WO2010095526A1 - 有機電界効果トランジスタにおけるしきい値電圧の制御方法 - Google Patents

有機電界効果トランジスタにおけるしきい値電圧の制御方法 Download PDF

Info

Publication number
WO2010095526A1
WO2010095526A1 PCT/JP2010/051705 JP2010051705W WO2010095526A1 WO 2010095526 A1 WO2010095526 A1 WO 2010095526A1 JP 2010051705 W JP2010051705 W JP 2010051705W WO 2010095526 A1 WO2010095526 A1 WO 2010095526A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
effect transistor
threshold voltage
organic field
voltage
Prior art date
Application number
PCT/JP2010/051705
Other languages
English (en)
French (fr)
Inventor
正 菅原
卓郎 伊藤
未知雄 松下
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2010095526A1 publication Critical patent/WO2010095526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Definitions

  • the present invention relates to an acquired control of a threshold voltage in an organic field effect transistor.
  • a field effect transistor fabricated using an organic semiconductor thin film is an element that injects conductive carriers into an organic semiconductor thin film by applying a voltage to the gate electrode through an insulating film, thereby changing the electrical resistance.
  • the starting gate voltage (threshold voltage) is often different for each element to be manufactured even if the same organic material is used.
  • the field effect transistor has instability of the current between the source and the drain obtained by carrier injection, which is called a bias stress effect (see Non-Patent Document 1 and Non-Patent Document 2).
  • the effect is great and hinders practical application.
  • Patent Documents 1 to 3 disclose means for providing a control layer between an insulating layer and an organic semiconductor layer or on an organic semiconductor layer for controlling a threshold voltage in an organic field effect transistor.
  • the present invention essentially solves the problem from its fundamental principles.
  • the threshold voltage of the semiconductor element can be controlled by doping impurities into the semiconductor layer.
  • the threshold voltage of the semiconductor element can be controlled by doping impurities into the semiconductor layer.
  • no means for arbitrarily controlling the threshold value by doping the organic semiconductor layer has been established. Therefore, how to control the carrier behavior in the organic field effect transistor is also important.
  • An object of the present invention is to control the threshold voltage to a constant value while suppressing the bias stress effect in the organic field effect transistor.
  • Another object of the present invention is to control the behavior of carriers in an organic field effect transistor.
  • the technical means adopted by the present invention are: Applying a gate voltage of a first value to the organic field effect transistor at a first temperature at which a bias stress effect occurs to produce a bias stress effect; In a state where the gate voltage having the first value is applied, the transistor is cooled to a temperature equal to or lower than a second temperature at which the bias stress effect is frozen, so that the first voltage is decreased below the second temperature.
  • An acquired control method of threshold voltage in an organic field-effect transistor comprising: It is.
  • the time change of the current value I SD by bias stress effect decreases with decreasing temperature, does not change in the following constant temperature T C, i.e., have found that the bias stress effect freezes (See FIG. 1).
  • the present invention utilizes the freezing phenomenon of this bias stress effect.
  • the present invention is a principle approach. It is considered that there are inherent first and second temperatures depending on the type of organic material. Although these temperatures (particularly, the second temperature at which the bias stress effect freezes) are different, application of this method Those skilled in the art will appreciate that is not limited to the type of organic material used.
  • the first temperature at which the bias stress effect occurs means a temperature range in which the bias stress effect occurs.
  • the first temperature is typically room temperature.
  • Many of the organic semiconductor materials constituting the organic semiconductor layer of the organic field effect transistor have a bias stress effect at room temperature.
  • a temperature higher than room temperature raised from room temperature to a certain temperature may be set as the first temperature depending on the material.
  • the first value is the threshold voltage” does not necessarily mean that the threshold voltage value exactly matches the first value. A case where there is an error of several percent before and after may be included.
  • the present invention is a principle technique, and therefore, the types of organic semiconductor materials constituting the organic semiconductor layer of the present invention include aromatic hydrocarbons such as pentacene and rubrene, tetrathiafulvalenes and benzoates.
  • the threshold voltage can be reset again and again by raising the temperature, applying the selected gate voltage, and cooling it again to a temperature below the freezing temperature. That is, in one aspect of the invention, further Raising the temperature of the organic field effect transistor having the first value as a threshold voltage to a first temperature; Applying a second value of gate voltage to the organic field effect transistor at a first temperature to produce a bias stress effect; In a state where the gate voltage having the second value is applied, the transistor is cooled to a temperature equal to or lower than a second temperature at which the bias stress effect is frozen, so that the second voltage is reduced below the second temperature. Obtaining an organic field effect transistor whose value is a threshold voltage; Consists of.
  • a method for controlling carriers in an organic field effect transistor comprising: It is.
  • the value of the gate voltage is the threshold voltage of the organic field effect transistor under the second temperature. Since the amount of carriers trapped and fixed is determined by the applied voltage, in the field-effect transistor, the voltage applied at room temperature becomes the threshold voltage during freezing.
  • the material of the organic semiconductor portion of the transistor may be a bipolar material.
  • the threshold voltage is a gate voltage at which the current value I SD is minimized.
  • the “threshold voltage” includes a gate voltage at which the current value I SD is minimum in an organic FET including an ambipolar organic material.
  • the problem of threshold voltage instability and the problem of bias stress effect which have been problems in organic field effect transistors so far, have been solved.
  • the threshold voltage can be reset by the operation of applying the voltage of and lowering to the freezing temperature.
  • the threshold voltage of an organic semiconductor field effect transistor can be freely set without reworking the element or changing the material for forming the organic semiconductor layer. Industrial value is also high in that elements with different value voltages can be made separately.
  • the organic field effect transistor includes a source electrode, a drain electrode, a gate electrode, a gate insulating film, and an organic semiconductor layer.
  • an organic field effect transistor is configured as a MIS FET in which an insulating film is sandwiched between an organic semiconductor and a gate electrode (see FIGS. 2 and 4).
  • the MISFET has a gate electrode formed on the surface of a substrate (not shown), an insulating layer formed on the surface of the gate electrode, a source electrode and a drain electrode formed on the surface of the insulating layer, and an insulating layer sandwiched between them. And a semiconductor layer formed of an organic semiconductor material so as to face the gate electrode.
  • the form of the MIS structure is not limited, and a specific MIS structure may be any of a top contact type, a bottom contact type, and a top gate type.
  • the organic field effect transistor according to the present invention is not limited to the MIS structure.
  • the organic FET In the organic FET, between the gate electrode and the source electrode and applying a gate voltage V G, carriers are accumulated in the organic semiconductor side, a channel is formed in the semiconductor layer by the accumulated carrier.
  • the organic FET includes a p-type in which the channel is turned on in the case of a negative gate voltage and an n-type in which the channel is turned on in the case of a positive gate voltage. Holes and electrons are accumulated in the channel as carriers, respectively.
  • Bipolar organic materials include materials that perform bipolar operation by modification of electrodes and the like in addition to those that are inherently bipolar.
  • Bias stress effect in organic field-effect transistor, a phenomenon when held in a state of applying a gate voltage V G, the current value I SD between the source and drain induced by application of the gate voltage V G is decreased with time This is considered to be caused by trapping of the carriers that should have been injected.
  • the time change of the current value I SD becomes smaller with decreasing temperature, does not change in the following constant temperature T C, i.e., they have discovered that freezing.
  • an n-channel field effect transistor formed of tetracyanoquinodimethane (TCNQ) shows a bias stress effect at room temperature, but when cooled to 180 K, the bias stress effect is not seen.
  • TCNQ tetracyanoquinodimethane
  • Fig. 1 the source-drain voltage of 5V and the gate voltage of -20V were applied to the FET element using TTC 9 -TTF, and the decrease rate of the current value I with respect to the initial current I (0) was seen as a time change. Is.
  • FIG. 1 it can be seen that the current value decreased to about half in 50 minutes at 250K, but hardly decreased at 180K.
  • FIG. 2 shows an MIS-type organic field effect transistor including a source electrode S, a drain electrode D, a gate electrode G, a gate insulating film, and an organic semiconductor layer.
  • FIG. 2 further shows an FET transfer characteristic curve (horizontal axis: V G , vertical axis I SD ).
  • T C represents the temperature at which the bias stress effect freezes.
  • the organic FFT shown in FIG. 2 is an n-type device in which a source / drain current ISD flows by a positive gate voltage. Further, this device has a threshold voltage of 0 V at room temperature. When +20 V is applied as the gate voltage V G , carriers ( ⁇ ) are injected near the interface between the organic semiconductor layer and the insulating film.
  • “Relaxation” means that when an external state (temperature, pressure, etc., “voltage” in the present invention) changes with respect to a substance, the structure and electronic state of the substance change so as to be most stable against that state This process is called a “relaxation process”.
  • the carrier (-) trapping sites are immobilized. Immobilization refers to a state where trap sites are not eliminated even when the gate voltage is removed.
  • the immobilized carrier is indicated by ( ⁇ ) surrounded by ⁇ . Since the amount of carriers injected is determined by the applied gate voltage V G , when a field effect transistor is configured, the gate voltage V G applied at room temperature becomes the threshold voltage V th during freezing. When the device is operated with the gate voltage V G cut off, the threshold voltage is the initially applied voltage + 20V.
  • the bias stress effect (a kind of relaxation phenomenon) is that carriers (holes and electrons) flow into the material with respect to the applied voltage, and the structure of the material changes in order to stabilize the state (relaxation).
  • the temperature of the carrier once flowing into the substance is lowered after being in a stabilized state (trap state)
  • the state is fixed. In other words, it includes a change in both directions, a phenomenon in which carriers that have flowed in by applying a voltage are trapped (bias stress effect) and a phenomenon that returns to the original state when the voltage is restored.
  • “Immobilized” can be said to be in its frozen state. Even when the temperature of the device cooled to the temperature T C or lower is raised, the device changes toward the most stable state at the applied voltage (for example, 0 V) at that time, that is, “relaxation” occurs.
  • the gate voltage application time and device cooling timing are selected such that the bias stress effect freezes after sufficient relaxation has been generated (which has caused the bias stress effect).
  • the degree of time from application of the gate voltage to relaxation of the system is known to those skilled in the art or can be obtained by experimentation.
  • FIG. 3 is a diagram showing threshold voltage control of TCNQ.
  • the A line is 0V
  • the B line is + 30V applied at room temperature, cooled to 180K, the gate is opened, the gate voltage is swept again, and the transfer characteristics are measured. It can be seen that the threshold voltages coincide with the applied gate voltages.
  • the threshold voltage V th differs in a range of plus or minus several tens V depending on the element, but in a state where a gate voltage V G of 10 V, 20 V, or 30 V is applied.
  • T C for example, 180 K
  • it functions as a field effect transistor having threshold voltages of 10 V, 20 V, and 30 V, respectively.
  • the threshold voltage Vth of an organic field effect transistor has a problem of reproducibility that an element having the same characteristics cannot always be obtained even if it is manufactured under the same conditions.
  • the present invention can solve such problems. That is, the threshold voltage Vth of the organic field effect transistor can be precisely set to an arbitrary value using the same substance. This method can be applied as a memory element. Furthermore, application to reprogrammable circuits is also possible.
  • a silicon substrate doped in N-type is used as a gate electrode, and an oxide film having a thickness of 300 nm formed by oxidizing the substrate surface is used as an insulating film.
  • gold was vacuum-deposited using a mask, and source and drain electrodes meshed with a comb were produced. At this time, the width of the channel was 2 ⁇ m and the length was 1 m.
  • the polyhexylthiophene used as the organic semiconductor layer is purified by commercially available column chromatography.
  • TCNQ tetracyanoquinodimethane
  • a bottom contact type organic thin film transistor element was prepared by a casting method in which a chloroform solution of a molecular material was dropped and dried on a comb-shaped gold electrode. Electrical inputs and outputs were obtained by connecting gold wires to the source, drain and gate electrodes with a conductive paste. The measurement was performed in a cryostat in a helium atmosphere using a KEITHLEY 2400 type source meter and a 6487 type picoammeter.
  • the material of the organic semiconductor part of the organic FFT may be a bipolar material.
  • the gate voltage (threshold voltage V th ) at which the current value is minimum is a positive or negative potential region depending on the applied voltage during cooling. It changed continuously.
  • Figure 4 shows the FET having a bipolar organic semiconductor material, by applying a gate voltage V G at room temperature and cooled to 100K ( ⁇ T C), the experiment to observe I SD by sweeping the gate voltage .
  • FIG. 5 shows experimental results and shows changes in the IV curve due to differences in cooling voltage (gate voltage V G (MES) applied at normal temperature).
  • FIG. 5 shows that the gate voltage and the threshold voltage match.
  • V G (MES) represents the gate voltage at the time of measurement
  • V G (SET) represents the gate voltage applied at the time of cooling (freezing process).
  • the maximum temperature T C at which the threshold voltage V th can be fixed is specific to the organic semiconductor material. If the temperature is equal to or lower than the temperature T C , the threshold voltage V th does not return. Although the temperature at which the bias stress effect is suppressed is set to 100K in the experimental example, it may be actually cooled to about 170K. It was about 200K for polyhexylthiophene, about 180K for quinoid-type oligothiophene that showed both polarities, and 230K for (tetrakisdodecylthio) tetrathiafulvalene.
  • the above effects are considered to occur regardless of the type of organic semiconductor material used.
  • the present invention can also be applied to acenes currently used as materials for organic thin film transistors, various organic polymers, porphyrins, and the like. Further, an element whose threshold value is fixed at a high temperature close to normal temperature can be manufactured by improving a material to be used.
  • the present invention can be used to control the threshold voltage in an organic field effect transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

有機電界効果トランジスタにおけるバイアスストレス効果を抑えると同時に、しきい値電圧を一定値に制御する。バイアスストレス効果が生じる第1の温度下で、第1の値のゲート電圧を有機電界効果トランジスタに印加してバイアスストレス効果を生じさせるステップと、前記第1の値のゲート電圧を印加した状態で、前記トランジスタをバイアスストレス効果が凍結される第2の温度以下の温度まで冷却することで、第2の温度以下の温度下において前記第1の値をしきい値電圧とする有機電界効果トランジスタを得るステップと、からなる有機電界効果トランジスタにおけるしきい値電圧の後天的制御方法。

Description

有機電界効果トランジスタにおけるしきい値電圧の制御方法
 本発明は、有機電界効果トランジスタにおけるしきい値電圧の後天的制御に関するものである。
 有機半導体薄膜を用いて作製した電界効果トランジスタは、絶縁膜を介してゲート電極に電圧を印加することで有機半導体薄膜に導電キャリアを注入し、電気抵抗を変化させる素子であるが、電流が流れ始めるゲート電圧(しきい値電圧)は、同じ有機材料を用いても作製する素子ごとに異なる場合が多い。
 また、電界効果トランジスタには、バイアスストレス効果と呼ばれる、キャリア注入により得られるソース・ドレイン間の電流の不安定性があるが(非特許文献1、非特許文献2参照)、特に、有機半導体素子ではその効果が大きく、実用化の妨げになっている。
 これまで、有機電界効果トランジスタにおけるしきい電圧のばらつきを軽減する方法として、ゲート絶縁体と有機半導体の界面を化学修飾する方法や、一旦形成した素子を焼きなましするなどの方法が試みられてきた。また、有機電界効果トランジスタにおけるしきい値電圧の制御について、絶縁層と有機半導体層の間や有機半導体層上に制御層を設ける手段が特許文献1乃至3に開示されている。
 また、バイアスストレス効果に関しては、その重要性は認識されていたものの、それを回避する方法としては、網羅的な新規物質の探索以外に無かった。
 このように、これらの問題(しきい値電圧の不安定性及びバイアスストレス効果)を克服する決定的な方法は見つかっていない。本発明は、これらの従来型の解決方法とは異なり、その根本的な原理から本質的に問題を解決するものである。
 また、無機半導体層を備えた半導体素子においては、半導体層に対する不純物のドーピングにより半導体素子のしきい値電圧を制御することが可能である。しかしながら、有機半導体材料を使用した半導体素子においては、有機半導体層へのドーピングによりしきい値を任意に制御する手段は確立されていない。したがって、有機電界効果トランジスタにおけるキャリアの振る舞いをどのように制御するかも重要である。
特開2006-32774号
特開2006-278638号
特開2006-339538号
APPLIED PHYSICS LETTERS VOLUME 79, NUMBER 8 20 AUGUST2001, Bias stress in organic thin-film transistors and logic gates S. J.Zilker, C. Detcheverry, E. Cantatore, and D. M. de Leeuw
R. A. Street, A. Salleo, and M. L. Chabinyc, "Bipolaronmechanism for bias-stress effects in organic transistors", Physical Review B68(8), 085316 (2003).
 本発明は、有機電界効果トランジスタにおけるバイアスストレス効果を抑えると同時に、しきい値電圧を一定値に制御することを目的とする。
 本発明の他の目的は、有機電界効果トランジスタにおけるキャリアの振る舞いを制御することにある。
 本発明が採用した技術手段は、
 バイアスストレス効果が生じる第1の温度下で、第1の値のゲート電圧を有機電界効果トランジスタに印加してバイアスストレス効果を生じさせるステップと、
 前記第1の値のゲート電圧を印加した状態で、前記トランジスタをバイアスストレス効果が凍結される第2の温度以下の温度まで冷却することで、第2の温度以下の温度下において前記第1の値をしきい値電圧とする有機電界効果トランジスタを得るステップと、
 からなる有機電界効果トランジスタにおけるしきい値電圧の後天的制御方法、
 である。
 バイアスストレス効果とは、あるゲート電圧(しきい値電圧)においてソース・ドレイン電流が急峻に立ち上がるISD-VG特性(伝達特性)を示していた材料が、電圧を一定に保っていると、時間と共にソース・ドレイン電流の値ISDが低下していく現象である。その場合、さらに高いしきい値電圧をかけないと、最初の電流値が得られなくなる。
 無機のN型動作のMOSFETなどでは、負バイアス温度不安定性(negative bias temperature instability:NBTI)というほぼ同様の現象が古くから知られており、デバイスを安定に動作させる上で問題であるとされてきた。有機FETにおいても同様の現象が存在し(非特許文献1、非特許文献2参照)、注入されたキャリアが絶縁膜と半導体膜の界面でなんらかの原因によりトラップされるためであると解釈されている。
 本願の発明者等は、バイアスストレス効果による電流値ISDの時間変化が、温度の低下と共に小さくなり、一定の温度T以下では変化しなくなる、すなわち、バイアスストレス効果が凍結することを発見した(図1参照)。
 本発明は、このバイアスストレス効果の凍結現象を利用するものである。本発明は原理的な手法である。有機材料の種類に応じて固有の第1の温度、第2の温度があるものと考えられ、これらの温度(特に、バイアスストレス効果が凍結する第2の温度)は異なるものの、この手法の適用は用いられる有機材料の種類には限定されないことは当業者に理解される。
 バイアスストレス効果が生じる第1の温度は、バイアスストレス効果が生じるある温度範囲を意味する。第1の温度は、典型的には常温である。有機電界効果トランジスタの有機半導体層を構成する有機半導体材料の多くは、常温下でバイアスストレス効果が生じる。常温下でのバイアスストレス効果が小さい物質から有機半導体層を形成する場合には、当該物質に応じて、室温からある温度まで上昇させた常温よりも高い温度を第1の温度としてもよい。
 バイアスストレス効果が凍結する第2の温度Tは有機材料の種類に応じて固有の値がある。したがって、有機半導体層に用いる有機材料においてある温度が第2の温度T以下であるかは、デバイスを冷却した状態でゲートを印加することにより得られるソース・ドレイン電流の値ISDが時間変化しないことで確認できる(図1参照)。
 「第1の値をしきい値電圧とする」とは、しきい値電圧の値が、必ずしも厳密に第1の値と一致することのみを意味するものではなく、第1の値に対して前後数%の誤差を有する場合も含んでもよい。
 上述のように、本発明は原理的な手法であり、したがって、本発明の有機半導体層を構成する有機半導体材料の種類としては、ペンタセン、ルブレン等の芳香族炭化水素、テトラチアフルバレン類とベンゾ縮環型のテトラチアフルバレン誘導体及びそれらのセレン・テルル置換体、ベンゾキノン誘導体、テトラシアノキノジメタンとその誘導体、ベンゾ縮環型を含むポルフィリン類、フタロシアン類等の有機低分子及びそれらの分子骨格を有する複合材料、前記のドナー分子アクセプター分子からなる電荷移動錯体、オリゴチオフェン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリパラフェニレン、ポリビニレン等の有機高分子、置換基を有するそれらの誘導体、及びそれらのコポリマー、金属フタロシアニンやNi(dmit)2などの金属錯体、フラーレン類及びカーボンナノチューブ類、グラフェン類からなる群から選択された一つ以上の材料を幅広く用いることができる。
 これらの特性は、温度を上昇させ、選択したゲート電圧を印加して再び凍結温度以下の温度まで冷却することで、何度でもしきい値電圧の再設定が可能である。
 すなわち、
 本発明の1つの態様では、さらに、
 前記第1の値をしきい値電圧とした有機電界効果トランジスタを第1の温度まで昇温するステップと、
 第1の温度下で、第2の値のゲート電圧を有機電界効果トランジスタに印加してバイアスストレス効果を生じさせるステップと、
 前記第2の値のゲート電圧を印加した状態で、前記トランジスタをバイアスストレス効果が凍結される第2の温度以下の温度まで冷却することで、第2の温度以下の温度下において前記第2の値をしきい値電圧とする有機電界効果トランジスタを得るステップと、
 からなる。
 本発明が採用した他の技術手段は、
 バイアスストレス効果が生じる第1の温度下で、ゲート電圧を有機電界効果トランジスタに印加して生成したキャリアをトラップするステップと、
 前記ゲート電圧を印加した状態で、前記トランジスタをバイアスストレス効果が凍結される第2の温度以下の温度まで冷却して前記トラップされたキャリアを固定するステップと、
 からなる有機電界効果トランジスタにおけるキャリアの制御方法、
 である。
 本発明の1つの態様では、前記ゲート電圧の値が、第2の温度下における有機電界効果トランジスタのしきい値電圧となる。トラップされて固定されるキャリアの量は、印加電圧によって決まるので、電界効果トランジスタにおいて、常温時に印加した電圧が、凍結時のしきい値電圧となる。
 本発明において、前記トランジスタの有機半導体部の材料は両極性材料でもよく、この場合、前記しきい値電圧は、電流値ISDが最小となるゲート電圧である。本明細書においては、「しきい値電圧」には、両極性有機材料を備えた有機FETにおいて、電流値ISDが最小となるゲート電圧を含む。
 本発明により、これまで有機電界効果トランジスタで問題となっていた、しきい値電圧の不安定性の問題と、バイアスストレス効果の問題を解決し、既に作製した有機半導体電界効果トランジスタを用いて、任意の電圧を印加して凍結温度まで下げるという操作で、しきい値電圧を再設定できる。本発明によれば、素子を作り直すことも、有機半導体層を形成する材料を変更することもなく、有機半導体電界効果トランジスタのしきい値電圧を自由に設定でき、さらに、同じ物質で、しきい値電圧の異なる素子を作り分けることができる点で産業的な価値も高い。
バイアスストレスの緩和過程(バイアスストレス効果の凍結現象)を示す図である。 有機半導体材料を備えたFETにおいて、緩和過程(注入されたキャリアのトラップ)と冷却によるトラップ状態の固定化を説明する図である。合わせて、FET伝達特性曲線(横軸:VG、縦軸ISD)が示してある。 TCNQのしきい値電圧制御を示す図である。A線は0V、B線は+30Vをそれぞれ常温で印加し、180Kまで冷却してゲート電圧を取り除いた素子において、伝達特性を測定したものを示す。 有機半導体材料を備えたFETにおいて、常温においてゲート電圧を印加して冷却し、ゲート電圧を掃引してISDを観測する実験を示す。 図4に示すデバイスにおいて、冷却電圧(常温時に印加したゲート電圧)の違いによるIV曲線の変化を示す図である。IV曲線の変曲点の電圧がしきい値電圧に対応している。
 有機電界効果トランジスタは、ソース電極と、ドレイン電極と、ゲート電極と、ゲート絶縁膜と、有機半導体層と、を備えている。典型的には、有機電界効果トランジスタは、絶縁膜を有機半導体とゲート電極で挟んだMIS型のFETとして構成される(図2、図4参照)。MISFETは、基板(図示せず)の表面に形成されたゲート電極と、ゲート電極の表面に形成された絶縁層と、絶縁層の表面に形成されたソース電極およびドレイン電極と、絶縁層を挟んでゲート電極に対向するように有機半導体材料によって形成された半導体層と、を有する。MIS構造の態様については限定されず、具体的なMIS構造としては、トップコンタクト型、ボトムコンタクト型、トップゲート型のいずれでもよい。また、本発明に係る有機電界効果トランジスタは、MIS構造に限定されない。
 有機FETでは、ゲート電極とソース電極との間に、ゲート電圧Vを印加することで、有機半導体側にキャリアが蓄積され、蓄積されたキャリアによって半導体層にチャネルが形成される。有機FETには、有機半導体材料の種類によって、負のゲート電圧の場合にチャネルがONとなるp型、正のゲート電圧の場合にチャネルがONとなるn型がある。それぞれ、正孔と電子がキャリアとしてチャネルに蓄積される。有機半導体には、電子も正孔も注入され得る両極性の材料が存在することが当業者に知られている。両極性の有機材料としては、本来的に両極性を備えているものの他に、電極の修飾等によって両極性動作を行なう材料がある。
 バイアスストレス効果は、有機電界効果トランジスタにおいて、ゲート電圧Vを印加した状態で保持すると、ゲート電圧Vの印加で誘導されるソース・ドレイン間の電流値ISDが、時間と共に低下する現象で、注入されたはずのキャリアがトラップされることに起因するものと考えられている。
 本願の発明者等は、この電流値ISDの時間変化が、温度の低下と共に小さくなり、一定の温度T以下では変化しなくなる、すなわち、凍結することを発見した。例えば、テトラシアノキノジメタン(TCNQ)で形成したnチャネル電界効果トランジスタは、室温でバイアスストレス効果を示すが、180Kまで冷やすと、バイアスストレス効果が見られなくなる。図1は、TTC9-TTFを用いたFET素子に対し、ソース・ドレイン間電圧5V、ゲート電圧-20Vを印加し、初期電流I(0)に対する電流値Iの減少割合を時間変化として見たものである。図1において、250Kでは50分の間に半分程度まで電流値が低下しているが、180Kではほとんど減少傾向が見られないことがわかる。
 バイアスストレス効果が見られる温度で、一定のゲート電圧Vを印加し、そのままの状態でバイアスストレス効果が凍結する温度Tまで温度を低下させると、素子のしきい値電圧Vthが、凍結前に素子に印加された電圧Vまで移動する。
 本発明について、さらに図2に基づいて説明する。図2には、ソース電極Sと、ドレイン電極Dと、ゲート電極Gと、ゲート絶縁膜と、有機半導体層と、を備えたMIS型の有機電界効果トランジスタが示してある。図2には、さらに、FET伝達特性曲線(横軸:VG、縦軸ISD)が示してある。TCはバイアスストレス効果が凍結する温度を表す。
 図2に示す有機FFTは、正のゲート電圧によってソース・ドレイン電流ISDが流れるようなn型デバイスである。また、このデバイスは、常温下では、0Vがしきい値電圧となっている。ゲート電圧VGとして+20Vを印加すると、有機半導体層と絶縁膜との界面付近にキャリア(-)が注入される。
 さらに、電圧印加を継続すると、緩和が生じる。「緩和」とは、物質に対して外部の状態(温度や圧力など、本発明では「電圧」)が変化した際、その状態に対して最も安定になるよう、物質の構造や電子状態が変化することで、その過程を「緩和過程」と呼ぶ。
 時間の経過に伴って、有機半導体層のキャリアが隔離されていき、隔離が進んでキャリアがいなくなる。図2において、トラップされたキャリアを○で囲まれた(-)で示す。分子や格子の変形でキャリア(-)のトラップサイトがバンドから外れて、キャリアがいなくなる。より具体的には、物質中で、流れ込んだ電荷(キャリア)は多数の分子の上に広がって存在するが、分子の構造が変化するなどの「緩和」が起こると、電荷が極少数の分子上に局在し、さらにエネルギー状態も電気伝導を担う軌道とは離れるため、電気伝導に寄与しなくなる。これを「電荷が隔離される」と表現する。図2において、○で囲んだ-は、バンドからはずれ、2つのエネルギー帯(価電子帯VB、伝導帯CB)に挟まれた、孤立した軌道に位置する。
 ゲート電圧を印加した状態で素子を冷却して低温TCにすると、キャリア(-)のトラップサイトが固定化される。固定化とは、ゲート電圧を除去してもトラップサイトが解消しない状態をいう。図2において、固定化されたキャリアを、□で囲まれた(-)で示す。キャリアの注入量は、印加されたゲート電圧VGによって決まるので、電界効果トランジスタを構成している場合、常温時に印加したゲート電圧VGが、凍結時のしきい値電圧Vthとなる。ゲート電圧VGを切ってデバイスを動作させる時には、しきい値電圧は最初に印加した電圧+20Vとなる。
 バイアスストレス効果(一種の緩和現象である)は、印加された電圧に対して、物質中にキャリア(ホールや電子)が流れ込み、その状態を安定化するために物質の構造が変化する(緩和)ことで起こると考えられるが、一般に温度を低下させると、構造の変化が極めて起こりにくくなる(凍結)ため、バイアスストレス効果が起こりにくくなると考えられる。一方、一旦物質中に流れ込んだキャリアが、安定化された状態(トラップ状態)になってから温度を低下させると、その状態が固定化される。言い換えれば、電圧を印加することによって流れ込んだキャリアがトラップされる現象(バイアスストレス効果)、電圧を戻した際に元に戻る現象、という両方向の変化を含んでおり本発明における「キャリアのトラップ状態が固定化」は、その凍結した状態と言うことができる。温度TC以下に冷却したデバイスを昇温した時にも、そのときの印加電圧(例えば0V)で、最も安定な状態に向かって変化する、すなわち「緩和」が生じる。
 本発明では、ゲート電圧を印加した状態で、十分に系が緩和してから冷却しなければ、最大の効果を得ることはできないと考えられる。したがって、ゲート電圧の印加時間とデバイスの冷却のタイミングは、十分に緩和が生成された(バイアスストレス効果を生じさせた)後にバイアスストレス効果の凍結が生じるように選択される。ゲート電圧を印加してから系が緩和するまでの時間の程度は、当業者において既知であるか、あるいは、実験によって得ることができる。
 図3は、TCNQのしきい値電圧制御を示す図である。A線は0V、B線は+30Vをそれぞれ常温で印加し、180Kまで冷却してゲートを開放し、改めてゲート電圧掃引を行い伝達特性を測定したものを示す。しきい値電圧が、それぞれ印加されたゲート電圧と一致していることが読み取れる。TCNQで形成したnチャネル電界効果トランジスタにおいて、しきい値電圧Vthは、素子により、プラスマイナス数十Vの範囲で異なっていたが、10V、20V、30Vのゲート電圧Vを印加した状態で、室温から温度T(例えば、180K)まで温度を下げると、しきい値電圧がそれぞれ10V、20V、30Vの電界効果トランジスタとして機能する。
 これらの特性は、印加したゲート電圧を除去して、デバイスの温度を温度TCから上昇させ、選択した値のゲート電圧を印加して再び凍結温度Tまで下げることで、何度でもしきい値電圧の再設定が可能である。
 これまで有機電界効果トランジスタのしきい値電圧Vthは、同じ条件で作製しても、必ずしも同じ特性の素子が得られないという再現性の問題があった。本発明はこのような問題を解決できる。すなわち、有機電界効果トランジスタのしきい値電圧Vthを、同じ物質を用いて、任意の値に、精密に設定することを可能とする。この方法は、メモリ素子として応用することができる。さらに、リプログラミング可能な回路への応用も可能である。
 N型にドープされたシリコン基板をゲート電極とし、基板表面を酸化して形成した厚さ300nmの酸化膜を絶縁膜とする。ここにマスクを用いて金を真空蒸着し、櫛形にかみ合ったソース、ドレイン電極を作製した。このときチャネルの幅は2μm、長さは1mであった。
 有機半導体層として用いたポリヘキシルチオフェンは、市販のものをカラムクロマトグラフィーによって精製している。テトラシアノキノジメタン(TCNQ)は、市販のものを真空昇華によって精製したものを用いた。
 窒素雰囲気下において、櫛型の金電極に分子材料のクロロホルム溶液を滴下・乾燥するキャスト法によってボトムコンタクト型の有機薄膜トランジスタ素子を作成した。ソース、ドレイン及びゲート電極に導電性ペーストで金線を繋ぐことで、電気的入出力を得た。測定はヘリウム雰囲気のクライオスタット内で、KEITHLEY2400型ソースメーターと6487型ピコアンメーターにより行った。
 上記の方法によりテトラシアノキノジメタン(TCNQ)を用いて作成した素子に対し、100Kでソース・ドレイン間の電圧VSDを5Vとして、ゲート電圧を-50Vから+50Vまで掃引し、伝達特性の測定を行ったところ、しきい値電圧(Vth)が0VのN型FET特性が得られた。
 これを室温まで戻し、ゲート・ドレイン(G-D)間に-30Vのゲート電圧VGを印加し、そのまま100Kまで温度を下げ、ゲート電極を開放したうえで伝達特性の測定を行ったところ、しきい値電圧(Vth)が-30VのP型FET特性に変化した。同様の動作を繰り返すと、冷却時に印加したゲート電圧の数値がそのまましきい値電圧となる特性が観測された。
 同じテトラシアノキノジメタン(TCNQ)で、真空蒸着法を用いて作成した素子でも同様の性質が見られ、ポリヘキシルチオフェンを用いた場合には冷却時に印加したゲート電圧VGの数値がそのまましきい値電圧VthとなるP型FET特性を示した。このような、ゲート電圧VGを印加したまま冷却することでしきい値電圧Vthが変化・固定化する現象はオリゴチオフェン誘導体、(テトラキスアルキルチオ)テトラチアフルバレン及び他のテトラチアフルバレン誘導体でも起こることが確認された。
 有機FFTの有機半導体部の材料は両極性材料でもよい。キノイド型オリゴチオフェン(化1)を用いて作成したFET両極性を示す素子では、電流値が最小となるゲート電圧(しきい値電圧Vth)が冷却時の印加電圧に応じて正負の電位領域にまたがり連続的に変化した。図4は、両極性の有機半導体材料を備えたFETにおいて、常温においてゲート電圧VGを印加して100K(<TC)まで冷却し、ゲート電圧を掃引してISDを観測する実験を示す。図5は、実験結果を示し、冷却電圧(常温時に印加したゲート電圧VG(MES))の違いによるIV曲線の変化を示す図である。図5から、ゲート電圧としきい値電圧とが一致していることがわかる。図5において、VG(MES)は測定時のゲート電圧を、VG(SET)は冷却時(凍結過程)に印加していたゲート電圧をそれぞれ表している。
Figure JPOXMLDOC01-appb-C000001
 しきい値電圧Vthが固定され得る最高温度TCは有機半導体材料に固有であり、その温度TC以下であればしきい値電圧Vthは元に戻らない。バイアスストレス効果を抑制する温度を、実験例では100Kとしているが、実際には170K程度まで冷却すればよい。ポリヘキシルチオフェンでは200K程度、両極性を示したキノイド型オリゴチオフェンでは180K程度、(テトラキスドデシルチオ)テトラチアフルバレンでは230Kであった。
 以上の効果は用いる有機半導体材料の種類に拠らず生ずると考えられる。現在有機薄膜トランジスタの材料として用いられているアセン類や種々の有機ポリマー、ポルフィリンなどについても応用が可能である。また、用いる材料の改良により常温に近い高温でしきい値が固定される素子を作製することも可能である。
 本発明は、有機電界効果トランジスタにおけるしきい値電圧の制御に用いることができる。

Claims (5)

  1.  バイアスストレス効果が生じる第1の温度下で、第1の値のゲート電圧を有機電界効果トランジスタに印加してバイアスストレス効果を生じさせるステップと、
     前記第1の値のゲート電圧を印加した状態で、前記トランジスタをバイアスストレス効果が凍結される第2の温度以下の温度まで冷却することで、第2の温度以下の温度下において前記第1の値をしきい値電圧とする有機電界効果トランジスタを得るステップと、
     からなる有機電界効果トランジスタにおけるしきい値電圧の後天的制御方法。
  2.  さらに、前記第1の値をしきい値電圧とした有機電界効果トランジスタを第1の温度まで昇温するステップと、
     第1の温度下で、第2の値のゲート電圧を有機電界効果トランジスタに印加してバイアスストレス効果を生じさせるステップと、
     前記第2の値のゲート電圧を印加した状態で、前記トランジスタをバイアスストレス効果が凍結される第2の温度以下の温度まで冷却することで、第2の温度以下の温度下において前記第2の値をしきい値電圧とする有機電界効果トランジスタを得るステップと、
     からなる請求項1に記載の有機電界効果トランジスタにおけるしきい値電圧の後天的制御方法。
  3.  前記トランジスタの有機半導体部の材料が両極性材料であり、前記しきい値電圧が、電流値ISDが最小となるゲート電圧である、請求項1、2いずれかに記載の有機電界効果トランジスタにおけるしきい値電圧の後天的制御方法。
  4.  バイアスストレス効果が生じる第1の温度下で、ゲート電圧を有機電界効果トランジスタに印加して生成したキャリアをトラップするステップと、
     前記ゲート電圧を印加した状態で、前記トランジスタをバイアスストレス効果が凍結される第2の温度以下の温度まで冷却して前記トラップされたキャリアを固定するステップと、
     からなる有機電界効果トランジスタにおけるキャリアの制御方法。
  5.  前記ゲート電圧の値が、第2の温度以下の温度下における有機電界効果トランジスタのしきい値電圧となる、請求項4に記載の有機電界効果トランジスタにおけるキャリアの制御方法。
PCT/JP2010/051705 2009-02-20 2010-02-05 有機電界効果トランジスタにおけるしきい値電圧の制御方法 WO2010095526A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-038657 2009-02-20
JP2009038657A JP2010199099A (ja) 2009-02-20 2009-02-20 有機電界効果トランジスタにおけるしきい値電圧の制御方法

Publications (1)

Publication Number Publication Date
WO2010095526A1 true WO2010095526A1 (ja) 2010-08-26

Family

ID=42633809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051705 WO2010095526A1 (ja) 2009-02-20 2010-02-05 有機電界効果トランジスタにおけるしきい値電圧の制御方法

Country Status (2)

Country Link
JP (1) JP2010199099A (ja)
WO (1) WO2010095526A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059996A (ja) * 2010-09-10 2012-03-22 Elpida Memory Inc 半導体装置の製造方法
CN102437025B (zh) * 2011-12-02 2013-04-24 南京大学 一种消除pmos中负偏压温度不稳定性影响的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103719A (ja) * 2002-09-06 2004-04-02 Canon Inc 有機半導体素子
JP2004118132A (ja) * 2002-09-30 2004-04-15 Hitachi Ltd 直流電流駆動表示装置
JP2005210087A (ja) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd 有機半導体素子の作製方法
JP2006278638A (ja) * 2005-03-29 2006-10-12 Seiko Epson Corp 半導体素子の製造方法、半導体素子および半導体装置
JP2006303423A (ja) * 2005-03-25 2006-11-02 Mitsubishi Chemicals Corp 電界効果トランジスタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103719A (ja) * 2002-09-06 2004-04-02 Canon Inc 有機半導体素子
JP2004118132A (ja) * 2002-09-30 2004-04-15 Hitachi Ltd 直流電流駆動表示装置
JP2005210087A (ja) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd 有機半導体素子の作製方法
JP2006303423A (ja) * 2005-03-25 2006-11-02 Mitsubishi Chemicals Corp 電界効果トランジスタ
JP2006278638A (ja) * 2005-03-29 2006-10-12 Seiko Epson Corp 半導体素子の製造方法、半導体素子および半導体装置

Also Published As

Publication number Publication date
JP2010199099A (ja) 2010-09-09

Similar Documents

Publication Publication Date Title
Singh et al. High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films
Mottaghi et al. Field-induced mobility degradation in pentacene thin-film transistors
JP6313324B2 (ja) アンバイポーラ垂直電界効果トランジスタ
Schön et al. On the intrinsic limits of pentacene field-effect transistors
Shulga et al. Double gate PbS quantum dot field‐effect transistors for tuneable electrical characteristics
Darmawan et al. Optimal Structure for High‐Performance and Low‐Contact‐Resistance Organic Field‐Effect Transistors Using Contact‐Doped Coplanar and Pseudo‐Staggered Device Architectures
JP5811640B2 (ja) 電子デバイス及び半導体装置の製造方法
Mahdouani et al. Negative output differential resistance effect in organic thin film transistors based on pentacene: Characterization and modeling
Huang et al. Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and polar impurities
Bestelink et al. Extraordinarily Weak Temperature Dependence of the Drain Current in Small‐Molecule Schottky‐Contact‐Controlled Transistors through Active‐Layer and Contact Interplay
WO2010095526A1 (ja) 有機電界効果トランジスタにおけるしきい値電圧の制御方法
JP5176444B2 (ja) 半導体装置
Puigdollers et al. N-type PTCDI–C13H27 thin-film transistors deposited at different substrate temperature
Hong et al. Depletion-and ambipolar-mode field-effect transistors based on the organic heterojunction composed of pentacene and hexadecafluorophtholocyaninatocopper
JP2006237271A (ja) 有機半導体装置
Zhao et al. Improved performance of pentacene organic field-effect transistors by inserting a V2O5 metal oxide layer
Xu et al. Influence of the morphology of the copper (II) phthalocyanine thin film on the performance of organic field-effect transistors
EP2898552A1 (en) Organic thin film transistors and methods of making the same
JP2006060169A (ja) 電界効果型トランジスタ及びその製造方法
Yun et al. Enhanced Performance of Thiophene-Rich Heteroacene, Dibenzothiopheno [6, 5-b: 6’, 5’-f] Thieno [3, 2-b] Thiophene Thin-Film Transistor With MoO x Hole Injection Layers
Ba et al. Channel length effect of P3HT: ZnO hybrid blend layer on electrical characteristics of thin-film transistors
Nketia-Yawson et al. High-mobility amorphous PTB7 organic transistors enabled by high-capacitance electrolyte dielectric
WO2010095527A1 (ja) 有機半導体素子の作製法
Chen et al. Air stable complementary polymer circuits fabricated in ambient condition by inkjet printing
JP2006049578A (ja) 有機半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743653

Country of ref document: EP

Kind code of ref document: A1