JP2010095874A - Construction method and structure for performing greening of slope - Google Patents

Construction method and structure for performing greening of slope Download PDF

Info

Publication number
JP2010095874A
JP2010095874A JP2008265957A JP2008265957A JP2010095874A JP 2010095874 A JP2010095874 A JP 2010095874A JP 2008265957 A JP2008265957 A JP 2008265957A JP 2008265957 A JP2008265957 A JP 2008265957A JP 2010095874 A JP2010095874 A JP 2010095874A
Authority
JP
Japan
Prior art keywords
slope
fiber
strip
soil layer
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008265957A
Other languages
Japanese (ja)
Other versions
JP5107858B2 (en
Inventor
Kenichi Kojima
謙一 小島
Masaru Tateyama
勝 舘山
Takaki Matsumaru
貴樹 松丸
Koji Goto
幸司 後藤
Kimiyasu Ouchi
公安 大内
Toku Takahashi
徳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Raito Kogyo Co Ltd
Original Assignee
Railway Technical Research Institute
Raito Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Raito Kogyo Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2008265957A priority Critical patent/JP5107858B2/en
Publication of JP2010095874A publication Critical patent/JP2010095874A/en
Application granted granted Critical
Publication of JP5107858B2 publication Critical patent/JP5107858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method for performing the greening of a slope, which enables the greening of the slope to be perpetually performed without reference to a construction site, even when the slope to undergo the greening is steep. <P>SOLUTION: A fiber-mixed-and-reinforced soil layer 10 is created on the slope G, and covered with a growth base material 20 so that the greening of the slope can be performed. In this case, before the creation of the fiber-mixed-and-reinforced soil layer 10, a rigid strip-shaped plate material 30 with many liquid permeation holes 30H is arranged in such a manner that an erection angle 30R falls within the range of 10-90° by fixing one side edge 30c to the slope G; the plurality of strip-shaped plate material 30 are arranged in such a manner that a liquid flow line directed to a base 11 from an upper surface part 12 crosses the strip-shaped plate material 30 in any position associated with a horizontal direction; and the creation thickness 10X of the fiber-mixed-and-reinforced soil layer 10 is uniformed from the base 11 to the upper surface 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、斜面緑化工法及び斜面緑化構造に関するものである。特に、斜面の勾配が60°を超える急勾配である場合に好適な斜面緑化工法及び斜面緑化構造に関するものである。   The present invention relates to a slope greening method and a slope greening structure. In particular, the present invention relates to a slope greening method and a slope greening structure that are suitable when the slope has a steep slope exceeding 60 °.

従来から、斜面を緑化する工法としては、斜面上に繊維混入補強土層を造成し、この繊維混入補強土層上を生育基盤材で覆う工法がある。この工法は、現在、全面緑化を可能とするためにさまざまな改良が進められており、例えば、特許文献1は、連続繊維補強土工の上に網体を敷設し、当該連続繊維補強土工にピンを差し込む工法を開示している。   Conventionally, as a method of greening the slope, there is a method of forming a fiber-mixed reinforced soil layer on the slope and covering the fiber-mixed reinforced soil layer with a growth base material. This method is currently being improved in various ways in order to enable greening of the entire surface. For example, Patent Document 1 discloses that a net is laid on a continuous fiber reinforced earthwork and a pin is attached to the continuous fiber reinforced earthwork. The method of inserting

しかしながら、この従来の工法は、表層部の安定度が高くなるという点では、緑化対策に優れるものの、現実には、斜面の勾配が60°を超える急勾配であると、植物の生育限界勾配を超えるため、植物の生育が阻害され、永続的に緑化をすることができないとの問題が生じる。   However, although this conventional method is excellent in greening countermeasures in that the stability of the surface layer is high, in reality, if the slope of the slope is a steep slope exceeding 60 °, the growth limit slope of the plant is set. Therefore, there is a problem that the growth of the plant is inhibited and the plant cannot be permanently greened.

そこで、現在では、例えば、繊維混入補強土層の造成厚さを、基底部においては、例えば、100〜150cmとし、天端部においては、例えば20〜50cmにするというように、勾配補正を行い、もって永続的な緑化を図る方法が併用されている。   Therefore, at present, the gradient correction is performed so that, for example, the formation thickness of the fiber-mixed reinforced soil layer is 100 to 150 cm at the base and 20 to 50 cm at the top, for example. Therefore, a method for permanent greening is also used.

しかしながら、施工場所によっては、かかる勾配補正を行うことができない場合もある。例えば、鉄道業における軌道脇の法面が緑化対象斜面である場合、郊外での施工であれば、一般に、当該斜面と軌道との間隔が広く、繊維混入補強土層の基底部の造成厚さを厚くすることができるが、都市部での施工であると、緑化対象斜面と軌道との間隔が狭く、繊維混入補強土層の基底部の造成厚さを厚くすることができないため、勾配補正を行うことができないとの問題がある。
特開2004‐169289号公報
However, depending on the construction site, such gradient correction may not be performed. For example, if the slope beside the track in the railroad industry is a slope to be planted, if the construction is in the suburbs, generally the distance between the slope and the track is wide, and the thickness of the foundation of the fiber-reinforced reinforced soil layer However, if it is construction in an urban area, the gap between the slope to be planted and the track is narrow, and the foundation thickness of the fiber-reinforced reinforced soil layer cannot be increased. There is a problem with being unable to do.
JP 2004-169289 A

本発明が解決しようとする主たる課題は、緑化の対象となる斜面が急勾配である場合においても、施工場所にかかわらず、永続的に緑化をすることができる斜面緑化工法及び斜面緑化構造を提供することにある。   The main problem to be solved by the present invention is to provide a slope revegetation method and a slope revegetation structure capable of permanent revegetation regardless of the construction site even when the slope to be replanted is steep. There is to do.

この課題を解決した本発明は、次のとおりである。
〔請求項1記載の発明〕
斜面上に繊維混入補強土層を造成し、この繊維混入補強土層上を生育基盤材で覆って前記斜面を緑化する工法であって、
前記繊維混入補強土層を造成するに先立って、多数の液透過孔を有する剛性の帯状板材を、下記の条件を満たすように複数枚配設し、
前記繊維混入補強土層の造成厚さを、基底部から天端部にわたって均一とする、
ことを特徴とする斜面緑化工法。
〔条件〕
前記複数枚の帯状板材は、それぞれ一方の側縁部を前記斜面に固定して当該固定部から前記斜面上方に向かう面に対する起立角度が10〜90°となるように配設し、かつ、前記繊維混入補強土層を正面視した場合の水平方向に関するいずれの位置においても、前記天端部から前記基底部へ向かう液流れ線が、前記複数枚の帯状板材の少なくともいずれかと交わるように配設する。
The present invention that has solved this problem is as follows.
[Invention of Claim 1]
A method of constructing a fiber-mixed reinforcing soil layer on a slope, covering the fiber-mixed reinforcing soil layer with a growth base material, and greening the slope,
Prior to the formation of the fiber-mixed reinforced soil layer, a plurality of rigid strip-shaped plate materials having a large number of liquid-permeable holes are disposed so as to satisfy the following conditions:
The formation thickness of the fiber-mixed reinforcing soil layer is uniform from the base portion to the top end portion,
Slope greening method characterized by that.
〔conditions〕
The plurality of strip-shaped plate members are arranged such that one side edge portion is fixed to the slope, and an upstanding angle with respect to a surface from the fixed portion toward the upper side of the slope is 10 to 90 °, and At any position in the horizontal direction when the fiber-mixed reinforcing soil layer is viewed from the front, the liquid flow line from the top end portion to the base portion is arranged so as to intersect with at least one of the plurality of strip-shaped plate members. To do.

〔請求項2記載の発明〕
前記複数枚の帯状板材の少なくともいずれかを、前記水平方向に関して連なるように配設する、請求項1記載の斜面緑化工法。
[Invention of Claim 2]
The slope greening method according to claim 1, wherein at least one of the plurality of strip-shaped plate members is disposed so as to be continuous in the horizontal direction.

〔請求項3記載の発明〕
前記水平方向に関して連なる複数枚の帯状板材は、相互に隣接する一対の帯状板材を、当該隣接部を挟んで対称に、かつ、各帯状部材が前記水平方向に対して45〜60°傾斜するように配設する、請求項2記載の斜面緑化工法。
[Invention of Claim 3]
The plurality of strip-shaped plate members that are continuous in the horizontal direction are configured such that a pair of adjacent strip-shaped plate materials are symmetrically sandwiched between the adjacent portions, and each strip-shaped member is inclined by 45 to 60 ° with respect to the horizontal direction. The slope greening method according to claim 2, which is disposed in

〔請求項4記載の発明〕
斜面上に繊維混入補強土層が造成され、この繊維混入補強土層上が生育基盤材で覆われた前記斜面の緑化構造であって、
前記斜面には、多数の液透過孔を有する剛性の帯状板材が、下記の条件を満たすように複数枚配設されており、
前記繊維混入補強土層の造成厚さが、基底部から天端部にわたって均一とされている、
ことを特徴とする斜面緑化構造。
〔条件〕
前記複数枚の帯状板材は、それぞれ一方の側縁部が前記斜面に固定されて当該固定部から前記斜面上方に向かう面に対する起立角度が10〜90°となるように配置され、かつ、前記繊維混入補強土層を正面視した場合の水平方向に関するいずれの位置においても、前記天端部から前記基底部へ向かう液流れ線が、前記複数枚の帯状板材の少なくともいずれかと交わるように配置されている。
[Invention of Claim 4]
A greening structure of the slope in which a fiber-mixed reinforced soil layer is formed on a slope, and the fiber-mixed reinforced soil layer is covered with a growth base material,
A plurality of rigid strip-shaped plate materials having a large number of liquid-permeable holes are disposed on the slope so as to satisfy the following conditions:
The formation thickness of the fiber-mixed reinforcing soil layer is uniform from the base to the top end,
Slope greening structure characterized by that.
〔conditions〕
Each of the plurality of strip-shaped plate members is arranged such that one side edge portion is fixed to the inclined surface, and an upstanding angle with respect to a surface from the fixed portion toward the upper side of the inclined surface is 10 to 90 °, and the fiber At any position in the horizontal direction when the mixed reinforcing soil layer is viewed from the front, the liquid flow line from the top end portion to the base portion is arranged so as to intersect with at least one of the plurality of strip-shaped plate members. Yes.

本発明によると、緑化の対象となる斜面が急勾配である場合においても、施工場所にかかわらず、永続的に緑化をすることができる斜面緑化工法及び斜面緑化構造となる。   According to the present invention, even when the slope to be replanted has a steep slope, the slope revegetation method and the slope revegetation structure can be permanently replanted regardless of the construction site.

次に、本発明の実施の形態を説明する。
図1及び図2に示すように、本形態の斜面緑化工法は、斜面G上に繊維混入補強土層10を造成し、この繊維混入補強土層10上を生育基盤材で覆って、例えば、生育基盤材層20を造成して斜面Gを緑化するものである。なお、このようにして構築される本形態の斜面緑化構造を符号1で示す。
Next, an embodiment of the present invention will be described.
As shown in FIGS. 1 and 2, the slope greening method of this embodiment forms a fiber-mixed reinforcing soil layer 10 on the slope G, and covers the fiber-mixed reinforcing soil layer 10 with a growth base material, for example, The growth base material layer 20 is formed and the slope G is greened. In addition, the slope greening structure of this form constructed | assembled in this way is shown with the code | symbol 1. FIG.

本形態の斜面緑化工法の施工対象となる斜面Gは、特に限定されず、例えば、道路法面、鉄道法面、ダム関連法面、宅地・工場造成地法面、公園法面、ゴルフ場法面等の法面、急傾斜地、山腹崩壊跡地、既設モルタル・コンクリート吹付け面などを施工対象とすることができ、また、例えば、既設法枠・アンカー受圧板の全面被覆、既設擁壁の全面被覆などに際して、本形態の斜面緑化工法を採用することもできる。   The slope G to be constructed by the slope greening method of this embodiment is not particularly limited. For example, road slope, railway slope, dam-related slope, residential land / factory site, park slope, golf course law Can be applied to slopes such as slopes, steep slopes, hillside collapse sites, existing mortar / concrete spraying surfaces, etc., for example, full coverage of existing method frames and anchor pressure plates, and the entire surface of existing retaining walls In covering and the like, the slope greening method of this embodiment can also be adopted.

本形態の繊維混入補強土層10は、繊維混入補強土を公知の方法で、例えば、エアー搬送した繊維混入補強土を吹付けノズル先端から吐出圧力2〜15kg/cm2(0.2〜1.5MPa)、吹付け流量0.2〜2.0m3/分で吹き付けるなどして造成することができる。 Fiber incorporation reinforced soil layer 10 of this embodiment, the fiber incorporation reinforced soil by a known method, for example, discharging the fiber incorporation reinforced soil was air conveyed from the spray nozzle tip pressure 2~15kg / cm 2 (0.2~1 0.5 MPa), and spraying at a spraying flow rate of 0.2 to 2.0 m 3 / min.

当該繊維混入補強土は、繊維、固化材及び土等を適宜混合して得ることができる。この各種材料の混合方法は、特に限定されず、例えば、アジテータ等の撹拌機に各種材料を供給して同時に全ての材料を混合することもできる。しかしながら、材料ごとに物性が異なるので、リボンスクリューコンベアなどの撹拌搬送装置の搬送過程において、各種材料をその特性に応じて順次供給し混合する方が好ましい。   The fiber-mixed reinforcing soil can be obtained by appropriately mixing fibers, a solidified material, soil, and the like. The mixing method of these various materials is not particularly limited, and for example, various materials can be supplied to a stirrer such as an agitator and all materials can be mixed at the same time. However, since the physical properties are different for each material, it is preferable to sequentially supply and mix various materials according to the characteristics in the transport process of a stirring transport device such as a ribbon screw conveyor.

繊維混入補強土として混入する土の種類は、特に限定されず、例えば、砂、粘性土、泥土、砂質土、シルト、マサ土、腐植土(腐葉土)、火山灰土、赤土、田土、ピートモス、鹿沼土、バーミキュライト、パーライト、人工ゼオライト、天然ゼオライト、ケイソウ土、ベントナイト、カオリン、シラス、関東ローム、泥炭、チップ、バーク堆肥、石炭灰等の土類を例示することができる。特に、土木工事に際して発生した残土や、施工対象となる法面等を成形・加工するに際して発生した現場発生土、下水汚泥、上水汚泥、ヘドロなどの廃棄土を使用すると、原料コストを削減することができ好ましい。   The type of soil to be mixed as the fiber-mixed reinforcing soil is not particularly limited. Examples include soils such as Kanuma soil, vermiculite, perlite, artificial zeolite, natural zeolite, diatomaceous earth, bentonite, kaolin, shirasu, Kanto loam, peat, chips, bark compost, and coal ash. In particular, the use of waste soil generated during civil engineering work or on-site generated soil, sewage sludge, water sewage sludge, sludge, etc. generated during the shaping and processing of slopes to be constructed will reduce raw material costs. Can be preferable.

繊維混入補強土として混入する繊維の種類も、特に限定されず、短繊維、長繊維のいずれをも使用することができる。繊維を混入することにより、土の粒子と繊維とが相互に摩擦によって結合され、結果、繊維が土の粒子の移動を妨げ、力を受けて変形しようとすると引張補強材として働き、その引張力に応じて拘束力が発生し、土に擬似接着力が付与される。ただし、後述する帯状板材30との絡み合いを促進し、もって繊維混入補強土層10中における水分の保持性能や繊維混入補強土層10自体の強度を向上させるという観点からは、長繊維の方が好ましい。   The type of fiber mixed as the fiber-mixed reinforcing soil is not particularly limited, and either short fiber or long fiber can be used. By mixing the fibers, the soil particles and the fibers are bonded to each other by friction, and as a result, the fibers interfere with the movement of the soil particles, and when they try to deform under force, they act as tensile reinforcements, and the tensile force Accordingly, a binding force is generated, and a pseudo adhesive force is applied to the soil. However, from the viewpoint of promoting the entanglement with the band-shaped plate material 30 described later, thereby improving the moisture retention performance in the fiber-mixed reinforced soil layer 10 and the strength of the fiber-mixed reinforced soil layer 10 itself, the long fibers are preferred. preferable.

本形態において、長繊維としては、連続長繊維たる嵩高加工糸、コンジュゲート糸を使用するのが好ましく、貼り合わせ糸を使用するのがより好ましい。この種の糸を使用すると、その繊維としての圧送に際して、エアーとの摩擦面積が増大し、より搬送性が高まるとの利点があり、また、吹付け時においてバラケ易いため、後述する帯状板材30と絡み合い易く、土との付着性が高まるとの利点もある。   In this embodiment, as the long fiber, it is preferable to use a bulky processed yarn or a conjugate yarn which is a continuous long fiber, and it is more preferable to use a bonded yarn. When this type of yarn is used, there is an advantage in that the area of friction with air increases when pumped as the fiber, and the transportability is further improved. Further, since it is easy to break during spraying, a strip-shaped plate material 30 described later is provided. There is also an advantage that it is easy to be entangled with each other and adhesion to the soil is increased.

連続長繊維の捲縮数は、JIS L 1015の25m当りで50〜9000、特に100〜3000が好ましい。また、連続長繊維としては、トータルデニールの太い繊維1本を吹き付けるよりも、50〜1000d(デニール)の繊維2〜40本を束ねて吹き付けた方が、斜面G上において、より均一に分散し(バラケ)、斜面Gの安定性が向上するため、好ましい。   The number of crimps of the continuous long fibers is preferably 50 to 9000, more preferably 100 to 3,000 per 25 m of JIS L 1015. In addition, as continuous long fibers, it is more uniformly dispersed on the slope G when 2 to 40 fibers of 50 to 1000 d (denier) are bundled and sprayed than to spray one thick fiber of total denier. (Ballet) is preferable because the stability of the slope G is improved.

本形態において、長繊維の材質は、特に限定されず、例えば、ポリエステル、ポリアミド、アクリル、ポリビニルアルコール、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、アセテート、ビニロンなどの各系列の樹脂を採用することができる。ただし、これらの中でもポリプロピレンが好ましく、ビニロンがより好ましい。固化材として特にセメントを使用する場合は、耐アルカリ性に優れるポリプロピレンを使用すると好ましいが、ポリプロピレンはセメントとの付着が困難な性質を有する。これに対し、ビニロンは、耐アルカリ性に優れるうえに、セメントとの付着性にも優れるため、ポリプロピレン以上に好ましい。また、ビニロンは、ポリプロピレンと比べて、強度が強く、繊度が大きいため、より強度が高く、変形性能に優れた繊維混入補強土が得られるようになるため、好ましい。   In this embodiment, the material of the long fiber is not particularly limited, and for example, a series of resins such as polyester, polyamide, acrylic, polyvinyl alcohol, polypropylene, polyethylene, polyvinyl chloride, polyvinylidene chloride, acetate, and vinylon are employed. be able to. However, among these, polypropylene is preferable, and vinylon is more preferable. In particular, when cement is used as the solidifying material, it is preferable to use polypropylene having excellent alkali resistance, but polypropylene has a property that it is difficult to adhere to cement. On the other hand, since vinylon is excellent in alkali resistance and adhesiveness with cement, it is more preferable than polypropylene. Vinylon is preferable because it has higher strength and higher fineness than polypropylene, and thus fiber-reinforced reinforced soil having higher strength and excellent deformation performance can be obtained.

長繊維の混入量は、繊維混入補強土の全質量に対して、好ましくは0.1〜10%、より好ましくは0.1〜1.0%である。0.1%未満であると、十分な疑似粘着性が得られず、他方、10%を超えても、コスト増加に見合うだけの疑似粘着性増加効果が得られない。   The amount of long fibers mixed is preferably 0.1 to 10%, more preferably 0.1 to 1.0%, based on the total mass of the fiber mixed reinforcing soil. If it is less than 0.1%, sufficient pseudo-adhesiveness cannot be obtained. On the other hand, if it exceeds 10%, the effect of increasing pseudo-adhesive enough to meet the cost increase cannot be obtained.

本形態においては、以上の長繊維に変えて、又は、以上の長繊維とともに、短繊維を混入することもできる。繊維混入補強土に短繊維を混入すると、当該繊維混入補強土のひげ状造粒物が形成され、これらの絡み合い効果(バインダー効果)により、土の補強効果が向上する。   In this embodiment, short fibers can be mixed instead of the above long fibers or together with the above long fibers. When short fibers are mixed into the fiber-mixed reinforced soil, a whisker-like granulated product of the fiber-mixed reinforced soil is formed, and the soil reinforcing effect is improved by the entanglement effect (binder effect).

本形態において、短繊維の材質は、特に限定されず、例えば、ポリエステル、ポリプロピレン、ポリエチレン、PET,カーボン、ナイロン、ビニロン、アラミド、炭素繊維などの非生分解性素材、綿、麻、ケナフ、バガス、レーヨン、アセテート、キュプラなどの生分解性素材などを採用することができる。ただし、これらの中でもポリエステルが好ましい。ポリエステル繊維は、土や固化材等とのなじみと分散性がよく、また、コスト的にも廉価である。   In this embodiment, the material of the short fiber is not particularly limited. For example, non-biodegradable materials such as polyester, polypropylene, polyethylene, PET, carbon, nylon, vinylon, aramid, carbon fiber, cotton, hemp, kenaf, bagasse Biodegradable materials such as rayon, acetate, and cupra can be used. However, among these, polyester is preferable. Polyester fibers have good compatibility and dispersibility with soil and solidified materials, and are inexpensive.

短繊維としては、長さ5〜50mm、好ましくは10〜30mm、太さ3〜50デニール、好ましくは10〜30デニール、捲縮数10個以下、好ましくは2〜7個、捲縮率20%以下、好ましくは2〜15%のものを使用することができる。短繊維の太さが3デニール未満であると、たとえ繊維長を長くして絡み合いを強くしても、繊維が非常に細く弱いため、十分な疑似粘着性が得られない。また、そもそも繊維長を長くすると、捲縮数、倦縮率を小さくしても、混合時において繊維同士が絡み合い毛玉が形成されるおそれがある。他方、短繊維の太さが50デニールを超えると、太すぎて絡み合いが弱くなり、また、不経済である。   The short fiber has a length of 5 to 50 mm, preferably 10 to 30 mm, a thickness of 3 to 50 denier, preferably 10 to 30 denier, a number of crimps of 10 or less, preferably 2 to 7 and a crimp rate of 20%. In the following, preferably 2 to 15% can be used. When the thickness of the short fiber is less than 3 denier, even if the fiber length is increased to increase the entanglement, the fiber is very thin and weak, so that sufficient pseudo-adhesiveness cannot be obtained. In the first place, when the fiber length is increased, even if the number of crimps and the crimp rate are reduced, fibers may be entangled during mixing to form a hair ball. On the other hand, when the thickness of the short fiber exceeds 50 denier, it is too thick and the entanglement becomes weak, which is uneconomical.

