JP2010096422A - Boiler unit and power generation system - Google Patents

Boiler unit and power generation system Download PDF

Info

Publication number
JP2010096422A
JP2010096422A JP2008267476A JP2008267476A JP2010096422A JP 2010096422 A JP2010096422 A JP 2010096422A JP 2008267476 A JP2008267476 A JP 2008267476A JP 2008267476 A JP2008267476 A JP 2008267476A JP 2010096422 A JP2010096422 A JP 2010096422A
Authority
JP
Japan
Prior art keywords
boiler
water supply
flow rate
steam
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267476A
Other languages
Japanese (ja)
Other versions
JP5320013B2 (en
Inventor
Hiroshi Muraki
大志 村木
Yuichi Kirihara
雄一 桐原
Masahiro Miyato
正弘 宮都
Seiji Miwayama
誠次 三和山
Keisuke Suzuki
鈴木  啓介
Hiroyuki Motoyoshi
弘幸 本吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2008267476A priority Critical patent/JP5320013B2/en
Publication of JP2010096422A publication Critical patent/JP2010096422A/en
Application granted granted Critical
Publication of JP5320013B2 publication Critical patent/JP5320013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler unit and a power generation system capable of shortening a time until a boiler is stopped and reducing the amount of an energy loss. <P>SOLUTION: The boiler unit includes: the boiler for generating steam; turbine drive pumps 51, 53 driven by using steam generated by the boiler; an electric motor drive pump 55 driven by using electricity; a water supply switch for switching water supply to the boiler between the turbine drive pumps 51, 53 and the electric motor drive pump 55; recirculation piping 61, 63 for connecting the discharge side and the suction side (deaerator 24) of the turbine drive pumps 51, 53; and recirculation valves 71, 73 for controlling a flow rate of water to be recirculated. When the boiler performing low load operation is stopped, after a set value for starting to open the recirculation valves 71, 73 is set larger compared to the case of the low load operation, the water supply switch switches water supply to the boiler from the turbine drive pumps 51, 53 to the electric motor drive pump 55. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、定圧貫流ボイラを有するボイラユニットおよび発電システムに関するものである。   The present invention relates to a boiler unit having a constant pressure once-through boiler and a power generation system.

火力発電所等において、定圧貫流ボイラと蒸気タービンとを主な構成機器として備える発電システムが多く採用されている。この発電システムは、定圧貫流ボイラで発生させた蒸気を用いて蒸気タービンを駆動し、蒸気タービンに結合された発電機により発電するものである。   In thermal power plants and the like, many power generation systems including a constant pressure once-through boiler and a steam turbine as main components are employed. This power generation system drives a steam turbine using steam generated by a constant pressure once-through boiler, and generates power by a generator coupled to the steam turbine.

上記の発電システムにおいて、定圧貫流ボイラは、通常時には定圧運転、即ち、主蒸気圧力が負荷に依存せずに一定となる運転を行う。しかし、定圧貫流ボイラが定圧運転を行うことができる負荷には制限があり、例えば、25%以下の負荷では定圧運転を安定的に行うことができない。そこで、運用可能な負荷範囲を拡げるために、主蒸気圧力を負荷に応じて変化させる変圧運転を行う方法が知られている(例えば、特許文献1および特許文献2参照)。
特開昭57−82601号公報 特開2007−271189号公報
In the power generation system described above, the constant pressure once-through boiler normally performs a constant pressure operation, that is, an operation in which the main steam pressure is constant without depending on the load. However, there is a limit to the load that the constant pressure once-through boiler can perform the constant pressure operation. For example, the constant pressure operation cannot be stably performed at a load of 25% or less. Therefore, a method of performing a transformer operation in which the main steam pressure is changed according to the load in order to expand the operable load range is known (see, for example, Patent Document 1 and Patent Document 2).
JP-A-57-82601 JP 2007-271189 A

しかしながら、特許文献1および特許文献2に開示されている技術によれば、例えば15%の最低負荷からボイラを停止する場合、一旦負荷を例えば25%まで上昇させ、運転モードを定圧運転に切り替えた後、停止準備を経てボイラを停止していた。したがって、停止までの時間がかかることの他、停止までの燃料・所内動力等のエネルギーを損失してしまう等の問題があった。   However, according to the techniques disclosed in Patent Document 1 and Patent Document 2, when the boiler is stopped from the minimum load of 15%, for example, the load is temporarily increased to, for example, 25%, and the operation mode is switched to the constant pressure operation. After that, the boiler was stopped after preparation for stopping. Therefore, there is a problem that, in addition to taking time to stop, energy such as fuel and power in the station until the stop is lost.

本発明は、上記問題を解決するためになされたもので、ボイラを停止させるまでの時間を短縮し、エネルギー損失量を低減することのできるボイラユニットおよび発電システムを提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a boiler unit and a power generation system that can shorten the time until the boiler is stopped and reduce the amount of energy loss.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明の第1の態様は、蒸気を発生させるボイラと、該ボイラにより発生させた蒸気を用いて駆動し、前記ボイラに給水を行うタービン駆動ポンプと、電気を用いて駆動し、前記ボイラに給水を行う電動機駆動ポンプと、前記ボイラへの給水を前記タービン駆動ポンプと前記電動機駆動ポンプとで切り替える給水切替部と、前記タービン駆動ポンプの吐出側と吸込側とを接続し、前記タービン駆動ポンプにより吐出された水を前記吸込側に再循環させる再循環配管と、該再循環配管に設けられ、前記タービン駆動ポンプの吸込流量が前記タービン駆動ポンプを駆動させるために必要な最低吸込流量以上となるように、再循環させる水の流量を調節する再循環弁と、前記タービン駆動ポンプの吸込流量に基づいて前記再循環弁の開度を制御する再循環弁制御部とを備え、通常運転よりも低い圧力の蒸気を発生させる低負荷運転を行う前記ボイラを停止させる場合に、前記再循環弁制御部が、前記再循環弁を開き始める設定値を前記低負荷運転時よりも大きくした後に、前記給水切替部が、前記ボイラへの給水を前記タービン駆動ポンプから前記電動機駆動ポンプに切り替えるボイラユニットである。
In order to solve the above problems, the present invention employs the following means.
A first aspect of the present invention includes a boiler that generates steam, a turbine drive pump that is driven using the steam generated by the boiler, and supplies water to the boiler, and is driven using electricity. An electric motor-driven pump for supplying water; a water supply switching unit for switching water supply to the boiler between the turbine-driven pump and the electric motor-driven pump; and a discharge side and a suction side of the turbine-driven pump, and the turbine-driven pump A recirculation pipe for recirculating the water discharged by the suction side to the suction side, and a suction flow rate of the turbine drive pump that is provided in the recirculation pipe is greater than or equal to a minimum suction flow rate necessary for driving the turbine drive pump. The recirculation valve for adjusting the flow rate of water to be recirculated and the opening degree of the recirculation valve based on the suction flow rate of the turbine drive pump A recirculation valve control unit, and when the boiler that performs low-load operation that generates steam at a pressure lower than normal operation is stopped, the recirculation valve control unit sets a set value at which the recirculation valve starts to open. The boiler unit is a boiler unit for switching the water supply to the boiler from the turbine drive pump to the electric motor drive pump after making it larger than during the low load operation.

ボイラを停止する際には、ボイラへの給水流量を低下させるため、タービン駆動ポンプを駆動するために必要な蒸気量が得られなくなる。そのため、ボイラへの給水は、タービン駆動ポンプから電動機駆動ポンプに切り替えられる。この切り替えは、電動機駆動ポンプからの給水流量を増加させるとともに、その増加量に応じてタービン駆動ポンプからの給水流量を減少させることで行われる。
また、タービン駆動ポンプおよび電動機駆動ポンプは、キャビテーション等を防止するために、その吸込流量が最低吸込流量以下にならないようにする必要がある。したがって、これらポンプの吸込流量が最低吸込流量以下となる前に再循環弁を開き、吐出側から吸込側(例えば脱気器)へ循環する流量を増加させて最低吸込流量以上を確保するように制御される。
When the boiler is stopped, the flow rate of water supplied to the boiler is reduced, so that the amount of steam necessary for driving the turbine drive pump cannot be obtained. Therefore, the feed water to the boiler is switched from the turbine drive pump to the electric motor drive pump. This switching is performed by increasing the feed water flow rate from the electric motor driven pump and decreasing the feed water flow rate from the turbine drive pump according to the increase amount.
Moreover, in order to prevent cavitation etc., it is necessary for the turbine drive pump and the electric motor drive pump to prevent the suction flow rate from being lower than the minimum suction flow rate. Therefore, open the recirculation valve before the suction flow rate of these pumps falls below the minimum suction flow rate, and increase the flow rate that circulates from the discharge side to the suction side (for example, the deaerator) so that the minimum suction flow rate is secured Be controlled.

ここで、ボイラの低負荷運転時には、再循環弁の開閉がボイラへの給水供給の外乱にならないように、再循環弁を開き始める設定値は通常運転時よりも低く設定される。そのため、従来のボイラユニットによれば、ポンプの切り替えを行う際、タービン駆動ポンプの吐出流量を減少させる過程で再循環弁の開閉を繰り返す、いわゆるハンチングが発生し、安定的にポンプの切り替えを行うことができないという不都合があった。   Here, at the time of low load operation of the boiler, the set value at which the recirculation valve starts to be opened is set lower than that during normal operation so that the opening and closing of the recirculation valve does not cause disturbance in the supply of water to the boiler. Therefore, according to the conventional boiler unit, when switching the pump, so-called hunting occurs in which the recirculation valve is repeatedly opened and closed in the process of decreasing the discharge flow rate of the turbine-driven pump, and the pump is stably switched. There was an inconvenience that they could not.

これに対し、本発明の第1の態様によれば、低負荷運転を行うボイラを停止させる場合に、再循環弁制御部により再循環弁を開き始める設定値が低負荷運転時よりも大きくされた後に、給水切替部によりボイラへの給水がタービン駆動ポンプから電動機駆動ポンプに切り替えられる。
これにより、再循環弁を開いてタービン駆動ポンプの吸込流量を十分確保した状態で、ボイラへの給水をタービン駆動ポンプから電動機駆動ポンプに切り替えることができるので、低負荷運転時、すなわち給水流量が少ない場合においても、安定してポンプを切り替えてボイラを停止させることができる。
On the other hand, according to the first aspect of the present invention, when stopping the boiler that performs the low load operation, the set value for starting to open the recirculation valve by the recirculation valve control unit is made larger than that during the low load operation. After that, the water supply switching unit switches the water supply to the boiler from the turbine drive pump to the electric motor drive pump.
As a result, the water supply to the boiler can be switched from the turbine drive pump to the electric motor drive pump while the recirculation valve is opened and the suction flow rate of the turbine drive pump is sufficiently secured. Even when there are few, it is possible to stably switch the pump and stop the boiler.

上記態様において、前記通常運転時の前記設定値を第1の設定値とし、前記低負荷運転時の前記設定値を第2の設定値とした場合に、前記再循環弁制御部が、前記低負荷運転時の前記ボイラを停止させる場合に、前記設定値を前記第2の設定値から前記第1の設定値に変更することとしてもよい。   In the above aspect, when the set value during the normal operation is the first set value and the set value during the low load operation is the second set value, the recirculation valve control unit is When stopping the boiler during load operation, the set value may be changed from the second set value to the first set value.

低負荷運転を行うボイラを停止させる場合に、再循環弁を開き始める設定値を、低負荷運転時の第2の設定値から通常運転時の第1の設定値に変更することで、再循環弁を開き始める設定値を低負荷運転時よりも大きくすることができる。これにより、安定してポンプを切り替えてボイラを停止させることができるとともに、低負荷運転時のボイラ停止用の設定値を別途設ける必要がないため、制御を容易なものとすることができる。   When stopping the boiler that performs low-load operation, recirculation is performed by changing the set value at which the recirculation valve starts to open from the second set value during low-load operation to the first set value during normal operation. The set value at which the valve starts to open can be made larger than during low-load operation. Thereby, the pump can be stably switched and the boiler can be stopped, and it is not necessary to separately provide a set value for stopping the boiler at the time of low load operation, so that the control can be facilitated.

上記態様において、前記通常運転が前記ボイラにより発生させる蒸気の圧力を一定とする定圧運転であり、前記低負荷運転が前記ボイラにより発生させる蒸気の圧力を変化させる変圧運転であることとしてもよい。   In the above aspect, the normal operation may be a constant pressure operation in which the pressure of the steam generated by the boiler is constant, and the low load operation may be a transformer operation that changes the pressure of the steam generated by the boiler.

通常運転では定圧運転を、低負荷運転では変圧運転を行うことで、定圧運転により高圧蒸気を効率よく発生させることができるとともに、変圧運転により低圧蒸気を発生させることができ、ボイラユニットの運用負荷帯を拡げることができる。このようなボイラユニットに対しても、安定してポンプを切り替えて、変圧運転を行うボイラを停止させることができる。   By performing constant pressure operation in normal operation and transforming operation in low load operation, high pressure steam can be generated efficiently by constant pressure operation, and low pressure steam can be generated by transform operation. The band can be expanded. Even for such a boiler unit, it is possible to stably switch the pump and stop the boiler performing the transformation operation.

本発明の第2の態様は、蒸気を発生させるボイラと、該ボイラに給水を行うポンプと、前記ボイラと前記ポンプとを接続する給水配管と、該給水配管に設けられ、前記ボイラへの給水流量を調節する第1の給水弁と、該第1の給水弁をバイパスして前記給水配管に接続され、前記給水配管よりも断面積の小さなバイパス配管と、該バイパス配管に設けられ、前記ボイラへの給水流量を調節する第2の給水弁と、前記ボイラへの給水流量に基づいて前記第1の給水弁および前記第2の給水弁の開度を制御する給水弁制御部とを備え、前記ボイラが、通常運転よりも低い圧力の蒸気を発生させる低負荷運転から停止する過程において、前記給水弁制御部が、前記第1の給水弁を全閉にするとともに、前記第2の給水弁の前記給水流量の偏差に対する開度変化率を前記通常運転時よりも大きくするボイラユニットである。   A second aspect of the present invention includes a boiler that generates steam, a pump that supplies water to the boiler, a water supply pipe that connects the boiler and the pump, and a water supply pipe that is provided in the water supply pipe. A first water supply valve that adjusts a flow rate; a bypass pipe that bypasses the first water supply valve and is connected to the water supply pipe; has a smaller cross-sectional area than the water supply pipe; and the bypass pipe, A second water supply valve that adjusts the water supply flow rate to the boiler, and a water supply valve control unit that controls the opening of the first water supply valve and the second water supply valve based on the water supply flow rate to the boiler, In the process in which the boiler stops from a low load operation that generates steam at a pressure lower than that of normal operation, the water supply valve control unit fully closes the first water supply valve and the second water supply valve. To the deviation of the water flow rate The opening change rate is a boiler unit to be larger than during the normal operation.

ボイラの最低負荷を例えば25%とする通常運転および15%とする低負荷運転では、流量の大きな第1の給水弁を全開にするとともに、流量の小さな第2の給水弁を規定開度(例えば、60%)にすることで行われる。ボイラを停止する過程において、第1の給水弁は全閉とされ、第2の給水弁は給水流量(PI)制御に切り替えられる。従来、この第2の給水弁の制御が規定開度から給水流量制御に切り替わる際、給水流量の偏差に対する開度変化率は、主蒸気圧力を一定とする通常運転を基準として調整してあるため、給水流量が低い低負荷運転時からの停止では給水流量偏差が大きかった。これにより、ボイラへの給水流量とボイラが要求する流量との差が大きくなり、第2の給水弁の制御が安定しないという不都合があった。   In a normal operation in which the minimum load of the boiler is 25%, for example, and a low load operation in which the minimum load is 15%, the first water supply valve having a large flow rate is fully opened and the second water supply valve having a small flow rate is opened to a specified opening (for example 60%). In the process of stopping the boiler, the first water supply valve is fully closed, and the second water supply valve is switched to water supply flow rate (PI) control. Conventionally, when the control of the second water supply valve is switched from the specified opening to the water supply flow rate control, the opening change rate with respect to the deviation of the water supply flow rate is adjusted based on the normal operation in which the main steam pressure is constant. When the operation was stopped after low load operation with a low feed water flow rate, the feed water flow rate deviation was large. As a result, the difference between the feed water flow rate to the boiler and the flow rate required by the boiler is increased, and there is a disadvantage that the control of the second feed water valve is not stable.

これに対して、本発明の第2の態様によれば、給水弁制御部により、低負荷運転時のボイラを停止させる場合に、第1の給水弁が全閉にされるとともに、第2の給水弁の給水流量の偏差に対する開度変化率が通常運転時よりも大きくされる。
これにより、第2の給水弁の開度制御の応答性を高めることができるので、ボイラの低負荷運転から停止を行う場合においても、安定的に第2の給水弁の制御を行うことができる。
On the other hand, according to the second aspect of the present invention, when the boiler at the time of low load operation is stopped by the water supply valve control unit, the first water supply valve is fully closed, and the second The rate of change of the opening with respect to the deviation of the feed water flow rate of the feed water valve is made larger than that during normal operation.
Thereby, since the responsiveness of the opening control of the 2nd water supply valve can be improved, even when stopping from the low load operation of a boiler, the 2nd water supply valve can be controlled stably. .

上記態様において、前記通常運転が前記ボイラにより発生させる蒸気の圧力を一定とする定圧運転であり、前記低負荷運転が前記ボイラにより発生させる蒸気の圧力を変化させる変圧運転であることとしてもよい。   In the above aspect, the normal operation may be a constant pressure operation in which the pressure of the steam generated by the boiler is constant, and the low load operation may be a transformer operation that changes the pressure of the steam generated by the boiler.

通常運転では定圧運転を、低負荷運転では変圧運転を行うことで、定圧運転により高圧蒸気を効率よく発生させることができるとともに、変圧運転により低圧蒸気を発生させることができ、ボイラユニットの運用負荷帯を拡げることができる。このようなボイラユニットに対しても、第2の給水弁の開度制御の応答性を高めることができるので、変圧運転からの停止を行う場合においても、安定的に第2の給水弁の制御を行うことができる。   By performing constant pressure operation in normal operation and transforming operation in low load operation, high pressure steam can be generated efficiently by constant pressure operation, and low pressure steam can be generated by transform operation. The band can be expanded. Even for such a boiler unit, the responsiveness of the opening control of the second water supply valve can be improved, so that the second water supply valve can be stably controlled even when stopping from the transformation operation. It can be performed.

本発明の第3の態様は、上記のボイラユニットと、前記ボイラにより発生させた蒸気を用いて駆動される蒸気タービンと、該蒸気タービンにより駆動されて発電を行う発電機とを備える発電システムである。   A third aspect of the present invention is a power generation system including the boiler unit described above, a steam turbine driven using steam generated by the boiler, and a generator that generates power by being driven by the steam turbine. is there.

本発明の第3の態様によれば、低負荷運転時においても、安定的なポンプの切り替え、および/または、安定的な給水流量の制御を行うことができるので、ボイラを停止させるまでの時間を短縮し、ボイラを停止させるまでのエネルギー損失量を低減することができる。   According to the third aspect of the present invention, stable pump switching and / or stable feed water flow rate control can be performed even during low-load operation, so the time until the boiler is stopped. The amount of energy loss until the boiler is stopped can be reduced.

本発明によれば、ボイラを停止させるまでの時間を短縮し、エネルギー損失量を低減することができるという効果を奏する。   According to the present invention, it is possible to shorten the time until the boiler is stopped and to reduce the amount of energy loss.

〔第1の実施形態〕
以下に、本発明に係るボイラユニットの第1の実施形態について、図面を参照して説明する。ここでは、本発明に係るボイラユニットを発電システム1に適用した例を説明する。
図1において、発電システム1は、燃料を燃焼させて蒸気を発生させるボイラ2と、ボイラ2へ給水を行うボイラ給水ポンプユニット25と、ボイラ2への給水流量を制御する給水制御装置27と、給水制御装置27により制御された給水流量をボイラ2に流通させるボイラ循環ポンプ3と、ボイラ2で発生した蒸気を用いて駆動される蒸気タービン4と、蒸気タービン4により駆動されて発電を行う発電機(図示略)と、ボイラ2と蒸気タービン4との間に設けられ、蒸気を過熱する過熱器7と、ボイラ2と過熱器7とを接続する第一蒸気配管11と、過熱器7と蒸気タービン4とを接続する第二蒸気配管12と、第一蒸気配管11に設けられたBT弁15と、第二蒸気配管12に設けられた蒸気加減弁17と、第一蒸気配管11に接続され、BT弁15をバイパスする第三蒸気配管13と、第三蒸気配管13に設けられたBTB弁16と、蒸気タービン4の負荷に応じてBT弁15およびBTB弁16の開度を調節する蒸気弁制御部(図示略)とを主な構成要素として備えている。
[First Embodiment]
Below, 1st Embodiment of the boiler unit which concerns on this invention is described with reference to drawings. Here, the example which applied the boiler unit which concerns on this invention to the electric power generation system 1 is demonstrated.
In FIG. 1, a power generation system 1 includes a boiler 2 that burns fuel to generate steam, a boiler feed pump unit 25 that feeds water to the boiler 2, a feed water control device 27 that controls a feed water flow rate to the boiler 2, Boiler circulation pump 3 that distributes the feed water flow rate controlled by the feed water control device 27 to the boiler 2, a steam turbine 4 that is driven using steam generated in the boiler 2, and power generation that is driven by the steam turbine 4 to generate power A superheater 7 that is provided between the boiler (not shown), the boiler 2 and the steam turbine 4, superheats the steam, connects the boiler 2 and the superheater 7, and the superheater 7 Connected to the second steam pipe 12 connected to the steam turbine 4, the BT valve 15 provided in the first steam pipe 11, the steam control valve 17 provided in the second steam pipe 12, and the first steam pipe 11. The The third steam pipe 13 bypassing the BT valve 15, the BTB valve 16 provided in the third steam pipe 13, and the steam for adjusting the opening of the BT valve 15 and the BTB valve 16 according to the load of the steam turbine 4. A valve control unit (not shown) is provided as a main component.

本実施形態において、蒸気タービン4は、高圧蒸気タービン4aおよび低中圧蒸気タービン4bを備えており、高圧蒸気タービン4aから排出された蒸気が、再熱器20を介して、低中圧蒸気タービン4bへ供給されるようになっている。
また、過熱器7は、上流側に設けられる第一過熱器7aと下流側に設けられる第二過熱器7bとを備え、第一過熱器7aと第二過熱器7bとの間に流通する蒸気の温度を低下させる減温器9が設けられている。
In the present embodiment, the steam turbine 4 includes a high-pressure steam turbine 4a and a low / medium-pressure steam turbine 4b, and the steam discharged from the high-pressure steam turbine 4a passes through the reheater 20 to the low / medium-pressure steam turbine. 4b is supplied.
Moreover, the superheater 7 is provided with the 1st superheater 7a provided in the upstream, and the 2nd superheater 7b provided in the downstream, The vapor | steam which distribute | circulates between the 1st superheater 7a and the 2nd superheater 7b. A temperature reducer 9 is provided to reduce the temperature.

上記構成を有する発電システム1における水の過熱サイクルについて以下に説明する。
ボイラ給水ポンプユニット25により給水された水は、給水制御装置27により流量が制御される。ボイラ2では、燃料を燃焼させると共に、給水制御装置27により流量が制御された水をボイラ循環ポンプ3により流通させて蒸気を発生させる。ボイラ2にて発生した蒸気は、第一蒸気配管11を流通し、第一過熱器7aへ導かれる。第一過熱器7aでは蒸気の過熱が行われ、第一過熱器7aにて過熱された蒸気は、減温器9へ導かれる。減温器9では水を注入することにより蒸気の温度を低下させる。減温器9にて減温された蒸気は、第二過熱器7bへ導かれ、第二過熱器7bにて再過熱される。第二過熱器7bにて再過熱された蒸気は、第二蒸気配管12を流通して高圧蒸気タービン4aへ導入され、高圧蒸気タービン4aを駆動するために用いられる。
The water overheating cycle in the power generation system 1 having the above configuration will be described below.
The flow rate of the water supplied by the boiler water supply pump unit 25 is controlled by the water supply control device 27. In the boiler 2, fuel is combusted, and water whose flow rate is controlled by the feed water control device 27 is circulated by the boiler circulation pump 3 to generate steam. The steam generated in the boiler 2 flows through the first steam pipe 11 and is guided to the first superheater 7a. In the first superheater 7a, the steam is superheated, and the steam superheated in the first superheater 7a is guided to the temperature reducer 9. The temperature reducer 9 lowers the temperature of the steam by injecting water. The steam reduced in temperature by the temperature reducer 9 is guided to the second superheater 7b and reheated again by the second superheater 7b. The steam reheated by the second superheater 7b flows through the second steam pipe 12, is introduced into the high-pressure steam turbine 4a, and is used to drive the high-pressure steam turbine 4a.

高圧蒸気タービン4aを駆動した後の蒸気は、再熱器20へ導かれ、再熱器20で再び過熱される。再熱器20にて過熱された蒸気は、低中圧蒸気タービン4bへ導入され、低中圧蒸気タービン4bを駆動するために用いられる。   The steam after driving the high-pressure steam turbine 4 a is led to the reheater 20 and is reheated again by the reheater 20. The steam superheated by the reheater 20 is introduced into the low and medium pressure steam turbine 4b and used to drive the low and medium pressure steam turbine 4b.

低中圧蒸気タービン4bを駆動した後の蒸気は、復水器21へ導かれ、復水器21により水(液体)に戻される。復水器21にて発生した水は、復水ポンプ22によって低圧給水過熱器23、脱気器24の順にて圧送される。脱気器24にて脱気された水は、ボイラ給水ポンプユニット25によって高圧給水過熱器26へ圧送され、減温器9または節炭器28へ圧送される。減温器9に圧送された水は、蒸気の温度を下げるために用いられる。また、給水制御装置27により流量が制御され、節炭器28へ圧送された水は、ボイラ循環ポンプ3によってボイラ2へ導かれ、再び蒸気として利用される。   The steam after driving the low intermediate pressure steam turbine 4 b is guided to the condenser 21 and returned to water (liquid) by the condenser 21. The water generated in the condenser 21 is pumped by the condensate pump 22 in the order of the low-pressure feed water superheater 23 and the deaerator 24. The water deaerated by the deaerator 24 is pumped to the high-pressure feed water superheater 26 by the boiler feed pump unit 25 and is pumped to the temperature reducer 9 or the economizer 28. The water pumped to the temperature reducer 9 is used to lower the temperature of the steam. Moreover, the flow rate is controlled by the water supply control device 27 and the water pressure-fed to the economizer 28 is guided to the boiler 2 by the boiler circulation pump 3 and used again as steam.

上記サイクルにより蒸気を発生させる発電システム1において、ボイラ2により発生させる蒸気の圧力を一定とする定圧運転と、定圧運転よりも低負荷で運用することを目的としてボイラ2により発生させる蒸気の圧力を変化させる変圧運転とが行われる。
具体的には、定圧運転時には、BTB弁16およびBT弁15の開度を全開とし、蒸気加減弁17入口部における蒸気圧力Pを、高圧蒸気タービン4aの負荷に関わらず最大圧力(例えば24MPa)に維持するように運転される。一方、変圧運転時には、高圧蒸気タービン4aの負荷に応じてBT弁15およびBTB弁16の開度が調節され、蒸気圧力Pを変化させるように運転される。なお、変圧運転時には、ボイラ2出口部における蒸気圧力PWWOと蒸気加減弁17入口部における蒸気圧力Pとの差圧が、BT弁15およびBTB弁16の許容差圧を超えないように各弁の開度が調節される。
In the power generation system 1 that generates steam by the above cycle, a constant pressure operation in which the pressure of the steam generated by the boiler 2 is constant, and a steam pressure generated by the boiler 2 for the purpose of operating at a lower load than the constant pressure operation. Transforming operation is performed.
Specifically, during the constant pressure operation, the opening degree of the BTB valve 16 and the BT valve 15 is fully opened, and the steam pressure PT at the inlet of the steam control valve 17 is set to the maximum pressure (for example, 24 MPa) regardless of the load of the high pressure steam turbine 4a. Is driven to maintain). On the other hand, during the transformer operation, the opening of the BT valve 15 and the BTB valve 16 is adjusted according to the load of the high-pressure steam turbine 4a, and the steam pressure PT is changed. In addition, at the time of the transformation operation, each pressure is set so that the differential pressure between the steam pressure P WWO at the outlet of the boiler 2 and the steam pressure PT at the inlet of the steam control valve 17 does not exceed the allowable differential pressure of the BT valve 15 and the BTB valve 16. The valve opening is adjusted.

上記のようにBT弁15およびBTB弁16を制御することで、通常運転時には、ボイラ2の最低負荷を例えば25%とする定圧運転を行うことができる。また、低負荷運転時には、ボイラ2の最低負荷を例えば15%とする変圧運転を行うことができる。これにより、定圧運転によって高圧蒸気を効率よく発生させることができるとともに、変圧運転によって低圧蒸気を発生させることができ、ボイラ2の運用負荷帯を拡げることができる。   By controlling the BT valve 15 and the BTB valve 16 as described above, a constant pressure operation in which the minimum load of the boiler 2 is 25%, for example, can be performed during normal operation. Moreover, at the time of low load operation, the transformer operation which makes the minimum load of the boiler 2 15%, for example can be performed. As a result, high-pressure steam can be efficiently generated by constant pressure operation, low-pressure steam can be generated by transformation operation, and the operational load zone of the boiler 2 can be expanded.

図2は、ボイラ給水ポンプユニット25および給水制御装置27の概略構成図である。なお、説明を簡略化するために、図2においては高圧給水過熱器26を省略している。
図2に示すように、ボイラ給水ポンプユニット25は、ボイラ2により発生させた蒸気を用いて駆動するタービン駆動ポンプ51,53と、電気を用いて駆動する電動機駆動ポンプ55と、ボイラ2への給水をタービン駆動ポンプ51,53と電動機駆動ポンプ55とで切り替える給水切替部(図示略)と、タービン駆動ポンプ51,53の吐出側と脱気器24とを接続する再循環配管61,63と、再循環配管61,63に設けられた再循環弁71,73と、電動機駆動ポンプ55の吐出側と吸込側(脱気器24)とを接続する再循環配管65と、再循環配管65に設けられた再循環弁75と、電動機駆動ポンプ55の吐出流量を調節する調節弁57と、各ポンプの吸込側に設けられた流量センサ52,54,56と、各再循環弁の開度を制御する再循環弁制御部(図示略)とを備えている。
FIG. 2 is a schematic configuration diagram of the boiler feed water pump unit 25 and the feed water control device 27. In order to simplify the description, the high-pressure feed water superheater 26 is omitted in FIG.
As shown in FIG. 2, the boiler feed pump unit 25 includes turbine drive pumps 51 and 53 that are driven using steam generated by the boiler 2, an electric motor drive pump 55 that is driven using electricity, and a boiler 2. A water supply switching unit (not shown) for switching water supply between the turbine drive pumps 51 and 53 and the electric motor drive pump 55, and recirculation pipes 61 and 63 connecting the discharge side of the turbine drive pumps 51 and 53 and the deaerator 24; The recirculation valves 71 and 73 provided in the recirculation pipes 61 and 63, the recirculation pipe 65 connecting the discharge side and the suction side (deaerator 24) of the motor drive pump 55, and the recirculation pipe 65 The recirculation valve 75 provided, the adjustment valve 57 for adjusting the discharge flow rate of the electric motor driven pump 55, the flow rate sensors 52, 54, 56 provided on the suction side of each pump, and the opening degree of each recirculation valve Gosuru and a recirculation valve control unit (not shown).

再循環配管61,63,65および再循環弁71,73,75は、各ポンプの吸込流量を最低吸込流量以上とするために設けられたものである。つまり、再循環弁71,73,75を開くことで、各ポンプの吐出側から吸込側(脱気器24)へ循環する流量を増加させ、各ポンプの最低吸込流量が確保される。   The recirculation pipes 61, 63, 65 and the recirculation valves 71, 73, 75 are provided to make the suction flow rate of each pump equal to or higher than the minimum suction flow rate. That is, by opening the recirculation valves 71, 73, 75, the flow rate circulating from the discharge side of each pump to the suction side (deaerator 24) is increased, and the minimum suction flow rate of each pump is ensured.

再循環弁制御部は、流量センサ52,54,56により検知された各ポンプの吸込流量に基づいて再循環弁71,73,75の開度を制御する。すなわち、再循環弁制御部は、流量センサ52,54,56により検知された各ポンプの吸込流量が、最低吸込流量以下となる前に各再循環弁を開くように制御する。   The recirculation valve control unit controls the openings of the recirculation valves 71, 73, and 75 based on the suction flow rates of the pumps detected by the flow rate sensors 52, 54, and 56. That is, the recirculation valve control unit controls each recirculation valve to open before the suction flow rate of each pump detected by the flow rate sensors 52, 54, and 56 becomes equal to or lower than the minimum suction flow rate.

また、再循環弁制御部は、低負荷運転時のボイラ2を停止させる際に、再循環弁71,73を開き始める設定値を低負荷運転時よりも大きくする。具体的には、通常運転時の設定値を第1の設定値とし、低負荷運転時の設定値を第2の設定値とした場合に、再循環弁制御部は、低負荷運転時のボイラ2を停止させる場合に、再循環弁71,73を開き始める設定値を、第2の設定値から第1の設定値に変更する。
給水切替部は、再循環弁制御部により再循環弁71,73を開き始める設定値が変更された後に、ボイラ2への給水をタービン駆動ポンプ51,53から電動機駆動ポンプ55に切り替える。
In addition, the recirculation valve control unit increases the set value at which the recirculation valves 71 and 73 start to open when the boiler 2 is stopped during the low load operation than when the low load operation is performed. Specifically, when the set value during normal operation is the first set value and the set value during low-load operation is the second set value, the recirculation valve control unit sets the boiler during low-load operation. When 2 is stopped, the set value at which the recirculation valves 71 and 73 start to open is changed from the second set value to the first set value.
The water supply switching unit switches the water supply to the boiler 2 from the turbine drive pumps 51 and 53 to the electric motor drive pump 55 after the set value for starting to open the recirculation valves 71 and 73 is changed by the recirculation valve control unit.

上記構成を有するボイラ給水ポンプユニット25において、タービン駆動ポンプ51,53にはそれぞれ50%ずつの負荷が割り振られており、50%負荷を超える運転時には2台のタービン駆動ポンプが駆動され、50%負荷以下の運転時には1台のタービン駆動ポンプが駆動される。
ここで、ボイラ2を停止する場合には、ボイラ2への給水流量を低下させるため、タービン駆動ポンプ51,53を駆動するために必要な蒸気量が得られなくなる。そのため、ボイラ2への給水は、タービン駆動ポンプ51,53から電動機駆動ポンプ55に切り替えられる。この切り替えは、電動機駆動ポンプ55からの給水流量を増加させるとともに、その増加量に応じてタービン駆動ポンプ51,53からの給水流量を減少させることで行われる。
In the boiler feed pump unit 25 having the above-described configuration, 50% load is allocated to each of the turbine drive pumps 51 and 53. When the operation exceeds the 50% load, two turbine drive pumps are driven and 50% One turbine drive pump is driven during operation below the load.
Here, when the boiler 2 is stopped, since the feed water flow rate to the boiler 2 is reduced, the amount of steam necessary for driving the turbine drive pumps 51 and 53 cannot be obtained. Therefore, the water supply to the boiler 2 is switched from the turbine drive pumps 51 and 53 to the electric motor drive pump 55. This switching is performed by increasing the feed water flow rate from the electric motor drive pump 55 and decreasing the feed water flow rate from the turbine drive pumps 51 and 53 according to the increase amount.

以下に、低負荷運転を行うボイラ2を停止させる際のボイラ給水ポンプユニット25の作用について説明する。ここでは、タービン駆動ポンプ51のみが駆動している状態から、電動機駆動ポンプ55を駆動させていく場合について説明する。
ポンプ切替指令が外部から入力されると、再循環弁制御部により、再循環弁71を開き始める設定値が、第2の設定値から該第2の設定値よりも大きい第1の設定値に変更される。ここで、前述のように、第1の設定値は、通常運転時において再循環弁71を開き始める際のタービン駆動ポンプ51の吸込流量であり、第2の設定値は、低負荷運転時において再循環弁71を開き始める際のタービン駆動ポンプ51の吸込流量である。
Below, the effect | action of the boiler feed water pump unit 25 at the time of stopping the boiler 2 which performs low load driving | operation is demonstrated. Here, the case where the electric motor drive pump 55 is driven from the state where only the turbine drive pump 51 is driven will be described.
When the pump switching command is input from the outside, the set value at which the recirculation valve controller starts opening the recirculation valve 71 changes from the second set value to the first set value that is larger than the second set value. Be changed. Here, as described above, the first set value is the suction flow rate of the turbine drive pump 51 when the recirculation valve 71 starts to be opened during normal operation, and the second set value is during low load operation. This is the suction flow rate of the turbine drive pump 51 when the recirculation valve 71 starts to open.

ポンプ切替の過程において、流量センサ52により検知されたタービン駆動ポンプ51の吸込流量が第1の設定値以下になると、再循環弁71を開いてタービン駆動ポンプ51の吐出側から吸込側(脱気器24)へ循環する流量を増加させる。
そして、再循環弁71が開かれた後に、ポンプの切り替えが開始される。具体的には、電動機駆動ポンプ55が起動され、給水切替部により、電動機駆動ポンプ55の吐出流量に応じてタービン駆動ポンプ51からの給水流量が低下させられて、ボイラ2への給水がタービン駆動ポンプ51から電動機駆動ポンプ55に切り替えられる。
When the suction flow rate of the turbine drive pump 51 detected by the flow rate sensor 52 becomes equal to or lower than the first set value in the pump switching process, the recirculation valve 71 is opened and the discharge side of the turbine drive pump 51 is switched to the suction side (deaeration). The flow rate circulating to the vessel 24) is increased.
Then, after the recirculation valve 71 is opened, switching of the pump is started. Specifically, the motor-driven pump 55 is activated, and the feed water switching unit reduces the feed water flow rate from the turbine drive pump 51 in accordance with the discharge flow rate of the motor drive pump 55, so that the feed water to the boiler 2 is driven by the turbine. The pump 51 is switched to the electric motor drive pump 55.

上記のように制御されるボイラ給水ポンプユニット25を具備する発電システム1の停止時の動作について、図3を用いて説明する。
図3は、ボイラを停止させる際の時間と出力との関係を示しており、点線は従来の発電システムを、実線は本実施形態に係る発電システム1を示している。
図3に示すように、従来の発電システムは、通常運転で停止を行うことを前提とした構成とされているため、ボイラ2が低負荷運転(変圧運転)を行っている場合にも、停止指令が入力された後、出力を上昇させて一旦、通常運転(定圧運転)としてから停止準備を行う必要があった。このように制御を行う理由の一つは、ポンプの切り替えを行う際、タービン駆動ポンプの吐出流量を減少させる過程で再循環弁の開閉を繰り返す、いわゆるハンチングが発生し、安定的にポンプの切り替えを行うことができなかったためである。
The operation | movement at the time of the stop of the electric power generation system 1 which comprises the boiler feed water pump unit 25 controlled as mentioned above is demonstrated using FIG.
FIG. 3 shows the relationship between time and output when the boiler is stopped, the dotted line shows the conventional power generation system, and the solid line shows the power generation system 1 according to the present embodiment.
As shown in FIG. 3, the conventional power generation system is configured on the assumption that it is stopped during normal operation. Therefore, even when the boiler 2 performs low-load operation (transformation operation), it is stopped. After the command was input, it was necessary to raise the output and once make a normal operation (constant pressure operation) before preparing to stop. One of the reasons for this control is when the pump is switched, so-called hunting occurs in which the recirculation valve is repeatedly opened and closed in the process of decreasing the discharge flow rate of the turbine-driven pump. Because it was not possible to do.

これに対して、本実施形態に係る発電システム1によれば、低負荷運転を行うボイラ2を停止させる場合に、再循環弁制御部により再循環弁71を開き始める設定値が低負荷運転時よりも大きくされた後に、ボイラ2への給水がタービン駆動ポンプ51から電動機駆動ポンプ55に切り替えられる。
これにより、再循環弁71を開いてタービン駆動ポンプ51の吸込流量を十分確保した状態で、ボイラ2への給水をタービン駆動ポンプ51から電動機駆動ポンプ55に切り替えることができるので、低負荷運転時、すなわち給水流量が少ない場合においても、安定してポンプを切り替えてボイラ2を停止させることができる。これにより、ボイラ2を停止させるまでの時間を短縮し、ボイラ2を停止させるまでのエネルギー損失量を低減することができる。
On the other hand, according to the power generation system 1 according to the present embodiment, when the boiler 2 that performs the low load operation is stopped, the set value at which the recirculation valve control unit starts opening the recirculation valve 71 is the low load operation time. After that, the water supply to the boiler 2 is switched from the turbine drive pump 51 to the electric motor drive pump 55.
Thereby, the water supply to the boiler 2 can be switched from the turbine drive pump 51 to the electric motor drive pump 55 in a state where the recirculation valve 71 is opened and the suction flow rate of the turbine drive pump 51 is sufficiently secured. That is, even when the feed water flow rate is small, the boiler 2 can be stopped by stably switching the pump. Thereby, the time until the boiler 2 is stopped can be shortened, and the amount of energy loss until the boiler 2 is stopped can be reduced.

〔第2の実施形態〕
次に、本発明の第2の実施形態について以下に説明する。
本実施形態の発電システム5が第1の実施形態と異なる点は、ボイラ2が低負荷運転を行う場合に給水制御装置27の流量偏差に対する応答性を変更する点である。以下、本実施形態の発電システム5について、第1の実施形態と共通する点については説明を省略し、異なる点について主に説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described below.
The difference between the power generation system 5 of the present embodiment and the first embodiment is that the responsiveness to the flow rate deviation of the feed water control device 27 is changed when the boiler 2 performs low load operation. Hereinafter, regarding the power generation system 5 of the present embodiment, description of points that are common to the first embodiment will be omitted, and different points will be mainly described.

図2に示すように、給水制御装置27は、各ポンプからの水をボイラ2へ流通させる給水配管81と、給水配管81に設けられた第1の給水弁83と、第1の給水弁83をバイパスして給水配管81に接続されたバイパス配管91と、バイパス配管91に設けられた第2の給水弁93と、バイパス配管91を流通する水の流量を検知する流量センサ95と、給水配管81およびバイパス配管91を流通する水の流量を検知する流量センサ85と、第1の給水弁83および第2の給水弁93の開度を制御する給水弁制御部(図示略)とを備えている。   As shown in FIG. 2, the water supply control device 27 includes a water supply pipe 81 that distributes water from each pump to the boiler 2, a first water supply valve 83 provided in the water supply pipe 81, and a first water supply valve 83. Bypass pipe 91 connected to water supply pipe 81, second water supply valve 93 provided in bypass pipe 91, flow rate sensor 95 for detecting the flow rate of water flowing through bypass pipe 91, and water supply pipe 81 and a flow rate sensor 85 for detecting the flow rate of water flowing through the bypass pipe 91, and a water supply valve control unit (not shown) for controlling the opening degree of the first water supply valve 83 and the second water supply valve 93. Yes.

バイパス配管91および第2の給水弁93は、給水配管81および第1の給水弁83よりも流路断面積が小さく構成されている。
給水弁制御部は、ボイラ停止過程において、第1の給水弁83を全閉にするとともに、第2の給水弁93の給水流量の偏差に対する開度変化率を通常運転時よりも大きくする。
The bypass pipe 91 and the second water supply valve 93 are configured to have a smaller channel cross-sectional area than the water supply pipe 81 and the first water supply valve 83.
In the boiler stop process, the water supply valve control unit fully closes the first water supply valve 83 and increases the rate of change in the opening degree with respect to the deviation of the water supply flow rate of the second water supply valve 93 than during normal operation.

上記構成を有する給水制御装置27の作用について以下に説明する。
ボイラの最低負荷を例えば25%とする通常運転および最低負荷を例えば15%とする低負荷運転では、流量の大きな第1の給水弁83を全開にするとともに、流量の小さな第2の給水弁93を規定開度(例えば、60%)にすることで行われる。この際、第1の給水弁83の開度は、給水弁制御部により、流量センサ85により検知された給水配管81およびバイパス配管91を流通する水の流量に基づいて制御される。
The operation of the water supply control device 27 having the above configuration will be described below.
In the normal operation in which the minimum load of the boiler is 25%, for example, and the low load operation in which the minimum load is 15%, for example, the first water supply valve 83 having a large flow rate is fully opened and the second water supply valve 93 having a small flow rate is provided. Is performed at a specified opening (for example, 60%). At this time, the opening degree of the first water supply valve 83 is controlled by the water supply valve control unit based on the flow rate of the water flowing through the water supply pipe 81 and the bypass pipe 91 detected by the flow sensor 85.

上記のように運転を行うボイラ2が停止する過程において、給水弁制御部により、第1の給水弁83は全閉とされ、第2の給水弁93は給水流量(PI)制御に切り替えられる。この際、第2の給水弁93の開度は、給水弁制御部により、流量センサ95により検知されたバイパス配管91を流通する水の流量に基づいて制御される。また、給水弁制御部により、第2の給水弁93の給水流量の偏差に対する開度変化率が通常運転時よりも大きくされる。   In the process of stopping the boiler 2 that operates as described above, the first water supply valve 83 is fully closed and the second water supply valve 93 is switched to water supply flow rate (PI) control by the water supply valve control unit. At this time, the opening degree of the second water supply valve 93 is controlled by the water supply valve control unit based on the flow rate of the water flowing through the bypass pipe 91 detected by the flow rate sensor 95. Moreover, the opening rate change rate with respect to the deviation of the feed water flow rate of the second feed valve 93 is made larger by the feed valve control unit than during normal operation.

ここで、比較例として、従来のボイラユニットにおける制御について説明する。
ボイラの最低負荷を例えば25%とする通常運転、および、ボイラの最低負荷を例えば15%とする低負荷運転では、流量の大きな第1の給水弁を全開にするとともに、流量の小さな第2の給水弁を規定開度(例えば、60%)にすることで行われる。また、ボイラの停止過程では、第1の給水弁は全閉とされ、第2の給水弁は給水流量(PI)制御に切り替えられる。従来、この第2の給水弁の制御が規定開度から給水流量制御に切り替わる際、給水流量の偏差に対する開度変化率は、主蒸気圧力を一定とする通常運転を基準として調整してあるため、給水流量が低い低負荷運転時からの停止では給水流量偏差が大きかった。これにより、ボイラへの給水流量とボイラが要求する流量との差が大きくなり、第2の給水弁の制御が安定しないという不都合があった。
Here, the control in the conventional boiler unit is demonstrated as a comparative example.
In the normal operation in which the minimum load of the boiler is 25%, for example, and the low load operation in which the minimum load of the boiler is 15%, for example, the first water supply valve having a large flow rate is fully opened and the second flow rate having a small flow rate is set. This is done by setting the water supply valve to a specified opening (for example, 60%). Further, in the boiler stop process, the first water supply valve is fully closed, and the second water supply valve is switched to water supply flow rate (PI) control. Conventionally, when the control of the second water supply valve is switched from the specified opening to the water supply flow rate control, the opening change rate with respect to the deviation of the water supply flow rate is adjusted based on the normal operation in which the main steam pressure is constant. When the operation was stopped after low load operation with a low feed water flow rate, the feed water flow rate deviation was large. As a result, the difference between the feed water flow rate to the boiler and the flow rate required by the boiler is increased, and there is a disadvantage that the control of the second feed water valve is not stable.

これに対して、本実施形態に係る発電システム5によれば、前述のように、ボイラ2が通常運転から低負荷運転に移行した場合に、第2の給水弁93の給水流量の偏差に対する開度変化率が通常運転時よりも大きくされるので、第2の給水弁93の開度制御の応答性を高めることができる。これにより、ボイラ2を低負荷運転から停止する場合においても、安定的に第2の給水弁93の制御を行うことができる。   On the other hand, according to the power generation system 5 according to the present embodiment, as described above, when the boiler 2 shifts from the normal operation to the low load operation, the second water supply valve 93 opens with respect to the deviation of the water supply flow rate. Since the degree change rate is made larger than that during normal operation, the responsiveness of the opening control of the second water supply valve 93 can be enhanced. Thereby, even when the boiler 2 is stopped from the low load operation, the second water supply valve 93 can be stably controlled.

以上、本発明の各実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、第1の実施形態において、低負荷運転を行うボイラ2を停止させる際に、再循環弁71を開き始めるタービン駆動ポンプ51の設定値を、通常運転時の第1の設定値に変更することとして説明したが、この例に限られず、ポンプの切り替えを行う際に再循環弁71が十分な開度となるように第2の設定値を大きくすればよい。
As mentioned above, although each embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention. .
For example, in the first embodiment, when the boiler 2 that performs low-load operation is stopped, the set value of the turbine drive pump 51 that starts opening the recirculation valve 71 is changed to the first set value during normal operation. As described above, the present invention is not limited to this example, and the second set value may be increased so that the recirculation valve 71 has a sufficient opening degree when the pump is switched.

また、最低負荷を2段階で有している発電システムを例として説明したが、最低負荷を3段階以上で有している発電システムとしてもよい。
また、タービン駆動ポンプ2台と電動機駆動ポンプ1台とを有する構成を例として説明したが、タービン駆動ポンプと電動機駆動ポンプはそれぞれ1台以上あればよい。
また、タービン駆動ポンプ51のみが駆動している状態から、電動機駆動ポンプ55を駆動させていく場合について説明したが、これに代えて、タービン駆動ポンプ53のみ、または、タービン駆動ポンプ51,53の両方が駆動している状態から電動機駆動ポンプ55を駆動させていくこととしてもよい。
Further, the power generation system having the lowest load in two stages has been described as an example, but a power generation system having the lowest load in three stages or more may be used.
Further, the configuration having two turbine drive pumps and one electric motor drive pump has been described as an example, but one or more turbine drive pumps and electric motor drive pumps may be provided.
Moreover, although the case where the electric motor drive pump 55 is driven from the state where only the turbine drive pump 51 is driven has been described, instead of this, only the turbine drive pump 53 or the turbine drive pumps 51 and 53 are driven. It is good also as driving the electric motor drive pump 55 from the state which both drive.

本発明の実施形態に係る発電システムの概略構成図である。1 is a schematic configuration diagram of a power generation system according to an embodiment of the present invention. 図1のボイラ給水ポンプユニットおよび給水制御装置の概略構成図である。It is a schematic block diagram of the boiler feed water pump unit and feed water control apparatus of FIG. 図1の発電システムの作用効果を説明する図である。It is a figure explaining the effect of the electric power generation system of FIG.

符号の説明Explanation of symbols

1,5 発電システム
2 ボイラ
3 ボイラ循環ポンプ
4 蒸気タービン
4a 高圧蒸気タービン
4b 低中圧蒸気タービン
7 過熱器
7a 第一過熱器
7b 第二過熱器
9 減温器
11 第一蒸気配管
12 第二蒸気配管
13 第三蒸気配管
15 BT弁
16 BTB弁
17 蒸気加減弁
20 再熱器
21 復水器
22 復水ポンプ
23 低圧給水加熱器
24 脱気器
25 ボイラ給水ポンプユニット
26 高圧給水加熱器
27 給水制御装置
28 節炭器
40 過熱器スプレイ調整弁
41 過熱器スプレイ圧力調整弁
51,53 タービン駆動ポンプ
55 電動機駆動ポンプ
52,54,56 流量センサ
57 調節弁
61,63,65 再循環配管
71,73,75 再循環弁
81 給水配管
83 第1の給水弁
85 流量センサ
91 バイパス配管
93 第2の給水弁
95 流量センサ
DESCRIPTION OF SYMBOLS 1,5 Electric power generation system 2 Boiler 3 Boiler circulation pump 4 Steam turbine 4a High pressure steam turbine 4b Low and medium pressure steam turbine 7 Superheater 7a First superheater 7b Second superheater 9 Temperature reducer 11 First steam piping 12 Second steam Pipe 13 Third steam pipe 15 BT valve 16 BTB valve 17 Steam control valve 20 Reheater 21 Condenser 22 Condensate pump 23 Low pressure feed water heater 24 Deaerator 25 Boiler feed pump unit 26 High pressure feed water heater 27 Feed water control Device 28 Carbon-saving device 40 Superheater spray adjustment valve 41 Superheater spray pressure adjustment valve 51, 53 Turbine drive pump 55 Electric motor drive pump 52, 54, 56 Flow sensor 57 Control valve 61, 63, 65 Recirculation piping 71, 73, 75 Recirculation valve 81 Water supply piping 83 First water supply valve 85 Flow rate sensor 91 Bypass piping 93 Second water supply valve 95 Flow rate sensor

Claims (6)

蒸気を発生させるボイラと、
該ボイラにより発生させた蒸気を用いて駆動し、前記ボイラに給水を行うタービン駆動ポンプと、
電気を用いて駆動し、前記ボイラに給水を行う電動機駆動ポンプと、
前記ボイラへの給水を前記タービン駆動ポンプと前記電動機駆動ポンプとで切り替える給水切替部と、
前記タービン駆動ポンプの吐出側と吸込側とを接続し、前記タービン駆動ポンプにより吐出された水を前記吸込側に再循環させる再循環配管と、
該再循環配管に設けられ、前記タービン駆動ポンプの吸込流量が前記タービン駆動ポンプを駆動させるために必要な最低吸込流量以上となるように、再循環させる水の流量を調節する再循環弁と、
前記タービン駆動ポンプの吸込流量に基づいて前記再循環弁の開度を制御する再循環弁制御部とを備え、
通常運転よりも低い圧力の蒸気を発生させる低負荷運転を行う前記ボイラを停止させる場合に、
前記再循環弁制御部が、前記再循環弁を開き始める設定値を前記低負荷運転時よりも大きくした後に、
前記給水切替部が、前記ボイラへの給水を前記タービン駆動ポンプから前記電動機駆動ポンプに切り替えるボイラユニット。
A boiler that generates steam;
A turbine drive pump that is driven using steam generated by the boiler and supplies water to the boiler;
An electric motor driven pump that drives using electricity and supplies water to the boiler;
A water supply switching unit for switching water supply to the boiler between the turbine drive pump and the electric motor drive pump;
A recirculation pipe that connects a discharge side and a suction side of the turbine-driven pump, and recirculates water discharged by the turbine-driven pump to the suction side;
A recirculation valve which is provided in the recirculation pipe and adjusts the flow rate of water to be recirculated so that the suction flow rate of the turbine drive pump is equal to or higher than the minimum suction flow rate required for driving the turbine drive pump;
A recirculation valve controller that controls the opening of the recirculation valve based on the suction flow rate of the turbine drive pump;
When stopping the boiler that performs low-load operation that generates steam at a lower pressure than normal operation,
After the recirculation valve control unit increases the set value for starting to open the recirculation valve than during the low load operation,
The boiler unit in which the water supply switching unit switches water supply to the boiler from the turbine drive pump to the electric motor drive pump.
前記通常運転時の前記設定値を第1の設定値とし、前記低負荷運転時の前記設定値を第2の設定値とした場合に、
前記再循環弁制御部が、前記低負荷運転時の前記ボイラを停止させる場合に、前記設定値を前記第2の設定値から前記第1の設定値に変更する請求項1に記載のボイラユニット。
When the set value during the normal operation is the first set value and the set value during the low load operation is the second set value,
The boiler unit according to claim 1, wherein the recirculation valve control unit changes the set value from the second set value to the first set value when stopping the boiler during the low load operation. .
前記通常運転が前記ボイラにより発生させる蒸気の圧力を一定とする定圧運転であり、前記低負荷運転が前記ボイラにより発生させる蒸気の圧力を変化させる変圧運転である請求項1または請求項2に記載のボイラユニット。   3. The normal operation is a constant pressure operation in which the pressure of steam generated by the boiler is constant, and the low load operation is a transformer operation in which the pressure of steam generated by the boiler is changed. Boiler unit. 蒸気を発生させるボイラと、
該ボイラに給水を行うポンプと、
前記ボイラと前記ポンプとを接続する給水配管と、
該給水配管に設けられ、前記ボイラへの給水流量を調節する第1の給水弁と、
該第1の給水弁をバイパスして前記給水配管に接続され、前記給水配管よりも断面積の小さなバイパス配管と、
該バイパス配管に設けられ、前記ボイラへの給水流量を調節する第2の給水弁と、
前記ボイラへの給水流量に基づいて前記第1の給水弁および前記第2の給水弁の開度を制御する給水弁制御部とを備え、
前記ボイラが、通常運転よりも低い圧力の蒸気を発生させる低負荷運転から停止する過程において、前記給水弁制御部が、前記第1の給水弁を全閉にするとともに、前記第2の給水弁の前記給水流量の偏差に対する開度変化率を前記通常運転時よりも大きくするボイラユニット。
A boiler that generates steam;
A pump for supplying water to the boiler;
A water supply pipe connecting the boiler and the pump;
A first water supply valve which is provided in the water supply pipe and adjusts a water supply flow rate to the boiler;
A bypass pipe that bypasses the first water supply valve and is connected to the water supply pipe and has a smaller cross-sectional area than the water supply pipe;
A second water supply valve provided in the bypass pipe for adjusting a flow rate of water supplied to the boiler;
A water supply valve control unit for controlling the opening of the first water supply valve and the second water supply valve based on the water supply flow rate to the boiler,
In the process in which the boiler stops from a low load operation that generates steam at a pressure lower than that of normal operation, the water supply valve control unit fully closes the first water supply valve and the second water supply valve. A boiler unit that increases the degree of change in opening with respect to the deviation of the feed water flow rate than during normal operation.
前記通常運転が前記ボイラにより発生させる蒸気の圧力を一定とする定圧運転であり、前記低負荷運転が前記ボイラにより発生させる蒸気の圧力を変化させる変圧運転である請求項4に記載のボイラユニット。   5. The boiler unit according to claim 4, wherein the normal operation is a constant pressure operation in which a pressure of steam generated by the boiler is constant, and the low load operation is a transformer operation in which the pressure of steam generated by the boiler is changed. 請求項1から請求項5のいずれかに記載のボイラユニットと、
前記ボイラにより発生させた蒸気を用いて駆動される蒸気タービンと、
該蒸気タービンにより駆動されて発電を行う発電機とを備える発電システム。
The boiler unit according to any one of claims 1 to 5,
A steam turbine driven using steam generated by the boiler;
A power generation system comprising a generator driven by the steam turbine to generate power.
JP2008267476A 2008-10-16 2008-10-16 Boiler unit and power generation system Expired - Fee Related JP5320013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267476A JP5320013B2 (en) 2008-10-16 2008-10-16 Boiler unit and power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267476A JP5320013B2 (en) 2008-10-16 2008-10-16 Boiler unit and power generation system

Publications (2)

Publication Number Publication Date
JP2010096422A true JP2010096422A (en) 2010-04-30
JP5320013B2 JP5320013B2 (en) 2013-10-23

Family

ID=42258237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267476A Expired - Fee Related JP5320013B2 (en) 2008-10-16 2008-10-16 Boiler unit and power generation system

Country Status (1)

Country Link
JP (1) JP5320013B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509559A (en) * 2011-03-16 2014-04-21 上海伏波▲環▼保▲設備▼有限公司 Exhaust extraction sludge drying system of boiler unit with heat compensation
CN104406156A (en) * 2014-11-18 2015-03-11 孔令斌 Steam boiler unpowered water charging system and control method thereof
CN109882422A (en) * 2019-01-10 2019-06-14 华润电力(贺州)有限公司 A kind of double flow moves feed pump turbine recirculation pipe road device and its control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884007B (en) * 2014-02-24 2016-01-20 浙江大学 Many valve regulation and control feed water systems of boiler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271189A (en) * 2006-03-31 2007-10-18 Tokyo Electric Power Co Inc:The Control device and control method for steam power generation facility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271189A (en) * 2006-03-31 2007-10-18 Tokyo Electric Power Co Inc:The Control device and control method for steam power generation facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509559A (en) * 2011-03-16 2014-04-21 上海伏波▲環▼保▲設備▼有限公司 Exhaust extraction sludge drying system of boiler unit with heat compensation
CN104406156A (en) * 2014-11-18 2015-03-11 孔令斌 Steam boiler unpowered water charging system and control method thereof
CN109882422A (en) * 2019-01-10 2019-06-14 华润电力(贺州)有限公司 A kind of double flow moves feed pump turbine recirculation pipe road device and its control method

Also Published As

Publication number Publication date
JP5320013B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
CA2309058C (en) Method for closed-loop output control of a steam power plant, and a steam power plant
JP5539521B2 (en) Power plant system with overload control valve
US7509794B2 (en) Waste heat steam generator
KR101666471B1 (en) Starting method for steam turbine plant
JP2010090894A (en) Apparatus for steam attemperation using fuel gas heater water discharge to reduce feedwater pump size
JP5320013B2 (en) Boiler unit and power generation system
JP4507098B2 (en) Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
JP6071421B2 (en) Combined cycle plant, method for stopping the same, and control device therefor
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP4929010B2 (en) Power generation system
JP2015124710A (en) Control device and activation method
US10982567B2 (en) Condensate and feedwater system of steam power plant and operation method for the same
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP5251311B2 (en) Power generation system
WO2017073195A1 (en) Combined cycle plant and method for controlling operation of combined cycle plant
JP5832080B2 (en) Power generation system control device, power generation system, and power generation system control method
CN111156058B (en) Method for controlling operating pressure of regenerative steam turbine
US20100251976A1 (en) Ejector driven steam generator start up system
JP7291010B2 (en) power plant
CN220624014U (en) Starting system for ultra-supercritical boiler and ultra-supercritical boiler
JPH05322105A (en) Device for heating feedwater for boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2015102258A (en) Steam generation system
JP2017521591A (en) Steam cycle and method of operating steam cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R151 Written notification of patent or utility model registration

Ref document number: 5320013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees