることが好ましい。重量平均分子量(Mw)は上記の高速液体クロマトグラフィーを用い測定できる。   The acrylic resin preferably has a weight average molecular weight (Mw) of 80000 to 1000000 from the viewpoint of mechanical strength as a film and fluidity when producing the film. A weight average molecular weight (Mw) can be measured using said high performance liquid chromatography.

アクリル樹脂(A)の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、或いは溶液重合等の公知の方法のいずれを用いてもよい。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30〜100℃、塊状または溶液重合では80〜160℃で実施しうる。更に、生成共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。この分子量とすることで、耐熱性と脆性の両立を図ることができる。アクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。   There is no restriction | limiting in particular as a manufacturing method of an acrylic resin (A), You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. Regarding the polymerization temperature, suspension or emulsion polymerization may be performed at 30 to 100 ° C, and bulk or solution polymerization may be performed at 80 to 160 ° C. Further, in order to control the reduced viscosity of the produced copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent. With this molecular weight, both heat resistance and brittleness can be achieved. A commercially available thing can also be used as an acrylic resin. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .

更にアクリル粒子を含有することがフィルム基材の耐脆性や表面硬度の点から、好ましい。   Furthermore, it is preferable to contain acrylic particles from the viewpoint of the brittleness resistance and surface hardness of the film substrate.

次に、アクリル粒子について説明する。アクリル粒子は、例えば、作製したアクリル樹脂含有フィルムを所定量採取し、溶媒に溶解させて攪拌し、十分に溶解・分散させたところで、アクリル粒子の平均粒子径未満の孔径を有するPTFE製のメンブレンフィルターを用いて濾過し、濾過捕集された不溶物の重さが、アクリル樹脂含有フィルムに添加したアクリル粒子の90質量%以上あることが好ましい。   Next, the acrylic particles will be described. Acrylic particles, for example, a PTFE membrane having a pore diameter less than the average particle diameter of acrylic particles when a predetermined amount of the prepared acrylic resin-containing film is collected, dissolved in a solvent, stirred, and sufficiently dissolved and dispersed. It is preferable that the weight of the insoluble matter filtered and collected using a filter is 90% by mass or more of the acrylic particles added to the acrylic resin-containing film.

アクリル粒子は特に限定されるものではないが、2層以上の層構造を有するアクリル粒子であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。   The acrylic particles are not particularly limited, but are preferably acrylic particles having a layer structure of two or more layers, and particularly preferably the following multilayer structure acrylic granular composite.

多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層重合体、ゴム弾性を示す架橋軟質層重合体、及び最外硬質層重合体が、層状に重ね合わされてなる構造を有する粒子状のアクリル系重合体を言う。   The multilayer structure acrylic granular composite is formed by laminating the innermost hard layer polymer, the cross-linked soft layer polymer exhibiting rubber elasticity, and the outermost hard layer polymer from the central portion toward the outer peripheral portion. This refers to a particulate acrylic polymer having a structure.

アクリル粒子としては、市販のものも使用することができる。例えば、メタブレンW−341(C2)(三菱レイヨン(株)製)を、ケミスノーMR−2G(C3)、MS−300X(C4)(綜研化学(株)製)等を挙げることができる。   A commercially available thing can also be used as an acrylic particle. For example, metabrene W-341 (C2) (manufactured by Mitsubishi Rayon Co., Ltd.), Chemisnow MR-2G (C3), MS-300X (C4) (manufactured by Soken Chemical Co., Ltd.) and the like can be mentioned.

アクリル粒子はセルロースエステル樹脂とアクリル樹脂の総質量に対して、0.5〜45質量%のアクリル粒子を含有することが好ましい。   The acrylic particles preferably contain 0.5 to 45% by mass of acrylic particles with respect to the total mass of the cellulose ester resin and the acrylic resin.

また、セルロースエステル樹脂とアクリル樹脂からなるフィルム(以下、セルロースエステル樹脂・アクリル樹脂フィルムとも言う)は、張力軟化点が105〜145℃で、且つ延性破壊が起らないフィルムが好ましい。延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じるものであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。張力軟化点温度の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC−1225A)を用いて、アクリル樹脂含有フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。   Moreover, the film which consists of a cellulose-ester resin and an acrylic resin (henceforth a cellulose-ester resin and an acrylic resin film) has a tension softening point of 105-145 degreeC, and a film which does not produce a ductile fracture is preferable. Ductile fracture is caused by the application of a greater stress than the strength of a certain material, and is defined as a fracture that involves significant elongation or drawing of the material before final fracture. As a specific measurement method of the tension softening point temperature, for example, using a Tensilon tester (ORIENTEC Co., RTC-1225A), the acrylic resin-containing film is cut out at 120 mm (length) × 10 mm (width), and 10N The temperature can be raised at a rate of 30 ° C./min while pulling with tension, and the temperature at 9 N is measured three times, and the average value can be obtained.

また、セルロースエステル樹脂とアクリル樹脂からなるフィルムは、ガラス転移温度(Tg)が110℃以上であることが好ましい。より好ましくは120℃以上である。特に好ましくは150℃以上である。   Moreover, it is preferable that the film consisting of a cellulose ester resin and an acrylic resin has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.

ガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。   The glass transition temperature is determined by using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer) at a heating rate of 20 ° C./min, and determined in accordance with JIS K7121 (1987). Tmg).

セルロースエステル樹脂とアクリル樹脂からなるフィルムは、JIS−K7127−1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。セルロースエステル樹脂とアクリル樹脂からなるフィルムの厚みは、20μm以上であることが好ましい。   A film composed of a cellulose ester resin and an acrylic resin preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, in the measurement based on JIS-K7127-1999. The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming. The thickness of the film made of cellulose ester resin and acrylic resin is preferably 20 μm or more.

より好ましくは30μm以上である。厚みの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚みは用途により適宜選定することができる。   More preferably, it is 30 μm or more. The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 μm from the viewpoint of applicability, foaming, solvent drying, and the like. The thickness of the film can be appropriately selected depending on the application.

セルロースエステル樹脂とアクリル樹脂からなるフィルムは、加工性及び耐熱性の両立の点から、アクリル樹脂とセルロースエステル樹脂を95:5〜30:70の質量比で含有することが好ましく、またセルロースエステル樹脂のアシル基の総置換度(T)が2.00〜3.00、アセチル基置換度(ac)が0〜1.89、アセチル基以外のアシル基の炭素数が3〜7であり、重量平均分子量(Mw)が75000〜280000であることが好ましい。また、アクリル樹脂とセルロースエステル樹脂の総質量は、アクリル樹脂含有フィルムの55〜100質量%であり、好ましくは60〜99質量%である。   The film comprising a cellulose ester resin and an acrylic resin preferably contains an acrylic resin and a cellulose ester resin in a mass ratio of 95: 5 to 30:70 from the viewpoint of both workability and heat resistance. The total substitution degree (T) of the acyl group is 2.00 to 3.00, the acetyl group substitution degree (ac) is 0 to 1.89, the number of carbons of the acyl group other than the acetyl group is 3 to 7, and the weight The average molecular weight (Mw) is preferably 75,000 to 280000. Moreover, the total mass of an acrylic resin and a cellulose-ester resin is 55-100 mass% of an acrylic resin containing film, Preferably it is 60-99 mass%.

セルロースエステル樹脂とアクリル樹脂からなるフィルムは、その他のアクリル樹脂を含有して構成されていてもよい。   A film made of a cellulose ester resin and an acrylic resin may contain other acrylic resins.

セルロースエステルフィルムやセルロースエステル樹脂とアクリル樹脂からなるフィルムは、溶液流延法で製造されたものでも、溶融流延法で製造されたものでもよいが、例えば、セルロースエステルをフィルム基材として用いる場合には、セルロースエステルは溶解に用いた溶媒が残留しやすい。この残留した溶媒の影響で、フィルムの弾性率は低下し、塑性変形が起こりやすくなるため、溶融流延製膜法で作製することが好ましい。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。   A cellulose ester film or a film made of a cellulose ester resin and an acrylic resin may be produced by a solution casting method or a melt casting method. For example, when cellulose ester is used as a film base material In the case of cellulose ester, the solvent used for dissolution tends to remain. The elastic modulus of the film is lowered due to the influence of the remaining solvent, and plastic deformation is likely to occur. Therefore, it is preferable to prepare the film by a melt casting method. Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained.

また、本発明では、フィルム形成材料が加熱されて、その流動性を発現させた後、ドラム上またはエンドレスベルト上に押し出し製膜する方法も溶融流延製膜法として含まれる。   In the present invention, a method of forming a film after the film forming material is heated to exhibit its fluidity and then extruded onto a drum or an endless belt is also included as a melt casting film forming method.

また、フィルム基材の製膜において、少なくとも幅手方向に延伸するのが好ましく、特に溶液流延工程では、剥離残溶量が3〜40質量%である時に幅手方向に1.01〜1.5倍に延伸するのが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、剥離残溶量が3〜40質量%である時に幅手方向及び長手方向に、各々1.01〜1.5倍に延伸することである。   Further, in film formation of the film substrate, it is preferable to stretch at least in the width direction, and in the solution casting process, 1.01-1 in the width direction when the amount of residual peeling is 3 to 40% by mass. The film is preferably stretched 5 times. More preferably, it is biaxially stretched in the width direction and the lengthwise direction, and when the amount of residual dissolution is 3 to 40% by mass, it is stretched by 1.01 to 1.5 times in the width direction and the lengthwise direction, respectively. It is to be.

特にリターデーションを調整するのに上記延伸操作を用いることが好ましい。   In particular, the above stretching operation is preferably used to adjust the retardation.

フィルム基材の膜厚は、特に限定はされないが10〜200μmの範囲のものが用いられる。特に膜厚は10〜100μmであることが特に好ましい。更に好ましくは20〜80μmである。   Although the film thickness of a film base material is not specifically limited, the thing of the range of 10-200 micrometers is used. In particular, the film thickness is particularly preferably 10 to 100 μm. More preferably, it is 20-80 micrometers.

また、フィルム基材の長さは100m〜5000m、幅は1.2m以上が好ましく、更に好ましくは1.4〜4mである。フィルム基材の長さ及び幅を前記範囲とすることで、取り扱い性や生産性に優れる。フィルム基材は、光透過率が90%以上、より好ましくは93%以上の透明支持体であることが好ましい。   The length of the film substrate is preferably 100 m to 5000 m, and the width is preferably 1.2 m or more, more preferably 1.4 to 4 m. By making the length and width of the film base within the above ranges, the handleability and productivity are excellent. The film substrate is preferably a transparent support having a light transmittance of 90% or more, more preferably 93% or more.

(可塑剤)
フィルム基材には、下記のような可塑剤を含有することが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、多価アルコールエステル系可塑剤等を好ましく用いることができる。
(Plasticizer)
The film substrate preferably contains the following plasticizer. Examples of plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, glycolate plasticizers, citrate ester plasticizers, and polyesters. A plasticizer, a polyhydric alcohol ester plasticizer, and the like can be preferably used.

リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることができる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。   For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, and other trimellitic acid plasticizers include tributyl trimellitate, triphenyl trimellitate, triethyl For pyromellitic acid ester plasticizers such as trimellitate, tetrabutylpyromellitate, In the case of glycolate plasticizers such as lupyromelitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethylglycolate, butylphthalylbutylglycolate, etc. Citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2-ethylhexyl) citrate and the like can be preferably used. Examples of other carboxylic acid esters include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.

ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることができる。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることができる。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることができる。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。   As the polyester plasticizer, a copolymer of a dibasic acid and a glycol such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid, and the like can be used. As glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.

多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる。好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、2−n−ブチル−2−エチル−1,3−プロパンジオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール、等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトール、であることが好ましい。多価アルコールエステルに用いられるモノカルボン酸としては特に制限はなく公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸などを用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。脂肪族モノカルボン酸としては炭素数1〜32の直鎖または側鎖を持った脂肪酸を好ましく用いることができる。炭素数1〜20であることが更に好ましく、炭素数1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。好ましい脂肪族モノカルボン酸としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上もつ芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸であることが好ましい。多価アルコールエステルの分子量は特に制限はないが、分子量300〜1500の範囲であることが好ましく、350〜750の範囲であることが更に好ましい。保留性向上の点では大きい方が好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。   The polyhydric alcohol ester plasticizer comprises an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid. Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these. Adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, 2-n-butyl-2-ethyl- Examples include 1,3-propanediol, galactitol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, xylitol, and the like. In particular, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable. There is no restriction | limiting in particular as monocarboxylic acid used for polyhydric alcohol ester, Well-known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, etc. can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention. Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto. As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. It is more preferable that it is C1-C20, and it is especially preferable that it is C1-C10. When acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid. Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid. Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, or derivatives thereof. Examples of preferred aromatic monocarboxylic acids include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid. And aromatic monocarboxylic acids possessed by them, or derivatives thereof. Particularly preferred is benzoic acid. The molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 750. The larger one is preferable in terms of improvement in retention, and the smaller one is preferable in terms of moisture permeability and compatibility with cellulose ester.

多価アルコールエステルに用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。また、多価アルコール中のOH基はカルボン酸で全てエステル化してもよいし、一部をOH基のままで残してもよい。これらの可塑剤は単独または併用するのが好ましい。これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1〜20質量%が好ましく、特に好ましくは、3〜13質量%である。   The carboxylic acid used for the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified with carboxylic acid, or a part of the OH groups may be left as they are. These plasticizers are preferably used alone or in combination. The amount of these plasticizers used is preferably from 1 to 20% by mass, particularly preferably from 3 to 13% by mass, based on the cellulose ester, in terms of film performance, processability and the like.

(紫外線吸収剤)
フィルム基材には紫外線吸収剤を含有させてもよい。次に紫外線吸収剤について説明する。
(UV absorber)
The film substrate may contain an ultraviolet absorber. Next, the ultraviolet absorber will be described.

紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、且つ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。   As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.

具体例としては、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。   Specific examples include, but are not limited to, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, and the like.

ベンゾトリアゾール系紫外線吸収剤としては以下の具体例を挙げるが、本発明はこれらに限定されない。   Although the following specific examples are given as a benzotriazole type ultraviolet absorber, this invention is not limited to these.

UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、チバ・ジャパン社製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、チバ・ジャパン社製)
また、ベンゾフェノン系紫外線吸収剤としては以下の具体例を示すが、本発明はこれらに限定されない。
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole UV-5: 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6 (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by Ciba Japan)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- Mixture of 4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN109, manufactured by Ciba Japan)
Moreover, although the following specific examples are shown as a benzophenone series ultraviolet absorber, this invention is not limited to these.

UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
上記紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
As the UV absorber, a benzotriazole UV absorber and a benzophenone UV absorber, which are highly transparent and excellent in preventing the deterioration of polarizing plates and liquid crystals, are preferable, and benzotriazole UV absorption with less unnecessary coloring is preferable. An agent is particularly preferably used.

また、特願平11−295209号に記載されている分配係数が9.2以上の紫外線吸収剤を用いることができ、特に分配係数が10.1以上の紫外線吸収剤がフィルム基材の面品質を良好に維持できる点から好ましい。   Further, an ultraviolet absorber having a distribution coefficient of 9.2 or more described in Japanese Patent Application No. 11-295209 can be used, and in particular, an ultraviolet absorber having a distribution coefficient of 10.1 or more is the surface quality of the film substrate. Is preferable from the standpoint that it can be maintained well.

また、特開平6−148430号の一般式(1)または一般式(2)、特願2000−156039号の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。   Moreover, the polymer ultraviolet absorber (or the general formula (1) or the general formula (2) of JP-A-6-148430 and the general formulas (3), (6) and (7) described in Japanese Patent Application No. 2000-156039 (or A UV-absorbing polymer) is also preferably used. As a polymer ultraviolet absorber, PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) and the like are commercially available.

また、フィルム基材には、内部ヘーズを付与させてもよい。   Moreover, you may give an internal haze to a film base material.