短繊維の捲縮(クリンプ)は、生産性を向上させるために大変重要な因子である。通常の紡績糸は、捲縮数20〜25個、捲縮率30〜40%とされるが、本形態においては、かかる捲縮数、捲縮率であると、固化材や土との混合時において毛玉が形成されるおそれがある。なお、本明細書において、捲縮数、捲縮率は、JIS L 1015、JIS L 1036に基づいて得た値である。この点、捲縮を無くした(捲縮数0個の)繊維は、製造工程上、集束してカッターにかけ一定長の繊維とするに際し、バラケて生産性を著しく阻害するので、経済的には、実用困難である。実用可能な生産性を確保するためには、少なくとも捲縮数2個以上、捲縮率2%以上である必要である。これら捲縮の調節は、例えば、紡糸クリンパーを調節することによって、実現することができる。   Crimping of short fibers is a very important factor for improving productivity. Ordinary spun yarn has a crimp number of 20 to 25 and a crimp rate of 30 to 40%. In this embodiment, such a crimp number and crimp rate are mixed with a solidified material or soil. There is a risk that pills may form at times. In the present specification, the number of crimps and the crimp rate are values obtained based on JIS L 1015 and JIS L 1036. In this respect, the fibers that have been free from crimping (with 0 crimps) are economically hindered in the manufacturing process, and when the fibers are converged and applied to a cutter to obtain a fixed length of fibers, the productivity is remarkably impaired. It is difficult to use. In order to ensure practical productivity, it is necessary that the number of crimps is at least 2 and the crimp rate is 2% or more. These crimps can be adjusted, for example, by adjusting the spinning crimper.

短繊維の繊維長が、5mm未満であると、繊維混入補強土層10の保持力(侵食防止効果)が低下する。また、繊維長5mm以上10mm未満でも、通常の降雨に対しては侵食防止効果を発揮するが、豪雨に対する対応を考えると、繊維長10mm以上とするのが好ましい。他方、繊維長が30mmを超えると、繊維混入補強土層10中における分散性が低下する。ただし、捲縮数・捲縮率を調節することによって、繊維長50mm以下であれば、繊維混入補強土層10中に均等に分散することができる。   When the fiber length of the short fiber is less than 5 mm, the holding power (erosion preventing effect) of the fiber-mixed reinforcing soil layer 10 is lowered. In addition, even if the fiber length is 5 mm or more and less than 10 mm, the effect of preventing erosion can be exhibited for normal rainfall, but considering the response to heavy rain, the fiber length is preferably 10 mm or more. On the other hand, when the fiber length exceeds 30 mm, the dispersibility in the fiber-mixed reinforcing soil layer 10 decreases. However, by adjusting the number of crimps / crimp rate, if the fiber length is 50 mm or less, it can be evenly dispersed in the fiber-mixed reinforcing soil layer 10.

本形態においては、固化材の種類も特に限定されず、例えば、セメント系固化材、石灰系固化材、セメント石灰系固化材、石膏系固化材等を使用することができる。これらの固化材のうち、即効性、経済性の観点からは、セメント系固化材が好ましい。   In this embodiment, the type of the solidifying material is not particularly limited, and for example, a cement-based solidified material, a lime-based solidified material, a cement-lime-based solidified material, a gypsum-based solidified material, or the like can be used. Among these solidifying materials, cement-based solidifying materials are preferable from the viewpoint of immediate effect and economic efficiency.

ここで、短繊維や長繊維を配合しない場合、補強土層(10)の侵食防止効果を得るために必要なセメント系固化材の混入量は、通常3〜7質量%(50〜120kg/m3 )である。しかしながら、種子の発芽・生育には、客土のpH、土壌硬度が大きく影響するところ、強アルカリ性であるセメントを以上のように大量に配合すると、植物の発芽・生育にとって大きな障害となる。セメント系固化材の混入量の限界は、中和剤を使用しない場合において、通常2質量%程度であり、これ以上混入すると、発芽本数が極端に少なくなり、成長も悪くなるおそれがある。 Here, when short fibers and long fibers are not blended, the mixing amount of the cement-based solidifying material necessary for obtaining the erosion preventing effect of the reinforcing soil layer (10) is usually 3 to 7% by mass (50 to 120 kg / m). 3 ). However, the seed germination / growth is greatly affected by the pH of the soil and soil hardness. If a large amount of highly alkaline cement is added as described above, it becomes a major obstacle to the germination / growth of the plant. When the neutralizing agent is not used, the limit of the amount of cement-based solidifying material mixed is usually about 2% by mass. If more than this amount is mixed, the number of germinated seeds may be extremely reduced and the growth may be worsened.

しかしながら、本形態のように、短繊維や長繊維等の繊維を配合すると、セメント系固化材の混入量は2.0質量%以下で足りるので、種子の発芽・生育障害のおそれがなくなる。ただし、セメント系固化材の混入量が0.3質量%未満であると、混入による効果がほとんど得られなり、侵食防止効果は、繊維に依存することになる。   However, when fibers such as short fibers and long fibers are blended as in the present embodiment, the amount of cement-based solidification material mixed is 2.0% by mass or less, so there is no risk of seed germination / growth disturbance. However, when the mixing amount of the cement-based solidifying material is less than 0.3% by mass, the effect of mixing is almost obtained, and the erosion preventing effect depends on the fiber.

ところで、施工対象となる斜面Gが、例えば、多雨地域に存在する場合や、長大斜面、急斜面である場合、あるいは湧水ケ所が存在する場合などは、特に侵食防止効果を向上させるために、固化材の混入量を増量するのが好ましい。固化材の混入量は、例えば、短繊維や長繊維自体に侵食防止効果があるため、通常0.1〜10質量%、好ましくは0.1〜1.0質量%である。短繊維や長繊維の混入量と固化材の混入量とは、反比例の関係にあることを考慮しつつ、経済性、植物生育性、斜面条件等を基礎として、適宜決定することができる。   By the way, when the slope G to be constructed is, for example, in a heavy rain region, a long slope, a steep slope, or a spring water station, solidification is especially performed to improve the erosion prevention effect. It is preferable to increase the mixing amount of the material. The amount of the solidifying material mixed is, for example, usually 0.1 to 10% by mass, preferably 0.1 to 1.0% by mass because the short fibers or the long fibers themselves have an erosion preventing effect. The amount of short fibers and long fibers mixed with the amount of solidified material can be appropriately determined on the basis of economy, plant growth, slope conditions, and the like, taking into consideration that there is an inversely proportional relationship.

一方、本形態の生育基盤材層20は、苗木や草花等の植物90の基盤となるものであり、生育基盤材を公知の方法で、例えば、エアー搬送した生育基盤材を吹付けノズル先端から吐出圧力2〜15kg/cm2(0.2〜1.5MPa)、吹付け流量0.2〜2.0m3/分で吹き付けるなどして、繊維混入補強土層10上に造成することができる。 On the other hand, the growth base material layer 20 of the present embodiment is a base for plants 90 such as seedlings and flowers, and the growth base material is air-conveyed from the tip of the spray nozzle by, for example, a known method. It can be formed on the fiber-mixed reinforcing soil layer 10 by spraying at a discharge pressure of 2 to 15 kg / cm 2 (0.2 to 1.5 MPa) and a spraying flow rate of 0.2 to 2.0 m 3 / min. .

本形態の生育基盤材は、種子、木質系チップ堆肥化物、バーク堆肥、ピートモス、接合剤、土等を適宜混合して得ることができる。
種子としては、例えば、トールフェスク、オーチャードグラス、レッドトップ、クリーピング、レッドフェスク、ケンタッキーブルーグラス、バミューダグラス、ノシバ、ヨモギ、クローバ、ヤマハギ、メドハギ、イタチハギ、エニシダ、ヤシャブシ、ヤマハンノキ、ニセアカシア、コマツナギなどを使用することができる。窒素飢餓に対しては、ハギ類が強いので、生育障害の防止という観点からは、ハギ類を使用するのが好ましい。また、乾燥に対しては、オーチャードグラス、バミューダグラス等が強いので、斜面Gの急勾配を原因として繊維混入補強土層10や生育基盤材層20の水分率低下が生じ易い場合は、保水材等を使用するのが好ましい。
The growth base material of this embodiment can be obtained by appropriately mixing seeds, wood chip compost, bark compost, peat moss, bonding agent, soil and the like.
Seeds include, for example, tall fescue, orchardgrass, red top, creeping, red fescue, kentucky bluegrass, bermudagrass, shiba, mugwort, clover, yamahagi, medhagi, weaselhagi, licorida, yashabushi, yamahanoki, false acacia, komatsunagi, etc. Can be used. From the standpoint of preventing growth disorders, it is preferable to use hagi because the hagi is strong against nitrogen starvation. In addition, since orchard glass, Bermuda glass, etc. are strong against drying, if the moisture content of the fiber-mixed reinforcing soil layer 10 or the growth base material layer 20 is likely to decrease due to the steep slope of the slope G, the water retaining material Etc. are preferably used.

種子は、生育基盤材1m3に対して、例えば、0.1〜3kg、好ましくは0.1〜1.0kg、配合することができる。 Seeds can be blended, for example, in an amount of 0.1 to 3 kg, preferably 0.1 to 1.0 kg, with respect to 1 m 3 of the growth base material.

本形態において、繊維混入補強土や生育基盤材には、以上の他にも、各種材料を混入することができる。具体的には、例えば、水分保持性を向上させるという観点からは、例えば、吸水ポリマーなどを混入させることができる。   In this embodiment, in addition to the above, various materials can be mixed in the fiber-mixed reinforcing soil and growth base material. Specifically, for example, from the viewpoint of improving moisture retention, for example, a water-absorbing polymer can be mixed.

ところで、本形態の斜面緑化工法は、繊維混入補強土層10を造成するに先立って、多数の液透過孔を有する剛性の帯状板材30を、下記の条件を満たすように複数枚配設し、もって繊維混入補強土層10の造成厚さ10Xを、基底部11から天端部12にわたって均一とする。
〔条件〕
複数枚の帯状板材30は、図2に示すように、それぞれ一方の側縁部30cを斜面Gに固定して、当該帯状板材30の、固定部(30c)から斜面上方に向かう面に対する(基準とした)起立角度30Rが10〜90°、好ましくは30〜90°となるように配設する。また、図3に示すように、繊維混入補強土層10を正面視(図2参照)した場合の水平方向に関するいずれの位置においても、天端部12から基底部11へ向かう液流れ線が、複数枚の帯状板材30(図3の例では、帯状板材31〜33)の少なくともいずれかと交わるように配設する。つまり、相互に隣接する帯状板材32及び帯状板材33を例にすると、帯状板材32の帯状板材33側端縁と帯状板材33の帯状板材32側端縁とが、水平方向に関して一致するか、重なる範囲30Wが存在するように配設する。
By the way, the slope greening method according to the present embodiment has a plurality of rigid strip-shaped plate materials 30 having a large number of liquid permeation holes arranged so as to satisfy the following conditions prior to the formation of the fiber-mixed reinforcing soil layer 10. Accordingly, the formation thickness 10X of the fiber-mixed reinforcing soil layer 10 is made uniform from the base portion 11 to the top end portion 12.
〔conditions〕
As shown in FIG. 2, each of the plurality of strip-shaped plate materials 30 has one side edge portion 30 c fixed to the inclined surface G, and the surface of the strip-shaped plate material 30 with respect to the surface extending upward from the fixed portion (30 c) The standing angle 30R is 10 to 90 °, preferably 30 to 90 °. Also, as shown in FIG. 3, at any position in the horizontal direction when the fiber-mixed reinforcing soil layer 10 is viewed from the front (see FIG. 2), the liquid flow line from the top end 12 to the base 11 is It arrange | positions so that it may cross | intersect at least any one of the several strip | belt-shaped board | plate material 30 (In the example of FIG. 3, the strip | belt-shaped board | plate materials 31-33). That is, when the belt-like plate member 32 and the belt-like plate member 33 adjacent to each other are taken as an example, the belt-like plate member 33 side edge of the belt-like plate member 32 and the belt-like plate member 32 side edge of the belt-like plate member 33 coincide or overlap with each other in the horizontal direction. It arrange | positions so that the range 30W may exist.

この点、前述したように、斜面Gの勾配が60°を超えるような急勾配であると、植物の生育限界勾配を超えるため、従来は、繊維混入補強土層10の造成厚さ10Xを、基底部11においては、例えば100〜150cmの造成厚さ11Xとし、天端部12においては、例えば20〜50cmの造成厚さ12Xとすることにより(つまり、基底部11側の造成厚さ11Xを天端部12側の造成厚さ12Xよりも厚くすることにより)、勾配補正を行っていた。そのため、例えば、鉄道業における軌道脇の法面が緑化対象斜面である場合において、緑化対象斜面Gと軌道との間隔が狭く、繊維混入補強土層10の基底部11の造成厚さ11Xを厚くすることができず、勾配補正を行うことができないときは、永続的に緑化を図るのが著しく困難であった。しかしながら、本形態の斜面緑化工法は、繊維混入補強土層10の造成厚さ10Xを、基底部11から天端部12にわたって均一とするため、かかる問題は生じない。なお、生育基盤材層20の造成厚さ20Xは、通常3〜10cmとなる。   In this regard, as described above, if the slope G has a steep slope exceeding 60 °, it exceeds the growth limit slope of the plant, so conventionally, the formation thickness 10X of the fiber-mixed reinforcing soil layer 10 is For example, the base portion 11 has a formed thickness 11X of 100 to 150 cm, and the top end portion 12 has a formed thickness 12X of, for example, 20 to 50 cm (that is, the formed thickness 11X on the base portion 11 side is reduced). Gradient correction was performed by making it thicker than the formation thickness 12X on the top end 12 side. Therefore, for example, when the slope beside the track in the railroad industry is a greening target slope, the interval between the greening target slope G and the track is narrow, and the formation thickness 11X of the base portion 11 of the fiber-mixed reinforcing soil layer 10 is increased. When it was not possible to correct the slope, it was extremely difficult to achieve permanent greening. However, since the slope greening method of this embodiment makes the formation thickness 10X of the fiber-mixed reinforcing soil layer 10 uniform from the base portion 11 to the top end portion 12, such a problem does not occur. The formation thickness 20X of the growth base material layer 20 is usually 3 to 10 cm.

また、このように造成厚さ10Xを均一にすると、斜面Gの勾配が生育限界勾配を超える場合、繊維混入補強土層10中において水分が保持されず、植物の永続的な生育が図れないのが通常であった。しかしながら、本形態においては、繊維混入補強土層10を造成するに先立って、多数の液透過孔を有する剛性の帯状板材30を、前述条件を満たすように複数枚配設するので、繊維混入補強土層10中の水分の流れが遅くなり、結果、植物の永続的な生育が可能となる。   In addition, when the formation thickness 10X is made uniform in this way, when the slope of the slope G exceeds the growth limit slope, moisture is not retained in the fiber-mixed reinforced soil layer 10 and permanent growth of the plant cannot be achieved. Was normal. However, in this embodiment, prior to the formation of the fiber-mixed reinforcing soil layer 10, a plurality of rigid strip-shaped plate members 30 having a large number of liquid-permeable holes are disposed so as to satisfy the above-described conditions. The flow of moisture in the soil layer 10 becomes slow, and as a result, the plant can grow permanently.

もっとも、複数枚の帯状板材30の起立角度30Rが10°未満であると、繊維混入補強土層10の表面部(生育基盤材層20との境界近傍部)の水分の流れも遅くするために、当該帯状板材30の幅を広くする必要が生じ、コスト増加につながるため、好ましくない。しかも、繊維混入補強土層10中の水分が、植物から遠い底面部(斜面Gとの境界近傍部)に集まり易くなるという点でも好ましくない。   However, if the standing angle 30R of the plurality of strip-shaped plate materials 30 is less than 10 °, the flow of moisture on the surface portion of the fiber-mixed reinforcing soil layer 10 (near the boundary with the growth base material layer 20) is also slowed down. This is not preferable because the width of the strip-shaped plate member 30 needs to be widened, leading to an increase in cost. Moreover, it is not preferable that the moisture in the fiber-mixed reinforced soil layer 10 is likely to gather at the bottom surface portion (near the boundary with the slope G) far from the plant.

他方、起立角度30Rが90°を超えると、繊維混入補強土層10中の水分が表面部に集まり易くなり、生育基盤材層20が崩れ易くなるため、好ましくない。   On the other hand, when the standing angle 30R exceeds 90 °, moisture in the fiber-mixed reinforced soil layer 10 tends to gather on the surface portion and the growth base material layer 20 tends to collapse, which is not preferable.

また、本形態においては、繊維混入補強土層10を正面視した場合の水平方向に関するいずれの位置においても、天端部12から基底部11へ向かう液流れ線が、複数枚の帯状板材30(図3の例では、帯状板材31〜33)の少なくともいずれかと交わるように、当該帯状板材30を配設するので、以上の効果が確実に得られる。なお、図3の例では、相互に隣接する帯状板材32及び帯状板材33が、水平方向に関して重なる範囲30Wにおいては、液流れ線が帯状板材32及び帯状板材33の2つと交わることになる。   Further, in this embodiment, at any position in the horizontal direction when the fiber-mixed reinforcing soil layer 10 is viewed from the front, the liquid flow line from the top end portion 12 to the base portion 11 has a plurality of strip-shaped plate members 30 ( In the example of FIG. 3, since the strip plate 30 is disposed so as to intersect with at least one of the strip plates 31 to 33), the above effects can be obtained with certainty. In the example of FIG. 3, the liquid flow line intersects the two of the belt-like plate material 32 and the belt-like plate material 33 in a range 30 W where the belt-like plate material 32 and the belt-like plate material 33 adjacent to each other overlap in the horizontal direction.

本形態において、相互に隣接する帯状板材30の水平方向に関して重なる範囲(30W)は、特に限定されず、例えば、斜面Gの傾斜角や、繊維混入補強土層10の性状、材料コストなどを考慮して、適宜設計することができる。   In this embodiment, the overlapping range (30 W) in the horizontal direction of the strip-shaped plate members 30 adjacent to each other is not particularly limited, and for example, the inclination angle of the slope G, the properties of the fiber-mixed reinforcing soil layer 10, the material cost, and the like are taken into consideration. And it can design suitably.

もっとも、複数枚の帯状板材30を配設するにおいては、当該複数枚の帯状板材30の少なくともいずれかを、例えば10枚中の8枚を、水平方向に関して連なるように配設するのが好ましく、特に当該水平方向に関して連なる複数枚の帯状板材30を、相互に隣接する一対の帯状板材が、当該隣接部を挟んで対称に、かつ、各帯状部材が水平方向に対して45〜60°、好ましくは50〜60°傾斜するように配設するのが好ましい。具体的には、図4の例では、水平方向に関して5枚の帯状板材34〜38が連なっており、相互に隣接する一対の帯状板材34及び帯状板材35、帯状板材35及び帯状板材36、帯状板材36及び帯状板材37、並びに、帯状板材37及び帯状板材38が、それぞれ各隣接部を挟んで対称に、かつ、各帯状部材34〜38の水平方向に対する配設角30Lが45〜60°となるように配設されている。   However, in disposing a plurality of strip-shaped plate members 30, it is preferable to dispose at least one of the plurality of strip-shaped plate members 30, for example, eight out of ten so as to be continuous in the horizontal direction. In particular, a plurality of strip-shaped plate members 30 that are continuous in the horizontal direction, a pair of adjacent strip-shaped plate materials are symmetrically sandwiched between the adjacent portions, and each strip-shaped member is 45 to 60 ° with respect to the horizontal direction, preferably Is preferably arranged so as to be inclined at 50 to 60 °. Specifically, in the example of FIG. 4, five strips 34 to 38 are connected in the horizontal direction, and a pair of strips 34 and strips 35, strips 35 and strips 36, strips adjacent to each other are formed. The plate material 36 and the belt-like plate material 37, and the belt-like plate material 37 and the belt-like plate material 38 are symmetrical with respect to each adjacent portion, and the arrangement angle 30L of the belt-like members 34 to 38 with respect to the horizontal direction is 45 to 60 °. It is arranged to become.

複数枚の帯状板材30が水平方向に関して連なるように配設されていると、繊維混入補強土層10を正面視した場合の水平方向に関するいずれの位置においても、天端部12から基底部11へ向かう液流れ線が、複数枚の帯状板材30(図4の例では、帯状板材34〜38)の少なくともいずれかと交わるので、繊維混入補強土層10中の水分の流れが遅くなるとの効果が、確実に得られる。また、相互に隣接する一対の帯状板材34,35…が、当該隣接部を挟んで対称に配設されているので、繊維混入補強土層10中の水分が水平方向及び上下方向に関して均一に分散し、また、保持されるようになる。   When the plurality of strip-shaped plate members 30 are arranged so as to be continuous in the horizontal direction, the top end portion 12 to the base portion 11 at any position in the horizontal direction when the fiber-mixed reinforcing soil layer 10 is viewed from the front. Since the flowing liquid flow line intersects at least one of the plurality of strip-shaped plate materials 30 (in the example of FIG. 4, the strip-shaped plate materials 34 to 38), the effect that the flow of moisture in the fiber-mixed reinforced soil layer 10 becomes slow, It is definitely obtained. Moreover, since a pair of mutually adjacent strip | belt-shaped board | plate materials 34,35 ... are arrange | positioned symmetrically on both sides of the said adjacent part, the water | moisture content in the fiber mixing reinforcement | strengthening soil layer 10 is disperse | distributed uniformly regarding a horizontal direction and an up-down direction. And it comes to be held.

本形態において、各帯状板材34〜38がどのように隣接しているかは、特に限定されない。例えば、図4に示す、帯状板材35及び帯状板材36の隣接部30aのように、斜面Gに対して固定される一方の側縁部同士が相互に当接する形態であっても、帯状板材36及び帯状板材37の隣接部30bのように、斜面Gから起立する他方の側縁部同士が当接する形態であってもよい。もちろん、帯状板材30の長手方向両端部を適宜加工して、相互に隣接する帯状板材30の長手方向両端部同士が全体にわたって当接する形態とすることもできる。ただし、繊維混入補強土層10中の水分は、底面部(斜面Gとの境界近傍部)に集まる傾向があるため、帯状板材35及び帯状板材36の隣接部30aのように、少なくとも斜面Gに対して固定される一方の側縁部同士が相互に当接する形態とするのが好ましい。   In this embodiment, how the strip-shaped plate members 34 to 38 are adjacent to each other is not particularly limited. For example, even if the side edge portions fixed to the inclined surface G are in contact with each other like the adjacent portions 30a of the belt-like plate material 35 and the belt-like plate material 36 shown in FIG. In addition, as in the adjacent portion 30b of the belt-shaped plate member 37, the other side edge portions standing from the inclined surface G may be in contact with each other. Of course, both longitudinal ends of the strip-shaped plate 30 can be appropriately processed so that the longitudinal ends of the strip-shaped strip 30 adjacent to each other are in contact with each other. However, since the moisture in the fiber-mixed reinforced soil layer 10 tends to collect on the bottom surface (near the boundary with the slope G), at least on the slope G, as in the adjacent portion 30a of the strip plate 35 and the strip plate 36. It is preferable that the side edges fixed to each other are in contact with each other.

本形態において、帯状板材30は、図5の(a)〜(c)に示すように、多数の液透過孔30H,30H…を有し、剛性を有する。この帯状部材30としては、例えば、図5の(a)に示すような、多数の線材30A,30A…を上下・左右に編み込んで形成した網状部材や、図5の(b)に示すような、板状部材30Bにスリットを形成し、これを開いて形成したエキスパンドメタル、図5の(c)に示すように、板状部材30Cから方形状、円形状等の各種形状の孔を切り抜いて形成したパンチングメタルなどを例示することができる。ただし、多数の線材30A,30A…を上下・左右に編み込んで形成した網状部材によると、繊維混入補強土層10中の水分の、帯状板材30に沿った流れが遅くなるため、水分保持という観点から好ましい。   In this embodiment, as shown in FIGS. 5A to 5C, the strip-shaped plate member 30 has a large number of liquid-permeable holes 30H, 30H... And has rigidity. As the belt-like member 30, for example, as shown in FIG. 5A, a net-like member formed by weaving a large number of wire rods 30A, 30A... An expanded metal formed by forming a slit in the plate-like member 30B and opening the slit, as shown in FIG. The formed punching metal etc. can be illustrated. However, according to the net-like member formed by weaving a large number of wires 30A, 30A. To preferred.

本形態において、帯状板材30は、剛性を有すれば、その素材が特に限定されるものではなく、例えば、鉄、アルミ、ステンレス等の金属や、ポリプロピレン、ポリエチレン等の樹脂などから形成することができる。また、帯状板材30の幅や長さも、特に限定されず、繊維混入補強土層10の造成厚さを20〜100cmとする場合においては、幅20〜100cm、長さ50〜200cm、好ましくは幅20〜30cm、長さ50〜100cmとすることができる。   In this embodiment, the belt-like plate material 30 is not particularly limited as long as it has rigidity, and may be formed from, for example, a metal such as iron, aluminum, or stainless steel, or a resin such as polypropylene or polyethylene. it can. Moreover, the width | variety and length of the strip | belt-shaped board | plate material 30 are not specifically limited, either, When the formation thickness of the fiber mixing reinforcement | strengthening earth layer 10 shall be 20-100cm, width 20-100cm, length 50-200cm, Preferably width The length can be 20 to 30 cm and the length can be 50 to 100 cm.

一方、本形態の帯状板材30は、液透過孔30H,30H…を通して、繊維混入補強土層10中の水分が、前述液流れ方向に移動するのを許し、他方、液透過孔30H,30H…以外の部位において、繊維混入補強土層10中の水分が、前述液流れ方向に移動するのを妨げ、もって繊維混入補強土層10中の水分保持を図るものである。したがって、帯状板材30の数や、配設形態を考慮しつつ、液透過孔30H,30H…の帯状板材30全面に対する面積率を適宜設計する必要があり、この面積率は、通常10〜90%、好ましくは50〜80%である。この面積率が小さすぎると、繊維混入補強土層10中の水分が帯状板材30に沿って流れ易くなり過ぎ、他方、この面積率が大きすぎると、繊維混入補強土層10中の水分の流れを遅くするについて不十分となるおそれがある。   On the other hand, the strip-shaped plate member 30 of this embodiment allows the moisture in the fiber-mixed reinforcing soil layer 10 to move in the liquid flow direction through the liquid permeation holes 30H, 30H. In other parts, the moisture in the fiber-mixed reinforcing soil layer 10 is prevented from moving in the liquid flow direction, so that the moisture in the fiber-mixed reinforcing soil layer 10 is retained. Therefore, it is necessary to appropriately design the area ratio of the liquid permeable holes 30H, 30H... With respect to the entire surface of the band-shaped plate material 30 in consideration of the number and arrangement of the band-shaped plate materials 30, and this area ratio is usually 10 to 90%. , Preferably 50 to 80%. If the area ratio is too small, the moisture in the fiber-mixed reinforced soil layer 10 is likely to flow along the strip-shaped plate material 30. On the other hand, if the area ratio is too large, the moisture flow in the fiber-mixed reinforced soil layer 10 is too high. There is a risk that it will be insufficient to slow down.

本発明は、特に斜面の勾配が60°を超える急勾配である場合に好適な斜面緑化工法及び斜面緑化構造として、適用可能である。   The present invention can be applied as a slope greening method and a slope greening structure suitable particularly when the slope has a steep slope exceeding 60 °.

本形態の斜面緑化構造の模式斜視図である。It is a model perspective view of the slope greening structure of this form. 本形態の斜面緑化構造の模式断面図である。It is a schematic cross section of the slope greening structure of this form. 本形態の帯状板材の配設例である。It is the example of arrangement | positioning of the strip | belt-shaped board | plate material of this form. 本形態の帯状板材の配設例である。It is the example of arrangement | positioning of the strip | belt-shaped board | plate material of this form. 本形態の帯状板材の形態例である。It is a form example of the strip | belt-shaped board | plate material of this form.

符号の説明Explanation of symbols

1…斜面緑化構造、10…繊維混入補強土層、11…基底部、12…天端部、20…生育基盤材層、30…帯状板材、90…植物、G…斜面。   DESCRIPTION OF SYMBOLS 1 ... Slope greening structure, 10 ... Fiber mixing reinforcement | strengthening soil layer, 11 ... Base part, 12 ... Top end part, 20 ... Growth base material layer, 30 ... Strip | belt board material, 90 ... Plant, G ... Slope.

Claims (4)

斜面上に繊維混入補強土層を造成し、この繊維混入補強土層上を生育基盤材で覆って前記斜面を緑化する工法であって、
前記繊維混入補強土層を造成するに先立って、多数の液透過孔を有する剛性の帯状板材を、下記の条件を満たすように複数枚配設し、
前記繊維混入補強土層の造成厚さを、基底部から天端部にわたって均一とする、
ことを特徴とする斜面緑化工法。
〔条件〕
前記複数枚の帯状板材は、それぞれ一方の側縁部を前記斜面に固定して当該固定部から前記斜面上方に向かう面に対する起立角度が10〜90°となるように配設し、かつ、前記繊維混入補強土層を正面視した場合の水平方向に関するいずれの位置においても、前記天端部から前記基底部へ向かう液流れ線が、前記複数枚の帯状板材の少なくともいずれかと交わるように配設する。
A method of constructing a fiber-mixed reinforcing soil layer on a slope, covering the fiber-mixed reinforcing soil layer with a growth base material, and greening the slope,
Prior to the formation of the fiber-mixed reinforced soil layer, a plurality of rigid strip-shaped plate materials having a large number of liquid-permeable holes are disposed so as to satisfy the following conditions:
The formation thickness of the fiber-mixed reinforcing soil layer is uniform from the base portion to the top end portion,
Slope greening method characterized by that.
〔conditions〕
The plurality of strip-shaped plate members are arranged such that one side edge portion is fixed to the slope, and an upstanding angle with respect to a surface from the fixed portion toward the upper side of the slope is 10 to 90 °, and At any position in the horizontal direction when the fiber-mixed reinforcing soil layer is viewed from the front, the liquid flow line from the top end portion to the base portion is arranged so as to intersect with at least one of the plurality of strip-shaped plate members. To do.
前記複数枚の帯状板材の少なくともいずれかを、前記水平方向に関して連なるように配設する、請求項1記載の斜面緑化工法。   The slope greening method according to claim 1, wherein at least one of the plurality of strip-shaped plate members is disposed so as to be continuous in the horizontal direction. 前記水平方向に関して連なる複数枚の帯状板材は、相互に隣接する一対の帯状板材を、当該隣接部を挟んで対称に、かつ、各帯状部材が前記水平方向に対して45〜60°傾斜するように配設する、請求項2記載の斜面緑化工法。   The plurality of strip-shaped plate members that are continuous in the horizontal direction are configured such that a pair of adjacent strip-shaped plate materials are symmetrically sandwiched between the adjacent portions, and each strip-shaped member is inclined by 45 to 60 ° with respect to the horizontal direction. The slope greening method according to claim 2, which is disposed in 斜面上に繊維混入補強土層が造成され、この繊維混入補強土層上が生育基盤材で覆われた前記斜面の緑化構造であって、
前記斜面には、多数の液透過孔を有する剛性の帯状板材が、下記の条件を満たすように複数枚配設されており、
前記繊維混入補強土層の造成厚さが、基底部から天端部にわたって均一とされている、
ことを特徴とする斜面緑化構造。
〔条件〕
前記複数枚の帯状板材は、それぞれ一方の側縁部が前記斜面に固定されて当該固定部から前記斜面上方に向かう面に対する起立角度が10〜90°となるように配置され、かつ、前記繊維混入補強土層を正面視した場合の水平方向に関するいずれの位置においても、前記天端部から前記基底部へ向かう液流れ線が、前記複数枚の帯状板材の少なくともいずれかと交わるように配置されている。
A greening structure of the slope in which a fiber-mixed reinforced soil layer is formed on a slope, and the fiber-mixed reinforced soil layer is covered with a growth base material,
A plurality of rigid strip-shaped plate materials having a large number of liquid-permeable holes are disposed on the slope so as to satisfy the following conditions:
The formation thickness of the fiber-mixed reinforcing soil layer is uniform from the base to the top end,
Slope greening structure characterized by that.
〔conditions〕
Each of the plurality of strip-shaped plate members is arranged such that one side edge portion is fixed to the inclined surface, and an upstanding angle with respect to a surface from the fixed portion toward the upper side of the inclined surface is 10 to 90 °, and the fiber At any position in the horizontal direction when the mixed reinforcing soil layer is viewed from the front, the liquid flow line from the top end portion to the base portion is arranged so as to intersect with at least one of the plurality of strip-shaped plate members. Yes.
JP2008265957A 2008-10-15 2008-10-15 Slope greening method and slope greening structure Expired - Fee Related JP5107858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265957A JP5107858B2 (en) 2008-10-15 2008-10-15 Slope greening method and slope greening structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265957A JP5107858B2 (en) 2008-10-15 2008-10-15 Slope greening method and slope greening structure

Publications (2)

Publication Number Publication Date
JP2010095874A true JP2010095874A (en) 2010-04-30
JP5107858B2 JP5107858B2 (en) 2012-12-26

Family

ID=42257747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265957A Expired - Fee Related JP5107858B2 (en) 2008-10-15 2008-10-15 Slope greening method and slope greening structure

Country Status (1)

Country Link
JP (1) JP5107858B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108877A (en) * 2014-12-09 2016-06-20 ライト工業株式会社 Spray method and spray device
JP2017214765A (en) * 2016-05-31 2017-12-07 ライト工業株式会社 Structure and method for slope surface reinforcement
CN112314301A (en) * 2020-10-29 2021-02-05 中铁四局集团第四工程有限公司 Method for matching green landscapes of sandy soil ecological bag side slope of high-speed railway
CN113089694A (en) * 2021-04-25 2021-07-09 内江师范学院 Rock soil slope reinforcing apparatus that prevention side slope warp
CN117431897A (en) * 2023-10-24 2024-01-23 中建安装集团有限公司 Adjustable biological material slope protection structure based on sludge classification utilization and construction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53161502U (en) * 1977-05-26 1978-12-18
JPS56154441U (en) * 1980-04-21 1981-11-18
JPH04120315A (en) * 1990-09-10 1992-04-21 Raito Kogyo Co Ltd Spray method for material mixed with continuous lint
JPH1037220A (en) * 1996-07-19 1998-02-10 Makino Green:Kk Anchor for greening retaining wall and method for erecting protection net using this anchor for retaining wall
JP2000212966A (en) * 1999-01-22 2000-08-02 Oyo Kikaku:Kk Slope protection plate and slope protection method
JP2001348879A (en) * 2000-04-03 2001-12-21 Daiwa Kogyo Kk Method and device for stabilizing spray material in slope stabilizing construction
JP2004169289A (en) * 2002-11-18 2004-06-17 Nittoc Constr Co Ltd Continuous fiber-reinforced earth method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53161502U (en) * 1977-05-26 1978-12-18
JPS56154441U (en) * 1980-04-21 1981-11-18
JPH04120315A (en) * 1990-09-10 1992-04-21 Raito Kogyo Co Ltd Spray method for material mixed with continuous lint
JPH1037220A (en) * 1996-07-19 1998-02-10 Makino Green:Kk Anchor for greening retaining wall and method for erecting protection net using this anchor for retaining wall
JP2000212966A (en) * 1999-01-22 2000-08-02 Oyo Kikaku:Kk Slope protection plate and slope protection method
JP2001348879A (en) * 2000-04-03 2001-12-21 Daiwa Kogyo Kk Method and device for stabilizing spray material in slope stabilizing construction
JP2004169289A (en) * 2002-11-18 2004-06-17 Nittoc Constr Co Ltd Continuous fiber-reinforced earth method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108877A (en) * 2014-12-09 2016-06-20 ライト工業株式会社 Spray method and spray device
JP2017214765A (en) * 2016-05-31 2017-12-07 ライト工業株式会社 Structure and method for slope surface reinforcement
CN112314301A (en) * 2020-10-29 2021-02-05 中铁四局集团第四工程有限公司 Method for matching green landscapes of sandy soil ecological bag side slope of high-speed railway
CN112314301B (en) * 2020-10-29 2024-01-26 中铁四局集团有限公司 Method for matching green landscapes of sand ecological bags of high-speed railway
CN113089694A (en) * 2021-04-25 2021-07-09 内江师范学院 Rock soil slope reinforcing apparatus that prevention side slope warp
CN117431897A (en) * 2023-10-24 2024-01-23 中建安装集团有限公司 Adjustable biological material slope protection structure based on sludge classification utilization and construction method
CN117431897B (en) * 2023-10-24 2024-06-11 中建安装集团有限公司 Adjustable biological material slope protection structure based on sludge classification utilization and construction method

Also Published As

Publication number Publication date
JP5107858B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
KR100878797B1 (en) Planting mat for afforestation of inclined plane
JP5107858B2 (en) Slope greening method and slope greening structure
CN110698222B (en) Composite vegetation concrete for ecological protection of stone slope and preparation method thereof
CN108360516A (en) A kind of massif repair system and construction method based on sponge ecosystem
CN107964963B (en) Repair technology and construction method for high-steep slope wound surface fiber skeleton aggregate structure
EP2328399B1 (en) Vegetation and support layer, and method for the production thereof
CN107460884B (en) Grass cage reinforcement spray layer ecological slope protection structure and construction method thereof
KR20100027693A (en) Reinforcing method using structure for reinforcing slope
CN101705688B (en) Method for reinforcing steep slope artificial soil by fiber bundle
CN210151758U (en) Side slope ecological protection structure with water storage and supply system
KR20080018826A (en) Nature tree-planting composition of inclined plane and thereof composition method
CN212641481U (en) Ecological restoration structure of massif multi-element matrix
CN219395680U (en) Ecological slope protection structure and slope protection blanket
KR100785743B1 (en) A composite and method of tree planting
CN107964962B (en) Technology for tightly combining wound surface hair generation and matrix layer of high and steep slope and construction method thereof
CN110419373B (en) Vegetation recovery method for treating slope by using high-steep rock quality and concrete
CN113529754B (en) Granular-body slope ecological slope protection structure and construction method
CN216615893U (en) Concrete and rock slope ecological remediation afforestation structure
CN110777820B (en) Construction method for performing ecological protection on stone slope by adopting composite vegetation concrete
KR101108002B1 (en) Eco-Friendly Afforestation Method
KR20090032266A (en) Slope greening method
JPH07132021A (en) Water holding composition and method for improving dry soil using the same
JP2006307175A (en) Manufacturing method of fiber exposure-type granule, greening material and greening method using the material
CN110004951A (en) A kind of side slope ecological protection structure and its construction method with water accumulating and supplying system
JPH0827794A (en) Slope reinforcement work method and banking preparation work method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

R150 Certificate of patent or registration of utility model

Ref document number: 5107858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees