JP5251311B2 - Power generation system - Google Patents

Power generation system Download PDF

Info

Publication number
JP5251311B2
JP5251311B2 JP2008178347A JP2008178347A JP5251311B2 JP 5251311 B2 JP5251311 B2 JP 5251311B2 JP 2008178347 A JP2008178347 A JP 2008178347A JP 2008178347 A JP2008178347 A JP 2008178347A JP 5251311 B2 JP5251311 B2 JP 5251311B2
Authority
JP
Japan
Prior art keywords
pressure
steam
boiler
superheater
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008178347A
Other languages
Japanese (ja)
Other versions
JP2010019449A (en
Inventor
克司 丹生谷
義明 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2008178347A priority Critical patent/JP5251311B2/en
Publication of JP2010019449A publication Critical patent/JP2010019449A/en
Application granted granted Critical
Publication of JP5251311B2 publication Critical patent/JP5251311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、火炉出口蒸気圧力を所定の基準圧力に維持して運転する定圧貫流ボイラを有する発電システムに関する。   The present invention relates to a power generation system having a constant pressure once-through boiler that operates while maintaining a furnace outlet steam pressure at a predetermined reference pressure.

一般に、火力発電所の蒸気発生源であるボイラの運転方式として定圧運転方式と変圧運転方式とがある。定圧運転方式とは、例えば定圧貫流ボイラを使用してボイラの主蒸気圧力を一定に保ち、タービン入口の蒸気加減弁を開閉して蒸気流量を調節する運転方式である(例えば、特許文献1)。一方、変圧運転方式とは、例えば変圧貫流ボイラを使用し蒸気加減弁の開度を一定に保ち、ボイラで発生する主蒸気圧力を変えることによりタービン流入蒸気量を調節して出力制御する方式のことである(例えば、特許文献2)。   Generally, there are a constant pressure operation method and a transformer operation method as an operation method of a boiler which is a steam generation source of a thermal power plant. The constant pressure operation method is an operation method in which, for example, a constant pressure once-through boiler is used to keep the main steam pressure of the boiler constant, and the steam flow rate is adjusted by opening and closing the steam control valve at the turbine inlet (for example, Patent Document 1). . On the other hand, the transformer operation method is a method of controlling the output by adjusting the amount of steam entering the turbine by changing the main steam pressure generated in the boiler, for example, using a transformer once-through boiler, keeping the opening of the steam control valve constant. (For example, Patent Document 2).

近年においては、火力発電所はピーク負荷やミドル負荷を受け持つ状況となっており、変動負荷での高効率な運用が求められ、これに伴い、定圧貫流ボイラを用いた定圧運転方式の火力発電所においても変動負荷に高効率に対応できるようにすることが求められている。   In recent years, thermal power plants have been in charge of peak loads and middle loads, and high-efficiency operation with fluctuating loads has been demanded. With this, thermal power plants with constant pressure operation using a constant pressure once-through boiler are required. However, it is required to be able to cope with variable loads with high efficiency.

図4は、定圧運転方式での蒸気タービン負荷と蒸気圧力との関係を示すグラフである。横軸の蒸気タービン負荷(発電機出力)は定格負荷(定格出力)に対する百分率で示している。蒸気タービン負荷が0%である状態は、蒸気タービンに連結された発電機が電力系統に併入され、蒸気タービン(発電機)が無負荷状態で電力系統と同期して回転している状態である。この状態では、ボイラの火炉出口蒸気圧力PWは既に基準圧力PW0に維持されており、過熱器出口蒸気圧力PTも所定圧力PT1に保持されている。火炉出口蒸気圧力PWの基準圧力PW0は、例えば超臨界圧の24.1[MPa]である。   FIG. 4 is a graph showing the relationship between the steam turbine load and the steam pressure in the constant pressure operation method. The steam turbine load (generator output) on the horizontal axis is shown as a percentage of the rated load (rated output). When the steam turbine load is 0%, the generator connected to the steam turbine is inserted into the power system, and the steam turbine (generator) is rotating in synchronization with the power system in a no-load state. is there. In this state, the furnace outlet steam pressure PW of the boiler is already maintained at the reference pressure PW0, and the superheater outlet steam pressure PT is also maintained at the predetermined pressure PT1. The reference pressure PW0 of the furnace outlet steam pressure PW is, for example, a supercritical pressure of 24.1 [MPa].

蒸気タービン負荷が0%〜25%である起動領域A1においては、蒸気加減弁(CV)の開度を開いて負荷を取り始め、ボイラ絞り弁バイパス(BTB)弁、ボイラ絞り(BT)弁を開操作し、最終的に全開として過熱器出口蒸気圧力PTをその基準圧力PT0まで上昇させる。過熱器出口蒸気圧力PTの基準圧力PT0は、例えば火炉出口蒸気圧力PWの基準圧力PW0の24.1[MPa]と同等もしくは少し低い圧力である。   In the start-up region A1 where the steam turbine load is 0% to 25%, the opening of the steam control valve (CV) is opened to start loading, and the boiler throttle valve bypass (BTB) valve and boiler throttle (BT) valve are turned on. An opening operation is performed, and finally, the superheater outlet steam pressure PT is increased to its reference pressure PT0 as being fully opened. The reference pressure PT0 of the superheater outlet steam pressure PT is equal to or slightly lower than 24.1 [MPa] of the reference pressure PW0 of the furnace outlet steam pressure PW, for example.

そして、蒸気タービン負荷が25%〜100%以上である定圧領域A2においては、ボイラの火炉出口蒸気圧力PW及び過熱器出口蒸気圧力PTの双方が一定圧力(基準圧力PW0、PT0)に保持され、蒸気加減弁(CV)の開度を開いて負荷を増加減する。   In the constant pressure region A2 where the steam turbine load is 25% to 100% or more, both the furnace outlet steam pressure PW and the superheater outlet steam pressure PT of the boiler are held at a constant pressure (reference pressures PW0 and PT0). Open the opening of the steam control valve (CV) to increase or decrease the load.

このように、蒸気タービンに供給される蒸気の圧力(過熱器出口蒸気圧力PT)は、基準圧力PT0(ほぼ超臨界圧)に一定に保持され、蒸気タービンに連結された発電機の発電量は、蒸気タービンに流入する蒸気の圧力と蒸気加減弁の開度との積にほぼ比例することから、蒸気タービンに要求される負荷(発電機の発電量)が低い場合は、蒸気加減弁の開度を大きく絞る必要がある。その結果、蒸気加減弁の開度の絞りに伴って蒸気加減弁の下流側の蒸気の圧力損失によって蒸気タービンの効率が低下する。   Thus, the pressure of the steam supplied to the steam turbine (superheater outlet steam pressure PT) is kept constant at the reference pressure PT0 (substantially supercritical pressure), and the power generation amount of the generator connected to the steam turbine is Because it is approximately proportional to the product of the pressure of the steam flowing into the steam turbine and the opening of the steam control valve, the steam control valve must be opened when the load required by the steam turbine (the amount of power generated by the generator) is low. It is necessary to narrow down the degree greatly. As a result, the efficiency of the steam turbine decreases due to the pressure loss of the steam on the downstream side of the steam control valve as the opening of the steam control valve is reduced.