(粒子)
内部ヘーズは、例えばフィルム基材にフィルム基材と屈折率の異なる粒子を添加し、添加量や粒子の粒径等をコントロールすることで、内部散乱によるヘーズを発生させ、これを調整することで達成できる。粒子としては、無機粒子と有機粒子に区別される。無機粒子としては特に限定されず、例えば、酸化珪素、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等が挙げられる。また、有機粒子としては特に限定されず、例えば、フッ素化アクリル樹脂粉末、ポリスチレン樹脂粉末、ポリメタアクリル酸メチルアクリレート樹脂粉末、シリコーン系樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン系樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、更にポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド樹脂粉末、ポリイミド系樹脂粉末、ポリ弗化エチレン樹脂粉末等が挙げられる。これらの無機粒子及び有機粒子は、種類、平均粒子径が異なる2種以上を併用してもよく、粒子の表面を有機物により表面処理したものも好ましく用いられる。
(particle)
Internal haze, for example, by adding particles with a refractive index different from that of the film base to the film base and controlling the addition amount and particle size of the particles, generating haze due to internal scattering, and adjusting this Can be achieved. The particles are classified into inorganic particles and organic particles. The inorganic particles are not particularly limited, and examples thereof include silicon oxide, titanium oxide, aluminum oxide, zinc oxide, tin oxide, calcium carbonate, barium sulfate, talc, kaolin, and calcium sulfate. The organic particles are not particularly limited. For example, fluorinated acrylic resin powder, polystyrene resin powder, polymethacrylic acid methyl acrylate resin powder, silicone resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin Examples thereof include powder, melamine resin powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluoroethylene resin powder. These inorganic particles and organic particles may be used in combination of two or more different types and average particle diameters, and those obtained by surface-treating the surface of the particles with an organic substance are also preferably used.

特に好ましい無機粒子は、これらの中でも二酸化珪素である。二酸化珪素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600(以上日本アエロジル(株)製)、シーホスターKEP−10、シーホスターKEP−30、シーホスターKEP−50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いるとヘーズを調整するのが容易であり好ましい。   Particularly preferred inorganic particles are silicon dioxide. Specific examples of silicon dioxide include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP-30, Commercial products having trade names such as Seahoster KEP-50 (above, made by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (made by Fuji Silysia), Nip Seal E220A (made by Nippon Silica Kogyo), Admafine SO (made by Admatechs), etc. Can be preferably used. The shape of the particles can be used without any particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc. However, the use of spherical particles is particularly preferable because it is easy to adjust the haze.

支持体に添加する粒子の平均粒子径は0.3〜1μmが好ましく、0.4〜0.7μmが更に好ましい。   The average particle size of the particles added to the support is preferably from 0.3 to 1 μm, more preferably from 0.4 to 0.7 μm.

上記平均粒子径は、500個の粒子を走査型電子顕微鏡(SEM)等により得られる二次電子放出のイメージ写真からの目視やイメージ写真を画像処理することにより、または動的光散乱法、静的光散乱法等を利用する粒度分布計等により計測することができる。ここでいう平均粒子径は、個数平均粒子径をさす。なお、平均粒子径は、粒子が1次粒子の凝集体の場合は凝集体の平均粒子径を意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。   The average particle size can be determined by visual observation from an image photograph of secondary electron emission obtained by scanning electron microscope (SEM) or the like of 500 particles or by image processing, or by dynamic light scattering, static It can be measured by a particle size distribution meter using an automatic light scattering method or the like. The average particle diameter here refers to the number average particle diameter. In addition, an average particle diameter means the average particle diameter of an aggregate, when particle | grains are the aggregates of a primary particle. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.

また、粒子の屈折率は、1.45〜1.70であることが好ましく、より好ましくは1.45〜1.65である。なお、粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定できる。   The refractive index of the particles is preferably 1.45 to 1.70, more preferably 1.45 to 1.65. Note that the refractive index of the particles is measured by measuring the turbidity by dispersing the same amount of particles in a solvent in which the refractive index is changed by changing the mixing ratio of two types of solvents having different refractive indexes. The refractive index of the solvent can be measured by measuring with an Abbe refractometer.

また、支持体に用いる樹脂と該粒子の屈折率差は、0.02以上0.20以下であることが光散乱効果を利用して内部ヘーズを高める上で好ましい。屈折率差のより好ましい範囲は、0.05以上0.15以下である。   In addition, the refractive index difference between the resin used for the support and the particles is preferably 0.02 or more and 0.20 or less in order to increase the internal haze using the light scattering effect. A more preferable range of the refractive index difference is 0.05 or more and 0.15 or less.

上記無機または有機粒子の含有量は、フィルム基材の作製用の樹脂100質量部に対して、1質量部〜30質量部が好ましく、内部ヘーズを得る上でより好ましくは5質量部〜25質量部である。   The content of the inorganic or organic particles is preferably 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the resin for producing the film base material, and more preferably 5 parts by mass to 25 parts by mass for obtaining the internal haze. Part.

前記粒子は、フィルム基材を作製する組成物(ドープ)の調製時にセルロースエステル、他の添加剤及び有機溶媒とともに含有させて分散させてもよく、また、単独で溶液中に分散させてもよい。粒子の分散方法としては、前もって有機溶媒に浸してから高剪断力を有する分散機(高圧分散装置)で細分散させておくのが好ましい。   The particles may be dispersed together with cellulose ester, other additives and an organic solvent at the time of preparing a composition (dope) for producing a film substrate, or may be dispersed alone in a solution. . As a method for dispersing the particles, it is preferable that the particles are preliminarily dispersed in an organic solvent and then finely dispersed by a disperser (high pressure disperser) having a high shearing force.

ドープ調製方法としては、多量の有機溶媒に粒子を分散しておき、セルロースエステル溶液と合流させ、インラインミキサーで混合してドープにすることが好ましい。この場合、粒子分散液に紫外線吸収剤を加え紫外線吸収剤液としてもよい。   As a dope preparation method, it is preferable to disperse particles in a large amount of an organic solvent, merge with a cellulose ester solution, and mix with an in-line mixer to form a dope. In this case, an ultraviolet absorbent may be added to the particle dispersion to form an ultraviolet absorbent liquid.

また、上記の可塑剤、紫外線吸収剤は、セルロースエステルやセルロースエステル樹脂とアクリル樹脂からなる溶液の調製の際に、セルロースエステル、セルロースエステル樹脂とアクリル樹脂は溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。   In addition, the above plasticizer and ultraviolet absorber may be added together with a solvent in the preparation of a solution composed of cellulose ester or cellulose ester resin and an acrylic resin. It may be added during or after preparation.

(有機溶媒)
セルロースエステルフィルムを溶液流延法によって作製する場合、ドープには製膜性や生産性の点から、有機溶媒を含有することが好ましい。有機溶媒としては、セルロースエステル、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。例えば、塩化メチレン、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることができる。これら有機溶媒の中でも塩化メチレン、酢酸メチル、酢酸エチル、アセトンが好ましく用いられる。
(Organic solvent)
When the cellulose ester film is produced by a solution casting method, the dope preferably contains an organic solvent from the viewpoint of film forming property and productivity. Any organic solvent can be used without limitation as long as it dissolves cellulose ester and other additives simultaneously. For example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3 , 3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3 , 3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane and the like. Among these organic solvents, methylene chloride, methyl acetate, ethyl acetate, and acetone are preferably used.

ドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのセルロースエステルの溶解を促進する役割もある。炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよく、且つ毒性がないこと等からエタノールが好ましい。ドープ中のセルロースエステルの濃度は15〜40質量%、ドープ粘度は10〜50Pa・sの範囲に調整されることが良好なフィルム面品質を得る上で好ましい。   The dope preferably contains 1 to 40% by mass of an alcohol having 1 to 4 carbon atoms in addition to the organic solvent. When the proportion of alcohol in the dope increases, the web gels, facilitating peeling from the metal support, and when the proportion of alcohol is small, the role of promoting dissolution of cellulose esters in non-chlorine organic solvents There is also. Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the boiling point being relatively low, good drying properties, and no toxicity. The concentration of the cellulose ester in the dope is preferably adjusted to 15 to 40% by mass, and the dope viscosity is preferably adjusted to a range of 10 to 50 Pa · s in order to obtain good film surface quality.

《第2の保護フィルム》
次に第2の保護フィルムについて説明する。以下、位相差フィルムとも言う。
<< second protective film >>
Next, the second protective film will be described. Hereinafter, it is also referred to as a retardation film.

本発明の第2の保護フィルムは偏光膜に対して第1の保護フィルムと対向して配置される保護フィルムであり、少なくとも透明フィルム及び実質的に垂直配向した重合性液晶化合物を含む光学異方性層から構成される。特に重合性液晶化合物は棒状の液晶化合物であることがIPS型液晶表示装置には好適に用いられる。   The second protective film of the present invention is a protective film disposed opposite to the first protective film with respect to the polarizing film, and includes at least a transparent film and a substantially vertically aligned polymerizable liquid crystal compound. Consists of sex layers. In particular, the polymerizable liquid crystal compound is preferably a rod-like liquid crystal compound for an IPS liquid crystal display device.

本発明の第2の保護フィルムは、膜厚が20〜80μmが好ましく、リターデーション値として下記の特性を有することが好ましい。   The second protective film of the present invention preferably has a film thickness of 20 to 80 μm and preferably has the following characteristics as a retardation value.

0nm≦Ro≦330nm
−150nm≦Rt≦150nm
このRo、Rtは、透明フィルム、棒状の液晶を垂直に配向させて配向を固定した光学異方性層および場合によってはその他の中間層のRo、Rtの総和となる。
0nm ≦ Ro ≦ 330nm
−150 nm ≦ Rt ≦ 150 nm
Ro and Rt are the total of Ro and Rt of the transparent film, the optically anisotropic layer in which the rod-like liquid crystal is vertically aligned and the alignment is fixed, and in some cases, other intermediate layers.

なお、リターデーション値は、自動複屈折計KOBRA−21ADH(王子計測機器)を用いて、波長590nm、23℃55%RHに調湿して測定した。   The retardation value was measured by adjusting the humidity to a wavelength of 590 nm and 23 ° C. and 55% RH using an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments).

本発明の第2の保護フィルムを得るためには、少なくとも以下に記載の透明フィルム、及び垂直配向液晶層で構成されていることが好ましい。   In order to obtain the 2nd protective film of this invention, it is preferable to be comprised by the transparent film and vertical alignment liquid crystal layer as described at least below.

本発明の透明フィルムは、下記の特性を有することが好ましい。   The transparent film of the present invention preferably has the following characteristics.

透過率:80%以上
膜厚 :20〜80μm
0nm≦Ro≦330nm
−100nm≦Rt≦340nm
なお、Ro=(nx−ny)×d
Rt=((nx+ny)/2−nz)×d
(式中、nxは透明フィルムの面内の遅相軸方向の屈折率を、nyは面内で遅相軸に直交する方向の屈折率を、nzは厚み方向の屈折率を、dは透明フィルムの厚み(nm)をそれぞれ表す。屈折率の測定波長は590nmである。)
上記屈折率は、例えばKOBRA−21ADH(王子計測機器(株))を用いて、23℃、55%RHの環境下で、波長が590nmで求めることができる。
Transmittance: 80% or more Film thickness: 20-80 μm
0nm ≦ Ro ≦ 330nm
−100 nm ≦ Rt ≦ 340 nm
Ro = (nx−ny) × d
Rt = ((nx + ny) / 2−nz) × d
(Where nx is the refractive index in the slow axis direction in the plane of the transparent film, ny is the refractive index in the direction perpendicular to the slow axis in the plane, nz is the refractive index in the thickness direction, and d is transparent) Represents the thickness (nm) of the film, and the measurement wavelength of the refractive index is 590 nm.
The refractive index can be obtained at a wavelength of 590 nm under an environment of 23 ° C. and 55% RH using, for example, KOBRA-21ADH (Oji Scientific Instruments).

第2の保護フィルム用は、第1の保護フィルムに記載した基材フィルムを用いる事ができ、その中でも特にセルロースエステルフィルムを用いることが好ましい。   For the second protective film, the base film described in the first protective film can be used, and among them, a cellulose ester film is particularly preferable.

以下、セルロースエステルフィルムを透明フィルムとして用いた場合について説明する。   Hereinafter, the case where a cellulose-ester film is used as a transparent film is demonstrated.

<棒状の液晶を垂直に配向させて配向を固定した光学異方性層>
光学異方性層は、下記特性を有することが好ましい。
<Optically anisotropic layer in which rod-like liquid crystal is vertically aligned and fixed in alignment>
The optically anisotropic layer preferably has the following characteristics.

0≦Ro≦10
−500≦Rt≦−100
ここで、Roは面内リターデーション、Rtは厚み方向リターデーション(Rt)であり、光学異方性層の主屈折率をnx(遅相軸)、主屈折率に直交する方向の屈折率をny(進相軸)とし、該層の厚さ方向の屈折率をnzとし、該層の厚さをd(nm)とした際に、Ro=(nx−ny)×d、Rt=((nx+ny)/2−nz)×dで示される値である。
0 ≦ Ro ≦ 10
−500 ≦ Rt ≦ −100
Here, Ro is the in-plane retardation, Rt is the thickness direction retardation (Rt), the main refractive index of the optically anisotropic layer is nx (slow axis), and the refractive index in the direction orthogonal to the main refractive index is When ny is the fast axis, the refractive index in the thickness direction of the layer is nz, and the thickness of the layer is d (nm), Ro = (nx−ny) × d, Rt = (( nx + ny) / 2−nz) × d.

本発明の光学異方性層は、液晶材料もしくは液晶の溶液を前記セルロースエステルフィルム上に直接または中間層上に塗布し、乾燥と熱処理(配向処理ともいう)を行い紫外線硬化もしくは熱重合などで液晶配向の固定化を行い、垂直方向に配向した棒状液晶による位相差層であることが好ましい(以下、光学異方性層を位相差層ともいう)。   The optically anisotropic layer of the present invention is obtained by applying a liquid crystal material or a liquid crystal solution directly on the cellulose ester film or on an intermediate layer, drying and heat-treating (also referred to as orientation treatment), ultraviolet curing or thermal polymerization. It is preferably a retardation layer made of rod-like liquid crystal in which liquid crystal alignment is fixed and aligned in the vertical direction (hereinafter, the optically anisotropic layer is also referred to as a retardation layer).

ここで垂直方向に配向するとは、棒状液晶が支持体となるフィルム面に対して70〜90°(垂直方向を90°とする)の範囲内にあることをいう。   Here, “orienting in the vertical direction” means that the rod-like liquid crystal is in the range of 70 to 90 ° (the vertical direction is 90 °) with respect to the film surface serving as the support.

棒状液晶は、斜め配向しても、配向角を徐々に変化していてもよい。好ましくは80〜90°の範囲である。   The rod-like liquid crystal may be oriented obliquely or the orientation angle may be gradually changed. Preferably it is the range of 80-90 degrees.

本発明の光学異方性層はRoが0〜10nm、Rtが−500〜−100nmの範囲にある垂直方向に配向した棒状液晶による位相差層である。さらにRoは0〜5nmの範囲がより好ましい。これらの支持体上の液晶配向を固定化した層の位相差測定は、株式会社オプトサイエンス社製AxoScanを用いて測定することができる。   The optically anisotropic layer of the present invention is a retardation layer made of a rod-like liquid crystal oriented in the vertical direction with Ro in the range of 0 to 10 nm and Rt in the range of −500 to −100 nm. Further, Ro is more preferably in the range of 0 to 5 nm. The phase difference measurement of the layer on which the liquid crystal alignment is fixed on these supports can be measured using AxoScan manufactured by Opto Science Co., Ltd.

棒状液晶を配向させて位相差層を形成する際には、中間層として、いわゆる液晶材料が垂直方向に配列するような垂直配向剤を塗布した配向膜を用い、液晶材料を垂直配向したのち固定する方法をとることができる。   When forming a retardation layer by aligning rod-shaped liquid crystals, an alignment film coated with a vertical alignment agent that aligns so-called liquid crystal materials in the vertical direction is used as an intermediate layer, and the liquid crystal material is vertically aligned and fixed. You can take a method.

液晶材料自身が空気界面で垂直方向に配向する場合には、その配向規制力が空気界面と反対の界面までおよび、該配向膜は特に必要ではなく、構成が簡素化できる観点からもその方が好ましい。   When the liquid crystal material itself is aligned in the vertical direction at the air interface, the alignment regulating force extends to the interface opposite to the air interface, and the alignment film is not particularly necessary, and this is also preferable from the viewpoint of simplifying the configuration. preferable.

液晶材料を垂直に配向する具体的な方法としては、特開2005−148473号公報などに記載されている(メタ)アクリル系ブロックポリマーを含有するブロックポリマー組成物の架橋体からなる配向膜等を用いる方法、同2005−265889号公報に記載されている垂直配向膜を使用する方法、空気界面垂直配向剤を使用する方法等公知の方法を使用することができる。   As a specific method for vertically aligning the liquid crystal material, an alignment film composed of a cross-linked product of a block polymer composition containing a (meth) acrylic block polymer described in JP-A-2005-148473 and the like is used. Known methods such as a method of using, a method of using a vertical alignment film described in JP 2005-265889 A, and a method of using an air interface vertical alignment agent can be used.

位相差層を上記範囲とするためには、棒状液晶層の配向、膜厚制御、紫外線硬化時の温度、チルト角制御、および支持体と空気界面でのプレチルト角の制御を行うことが好ましい。   In order to make the retardation layer in the above range, it is preferable to control the orientation of the rod-like liquid crystal layer, the film thickness control, the temperature during UV curing, the tilt angle control, and the control of the pretilt angle at the support / air interface.

位相差層は、所定の温度で液晶相となり得る液晶材料が、所定の液晶規則性を有して硬化することにより形成されたものである。液晶相を示す温度の上限は、例えば基材のセルロースエステルフィルムがダメージを受けない温度であれば特に限定されるものはない。   The retardation layer is formed by curing a liquid crystal material capable of forming a liquid crystal phase at a predetermined temperature with a predetermined liquid crystal regularity. The upper limit of the temperature showing the liquid crystal phase is not particularly limited as long as the cellulose ester film of the base material is not damaged.

具体的には、プロセス温度のコントロールの容易性と寸法精度維持の観点から120℃以下が好ましく、より好ましくは100℃以下の温度で液晶相となる液晶材料が好適に用いられる。一方、液晶相を示す温度の下限は、偏光板として用いる際に、液晶材料が配向状態を保持し得る温度であるといえる。   Specifically, a temperature of 120 ° C. or lower is preferable from the viewpoint of easy control of process temperature and maintenance of dimensional accuracy, and a liquid crystal material that becomes a liquid crystal phase at a temperature of 100 ° C. or lower is preferably used. On the other hand, the lower limit of the temperature showing the liquid crystal phase can be said to be a temperature at which the liquid crystal material can maintain the alignment state when used as a polarizing plate.

位相差層に用いられる液晶材料としては、重合性液晶材料を用いることが好ましい。重合性液晶材料は、所定の活性放射線を照射することにより重合させて用いることができ、重合させた状態では垂直の配向状態は固定化される。   As the liquid crystal material used for the retardation layer, a polymerizable liquid crystal material is preferably used. The polymerizable liquid crystal material can be used by being polymerized by irradiating with predetermined actinic radiation. In the polymerized state, the vertical alignment state is fixed.

重合性液晶化合物としては、重合性液晶モノマー、重合性液晶オリゴマー、もしくは重合性液晶ポリマーのいずれかを用いることができ、相互に混合して用いることもできる。   As the polymerizable liquid crystal compound, any of a polymerizable liquid crystal monomer, a polymerizable liquid crystal oligomer, and a polymerizable liquid crystal polymer can be used, and they can be used by mixing with each other.

重合性液晶化合物としては、上記のうちでも、配向に際しての感度が高く垂直に配向させることが容易であることから重合性液晶モノマーが好適に用いられる。   Among the above, a polymerizable liquid crystal monomer is preferably used as the polymerizable liquid crystal compound because of its high sensitivity during alignment and easy vertical alignment.

具体的な重合性液晶モノマーとしては、下記の一般式(1)で表される棒状液晶性化合物(I)、および下記の一般式(2)で表される棒状液晶性化合物(II)を挙げることができる。化合物(I)としては、一般式(1)に包含される化合物の2種以上を混合して使用することもでき、同様に、化合物(II)としては、一般式(2)に包含される化合物の2種以上を混合して使用することもできる。また、化合物(I)を1種以上と化合物(II)を1種以上を混合して使用することもできる。   Specific examples of the polymerizable liquid crystal monomer include a rod-like liquid crystal compound (I) represented by the following general formula (1) and a rod-like liquid crystal compound (II) represented by the following general formula (2). be able to. As the compound (I), two or more compounds included in the general formula (1) can be mixed and used. Similarly, the compound (II) is included in the general formula (2). Two or more kinds of compounds may be mixed and used. In addition, one or more compounds (I) and one or more compounds (II) may be mixed and used.

Figure 2010097105
Figure 2010097105

Figure 2010097105
Figure 2010097105

化合物(I)を表す一般式(1)において、RおよびRはそれぞれ水素またはメチル基を示すが、液晶相を示す温度範囲の広さからRおよびRは共に水素であることが好ましい。 In the general formula (1) representing the compound (I), R 1 and R 2 each represent hydrogen or a methyl group, but R 1 and R 2 must be both hydrogen because of the wide temperature range showing the liquid crystal phase. preferable.

Xは水素、塩素、臭素、ヨウ素、炭素数1〜4のアルキル基、メトキシ基、シアノ基、もしくはニトロ基のいずれであっても差し支えないが、塩素またはメチル基であることが好ましい。   X may be hydrogen, chlorine, bromine, iodine, an alkyl group having 1 to 4 carbon atoms, a methoxy group, a cyano group, or a nitro group, but is preferably chlorine or a methyl group.

また、化合物(I)の分子鎖両端の(メタ)アクリロイロキシ基と、芳香環とのスペーサであるアルキレン基の鎖長を示すaおよびbは、それぞれ個別に2〜12の範囲で任意の整数を取り得るが、4〜10の範囲であることが好ましく、6〜9の範囲であることがさらに好ましい。   Moreover, a and b which show the chain length of the alkylene group which is a spacer with the (meth) acryloyloxy group of both ends of the molecular chain of a compound (I), and an aromatic ring are respectively arbitrary integers in the range of 2-12. Although it can take, it is preferable that it is the range of 4-10, and it is more preferable that it is the range of 6-9.

以上の他、本発明においては、重合性液晶オリゴマーや重合性液晶ポリマーとして、従来提案されている公知の材料を適宜選択して用いることが可能である。   In addition to the above, in the present invention, conventionally known materials can be appropriately selected and used as the polymerizable liquid crystal oligomer and the polymerizable liquid crystal polymer.

例えば、重合性棒状液晶化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号パンフレット、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、特開2001−328973号公報、特開2004−240188号公報、特開2005−99236号公報、特開2005−99237号公報、特開2005−121827号公報、特開2002−30042号公報などに記載の化合物を用いることができる。   For example, as a polymerizable rod-like liquid crystal compound, Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648 and 5,770,107, International Publication No. 95/22586. Pamphlet, 95/24455, 97/00600, 98/23580, 98/52905, JP-A-1-272551, 6-16616, 7-110469 Gazette, 11-80081, JP-A 2001-328773, JP-A 2004-240188, JP-A 2005-99236, JP-A 2005-99237, JP-A 2005-121827, It is possible to use the compounds described in Kaikai 2002-30042. You can.

市販の化合物としてはUCL−018(大日本インキ化学工業(株)製)、パリオカラーLC242(BASF(株)製)等を使用することができる。   As commercially available compounds, UCL-018 (Dainippon Ink Chemical Co., Ltd.), Palio Color LC242 (BASF Co., Ltd.), etc. can be used.

本発明においては、重合性液晶化合物に加え、必要に応じて光重合開始剤を使用する。電子線照射により重合性液晶化合物を重合させる際には、光重合開始剤が不要な場合があるが、一般的に用いられている例えば紫外線(UV)照射による硬化の場合においては、通常光重合開始剤が重合促進のために用いられる。   In the present invention, a photopolymerization initiator is used as necessary in addition to the polymerizable liquid crystal compound. When polymerizing a polymerizable liquid crystal compound by electron beam irradiation, a photopolymerization initiator may not be necessary. However, in the case of curing by, for example, ultraviolet (UV) irradiation, which is generally used, photopolymerization is usually performed. An initiator is used to promote polymerization.

光重合開始剤としては、ベンジル(ビベンゾイルとも言う)、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4−ベンゾイル−4′−メチルジフェニルサルファイド、ベンジルメチルケタール、ジメチルアミノメチルベンゾエート、2−n−ブトキシエチル−4−ジメチルアミノベンゾエート、p−ジメチルアミノ安息香酸イソアミル、3,3′−ジメチル−4−メトキシベンゾフェノン、メチロベンゾイルフォーメート、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−クロロチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、2,4−ジメチルチオキサントン、イソプロピルチオキサントン、もしくは1−クロロ−4−プロポキシチオキサントン等を挙げることができる。   Photopolymerization initiators include benzyl (also called bibenzoyl), benzoin isobutyl ether, benzoin isopropyl ether, benzophenone, benzoyl benzoic acid, methyl benzoyl benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, benzyl methyl ketal, dimethylamino Methylbenzoate, 2-n-butoxyethyl-4-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, 3,3′-dimethyl-4-methoxybenzophenone, methylobenzoylformate, 2-methyl-1- (4 -(Methylthio) phenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 1- (4-dodecylphenyl) -2- Droxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2- Examples include methylpropan-1-one, 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, or 1-chloro-4-propoxythioxanthone. it can.

光重合開始剤の添加量としては、一般的には0.01%〜20%が好ましく、より好ましくは0.1%〜10%であり、もっと好ましくは0.5%〜5%の範囲で、本発明の重合性液晶材料に添加することができる。   In general, the addition amount of the photopolymerization initiator is preferably 0.01% to 20%, more preferably 0.1% to 10%, and still more preferably 0.5% to 5%. Can be added to the polymerizable liquid crystal material of the present invention.

尚、光重合開始剤の他に、本発明の目的が損なわれない範囲で増感剤を添加することも可能である。   In addition to the photopolymerization initiator, a sensitizer can be added as long as the object of the present invention is not impaired.

本発明における光学異方性層の膜厚は0.1μm〜10μmの範囲内であることが好ましく、0.2〜5μmの範囲内であることがより好ましい。   The film thickness of the optically anisotropic layer in the present invention is preferably in the range of 0.1 μm to 10 μm, and more preferably in the range of 0.2 to 5 μm.

重合性液晶化合物は、必要に応じて光重合開始剤、増感剤等を配合して光学異方性層形成用組成物を調製して用い、基材上に塗工し、光学異方性層形成用層を形成する。   The polymerizable liquid crystal compound is prepared by using a composition for forming an optically anisotropic layer by blending a photopolymerization initiator, a sensitizer, etc., if necessary, and coating it on a substrate. A layer forming layer is formed.

液晶の配向を固定した層を形成する方法としては、例えばドライフィルム等をあらかじめ形成してこれを液晶の配向を固定した層としたものを基材上に積層する方法や、液晶組成物を溶解あるいは融解させて基材上に塗工する方法等をとることも可能であるが、本発明においては、液晶組成物としては溶媒を加えて、その他の成分を溶解した塗工用組成物を用いて基材上に塗工し、溶媒を除去することにより液晶の配向を固定した層を形成することが好ましい。これは、他の方法と比較して工程上簡便である。   As a method of forming a layer in which the orientation of liquid crystal is fixed, for example, a method in which a dry film or the like is formed in advance and a layer in which the orientation of liquid crystal is fixed is laminated on a substrate, or a liquid crystal composition is dissolved. Alternatively, it is possible to use a method of melting and coating on a substrate, but in the present invention, a liquid crystal composition is added with a solvent and a coating composition in which other components are dissolved is used. It is preferable to form a layer in which the orientation of the liquid crystal is fixed by coating on the substrate and removing the solvent. This is simple in terms of process as compared with other methods.

溶媒としては、上述した重合性液晶材料等を溶解することが可能な溶媒であり、かつ透明樹脂フィルムの性状を低下させない溶媒であれば特に限定されるものではなく、具体的には、ベンゼン、トルエン、キシレン、n−ブチルベンゼン、ジエチルベンゼン、テトラリン等の炭化水素類;メトキシベンゼン、1,2−ジメトキシベンゼン、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、もしくは2,4−ペンタンジオン等のケトン類;酢酸エチル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、もしくはγ−ブチロラクトン等のエステル類;2−ピロリドン、N−メチル−2−ピロリドン、ジメチルホルムアミド、もしくはジメチルアセトアミド等のアミド系溶媒;クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン、トリトリクロロエチレン、テトラクロロエチレン、クロロベンゼン、もしくはオルソジクロロベンゼン等のハロゲン系溶媒;t−ブチルアルコール、ジアセトンアルコール、グリセリン、モノアセチン、エチレングリコール、トリエチレングリコール、ヘキシレングリコール、エチレングリコールモノメチルエーテル、エチルセルソルブ、もしくはブチルセルソルブ等のアルコール類;フェノール、パラクロロフェノール等のフェノール類等の1種または2種以上が使用可能である。   The solvent is not particularly limited as long as it is a solvent capable of dissolving the above-described polymerizable liquid crystal material and the like and does not deteriorate the properties of the transparent resin film. Specifically, benzene, Hydrocarbons such as toluene, xylene, n-butylbenzene, diethylbenzene, tetralin; ethers such as methoxybenzene, 1,2-dimethoxybenzene, diethylene glycol dimethyl ether; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, or 2,4- Ketones such as pentanedione; ethyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, or γ-butyrolactone Amides solvents such as 2-pyrrolidone, N-methyl-2-pyrrolidone, dimethylformamide or dimethylacetamide; chloroform, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethane, tritrichloroethylene, tetrachloroethylene, chlorobenzene, or orthodichlorobenzene Halogen solvents such as t-butyl alcohol, diacetone alcohol, glycerin, monoacetin, ethylene glycol, triethylene glycol, hexylene glycol, ethylene glycol monomethyl ether, ethyl cellosolve, or butyl cellosolve; phenols, One or more of phenols such as parachlorophenol can be used.

単一種の溶媒を使用しただけでは、重合性液晶材料等の溶解性が不充分であったり、上述したように基材が侵食される場合がある。しかし2種以上の溶媒を混合使用することにより、この不都合を回避することができる。   If only a single type of solvent is used, the solubility of the polymerizable liquid crystal material or the like may be insufficient, or the substrate may be eroded as described above. However, this inconvenience can be avoided by using a mixture of two or more solvents.

上記した溶媒のなかにあって、単独溶媒として好ましいものは、炭化水素系溶媒とグリコールモノエーテルアセテート系溶媒であり、混合溶媒として好ましいのは、エーテル類またはケトン類と、グリコール類との混合系である。   Of the above-mentioned solvents, preferred as a single solvent are a hydrocarbon solvent and a glycol monoether acetate solvent, and a preferred mixed solvent is a mixed system of ethers or ketones and glycols. It is.

溶液の濃度は、重合性液晶材料等の溶解性や製造しようとする光学異方性層の膜厚に依存するため一概には規定できないが、通常は1%〜60%が好ましく、より好ましくは3%〜40%の範囲で調整される。   The concentration of the solution depends on the solubility of the polymerizable liquid crystal material and the like and the film thickness of the optically anisotropic layer to be produced, but cannot be defined unconditionally, but is usually preferably 1% to 60%, more preferably It is adjusted in the range of 3% to 40%.

本発明に用いられる光学異方性層形成用組成物には、本発明の目的を損なわない範囲内で、上記以外の化合物を添加することができる。   Compounds other than those described above can be added to the composition for forming an optically anisotropic layer used in the present invention within a range not impairing the object of the present invention.

添加できる化合物としては、例えば、多価アルコールと1塩基酸または多塩基酸を縮合して得られるポリエステルプレポリマーに、(メタ)アクリル酸を反応させて得られるポリエステル(メタ)アクリレート;ポリオール基と2個のイソシアネート基を持つ化合物を互いに反応させた後、その反応生成物に(メタ)アクリル酸を反応させて得られるポリウレタン(メタ)アクリレート;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリカルボン酸ポリグリシジルエステル、ポリオールポリグリシジルエーテル、脂肪族もしくは脂環式エポキシ樹脂、アミンエポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂等のエポキシ樹脂と、(メタ)アクリル酸を反応させて得られるエポキシ(メタ)アクリレート等の光重合性化合物、またはアクリル基もしくはメタクリル基を有する光重合性の液晶性化合物、特開2007−45993号公報に記載のオニウム塩、フッ化アクリレートポリマー等が挙げられる。   Examples of compounds that can be added include polyester (meth) acrylate obtained by reacting (meth) acrylic acid with a polyester prepolymer obtained by condensing polyhydric alcohol and monobasic acid or polybasic acid; A polyurethane (meth) acrylate obtained by reacting a compound having two isocyanate groups with each other and then reacting the reaction product with (meth) acrylic acid; bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak Type epoxy resin, polycarboxylic acid polyglycidyl ester, polyol polyglycidyl ether, aliphatic or cycloaliphatic epoxy resin, amine epoxy resin, triphenolmethane type epoxy resin, dihydroxybenzene type epoxy resin and the like (meth) Ak A photopolymerizable compound such as epoxy (meth) acrylate obtained by reacting phosphoric acid, a photopolymerizable liquid crystal compound having an acrylic group or a methacryl group, an onium salt described in JP-A-2007-45993, and a fluorine compound. Acrylate polymers and the like.

本発明の光学異方性層形成用組成物に対するこれら化合物の添加量は、本発明の目的が損なわれない範囲で選択され、一般的には、本発明の光学異方性層形成用組成物の40%以下であることが好ましく、より好ましくは20%以下である。   The amount of these compounds added to the composition for forming an optically anisotropic layer of the present invention is selected within a range that does not impair the object of the present invention, and in general, the composition for forming an optically anisotropic layer of the present invention. Is preferably 40% or less, more preferably 20% or less.

これらの化合物の添加により、本発明における液晶材料の硬化性が向上し、得られる光学異方性層の機械強度が増大し、またその安定性が改善される。   Addition of these compounds improves the curability of the liquid crystal material in the present invention, increases the mechanical strength of the resulting optically anisotropic layer, and improves its stability.

また、溶剤を配合した光学異方性層形成用組成物には、塗工を容易にするために界面活性剤等を加えることができる。   In addition, a surfactant or the like can be added to the composition for forming an optically anisotropic layer containing a solvent in order to facilitate coating.

添加可能な界面活性剤を例示すると、イミダゾリン、第四級アンモニウム塩、アルキルアミンオキサイド、ポリアミン誘導体等の陽イオン系界面活性剤;ポリオキシエチレン−ポリオキシプロピレン縮合物、第一級あるいは第二級アルコールエトキシレート、アルキルフェノールエトキシレート、ポリエチレングリコールおよびそのエステル、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸アミン類、アルキル置換芳香族スルホン酸塩、アルキルリン酸塩、脂肪族あるいは芳香族スルホン酸ホルマリン縮合物等の陰イオン系界面活性剤;ラウリルアミドプロピルベタイン、ラウリルアミノ酢酸ベタイン等の両性系界面活性剤;ポリエチレングリコール脂肪酸エステル類、ポリオキシエチレンアルキルアミン等の非イオン系界面活性剤;パーフルオロアルキルスルホン酸塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキルトリメチルアンモニウム塩、パーフルオロアルキル基・親水性基含有オリゴマー、パーフルオロアルキル・親油基含有オリゴマーパーフルオロアルキル基含有ウレタン等のフッ素系界面活性剤などが挙げられる。   Examples of surfactants that can be added include cationic surfactants such as imidazoline, quaternary ammonium salts, alkylamine oxides and polyamine derivatives; polyoxyethylene-polyoxypropylene condensates, primary or secondary Alcohol ethoxylates, alkylphenol ethoxylates, polyethylene glycol and esters thereof, sodium lauryl sulfate, ammonium lauryl sulfate, lauryl sulfate amines, alkyl-substituted aromatic sulfonates, alkyl phosphates, aliphatic or aromatic sulfonic acid formalin condensates, etc. Anionic surfactants; amphoteric surfactants such as laurylamidopropylbetaine and laurylaminoacetic acid betaine; nonionics such as polyethylene glycol fatty acid esters and polyoxyethylene alkylamine Surfactant: Perfluoroalkyl sulfonate, perfluoroalkyl carboxylate, perfluoroalkyl ethylene oxide adduct, perfluoroalkyl trimethyl ammonium salt, perfluoroalkyl group / hydrophilic group-containing oligomer, perfluoroalkyl / lipophilic group Fluorosurfactants such as containing oligomer perfluoroalkyl group-containing urethanes.

界面活性剤の添加量は、界面活性剤の種類、液晶材料の種類、溶媒の種類、さらには溶液を塗工する配向膜の種類にもよるが、通常は溶液に含まれる重合性液晶材料の10ppm〜10%が好ましく、より好ましくは100ppm〜5%であり、もっとも好ましくは0.1〜1%の範囲である。   The amount of surfactant added depends on the type of surfactant, the type of liquid crystal material, the type of solvent, and the type of alignment film on which the solution is applied. 10 ppm to 10% is preferable, more preferably 100 ppm to 5%, and most preferably 0.1 to 1%.

光学異方性層形成用組成物を塗工する方法としては、スピンコート法、ロールコート法、プリント法、浸漬引き上げ法、ダイコート法、キャスティング法、バーコート法、ブレードコート法、スプレーコート法、グラビアコート法、リバースコート法、もしくは押し出しコート法等が挙げられる。   As a method of coating the composition for forming an optically anisotropic layer, a spin coating method, a roll coating method, a printing method, a dip pulling method, a die coating method, a casting method, a bar coating method, a blade coating method, a spray coating method, Examples include a gravure coating method, a reverse coating method, and an extrusion coating method.

光学異方性層形成用組成物を塗工した後、溶媒を除去する方法としては、例えば、風乾、加熱除去、もしくは減圧除去、さらにはこれらを組み合わせる方法等により行われる。溶媒が除去されることにより、液晶の配向を固定した層が形成される。   As a method for removing the solvent after coating the composition for forming an optically anisotropic layer, for example, air drying, heat removal, or reduced pressure removal, and a combination of these methods are performed. By removing the solvent, a layer in which the alignment of the liquid crystal is fixed is formed.

重合性液晶材料を硬化させる工程では、重合性液晶材料を硬化させるためのエネルギーが与えられ、熱エネルギーでもよいが、通常は、重合を起こさせる能力がある電離放射線の照射によって行う。   In the step of curing the polymerizable liquid crystal material, energy for curing the polymerizable liquid crystal material is given, and thermal energy may be used, but it is usually performed by irradiation with ionizing radiation capable of causing polymerization.

必要であれば重合性液晶材料内に重合開始剤が含まれていてもよい。電離放射線としては、重合性液晶材料を重合させることが可能な放射線であれば特に限定されるものではないが、通常は装置の容易性等の観点から紫外光または可視光線が使用され、波長が150〜500nmの光が好ましく、より好ましくは250〜450nmであり、より好ましくは300〜400nmの波長の紫外線である。   If necessary, a polymerization initiator may be contained in the polymerizable liquid crystal material. The ionizing radiation is not particularly limited as long as it is a radiation capable of polymerizing the polymerizable liquid crystal material. Usually, ultraviolet light or visible light is used from the viewpoint of the ease of the apparatus, and the wavelength is The light of 150-500 nm is preferable, More preferably, it is 250-450 nm, More preferably, it is an ultraviolet-ray with a wavelength of 300-400 nm.

本発明においては、紫外線(UV)を活性放射線として照射し、紫外線で重合開始剤からラジカルを発生させ、ラジカル重合を行わせる方法が好ましい。活性放射線としてUVを用いる方法は、既に確立された技術であることから、用いる重合開始剤を含めて、本発明への応用が容易である。   In the present invention, a method of performing radical polymerization by irradiating ultraviolet rays (UV) as actinic radiation and generating radicals from the polymerization initiator with ultraviolet rays is preferable. Since the method using UV as the actinic radiation is an already established technique, it can be easily applied to the present invention including the polymerization initiator to be used.

この紫外線を照射するための光源としては、低圧水銀ランプ(殺菌ランプ、蛍光ケミカルランプ、ブラックライト)、高圧放電ランプ(高圧水銀ランプ、メタルハライドランプ)、もしくはショートアーク放電ランプ(超高圧水銀ランプ、キセノンランプ、水銀キセノンランプ)等を挙げることができる。   As a light source for irradiating ultraviolet rays, a low-pressure mercury lamp (sterilization lamp, fluorescent chemical lamp, black light), a high-pressure discharge lamp (high-pressure mercury lamp, metal halide lamp), or a short arc discharge lamp (ultra-high-pressure mercury lamp, xenon) Lamp, mercury xenon lamp) and the like.

なかでもメタルハライドランプ、キセノンランプ、高圧水銀ランプ灯等の使用が推奨される。照射強度は、液晶の配向を固定した層の形成に用いられる重合性液晶材料の組成や光重合開始剤の多寡によって適宜に調整すればよい。   In particular, the use of metal halide lamps, xenon lamps, high-pressure mercury lamps, etc. is recommended. The irradiation intensity may be appropriately adjusted depending on the composition of the polymerizable liquid crystal material used for forming the layer in which the alignment of the liquid crystal is fixed and the amount of the photopolymerization initiator.

活性放射線の照射による配向固定化工程は、上述した光学異方性層形成用層を形成する工程における処理温度、すなわち重合性液晶材料が液晶相となる温度条件で行ってもよく、また液晶相となる温度より低い温度で行ってもよい。   The alignment fixing step by irradiation with actinic radiation may be performed at the processing temperature in the step of forming the optically anisotropic layer forming layer described above, that is, a temperature condition in which the polymerizable liquid crystal material becomes a liquid crystal phase. The temperature may be lower than the temperature at which

(中間層)
透明フィルムと棒状の液晶を垂直に配向させて配向を固定した光学異方性層の間には中間層を設けても良い。
(Middle layer)
An intermediate layer may be provided between the optically anisotropic layers in which the transparent film and the rod-shaped liquid crystal are aligned vertically to fix the alignment.

中間層は、透明樹脂で構成されることが好ましい。透明樹脂は、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するバインダーポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するバインダーポリマーであることがさらに好ましい。   The intermediate layer is preferably made of a transparent resin. The transparent resin is preferably a binder polymer having a saturated hydrocarbon chain or a polyether chain as a main chain, and more preferably a binder polymer having a saturated hydrocarbon chain as a main chain.

特に好ましくは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂、あるいは架橋剤と反応部位を有する樹脂との混合組成物である。   Particularly preferred is a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams, or a mixed composition of a crosslinking agent and a resin having a reactive site.

硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等の紫外線硬化型アクリレート系樹脂が好ましく用いられる。   Examples of the curable resin include UV curable urethane acrylate resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, and UV curable epoxy resins. A type acrylate resin is preferably used.

紫外線硬化型ウレタンアクリレート系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物をさらに2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。   The UV curable urethane acrylate resin generally includes a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further includes 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter, acrylate includes methacrylate). It can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.

例えば、特開昭59−151110号号公報に記載のものを用いることができる。例えば、紫光UV−7510B(日本合成化学(株)製)、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。   For example, those described in JP 59-151110 A can be used. For example, a mixture of 100 parts of purple light UV-7510B (manufactured by Nippon Synthetic Chemical Co., Ltd.), Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of coronate L (manufactured by Nippon Polyurethane Co., Ltd.) Preferably used.

紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59−151112号公報に記載のものを用いることができる。   Examples of UV curable polyester acrylate resins include those which are easily formed when 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers are generally reacted with polyester polyols. JP-A-59-151112 Those described in the publication can be used.

紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号公報に記載のものを用いることができる。   Specific examples of the ultraviolet curable epoxy acrylate resin include an epoxy acrylate as an oligomer, a reactive diluent and a photopolymerization initiator added thereto, and reacted to form an oligomer. Those described in Japanese Patent No. 105738 can be used.

紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。   Specific examples of UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.

これら硬化性樹脂の光重合開始剤としては、具体的には、ベンゾインおよびその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等およびこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。   Specific examples of photopolymerization initiators for these curable resins include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof. You may use with a photosensitizer.

また、エポキシアクリレート系の光重合開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。   In addition, when using an epoxy acrylate photopolymerization initiator, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.

硬化性樹脂組成物に用いられる光重合開始剤また光増感剤は該組成物100質量部に対して0.1〜25質量部であり、好ましくは1〜15質量部である。   The photopolymerization initiator or photosensitizer used in the curable resin composition is 0.1 to 25 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the composition.

本発明の架橋剤と反応部位を有する樹脂の混合組成物としては、例えばポリビニルアルコールとグリオキザール、ゼラチンとグリオキザール等が挙げられる。   Examples of the mixed composition of the crosslinking agent and the resin having a reactive site according to the present invention include polyvinyl alcohol and glyoxal, gelatin and glyoxal.

また、中間層には、フッ素−アクリル共重合体樹脂を含有しても良い。フッ素−アクリル共重合体樹脂とは、フッ素単量体とアクリル単量体とからなる共重合体樹脂で、特にフッ素単量体セグメントとアクリル単量体セグメントとから成るブロック共重合体が好ましい。   Further, the intermediate layer may contain a fluorine-acrylic copolymer resin. The fluorine-acrylic copolymer resin is a copolymer resin composed of a fluorine monomer and an acrylic monomer, and a block copolymer composed of a fluorine monomer segment and an acrylic monomer segment is particularly preferable.

また、中間層は、2層以上であってもよい。   Further, the intermediate layer may be two or more layers.

〈中間層の製造方法〉
中間層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、本発明のリターデーション上昇剤を含有する中間層を形成する塗布組成物を塗布し、支持体上に塗布後、加熱乾燥し、UV硬化処理することが好ましい。
<Method for producing intermediate layer>
For the intermediate layer, a coating composition for forming the intermediate layer containing the retardation increasing agent of the present invention is applied using a known method such as a gravure coater, dip coater, reverse coater, wire bar coater, die coater, and ink jet method. It is preferable that after coating on a support, it is dried by heating and UV-cured.

塗布量はウェット膜厚として0.1〜40μmが適当で、好ましくは、0.5〜30μmである。   The coating amount is suitably 0.1 to 40 μm, preferably 0.5 to 30 μm, as the wet film thickness.

また、ドライ膜厚としては平均膜厚0.01〜1μm、好ましくは0.02〜0.7μmである。   Moreover, as a dry film thickness, it is an average film thickness of 0.01-1 micrometer, Preferably it is 0.02-0.7 micrometer.

上記UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。   As the light source for the UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.

照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 150 mJ / cm 2 .

また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。   Moreover, when irradiating actinic radiation, it is preferable to carry out while applying tension | tensile_strength in the conveyance direction of a film, More preferably, it is performing applying tension | tensile_strength also in the width direction. The tension to be applied is preferably 30 to 300 N / m.

張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによってさらに平面性優れたフィルムを得ることができる。   The method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. This makes it possible to obtain a film having further excellent flatness.

中間層を形成する塗布組成物には溶媒が含まれていてもよい。塗布組成物に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒からも適宜選択し、またはこれらを混合し利用できる。   The coating composition for forming the intermediate layer may contain a solvent. Examples of the organic solvent contained in the coating composition include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone). , Esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents may be appropriately selected or mixed for use.

有機溶媒としては、プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等が好ましい。また、有機溶媒の含有量としては塗布組成物中、5〜80質量%が好ましい。   As the organic solvent, propylene glycol monoalkyl ether (1 to 4 carbon atoms of the alkyl group) or propylene glycol monoalkyl ether acetate (1 to 4 carbon atoms of the alkyl group) is preferable. Moreover, as content of an organic solvent, 5-80 mass% is preferable in a coating composition.

《偏光板》
本発明の第1の保護フィルム、第2の保護フィルムを用いた偏光板について述べる。
"Polarizer"
A polarizing plate using the first protective film and the second protective film of the present invention will be described.

偏光板は、一般的な方法で作製することができる。本発明の第1、及び第2の保護フィルムの裏面側をアルカリ鹸化処理し、処理した保護フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。その際第1の保護フィルムでは空隙保持層が偏光膜から遠い側に、また第2の保護フィルムでは、光学異方性層が偏光膜から遠い側に貼合されることが好ましい。   The polarizing plate can be produced by a general method. The first and second protective films of the present invention are subjected to alkali saponification treatment on the back side, and the treated protective film is immersed and stretched in an iodine solution on at least one surface of the polarizing film, and completely saponified polyvinyl It is preferable to bond using an aqueous alcohol solution. At that time, in the first protective film, the gap holding layer is preferably bonded to the side far from the polarizing film, and in the second protective film, the optically anisotropic layer is preferably bonded to the side far from the polarizing film.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。   The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are ones in which iodine is dyed on a system film and ones in which a dichroic dye is dyed, but it is not limited to this.

偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。   As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.

偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本発明の保護フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。   A polarizing film having a thickness of 5 to 30 μm, preferably 8 to 15 μm, is preferably used. On the surface of the polarizing film, one surface of the protective film of the present invention is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.

《液晶表示装置》
本発明の偏光板を液晶表示装置の鑑賞面側に組み込むことによって、種々の視認性に優れた本発明の液晶表示装置を作製することができる。
<Liquid crystal display device>
By incorporating the polarizing plate of the present invention on the viewing surface side of the liquid crystal display device, the liquid crystal display device of the present invention having various visibility can be produced.

液晶表示装置としては、反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられるが、特にIPS型液晶表意装置で好適に用いられる。   As the liquid crystal display device, a reflective type, a transmissive type, a transflective type LCD, or a TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), or IPS type LCD is preferable. Although it is used, it is particularly preferably used in an IPS liquid crystal ideographic apparatus.

図3は本発明に係るIPSモード型液晶表示装置の模式図である。   FIG. 3 is a schematic view of an IPS mode liquid crystal display device according to the present invention.

下方よりバックライトL−13に隣接して導光板、プリズムシート(不図示)、バックライト側偏光板L−12を配置する。バックライト側偏光板L−12の偏光膜L−8は、偏光板保護フィルムL−7、偏光板保護フィルムL−9によって挟持されている。次いで、電極側セルガラス基板L−6−2、IPS型液晶セルL−6−3、非電極型セルガラス基板L−6−1の構成のIPS型液晶セルL−6があり、視認側偏光板L−10を構成する偏光膜L−2、本発明の第1の保護フィルムL−1、第2の保護フィルムL−11がある。   A light guide plate, a prism sheet (not shown), and a backlight side polarizing plate L-12 are arranged adjacent to the backlight L-13 from below. The polarizing film L-8 of the backlight side polarizing plate L-12 is sandwiched between the polarizing plate protective film L-7 and the polarizing plate protective film L-9. Next, there is an IPS liquid crystal cell L-6 having a configuration of an electrode side cell glass substrate L-6-2, an IPS type liquid crystal cell L-6-3, and a non-electrode type cell glass substrate L-6-1. There is a polarizing film L-2 constituting the plate L-10, a first protective film L-1 of the present invention, and a second protective film L-11.

他の偏光板保護フィルムL−7、L−9としては、特に限定されるものではなく、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリシクロオレフィンフィルム、セロファン、セルロースアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートフタレートフィルム、セルロースアセテートプロピオネートフィルム、セルローストリアセテート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体からなるフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(例えば、ARTON(JSR社製)、ゼオネックス、ゼオノア(日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルスルフォンフィルム、ポリスルホン系フィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、アクリルフィルム或いはポリアクリレート系フィルム等を挙げることができる。   Other polarizing plate protective films L-7 and L-9 are not particularly limited. For example, polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyethylene films, polypropylene films, polycycloolefin films, cellophane, and cellulose. Acetate film, cellulose acetate butyrate film, cellulose acetate phthalate film, cellulose acetate propionate film, cellulose triacetate, film made of cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride film, polyvinyl alcohol film, ethylene Vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film , Cycloolefin polymer film (eg, ARTON (manufactured by JSR), ZEONEX, ZEONOR (manufactured by ZEON)), polymethylpentene film, polyetherketone film, polyethersulfone film, polysulfone film, polyetherketoneimide Examples thereof include a film, a polyamide film, an acrylic film, and a polyacrylate film.

セルロースアセテートプロピオネートフィルム、セルローストリアセテートフィルム(TACフィルム)等のセルロースエステルフィルムは市販のフィルム、例えば、コニカミノルタオプト(株)製のコニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC16UR、KC4UE、KC8UE、KC4FR−1、KC4FR−2等が好ましく用いられる。他にシクロオレフィンポリマーフィルム、ポリカーボネートフィルム、ポリエステルフィルムまたはポリアクリルフィルムも透明性、機械的性質、光学的異方性がない点等で好ましく使用できる。これらの樹脂フィルムは溶融流延法または溶液流延法で製膜されたフィルムであってもよい。   Cellulose ester films such as cellulose acetate propionate film and cellulose triacetate film (TAC film) are commercially available films, such as Konica Minolta Op KONICA MINOLTATAC KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY KC4UY, KC12UR, KC16UR, KC4UE, KC8UE, KC4FR-1, KC4FR-2, etc. are preferably used. In addition, a cycloolefin polymer film, a polycarbonate film, a polyester film, or a polyacrylic film can also be preferably used in terms of transparency, mechanical properties, and lack of optical anisotropy. These resin films may be films formed by a melt casting method or a solution casting method.

また、IPSモード型液晶表示装置の場合、偏光板保護フィルム7、9が、リターデーション値Rt値が−20〜20nmの範囲、より好ましくは−10〜10nmであり、Ro値が0〜10nmの範囲のフィルムを用いることも好ましい。   In the case of an IPS mode liquid crystal display device, the polarizing plate protective films 7 and 9 have a retardation value Rt value in the range of -20 to 20 nm, more preferably -10 to 10 nm, and a Ro value of 0 to 10 nm. It is also preferred to use a range of films.

〈IPS横電界スイッチングモード型液晶表示装置〉
上記本発明の偏光板保護フィルムを用いた偏光板を市販のIPS(In Plane Switching)モード型液晶表示装置に組み込むことによって、視認性に優れ、優れたカラーシフト、コーナームラ、正面コントラスト特性を有する本発明の液晶表示装置を作製することができる。
<IPS horizontal electric field switching mode type liquid crystal display device>
By incorporating a polarizing plate using the polarizing plate protective film of the present invention into a commercially available IPS (In Plane Switching) mode type liquid crystal display device, it has excellent visibility, excellent color shift, corner unevenness, and front contrast characteristics. The liquid crystal display device of the present invention can be manufactured.

本発明のIPSモードとは、フリンジ電場スイッチング(FFS:Fringe−Field Switching)モードも本発明に含み、IPSモードと同様に本発明の偏光板を組み込むことができ、同様の効果をもつ本発明の液晶表示装置を作製することができる。   The IPS mode of the present invention includes a fringe-field switching (FFS) mode in the present invention, and the polarizing plate of the present invention can be incorporated in the same manner as the IPS mode. A liquid crystal display device can be manufactured.

(IPSモード型液晶セル)
IPSモード型液晶表示装置における液晶パネルの液晶層は、初期状態で基板面と平行なホモジニアス配向で、且つ基板と平行な平面で液晶層のダイレクターは電圧無印加時で電極配線方向と平行または幾分角度を有し、電圧印加時で液晶層のダイレクターの向きが電圧の印加に伴い電極配線方向と垂直な方向に移行し、液晶層のダイレクター方向が電圧無印加時のダイレクター方向に比べて45°電極配線方向に傾斜したとき、当該電圧印加時の液晶層は、まるで1/2波長板のように偏光の方位角を90°回転させ、出射側偏向板の透過軸と偏光の方位角が一致して白表示となる。
(IPS mode liquid crystal cell)
The liquid crystal layer of the liquid crystal panel in the IPS mode type liquid crystal display device is homogeneously aligned parallel to the substrate surface in the initial state, and the director of the liquid crystal layer is parallel to the electrode wiring direction when no voltage is applied. The direction of the director of the liquid crystal layer shifts to a direction perpendicular to the electrode wiring direction when a voltage is applied, and the director direction of the liquid crystal layer is the direction of the director when no voltage is applied. When tilted in the direction of 45 ° electrode wiring, the liquid crystal layer when the voltage is applied rotates the azimuth angle of the polarization by 90 ° like a half-wave plate, and the transmission axis of the output side deflection plate and the polarization The azimuth angles of the two coincide with each other to display white.

一般に、液晶層の厚みは一定であるが、横電界駆動であるため、液晶層の厚みに若干凹凸を設ける方がスイッチングに対する応答速度を上げることができるとも考えられるが、本発明においては、液晶層の厚みが一定でない場合であっても、その効果を最大限生かすことができるものである。   In general, the thickness of the liquid crystal layer is constant, but since it is driven by a lateral electric field, it is considered that a slight unevenness in the thickness of the liquid crystal layer can increase the response speed to switching. Even if the thickness of the layer is not constant, the effect can be maximized.

本発明においては、液晶層の厚みの変化に対し影響が少ない。本発明における効果を大きく発揮できる液晶層の厚みは、2〜6μmであって、好ましくは3〜5.5μmである。   In this invention, there is little influence with respect to the change of the thickness of a liquid crystal layer. The thickness of the liquid crystal layer capable of greatly exerting the effect in the present invention is 2 to 6 μm, and preferably 3 to 5.5 μm.

本発明の液晶表示装置は、大型の液晶テレビに用いられる。画面サイズとしては、17型以上に用いることができ、好ましくは26型以上100型程度まで用いることができる。   The liquid crystal display device of the present invention is used for a large liquid crystal television. As a screen size, it can be used for 17 or more types, preferably 26 to 100 types.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
(第2の保護フィルムの透明フィルムであるセルロースエステルフィルム2の作製)
<セルロースエステルの合成>
特表平6−501040号公報の例Bを参考にして、プロピオン酸、酢酸の添加量を調整して、アセチル基置換度1.6、プロピオニル基置換度0.9のセルロースエステルAを合成した。
Example 1
(Production of cellulose ester film 2 which is a transparent film of the second protective film)
<Synthesis of cellulose ester>
With reference to Example B of JP-T-6-501040, the amount of propionic acid and acetic acid was adjusted to synthesize cellulose ester A having an acetyl group substitution degree of 1.6 and a propionyl group substitution degree of 0.9. .

得られたセルロースエステルの置換度は、ASTM−D817−96に基づいて算出した。   The substitution degree of the obtained cellulose ester was calculated based on ASTM-D817-96.

<溶融法によるセルロースエステルフィルム2の作製>
(アクリル系重合体X1の合成)
特開2000−344823号公報に記載の重合方法により塊状重合を行った。すなわち、攪拌機、窒素ガス導入管、温度計、投入口及び環流冷却管を備えたフラスコに下記メチルアクリレートとルテノセンを導入しながら内容物を70℃に加熱した。
<Preparation of cellulose ester film 2 by melting method>
(Synthesis of acrylic polymer X1)
Bulk polymerization was performed by the polymerization method described in JP-A No. 2000-344823. That is, the contents were heated to 70 ° C. while introducing the following methyl acrylate and ruthenocene into a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, an inlet, and a reflux condenser.

次いで、充分に窒素ガス置換した下記β−メルカプトプロピオン酸の半分を攪拌下フラスコ内に添加した。β−メルカプトプロピオン酸添加後、攪拌中のフラスコ内の内容物を70℃に維持し2時間重合を行った。   Next, half of the following β-mercaptopropionic acid which had been sufficiently purged with nitrogen gas was added to the flask under stirring. After the addition of β-mercaptopropionic acid, the contents in the stirring flask were maintained at 70 ° C. and polymerization was carried out for 2 hours.

更に、窒素ガス置換したβ−メルカプトプロピオン酸の残りの半分を追加添加後、更に攪拌中の内容物の温度が70℃に維持し重合を4時間行った。反応物の温度を室温に戻し、反応物に5質量%ベンゾキノンのテトラヒドロフラン溶液を20質量部添加して重合を停止させた。   Further, after adding the other half of the β-mercaptopropionic acid substituted with nitrogen gas, the temperature of the content under stirring was maintained at 70 ° C., and polymerization was carried out for 4 hours. The temperature of the reaction product was returned to room temperature, and 20 parts by mass of a 5% by mass benzoquinone tetrahydrofuran solution was added to the reaction product to stop the polymerization.

重合物をエバポレーターで減圧下80℃まで徐々に加熱しながらテトラヒドロフラン、残存モノマー及び残存チオール化合物を除去してアクリル系重合体X1を得た。重量平均分子量Mwは1000であった。   While gradually heating the polymer to 80 ° C. under reduced pressure with an evaporator, the tetrahydrofuran, residual monomer and residual thiol compound were removed to obtain an acrylic polymer X1. The weight average molecular weight Mw was 1000.

メチルアクリレート 100質量部
ルテノセン(金属触媒) 0.05質量部
β−メルカプトプロピオン酸 12質量部
80℃で6時間乾燥済み(水分率200ppm)のセルロースエステルA 100質量部、モノペットSB(糖エステル化合物:第一工業製薬社製)9質量部、アクリル系重合体X1 3質量部、紫外線吸収剤LA−31((株)ADEKA製)1.05質量部、Irganox1010(チバ・ジャパン(株)製)0.5質量部、アデカスタブPEP−36((株)ADEKA製)0.08質量部、SumilizerGS(住友化学(株)製)0.2質量部、シーホスターKEP−30(日本触媒(株)製)0.1質量部を真空ナウターミキサーで80℃、1Torrで3時間混合しながらさらに乾燥した。
Methyl acrylate 100 parts by weight Ruthenocene (metal catalyst) 0.05 parts by weight β-mercaptopropionic acid 12 parts by weight 100 parts by weight of cellulose ester A dried at 80 ° C. for 6 hours (water content 200 ppm), Monopet SB (sugar ester compound) : Daiichi Kogyo Seiyaku Co., Ltd.) 9 parts by mass, acrylic polymer X1 3 parts by mass, UV absorber LA-31 (manufactured by ADEKA) 1.05 parts by mass, Irganox 1010 (manufactured by Ciba Japan Co., Ltd.) 0.5 parts by mass, Adeka Stub PEP-36 (manufactured by ADEKA) 0.08 parts by mass, Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd.) 0.2 parts by mass, Seahoster KEP-30 (manufactured by Nippon Shokubai Co., Ltd.) 0.1 parts by mass was further dried with mixing at 80 ° C. and 1 Torr for 3 hours with a vacuum nauter mixer.

得られた混合物を、二軸式押出機を用いて235℃で溶融混合しペレット化した。セルロースエステルフィルムの製膜は図4に示す製造装置で行った。ペレット(水分率50ppm)を、1軸押出機を用いてTダイから表面温度が100℃の第1冷却ロール上に溶融温度245℃でフィルム状に溶融押し出し、初期膜厚128μm、幅1.0mのキャストフィルムを毎分35mの長さで得た。   The obtained mixture was melt-mixed at 235 ° C. using a twin-screw extruder and pelletized. The cellulose ester film was produced by the production apparatus shown in FIG. Pellets (water content 50 ppm) were melt extruded from a T die onto a first cooling roll having a surface temperature of 100 ° C. at a melting temperature of 245 ° C. using a single-screw extruder, with an initial film thickness of 128 μm and a width of 1.0 m. A cast film of 35 m / min was obtained.

この際第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールで押圧した。   At this time, the film was pressed on the first cooling roll with an elastic touch roll having a 2 mm thick metal surface.

得られたフィルムを、まずロール周速差を利用した延伸機によって195℃で製膜方向に60%で延伸速度1000%/minで延伸し、膜厚40μmのセルロースエステルフィルム2を得た。   The obtained film was first stretched at 195 ° C. in the film-forming direction at 60% in the film-forming direction at a stretching speed of 1000% / min by a stretching machine using a roll peripheral speed difference to obtain a cellulose ester film 2 having a film thickness of 40 μm.

このとき幅手方向の延伸は、製膜方向に延伸したあと、予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターにて延伸ゾーンにおいて165℃で行い、その後30℃まで冷却し、クリップから開放し、クリップ把持部を裁ち落としてセルロースエステルフィルム2を得た。セルロースエステルフィルム2のリターデーションはRo=71nm、Rt=190nmであった。リターデーションは、23℃55%RHに調湿後、自動複屈折計KOBRA−21ADH(王子計測機器)を用いて、波長590nmの測定した値である。また、実施例に記載したリターデーション結果は、前記条件で測定した値である。   At this time, in the width direction, after stretching in the film forming direction, a preheating zone, a stretching zone, a holding zone, and a cooling zone (a neutral zone for ensuring thermal insulation between the zones is also provided between the zones). In a stretching zone at a temperature of 165 ° C., and then cooled to 30 ° C., released from the clip, and the clip gripping portion was cut off to obtain a cellulose ester film 2. The retardation of the cellulose ester film 2 was Ro = 71 nm and Rt = 190 nm. The retardation is a value measured at a wavelength of 590 nm using an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments) after humidity adjustment to 23 ° C. and 55% RH. Moreover, the retardation result described in the Example is a value measured under the above conditions.

(位相差フィルム1の作製)
上記作製したセルロースエステルフィルム2を800mm幅にカットして、ナーリング加工を施したのち、下記手順により中間層を設け、次いで中間層上に光学異方性層を設け、位相差フィルム1を作製した。
(Preparation of retardation film 1)
The cellulose ester film 2 produced above was cut to a width of 800 mm and knurled, then an intermediate layer was provided by the following procedure, then an optically anisotropic layer was provided on the intermediate layer, and a retardation film 1 was produced. .

800mm幅にカットしたセルロースエステルフィルム2に、両端部に幅1cm、平均高さ10μmのナーリング加工を施し、再び巻き取った。このセルロースエステルフィル上に、下記中間層塗布液を、コロナ放電後、ダイコートで塗布し、80℃で30秒乾燥後、紫外線を120mJ/cm、照度200mW/cmで照射して硬化した。硬化後の中間層の膜厚は、1.5μmであった。 The cellulose ester film 2 cut to a width of 800 mm was subjected to a knurling process having a width of 1 cm and an average height of 10 μm at both ends, and was wound up again. On the cellulose ester fill, the following intermediate layer coating solution was applied by die coating after corona discharge, dried at 80 ° C. for 30 seconds, and then cured by irradiation with ultraviolet rays at 120 mJ / cm 2 and an illuminance of 200 mW / cm 2 . The film thickness of the intermediate layer after curing was 1.5 μm.

次いで、この中間層上に下記の光学異方性層塗布液をダイコートでウェット8μmの厚みで塗布した。   Next, the following optically anisotropic layer coating solution was applied by die coating to a thickness of 8 μm on this intermediate layer.

塗布後、100℃で2分間過熱し、棒状液晶化合物を配向させた。次に、棒状液晶化合物を配向させたフィルムを酸素濃度0.2%、温度28℃にて250mJ/cm、照度300mW/cmで照射して硬化させ、位相差フィルム1を得た。光学異方性層の厚みは、1.2μmであった。この位相差フィルム1の全体としてのリターデーションはRoは71nm、Rtは−11nmであった。 After coating, the rod-shaped liquid crystal compound was aligned by heating at 100 ° C. for 2 minutes. Next, the film in which the rod-like liquid crystal compound was aligned was cured by irradiation at an oxygen concentration of 0.2%, a temperature of 28 ° C. at 250 mJ / cm 2 , and an illuminance of 300 mW / cm 2 to obtain a retardation film 1. The thickness of the optically anisotropic layer was 1.2 μm. The retardation of the retardation film 1 as a whole was 71 nm for Ro and -11 nm for Rt.

(中間層塗布液)
ポリエステルアクリレート 25質量部
(ラロマーLR8800 BASFジャパン(株)製)
プロピレングリコールモノメチルエーテル 290質量部
イソプロピルアルコール 685質量部
光重合開始剤(イルガキュア184 チバ・ジャパン(株)製) 0.05質量部
(光学異方性層塗布液)
紫外線重合性液晶材料 20質量部
(UCL−018 大日本インキ化学工業(株)製)
プロピレングリコールモノメチルエーテル 80質量部
ヒンダードアミン(LS−765、三共ライフテック(株)製) 0.02質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 0.10質量部
下記空気界面側垂直配向剤1 0.01質量部
(Interlayer coating solution)
25 parts by mass of polyester acrylate (Laromar LR8800 manufactured by BASF Japan Ltd.)
Propylene glycol monomethyl ether 290 parts by mass Isopropyl alcohol 685 parts by mass Photopolymerization initiator (Irgacure 184, manufactured by Ciba Japan Co., Ltd.) 0.05 parts by mass (Coating liquid for optically anisotropic layer)
UV-polymerizable liquid crystal material 20 parts by mass (UCL-018 manufactured by Dainippon Ink & Chemicals, Inc.)
Propylene glycol monomethyl ether 80 parts by mass Hindered amine (LS-765, Sankyo Lifetech Co., Ltd.) 0.02 parts by mass Sensitizer (Kayacure DETX, Nippon Kayaku Co., Ltd.) 0.10 parts by mass The following air interface side Vertical alignment agent 1 0.01 parts by mass

Figure 2010097105
Figure 2010097105

<セルロースエステルフィルム3の作製>
(ドープ組成物A)
・トリアセチルセルロース(酢化度61.0%) 85質量部
・2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチルフェニル)ベゾトリアゾール
1.5質量部
・メチルメタクリレート−2−ヒドロキシエチルアクリレート共重合体 8質量部
(80/20(質量比)) Mw;8000
・メチルアクリレート重合体(*) Mw;1000 5質量部
・メチレンクロライド 475質量部
・エタノール 50質量部
(*)特開2000−128911号公報の実施例3記載の重合方法でメチルアクリレートモノマーを重合し、Mw1000、Mn700のポリマーを得た。この反応物の水酸基価(OHV;mg/g KOH)は、50であった。
<Preparation of cellulose ester film 3>
(Dope composition A)
・ Triacetyl cellulose (acetylation degree 61.0%) 85 mass parts ・ 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) bezotriazole
1.5 parts by mass-Methyl methacrylate-2-hydroxyethyl acrylate copolymer 8 parts by mass (80/20 (mass ratio)) Mw; 8000
-Methyl acrylate polymer (*) Mw; 1000 5 parts by mass-Methylene chloride 475 parts by mass-Ethanol 50 parts by mass (*) A methyl acrylate monomer was polymerized by the polymerization method described in Example 3 of JP-A No. 2000-128911. , Mw1000, Mn700 polymer was obtained. The reaction product had a hydroxyl value (OHV; mg / g KOH) of 50.

(マット剤溶液組成)
・平均粒径16nmのシリカ粒子分散液 11.0質量部
・メチレンクロライド(第1溶媒) 76.1質量部
・エタノール(第2溶媒) 3.5質量部
・アセチルプロピオニルセルロース(アセチル置換度2.06、プロピオニル置換度0.79) 1.9質量部
(マット剤溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
(Matting agent solution composition)
-Silica particle dispersion with an average particle size of 16 nm 11.0 parts by mass-Methylene chloride (first solvent) 76.1 parts by mass-Ethanol (second solvent) 3.5 parts by mass-Acetylpropionyl cellulose (acetyl substitution degree 2. 06, propionyl substitution degree 0.79) 1.9 parts by mass (Preparation of matting agent solution)
20 parts by mass of silica particles having an average particle diameter of 16 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) and 80 parts by mass of methanol were mixed well for 30 minutes to obtain a silica particle dispersion. This dispersion was put into a disperser together with the following composition, and further stirred for 30 minutes or more to dissolve each component to prepare a matting agent solution.

上記処方のドープ組成物Aを密封容器に投入し、70℃まで加熱し、撹拌しながら、セルローストリアセテート(TAC)を完全に溶解しドープを得た。溶解に要した時間は4時間であった。ドープ組成物Aを濾過した後、マット剤溶液6.5質量部を混合し、その混合液をベルト流延装置を用い、ドープ温度35℃で22℃のステンレスバンド支持体上に均一に流延した。ステンレスバンド支持体の温度は20℃であった。   The dope composition A having the above formulation was put into a sealed container, heated to 70 ° C., and stirred to completely dissolve cellulose triacetate (TAC) to obtain a dope. The time required for dissolution was 4 hours. After the dope composition A is filtered, 6.5 parts by weight of the matting agent solution is mixed, and the mixture is uniformly cast on a stainless steel band support at a dope temperature of 35 ° C. and a temperature of 22 ° C. did. The temperature of the stainless steel band support was 20 ° C.

その後、剥離可能な範囲まで乾燥させた後、ステンレスバンド支持体上からドープを剥離した。このときのドープの残留溶媒量は25質量%であった。ドープ流延から剥離までに要した時間は3分であった。ステンレスバンド支持体から10kg/mの張力で剥離させ、140℃下にてテンターで幅方向に2%延伸させた後、多数のロールで搬送させながら120℃、135℃の乾燥ゾーンで乾燥を終了させ、フィルム両端に幅10mm、高さ10μmのナーリング加工を施して、膜厚40μmのセルロースエステルフィルム3を巻き取った。巻き取り張力は、初期張力10kg/m、最終巻張力8kg/mとした。また、フィルム幅は1500mm、巻き取り長は500mとした。   Then, after making it dry to the range which can be peeled, dope was peeled from the stainless steel band support body. The residual solvent amount of the dope at this time was 25% by mass. The time required from casting the dope to peeling was 3 minutes. Peel from the stainless steel band support with a tension of 10 kg / m, stretch 2% in the width direction with a tenter at 140 ° C, and then finish drying in a drying zone at 120 ° C and 135 ° C while transporting with many rolls. Then, a knurling process having a width of 10 mm and a height of 10 μm was applied to both ends of the film, and the cellulose ester film 3 having a thickness of 40 μm was wound up. The winding tension was an initial tension of 10 kg / m and a final winding tension of 8 kg / m. The film width was 1500 mm and the winding length was 500 m.

リターデーションは、Ro=0.5nm、Rt=−1nmであった。   The retardation was Ro = 0.5 nm and Rt = −1 nm.

(位相差フィルム2の作製)
特開2004−4642号公報の実施例を参考にして位相差フィルム2を作製した。
(Preparation of retardation film 2)
The retardation film 2 was produced with reference to the examples of JP-A No. 2004-4642.

ポリカーボネートフィルムを延伸することにより、厚さ65μm、面内位相差Rが260nm、Nz=0.5の位相差フィルム2を作製した。 By stretching the polycarbonate film, a retardation film 2 having a thickness of 65 μm, an in-plane retardation R 0 of 260 nm, and Nz = 0.5 was produced.

<第1の保護フィルムである空隙保持層を有するフィルム1の作製>
(石英マスタの型の作製)
特開2008−176076号公報の実施例を参考に型を作製した。
<Preparation of film 1 having a void retaining layer which is the first protective film>
(Manufacture of quartz master mold)
A mold was produced with reference to the examples in Japanese Patent Application Laid-Open No. 2008-176076.

石英基板上に、レジスト層を厚さ150nmとなるように塗布し、このレジスト層に、特開2008−176076号公報図5に示した露光装置を用いて準六方格子パターンの潜像を形成した。レーザ光の波長は266nm、レーザパワーは0.50mJ/mとした。なお、レーザ光は、電気光学変調器において、振幅が非周期的に±10%程度変動するサイン波形に変調した後、変調光学系に導いた。また、レジスト層に対するレーザ光の照射周期を1トラック毎に変化させた。その後、レジスト層を現像処理して、準六方格子状のレジストパターンを作製した。現像液としては、アルカリ現像液を用いた。   A resist layer was applied on a quartz substrate so as to have a thickness of 150 nm, and a latent image of a quasi-hexagonal lattice pattern was formed on the resist layer using the exposure apparatus shown in FIG. 5 of Japanese Patent Application Laid-Open No. 2008-176076. . The wavelength of the laser beam was 266 nm, and the laser power was 0.50 mJ / m. The laser light was modulated into a sine waveform whose amplitude fluctuates about ± 10% non-periodically in the electro-optic modulator and then guided to the modulation optical system. Further, the irradiation period of the laser beam on the resist layer was changed for each track. Thereafter, the resist layer was developed to produce a quasi-hexagonal lattice-shaped resist pattern. An alkaline developer was used as the developer.

次に、酸素アッシングによりレジストパターンを除去して開口径を広げるプロセスと、フッ素系ガス雰囲気でのプラズマエッチングで石英基板をエッチングするプロセスとを繰り返し行い、特開2008−176076号公報図4Cに模式的に示した凹凸を有する石英マスタの型を作製した。アッシングおよびエッチングは、(1)酸素アッシング4秒、フッ素系ガスエッチング2分、(2)酸素アッシング4秒、フッ素系ガスエッチング2分、(3)酸素アッシング4秒、フッ素系ガスエッチング2分、(4)4.酸素アッシング4秒、フッ素系ガスエッチング2分、(5)酸素アッシング4秒、フッ素系ガスエッチング4分、(6)酸素アッシング4秒、フッ素系ガスエッチング6分のプロセスを、プロセス(1)〜(6)の順序で順次行った。また、石英マスタの型のRaは、AFM(原子間力顕微鏡)を用いて測定し、250nmであった。   Next, a process of removing the resist pattern by oxygen ashing to widen the opening diameter and a process of etching the quartz substrate by plasma etching in a fluorine-based gas atmosphere are repeated, which is schematically shown in FIG. 4C of Japanese Patent Laid-Open No. 2008-176076. A quartz master mold having the irregularities shown in FIG. Ashing and etching are: (1) oxygen ashing 4 seconds, fluorine-based gas etching 2 minutes, (2) oxygen ashing 4 seconds, fluorine-based gas etching 2 minutes, (3) oxygen ashing 4 seconds, fluorine-based gas etching 2 minutes, (4) 4. Oxygen ashing 4 seconds, fluorine gas etching 2 minutes, (5) Oxygen ashing 4 seconds, fluorine gas etching 4 minutes, (6) Oxygen ashing 4 seconds, fluorine gas etching 6 minutes, process (1) to It carried out sequentially in the order of (6). Further, Ra of the quartz master mold was 250 nm as measured using an AFM (atomic force microscope).

<第1の保護フィルムの基材フィルムであるセルロースエステルフィルム1の作製>
(ドープ液組成1)
下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液組成1を得た。
<Preparation of Cellulose Ester Film 1 that is a Base Film of the First Protective Film>
(Dope solution composition 1)
The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and the mixture was stirred for 3 hours while maintaining the temperature at 80 ° C. to completely dissolve the cellulose ester. . The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. This dope was filtered using filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution composition 1.

セルローストリアセテート(アセチル基置換度2.95) 100質量部
トリメチロールプロパントリベンゾエート 5質量部
エチルフタリルエチルグリコレート 5質量部
酸化ケイ素微粒子 0.2質量部
(アエロジルR972V、日本アエロジル株式会社製)
チヌビン109(チバ・ジャパン社製) 1質量部
チヌビン171(チバ・ジャパン社製) 1質量部
メチレンクロライド 300質量部
エタノール 40質量部
ブタノール 5質量部
次に、得られたドープ液組成1を、温度35℃に保温した流延ダイを通より、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。次いで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が80質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。
Cellulose triacetate (acetyl group substitution degree 2.95) 100 parts by weight Trimethylolpropane tribenzoate 5 parts by weight Ethylphthalylethyl glycolate 5 parts by weight Fine particles of silicon oxide 0.2 parts by weight (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.)
Tinuvin 109 (manufactured by Ciba Japan) 1 part by mass Tinuvin 171 (manufactured by Ciba Japan) 1 part by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass Butanol 5 parts by mass Next, the obtained dope composition 1 was subjected to temperature. A web was formed by passing through a casting die kept at 35 ° C. and casting on a support made of stainless steel endless belt and having a temperature of 35 ° C. Next, the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 80% by mass.

剥離後のウェブを、上下に複数配置したロールによる搬送乾燥工程で90℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、温度130℃で幅方向に延伸前の1.1倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で、温度135℃の乾燥風にて乾燥させた。乾燥工程の雰囲気置換率15(回/時間)とした雰囲気内で15分間熱処理した後、室温まで冷却して幅1.5m、膜厚40μm、長さ3000m、屈折率1.49の長尺のセルロースエステルフィルム1を作製した。またフィルムは、両端部に幅2cm、平均高さ20μmのナーリング加工を施して巻き取った。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のウェブ搬送方向の延伸倍率は、1.2倍であった。   The web after peeling is transported while being dried with 90 ° C drying air in a transport drying process using a plurality of rolls arranged on the top and bottom, and then grips both ends of the web with a tenter and then stretches in the width direction at a temperature of 130 ° C. The film was stretched to 1.1 times the previous size. After stretching with a tenter, the web was dried with a drying air at a temperature of 135 ° C. in a transport drying process using a plurality of rolls arranged vertically. After heat-treating for 15 minutes in an atmosphere with an atmosphere substitution rate of 15 (times / hour) in the drying step, the product was cooled to room temperature, and the length was 1.5 m, the film thickness was 40 μm, the length was 3000 m, and the refractive index was 1.49. Cellulose ester film 1 was produced. Further, the film was wound by applying a knurling process at both ends to a width of 2 cm and an average height of 20 μm. The draw ratio in the web conveyance direction immediately after peeling calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.2 times.

〈雰囲気置換率〉
上記雰囲気置換率とは、熱処理室の雰囲気容量をV(m)、Fresh−air送風量をFA(m/hr)とした場合、下式によって求められる単位時間あたり熱処理室の雰囲気をFresh−airで置換する回数である。Fresh−airは熱処理室に送風される風のうち、循環再利用している風ではなく、揮発した溶媒もしくは可塑剤などを含まない、もしくはそれらが除去された新鮮な風のことを意味している。
<Atmosphere replacement rate>
The atmosphere replacement rate is defined as the atmosphere of the heat treatment chamber per unit time determined by the following formula when the atmosphere capacity of the heat treatment chamber is V (m 3 ) and the fresh air flow rate is FA (m 3 / hr). The number of replacements with -air. “Fresh-air” means that the wind blown into the heat treatment chamber is not a wind that is recycled and reused, and it means a fresh wind that does not contain volatilized solvent or plasticizer or has been removed. Yes.

雰囲気置換率=FA/V(回/時間)
(空隙保持層を有するフィルム1の作製)
上記作製したセルロースエステルフィルム1を800mm幅にカットして、ナーリング加工を施したのち、下記手順によりハードコート層上に空隙保持層を設け、空隙保持層を有するフィルム1を作製した。
Atmosphere replacement rate = FA / V (times / hour)
(Preparation of film 1 having a void retaining layer)
The cellulose ester film 1 produced above was cut to a width of 800 mm and knurled, and then a void retaining layer was provided on the hard coat layer by the following procedure to produce a film 1 having a void retaining layer.

800mm幅にカットしたセルロースエステルフィルム1に、両端部に幅1cm、平均高さ18μmのナーリング加工を施し、再び巻き取った。このセルロースエステルフィル1上に、下記のハードコート層組成物1を、孔径0.4μmのポリプロピレン製フィルターで濾過して、ハードコート層塗布液を調製し、マイクログラビアコーターを用いて塗布し、温度80℃・60秒条件で乾燥した。次に、乾燥後の未硬化状態のハードコート層に、上記作製した表面に凹凸を有する石英マスタ型の凹凸面と、ハードコート層を密着させ、板側となるようにロールで押し付けた。この状態でセルロースエステルフィルム1側から、紫外線ランプを用い照射部の照度が300mW/cmで、照射量を0.3J/cmとして塗布層を硬化させ、更に凹凸を有する型を外し、ハードコート層側から、紫外線ランプを用い照射部の照度が300mW/cmで、照射量を0.3J/cmで照射して、ドライ膜厚8μmの空隙保持層を有するフィルム1を作製した。 The cellulose ester film 1 cut to a width of 800 mm was subjected to a knurling process having a width of 1 cm and an average height of 18 μm at both ends, and was wound up again. On the cellulose ester fill 1, the following hard coat layer composition 1 is filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a hard coat layer coating solution, which is applied using a micro gravure coater, It dried on 80 degreeC and 60 second conditions. Next, the quartz master-type concavo-convex surface having the concavo-convexity on the prepared surface and the hard coat layer were brought into close contact with the uncured hard coat layer after drying, and pressed with a roll so as to be on the plate side. In this state, from the cellulose ester film 1 side, an ultraviolet lamp is used, the illuminance of the irradiated part is 300 mW / cm 2 , the irradiation amount is 0.3 J / cm 2 , the coating layer is cured, and the mold having unevenness is removed. From the coat layer side, an ultraviolet lamp was used to irradiate the irradiated portion with an illuminance of 300 mW / cm 2 and an irradiation amount of 0.3 J / cm 2 to prepare a film 1 having a void holding layer with a dry film thickness of 8 μm.

・空隙率の測定
空隙保持層をAFM(原子間力顕微鏡)を用いて測定した結果、Raは330nmであった。また、ミクロトームを用いて空隙保持層の断面を切り出し、透過電子顕微鏡(TEM)により観察し、AFMから求めたRaからの凹部分の面積とTEMにより求めた層の断面籍の割合から、空隙率を測定した。結果、空隙保持層の空隙率は36%であった。
-Measurement of porosity As a result of measuring the space | gap holding layer using AFM (atomic force microscope), Ra was 330 nm. In addition, a cross section of the void retaining layer was cut out using a microtome, observed with a transmission electron microscope (TEM), and the porosity was determined from the area of the concave portion from Ra obtained from AFM and the ratio of the cross-sectional profile of the layer obtained by TEM. Was measured. As a result, the porosity of the void retaining layer was 36%.

微細凹凸構造体の頂部における周期Pmaxは250nmであり、Pmax≦380nmの関係にあった。   The period Pmax at the top of the fine concavo-convex structure was 250 nm, and Pmax ≦ 380 nm.

(ハードコート層組成物1)
下記材料を攪拌、混合しハードコート層組成物1とした。
(Hard coat layer composition 1)
The following materials were stirred and mixed to obtain hard coat layer composition 1.

ラジカル重合性化合物:ペンタエリスリトールテトラアクリレート(新中村化学工業株式会社製) 180質量部
イルガキュア184(光重合開始剤、チバ・ジャパン株式会社製) 9質量部
シーホスターKEP−50(日本触媒社製) 9質量部
ポリエーテル変性シリコーン化合物(商品名;KF−355A、信越化学工業株式会社製) 9質量部
プロピレングリコールモノメチルエーテル 10質量部
酢酸エチル 80質量部
メチルエチルケトン 100質量部
(空隙保持層を有するフィルム2〜7の作製)
先ず、空隙保持層を有するフィルムの空隙率が表1となるように、酸素アッシングとフッ素系ガスエッチングの条件を変更して、凹み深さが異なる凹凸を有する石英マスタ型をそれぞれ作製した。次に前記作製した石英マスタの型を用いた以外は、空隙保持層を有するフィルム1の作製と同様にして、空隙保持層を有するフィルム2〜7を作製した。
Radical polymerizable compound: Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 180 parts by mass Irgacure 184 (photopolymerization initiator, manufactured by Ciba Japan Co., Ltd.) 9 parts by mass Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.) 9 Mass part Polyether-modified silicone compound (trade name; KF-355A, manufactured by Shin-Etsu Chemical Co., Ltd.) 9 parts by mass Propylene glycol monomethyl ether 10 parts by mass Ethyl acetate 80 parts by mass Methyl ethyl ketone 100 parts by mass (film 2 having a void retaining layer 7)
First, by changing the conditions of oxygen ashing and fluorine-based gas etching so that the porosity of the film having a void retaining layer is as shown in Table 1, quartz master molds having irregularities with different depths of depression were produced. Next, films 2 to 7 having a void holding layer were produced in the same manner as the production of the film 1 having a void holding layer, except that the produced quartz master mold was used.

(空隙保持層を有するフィルム8の作製)
先ずは、特開2004−4642号公報の実施例を参考にして透明保護フィルム1を作製した。
(Preparation of film 8 having a void retaining layer)
First, the transparent protective film 1 was produced with reference to the Example of Unexamined-Japanese-Patent No. 2004-4642.

(透明保護フィルム1の作製)
イソブテンおよびN−メチルマレイミドからなる共重合体(N−メチルマレイミド含有量50モル%)75質量部と、アクリロニトリルの含有量が28質量%であるアクリロニトリル−スチレン共重合体25質量部とを塩化メチレンに溶解し、固形分濃度15質量%の溶液を得た。この溶液をポリエチレンテレフタレートフィルム上に流延し、室温で60分放置した後、当該フィルムから剥がした。100℃で10分間乾燥後に、140℃で10分間、さらに160℃で30分間乾燥して、厚さ100μmの透明保護フィルム1を得た。リターデーションは、Ro=4nm、Rt=4nmであった。
(Preparation of transparent protective film 1)
75 parts by mass of a copolymer comprising isobutene and N-methylmaleimide (N-methylmaleimide content 50 mol%) and 25 parts by mass of an acrylonitrile-styrene copolymer having an acrylonitrile content of 28% by mass are methylene chloride To obtain a solution having a solid concentration of 15% by mass. This solution was cast on a polyethylene terephthalate film, allowed to stand at room temperature for 60 minutes, and then peeled off from the film. After drying at 100 ° C. for 10 minutes, the film was dried at 140 ° C. for 10 minutes and further at 160 ° C. for 30 minutes to obtain a transparent protective film 1 having a thickness of 100 μm. The retardation was Ro = 4 nm and Rt = 4 nm.

上記作製した透明保護フィルム1を800mm幅にカットして、ハードコート層上に空隙保持層を設け、空隙保持層を有するフィルム8を作製した。800mm幅にカットした透明保護フィルム1上に、上記のハードコート層組成物1を塗布・乾燥し、次いで空隙保持層を有するフィルム3の作製で用いた凹凸を有する石英マスタの型を使用して、空隙保持層を設け、空隙保持層を有するフィルム3と同様にして硬化させ、ドライ膜厚8μmの空隙保持層を有するフィルム8を作製した。なお、空隙率は空隙保持層を有するフィルム1と同様の方法で測定した結果、78%であった。   The produced transparent protective film 1 was cut to a width of 800 mm, a void retaining layer was provided on the hard coat layer, and a film 8 having a void retaining layer was produced. On the transparent protective film 1 cut to a width of 800 mm, the hard coat layer composition 1 is applied and dried, and then the quartz master mold having the unevenness used in the production of the film 3 having the void holding layer is used. Then, a void retaining layer was provided and cured in the same manner as the film 3 having the void retaining layer, and a film 8 having a void retaining layer having a dry film thickness of 8 μm was produced. In addition, the porosity was 78% as a result of measuring by the method similar to the film 1 which has a space | gap holding layer.

<偏光板101の作製>
(アルカリ鹸化処理)
光学異方性層に剥離性の保護フィルム(PET製)を張り付けた位相差フィルム1と空隙層に剥離性の保護フィルム(PET製)を張り付けて保護した空隙保持層を有するフィルム1を下記に記載する条件でアルカリ鹸化処理を実施した。また、アルカリ鹸化処理後に位相差フィルム1と空隙保持層を有するフィルム1の保護フィルムを剥がし、下記のように偏光膜と貼り合せて偏光板101を作製した。
<Preparation of Polarizing Plate 101>
(Alkaline saponification treatment)
A retardation film 1 having a peelable protective film (PET) attached to an optically anisotropic layer and a film 1 having a void holding layer protected by attaching a peelable protective film (PET) to a gap layer are shown below. Alkaline saponification was carried out under the conditions described. Further, after the alkali saponification treatment, the protective film of the retardation film 1 and the film 1 having the void retaining layer was peeled off and bonded to the polarizing film as described below to produce the polarizing plate 101.

ケン化工程 2.5M−NaOH 50℃ 90秒
水洗工程 水 30℃ 45秒
中和工程 10質量部HCl 30℃ 45秒
水洗工程 水 30℃ 45秒
ケン化処理後、水洗、中和、水洗の順に行い、次いで80℃で乾燥。
Saponification step 2.5M-NaOH 50 ° C. 90 seconds Water washing step Water 30 ° C. 45 seconds Neutralization step 10 parts HCl 30 ° C. 45 seconds Water washing step Water 30 ° C. 45 seconds Water treatment, neutralization, water washing in this order And then dried at 80 ° C.

〈偏光膜の作製と貼り合わせ〉
厚さ120μmの長尺ロールポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で6倍に製膜方向に延伸して偏光膜L−2を作製した。
<Preparation and bonding of polarizing film>
A 120 μm-thick long roll polyvinyl alcohol film is immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched 6 times at 50 ° C. in the film forming direction to form the polarizing film L-2. Produced.

次に、ポリビニルアルコール系の接着剤を用いて、偏光膜L−2の透過軸とフィルムの面内遅相軸が平行になるように偏光膜の片面に鹸化処理した空隙保持層を有するフィルム1の空隙層とは対側の面と、位相差フィルム1を図3に示す組み合わせとなるように貼り合わせ偏光板101を作製した。   Next, using a polyvinyl alcohol adhesive, film 1 having a void retaining layer saponified on one side of the polarizing film so that the transmission axis of polarizing film L-2 and the in-plane slow axis of the film are parallel to each other A laminated polarizing plate 101 was produced so that the surface opposite to the void layer and the retardation film 1 were combined as shown in FIG.

<偏光板102〜107の作製>
偏光板101の作製において、空隙保持層を有するフィルム1を、空隙保持層を有するフィルム2〜7に変更した以外は、同様にして偏光板102〜107を作製した。
<Production of Polarizing Plates 102 to 107>
Polarizers 102 to 107 were produced in the same manner except that the film 1 having the void retaining layer was changed to the films 2 to 7 having the void retaining layer in the production of the polarizing plate 101.

<偏光板108の作製>
偏光板101で作製した偏光膜L−2の透過軸とフィルムの面内遅相軸が平行になるように偏光膜の片面に、粘着剤を用いて空隙保持層を有するフィルム8の空隙層とは対側の面とを貼り合せた。次いで、位相差フィルム2も粘着剤を用いて図3に示す組み合わせとなるように貼り合わせ、偏光板108を作製した。
<Preparation of Polarizing Plate 108>
The gap layer of the film 8 having a gap holding layer on one side of the polarizing film using an adhesive so that the transmission axis of the polarizing film L-2 produced by the polarizing plate 101 and the in-plane slow axis of the film are parallel to each other; Stuck the opposite side. Next, the retardation film 2 was also bonded using an adhesive so as to have the combination shown in FIG.

<液晶表示装置501の作製>
松下電器製26インチ液晶テレビ、TH−26LX60の液晶パネルの偏光板を剥がし、視認側の偏光板(L−10)に上記作製した偏光板101を図3のように光学異方性層と厚さ5μmの粘着剤を用いて液晶セルガラスL−6−1とを貼合した。また、バックライト側には、上記手順と同様にアルカリ鹸化処理したセルロースエステルフィルム3及びセルロースエステルフィルム1と偏光膜L−8を図3のような構成で貼合した偏光板101を厚さ5μmの粘着剤を用いて液晶セルガラスL−6−2と貼合して、液晶パネル401を作製した。
<Production of Liquid Crystal Display Device 501>
The polarizing plate 101 of the Matsushita Electric 26-inch liquid crystal television, TH-26LX60 liquid crystal panel is peeled off, and the produced polarizing plate 101 is formed on the viewing-side polarizing plate (L-10) as shown in FIG. Liquid crystal cell glass L-6-1 was bonded using a 5 μm thick adhesive. Further, on the backlight side, a cellulose ester film 3 and a polarizing plate 101 in which the cellulose ester film 1 and the polarizing film L-8 bonded in the configuration as shown in FIG. A liquid crystal panel 401 was prepared by pasting the liquid crystal cell glass L-6-2 using the above adhesive.

次に液晶パネル401を温度90℃の高温サーモにて、500時間保存し、熱処理を実施し、この熱処理した液晶パネル401を液晶テレビにセットし、液晶表示装置501を作製した。   Next, the liquid crystal panel 401 was stored in a high-temperature thermo at 90 ° C. for 500 hours and subjected to heat treatment. The heat-treated liquid crystal panel 401 was set on a liquid crystal television, and a liquid crystal display device 501 was manufactured.

<液晶表示装置502〜508の作製>
液晶表示装置501の視認側の偏光板(L−10)を偏光板102〜108に変更した以外は同様にして、液晶パネル402〜408を作製した。この液晶パネル402〜408も同様に熱処理を実施し、液晶テレビにセットし、液晶表示装置502〜508を作製した。
<Production of liquid crystal display devices 502 to 508>
Liquid crystal panels 402 to 408 were produced in the same manner except that the polarizing plate (L-10) on the viewing side of the liquid crystal display device 501 was changed to the polarizing plates 102 to 108. The liquid crystal panels 402 to 408 were similarly heat-treated and set on a liquid crystal television to produce liquid crystal display devices 502 to 508.

次に上記作製した液晶表示装置501〜508について下記の評価を行った。   Next, the following evaluation was performed on the manufactured liquid crystal display devices 501 to 508.

液晶表示装置501〜508のバックライトを点灯して、黒表示状態で500時間放置し、放置後のムラの発生強度、及びを光漏れについて、以下の基準で評価した。   The backlights of the liquid crystal display devices 501 to 508 were turned on and left in a black display state for 500 hours, and the occurrence intensity of unevenness after being left and the light leakage were evaluated according to the following criteria.

[ムラ評価]
ムラの発生強度を目視観察し、以下の基準で評価した。
[Evaluation of unevenness]
The intensity of unevenness was visually observed and evaluated according to the following criteria.

状況 評価
ムラの発生ナシ ◎
弱い雲状ムラが発生 ○
四隅に強いムラが発生 △
四隅に強いムラと全面に雲状ムラが発生 ×
[光漏れ評価]
斜め方向70°から観察して光漏れを評価した。
Situation evaluation No occurrence of unevenness ◎
Weak cloudy unevenness ○
Strong unevenness occurs at the four corners △
Strong unevenness at the four corners and cloudy unevenness on the entire surface ×
[Light leakage evaluation]
Light leakage was evaluated by observing from an oblique direction of 70 °.

状況 評価
光漏れは非常に少なかった ◎
僅かな光漏れがあるものの実害上問題なし ○
多少の光漏れが認められる △
全面に光漏れが認められる ×
得られた結果を表1に示した。
Situation evaluation There was very little light leakage.
Although there is a slight light leak, there is no problem in terms of actual damage ○
Some light leakage is observed △
Light leakage is observed on the entire surface ×
The obtained results are shown in Table 1.

Figure 2010097105
Figure 2010097105

表1の結果から判るように光学異方性層に実質的に垂直配向した重合性液晶化合物を有する層を設け、かつ第1の保護フィルムの空隙保持層を有するフィルムの空隙率が30%以上であれば、耐熱性試験後のムラ及び斜め方向からの光漏れに対して優れた効果を発揮する事が判る。中でも空隙保持層を有するフィルムの空隙率が50%以上、90%以下の条件ではムラ及び斜め方向からの光漏れに対して特に優れた効果を発揮する。   As can be seen from the results of Table 1, a layer having a polymerizable liquid crystal compound substantially vertically aligned on the optically anisotropic layer and having a void holding layer of the first protective film has a porosity of 30% or more. If so, it can be seen that an excellent effect is exhibited against unevenness after heat resistance test and light leakage from an oblique direction. In particular, the film having the void retaining layer exhibits particularly excellent effects on unevenness and light leakage from an oblique direction under the condition where the void ratio is 50% or more and 90% or less.

実施例2
(空隙保持層を有するフィルム9の作製)
空隙保持層を有するフィルム3の作製において、ハードコート層組成物1をハードコート層組成物2に変更した以外は同様にして、空隙保持層を有するフィルム9を作製した。
Example 2
(Preparation of film 9 having a void retaining layer)
In the production of the film 3 having a void retaining layer, a film 9 having a void retaining layer was similarly produced except that the hard coat layer composition 1 was changed to the hard coat layer composition 2.

下記材料を攪拌、混合しハードコート層組成物2とした。   The following materials were stirred and mixed to obtain hard coat layer composition 2.

(ハードコート組成物2)
カチオン重合性化合物:〔1−(3−エチル−3−オキセタニル)メチル〕エーテル
170質量部
カチオン重合性化合物:含フッ素エポキシ化合物1 10質量部
(光カチオン重合開始剤)
4−メチルフェニル[4−(1−メチルエチル)フェニル]ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート 6質量部
(ロードシル2074、ローディアジャパン株式会社製)
シーホスターKEP−50(日本触媒社製) 9質量部
ポリエーテル変性シリコーン化合物(商品名;KF−355A、信越化学工業株式会社製) 9質量部
プロピレングリコールモノメチルエーテル 10質量部
酢酸エチル 80質量部
メチルエチルケトン 100質量部
〈含フッ素エポキシ化合物1の調製〉
1,3−ジヒドロキシヘキサフルオロイソプロピルベンゼン81.03gとエピクロロヒドリン185gを混合し、水酸化ナトリウム16.27gと水40mlを加え、撹拌下で加熱還流させた。
(Hard coat composition 2)
Cationic polymerizable compound: [1- (3-ethyl-3-oxetanyl) methyl] ether
170 parts by mass Cationic polymerizable compound: fluorine-containing epoxy compound 1 10 parts by mass (photocation polymerization initiator)
4-Methylphenyl [4- (1-methylethyl) phenyl] iodonium tetrakis (pentafluorophenyl) borate 6 parts by mass (Lordsil 2074, manufactured by Rhodia Japan Ltd.)
Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.) 9 parts by mass Polyether-modified silicone compound (trade name; KF-355A, manufactured by Shin-Etsu Chemical Co., Ltd.) 9 parts by mass Propylene glycol monomethyl ether 10 parts by mass Ethyl acetate 80 parts by mass Methyl ethyl ketone 100 Mass parts <Preparation of fluorine-containing epoxy compound 1>
81.03 g of 1,3-dihydroxyhexafluoroisopropylbenzene and 185 g of epichlorohydrin were mixed, 16.27 g of sodium hydroxide and 40 ml of water were added, and the mixture was heated to reflux with stirring.

130℃で3時間反応後、自然冷却し、生成した塩化ナトリウムを吸引濾過により除去した。得られた濾液をクロロホルム−水により抽出し、有機層を乾燥、濾過、濃縮することにより、含フッ素エポキシ化合物1を95.7g得た。   After reacting at 130 ° C. for 3 hours, the mixture was naturally cooled, and the produced sodium chloride was removed by suction filtration. The obtained filtrate was extracted with chloroform-water, and the organic layer was dried, filtered and concentrated to obtain 95.7 g of fluorine-containing epoxy compound 1.

<液晶表示装置509及び510の作製>
(偏光板109の作製)
空隙保持層を有するフィルム9を用いた以外は偏光板101と同様にして偏光板109を作製した。
<Production of Liquid Crystal Display Devices 509 and 510>
(Preparation of polarizing plate 109)
A polarizing plate 109 was produced in the same manner as the polarizing plate 101 except that the film 9 having a void holding layer was used.

(液晶パネル409の作製)
液晶パネル401の作製において視認側の偏光板(L−10)に上記作製した偏光板109を用いた以外は同様にして、液晶パネル409を作製した。
(Production of liquid crystal panel 409)
A liquid crystal panel 409 was produced in the same manner as in the production of the liquid crystal panel 401 except that the produced polarizing plate 109 was used as the viewing side polarizing plate (L-10).

次に、液晶パネル409と実施例1で作製した液晶パネル403を温度90℃の高温サーモにて、750時間保存し、熱処理を実施した。この熱処理済み液晶パネル409と403をそれぞれ液晶テレビにセットした。   Next, the liquid crystal panel 409 and the liquid crystal panel 403 manufactured in Example 1 were stored for 750 hours in a high-temperature thermo at 90 ° C. and subjected to heat treatment. The heat-treated liquid crystal panels 409 and 403 were respectively set on a liquid crystal television.

(液晶表示装置509及び510の作製)
熱処理を750時間行った液晶パネル409を用いた液晶表示装置を509、熱処理を750時間行った液晶パネル403を用いた液晶表示装置を510とした。次に上記作製した液晶表示装置509及び510について下記の評価を行った。
(Production of liquid crystal display devices 509 and 510)
A liquid crystal display device using the liquid crystal panel 409 which was subjected to heat treatment for 750 hours was designated as 509, and a liquid crystal display device using the liquid crystal panel 403 which was subjected to heat treatment for 750 hours was designated as 510. Next, the following evaluation was performed on the liquid crystal display devices 509 and 510 manufactured as described above.

[ムラ・光漏れ評価]
上記作製した液晶表示装置509及び510について、放置時間を750時間に変更した以外は、実施例1と同様に評価した。得られた結果を表2に示した。
[Evaluation of unevenness and light leakage]
The produced liquid crystal display devices 509 and 510 were evaluated in the same manner as in Example 1 except that the standing time was changed to 750 hours. The obtained results are shown in Table 2.

Figure 2010097105
Figure 2010097105

表2の結果から判るように、より過酷な耐久性試験後では、第1の保護フィルムの空隙保持層をカチオン重合性化合物で形成することで、特に優れたムラ及び斜め方向からの光漏れに対する効果を発揮することが判る。   As can be seen from the results in Table 2, after the more severe durability test, by forming the void holding layer of the first protective film with a cationic polymerizable compound, particularly excellent unevenness and light leakage from an oblique direction. It turns out that an effect is demonstrated.

本発明により作製される微細凹凸構造体の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the fine concavo-convex structure body produced by this invention. 微細凹凸構造体の形状の例である。It is an example of the shape of a fine concavo-convex structure. 本発明の好ましい実施形態による液晶表示装置の概略図である。1 is a schematic view of a liquid crystal display device according to a preferred embodiment of the present invention. 本発明に係る保護フィルムの製造方法を実施する装置の1つの実施形態を示す概略フローシートである。It is a general | schematic flow sheet which shows one embodiment of the apparatus which enforces the manufacturing method of the protective film which concerns on this invention.

符号の説明Explanation of symbols

L−1 第1の保護フィルム(空隙層を有するフィルム)
L−2、L−8 偏光膜
L−3 透明フィルム(セルロースエステルフィルム2)
L−4 中間層
L−5 棒状の液晶を垂直に配向させて配向を固定した光学異方性層
L−6 IPS型液晶セル
L−6−1 非電極側セルガラス基板
L−6−2 電極側セルガラス基板
L−6−3 IPS型液晶セル
L−7 偏光板保護フィルム(セルロースエステルフィルム3)
L−9 偏光板保護フィルム(セルロースエステルフィルム1)
L−10 第1の偏光板(視認側偏光板)
L−11 第2の保護フィルム(位相差フィルム)
L−12 第2の偏光板(バックライト側偏光板)
L−13 バックライト
1 押出し機
2 フィルター
3 スタチックミキサー
4 流延ダイ
5 回転支持体(第1冷却ロール)
6 挟圧回転体(タッチロール)
7 回転支持体(第2冷却ロール)
8 回転支持体(第3冷却ロール)
9、11、13、14、15 搬送ロール
10 セルロースエステルフィルム
16 巻取り装置
L-1 First protective film (film having a void layer)
L-2, L-8 Polarizing film L-3 Transparent film (cellulose ester film 2)
L-4 Intermediate layer L-5 Optically anisotropic layer in which rod-like liquid crystal is vertically aligned and fixed in alignment L-6 IPS liquid crystal cell L-6-1 Non-electrode side cell glass substrate L-6-2 Electrode Side cell glass substrate L-6-3 IPS liquid crystal cell L-7 Polarizing plate protective film (cellulose ester film 3)
L-9 Polarizing plate protective film (cellulose ester film 1)
L-10 1st polarizing plate (viewing side polarizing plate)
L-11 Second protective film (retardation film)
L-12 Second polarizing plate (backlight side polarizing plate)
L-13 Backlight 1 Extruder 2 Filter 3 Static mixer 4 Casting die 5 Rotating support (first cooling roll)
6 Nipping pressure rotating body (touch roll)
7 Rotating support (second cooling roll)
8 Rotating support (3rd cooling roll)
9, 11, 13, 14, 15 Transport roll 10 Cellulose ester film 16 Winding device

Claims (7)

少なくとも第1の保護フィルムと、偏光膜と、第2の保護フィルムがこの順で積層された偏光板において、該第2の保護フィルムが少なくとも透明フィルム及び実質的に垂直配向した重合性液晶化合物を含む光学異方性層から構成され、かつ該第1の保護フィルムが少なくとも空隙率30%以上の空隙保持層を該偏光膜から遠い側に有することを特徴とする偏光板。 In a polarizing plate in which at least a first protective film, a polarizing film, and a second protective film are laminated in this order, the second protective film comprises at least a transparent film and a polymerizable liquid crystal compound that is substantially vertically aligned. A polarizing plate comprising an optically anisotropic layer including the first protective film and a void-holding layer having a porosity of at least 30% on the side far from the polarizing film. 前記空隙保持層が微細凹凸構造体を有し、該微細凹凸構造体の頂部における周期Pmaxが、380nm以下であることを特徴とする請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the gap retaining layer has a fine concavo-convex structure, and a period Pmax at the top of the fine concavo-convex structure is 380 nm or less. 前記微細凹凸構造体の外周面が、頂部から底部に傾きを有する錐体形状からなることを特徴とする請求項2に記載の偏光板。 The polarizing plate according to claim 2, wherein an outer peripheral surface of the fine concavo-convex structure has a cone shape having an inclination from the top to the bottom. 前記錐体形状が、楕円錐形状または楕円錐台形状からなることを特徴とする請求項3に記載の偏光板。 The polarizing plate according to claim 3, wherein the cone shape is an elliptical cone shape or an elliptical truncated cone shape. 前記空隙保持層が、カチオン性重合化合物を含有することを特徴とする請求項1〜4のいずれか1項に記載の偏光板。 The polarizing plate according to claim 1, wherein the void retaining layer contains a cationic polymerization compound. 請求項1〜5のいずれか1項に記載の偏光板を液晶セルの少なくとも一方の面に用いたことを特徴とする液晶表示装置。 A liquid crystal display device using the polarizing plate according to claim 1 on at least one surface of a liquid crystal cell. 請求項1〜5のいずれか1項に記載の偏光板を、IPS(インプレーンスイッチング)モード型液晶セルの少なくとも一方の面に用いたことを特徴とするIPS(インプレーンスイッチング)モード型液晶表示装置。 An IPS (in-plane switching) mode liquid crystal display, wherein the polarizing plate according to any one of claims 1 to 5 is used on at least one surface of an IPS (in-plane switching) mode liquid crystal cell. apparatus.
JP2008269510A 2008-10-20 2008-10-20 Polarizing plate, liquid crystal display device, and IPS (in-plane switching) mode liquid crystal display device Active JP5217892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269510A JP5217892B2 (en) 2008-10-20 2008-10-20 Polarizing plate, liquid crystal display device, and IPS (in-plane switching) mode liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269510A JP5217892B2 (en) 2008-10-20 2008-10-20 Polarizing plate, liquid crystal display device, and IPS (in-plane switching) mode liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2010097105A true JP2010097105A (en) 2010-04-30
JP5217892B2 JP5217892B2 (en) 2013-06-19

Family

ID=42258813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269510A Active JP5217892B2 (en) 2008-10-20 2008-10-20 Polarizing plate, liquid crystal display device, and IPS (in-plane switching) mode liquid crystal display device

Country Status (1)

Country Link
JP (1) JP5217892B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108737A (en) * 2013-12-05 2015-06-11 住友化学株式会社 Polarizer having fewer bubble detects
JP2016194726A (en) * 2016-07-27 2016-11-17 住友化学株式会社 Polarizer having fewer bubble defects
JP2017032756A (en) * 2015-07-31 2017-02-09 三菱レイヨン株式会社 Transparent film and method for manufacturing the same
JP2019159199A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate with adhesive layers
JP2019159200A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP2019159198A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP2019159197A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333508A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Method for producing antireflection material
JP2004205990A (en) * 2002-12-26 2004-07-22 Dainippon Printing Co Ltd Manufacturing method of fine rugged pattern having antireflection performance and antireflection article
JP2005181740A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Reflection prevention structure
JP2006075698A (en) * 2004-09-08 2006-03-23 Fuji Photo Film Co Ltd Production method for optical functional film, optical functional film, protection film for polarizing plate and polarizing plate and image display device
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2006285169A (en) * 2004-05-18 2006-10-19 Fuji Photo Film Co Ltd Optical compensating polarizing plate, image display device and liquid crystal display device
JP2007199522A (en) * 2006-01-27 2007-08-09 Nippon Zeon Co Ltd Method of manufacturing optical laminated body
JP2008165213A (en) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd Anti-reflection film and display device
JP2008176076A (en) * 2007-01-18 2008-07-31 Sony Corp Optical element and its manufacturing method, and replicate substrate for manufacturing optical element and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333508A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Method for producing antireflection material
JP2004205990A (en) * 2002-12-26 2004-07-22 Dainippon Printing Co Ltd Manufacturing method of fine rugged pattern having antireflection performance and antireflection article
JP2005181740A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Reflection prevention structure
JP2006285169A (en) * 2004-05-18 2006-10-19 Fuji Photo Film Co Ltd Optical compensating polarizing plate, image display device and liquid crystal display device
JP2006075698A (en) * 2004-09-08 2006-03-23 Fuji Photo Film Co Ltd Production method for optical functional film, optical functional film, protection film for polarizing plate and polarizing plate and image display device
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2007199522A (en) * 2006-01-27 2007-08-09 Nippon Zeon Co Ltd Method of manufacturing optical laminated body
JP2008165213A (en) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd Anti-reflection film and display device
JP2008176076A (en) * 2007-01-18 2008-07-31 Sony Corp Optical element and its manufacturing method, and replicate substrate for manufacturing optical element and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108737A (en) * 2013-12-05 2015-06-11 住友化学株式会社 Polarizer having fewer bubble detects
JP2017032756A (en) * 2015-07-31 2017-02-09 三菱レイヨン株式会社 Transparent film and method for manufacturing the same
JP2016194726A (en) * 2016-07-27 2016-11-17 住友化学株式会社 Polarizer having fewer bubble defects
JP2019159199A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate with adhesive layers
JP2019159200A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP2019159198A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP2019159197A (en) * 2018-03-15 2019-09-19 住友化学株式会社 Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
CN110275236A (en) * 2018-03-15 2019-09-24 住友化学株式会社 The manufacturing method of the optical laminate of the manufacturing method of optical laminate and subsidiary adhesive layer

Also Published As

Publication number Publication date
JP5217892B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5056978B2 (en) Polarizing plate and liquid crystal display device using the same
JP4736562B2 (en) Polarizing plate and display device
KR101240049B1 (en) Cellulose Ester Film, Polarizer for In-Plane Switching Display Employing the Same, and In-Plane Switching Display
JP5038625B2 (en) Stretched cellulose ester film, hard coat film, antireflection film, optical compensation film, and polarizing plate and display device using them
US8110128B2 (en) Method of manufacturing an anti-glare anti-reflection film
JP5217906B2 (en) Polarizing plate, liquid crystal display device, and IPS (in-plane switching) mode liquid crystal display device
JP5315993B2 (en) Polarizing plate protective film, polarizing plate, liquid crystal display device
JP5217892B2 (en) Polarizing plate, liquid crystal display device, and IPS (in-plane switching) mode liquid crystal display device
WO2010024115A1 (en) Optical film, antireflective film, polarizing plate, and liquid crystal display device
US20060204718A1 (en) Anti-glare film, manufacturing method of anti-glare film, anti glaring anti-reflection film, polarizing plate, and display
KR20080039933A (en) Liquid crystal display
JP2009042351A (en) Optical film, polarizing plate, and display device
JP5598308B2 (en) Method for producing antireflection film
JP2007076089A (en) Method for producing optical film having uneven surface and optical film having uneven surface
WO2010016369A1 (en) Optical film, method for production of the optical film, polarizing plate, and liquid crystal display device
JP2007025040A (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP5678965B2 (en) Manufacturing method of liquid crystal display device with front plate, liquid crystal display device with front plate
JPWO2009075201A1 (en) Anti-glare film, polarizing plate and liquid crystal display device
JP4765670B2 (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP2010039418A (en) Antireflective film, method for producing the same, polarizing plate and image display apparatus
JP2010008659A (en) Hard coat film, ant-reflective film, method of manufacturing hard coat film, method of manufacturing anti-reflective film, polarizing plate and image display device
JP2007187971A (en) Antiglare antireflection film, its manufacturing method, polarizing plate and display apparatus
JP2006145736A (en) Antiglare antireflection film, polarizing plate and image display
JP2010139824A (en) Sheet polarizer, liquid crystal display device and ips (in-plane switching) type liquid crystal display device
JP2010145790A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350