JP2010092971A - 電界効果トランジスタ - Google Patents

電界効果トランジスタ Download PDF

Info

Publication number
JP2010092971A
JP2010092971A JP2008259644A JP2008259644A JP2010092971A JP 2010092971 A JP2010092971 A JP 2010092971A JP 2008259644 A JP2008259644 A JP 2008259644A JP 2008259644 A JP2008259644 A JP 2008259644A JP 2010092971 A JP2010092971 A JP 2010092971A
Authority
JP
Japan
Prior art keywords
ionic liquid
effect transistor
field effect
semiconductor layer
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008259644A
Other languages
English (en)
Inventor
Shiro Seki
志朗 関
Shinpei Ono
新平 小野
Kazumoto Miwa
一元 三輪
Hajime Miyashiro
一 宮代
Tetsuo Matsumura
哲夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008259644A priority Critical patent/JP2010092971A/ja
Publication of JP2010092971A publication Critical patent/JP2010092971A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】電界効果トランジスタを低電圧で動作させると伴に、周波数応答性能およびキャリア移動度を高くすること。
【解決手段】電界効果トランジスタのゲート絶縁層として糊剤又は増粘剤を含まず液状であって、その主要成分がイオン液体であるものを用い、分子内に方向性を有するイオン液体(半導体層に正孔を注入する際は、陰イオン種、半導体層に電子を注入する際は、陽イオン種)を用いる。具体的には、半導体層に正孔を注入する際イオン液体(陰イオン種)としてTFSIやFSIを用いる。半導体層には有機ルブレン単結晶を用いるが、オキシクロライドなど無機酸化物材料を用いることもできる。ドレイン電極とソース電極には金電極を用いるが金電極以外の電極を用いることもできる。
【選択図】 図1

Description

この発明は、低電圧で動作すると伴に、周波数応答が高く、高いキャリア移動度を有する電界効果トランジスタに関するものである。本発明のトランジスタは、ソース電極−ドレイン電極間を流れる電流を増幅する増幅素子やその電流をON−OFFするスイッチング素子に使用される。
銅酸化物高温超伝導体をはじめ層状遷移金属化合物は、キャリア量を制御する事により二次元電子系の多彩な物性を示し、基礎的な物性研究だけに留まらず、その新機能・新現象を利用した応用研究も盛んに行われている。一般に、層状遷移金属化合物のキャリア量を制御する手法としては、不純物置換による方法が最も多く用いられている。しかしながらこの方法では、結晶格子に乱れを入れてしまうため物質の構造や化学的安定性による制約が非常に大きいことや、キャリア量を精密に制御することが困難であるなど多くの問題を抱えていた。
その中で、最近になり電界効果トランジスタ(FET)素子構造を用いて、半導体以外の化合物に静電的にキャリア注入を行うことで、高温超伝導体などの強相関電子系の相転移をコントロールする物性研究が盛んに行われて来ている。FET素子は、半導体層と、ソース電極、ドレイン電極、ゲート電極とゲート絶縁層を具有する。FETによるキャリア注入は、化学組成を変化させずにキャリア量を変化させることが可能になり、物質がもつ本来の物性を研究するに適した方法である。また、キャリア量を連続的にコントロールすることが可能になるため、キャリア量による相転移などを詳細に調べる強力なツールになりうる。しかしながら、現時点の常誘電体にゲート電界を加えるという通常の方法では、絶縁破壊のために物性研究に充分なキャリア量変調を得るのが困難であったことや、さらに、高電圧を印加することで物質の表面にダメージを与えてしまうことなど技術的な壁は高かった。
そして、電解質として、ポリマーゲル(ポリエチレングリコール)にLiイオンを混ぜたポリマーゲル電解質を用いた研究が行われている。この場合、ポリマーゲルは糊剤又は増粘剤として作用する。そのため、ポリマーゲル電解質は、液状ではなくペースト状である。
ポリマーゲル電解質に電圧を加えるとイオンの移動が起こり、電極から厚さ1nm程度の部分に、正あるいは負のイオンが蓄積されて両電荷のバランスが破れた層(電気二重層)ができると言われている。この層に注目すると、電界は半導体表面の厚さ1nm程度の所に集中し、電極間にわずか1V程度の電圧を印加しただけでも、この層には10MV/cmの大きな電界が印加されることになる。従って、このポリマーゲル電解質をトランジスタのゲート絶縁層に用いると、低い電圧でも、より高い電界が印加される。その結果、ゲート絶縁層により多くのキャリアが注入される。そのため、そのようなトランジスタは、駆動電圧が低くとも、電流増幅率が高くなるである。
そのような中で、ポリマーゲルにLiイオンの代わりにイオン液体(例えば、1-butyl-3-methylimidazolium hexafluorophosphate)を混ぜたポリマーゲル電解質 IIをゲート絶縁層に用いた有機電界効果トランジスタが提案された(非特許文献1参照)。
Jiyoul Lee et al, "Ion Gel Gated Polymer Thin-Film Transistors" J. Am. Chem. Soc. 129 (2007) 4532.
イオン液体は、陽イオン・陰イオンの構造、組み合わせが無限に考えられるため、所謂「デザイナーズ溶媒」などと呼ばれており、イオン液体の分子構造の変化により、融点・粘性・密度・解離性など各種物性が大きく変化する。しかしながら、電界効果トランジスタの性能向上の見地から考えた場合には、イオン液体のどの分子構造が、キャリア移動度の大きさの鍵となる因子になるのか明らかになっていなかった。
この発明は、上述した従来技術による問題点を解消するためになされたものであり、イオン液体を用いた電界効果トランジスタにおいてイオン液体の分子構造に着目して高いキャリア移動度を実現することを目的とする。
上述した課題を解決し、目的を達成するため、本発明の一つの態様では、ゲート絶縁層が、液状であって、その主要成分がイオン液体であることを特徴とした電界効果トランジスタにおいて、該イオン液体が分子内方向性すなわち双極子モーメントを有することを特徴とする。
また、本発明の本発明の他の態様では、半導体層に正孔を注入する際、イオン液体の陰イオンが分子内方向性すなわち双極子モーメントを有することを特徴とする。
また、本発明の本発明の他の態様では、半導体層に電子を注入する際、イオン液体の陽イオンが分子内方向性すなわち双極子モーメントを有することを特徴とする。
また、本発明の本発明の他の態様では、さらに、イオン液体が、糊剤又は増粘剤を含まないことを特徴とする。
また、本発明の他の態様では、半導体層に正孔を注入する際、イオン液体の陰イオンがFSIであることを特徴とする。
また、本発明の他の態様では、半導体層に正孔を注入する際、イオン液体の陰イオンがTFSIであることを特徴とする。
イオン液体は室温で液状である。本発明では、液状のイオン液体をその液状のままゲート絶縁層に使用する。これにより、高い応答性がトランジスタにもたらされる。本発明ではイオン液体に糊剤又は増粘剤を混ぜない。もし、混ぜるとゲート絶縁層が液状にならず、ペースト状になってしまうからである。ゲート絶縁層が液状であることの付加的な利点は、十分に高い電流増幅率をもたらすことである。ゲート絶縁層が液状であるので、半導体層の表面(実際には微細な凹凸がある)との接触が良くなり、電流増幅率が十分に高くなると推測される。
イオン液体は、特に限定されるものではないが、例示すれば、以下の陽イオンと陰イオンを組み合わせたものが本発明に使用される。
(1)陽イオン
イミダゾリウム系陽イオン:
1-methyl-3-methylimidazolium(MMI),
1-ethyl-3-methylimidazolium(EMI),
1-propyl-3-methylimidazolium(PMI),
1-butyl-3-methylimidazolium(BMI),
1-pentyl-3-methylimidazolium(PeMI),
1-hexyll-3-methylimidazolium(HMI),
1-oxyl-3-methylimidazolium(OMI),
1,2-dimethyl-3-propylimidazolium(DMPI);
ピリジニウム系陽イオン:
1-methl-1-propylpiprodonium(PP13),
1-methyl-1-propylpyrrolidinium(P13),
1-methyl-1-butylpyrrolidinium(P14),
1-butyl-1-methylpyrrolidinium(BMP);
アンモニウム系陽イオン:
trimethylpropylammonium(TMPA),
trimethyloctylammonium(TMOA),
trimethylhexylammonium(TMHA),
trimethylpentylammonium(TMPeA),
trimethylbutylammonium(TMBA);
ピラゾリウム系陽イオン:
1-ethyl-2,3,5-trimethylpyrazolium(ETMP),
1-butyl-2,3,5-trimethylpyrazolium(BTMP),
1-propyl-2,3,5-trimethylpyrazolium(PTMP),
1-hexyl-2,3,5-trimethylpyrazolium(HTMP);
(2)陰イオン
bis(trifluoromethanesulfonyl)imide TFSI),
bis(fluorosulfonyl)imide(FSI),
bis(perfluoroethylsulfonyl)imide(BETI),
tetrafluoroborate(BF4),
hexafluorophosphate(PF6);
なかでも、イオン液体は、下記の(1)、(2)が好ましい。
(1)EMI(CF3SO2)2N すなわち、
1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
(2)EMI(FSO2)2N すなわち、
1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide
イオン液体には、その液状を損ねない範囲で、性能(低い駆動電圧、十分に高い電流増幅率、高い応答性)を高める添加剤を添加又は溶解することは是である。そのような添加剤は、例えば、以下の通りである。
ナノ粒子
1)Al2O3
2)ZrO2
3)SiO2
4)TiO2
イオン
1)Liイオン
2)Kイオン
3)Naイオン
かかる態様によれば、半導体層(固体)とイオン液体との界面層でのイオン液体の規則的な整列を起こすことができる。
本発明の態様によれば、電界効果トランジスタのキャリア移動度を高くすることができるという効果を奏する。
以下に添付図面を参照して、この発明に係る電界効果トランジスタの好適な実施例を詳細に説明する。
まず、本実施例に係るデユアルゲートトランジスタの構造について説明する。図1は、本実施例に係るデユアルゲートトランジスタの構造を示す概念図である。このデユアルゲートトランジスタは、上下に2つのトランジスタがある。上のトランジスタが本発明にかかるものである。下のトランジスタは従来のものである。
このトランジスタは、ドープシリコンからなる下側ゲート電極1、下側ゲート電極1上に形成されたSiO2からなる下側ゲート絶縁層2、下側ゲート絶縁層2上に形成された有機ルブレン単結晶からなる半導体層3、下側ゲート絶縁層2上に形成された金のドレイン電極4、金のソース電極5、有機半導体層3の上に形成されたイオン液体からなる(上側)ゲート絶縁層6、及び金線からなる(上側)ゲート電極7から構成される。
下側ゲート電極1と、下側ゲート絶縁層2と、半導体層3と、ドレイン電極4およびソース電極5とで構成される電界効果トランジスタは、従来と同様にSiO2をゲート絶縁層としている。これに対して、上側ゲート電極7と、上側ゲート絶縁層6と、半導体3と、ドレイン電極4およびソース電極5とで構成される電界効果トランジスタは、イオン液体をゲート絶縁層としている。
このように、イオン液体をゲート絶縁層の主要成分としてもちいることによって、上側のトランジスタは、ゲート電極7とソース電極5(又はドレイン電極4)との間にゲート電圧が引火されると、イオン液体−半導体界面に電気二重層が生じる。そのため、トランジスタを低電圧で駆動させることができる。また、ゲート絶縁層として通常よく用いられるSiO2(電解質でなく誘電体)を使用したトランジスタに比べて、図2に示すように、低い駆動電圧で十分に多くの電流を流すことができる。即ち、電流増幅率が十分に高い。
図2は、実施例のトランジスタについて、ゲート電圧VGに対するドレイン電流IDSの変化を示す図である。ここでは、イオン液体としてEMI(CF3SO2)2Nすなわち1-ethyl-3methylimidazolium bis(trifluoromethanesulfonyl)imideとEMI(FSO2)2Nすなわち1-ethyl-3methylimidazolium bis(fluorosulfonyl)imideを用いた場合を示している。また、従来の電界効果トランジスタとの比較のためにSiO2をゲート絶縁層として用いた場合も示している。なお、図3にEMITFSIとEMIFSIの構造を示す。また、ドレイン−ソース間の電圧VDSは−1.0Vである。
図2に示すように、イオン液体電解質をゲート絶縁層として用いると、SiO2をゲート絶縁層として用いる場合と比較して、より低いスイッチング電圧(ゲート電極とソース電極及びドレイン電極の間の電圧)をゲート電極に印加するだけで、充分に大きな電流を流すことができる。したがって、電界効果トランジスタの消費電力を低減することができる。
また、イオン液体の性質を用いることで、高い周波数応答性、高いイオン伝導度を実現することができる。図4は、イオン液体の静電容量の周波数応答性を示す図である。縦軸は、F/cmで、単位面積あたりの静電容量を表し、横軸は単位がHzで、周波数を表す。同図に示すように、イオン液体は、高い周波数でも高い静電容量を示している。すなわち、ゲート絶縁層にイオン液体を用いると、イオン液体本来が有する高いイオン伝導度を利用することで、高い周波数応答性を得ることが可能になる。
また、イオン液体は、常温では液体であるため、有機半導体材料の表面と、その有機半導体材料の表面に設けられる絶縁材料との間の密着性がよくなり、キャリア移動度が高い。特にイオン液体として、EMIFSIを用いた場合、キャリア移動度を1.2cm2/Vs、EMITFSIを用いた場合、キャリア移動度を0.4cm2/Vsとすることができる。
本発明の効果のひとつである十分に高い電流増幅率は、高いキャリア移動度によってもたらされる。キャリア移動度は、図2の特性曲線の傾きを静電容量で割った値に対応する。したがって、図2および図4からEMITFSIとEMIFSIを比較すると、EMIFSIのキャリア移動度がEMITFSIのキャリア移動度より高いことがわかる。
また、固体(有機ルブレン単結晶)−液体(イオン液体)界面の良好な形成のためには界面層でのイオン液体の規則的な整列が起こることが必須となる。そして、界面層でイオン液体の規則的な整列が起こるか否かはイオン液体(半導体層に正孔を注入する際は、陰イオン種、半導体層に電子を注入する際は、陽イオン種)の分子構造に依存する。
例えば、半導体層に正孔を注入する際、図5に示す5つのイオン液体(陰イオン種)のうち、N(CN)2およびBF4では界面層でのイオン液体の規則的な整列は起こりにくく、FSIおよびTFSIでは界面層でのイオン液体の規則的な整列が起こり易い。
その理由は、図5および図6に示すように、分子構造が異なるためである。N(CN)2およびBF4の分子構造は、分子内に折れ曲がりがなく、方向性がない。すなわち、分子内に双極子モーメントがない。一方、FSIおよびTFSIの分子構造は分子内に双極子モーメントが存在するため、方向性を有する。このため、FSIおよびTFSIでは、分子内での電子のたまり方が一様でなく、良好な界面を形成し易くなる。すなわち、界面での配向性を良くすることができる。なお、図5に示すBETIは分子内に多少の方向性を有する。
図7は、イオン液体が異なる電界効果トランジスタの伝達特性を示す図である。同図に示すように、半導体層に正孔を注入する際、イオン液体(陰イオン種)がFSIおよびTFSIの場合には、BF4の場合と比較して大きなドレイン電流IDSを流すことができる。また、イオン液体(陰イオン種)がBETIの場合には、BF4の場合よりは大きなドレイン電流IDSを流すことができるが、FSIおよびTFSIの場合と比較すると小さいドレイン電流IDSしか流すことができない。図7から、分子内方向性を有するイオン液体電解質ほどゲート絶縁層として優れていることがわかる。
上述してきたように、本実施例では、電界効果トランジスタのゲート絶縁層としてイオン液体電解質を用いることとしたので、イオン液体電界質が高い静電容量を有する性質を利用して、電界効果トランジスタを低電圧で動作させることができる。また、イオン液体電解質を利用したことで、イオン液体電解質が有する高いイオン伝導性を利用し、電界効果トランジスタの周波数応答性能を高くすることができる。また、イオン液体電解質を利用したことで、液体と半導体材料表面の界面の接触を良くすることができ、電界効果トランジスタのキャリア移動度を高くすることができる。即ち、電流増幅率が十分に高い。
また、分子内方向性を有するイオン液体を用いることによって界面層でのイオン液体の規則的な整列を起こすことができ、電界効果トランジスタのキャリア移動度をさらに高くすることができる。
なお、本実施例では、電界効果トランジスタのゲート絶縁層として、イオン液体を用いる場合について説明したが、イオン液体には、その液状を損ねない範囲で、性能(低い駆動電圧、十分に高い電流増幅率、高い応答性)を高める添加剤を添加又は溶解する場合にも、同様の特徴を備える電界効果トランジスタを実現することができる。
また、本実施例では、半導体層に有機ルブレン単結晶を用いた場合について説明したが、本発明はこれに限定されるものではなく、オキシクロライドなど無機酸化物材料を用いる場合にも同様に適用することができる。また、ドレイン電極とソース電極に金電極以外の電極を用いる場合にも同様に適用することができる。
以上のように、本発明に係る電界効果トランジスタは、低電圧で動作すると伴に高い周波数応答性能と高いキャリア移動度(低い駆動電圧、十分に高い電流増幅率)を必要とする場合に適している。
本実施例に係るデユアルゲートトランジスタの構造を示す図である。 ゲート電圧VGに対するドレイン電流IDSの変化を示す図である。 EMITFSIおよびEMIFSIの構造を示す図である。 イオン液体の静電容量の周波数応答性を示す図である。 イオン液体(陰イオン種)の分子構造の例を示す図である。 イオン液体(陰イオン種)の分子内方向性の概念図である。 イオン液体が異なる電界効果トランジスタの伝達特性を示す図である。
符号の説明
1 下側ゲート電極
2 下側ゲート絶縁層
3 有機ルブレン単結晶
4 ドレイン電極
5 ソース電極
6 上側ゲート絶縁層
7 上側ゲート電極

Claims (6)

  1. ゲート絶縁層が、液状であって、その主要成分がイオン液体であることを特徴とし、該イオン液体が分子内方向性を有することを特徴とする電界効果トランジスタ。
  2. 前記イオン液体が、糊剤又は増粘剤を含まないことを特徴とする請求項1に記載の電界効果トランジスタ。
  3. 前記イオン液体が、半導体層に正孔を注入する際、イオン液体の陰イオンが分子内方向性すなわち双極子モーメントを有することを特徴とする請求項1または2に記載の電界効果トランジスタ。
  4. 前記イオン液体が、半導体層に電子を注入する際、イオン液体の陽イオンが分子内方向性すなわち双極子モーメントを有することを特徴とする請求項1または2に記載の電界効果トランジスタ。
  5. 前記イオン液体は、陰イオンがFSIであることを特徴とする請求項1、2または3に記載の電界効果トランジスタ。
  6. 前記イオン液体は、陰イオンがTFSIであることを特徴とする請求項1、2または3に記載の電界効果トランジスタ。
JP2008259644A 2008-10-06 2008-10-06 電界効果トランジスタ Pending JP2010092971A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259644A JP2010092971A (ja) 2008-10-06 2008-10-06 電界効果トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259644A JP2010092971A (ja) 2008-10-06 2008-10-06 電界効果トランジスタ

Publications (1)

Publication Number Publication Date
JP2010092971A true JP2010092971A (ja) 2010-04-22

Family

ID=42255432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259644A Pending JP2010092971A (ja) 2008-10-06 2008-10-06 電界効果トランジスタ

Country Status (1)

Country Link
JP (1) JP2010092971A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243632A (ja) * 2010-05-14 2011-12-01 National Institute Of Advanced Industrial & Technology ペロブスカイト型の複合酸化物をチャンネル層とする電界効果トランジスタ及びその製造方法と、これを利用したメモリ素子
JP2013030527A (ja) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research 電解質メモリ素子
CN113659078A (zh) * 2021-08-17 2021-11-16 南开大学 一种基于聚酰亚胺新型栅绝缘层的突触晶体管器件及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087793A1 (ja) * 2008-01-11 2009-07-16 National Institute Of Japan Science And Technology Agency 電界効果トランジスタ、電界効果トランジスタの製造方法、中間体及び第2中間体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087793A1 (ja) * 2008-01-11 2009-07-16 National Institute Of Japan Science And Technology Agency 電界効果トランジスタ、電界効果トランジスタの製造方法、中間体及び第2中間体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CSNC201008081235; 富成征弘,他4名: '"有機半導体単結晶/イオン液体界面を用いた高移動度電気二重層トランジスタ"' 第55回応用物理学関係連合講演会講演予稿集 Vol.3, 20080327, p.1407, 社団法人応用物理学会 *
JPN6008057859; 平原律雄,他4名: '"弾性樹脂を用いた有機半導体単結晶/イオン液体界面の作製と電気二重層トランジスタ"' 第68回応用物理学会学術講演会講演予稿集 No.3, 20070904, p.1334, 社団法人応用物理学会 *
JPN6013016543; 富成征弘,他4名: '"有機半導体単結晶/イオン液体界面を用いた高移動度電気二重層トランジスタ"' 第55回応用物理学関係連合講演会講演予稿集 Vol.3, 20080327, p.1407, 社団法人応用物理学会 *
JPN6013028430; 三輪一元,他5名: '"電離度を高めたイオン液体を用いた有機単結晶FET"' 日本物理学会講演概要集 Vol.63, No.2, 20080825, P.770, 社団法人日本物理学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243632A (ja) * 2010-05-14 2011-12-01 National Institute Of Advanced Industrial & Technology ペロブスカイト型の複合酸化物をチャンネル層とする電界効果トランジスタ及びその製造方法と、これを利用したメモリ素子
JP2013030527A (ja) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research 電解質メモリ素子
CN113659078A (zh) * 2021-08-17 2021-11-16 南开大学 一种基于聚酰亚胺新型栅绝缘层的突触晶体管器件及其制备方法
CN113659078B (zh) * 2021-08-17 2024-02-23 南开大学 一种基于聚酰亚胺新型栅绝缘层的突触晶体管器件及其制备方法

Similar Documents

Publication Publication Date Title
JP5678129B2 (ja) 電界効果トランジスタ、中間体
JPWO2005091376A1 (ja) 有機縦形トランジスタおよびその製造方法
CN101154713B (zh) 薄膜晶体管、电光装置及电子设备
CN100517745C (zh) 利用了单分子膜的有机晶体管
Wang et al. Record‐Low Subthreshold‐Swing Negative‐Capacitance 2D Field‐Effect Transistors
CN101931005B (zh) 半导体装置及其制造方法和使用它的电源装置
Li et al. Solution-processed poly (3-hexylthiophene) vertical organic transistor
US9812568B2 (en) Ionic barristor
JP2010092971A (ja) 電界効果トランジスタ
Ma et al. Detecting electric dipoles interaction at the interface of ferroelectric and electrolyte using graphene field effect transistors
JP2007214326A (ja) 有機半導体素子
Radha Krishnan et al. Organic doping at ultralow concentrations
JP2006286681A (ja) 電界効果型トランジスタ及びその製造方法
KR101291320B1 (ko) 유기 박막 트랜지스터 및 그 형성방법
JP2010092944A (ja) 電界効果トランジスタ
CN103632968A (zh) 晶体管及其形成方法
Yang et al. Electrically tuning interfacial ion redistribution for mica/WSe2 memory transistor
CN103762229A (zh) 具有复合栅介质的横向功率器件
JP6583808B2 (ja) 有機半導体膜の製造方法および製造装置
Al Naim et al. Organic solvents as gate media for thin-film transistors
WO2020235591A1 (ja) 可変抵抗デバイスおよびその製造方法
Wu et al. High‐Performance, Low‐Operating‐Voltage Organic Field‐Effect Transistors with Low Pinch‐Off Voltages
Ito et al. Structure and thermoelectric properties of electrochemically doped polythiophene thin films: Effect of side chain density
JP5717096B2 (ja) 電解質メモリ素子
WO2010095526A1 (ja) 有機電界効果トランジスタにおけるしきい値電圧の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022