また、蒸気加減弁の開度の絞り幅が大きくなれば断熱膨張の影響が顕著に現れるため、蒸気タービンに流入する蒸気の温度差も大きくなる。従って、その温度差による蒸気温度の変化率に制約をかける必要が生じ、その場合には、蒸気加減弁の開度変化率にも制約が課されることとなる。その結果、蒸気タービンが要求する負荷に追従することができないことが発生する。   In addition, since the influence of adiabatic expansion appears significantly as the throttle width of the opening of the steam control valve increases, the temperature difference of the steam flowing into the steam turbine also increases. Therefore, it is necessary to restrict the rate of change of the steam temperature due to the temperature difference. In this case, the rate of change of the opening of the steam control valve is also restricted. As a result, it may not be possible to follow the load required by the steam turbine.

そこで、出願人は、定圧貫流ボイラを用いてボイラの火炉出口蒸気圧力PWを基準値PW0に保ち、しかも蒸気加減弁の開度調節の際に生じる蒸気タービンの効率低下を防止できる過熱器出口蒸気圧力を可変とした過熱器変圧運転方式を採用した発電システムを開発し、特願2007−91784号として出願した。   Therefore, the applicant uses a constant pressure once-through boiler to maintain the boiler outlet steam pressure PW at the reference value PW0 and to prevent the steam turbine efficiency from being lowered when the opening of the steam control valve is adjusted. A power generation system employing a superheater transformer operation system with variable pressure was developed and filed as Japanese Patent Application No. 2007-91784.

図5は、特願2007−91784号における過熱器出口蒸気圧力を可変とした過熱器変圧運転方式での蒸気タービン負荷と蒸気圧力との関係を示すグラフである。横軸の蒸気タービン負荷(発電機出力)は定格負荷(定格出力)に対する百分率で示している。図4に示した定圧運転方式の場合と異なる点は、起動領域A1と定圧領域A2との間に変圧領域A3を設け、変圧領域A3において過熱器出口蒸気圧力PTを蒸気タービン負荷に応じて変化させるようにしたものである。変圧領域A3は、蒸気タービン負荷が定格負荷未満の予め定めた低負荷領域(15%〜75%)である。   FIG. 5 is a graph showing the relationship between the steam turbine load and the steam pressure in the superheater transformer operation system in which the superheater outlet steam pressure is variable in Japanese Patent Application No. 2007-91784. The steam turbine load (generator output) on the horizontal axis is shown as a percentage of the rated load (rated output). The difference from the case of the constant pressure operation method shown in FIG. 4 is that a transformation region A3 is provided between the start region A1 and the constant pressure region A2, and the superheater outlet steam pressure PT changes according to the steam turbine load in the transformation region A3. It is made to let you. The transformation region A3 is a predetermined low load region (15% to 75%) in which the steam turbine load is less than the rated load.

起動領域A1は、蒸気タービン負荷0%〜15%とし、従来の蒸気タービン負荷0%〜25%までよりも狭い範囲としている。そして、変圧領域A3では、ボイラ絞り弁バイパス(BTB)弁及びボイラ絞り(BT)弁を開操作し、蒸気タービン負荷15%〜75%の範囲で負荷に応じて過熱器出口蒸気圧力PTを変化させる。蒸気タービン負荷75%〜100%以上である定圧領域A2においては、ボイラの火炉出口蒸気圧力PW及び過熱器出口蒸気圧力PTの双方が一定圧力(基準圧力PW0、PT0)に保持され、蒸気加減弁(CV)の開度を開いて負荷を増加減する。   The start-up region A1 is set to a steam turbine load of 0% to 15%, and is narrower than a conventional steam turbine load of 0% to 25%. In the transformation region A3, the boiler throttle valve bypass (BTB) valve and the boiler throttle (BT) valve are opened to change the superheater outlet steam pressure PT according to the load in the range of 15% to 75% of the steam turbine load. Let In the constant pressure region A2 where the steam turbine load is 75% to 100% or more, both the furnace outlet steam pressure PW and the superheater outlet steam pressure PT are maintained at a constant pressure (reference pressures PW0 and PT0), and the steam control valve is used. Increase the load by opening the opening of (CV).

このように、特願2007−91784号のものでは、変圧領域A3において、蒸気タービン負荷に応じてボイラ絞りバイパス弁とボイラ絞り弁との開度を調節し、火炉出口蒸気圧力PWを維持しつつ過熱器出口蒸気圧力PTを蒸気タービン負荷が小さいときは小さくなるように変化させ、蒸気加減弁の動作幅を小さくする。これにより、蒸気加減弁の下流側の蒸気の圧力損失を小さくして、蒸気タービンの効率を向上させる。また、蒸気加減弁の動作幅を小さくして、蒸気タービンに流入する蒸気の温度変化を低減させ、蒸気タービンの寿命を延長する。さらに、蒸気加減弁の動作幅の制約をなくし、蒸気タービンに流入する蒸気の流量を自由に調節できるようにし、蒸気タービンの要求発電量に対する追従性の向上を図っている。
特開平9−320504号公報 特開平5−87303号公報
As described above, in Japanese Patent Application No. 2007-91784, while the opening degree of the boiler throttle bypass valve and the boiler throttle valve is adjusted in accordance with the steam turbine load in the transformation region A3, the furnace outlet steam pressure PW is maintained. The superheater outlet steam pressure PT is changed so as to decrease when the steam turbine load is small, thereby reducing the operation width of the steam control valve. Thereby, the pressure loss of the steam on the downstream side of the steam control valve is reduced, and the efficiency of the steam turbine is improved. In addition, the operating range of the steam control valve is reduced, the temperature change of the steam flowing into the steam turbine is reduced, and the life of the steam turbine is extended. Furthermore, the restriction of the operation width of the steam control valve is eliminated, the flow rate of the steam flowing into the steam turbine can be freely adjusted, and the followability to the required power generation amount of the steam turbine is improved.
JP 9-320504 A Japanese Patent Laid-Open No. 5-87303

特願2007−91784号のものでは、蒸気タービンの効率を向上させ、蒸気タービンの寿命を延長でき、さらには、蒸気タービンの要求発電量に対する追従性の向上も図ることができる。しかし、プラント効率向上については、まだ改善の余地がある。すなわち、変圧領域A3においては、ボイラが定圧貫流ボイラであることから火炉出口蒸気圧力PWを基準値PW0に維持しているが、蒸気タービン負荷が小さいときは過熱器出口蒸気圧力PTが小さくなるように変圧運転しているので、蒸気タービン負荷が小さいときは火炉出口蒸気圧力PWを基準値PW0に維持する必要はない。このように、タービン負荷が小さいときであっても火炉出口蒸気圧力PWは基準値PW0に維持するようにしているので、プラント効率向上については、まだ改善の余地がある。   In Japanese Patent Application No. 2007-91784, the efficiency of the steam turbine can be improved, the life of the steam turbine can be extended, and the followability to the required power generation amount of the steam turbine can also be improved. However, there is still room for improvement in improving plant efficiency. That is, in the transformation region A3, the furnace outlet steam pressure PW is maintained at the reference value PW0 because the boiler is a constant pressure once-through boiler, but when the steam turbine load is small, the superheater outlet steam pressure PT is reduced. Therefore, when the steam turbine load is small, it is not necessary to maintain the furnace outlet steam pressure PW at the reference value PW0. Thus, since the furnace outlet steam pressure PW is maintained at the reference value PW0 even when the turbine load is small, there is still room for improvement in terms of improving the plant efficiency.

本発明の目的は、定圧貫流ボイラを使用して過熱器出口蒸気圧力を変圧運転する場合に、さらにプラント効率を向上させることができる発電システムを提供することである。   An object of the present invention is to provide a power generation system that can further improve plant efficiency when a superheater outlet steam pressure is transformed using a constant pressure once-through boiler.

請求項1の発明に係わる発電システムは、燃料、水、空気が供給され燃料を燃焼させて蒸気を発生させる定圧貫流ボイラの火炉と、前記火炉で発生した蒸気を過熱する過熱器と、前記火炉と前記過熱器との間の主蒸気管に設けられ前記過熱器に供給される蒸気を調節するボイラ絞り弁と、前記ボイラ絞り弁をバイパスして設けられたボイラ絞り弁バイパス弁と、前記過熱器で過熱された蒸気が供給され連結された発電機を駆動する蒸気タービンと、前記過熱器と前記蒸気タービンとの間の主蒸気管に設けられ前記蒸気タービンに供給される蒸気流量を制御する蒸気加減弁と、前記蒸気タービンの負荷が定格負荷未満の予め定めた低負荷領域においては前記蒸気タービンの負荷に応じて前記過熱器の出口蒸気圧力を変圧運転し、前記蒸気タービンの負荷が低負荷領域を越えた状態から定格負荷までは前記過熱器の出口蒸気圧力を予め定めた一定圧力の定圧運転を行う過熱器出口蒸気圧力制御装置と、前記過熱器出口蒸気圧力制御装置が変圧運転を行う際には前記ボイラ絞り弁及び前記ボイラ絞り弁バイパス弁の開度を調節して前記火炉出口蒸気圧力を前記定圧貫流ボイラの基準圧力未満の許容範囲内の減圧基準圧力に減圧制御し、前記過熱器出口蒸気圧力制御装置が前記過熱器の出口蒸気圧力の定圧運転を行う際には前記火炉出口蒸気圧力を前記定圧貫流ボイラの基準圧力に制御する火炉出口蒸気圧力制御装置とを備えたことを特徴とする。 A power generation system according to the invention of claim 1 includes a furnace of a constant pressure once-through boiler that is supplied with fuel, water, and air and burns the fuel to generate steam, a superheater that superheats steam generated in the furnace, and the furnace A boiler throttle valve for adjusting steam supplied to the superheater provided in a main steam pipe between the superheater, a boiler throttle valve bypass valve provided by bypassing the boiler throttle valve, and the superheater A steam turbine that drives a generator connected to the steam that is superheated by the steam generator, and a steam flow that is provided in a main steam pipe between the superheater and the steam turbine, and that controls the flow rate of steam supplied to the steam turbine. a steam control valve, the load of the steam turbine is sliding pressure outlet steam pressure of the superheater according to the load of the steam turbine in a low load region determined in advance under the rated load, the steam turbine A superheater outlet steam pressure controller for constant pressure operation constant pressure to the rated load a predetermined outlet steam pressure of the superheater from a state in which the load exceeds the low-load region of the superheater outlet steam pressure controller When performing transformer operation, adjust the opening of the boiler throttle valve and the boiler throttle valve bypass valve to reduce the steam pressure at the furnace outlet to a reduced pressure reference pressure within an allowable range less than the reference pressure of the constant pressure once- through boiler. A furnace outlet steam pressure control device for controlling the furnace outlet steam pressure to a reference pressure of the constant pressure once-through boiler when the superheater outlet steam pressure control device performs a constant pressure operation of the outlet steam pressure of the superheater; It is provided with.

請求項2の発明に係わる発電システムは、請求項1の発明において、前記火炉出口蒸気圧力制御装置は、前記火炉出口蒸気圧力を減圧制御する際には、前記火炉出口蒸気圧力が前記定圧貫流ボイラの基準圧力と圧力低警報値との間の圧力となるように減圧制御することを特徴とする。 The power generation system according to a second aspect of the present invention is the power generation system according to the first aspect, wherein the furnace outlet steam pressure control device controls the furnace outlet steam pressure to the constant pressure once-through boiler when the furnace outlet steam pressure is controlled to be reduced. The pressure reduction control is performed so that the pressure is between the reference pressure and the low pressure alarm value.

本発明によれば、過熱器出口蒸気圧力が小さくなるように変圧運転されているときは、火炉出口蒸気圧力を定圧貫流ボイラの基準圧力未満の許容範囲内の減圧基準圧力に減圧制御するので、火炉に供給する給水流量を低減できる。従って、給水流量を供給するボイラ給水ポンプの軸動力を軽減でき、プラント効率を向上させることができる。   According to the present invention, when the transformer outlet steam pressure is reduced so that the superheater outlet steam pressure is reduced, the furnace outlet steam pressure is controlled to be reduced to a reduced pressure reference pressure within an allowable range less than the reference pressure of the constant pressure once-through boiler. The flow rate of water supplied to the furnace can be reduced. Therefore, the shaft power of the boiler feed water pump that supplies the feed water flow rate can be reduced, and the plant efficiency can be improved.

また、火炉出口蒸気圧力の減圧制御は、火炉出口蒸気圧力が定圧貫流ボイラの基準圧力と圧力低警報値との間の圧力となるように減圧制御するので、定圧貫流ボイラの運転許容範囲内での運転が可能である。   In addition, the pressure reduction control of the furnace outlet steam pressure is controlled so that the furnace outlet steam pressure is a pressure between the reference pressure of the constant pressure once-through boiler and the low pressure alarm value. Is possible.

図1は本発明の実施の形態に係わる発電システムの構成図である。定圧貫流ボイラの火炉11には、燃料、水、空気が供給され、火炉11は燃料を燃焼させて水管内の水を蒸発させて蒸気を発生させる。燃料は、LNGやLPGなどの気体燃料、石炭やバイオ燃料などの固体燃料または石油などの液体燃料であり、火炉11のバーナにより燃焼する。また、水は後述の復水器で凝縮された凝縮水がボイラ給水ポンプにより火炉11内の水管に供給され、ボイラ循環ポンプ12により火炉11内の水管を流通させる。   FIG. 1 is a configuration diagram of a power generation system according to an embodiment of the present invention. Fuel, water, and air are supplied to the furnace 11 of the constant pressure once-through boiler, and the furnace 11 burns the fuel to evaporate the water in the water pipe and generate steam. The fuel is a gaseous fuel such as LNG or LPG, a solid fuel such as coal or biofuel, or a liquid fuel such as petroleum, and is burned by the burner of the furnace 11. Moreover, the condensed water condensed by the condenser mentioned later is supplied to the water pipe in the furnace 11 by a boiler feed pump, and the water pipe in the furnace 11 is circulated by the boiler circulation pump 12.

火炉11で発生した蒸気はボイラ絞り弁(BT弁)13またはボイラ絞り弁バイパス弁(BTB弁)14を介して、第1過熱器15a及び第2過熱器15bに導かれる。第1過熱器15aと第2過熱器15bとの間には減温器16が設けられ、減温器16にて第1過熱器15aで過熱された過熱蒸気を冷却する。第2過熱器15bで温度調節された過熱蒸気は、主蒸気止め弁(MSV)35及び蒸気加減弁(CV)36を介して蒸気タービン17のうちの高圧蒸気タービン17aに導かれる。高圧蒸気タービン17aで仕事を終えた蒸気は再熱器18で再過熱されて中圧蒸気タービン17bに導かれ、さらに、中圧蒸気タービン17bで仕事を終えた蒸気は低圧蒸気タービン17cに導かれる。高圧蒸気タービン17a、中圧蒸気タービン17b、低圧蒸気タービン17cは、発電機19を駆動する。そして、低圧蒸気タービン17cで仕事を終えた蒸気は復水器20で凝縮され水に戻される。   The steam generated in the furnace 11 is led to the first superheater 15a and the second superheater 15b via the boiler throttle valve (BT valve) 13 or the boiler throttle valve bypass valve (BTB valve) 14. A temperature reducer 16 is provided between the first superheater 15a and the second superheater 15b, and the superheated steam superheated by the first superheater 15a is cooled by the temperature reducer 16. The superheated steam whose temperature is adjusted by the second superheater 15 b is guided to the high-pressure steam turbine 17 a of the steam turbine 17 through the main steam stop valve (MSV) 35 and the steam control valve (CV) 36. The steam that has finished work in the high-pressure steam turbine 17a is re-superheated by the reheater 18 and guided to the intermediate-pressure steam turbine 17b, and the steam that has finished work in the medium-pressure steam turbine 17b is guided to the low-pressure steam turbine 17c. . The high-pressure steam turbine 17 a, the intermediate-pressure steam turbine 17 b, and the low-pressure steam turbine 17 c drive the generator 19. The steam that has finished work in the low-pressure steam turbine 17c is condensed in the condenser 20 and returned to water.

復水器20で凝縮された水は、復水ポンプ21で低圧給水加熱器22及び脱気器23に供給され、脱気器23で脱気された給水はボイラ給水ポンプ24で高圧給水加熱器25に供給される。高圧給水加熱器25で加熱された給水は、過熱器スプレー圧力調節弁(ISPR弁)26及び過熱器スプレー調節弁27を介して減温器16に圧送される。減温器16では、過熱蒸気に水を注入することによって過熱蒸気の温度制御を行うが、水を注入するためには給水圧力を蒸気圧力より高くする必要がある。そこで、可動ノズル28の開閉により、減温器16に供給される水の圧力を過熱蒸気圧力よりも高く維持することになる。また、可動ノズル28を介して節炭器29へ圧送された水は、ボイラ循環ポンプ12によって火炉11へ導かれ、再び蒸気として利用される。   The water condensed in the condenser 20 is supplied to the low pressure feed water heater 22 and the deaerator 23 by the condensate pump 21, and the feed water deaerated by the deaerator 23 is supplied to the high pressure feed water heater by the boiler feed pump 24. 25. The feed water heated by the high-pressure feed water heater 25 is pumped to the temperature reducer 16 via the superheater spray pressure control valve (ISPR valve) 26 and the superheater spray control valve 27. The temperature reducer 16 controls the temperature of the superheated steam by injecting water into the superheated steam. However, in order to inject water, it is necessary to make the feed water pressure higher than the steam pressure. Therefore, by opening and closing the movable nozzle 28, the pressure of the water supplied to the temperature reducer 16 is maintained higher than the superheated steam pressure. Further, the water pumped to the economizer 29 through the movable nozzle 28 is guided to the furnace 11 by the boiler circulation pump 12 and is used again as steam.

次に、ボイラ起動用抽気弁(BE弁)30及びボイラ起動用抽気弁バイパス弁(BEB弁)31は、ボイラの起動過程で使用されるものである。ボイラの起動時には、ボイラ絞り弁13、ボイラ絞り弁バイパス弁14、ボイラ起動用抽気弁30、ボイラ起動用抽気弁バイパス弁31はすべて閉じている。まず、ボイラの火炉11のバーナ点火後にボイラ起動用抽気弁バイパス弁31を開き、火炉11からの蒸気を気水分離器(WS)32に供給しつつ火炉出口蒸気温度を上昇させる。この場合、気水分離器32で分離された水はウォータドレン弁(WD弁)を介して復水器20に排出され、また、調節弁(SP弁)34で気水分離器32の圧力制御を行う。そして、火炉出口蒸気温度が所定温度(例えば、250℃)になると、ボイラ起動用抽気弁バイパス弁31を閉じてボイラ起動用抽気弁30を開き、弁の切り替えを行う。さらに、火炉出口蒸気温度が所定温度(例えば、400℃)になると、ボイラ起動用抽気弁30を閉じてボイラ絞り弁バイパス弁14を開く。   Next, the boiler starting extraction valve (BE valve) 30 and the boiler starting extraction valve bypass valve (BEB valve) 31 are used in the process of starting the boiler. When the boiler is started, the boiler throttle valve 13, the boiler throttle valve bypass valve 14, the boiler starting bleed valve 30, and the boiler starting bleed valve bypass valve 31 are all closed. First, after the burner of the furnace 11 of the boiler is ignited, the boiler starting extraction valve bypass valve 31 is opened, and the steam temperature from the furnace 11 is raised while supplying steam from the furnace 11 to the steam separator (WS) 32. In this case, the water separated by the steam / water separator 32 is discharged to the condenser 20 through the water drain valve (WD valve), and the pressure control of the steam / water separator 32 by the control valve (SP valve) 34. I do. When the furnace outlet steam temperature reaches a predetermined temperature (for example, 250 ° C.), the boiler start bleed valve bypass valve 31 is closed and the boiler start bleed valve 30 is opened to switch the valves. Further, when the furnace outlet steam temperature reaches a predetermined temperature (for example, 400 ° C.), the boiler starting bleed valve 30 is closed and the boiler throttle valve bypass valve 14 is opened.

次に、火炉出口蒸気圧力制御装置37は、ボイラ絞り弁13及びボイラ絞り弁バイパス弁14の開度を調節して火炉出口蒸気圧力PWを調節するものである。一方、過熱器出口蒸気圧力制御装置38は、ボイラの火炉11に供給される燃料流量、給水流量、空気流量を調節して、過熱器出口蒸気圧力PTを調節するものである。燃料流量や空気流量の調節は火炉11のバーナに供給される燃料流量や空気流量を調節して行う。給水流量の調節はボイラ給水ポンプ24の回転数を制御して行う。   Next, the furnace outlet steam pressure control device 37 adjusts the furnace outlet steam pressure PW by adjusting the opening degree of the boiler throttle valve 13 and the boiler throttle valve bypass valve 14. On the other hand, the superheater outlet steam pressure controller 38 adjusts the superheater outlet steam pressure PT by adjusting the fuel flow rate, feed water flow rate, and air flow rate supplied to the boiler furnace 11. The fuel flow rate and the air flow rate are adjusted by adjusting the fuel flow rate and the air flow rate supplied to the burner of the furnace 11. The feed water flow rate is adjusted by controlling the rotation speed of the boiler feed water pump 24.

過熱器出口蒸気圧力制御装置38は、蒸気タービン17の負荷が定格負荷未満の予め定めた低負荷領域においては、過熱器15の出口蒸気圧力PTを変化させる変圧運転を行う。また、蒸気タービン17の負荷が低負荷領域を越えた状態から定格負荷までは、過熱器の出口蒸気圧力PTを予め定めた一定圧力(基準圧力PT0)の定圧運転を行う。   The superheater outlet steam pressure control device 38 performs a transformation operation that changes the outlet steam pressure PT of the superheater 15 in a predetermined low load region where the load of the steam turbine 17 is less than the rated load. Further, from the state where the load of the steam turbine 17 exceeds the low load range to the rated load, constant pressure operation is performed at a constant pressure (reference pressure PT0) at which the outlet steam pressure PT of the superheater is determined in advance.

そして、火炉出口蒸気圧力制御装置37は、過熱器出口蒸気圧力制御装置38が変圧運転を行う際には火炉出口蒸気圧力PWを定圧貫流ボイラの基準圧力PW0未満の許容範囲内の減圧基準圧力に減圧制御する。また、過熱器出口蒸気圧力制御装置38が過熱器出口蒸気圧力PTの定圧運転を行う際には火炉出口蒸気圧力PWを定圧貫流ボイラの基準圧力PW0に制御する。   Then, when the superheater outlet steam pressure control device 38 performs the transformation operation, the furnace outlet steam pressure control device 37 sets the furnace outlet steam pressure PW to a reduced pressure reference pressure within an allowable range less than the reference pressure PW0 of the constant pressure once-through boiler. Reduce pressure. Further, when the superheater outlet steam pressure control device 38 performs the constant pressure operation of the superheater outlet steam pressure PT, the furnace outlet steam pressure PW is controlled to the reference pressure PW0 of the constant pressure once-through boiler.

図2は本発明の実施の形態に係わる発電システムでの蒸気タービン負荷と蒸気圧力との関係を示すグラフである。横軸の蒸気タービン負荷(発電機出力)は定格負荷(定格出力)に対する百分率で示している。図5に示した過熱器変圧運転方式の場合と異なる点は、起動領域A1及び変圧領域A3において、火炉出口蒸気圧力PWを定圧貫流ボイラの基準圧力PW0未満の許容範囲内の減圧基準圧力PW1に減圧制御するようにしたものである。   FIG. 2 is a graph showing the relationship between the steam turbine load and the steam pressure in the power generation system according to the embodiment of the present invention. The steam turbine load (generator output) on the horizontal axis is shown as a percentage of the rated load (rated output). The difference from the superheater transformer operation method shown in FIG. 5 is that in the start-up region A1 and the transform region A3, the furnace outlet steam pressure PW is changed to a decompression reference pressure PW1 within an allowable range less than the reference pressure PW0 of the constant pressure once-through boiler. The decompression control is performed.

蒸気タービン負荷が0%〜15%の起動領域A1では、火炉出口蒸気圧力PWは減圧基準圧力PW1に保持されている。減圧基準圧力PW1は後述するように定圧貫流ボイラの基準圧力PW0未満の許容範囲内の圧力である。蒸気タービン負荷が0%である状態は、蒸気タービン17に連結された発電機18が電力系統に併入され、蒸気タービン(発電機)が無負荷状態で電力系統と同期して回転している状態である。   In the start-up region A1 where the steam turbine load is 0% to 15%, the furnace outlet steam pressure PW is maintained at the reduced pressure reference pressure PW1. The decompression reference pressure PW1 is a pressure within an allowable range less than the reference pressure PW0 of the constant pressure once-through boiler, as will be described later. In a state where the steam turbine load is 0%, the generator 18 connected to the steam turbine 17 is inserted into the power system, and the steam turbine (generator) rotates in synchronization with the power system in a no-load state. State.

また、蒸気タービン負荷が0%である状態では、ボイラ絞り弁13及びボイラ絞り弁バイパス弁14は全閉であり、ボイラ起動用抽気弁30が開いており、調節弁34で気水分離器32の圧力制御を行っている。これにより、過熱器出口蒸気圧力PTは所定圧力PT1に保持されている。   In the state where the steam turbine load is 0%, the boiler throttle valve 13 and the boiler throttle valve bypass valve 14 are fully closed, the boiler starting bleed valve 30 is open, and the control valve 34 is connected to the steam separator 32. The pressure is controlled. As a result, the superheater outlet steam pressure PT is maintained at the predetermined pressure PT1.

この起動領域A1においては、蒸気加減弁36の開度を開いて負荷を取り始め、蒸気タービン負荷が5%程度になるとボイラ起動用抽気弁30及び調節弁34を閉じる。火炉出口蒸気圧力制御装置37は、ボイラ起動用抽気弁30及び調節弁34が閉じられると、ボイラ絞り弁バイパス弁14を開操作して火炉出口蒸気圧力PWを減圧基準圧力PW1に保ちつつ火炉11からの蒸気を過熱器15に供給する。一方、過熱器出口蒸気圧力制御装置38は、ボイラの火炉11に供給される燃料流量、給水流量、空気流量を調節して、過熱器出口蒸気圧力PTを上昇させる。これにより、タービン負荷も増加する。   In this starting area A1, the opening of the steam control valve 36 is opened to start taking a load, and when the steam turbine load becomes about 5%, the boiler starting bleed valve 30 and the control valve 34 are closed. When the boiler starting bleed valve 30 and the control valve 34 are closed, the furnace outlet steam pressure control device 37 opens the boiler throttle valve bypass valve 14 to maintain the furnace outlet steam pressure PW at the decompression reference pressure PW1 while the furnace 11 Is supplied to the superheater 15. On the other hand, the superheater outlet steam pressure control device 38 adjusts the fuel flow rate, feed water flow rate, and air flow rate supplied to the boiler furnace 11 to increase the superheater outlet steam pressure PT. This also increases the turbine load.

そして、タービン負荷が15%以上となり、蒸気タービン負荷15%〜75%の変圧領域A3となると、火炉出口蒸気圧力制御装置37は、ボイラ絞り弁バイパス弁14を全開とはせず、過熱器出口蒸気圧力PTが急激に上昇しない程度の開度(例えば50%)で保持する。この際には、火炉出口蒸気圧力PWの減圧基準圧力PW1と過熱器出口蒸気圧力PTとの差圧がボイラ絞り弁13の許容差圧以内となるように、ボイラ絞り弁バイパス弁14の開度を調節する。   When the turbine load becomes 15% or more and the transformation region A3 is 15% to 75% of the steam turbine load, the furnace outlet steam pressure control device 37 does not fully open the boiler throttle valve bypass valve 14, and the superheater outlet The steam pressure PT is maintained at an opening degree (for example, 50%) that does not increase rapidly. At this time, the opening degree of the boiler throttle valve bypass valve 14 is set so that the differential pressure between the pressure reduction reference pressure PW1 of the furnace outlet steam pressure PW and the superheater outlet steam pressure PT is within the allowable differential pressure of the boiler throttle valve 13. Adjust.

ボイラ絞り弁バイパス弁14の開度を一定開度(例えば50%)で保持することにより、過熱器出口蒸気圧力PTは緩やかに上昇する。その後、タービン負荷がある程度上昇すると、火炉出口蒸気圧力制御装置37は火炉出口蒸気圧力PWを減圧基準圧力PW1に保ちつつボイラ絞り弁13を開き始める。   By maintaining the opening of the boiler throttle valve bypass valve 14 at a constant opening (for example, 50%), the superheater outlet steam pressure PT gradually increases. Thereafter, when the turbine load increases to some extent, the furnace outlet steam pressure control device 37 starts to open the boiler throttle valve 13 while maintaining the furnace outlet steam pressure PW at the decompression reference pressure PW1.

このように、変圧領域A3では、火炉出口蒸気圧力制御装置37により、ボイラの火炉出口蒸気圧力PWが減圧基準圧力PW1に維持された状態で、ボイラ絞り弁バイパス弁14及びボイラ絞り弁13を開操作し、過熱器出口蒸気圧力制御装置38により、蒸気タービン負荷15%〜75%の範囲で蒸気タービン負荷に応じて過熱器出口蒸気圧力PTを変化させる変圧運転を行う。   In this way, in the transformation region A3, the boiler outlet steam pressure control device 37 opens the boiler throttle valve bypass valve 14 and the boiler throttle valve 13 while the boiler outlet steam pressure PW is maintained at the pressure-reducing reference pressure PW1. In operation, the superheater outlet steam pressure control device 38 performs a transformation operation for changing the superheater outlet steam pressure PT in accordance with the steam turbine load in a range of 15% to 75% of the steam turbine load.

次に、蒸気タービン負荷75%〜100%以上である定圧領域A2においては、ボイラの火炉出口蒸気圧力PWを減圧基準圧力PW1から基準圧力PW0に昇圧し、火炉出口蒸気圧力PWを基準圧力PW0に保持するとともに過熱器出口蒸気圧力PTも基準圧力PT0に保持し定圧運転に移行する。   Next, in the constant pressure region A2 where the steam turbine load is 75% to 100% or more, the furnace outlet steam pressure PW of the boiler is increased from the reduced pressure reference pressure PW1 to the reference pressure PW0, and the furnace outlet steam pressure PW is changed to the reference pressure PW0. While being held, the superheater outlet steam pressure PT is also held at the reference pressure PT0, and the operation proceeds to a constant pressure operation.

火炉出口蒸気圧力制御装置37は、タービン負荷が75%に近づいてくると、例えばタービン負荷が70%程度になると、ボイラの火炉出口蒸気圧力PWが基準値PW0となるように、ボイラ絞り弁バイパス弁14及びボイラ絞り弁13を開操作し、最終的に全開として、タービン負荷が75%〜100%においては火炉出口蒸気圧力PWが基準値PW0となる定圧運転を行う。また、過熱器出口蒸気圧力制御装置38は、タービン負荷が75%に近づいてくると、火炉11への燃料流量、給水流量、空気流量を調節し、過熱器出口蒸気圧力PTをその基準圧力PT0まで上昇させ、タービン負荷が75%〜100%においては過熱器出口蒸気圧力PTが基準圧力PT0となる定圧運転を行う。   When the turbine load approaches 75%, for example, when the turbine load becomes about 70%, the furnace outlet steam pressure control device 37 is configured to bypass the boiler throttle valve so that the boiler outlet steam pressure PW becomes the reference value PW0. The valve 14 and the boiler throttle valve 13 are opened and finally fully opened, and a constant pressure operation is performed in which the furnace outlet steam pressure PW becomes the reference value PW0 when the turbine load is 75% to 100%. Further, when the turbine load approaches 75%, the superheater outlet steam pressure control device 38 adjusts the fuel flow rate, the feed water flow rate, and the air flow rate to the furnace 11 to set the superheater outlet steam pressure PT to the reference pressure PT0. When the turbine load is 75% to 100%, constant pressure operation is performed in which the superheater outlet steam pressure PT becomes the reference pressure PT0.

次に、図3は、火炉出口蒸気圧力PWの基準値PW0、減圧基準圧力PW1、圧力低警報値ANN、火炉出口蒸気圧力PWの低下によるトリップ値TRIPの説明図である。火炉出口蒸気圧力PWの基準値PW0が、例えば、超臨界圧の24.1[MPa]である場合の定圧貫流ボイラは、その圧力低警報値ANNは23.0[MPa]であり、火炉出口蒸気圧力PWの低下によるトリップ値TRIPは22.1[MPa]である。この圧力低警報値ANN(23.0[MPa])及びトリップ値TRIP(22.1[MPa])を遵守して定圧貫流ボイラを運転するには、火炉出口蒸気圧力PWが圧力低警報値ANN(23.0[MPa])以下とならないように運転すればよいことになる。この場合の減圧制御運転の許容範囲ΔPWは、基準値PW0(24.1[MPa])から圧力低警報値ANN(23.0[MPa])までの範囲である。   Next, FIG. 3 is an explanatory diagram of the reference value PW0 of the furnace outlet steam pressure PW, the decompression reference pressure PW1, the low pressure alarm value ANN, and the trip value TRIP due to the decrease in the furnace outlet steam pressure PW. For example, the constant pressure once-through boiler in which the reference value PW0 of the furnace outlet steam pressure PW is 24.1 [MPa], which is a supercritical pressure, has a low pressure alarm value ANN of 23.0 [MPa], and the furnace outlet The trip value TRIP due to the decrease in the steam pressure PW is 22.1 [MPa]. In order to operate the constant pressure once-through boiler in compliance with the low pressure alarm value ANN (23.0 [MPa]) and the trip value TRIP (22.1 [MPa]), the furnace outlet steam pressure PW is set to the low pressure alarm value ANN. It is sufficient to operate so as not to be less than (23.0 [MPa]). The allowable range ΔPW of the decompression control operation in this case is a range from the reference value PW0 (24.1 [MPa]) to the low pressure alarm value ANN (23.0 [MPa]).

そこで、本発明の実施の形態では、変圧領域A3で過熱器出口蒸気圧力PTの変圧運転を行う際に、火炉出口蒸気圧力PWを減圧制御するにあたり、火炉出口蒸気圧力PWが圧力低警報値ANN(23.0[MPa])以下とならない許容範囲ΔPW内の減圧基準圧力PW1で減圧制御を行う。減圧基準圧力PW1としては、例えば、基準値PW0(24.1[MPa])〜圧力低警報値ANN(23.0[MPa])を満たす23.6[MPa]を採用する。   Therefore, in the embodiment of the present invention, when performing the pressure reduction operation of the superheater outlet steam pressure PT in the transformation region A3, the furnace outlet steam pressure PW is reduced to the low pressure alarm value ANN. The depressurization control is performed at the depressurization reference pressure PW1 within the allowable range ΔPW which is not less than (23.0 [MPa]). As the reduced pressure reference pressure PW1, for example, 23.6 [MPa] satisfying the reference value PW0 (24.1 [MPa]) to the low pressure alarm value ANN (23.0 [MPa]) is employed.

本発明の実施の形態によれば、蒸気タービン負荷が小さいときは過熱器出口蒸気圧力PTが小さくなるように、過熱器出口蒸気圧力PTが変圧運転されているときは、火炉出口蒸気圧力PWが圧力低警報値ANN(23.0[MPa])以下とならない許容範囲ΔPW内の減圧基準圧力PW1で減圧制御を行うので、減圧された火炉出口蒸気圧力PWを賄うにあたり、火炉11に供給する給水流量を低減できる。すなわち、給水流量を供給するボイラ給水ポンプ24の軸動力を軽減できるので、全体としてプラント効率を向上させることができる。   According to the embodiment of the present invention, when the superheater outlet steam pressure PT is being transformed so that the superheater outlet steam pressure PT is small when the steam turbine load is small, the furnace outlet steam pressure PW is Since the pressure reduction control is performed at the pressure reduction reference pressure PW1 within the allowable range ΔPW that does not become the pressure low alarm value ANN (23.0 [MPa]) or less, the water supply supplied to the furnace 11 when the reduced furnace outlet steam pressure PW is covered. The flow rate can be reduced. That is, since the shaft power of the boiler feed water pump 24 that supplies the feed water flow rate can be reduced, plant efficiency can be improved as a whole.

また、火炉出口蒸気圧力PWの減圧制御は、火炉出口蒸気圧力PWが定圧貫流ボイラの基準圧力PW0と圧力低警報値ANNとの間の圧力となるように減圧制御するので、定圧貫流ボイラの運転許容範囲内での運転が可能である。   Further, the pressure reduction control of the furnace outlet steam pressure PW is controlled so that the furnace outlet steam pressure PW becomes a pressure between the reference pressure PW0 of the constant pressure once-through boiler and the low pressure alarm value ANN, so that the operation of the constant pressure once-through boiler is performed. Operation within the allowable range is possible.

本発明の実施の形態に係わる発電システムの構成図。The block diagram of the electric power generation system concerning embodiment of this invention. 本発明の実施の形態に係わる発電システムでの蒸気タービン負荷と蒸気圧力との関係を示すグラフ。The graph which shows the relationship between the steam turbine load and steam pressure in the electric power generation system concerning embodiment of this invention. 本発明の実施の形態に係わる発電システムでの火炉出口蒸気圧力PWの基準値PW0、減圧基準圧力PW1、圧力低警報値ANN、トリップ値TRIPの説明図。Explanatory drawing of the reference value PW0 of the furnace exit steam pressure PW, the pressure-reduction reference pressure PW1, the pressure low alarm value ANN, and the trip value TRIP in the electric power generation system concerning embodiment of this invention. 定圧貫流ボイラの定圧運転方式での蒸気タービン負荷と蒸気圧力との関係を示すグラフ。The graph which shows the relationship between the steam turbine load and steam pressure in the constant pressure operation system of a constant pressure once-through boiler. 定圧貫流ボイラの過熱器出口蒸気圧力を可変とした過熱器変圧運転方式での蒸気タービン負荷と蒸気圧力との関係を示すグラフ。The graph which shows the relationship between the steam turbine load and steam pressure in the superheater transformation operation system which made variable the superheater exit steam pressure of a constant pressure once-through boiler.

符号の説明Explanation of symbols

11…火炉、12…ボイラ循環ポンプ、13…ボイラ絞り弁、14…ボイラ絞り弁バイパス弁、15…過熱器、16…減温器、17…蒸気タービン、18…再熱器、19…発電機、20…復水器、21…復水ポンプ、22…低圧給水加熱器、23…脱気器、24…ボイラ給水ポンプ、25…高圧給水加熱器、26…過熱器スプレー圧力調節弁、27…過熱器スプレー調節弁、28…可動ノズル、29…節炭器、30…ボイラ起動用抽気弁、31…ボイラ起動用抽気弁バイパス弁、32…気水分離器、33…ウォータドレン弁、34…調節弁、35…主蒸気止め弁、36…蒸気加減弁、37…火炉出口蒸気圧力制御装置、38…過熱器出口蒸気圧力制御装置 DESCRIPTION OF SYMBOLS 11 ... Furnace, 12 ... Boiler circulation pump, 13 ... Boiler throttle valve, 14 ... Boiler throttle valve bypass valve, 15 ... Superheater, 16 ... Temperature reducer, 17 ... Steam turbine, 18 ... Reheater, 19 ... Generator 20 ... Condenser, 21 ... Condensate pump, 22 ... Low pressure feed water heater, 23 ... Deaerator, 24 ... Boiler feed pump, 25 ... High pressure feed water heater, 26 ... Superheater spray pressure control valve, 27 ... Superheater spray control valve, 28 ... movable nozzle, 29 ... economizer, 30 ... boiler start bleed valve, 31 ... boiler start bleed valve bypass valve, 32 ... steam separator, 33 ... water drain valve, 34 ... Control valve, 35 ... main steam stop valve, 36 ... steam control valve, 37 ... furnace outlet steam pressure control device, 38 ... superheater outlet steam pressure control device

Claims (2)

燃料、水、空気が供給され燃料を燃焼させて蒸気を発生させる定圧貫流ボイラの火炉と、
前記火炉で発生した蒸気を過熱する過熱器と、
前記火炉と前記過熱器との間の主蒸気管に設けられ前記過熱器に供給される蒸気を調節するボイラ絞り弁と、
前記ボイラ絞り弁をバイパスして設けられたボイラ絞り弁バイパス弁と、
前記過熱器で過熱された蒸気が供給され連結された発電機を駆動する蒸気タービンと、
前記過熱器と前記蒸気タービンとの間の主蒸気管に設けられ前記蒸気タービンに供給される蒸気流量を制御する蒸気加減弁と、
前記蒸気タービンの負荷が定格負荷未満の予め定めた低負荷領域においては前記蒸気タービンの負荷に応じて前記過熱器の出口蒸気圧力を変圧運転し、前記蒸気タービンの負荷が低負荷領域を越えた状態から定格負荷までは前記過熱器の出口蒸気圧力を予め定めた一定圧力の定圧運転を行う過熱器出口蒸気圧力制御装置と、
前記過熱器出口蒸気圧力制御装置が変圧運転を行う際には前記ボイラ絞り弁及び前記ボイラ絞り弁バイパス弁の開度を調節して前記火炉出口蒸気圧力を前記定圧貫流ボイラの基準圧力未満の許容範囲内の減圧基準圧力に減圧制御し、前記過熱器出口蒸気圧力制御装置が前記過熱器の出口蒸気圧力の定圧運転を行う際には前記火炉出口蒸気圧力を前記定圧貫流ボイラの基準圧力に制御する火炉出口蒸気圧力制御装置とを備えたことを特徴とする発電システム。
A furnace of a constant pressure once-through boiler that is supplied with fuel, water, and air to burn the fuel and generate steam;
A superheater that superheats steam generated in the furnace;
A boiler throttle valve that is provided in a main steam pipe between the furnace and the superheater and adjusts steam supplied to the superheater;
A boiler throttle valve bypass valve provided to bypass the boiler throttle valve;
A steam turbine for driving a generator connected to the steam superheated by the superheater; and
A steam control valve that is provided in a main steam pipe between the superheater and the steam turbine and controls a flow rate of steam supplied to the steam turbine;
In a predetermined low load region where the load of the steam turbine is less than the rated load, the outlet steam pressure of the superheater is transformed according to the load of the steam turbine, and the load of the steam turbine exceeds the low load region. From the state to the rated load, the superheater outlet steam pressure control device that performs constant pressure operation at a constant pressure that determines the outlet steam pressure of the superheater in advance,
When the superheater outlet steam pressure control device performs a transformer operation, the opening degree of the boiler throttle valve and the boiler throttle valve bypass valve is adjusted to allow the furnace outlet steam pressure to be less than the reference pressure of the constant pressure once-through boiler. When the superheater outlet steam pressure control device performs a constant pressure operation of the outlet steam pressure of the superheater, the furnace outlet steam pressure is controlled to the reference pressure of the constant pressure once-through boiler. And a furnace outlet steam pressure control device.
前記火炉出口蒸気圧力制御装置は、前記火炉出口蒸気圧力を減圧制御する際には、前記火炉出口蒸気圧力が前記定圧貫流ボイラの基準圧力と圧力低警報値との間の圧力となるように減圧制御することを特徴とする請求項1記載の発電システム。 When the furnace outlet steam pressure control is performed to reduce the furnace outlet steam pressure, the furnace outlet steam pressure is reduced so that the furnace outlet steam pressure is a pressure between a reference pressure of the constant pressure once-through boiler and a low pressure alarm value. The power generation system according to claim 1, wherein the power generation system is controlled.
JP2008178347A 2008-07-08 2008-07-08 Power generation system Expired - Fee Related JP5251311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178347A JP5251311B2 (en) 2008-07-08 2008-07-08 Power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178347A JP5251311B2 (en) 2008-07-08 2008-07-08 Power generation system

Publications (2)

Publication Number Publication Date
JP2010019449A JP2010019449A (en) 2010-01-28
JP5251311B2 true JP5251311B2 (en) 2013-07-31

Family

ID=41704544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178347A Expired - Fee Related JP5251311B2 (en) 2008-07-08 2008-07-08 Power generation system

Country Status (1)

Country Link
JP (1) JP5251311B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881470B2 (en) * 2012-02-29 2016-03-09 三菱日立パワーシステムズ株式会社 Power generation system and control method thereof
CN103185333B (en) * 2013-05-06 2016-01-06 安徽省电力科学研究院 A kind of Supercritical once-through boiler coal varitation control method for coordinating
CN109357251A (en) * 2018-09-20 2019-02-19 佛山科学技术学院 A kind of control method of industrial steam boiler
CN109695912B (en) * 2018-12-05 2020-09-11 中冶南方都市环保工程技术股份有限公司 Method and system for controlling steam supply pressure of heat supply network of thermal power plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185604A (en) * 1989-01-09 1990-07-20 Ishikawajima Harima Heavy Ind Co Ltd Generator output control method
JP4183653B2 (en) * 2004-03-31 2008-11-19 株式会社東芝 Thermal power plant and operation method

Also Published As

Publication number Publication date
JP2010019449A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5734792B2 (en) Steam turbine plant and operation method thereof
JP5727951B2 (en) Steam supply system and method for controlling steam supply system
JP3800384B2 (en) Combined power generation equipment
CN101825005B (en) Method for controlling the operation of high-voltage bypass in thermal generator set
RU2009148415A (en) DEVICE FOR STARTING A STEAM TURBINE UNDER NOMINAL PRESSURE
KR102051279B1 (en) Combined cycle plant, method for controlling same, and device for controlling same
JP2010090894A (en) Apparatus for steam attemperation using fuel gas heater water discharge to reduce feedwater pump size
JP6122775B2 (en) Control device and activation method
JP2015081589A (en) Steam turbine plant activation method
JP5251311B2 (en) Power generation system
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP6071421B2 (en) Combined cycle plant, method for stopping the same, and control device therefor
JP4929010B2 (en) Power generation system
JP6231228B2 (en) Combined cycle gas turbine plant
JP5320013B2 (en) Boiler unit and power generation system
JP5832080B2 (en) Power generation system control device, power generation system, and power generation system control method
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP2020133581A (en) Combined cycle power generation plant and operation method therefor
JP2006063886A (en) Thermal power plant
JP6877216B2 (en) Power generation system
JP2019173696A (en) Combined cycle power generation plant, and operation method of the same
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
KR101818090B1 (en) Method for regulating a brief increase in power of a steam turbine
JP2008304264A (en) Nuclear power plant and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees