JP2010091716A - Photo elasticity modulator and photo elasticity measuring device including the same - Google Patents

Photo elasticity modulator and photo elasticity measuring device including the same Download PDF

Info

Publication number
JP2010091716A
JP2010091716A JP2008260555A JP2008260555A JP2010091716A JP 2010091716 A JP2010091716 A JP 2010091716A JP 2008260555 A JP2008260555 A JP 2008260555A JP 2008260555 A JP2008260555 A JP 2008260555A JP 2010091716 A JP2010091716 A JP 2010091716A
Authority
JP
Japan
Prior art keywords
polarized light
light
optical element
optical
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008260555A
Other languages
Japanese (ja)
Inventor
Takahisa Mitsui
隆久 三井
Shigeki Kudo
重樹 工藤
Toru Ito
徹 伊藤
Hiroyuki Murata
浩之 村田
Masahiro Kanazawa
昌廣 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Toray Engineering Co Ltd
Original Assignee
Keio University
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Toray Engineering Co Ltd filed Critical Keio University
Priority to JP2008260555A priority Critical patent/JP2010091716A/en
Priority to KR1020090092996A priority patent/KR20100039227A/en
Priority to TW098133680A priority patent/TW201022718A/en
Publication of JP2010091716A publication Critical patent/JP2010091716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/113Circuit or control arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized photo elasticity modulator which can be easily set to a photo elasticity measuring device and to provide the photo elasticity measuring device including the same. <P>SOLUTION: A piezoelectric element 47 is brought into contact with an end of a peripheral side surface of a disk like optical element 46 and a side opposite to the piezoelectric element 47 of the optical element is brought into contact with a frame 48 to support both ends of the optical element 46. In this construction, the resonance frequency of the photo elasticity modulator 45 is set to be a frequency lower than the resonance frequency of the optical element 46 to vibrate the optical element from the piezoelectric element 47. Since only stress due to inertia of the piezoelectric element 47 is applied to the optical element 46 after vibration applied to the optical element 46 is attenuated, an amount of birefringence is uniformly generated in the optical element 46 and, in this state, light is made to be transmitted by the optical element 46 to apply modulation to the transmitted light. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子を透過する光の偏光角を変化させる光弾性変調器の構造に関するとともに、当該光弾性変調器を備え、液晶パネルやプラズマディスプレイパネルなどのような透過性を有する測定対象物に作用する応力や歪みなどを測定する前記光弾性変調器を備えた光弾性測定方法およびその装置に関する。   The present invention relates to a structure of a photoelastic modulator that changes the polarization angle of light transmitted through an optical element, and includes a measurement object having the photoelastic modulator and having transparency such as a liquid crystal panel or a plasma display panel. The present invention relates to a photoelasticity measurement method including the photoelasticity modulator that measures stress, strain, and the like acting on the light and an apparatus thereof.

従来の光弾性変調器としては、例えば、次のようなものが知られている。すなわち、図12に示すように、直方体からなる光学素子60の長手方向の一端に変調器61が固着されて一体となった光学組立体を振動の伝搬方向と直行する幅方向においてばね62を介して箱形のエンクロージャ63内に懸架して構成されている。つまり、エンクロージャ63内で光学組立体が自由に振動可能になっている(特許文献1参照)。   For example, the following are known as conventional photoelastic modulators. That is, as shown in FIG. 12, the modulator 61 is fixed to one end in the longitudinal direction of the optical element 60 made of a rectangular parallelepiped, and the integrated optical assembly is moved through the spring 62 in the width direction orthogonal to the vibration propagation direction. It is configured to be suspended in a box-shaped enclosure 63. That is, the optical assembly can freely vibrate within the enclosure 63 (see Patent Document 1).

特表2001−518632Special table 2001-518632

しかしながら、従来の各方法では次のような問題がある。   However, the conventional methods have the following problems.

上記光弾性変調器は、エンクロージャ内における光学素子の振動の伝搬方向の先端が自由端になっているので、変調器から振動を光学素子付与した場合、図13の鎖線で示すような振動モードMになる。すなわち、光学素子60の振動伝搬方向の中央付近で発生する節点NPで応力が大きくなり、複屈折量が大きくなる。そして、振動が自由端に向かうにつれて応力が小さくなるので、光学素子全体で均一な複屈折量にならないといった問題がある。   The above-mentioned photoelastic modulator has a free end at the propagation direction of the vibration of the optical element in the enclosure. Therefore, when the vibration is applied from the modulator, the vibration mode M as indicated by a chain line in FIG. become. That is, the stress increases at the node NP generated near the center of the vibration propagation direction of the optical element 60, and the amount of birefringence increases. And since a stress becomes small as a vibration goes to a free end, there exists a problem that it does not become a uniform birefringence amount in the whole optical element.

また、この方法で作成された光弾性変調器の共振周波数は、ガラスなどの光学素子単体の共振周波数とほとんど同じになるため、比較的大型になる。たとえば共振周波数が50kHzでは光学素子の大きさは10cm程度になる。そのため光学組立体が大型化するといった問題がある。   In addition, the resonant frequency of the photoelastic modulator produced by this method is almost the same as the resonant frequency of a single optical element such as glass, and therefore becomes relatively large. For example, when the resonance frequency is 50 kHz, the size of the optical element is about 10 cm. Therefore, there is a problem that the optical assembly becomes large.

本発明はこのような事情に鑑みてなされたものであって、光学素子全体で均一な複屈折量を有し、また設置の容易性および小型化を可能にする光弾性変調器およびそれを備えた光弾性測定装置を提供することを主たる目的としている。   The present invention has been made in view of such circumstances, and includes a photoelastic modulator having a uniform amount of birefringence throughout the optical element, and capable of being easily installed and miniaturized, and the same. The main object is to provide a photoelasticity measuring device.

この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、第1の発明は、透過する光の偏光の直交する2成分の位相差を変化させる光弾性変調器であって、
光を透過させる光学素子と、
前記光学素子と接触しつつ、光の入射面に直交する方向から振動を付与する振動発生手段と、
前記光学手段における振動発生手段との接触面と対向する面に接触して支持するフレームと、
を備えたことを特徴とする。
In order to achieve such an object, the present invention has the following configuration.
That is, the first invention is a photoelastic modulator that changes the phase difference of two orthogonal components of the polarization of transmitted light,
An optical element that transmits light;
Vibration generating means for applying vibration from a direction perpendicular to the light incident surface while in contact with the optical element;
A frame that contacts and supports a surface facing the contact surface with the vibration generating means in the optical means;
It is provided with.

(作用・効果) 第1の発明に係る光弾性変調器によれば、フレームを固定端として光学素子と振動発生手段とが一体となって振動するので、光学素子単体の振動よりも低い周波数で光弾性変調器全体を振動させることができる。   (Operation / Effect) According to the photoelastic modulator according to the first aspect of the present invention, the optical element and the vibration generating means vibrate integrally with the frame as a fixed end, so that the frequency is lower than the vibration of the optical element alone. The entire photoelastic modulator can be vibrated.

すなわち、振動発生手段の変動開始時に光学素子に付与された振動は、当該光学素子内で往復伝搬していく過程で均一に分散してゆくので、応力が均一に分布した状態になる。   That is, the vibration applied to the optical element at the start of fluctuation of the vibration generating means is uniformly dispersed in the process of reciprocating propagation in the optical element, so that the stress is uniformly distributed.

なお、前記振動発生手段は、光学素子単体の共振周波数より低い周波数の振動を光学素子に付与することが好ましい(請求項2)。   In addition, it is preferable that the vibration generating unit applies vibration having a frequency lower than a resonance frequency of the optical element alone to the optical element.

この構成によれば、振動発生手段の振動周波数が光学素子単体の共振周波数より低いので、光学素子に付与された振動が光学素子内で減衰した後、光学素子に連続的に付与される振動発生手段の慣性質量に基づく微少な応力のみが光学素子内に均一に作用する。したがって、光学素子内に均一な複屈折が発生していることになる。その結果、光学素子において光の透過位置を任意に設定できるとともに、光学素子自体を小さくでき、ひいては光弾性変調器を小型化できる。   According to this configuration, since the vibration frequency of the vibration generating means is lower than the resonance frequency of the optical element alone, the vibration generated continuously applied to the optical element after the vibration applied to the optical element is attenuated in the optical element. Only a small stress based on the inertial mass of the means acts uniformly in the optical element. Therefore, uniform birefringence is generated in the optical element. As a result, the light transmission position can be arbitrarily set in the optical element, the optical element itself can be reduced, and the photoelastic modulator can be downsized.

なお、上記構成において、前記振動発生手段に加重を付与して慣性質量を増加させるよう構成することが好ましい(請求項3)。   In addition, in the said structure, it is preferable to comprise so that a weight may be given to the said vibration generation means and inertial mass may be increased (Claim 3).

この構成によれば、振動発生手段から付与される周波数を光学素子単体の共振周波数よりも低い周波数の範囲で任意に調整することができる。   According to this configuration, the frequency applied from the vibration generating unit can be arbitrarily adjusted in a frequency range lower than the resonance frequency of the optical element alone.

第4の発明は、複数の層からなる透過性を有する測定対象物を保持する保持手段と、
前記測定対象物に向けて光を照射する照射手段と、
前記光を透過させて直交する2方向の偏光成分からなる偏光にする第1光学手段と、
前記偏光を透過させて前記測定対象物の所定層の界面に焦点を合せるレンズと、
前記測定対象物の焦点面から反射し、かつ、光弾性変調器を透過して戻る偏光のうち初期の光路を戻る第1偏光と、この第1偏光と直交する第2偏光を別光路に分離して出力する分離手段と、
分離された前記第2偏光のうち前記焦点面から反射して戻る偏光のみを通過させるピンホールの形成された部材と、
前記ピンホールを通過した偏光の光強度を検出する第1検出手段と、
前記レンズと保持手段を偏光の光軸方向に沿って相対的に前後移動させる移動手段と、
前記保持手段と前記第1光学手段とを光軸回りに相対的に回転させる回転手段と、
前記回転手段により測定対象物に照射した偏光と、この測定対象物とを光軸回りに相対的に回転させ、少なくとも所定の3箇所ごとに前記第1検出手段で検出された前記偏光の光強度の変化量と検出角度(θ)の位置情報を取得するとともに、当該位置情報および偏光を透過させる前記レンズを含む光学部材が有する複屈折量(c)に基づいて、[(φ/2)sin2(α-θ)+c]2となるモデルを近似して求め、当該モデルから測定対象物の各層に作用している主応力の差(φ/2)とその方向(α)を求める演算手段と、
前記レンズと分離手段との間に配備され、分離手段を透過してレンズに向かう偏光、および、測定対象物で反射してレンズを透過し、分離手段に戻る偏光に変調をかける前記請求項1から請求項3に記載の光弾性変調器と、
を備えたことを特徴とする。
4th invention is the holding means to hold | maintain the measuring object which has the permeability | transmittance which consists of several layers,
Irradiating means for irradiating light toward the measurement object;
A first optical means for transmitting the light and converting it into polarized light composed of polarization components in two orthogonal directions;
A lens that transmits the polarized light and focuses on the interface of the predetermined layer of the measurement object;
Of the polarized light reflected from the focal plane of the measurement object and transmitted through the photoelastic modulator, the first polarized light returning the initial optical path and the second polarized light orthogonal to the first polarized light are separated into separate optical paths. Separating means for outputting,
A member formed with a pinhole that allows only the polarized light reflected from the focal plane to pass back among the separated second polarized light; and
First detection means for detecting the light intensity of polarized light that has passed through the pinhole;
Moving means for relatively moving the lens and the holding means back and forth along the optical axis direction of polarized light;
Rotating means for relatively rotating the holding means and the first optical means around an optical axis;
The polarized light irradiated to the measurement object by the rotating means and the measurement object are rotated relative to each other around the optical axis, and the light intensity of the polarized light detected by the first detection means at least every three predetermined positions. Is obtained based on the position information and the birefringence amount (c) of the optical member including the lens that transmits the polarized light, and [(φ / 2) sin2 (α−θ) + c] Calculating means for approximating the model 2 and calculating the difference (φ / 2) and direction (α) of principal stress acting on each layer of the measurement object from the model When,
The polarized light that is disposed between the lens and the separating unit, modulates the polarized light that passes through the separating unit and travels toward the lens, and the polarized light that is reflected by the measurement object and transmitted through the lens and returns to the separating unit. The photoelastic modulator according to claim 3,
It is provided with.

(作用・効果) この構成によれば、保持手段に保持された測定対象物に向けて照射手段から照射された光が、光学手段によって直線偏光にされる。この偏光を照射しながら移動機構によって保持手段と測定対象物とが光軸方向に沿って前後に移動させられることにより、所定の界面に焦点が合わされる。その焦点面に向かう偏光、または、その焦点面および他の界面などで反射して戻る偏光に光弾性変調器に透過させられる。このとき、複屈折の変化量の影響を受けている偏光に、変調がかけられる。つまり、所定層に作用している複屈折の変化量の値が小さい場合であっても、基準となる閾値レベルが高められる。光弾性変調器を透過した反射光が第1光学手段に戻されると、複屈折による変化量の作用していない偏光が、第1偏光として初期光路に戻される。複屈折による変化量の作用して生じた反射光は、第2偏光として光学手段によって第1偏光とは別光路に出力される。   (Operation / Effect) According to this configuration, the light irradiated from the irradiation unit toward the measurement object held by the holding unit is linearly polarized by the optical unit. The holding means and the measurement object are moved back and forth along the optical axis direction by the moving mechanism while irradiating the polarized light, thereby focusing on a predetermined interface. The polarized light toward the focal plane, or polarized light reflected and returned from the focal plane and other interfaces is transmitted through the photoelastic modulator. At this time, the polarized light that is affected by the amount of change in birefringence is modulated. That is, even when the value of the amount of change in birefringence acting on the predetermined layer is small, the reference threshold level is increased. When the reflected light that has passed through the photoelastic modulator is returned to the first optical means, polarized light that is not affected by the amount of change due to birefringence is returned to the initial optical path as the first polarized light. The reflected light generated by the action of the amount of change due to birefringence is output as a second polarized light to the optical path different from the first polarized light by the optical means.

分離手段から出力された第2偏光がピンホールを通過するときに、焦点の合わされた所定の界面から反射して戻る偏光のみが抽出され、この偏光が第1検出手段により検出される。この処理を1サイクル処理とし、直線偏光と測定対象物を相対的に回転させ、任意の少なくとも3箇所の回転角度ごとに、1サイクル処理を行って各サイクル処理時の第2偏光の光強度の変化量を取得する。   When the second polarized light outputted from the separating means passes through the pinhole, only the polarized light reflected and returned from the predetermined focused interface is extracted, and this polarized light is detected by the first detecting means. This process is a one-cycle process, the linearly polarized light and the measurement object are rotated relative to each other, and the one-cycle process is performed for every arbitrary at least three rotation angles, and the light intensity of the second polarized light during each cycle process is determined. Get the amount of change.

演算手段は、サイクル処理ごとに取得した複数個の光強度の変化量とその回転角度の位置情報を取得し、当該位置情報および装置構成中の偏光が透過するレンズ等の光学部材が有する複屈折量とに基づいて、[(φ/2)sin2(α-θ)+c]2となるモデルを最小2乗法から近似して求め、このモデルから測定対象物の各層に作用している主応力の差(φ/2)とその方向(α)を求めることができる。 The calculation means acquires a plurality of light intensity change amounts and rotation angle position information acquired for each cycle process, and birefringence of an optical member such as a lens through which the position information and polarized light in the apparatus configuration are transmitted. The principal stress acting on each layer of the object to be measured is obtained by approximating the model of [(φ / 2) sin2 (α-θ) + c] 2 based on the quantity from the least square method. Difference (φ / 2) and its direction (α) can be obtained.

なお、この装置発明に備わった光弾性変調器を構成する光学素子は、均一な複屈折を発生させることができるため光学素子内の任意の位置に光を透過させることができる。したがって、セッティングが容易になるとともに、装置構成も小型化できる。   In addition, since the optical element which comprises the photoelastic modulator with which this apparatus invention is equipped can generate | occur | produce uniform birefringence, it can permeate | transmit light to the arbitrary positions in an optical element. Therefore, setting is facilitated and the apparatus configuration can be reduced in size.

なお、この装置発明によれば、前記分離手段で分離された第1偏光のうち前記焦点面から反射して戻る偏光のみを通過させるピンホールの形成された部材と、
前記ピンホールを通過した偏光の光強度検出する第2検出手段とを備え、
前記演算手段は、前記第1検出手段により検出された偏光の光強度を前記第2検出手段により検出された偏光の光強度を除算するるように構成することが好ましい(請求項5)。
According to this device invention, a member having a pinhole that allows only polarized light reflected from the focal plane to pass back among the first polarized light separated by the separating means, and
Second detection means for detecting the light intensity of the polarized light that has passed through the pinhole,
Preferably, the calculation means is configured to divide the light intensity of the polarized light detected by the first detection means by the light intensity of the polarization detected by the second detection means (Claim 5).

この構成によれば、第1および第2偏光が干渉の反射率により第1偏光成分が0でない限り第2偏光成分を補正することができる。また、第1層の第1面からの反射光の光強度の変化量は、複屈折の変化量を含まない測定対象物の第1面から反射する光量で補正でき、測定精度を上げられる。   According to this configuration, the second polarization component can be corrected as long as the first polarization component is not zero due to the interference reflectance of the first and second polarizations. Further, the amount of change in the light intensity of the reflected light from the first surface of the first layer can be corrected by the amount of light reflected from the first surface of the measurement object that does not include the amount of change in birefringence, and the measurement accuracy can be increased.

なお、この装置発明の回転手段として、例えば、第1光学手段から測定対象物に向う偏光を透過させ、その光軸回りに回転させる光学素子を利用してもよい。(請求項6)。   As the rotating means of this apparatus invention, for example, an optical element that transmits polarized light from the first optical means toward the measurement object and rotates it around the optical axis may be used. (Claim 6).

この構成によれば、回転角度ごとに求まる偏光の光強度の値から[(φ/2)sin2(α-θ)+c]2となるモデルが最小2乗法で近似でき、応力差の方向(φ/2)とその向き(α)とが算出される。最低3種の異なる角度により偏光強度からモデルを見積もり事ができる。すなわち、第4の方法発明を好適に実現することができる。 According to this configuration, the model of [(φ / 2) sin2 (α-θ) + c] 2 can be approximated by the least square method from the light intensity value of polarized light obtained at each rotation angle, and the direction of the stress difference ( φ / 2) and its orientation (α) are calculated. The model can be estimated from the polarization intensity with at least three different angles. That is, the fourth method invention can be suitably realized.

本発明に係る光弾性変調器によると、振動発生手段から光学素子に付与される振動周波数を光学素子単体の共振周波数よりも低くすることにより、光学素子内のいずれの個所にも安定して複屈折量を内在させることことができるので、任意の位置に光を透過させることができる。その結果、光弾性変調器の小型化が可能になる。   According to the photoelastic modulator of the present invention, the vibration frequency applied to the optical element from the vibration generating means is made lower than the resonance frequency of the optical element alone, so that it can be stably duplicated at any location in the optical element. Since the amount of refraction can be contained, light can be transmitted at an arbitrary position. As a result, the photoelastic modulator can be downsized.

また、光弾性測定装置によると、前記光弾性変調器を備えることにより、装置構成の小型化を図ることができる。さらに、光弾性変調器を用いることにより、1回の測定でワークに作用している弾性応力の圧縮、引っ張りを区別でき、その大きさとその方向を求めることができる。   Moreover, according to the photoelasticity measuring apparatus, the apparatus configuration can be reduced in size by including the photoelastic modulator. Furthermore, by using the photoelastic modulator, it is possible to distinguish between compression and tension of the elastic stress acting on the workpiece by one measurement, and to determine its size and direction.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の光弾性変調器の概略構成を示す斜視図、図2は、その平面図、図3は、図2のX−X矢視断面図である。   FIG. 1 is a perspective view showing a schematic configuration of a photoelastic modulator of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a cross-sectional view taken along the line XX of FIG.

光弾性変調器45は、図1−3に示すように、円盤状の光学素子46と、当該光学素子46の一端で接触する圧電素子47と、光学素子46を挟んで圧電素子47と対向する位置で接触して当該光学素子46を支持するフレーム48とから構成されている。なお、圧電素子47には、光弾性変調器45の共振周波数に応じた周期で電圧印加信号を発生する信号発生器49が接続されている。   As shown in FIG. 1C, the photoelastic modulator 45 opposes the disk-shaped optical element 46, the piezoelectric element 47 that contacts at one end of the optical element 46, and the piezoelectric element 47 across the optical element 46. The frame 48 is configured to come into contact with the optical element 46 in position. The piezoelectric element 47 is connected to a signal generator 49 that generates a voltage application signal at a period corresponding to the resonance frequency of the photoelastic modulator 45.

光学素子46の材質としては、例えば合成石英、ガラスが挙げられる。なお、光学素子自体が有する複屈折量は、微小であることが好ましい。例えば0.001rad以下である。   Examples of the material of the optical element 46 include synthetic quartz and glass. The birefringence amount of the optical element itself is preferably small. For example, it is 0.001 rad or less.

また、光学素子46の振動の伝搬方向の長さは、圧電素子47との接触面(振動付与面)とフレーム48との接触面との間で反射して光学素子内で往復する振動の伝搬時間よりも、圧電素子47から間欠的に付与される光学素子46に応じた規定振動の時間周期が長くなる長さになるよう設定されている。すなわち、光学素子46の材料の物性値から求まる振動の伝搬速度Vと、光学素子内で振動が往復するときの光学素子46の長さ2Lと、圧電素子47から付与される振動の時間の周期(間隔)Tとの関係が、2L/V<Tの関係を満たす長さに光学素子46が設定される。   The length of the propagation direction of vibration of the optical element 46 is such that the propagation of vibration reciprocating between the contact surface (vibration applying surface) with the piezoelectric element 47 and the contact surface with the frame 48 is reciprocated in the optical element. The time period of the specified vibration corresponding to the optical element 46 intermittently applied from the piezoelectric element 47 is set to be longer than the time. That is, the propagation speed V of the vibration obtained from the physical properties of the material of the optical element 46, the length 2L of the optical element 46 when the vibration reciprocates in the optical element, and the period of time of vibration applied from the piezoelectric element 47 The optical element 46 is set to such a length that the relationship with the (interval) T satisfies the relationship 2L / V <T.

なお、光学素子46と圧電素子47との接続は、両素子の接触面に異物などがない状態で、両素子の周りをエポキシ樹脂などの接着剤50で接着している。   Note that the optical element 46 and the piezoelectric element 47 are connected to each other with an adhesive 50 such as an epoxy resin in a state where there is no foreign matter on the contact surfaces of both elements.

フレーム48は、凹形状であり、当該凹入部に光学素子46を収納可能になっている。フレーム48の材質は、光学素子46から伝搬されてくる信号を反射可能なものが好ましく、例えば、アルミニウム、アルミニウム合金の一種であるジュラルミンなどがより好ましい。   The frame 48 has a concave shape, and the optical element 46 can be stored in the concave portion. The material of the frame 48 is preferably capable of reflecting a signal propagated from the optical element 46, and for example, aluminum, duralumin, which is a kind of aluminum alloy, is more preferable.

なお、光学素子46とフレーム48との接続は、接触面に異物などがない状態で、接触面の周りに形成されるフレーム48と光学素子46との間の間隙にエポキシ樹脂などの接着剤50を充填して接着固定している。なお、光弾性変調器45は、光軸に対して、水平方向から45度回転して設置される。   Note that the optical element 46 and the frame 48 are connected with an adhesive 50 such as an epoxy resin in a gap between the frame 48 and the optical element 46 formed around the contact surface in a state where there is no foreign matter on the contact surface. It is filled and adhered and fixed. The photoelastic modulator 45 is installed by rotating 45 degrees from the horizontal direction with respect to the optical axis.

次に、上記実施例の光弾性変調器の動作について説明する。   Next, the operation of the photoelastic modulator of the above embodiment will be described.

光学素子46、圧電素子47、およびフレーム48からなる光弾性変調器45の共振周波数を信号発生器49に設定する。つまり、複数個の部材から構成された光電弾性変調器45は、光学素子46単体の質量よりも大きいので、その共振周波数は光学素子46単体の共振周波数よりも低くなる。信号発生器49に設定された規定の正弦波の信号が圧電素子47に与えられると、圧電素子47が作動する。当該作動に連動して光弾性変調器45の共振周波数と同じ振動が圧電素子47から光学素子46に付与される。   The resonance frequency of the photoelastic modulator 45 including the optical element 46, the piezoelectric element 47, and the frame 48 is set in the signal generator 49. That is, since the photoelectric elastic modulator 45 composed of a plurality of members is larger than the mass of the optical element 46 alone, the resonance frequency thereof is lower than the resonance frequency of the optical element 46 alone. When a predetermined sine wave signal set in the signal generator 49 is applied to the piezoelectric element 47, the piezoelectric element 47 is activated. In conjunction with this operation, the same vibration as the resonance frequency of the photoelastic modulator 45 is applied from the piezoelectric element 47 to the optical element 46.

光学素子46に付与された振動は、圧電素子47とフレーム48との間で往復伝搬する。このとき、圧電素子47の振動周波数は、光学素子46単体の共振周波数よりも低いので、光学素子46内で往復伝搬する過程で放射状に分散しながら短時間で減衰した後、圧電素子47の慣性による応力のみが光学素子46に与えられる   The vibration applied to the optical element 46 propagates back and forth between the piezoelectric element 47 and the frame 48. At this time, since the vibration frequency of the piezoelectric element 47 is lower than the resonance frequency of the optical element 46 alone, after being attenuated in a short time while being dispersed radially in the process of reciprocating propagation in the optical element 46, the inertia of the piezoelectric element 47 is obtained. Only the stress due to is applied to the optical element 46.

つまり、光学素子46内には均一な応力が作用させられる。換言すれば、光学素子46内に複屈折が均一に作用している。   That is, a uniform stress is applied in the optical element 46. In other words, birefringence acts uniformly in the optical element 46.

図1および図2に示すように、複屈折が発生している当該状態の光学素子46に対して、平面視したときの円形面側から光を透過させると、光学素子46を透過した光の偏光状態が変化する。すなわち、振動周波数によって光学素子46を透過する光の偏光が変調される。   As shown in FIG. 1 and FIG. 2, when light is transmitted from the circular surface side in plan view to the optical element 46 in the state where birefringence is generated, the light transmitted through the optical element 46 is transmitted. The polarization state changes. That is, the polarization of light transmitted through the optical element 46 is modulated by the vibration frequency.

なお、変調の度合いは光学素子46に発生している複屈折の大きさに比例し、複屈折の大きさは光学素子46で発生する歪みの大きさに比例する。   The degree of modulation is proportional to the magnitude of birefringence generated in the optical element 46, and the magnitude of birefringence is proportional to the magnitude of distortion generated in the optical element 46.

次に、上記実施例の光弾性変調器の具体例について説明する。
なお、本具体例において、光学素子46は、直径15mm、厚さ3mmの合成石英を利用した。このとき、当該光弾性変調器45の共振周波数が50kHzであったので、信号発生器49から50kHzの正弦波信号が発生されるよう設定した。
Next, a specific example of the photoelastic modulator of the above embodiment will be described.
In this specific example, the optical element 46 is made of synthetic quartz having a diameter of 15 mm and a thickness of 3 mm. At this time, since the resonance frequency of the photoelastic modulator 45 was 50 kHz, the signal generator 49 was set to generate a 50 kHz sine wave signal.

上記設定が完了すると、光弾性変調器45を作動させつつ、光学素子46に光を透過させた。つまり、光学素子の複数箇所に光を透過させる実験を行った結果、全ての位置において測定結果が0.1μm以下であったので、光学素子46単体に発生している歪みは0.1μm以下であったことが分かった。ここで、圧電素子47の周波数が低いことから、光学素子全体において一様に微少な歪みが分布していると判断される。   When the above setting was completed, light was transmitted through the optical element 46 while operating the photoelastic modulator 45. That is, as a result of conducting an experiment of transmitting light to a plurality of positions of the optical element, the measurement result was 0.1 μm or less at all positions, so the distortion generated in the optical element 46 alone was 0.1 μm or less. I knew there was. Here, since the frequency of the piezoelectric element 47 is low, it is determined that minute distortion is uniformly distributed throughout the optical element.

また、光学素子46に発生している振動周波数が50kHz付近の場合、図4の鎖線で示すように、光学素子46に発生する振動は片側がフレーム48に支持された固定端の振動モードMになる。したがって、光学素子46で発生している振動の節点NPは、光学素子46とフレーム48との接点のみに存在する。   When the vibration frequency generated in the optical element 46 is around 50 kHz, the vibration generated in the optical element 46 is in the vibration mode M of the fixed end supported by the frame 48 on one side, as shown by the chain line in FIG. Become. Therefore, the vibration node NP generated in the optical element 46 exists only at the contact point between the optical element 46 and the frame 48.

光学素子46内を伝搬する振動の速度(V)は材料の物性値から室温で概略6000m/sとして求まり、光学素子46を往復する時間は5μsになる。つまり、光学素子46の共振周波数は200kHzとなり、圧電素子47の周波数50kHzより高くなる。したがって、振動を付与し続ける限り光学素子46には常に微少な歪みが均一に発生する。   The velocity (V) of vibration propagating through the optical element 46 is determined as approximately 6000 m / s at room temperature from the physical properties of the material, and the time for reciprocating through the optical element 46 is 5 μs. That is, the resonance frequency of the optical element 46 is 200 kHz, which is higher than the frequency 50 kHz of the piezoelectric element 47. Therefore, as long as vibration is continuously applied, a slight distortion is always generated uniformly in the optical element 46.

以上のことから、光学素子46内のいずれの位置に光を透過させても光の偏光の変調が同じになる。   From the above, the polarization modulation of the light becomes the same no matter which position in the optical element 46 is transmitted.

次に、上記光弾性変調器45を備えた、光弾性測定装置について説明する。   Next, a photoelasticity measuring apparatus provided with the photoelastic modulator 45 will be described.

図5は、光弾性測定装置の概略構成を示す図である。   FIG. 5 is a diagram showing a schematic configuration of the photoelasticity measuring apparatus.

この実施例装置は、液晶パネルやプラズマディスプレイのように2枚の透過性を有するガラス基板W1,W2を、微小間隔をおいて重ね合わせた測定対象物Wと、中央に開口Hの形成された載置台8に平面保持した測定対象物Wに向けて光を照射する光源1とが配備されている。当該光源1から測定対照物Wまでの光路上に第1偏光検出部3、偏光板40、直線偏光板41、λ/2波長板42、第3偏光ビームスプリッタ43、λ/4波長板44、光学系ユニット5、および対物レンズ6を備えて前後に移動する可動台7が配備されている。また、第3偏光ビームスプリッタ43で分岐された光を初期光路とは別光路に向うその光路上にレンズ9a、ピンホール16、第2フトダイオード9bが配備されている。以下、各構成について具体的に説明する。   In this example apparatus, a measurement object W in which two transparent glass substrates W1 and W2 are overlapped at a minute interval as in a liquid crystal panel or a plasma display, and an opening H in the center are formed. A light source 1 that irradiates light toward the measuring object W held flat on the mounting table 8 is provided. On the optical path from the light source 1 to the measurement object W, the first polarization detector 3, the polarizing plate 40, the linear polarizing plate 41, the λ / 2 wavelength plate 42, the third polarizing beam splitter 43, the λ / 4 wavelength plate 44, A movable base 7 that includes an optical system unit 5 and an objective lens 6 and moves back and forth is provided. A lens 9a, a pinhole 16, and a second ftdiode 9b are arranged on the optical path of the light branched by the third polarizing beam splitter 43 toward the optical path different from the initial optical path. Each configuration will be specifically described below.

光源1は、所定の中心周長の光を発生させる。例えば、本実施例の場合、中心周長が635nmの半導体レーザが利用される。この光源1は、出力されるレーザ光が水平偏光成分からなるように設置され、この光は第1偏光検出部3を構成する第1偏光ビームスプリッタ10に向う。なお、光源1は、本発明の照射手段に相当する。   The light source 1 generates light having a predetermined center circumference. For example, in the case of the present embodiment, a semiconductor laser having a center circumference of 635 nm is used. The light source 1 is installed so that the output laser light is composed of a horizontal polarization component, and this light is directed to the first polarization beam splitter 10 that constitutes the first polarization detection unit 3. The light source 1 corresponds to the irradiation means of the present invention.

第1偏光ビームスプリッタ10は、水平成分のみを透過させる極性を有する。本実施例の場合、光源1からの全ての光を直進方向に透過させて偏光板40に向せる。   The first polarizing beam splitter 10 has a polarity that transmits only the horizontal component. In the case of the present embodiment, all the light from the light source 1 is transmitted in the straight direction and directed to the polarizing plate 40.

偏光板40は、Faraday Rotatorであり、第1偏光ビームスプリッタ10からの水平偏光を45°回転させる。この偏光を直線偏光板41に向せる。また、測定対象物Wから反射して戻る反射光を45°更に回転し、この光学系では反射光の成分を垂直偏光成分のみに変換する。その結果反射光の全光量が、第1偏光ビームスプリッタ10を直進透過せず、初期光と直交する第1フォトダイオード21に向かうようになる。   The polarizing plate 40 is a Faraday Rotator, and rotates the horizontally polarized light from the first polarizing beam splitter 10 by 45 °. This polarized light is directed to the linearly polarizing plate 41. Further, the reflected light reflected and returned from the measurement object W is further rotated by 45 °, and in this optical system, the component of the reflected light is converted into only the vertical polarization component. As a result, the total amount of reflected light does not pass straight through the first polarizing beam splitter 10 but goes to the first photodiode 21 orthogonal to the initial light.

直線偏光板41は、往復透過する初期光と反射光を直線偏光にする。   The linearly polarizing plate 41 converts the initial light and reflected light that travels back and forth into linearly polarized light.

λ/2波長板42は、直線偏光板41から入射する45°の直線偏光を透過させる過程で、さらに45°戻し、元の水平成分である直線偏光に戻して第3偏光ビームスプリッタ43に向かわせる。なお、反射光についても45°戻し、このλ/2波長板42および下流側のFaraday Rotator40との協働により偏光方向を90°回転させ第1偏光ビームスプリッタ10への反射光を垂直成分のみにする。つまり、全光量の反射光にする。   In the process of transmitting 45 ° linearly polarized light incident from the linearly polarizing plate 41, the λ / 2 wavelength plate 42 returns 45 ° further to return to the linearly polarized light that is the original horizontal component and is directed to the third polarizing beam splitter 43. Dodge. The reflected light is also returned by 45 °, and the polarization direction is rotated by 90 ° in cooperation with the λ / 2 wavelength plate 42 and the Faraday Rotator 40 on the downstream side, so that the reflected light to the first polarizing beam splitter 10 is only the vertical component. To do. That is, the total amount of reflected light is used.

第3偏光ビームスプリッタ43は、初期光路および下流側のBDP12で分離出力される2つの直線偏光の光路にまたがって配備されている。また、第3偏光ビームスプリッタ43は、極性を有し、水平成分の直線偏光を直進させ、垂直成分は直交する方向に向かわせる。つまり、λ/2波長板42からの直線偏光は全て透過させ下流側のλ/4波長板44に向かわせ、反射光のうち測定対象物Wを透過する過程で応力の影響を受けて発生した水平成分は、初期光路と直交する方向に向かわせる。つまり、第2フォトダイオード9bに向かわせる。   The third polarization beam splitter 43 is disposed across the initial optical path and the two optical paths of linearly polarized light that are separated and output by the BDP 12 on the downstream side. Further, the third polarization beam splitter 43 has a polarity, and linearly polarized light of a horizontal component goes straight, and a vertical component is directed in an orthogonal direction. That is, all the linearly polarized light from the λ / 2 wavelength plate 42 is transmitted to the λ / 4 wavelength plate 44 on the downstream side, and is generated under the influence of stress in the process of transmitting the measurement target W in the reflected light. The horizontal component is directed in a direction orthogonal to the initial optical path. That is, it is directed to the second photodiode 9b.

λ/4波長板44は、初期光路および下流側のBDP12で分離出力される2つの直線偏光の光路にまたがって配備されている。つまり、第3偏光ビームスプリッタ43から到達する直線偏光を透過させ、さらに45°傾かせ、円偏光にする。また、測定対象物Wから反射し、BDPで分離されて上流側のλ/4波長板13を透過して戻る2つの第1および第2の垂直、水平偏光A、Bの両方とも、さらに45°回転させて円偏光から各々水平、垂直偏光に戻す。つまり、測定対象物Wのガラス基板W1やW2に応力が作用している場合、光弾性により、入射の偏光成分から異なる偏光成分を生じ、この結果生じた楕円偏光を通過させて、複屈折の変化量を含む直線偏光に変換する。なお、λ/4波長板44は、本発明の第1光学手段に相当する。   The λ / 4 wavelength plate 44 is disposed across the initial optical path and two linearly polarized optical paths separated and output by the downstream BDP 12. That is, the linearly polarized light reaching from the third polarizing beam splitter 43 is transmitted and further inclined by 45 ° to be circularly polarized. Further, both the first and second vertical and horizontal polarizations A and B reflected from the measurement object W, separated by BDP, and transmitted through the upstream λ / 4 wave plate 13 are further 45 Rotate to return circularly polarized light to horizontal and vertical polarization, respectively. In other words, when stress is applied to the glass substrate W1 or W2 of the measurement object W, a different polarization component is generated from the incident polarization component by photoelasticity, and the resulting elliptically polarized light is allowed to pass through. Convert to linearly polarized light including the amount of change. The λ / 4 wavelength plate 44 corresponds to the first optical means of the present invention.

光学系ユニット5は、光源1の側から順にλ/4波長板13、BDP12、および光弾性変調器45から構成されている。   The optical system unit 5 includes a λ / 4 wavelength plate 13, a BDP 12, and a photoelastic modulator 45 in order from the light source 1 side.

λ/4波長板13は、初期光路および下流側のBDP12で分離出力される2つの直線偏光の光路にまたがって配備されている。つまり、上流側からの円偏光を透過させ、さらに45°回転させて直線偏光に戻す。また、測定対象物Wからの反射光である楕円偏光をBDP12で水平、垂直成分に分離し、λ/4波長板44の内部に通過させることにより、各々をさらに45°傾け、円偏光にする。   The λ / 4 wavelength plate 13 is disposed across the initial optical path and two linearly polarized light paths separated and output by the downstream BDP 12. That is, circularly polarized light from the upstream side is transmitted, and further rotated by 45 ° to return to linearly polarized light. Further, the elliptically polarized light, which is the reflected light from the measuring object W, is separated into horizontal and vertical components by the BDP 12 and passed through the inside of the λ / 4 wavelength plate 44, so that each is further inclined by 45 ° to be circularly polarized. .

BDP12は、到達した直線偏光を全透過させて下流側の光弾性変調器45に向かわせる。また、測定対象物Wから反射して戻る偏光を透過させたとき、入射時と同じ偏光面を有する直線偏光(垂直成分である第1偏光A)を同一光路に戻し、測定対象物Wを透過する過程で測定対象物Wに作用している応力の影響を受けて偏光状態が変化した成分(水平成分の第2偏光B)のみを抽出し、第1偏光Aとは異なる方向に出力する。つまり、第1偏光Aおよび第2偏光Bは、BDP12の同じ面の異なる位置から出力される。なお、BDP12は、本発明の分離手段に相当する。   The BDP 12 totally transmits the reached linearly polarized light and directs it to the downstream photoelastic modulator 45. In addition, when the polarized light reflected and returned from the measurement object W is transmitted, linearly polarized light having the same polarization plane as that at the time of incidence (the first polarized light A, which is a vertical component) is returned to the same optical path and transmitted through the measurement object W. In this process, only the component (horizontal component second polarization B) whose polarization state has changed under the influence of the stress acting on the measurement object W is extracted and output in a direction different from the first polarization A. That is, the first polarized light A and the second polarized light B are output from different positions on the same surface of the BDP 12. The BDP 12 corresponds to the separation means of the present invention.

光弾性変調器45は、上記実施例で詳述したものであって、図1に示すように、円盤状の光学素子46の一端に圧電素子47が、当該圧電素子47と対向する多端がフレーム48と接触して支持されたものである。すなわち、この光弾性変調器45は、測定対象物Wに向う直線偏光に変調をかけて楕円偏光にするとともに、測定対象物Wから反射し、測定対象物Wに作用している応力の影響で楕円偏光の向きが、光軸回りに微少に回転した楕円偏光をそのまま全透過させる。   The photoelastic modulator 45 has been described in detail in the above embodiment, and as shown in FIG. 1, a piezoelectric element 47 is provided at one end of a disk-shaped optical element 46, and a multi-end facing the piezoelectric element 47 is a frame. 48 and supported. That is, the photoelastic modulator 45 modulates the linearly polarized light toward the measurement object W to make elliptically polarized light, and reflects the reflection from the measurement object W and is influenced by the stress acting on the measurement object W. The elliptically polarized light whose orientation is slightly rotated around the optical axis is totally transmitted as it is.

なお、光弾性変調器45は、光学素子46に応じて予め決まった複屈折の変化量を有するので、第2偏光検出部9で検出される第2偏光Bの光強度の検出信号Isの値を大きくする。つまり、光弾性変調器45は、本発明の第2光学手段として機能する。   Since the photoelastic modulator 45 has a birefringence change amount determined in advance according to the optical element 46, the value of the detection signal Is of the light intensity of the second polarized light B detected by the second polarized light detection unit 9 is used. Increase That is, the photoelastic modulator 45 functions as the second optical means of the present invention.

載置台8は、矩形状の測定対象物Wの端縁部分を保持しつつ、中央部分では光を通過させるように開口Hが形成されている。   The mounting table 8 is formed with an opening H so as to allow light to pass through the central portion while holding the edge portion of the rectangular measuring object W.

第2偏光検出部9は、レンズ9a、ピンホール15の形成された板状物16、第2フォトダイオード9bから構成されている。つまり、第3偏光ビームスプリッタ43で光路の変更された垂直成分の第2偏光Bがレンズ9aで集光され、ピンホール15により焦点から反射して戻る偏光のみが抽出される。この偏光は、第2フォトダイオード9bで受光され、光強度の検出信号Isに変換されて制御ユニット23に送信される。なお、第2偏光検出部9は、本発明の第1検出手段に相当する。   The second polarization detection unit 9 includes a lens 9a, a plate-like object 16 in which a pinhole 15 is formed, and a second photodiode 9b. That is, the second polarization B of the vertical component whose optical path is changed by the third polarization beam splitter 43 is condensed by the lens 9a, and only the polarized light that is reflected from the focal point and returned by the pinhole 15 is extracted. This polarized light is received by the second photodiode 9 b, converted into a light intensity detection signal Is, and transmitted to the control unit 23. The second polarization detection unit 9 corresponds to the first detection means of the present invention.

第1偏光検出部3は、第1偏光ビームスプリッタ10、第2非偏光ビームスプリッタ17A、ピンホール19の形成された板状物20、および第2フォトダイオード21から構成されている。なお、第1偏光検出部3は、本発明の第2検出手段に相当する。   The first polarization detection unit 3 includes a first polarization beam splitter 10, a second non-polarization beam splitter 17 </ b> A, a plate-like object 20 in which a pinhole 19 is formed, and a second photodiode 21. The first polarization detection unit 3 corresponds to the second detection means of the present invention.

第2非偏光ビームスプリッタ17Aは、光を直進方向と直交方向に2分する。つまり、第1偏光ビームスプリッタ10から到達した光を分岐する。各々の光を第1偏フォトダイオード21と平行度検出器22に向かわせる。   The second non-polarizing beam splitter 17A divides the light into two in the direction orthogonal to the straight traveling direction. That is, the light reaching from the first polarization beam splitter 10 is branched. Each light is directed to the first polarized photodiode 21 and the parallelism detector 22.

第1フォトダイオード21は、ピンホール19を通過した第1偏光Aを受光して、光強度の検出信号Irに変換して制御ユニット23に送信する。   The first photodiode 21 receives the first polarized light A that has passed through the pinhole 19, converts it into a light intensity detection signal Ir, and transmits it to the control unit 23.

平行度検出部22は、載置台8に保持された測定対象物Wの撓みや反りの発生状態を検出する。図6に示すように、平行度検出部22は、4個のフォトダイオード22a〜22dが2次元アレー状に隣接配備されており、第2非偏光ビームスプリッタ17から到達する直線偏光の光軸が互いに隣接し合う中心点Cに位置し、4個のフォトダイオード22a〜22dにまたがって均等に受光されるようになっている。各フォトダイオード22a〜22dで受光した直線偏光を光強度の検出信号に変換して制御ユニット23に送信する。つまり、平行度検出部22は、反射光の光路のズレを検出している。なお、平行度検出部22は、本発明の検出手段に相当する。   The parallelism detection unit 22 detects the state of occurrence of bending or warping of the measurement object W held on the mounting table 8. As shown in FIG. 6, the parallelism detection unit 22 includes four photodiodes 22 a to 22 d arranged adjacent to each other in a two-dimensional array, and the optical axis of linearly polarized light reaching from the second non-polarizing beam splitter 17 is Located at the center point C adjacent to each other, the light is received evenly across the four photodiodes 22a to 22d. The linearly polarized light received by each of the photodiodes 22 a to 22 d is converted into a light intensity detection signal and transmitted to the control unit 23. That is, the parallelism detection unit 22 detects the deviation of the optical path of the reflected light. The parallelism detection unit 22 corresponds to the detection means of the present invention.

制御ユニット23は、演算処理部24、駆動制御部25、および操作部26などを含む。以下、各構成について具体的に説明する。   The control unit 23 includes an arithmetic processing unit 24, a drive control unit 25, an operation unit 26, and the like. Each configuration will be specifically described below.

演算処理部24は、主として2通りの処理を行っている。第1の処理として、載置台8に保持された測定対象物Wの反りなどの影響によって、焦点面から反射して戻る偏光が、第1および第2偏光検出部9、3の両フォトダイオード9b、21で受光されるように光路のズレの補正量を算出する。第2の処理として、測定対象物Wの所定のガラス基板W1またはW2に作用している応力によって発生する複屈折の変化量、光弾性係数、およびガラス基板の厚みのうちの未知パラメータ、並びに所定のガラス基板に作用する主応力の差とその方向を求める。これら具体的な処理については、動作説明で詳述する。なお、演算処理部24は、本発明の演算手段に相当する。   The arithmetic processing unit 24 mainly performs two types of processing. As a first process, the polarized light reflected and returned from the focal plane due to the influence of the warp of the measurement object W held on the mounting table 8 is both photodiodes 9b of the first and second polarization detectors 9 and 3. , 21 to calculate the correction amount of the optical path deviation. As a second process, an unknown parameter among the amount of change in birefringence, the photoelastic coefficient, and the thickness of the glass substrate generated by the stress acting on the predetermined glass substrate W1 or W2 of the measurement object W, and the predetermined The difference and the direction of the main stress acting on the glass substrate are obtained. These specific processes will be described in detail in the operation description. The arithmetic processing unit 24 corresponds to the arithmetic means of the present invention.

駆動制御部25は、操作部26によって設定された条件に基づく駆動信号を回転駆動機構27やアクチュエータ28に送信する。つまり、回転駆動機構27が、光源1からの初期光の光軸回りに光学系ユニット5を所定の回転角度に回転移動するように制御する。また、載置台8をXY平面上でチルトさせる。なお、駆動機構26は、本発明の回転手段に、アクチュエータ28は駆動手段にそれぞれ相当する。   The drive control unit 25 transmits a drive signal based on the conditions set by the operation unit 26 to the rotation drive mechanism 27 and the actuator 28. That is, the rotation drive mechanism 27 controls the optical system unit 5 to rotate about a predetermined rotation angle around the optical axis of the initial light from the light source 1. Further, the mounting table 8 is tilted on the XY plane. The driving mechanism 26 corresponds to the rotating means of the present invention, and the actuator 28 corresponds to the driving means.

これら各構成を含む制御ユニット23は、上記の処理以外に初期の設定条件に基づいて各駆動機構などの動作を制御する。   The control unit 23 including these components controls the operation of each drive mechanism and the like based on initial setting conditions in addition to the above processing.

次に、上記実施例装置を用いて、測定対象物Wの各ガラス基板W1,W2に作用する主応力の差と主応力の差の作用している方向を測定する一巡の動作および処理について、図7に示すフローチャートに沿って説明する。なお、測定対象物Wを構成するガラス基板W1,W2の両方に応力が作用している場合を例にとって説明する。   Next, with respect to the operation and processing of a round of measuring the direction in which the difference between the main stress acting on each glass substrate W1, W2 of the measuring object W and the difference in the principal stress acts using the above-described embodiment apparatus, Description will be made along the flowchart shown in FIG. In addition, the case where the stress is acting on both the glass substrates W1 and W2 which comprise the measuring object W is demonstrated as an example.

オペレータは、操作部26を操作して測定対象物Wの総厚み、光学系ユニット5の回転角と測定回数などの測定条件を設定入力する(ステップS1)。なお、この実施例の場合、回転角は、基準0°、45°、90°の3箇所で測定対対象物Wの各ガラス基板W1,W2に作用する主応力の差とその方向の測定を行うように設定する。   The operator operates the operation unit 26 to set and input measurement conditions such as the total thickness of the measurement target W, the rotation angle of the optical system unit 5 and the number of measurements (step S1). In the case of this embodiment, the rotation angle is a difference between main stresses acting on the glass substrates W1 and W2 of the object W to be measured at three positions of the reference 0 °, 45 °, and 90 ° and measurement in the direction. Set to do.

条件設定が完了すると、載置台8に測定対象物Wが載置保持されるとともに、各駆動機構が作動制御されて測定開始できる状態となる。この時点で可動台7が作動し、対物レンズ6による焦点位置が、測定対象物Wの最表面に合せられる。これら測定条件が整うと、オペレータは、テスト照射をする(ステップS2)。このとき、光源1から測定対象物Wに向けて直線偏光が照射され、反射して戻る第1偏光Aを平行度検出器22で受光し、フォトダイオード22a−22dごとの光強度の検出信号を制御ユニット23の演算処理部24に送信する。   When the condition setting is completed, the measuring object W is placed and held on the placing table 8, and each drive mechanism is controlled to be ready for measurement. At this time, the movable table 7 is operated, and the focal position of the objective lens 6 is adjusted to the outermost surface of the measurement object W. When these measurement conditions are satisfied, the operator performs test irradiation (step S2). At this time, linearly polarized light is irradiated from the light source 1 toward the measurement object W, and the first polarized light A that is reflected back is received by the parallelism detector 22, and a detection signal of light intensity for each of the photodiodes 22a-22d is received. It transmits to the arithmetic processing part 24 of the control unit 23.

演算処理部24は、フォトダイオード22a−22dごとの光強度値と平均値から光源1から測定対象物Wまでの光路のズレの有無を判断する(ステップS3)。光路のズレがあることが確認できた場合、演算処理部24は、測定対象物Wの反りなどの影響で起こる煽りを補正するための補正量を求めて信号変換する(ステップS4)。この補正信号に基づいて、駆動制御部25は、アクチュエータ28を作動させて載置台8をチルトさせ、反射光が平行度検出器22の各フォトダイオード22a−22dに均等に照射させるようにする(ステップS5)。   The arithmetic processing unit 24 determines whether or not there is a deviation in the optical path from the light source 1 to the measurement object W from the light intensity value and the average value for each of the photodiodes 22a to 22d (step S3). When it is confirmed that there is a deviation of the optical path, the arithmetic processing unit 24 obtains a correction amount for correcting the warp caused by the influence of the warp of the measurement object W and performs signal conversion (step S4). Based on this correction signal, the drive control unit 25 operates the actuator 28 to tilt the mounting table 8 so that the reflected light is evenly applied to the photodiodes 22a to 22d of the parallelism detector 22 ( Step S5).

光路ズレの煽り補正処理が完了すると、再度テスト照射を行う。この時点で光路ズレが解消されていれば、所定の設定角度での1回目の第1測定を開始する(ステップS6)。光路ズレが解消されていなければ、ステップS2からの煽り補正処理が繰り返し行われる。   When the optical path deviation correction process is completed, test irradiation is performed again. If the optical path deviation is eliminated at this time, the first first measurement at a predetermined set angle is started (step S6). If the optical path deviation is not eliminated, the blur correction process from step S2 is repeated.

第1測定では、光学系ユニット5をX,Y軸の基準0°に位置合せされた状態で測定を開始する。光源1から出力された水平成分のレーザ光は、第1偏光ビームスプリッタ10Aを全透過し、偏光板40に到達する。この偏光板40を透過するとき、光は偏光面が45°回転し、直線偏光板41に向う。   In the first measurement, the measurement is started in a state where the optical system unit 5 is aligned with the reference 0 ° of the X and Y axes. The horizontal component laser light output from the light source 1 is totally transmitted through the first polarizing beam splitter 10 </ b> A and reaches the polarizing plate 40. When the light passes through the polarizing plate 40, the polarization plane of the light rotates 45 ° and travels toward the linear polarizing plate 41.

直線偏光板41を透過する光は、45度の直線偏光となり、λ/2波長板42に向う。λ/2波長板42を透過するとき、直線偏光の偏光面が、45°戻されて元の水平成分の直線偏光に戻される。   The light transmitted through the linear polarizing plate 41 becomes 45-degree linearly polarized light and travels toward the λ / 2 wavelength plate 42. When passing through the λ / 2 wavelength plate 42, the plane of polarization of the linearly polarized light is returned by 45 ° to return to the linearly polarized light of the original horizontal component.

この直線偏光は、第3偏光ビームスプリッタ43を全透過し、次のλ/4波長板44を透過する過程で45°傾き、円偏光にされる。   This linearly polarized light is totally transmitted through the third polarizing beam splitter 43 and is converted into circularly polarized light by 45 ° in the process of passing through the next λ / 4 wavelength plate 44.

この円偏光は、光学系ユニット5のλ/4波長板13を透過する過程で、垂直成分になり、BDP12をそのまま全透過して光弾性変調器45を透過する。このとき、垂直成分からなる直線偏光が楕円偏光に変えられて対物レンズ6で集光され、所定の層の焦点面に到達する。   This circularly polarized light becomes a vertical component in the process of passing through the λ / 4 wavelength plate 13 of the optical system unit 5, passes through the BDP 12 as it is, and passes through the photoelastic modulator 45. At this time, the linearly polarized light composed of the vertical component is changed to elliptically polarized light and condensed by the objective lens 6 to reach the focal plane of a predetermined layer.

この光を照射しながら測定対象物Wの厚みを屈折量で割った量に相当する距離分だけ可動台7を前進させ、ガラス基板W1,W2の各表裏面で反射して戻る第1偏光Aと第2偏光Bを第1および第2フォトダイオード9b、21で受光する。これら各光強度の変化をリアルタイムに検出信号Is,Irに変換して演算処理部24に送信する。   While irradiating this light, the movable base 7 is advanced by a distance corresponding to the amount obtained by dividing the thickness of the measuring object W by the amount of refraction, and the first polarized light A is reflected back by the front and back surfaces of the glass substrates W1 and W2. The second polarized light B is received by the first and second photodiodes 9b and 21. These changes in light intensity are converted into detection signals Is and Ir in real time and transmitted to the arithmetic processing unit 24.

このとき、ガラス基板W1,W2に応力が作用している場合、各焦点面で反射して戻る反射光に第2偏光Bが含まれている。つまり、図8に示すように、ガラス基板1の表面と空気層との接触界面(焦点面P1)で反射して戻る反射光R1、ガラス基板W1とガラス基板W2との微小間隙の空気層とガラス基板W1の裏面との接触界面(焦点面P2)で反射して戻る反射光R2、空気層とガラス基板W2の表面との接触界面(焦点面P3)で反射して戻る反射光R3、およびガラス基板W2と載置台8との接触界面(焦点面P4)で反射して戻る反射光R4のそれぞれに、第2偏光Bの光強度の検出信号Isの成分が含まれている。   At this time, when stress is applied to the glass substrates W1 and W2, the second polarized light B is included in the reflected light that is reflected and returned from each focal plane. That is, as shown in FIG. 8, the reflected light R1 reflected and returned at the contact interface (focal plane P1) between the surface of the glass substrate 1 and the air layer, the air layer in the minute gap between the glass substrate W1 and the glass substrate W2, and Reflected light R2 reflected and returned at the contact interface (focal plane P2) with the back surface of the glass substrate W1, reflected light R3 reflected and returned at the contact interface (focal plane P3) between the air layer and the surface of the glass substrate W2, and Each of the reflected light R4 reflected and returned by the contact interface (focal plane P4) between the glass substrate W2 and the mounting table 8 includes a component of the detection signal Is of the light intensity of the second polarized light B.

各焦点面P1〜P4で反射して戻る反射光は、初期光と同一光路に戻される。反射光は、応力の作用している層を透過して所定の焦点面で反射して戻るとき、光弾性により入射光とは別の偏光成分として戻される。この反射光は、対物レンズ6、光弾性変調器45をそのまま透過し、BDP12を透過する。このとき、初期光路を戻る垂直成分の第1偏光Aと、偏光面に変化の生じた水平成分からなる第2偏光Bとに分離される。第1偏光Aは、初期光路を戻り、第2偏光Bは、別光路に出力される。   The reflected light reflected and returned from each focal plane P1 to P4 is returned to the same optical path as the initial light. When the reflected light passes through the layer on which the stress acts and is reflected by a predetermined focal plane and returned, it is returned as a polarization component different from the incident light by photoelasticity. This reflected light passes through the objective lens 6 and the photoelastic modulator 45 as it is, and passes through the BDP 12. At this time, the first polarized light A having a vertical component returning from the initial optical path and the second polarized light B having a horizontal component whose polarization plane has changed are separated. The first polarization A returns to the initial optical path, and the second polarization B is output to another optical path.

第1偏光Aは、垂直成分からなり、初期光路のλ/4波長板13で円偏光にされ、その後のλ/4波長板44で水平成分になって、第3偏光ビームスプリッタ43を全量が透過する。さらに、この第1偏光Aは、λ/2波長板42、直線偏光板41を全透過し、45°の直線偏光になり、Faraday Rotator40を透過するときに45°回転して垂直成分のみになり全反射して第1偏光ビームスプリッタ3に向う。   The first polarization A is composed of a vertical component, is circularly polarized by the λ / 4 wavelength plate 13 in the initial optical path, and then becomes a horizontal component by the λ / 4 wavelength plate 44, and the entire amount of the third polarization beam splitter 43 is changed. To Penetrate. Furthermore, the first polarized light A is totally transmitted through the λ / 2 wavelength plate 42 and the linear polarizing plate 41 to become 45 ° linearly polarized light, and when it is transmitted through the Faraday Rotator 40, it is rotated 45 ° to become only the vertical component. Totally reflected toward the first polarization beam splitter 3.

第1偏光ビームスプリッタ3に到達した第1偏光Aは、初期の水平成分の光と直交する第1フォトダイオード21の方向に全反射され、第2非偏光ビームスプリッタ17Aに向う。この第2非偏光ビームスプリッタ17Aで第1フォトダイオード21と平行度検出器22に向う偏光に分岐される。これら第1フォトダイオード21および平行度検出器22で受光された各検出信号は、制御ユニット23の演算処理部24に送信される。   The first polarized light A that has reached the first polarizing beam splitter 3 is totally reflected in the direction of the first photodiode 21 that is orthogonal to the light of the initial horizontal component, and travels toward the second non-polarizing beam splitter 17A. This second non-polarizing beam splitter 17A branches the polarized light toward the first photodiode 21 and the parallelism detector 22. The detection signals received by the first photodiode 21 and the parallelism detector 22 are transmitted to the arithmetic processing unit 24 of the control unit 23.

第2偏光Bは水平成分からなり、λ/4波長板13を透過して45°傾き、円偏光にされ、さらにλ/4波長板44を透過して、さらに45°傾き、垂直成分の偏光にされる。この第2偏光Bは、第3ビームスプリッタ43で初期光路と直交する方向にある第2フォトダイオード9bに全量が向かわされる。この過程でピンホール15によって焦点面から反射して戻る偏光のみが抽出され、第2フォトダイオード9bにより受光される。この光強度の検出信号Isが、制御ユニット23の演算処理部24に送信される。   The second polarized light B is composed of a horizontal component, is transmitted through the λ / 4 wave plate 13 and is inclined by 45 ° to be circularly polarized light, is further transmitted through the λ / 4 wave plate 44 and is further inclined by 45 °, and is polarized with a vertical component. To be. The entire amount of the second polarized light B is directed to the second photodiode 9b in the direction orthogonal to the initial optical path by the third beam splitter 43. In this process, only polarized light reflected and returned from the focal plane by the pinhole 15 is extracted and received by the second photodiode 9b. This light intensity detection signal Is is transmitted to the arithmetic processing unit 24 of the control unit 23.

ここで、第2フォトダイオード9bで受光された各焦点面P1〜P4から反射して戻る第2偏光Bの光強度は、図9に示すように、3つのピークとして現れる。   Here, the light intensity of the second polarized light B reflected and returned from the focal planes P1 to P4 received by the second photodiode 9b appears as three peaks as shown in FIG.

この実施例では焦点面P1〜P4の4箇所あるので4つのピークが発生するはずであるが、3つのピークとなって現れる。この現象は、空気層の前後のガラス面で反射する光で干渉が生じて光強度が高められ焦点面P2およびP3で反射して戻る反射光R2およびR3がこの光学系では、分離されて検出できず、合成されたものとなっていることが新たな知見として得られた。この図9で示す実線が、検出対象の光弾性信号であり、破線が測定対象物Wで反射して戻る反射光の信号である。   In this embodiment, since there are four focal planes P1 to P4, four peaks should occur, but appear as three peaks. This phenomenon is detected by separating the reflected lights R2 and R3 which are reflected by the focal planes P2 and P3 and are reflected by the light reflected by the glass surfaces before and after the air layer, and the intensity of the light is increased. It was not possible, and it was obtained as a new finding that it was synthesized. The solid line shown in FIG. 9 is a photoelastic signal to be detected, and the broken line is a signal of reflected light that is reflected by the measurement object W and returned.

したがって、演算処理部24は、まず、これら第1および第2フォトダイオード9b、21からの検出信号のうち焦点面P2、P3で反射して戻る合成された反射光に含まれる検出信号と焦点面P2で反射して戻る検出信号を抽出し、両検出信号Isの値を補正する。つまり、第2偏光Bの検出信号Isを第1偏光Aの検出信号Irで除算したIs/Irで補正する(以降補正弾性信号と称する)。そして、この補正後の光強度値と測定時の光学系ユニット5の回転角の位置情報を関連付けして記憶しておく。   Therefore, the arithmetic processing unit 24 first detects the detection signal and the focal plane included in the combined reflected light that is reflected by the focal planes P2 and P3 and returned from the detection signals from the first and second photodiodes 9b and 21. A detection signal reflected and returned at P2 is extracted, and the values of both detection signals Is are corrected. That is, the detection signal Is of the second polarization B is corrected by Is / Ir divided by the detection signal Ir of the first polarization A (hereinafter referred to as a corrected elasticity signal). Then, the corrected light intensity value and the positional information of the rotation angle of the optical system unit 5 at the time of measurement are stored in association with each other.

第1測定が終了すると、駆動制御部25は、可動台7を測定開始位置に復帰さながら同時に光学系ユニット5を光軸回りに45°回転させて第1測定と同じ処理の第2測定を行い(ステップS7)、さらに、第2測定が終了すれば、第3測定を継続して行う(ステップS8)。   When the first measurement is completed, the drive control unit 25 performs the second measurement of the same process as the first measurement by rotating the optical system unit 45 around the optical axis at the same time while returning the movable base 7 to the measurement start position. (Step S7) Further, when the second measurement is completed, the third measurement is continued (Step S8).

第1測定〜第3測定が終了すると、演算処理部24は、ガラス基板W1,W2に作用している各主応力の差とその方向を求める(ステップS9)。具体的に、演算処理部24は、記憶しておいた3つの回転角の光強度値と位置情報を、同じ焦点面ごとに一群のデータとして整理し、データ群ごとに光強度値をXY平面上へのプロットし、このプロット状態から光学系ユニット5を1回転させたときに得られる補正弾性信号(これは、複屈折量と同じであるが、)とその時の回転角(θ)とから試料の複屈折量が0.01radより小さいとき、[(φ/2)sin2(α-θ)+c]2のモデル(以下、単に「モデル」という)を最小2乗法により近似する。そして、得られる当該モデルから主応力の差(φ/2)とその向き(α)を求める。ここでcは、偏光を透過させるレンズなど含む光学部材が有する複屈折量である。なお、以上で、測定対象物Wの各ガラス基板W1,W2に作用している主応力の差(φ/2)とその方向(α)の測定が完了する。なお、試料の複屈折量は、0.01radより小さい場合に限定されるものではなく、光弾性変調器の形状などに応じて適宜に変更される。 When the first measurement to the third measurement are finished, the arithmetic processing unit 24 obtains the difference between the principal stresses acting on the glass substrates W1 and W2 and the direction thereof (step S9). Specifically, the arithmetic processing unit 24 organizes the stored light intensity values and position information of the three rotation angles as a group of data for the same focal plane, and converts the light intensity values for each data group into the XY plane. From the plotted state, the corrected elastic signal (which is the same as the amount of birefringence) obtained when the optical system unit 5 is rotated once from this plotted state and the rotation angle (θ) at that time When the birefringence amount of the sample is smaller than 0.01 rad, a model of [(φ / 2) sin2 (α−θ) + c] 2 (hereinafter simply referred to as “model”) is approximated by the method of least squares. The main stress difference (φ / 2) and its direction (α) are obtained from the obtained model. Here, c is the amount of birefringence of an optical member including a lens that transmits polarized light. In addition, the measurement of the difference (φ / 2) and the direction (α) of the main stress acting on the glass substrates W1 and W2 of the measurement target W is completed. Note that the amount of birefringence of the sample is not limited to a value smaller than 0.01 rad, and can be changed as appropriate according to the shape of the photoelastic modulator.

上述の構成を有する光弾性測定装置によれば、測定対象物Wのガラス基板W1の表面に焦点を合せ、測定対象物Wの層厚み分対物レンズ6を前進移動させ、各ガラス基板W1,W2に対する焦点を変位させることにより、各焦点面P1〜P4から反射して戻る反射光のうち、ガラス基板W1,W2を透過する過程で両ガラス基板W1,W2に作用している応力の影響で偏光状態が変化して生じた垂直成分の第2偏光BのみをBDP12で分離して取り出すことができる。このBDP12で分離した第2偏光Bを、さらにピンホール15を通過させることにより、ガラス基板W1の裏面(焦点面P2とガラス基板W2の表面(焦点面P3)から反射して戻るガラス基板W1の応力の影響を受けた第2偏光Bと、ガラス基板W2の裏面(焦点面P4)から反射して戻るガラス基板W2の応力の影響を受けた第2偏光Bのみを抽出することができる。換言すれば、共焦点光学系を利用することにより、任意のガラス基板(層)に作用している応力の影響を受けた第2偏光を測定できる。   According to the photoelasticity measuring apparatus having the above-described configuration, the objective lens 6 is moved forward by the layer thickness of the measuring object W by focusing on the surface of the glass substrate W1 of the measuring object W, and the glass substrates W1 and W2 are moved forward. Of the reflected light reflected and returned from the focal planes P1 to P4 by the displacement of the focal point with respect to the surface of the glass substrate W1 and W2 in the process of passing through the glass substrates W1 and W2, the polarization due to the effect of stress acting on both glass substrates W1 and W2 Only the second polarization B of the vertical component generated by the state change can be separated and extracted by the BDP 12. By passing the second polarized light B separated by the BDP 12 through the pinhole 15, the glass substrate W1 is reflected back from the back surface (focal plane P2 and the front surface (focal plane P3) of the glass substrate W2) of the glass substrate W1. Only the second polarized light B affected by the stress and the second polarized light B affected by the stress of the glass substrate W2 reflected and returned from the back surface (focal plane P4) of the glass substrate W2 can be extracted. Then, by using the confocal optical system, it is possible to measure the second polarized light affected by the stress acting on an arbitrary glass substrate (layer).

そして、光学系ユニット5を光軸回りに回転させ、少なくとも3箇所の所定の回転角から同じ条件で取得した一群の第2偏光Bの光強度値を焦点面ごとに整理し、XY平面上へのプロットし、このプロット状態から光学系ユニット5を1回転させたときに得られる補正弾性信号とその回転角とからモデルを最小2乗法で近似する。すなわち、このモデルからその主応力の差(φ/2)とその方向(α)を特定することができる。   Then, the optical system unit 5 is rotated around the optical axis, and the light intensity values of the group of second polarized light B acquired under the same conditions from at least three predetermined rotation angles are arranged for each focal plane, and onto the XY plane. The model is approximated by the least square method from the corrected elastic signal obtained when the optical system unit 5 is rotated once from this plotted state and the rotation angle. That is, the main stress difference (φ / 2) and its direction (α) can be specified from this model.

また、平行度検出器22を利用することにより、測定光の光路ズレを補正することができ、第1偏光Aおよび第2偏光Bを第1および第2フォトダイオード21、9bで精度よく受光できる。   Further, by using the parallelism detector 22, the optical path shift of the measurement light can be corrected, and the first and second polarized light A and B can be received with high accuracy by the first and second photodiodes 21 and 9b. .

さらに、本実施例装置は、光源1に半導体レーザを利用し、かつ、光学系ユニット5に光弾性変調器45を利用することにより、光学系ユニット5の構成部材を少なくして小型化ができる。したがって、光学系ユニット5を光軸回りに回転させる回転駆動機構27を小型かつ低出力のものを利用することができる。   Furthermore, the apparatus according to the present embodiment can be downsized by using a semiconductor laser as the light source 1 and using the photoelastic modulator 45 as the optical system unit 5 to reduce the number of components of the optical system unit 5. . Accordingly, a small and low output rotational drive mechanism 27 that rotates the optical system unit 5 around the optical axis can be used.

また、第1偏光検出部3に第1偏光ビームスプリッタ10を利用することにより、光源1から出力されるレーザ光を全て測定対象物に向かわせることができる。また、測定対象物Wから反射して戻る反射光を、光源1側に戻すことなく、第1フォトダイオード21で検出することができる。すなわち、出力された初期光と反射光の衝突による光源の不安定性を抑制し、主応力の差とその方向の測定を精度よく行うことができる。   Further, by using the first polarization beam splitter 10 for the first polarization detection unit 3, all of the laser light output from the light source 1 can be directed to the measurement object. Moreover, the reflected light reflected from the measurement object W can be detected by the first photodiode 21 without returning to the light source 1 side. That is, the instability of the light source due to the collision between the output initial light and the reflected light can be suppressed, and the difference between the main stresses and the measurement of the direction can be accurately performed.

さらに、光源1からの光は水平成分からなるので、第1偏光ビームスプリッタ10に透過させることにより、光源1からの光を測定対象物Wに100%入射させることができるとともに、測定対象物Wからの反射光を100%利用することができる。その結果、検出精度を向上させることができる。   Furthermore, since the light from the light source 1 is composed of a horizontal component, the light from the light source 1 can be incident 100% on the measurement object W by being transmitted through the first polarization beam splitter 10, and the measurement object W The reflected light from 100% can be used. As a result, detection accuracy can be improved.

なお、本発明は上述した実施例に限らず、次のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)上記実施例の光弾性変調器45において、圧電素子47自体に重量または錘などにより加重をかけ、圧電素子47の慣性質量を重くするように構成していもよい。この構成によれば、光弾性変調器45の共振周波数を光学素子46の共振周波数よりも低い範囲で任意に調整することができる。   (1) The photoelastic modulator 45 of the above embodiment may be configured such that the piezoelectric element 47 itself is weighted by a weight or a weight to increase the inertial mass of the piezoelectric element 47. According to this configuration, the resonance frequency of the photoelastic modulator 45 can be arbitrarily adjusted in a range lower than the resonance frequency of the optical element 46.

(2)上記実施例において、図10に示すように、測定対象物Wからの反射光を光弾性変調器30に入射させ、反射光の偏光成分の光強度を予め決めた周波数で変調する。変調後の周波数を参照信号としてロックインアンプ31に入力するとともに、第2フォトダイオード9bからのだ2偏光Bの検出信号Isをロックインアンプ31に入力する。このとき、第2偏光Bの検出信号Isから直流成分が除去され交流成分のみが抽出される。したがって複屈折の変化量の算出精度の向上を図ることができる。また、これは図5の弾性信号Isをロックインアンプに入力し、その出力を演算処理部24に入れる方法でもよい。   (2) In the above embodiment, as shown in FIG. 10, the reflected light from the measurement object W is incident on the photoelastic modulator 30, and the light intensity of the polarization component of the reflected light is modulated at a predetermined frequency. The frequency after modulation is input to the lock-in amplifier 31 as a reference signal, and the detection signal Is of only two polarizations B from the second photodiode 9 b is input to the lock-in amplifier 31. At this time, the DC component is removed from the detection signal Is of the second polarized light B, and only the AC component is extracted. Therefore, it is possible to improve the calculation accuracy of the amount of change in birefringence. Further, this may be a method in which the elastic signal Is of FIG. 5 is input to the lock-in amplifier and the output is input to the arithmetic processing unit 24.

例えば、上記実施例の前面ガラス基板W1の複屈折の変化量は試料の複屈折量が0.01radより小さいとき、次式(1)で表わすことができる。   For example, the amount of change in birefringence of the front glass substrate W1 in the above embodiment can be expressed by the following equation (1) when the amount of birefringence of the sample is smaller than 0.01 rad.

前面ガラス基板W1の複屈折の変化量=K(ρ2 + ρφsin[2(α-θ)]) … (1) Change amount of birefringence of front glass substrate W1 = K (ρ 2 + ρφsin [2 (α−θ)]) (1)

ここで、ρは光弾性変調器45の複屈折量で、微少な量、αは主応力差(φ/2)の方向、eは複屈折の方向と大きさを検出するためにガラス基板W1に対する回転角、φ/2はW1の複屈折量で2乗の項は無視できる程微少な値と仮定する。   Here, ρ is the amount of birefringence of the photoelastic modulator 45, a minute amount, α is the direction of the principal stress difference (φ / 2), and e is the glass substrate W1 for detecting the direction and magnitude of the birefringence. It is assumed that the rotation angle, φ / 2, is a birefringence amount of W1 and a square value is negligibly small.

そして、反射光をロックインアンプ31に通すと、前面ガラス基板の複屈折の変化量は、次式(2)で表すことができる。   When the reflected light is passed through the lock-in amplifier 31, the amount of change in birefringence of the front glass substrate can be expressed by the following equation (2).

前面ガラスの複屈折量=Kρ0×φsin[2(α-θ)]) … (2) Birefringence of front glass = Kρ 0 × φsin [2 (α-θ)]) (2)

ここで、光弾性変調器は、その複屈折量をρ0、その周波数をω0、時間tを導入して次式、ρ(t) =ρ0sin(ω0t) と表わされる。ロックインアンプを使用しているので、ρの2乗の項はロックインアンプから出力されない。一方、反射信号側Irは、弾性信号側の表記を用いると、Ir = Kと表わされる。 Here, the photoelastic modulator is expressed by the following equation, ρ (t) = ρ 0 sin (ω 0 t) by introducing its birefringence amount ρ 0 , its frequency ω 0 , and time t. Since the lock-in amplifier is used, the square term of ρ is not output from the lock-in amplifier. On the other hand, the reflected signal side Ir is expressed as Ir = K using the notation on the elastic signal side.

したがって、補正弾性信号(=Is/Ir)は、次式で表わせる。   Therefore, the corrected elasticity signal (= Is / Ir) can be expressed by the following equation.

補正弾性信号 = ρ0×φsin[2(α-θ)]) Corrected elastic signal = ρ 0 × φsin [2 (α-θ)])

実際の光学系では、上記の式にオフセットcがついて、
補正弾性信号 = ρ0×φsin[2(α-θ)]) + c … (3)
と表わされる。
In an actual optical system, an offset c is added to the above formula,
Correcting acoustic signal = ρ 0 × φsin [2 ( α-θ)]) + c ... (3)
It is expressed as

ここで、ρ0は既知であるが、実際は既知の力で試料に引張力を付与したときの補正弾性信号の大きさとその引張力から得られる主応力差の関係を求める校正実験から算出される。 Here, ρ 0 is known, but actually, it is calculated from a calibration experiment for determining the relationship between the magnitude of the corrected elastic signal when a tensile force is applied to the sample with a known force and the principal stress difference obtained from the tensile force. .

すなわち、交流成分である複屈折の情報を含むfとaの信号成分のみが抽出される。以後、上述の実施例と同様に、抽出後の信号成分を回転角ごとに整理し、光強度値をXY平面上にプロットし、このプロット状態から光学系ユニット5を1回転させたときに得られる補正弾性信号を最小2乗近法により式(3)で近似する。そして、その結果から主応力の差(φ/2)とその向き(α)を求める。この方法により、圧縮、引張りの区別を実験結果から行うことができる。また、対物レンズ6を回転系5に含めることにより、対物レンズ6の複屈折を無視することができる。   That is, only the signal components of f and a including information on birefringence that is an AC component are extracted. Thereafter, similarly to the above-described embodiment, the extracted signal components are arranged for each rotation angle, the light intensity values are plotted on the XY plane, and obtained when the optical system unit 5 is rotated once from this plotted state. The corrected elastic signal to be obtained is approximated by the formula (3) by the method of least squares. Then, the difference (φ / 2) and the direction (α) of the main stress are obtained from the result. This method makes it possible to distinguish between compression and tension from the experimental results. Further, by including the objective lens 6 in the rotating system 5, the birefringence of the objective lens 6 can be ignored.

(3)上記実施例装置および変形例装置は、光学系ユニット5を光軸回りに回転させていたが、載置台8を回転させる構成であってもよい。   (3) In the above-described embodiment device and the modification device, the optical system unit 5 is rotated around the optical axis. However, the mounting table 8 may be rotated.

(4)上記各実施例では、2枚のガラス基板W1,W2を間隙おいて配備した測定対象物Wを利用したが、測定対象物Wはこの形態に限定されるものではなく、間隙をなくし複数枚の透過性を有する測定対象物を密着させて積層したものであってもよい。例えば、ガラス基板同士、ガラス基板とフィルムなどのように屈折率の異なる測定対象物の組合せなどがある。   (4) In each of the above-described embodiments, the measurement object W provided with the two glass substrates W1 and W2 provided with a gap is used. However, the measurement object W is not limited to this form, and the gap is eliminated. A plurality of measurement objects having permeability may be stacked in close contact. For example, there are combinations of measurement objects having different refractive indexes, such as glass substrates and glass substrates and films.

(5)上記各実施例では、測定対象物Wの平行度が保たれている場合には第2非偏光ビームスプリッタ17および平行度検出器22を省いた構成であってもよい。   (5) In each of the above embodiments, the second non-polarizing beam splitter 17 and the parallelism detector 22 may be omitted when the parallelism of the measurement object W is maintained.

(6)上記各実施例では、中央に開口Hの形成された載置台8を利用したが、開口Hの形成されていない平坦な物で構成してもよい。   (6) In each of the above embodiments, the mounting table 8 having the opening H formed in the center is used. However, the mounting table 8 may be formed of a flat object in which the opening H is not formed.

(7)上記実施例1、2では、第2偏光Bが第2フォトダイオード9bで検出されるまでの光路上で、他の光学部材で反射または透過するときに生じる散乱などの検出対象以外の迷光を除去する遮光板をレンズ9aの上流側に配備した構成にすることが好ましい。   (7) In the first and second embodiments, other than the detection target such as scattering generated when the second polarized light B is reflected or transmitted by another optical member on the optical path until the second polarized light B is detected by the second photodiode 9b. It is preferable that a light shielding plate for removing stray light is provided on the upstream side of the lens 9a.

図11に示すように、遮光板52は、円盤上の板材の中心から径方向に離れた位置に円弧状の開口部53が形成されており、測定対象の第2偏光Bがこの開口部53を通過する。つまり、実施例装置は、BDP12の入射光と同一光路を通って戻る第1偏光Aの光軸周りにBDP12が回転する。この回転に伴って、BDP12の第1偏光Aと同一面の離間した位置から出力される第2偏光Bは、第1偏光A周りの円弧軌道を通ることになる。したがって、遮光板52の開口部53は、第2偏光Bの移動する軌道に沿って形成されている。上記実施例では、0〜90°の範囲で光学系ユニット5を光軸回りに回転させているので、遮光板52の開口部53は、略半円弧状に形成されている。なお、回転角度が変更されれば、この開口部53の円周も適宜に設定変更される。   As shown in FIG. 11, the light shielding plate 52 has an arc-shaped opening 53 formed at a position radially away from the center of the plate on the disk, and the second polarized light B to be measured is the opening 53. Pass through. That is, in the embodiment apparatus, the BDP 12 rotates around the optical axis of the first polarized light A that returns through the same optical path as the incident light of the BDP 12. Along with this rotation, the second polarized light B output from a position separated from the same plane as the first polarized light A of the BDP 12 passes through an arc orbit around the first polarized light A. Therefore, the opening 53 of the light shielding plate 52 is formed along the trajectory along which the second polarized light B moves. In the above embodiment, since the optical system unit 5 is rotated around the optical axis in the range of 0 to 90 °, the opening 53 of the light shielding plate 52 is formed in a substantially semicircular arc shape. Note that if the rotation angle is changed, the circumference of the opening 53 is also appropriately changed.

実施例に係る光弾性変調器を示す斜視図である。It is a perspective view which shows the photoelastic modulator which concerns on an Example. 光弾性変調器を示す平面図である。It is a top view which shows a photoelastic modulator. 図2に示す光弾性変調器のX−X矢視断面図である。It is XX arrow sectional drawing of the photoelastic modulator shown in FIG. 実施例に係る光弾性変調器の振動モードを示す図である。It is a figure which shows the vibration mode of the photoelastic modulator which concerns on an Example. 実施例に係る光弾性測装置の概略構成を示す図である。It is a figure which shows schematic structure of the photoelasticity measuring apparatus which concerns on an Example. 平行度検出部による偏光の受光状態を示す平面図である。It is a top view which shows the light reception state of the polarization by a parallelism detection part. 主応力の差とその方向を測定する一巡の処理および動作を示すフローチャートである。It is a flowchart which shows the process and operation | movement of a round which measures the difference of main stress, and its direction. 測定対象物の各焦点面で反射する反射光の状態を示す図である。It is a figure which shows the state of the reflected light reflected on each focal plane of a measurement object. 第2偏光の光強度の検出状態を示す図である。It is a figure which shows the detection state of the light intensity of a 2nd polarization | polarized-light. 変形例装置の構成を示す図である。It is a figure which shows the structure of a modification apparatus. 遮光板の平面図である。It is a top view of a light-shielding plate. 従来の光弾性変調器を示す平面図である。It is a top view which shows the conventional photoelastic modulator. 従来の光弾性変調器の振動モードを示す図である。It is a figure which shows the vibration mode of the conventional photoelastic modulator. 従来の光弾性変調器の振動モードを示す図である。It is a figure which shows the vibration mode of the conventional photoelastic modulator.

符号の説明Explanation of symbols

1 … 光源
3 … 第1偏光検部
5 … 光学系ユニット
6 … 対物レンズ
7 … 可動台
8 … 載置台
9 … 第2偏光検出部
10 … 第1非偏光ビームスプリッタ
12 … BDP
13 … λ/4波長板
15、19…ピンホール
23 … 制御ユニット
24 … 演算処理部
27 … 駆動機構
28 … アクチュエータ
40 … 偏光板
41 … 直線偏光板
42 … λ/2波長板
43 … 第3偏光ビームスプリッタ
44 … λ/4波長板
45 … 光弾性変調器
46 … 光学素子
47 … 圧電素子
48 … フレーム
49 … 信号発生器
50 … 接着剤
DESCRIPTION OF SYMBOLS 1 ... Light source 3 ... 1st polarization inspection part 5 ... Optical system unit 6 ... Objective lens 7 ... Movable base 8 ... Mounting base 9 ... 2nd polarization detection part 10 ... 1st non-polarization beam splitter 12 ... BDP
DESCRIPTION OF SYMBOLS 13 ... (lambda) / 4 wavelength plate 15, 19 ... Pinhole 23 ... Control unit 24 ... Arithmetic processing part 27 ... Drive mechanism 28 ... Actuator 40 ... Polarizing plate 41 ... Linearly polarizing plate 42 ... λ / 2 wavelength plate 43 ... Third polarization Beam splitter 44 ... λ / 4 wave plate 45 ... Photoelastic modulator 46 ... Optical element 47 ... Piezoelectric element 48 ... Frame 49 ... Signal generator 50 ... Adhesive

Claims (6)

透過する光の偏光の直交する2成分の位相差を変化させる光弾性変調器であって、
光を透過させる光学素子と、
前記光学素子と接触しつつ、光の入射面に直交する方向から振動を付与する振動発生手段と、
前記光学手段における振動発生手段との接触面と対向する面に接触して支持するフレームと、
を備えたことを特徴とする光弾性変調器。
A photoelastic modulator that changes the phase difference of two orthogonal components of the polarization of transmitted light,
An optical element that transmits light;
Vibration generating means for applying vibration from a direction perpendicular to the light incident surface while in contact with the optical element;
A frame that contacts and supports a surface facing the contact surface with the vibration generating means in the optical means;
A photoelastic modulator characterized by comprising:
請求項1に記載の光弾性変調器において、
前記振動発生手段は、光学素子単体の共振周波数より低い周波数の振動を光学素子に付与する
ことを特徴とする光弾性変調器。
The photoelastic modulator according to claim 1, wherein
The vibration generating means imparts a vibration having a frequency lower than the resonance frequency of the optical element alone to the optical element.
請求項1または請求項2に記載の光弾性変調器において、
前記振動発生手段に加重を付与して慣性質量を増加させるよう構成した
ことを特徴とする光弾性変調器。
The photoelastic modulator according to claim 1 or 2,
A photoelastic modulator characterized by being configured to increase the inertial mass by applying a weight to the vibration generating means.
複数の層からなる透過性を有する測定対象物を保持する保持手段と、
前記測定対象物に向けて光を照射する照射手段と、
前記光を透過させて直交する2方向の偏光成分からなる偏光にする第1光学手段と、
前記偏光を透過させて前記測定対象物の所定層の界面に焦点を合せるレンズと、
前記測定対象物の焦点面から反射し、かつ、光弾性変調器を透過して戻る偏光のうち初期の光路を戻る第1偏光と、この第1偏光と直交する第2偏光を別光路に分離して出力する分離手段と、
分離された前記第2偏光のうち前記焦点面から反射して戻る偏光のみを通過させるピンホールの形成された部材と、
前記ピンホールを通過した偏光の光強度を検出する第1検出手段と、
前記レンズと保持手段を偏光の光軸方向に沿って相対的に前後移動させる移動手段と、
前記保持手段と前記第1光学手段とを光軸回りに相対的に回転させる回転手段と、
前記回転手段により測定対象物に照射した偏光と、この測定対象物とを光軸回りに相対的に回転させ、少なくとも所定の3箇所ごとに前記第1検出手段で検出された前記偏光の光強度の変化量と検出角度(θ)の位置情報を取得するとともに、当該位置情報および偏光を透過させる前記レンズを含む光学部材が有する複屈折量(c)に基づいて、[(φ/2)sin2(α-θ)+c]2となるモデルを近似して求め、当該モデルから測定対象物の各層に作用している主応力の差(φ/2)とその方向(α)を求める演算手段と、
前記レンズと分離手段との間に配備され、分離手段を透過してレンズに向かう偏光、および、測定対象物で反射してレンズを透過し、分離手段に戻る偏光に変調をかける前記請求項1から請求項3に記載の光弾性変調器と、
を備えたことを特徴とする光弾性測定装置。
Holding means for holding a measuring object having a permeability composed of a plurality of layers;
Irradiating means for irradiating light toward the measurement object;
A first optical means for transmitting the light and converting it into polarized light composed of polarization components in two orthogonal directions;
A lens that transmits the polarized light and focuses on the interface of the predetermined layer of the measurement object;
Of the polarized light reflected from the focal plane of the measurement object and transmitted through the photoelastic modulator, the first polarized light returning the initial optical path and the second polarized light orthogonal to the first polarized light are separated into separate optical paths. Separating means for outputting,
A member formed with a pinhole that allows only the polarized light reflected from the focal plane to pass back among the separated second polarized light; and
First detection means for detecting the light intensity of polarized light that has passed through the pinhole;
Moving means for relatively moving the lens and the holding means back and forth along the optical axis direction of polarized light;
Rotating means for relatively rotating the holding means and the first optical means around an optical axis;
The polarized light irradiated to the measurement object by the rotating means and the measurement object are rotated relative to each other around the optical axis, and the light intensity of the polarized light detected by the first detection means at least every three predetermined positions. Is obtained based on the position information and the birefringence amount (c) of the optical member including the lens that transmits the polarized light, and [(φ / 2) sin2 (α−θ) + c] Calculating means for approximating the model 2 and calculating the difference (φ / 2) and the direction (α) of the principal stress acting on each layer of the measurement object from the model When,
The polarized light that is disposed between the lens and the separating unit, modulates the polarized light that passes through the separating unit and travels toward the lens, and the polarized light that is reflected by the measurement object and transmitted through the lens and returns to the separating unit. The photoelastic modulator according to claim 3,
A photoelasticity measuring device comprising:
請求項4に記載の光弾性測定装置において、
前記分離手段で分離された第1偏光のうち前記焦点面から反射して戻る偏光のみを通過させるピンホールの形成された部材と、
前記ピンホールを通過した偏光の光強度検出する第2検出手段とを備え、
前記演算手段は、前記第1検出手段により検出された偏光の光強度を前記第2検出手段により検出された偏光の光強度を除算する
ことを特徴とする光弾性測定装置。
The photoelasticity measuring apparatus according to claim 4,
A member formed with a pinhole that allows only the polarized light reflected from the focal plane to pass back among the first polarized light separated by the separating means;
Second detection means for detecting the light intensity of the polarized light that has passed through the pinhole,
The photoelasticity measuring apparatus, wherein the computing means divides the light intensity of the polarized light detected by the first detection means by the light intensity of the polarized light detected by the second detection means.
請求項4または請求項5に記載の光弾性測定装置において、
前記回転手段は、前記第1光学手段から測定対象物に向う偏光を透過させ、その光軸回りに回転させる光学素子である
ことを特徴とする光弾性測定装置。
In the photoelasticity measuring apparatus according to claim 4 or 5,
The photoelasticity measuring apparatus, wherein the rotating means is an optical element that transmits polarized light from the first optical means toward the measurement object and rotates the light around the optical axis.
JP2008260555A 2008-10-07 2008-10-07 Photo elasticity modulator and photo elasticity measuring device including the same Pending JP2010091716A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008260555A JP2010091716A (en) 2008-10-07 2008-10-07 Photo elasticity modulator and photo elasticity measuring device including the same
KR1020090092996A KR20100039227A (en) 2008-10-07 2009-09-30 Photoelastic modulator and photoelastic measuring apparatus including the same
TW098133680A TW201022718A (en) 2008-10-07 2009-10-05 Photoelastic modulator and photoelastic measuring apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260555A JP2010091716A (en) 2008-10-07 2008-10-07 Photo elasticity modulator and photo elasticity measuring device including the same

Publications (1)

Publication Number Publication Date
JP2010091716A true JP2010091716A (en) 2010-04-22

Family

ID=42215809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260555A Pending JP2010091716A (en) 2008-10-07 2008-10-07 Photo elasticity modulator and photo elasticity measuring device including the same

Country Status (3)

Country Link
JP (1) JP2010091716A (en)
KR (1) KR20100039227A (en)
TW (1) TW201022718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105397284A (en) * 2014-09-04 2016-03-16 株式会社迪思科 Laser Machining Apparatus
CN111122030A (en) * 2019-12-10 2020-05-08 同济大学 Reflection-transmission type dual-purpose photoelastic instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105397284A (en) * 2014-09-04 2016-03-16 株式会社迪思科 Laser Machining Apparatus
JP2016052672A (en) * 2014-09-04 2016-04-14 株式会社ディスコ Laser processor
CN111122030A (en) * 2019-12-10 2020-05-08 同济大学 Reflection-transmission type dual-purpose photoelastic instrument
CN111122030B (en) * 2019-12-10 2024-05-31 同济大学 Reflection-transmission type dual-purpose photoelastic instrument

Also Published As

Publication number Publication date
TW201022718A (en) 2010-06-16
KR20100039227A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
TWI467157B (en) Method and apparatus for measuring optically anisotropic parameters
KR20100134609A (en) Apparatus and method for measuring surface topography of an object
JP2001228123A (en) Measuring device for physical property of sample
JP5599790B2 (en) Method and apparatus for reducing optical interference and crosstalk of double optical tweezers using one laser light source
WO2012026054A1 (en) Internal fault inspection method and device
JP2010071989A (en) Method and instrument for detecting movement of measuring probe
TWI460413B (en) Method and appararus of measuring characters of a sample and non-transitory computer-readable medium
JP5588769B2 (en) Optical measuring device
JP5087753B2 (en) Photoelasticity measuring method and apparatus
JP5900970B2 (en) Surface plasmon sensor and method of measuring refractive index
WO2001061323A1 (en) Instrument for measuring physical property of sample
JP2010091716A (en) Photo elasticity modulator and photo elasticity measuring device including the same
WO2001061321A1 (en) Instrument for measuring physical property of sample
JP2009047685A (en) Photoelasticity measurement method and apparatus using the same
WO2008010482A1 (en) Optical elasticity measuring method and its device
CN108693247B (en) Laser surface acoustic wave detection system based on double measuring beams and use method thereof
KR101235274B1 (en) Long-term stabilized heterodyne interferometer and readout sensor for biochemical fluidic channel using the interferometer
JP2009085887A (en) Measuring device and method
JP2654366B2 (en) Micro polarimeter and micro polarimeter system
WO2020261685A1 (en) Optical device
JP2007256197A (en) Optical characteristic inspection device, and optical characteristic inspection system
JP2003097911A (en) Displacement measuring device and displacement measuring method using the same
JP2010091332A (en) Photoelasticity measuring method, and apparatus therefor
JP2024056589A (en) Optical rangefinder
JP2011179927A (en) Double refraction measuring method enhanced in precision using photoelastic phenomenon, and double refraction measuring instrument using the same