WO2008010482A1 - Optical elasticity measuring method and its device - Google Patents

Optical elasticity measuring method and its device Download PDF

Info

Publication number
WO2008010482A1
WO2008010482A1 PCT/JP2007/064076 JP2007064076W WO2008010482A1 WO 2008010482 A1 WO2008010482 A1 WO 2008010482A1 JP 2007064076 W JP2007064076 W JP 2007064076W WO 2008010482 A1 WO2008010482 A1 WO 2008010482A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflected
measurement
polarization
linearly polarized
Prior art date
Application number
PCT/JP2007/064076
Other languages
French (fr)
Japanese (ja)
Inventor
Takahisa Mitsui
Kazuyoshi Suzuki
Junichi Matsumura
Original Assignee
Keio University
Toray Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Toray Engineering Co., Ltd. filed Critical Keio University
Priority to JP2008525858A priority Critical patent/JPWO2008010482A1/en
Publication of WO2008010482A1 publication Critical patent/WO2008010482A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties

Definitions

  • the present invention relates to a photoelasticity measurement method and apparatus for measuring stress and strain acting on a measurement object having transparency such as a liquid crystal panel and a plasma display panel, and more particularly to a microscopic method.
  • the present invention relates to a technique for accurately measuring stress acting on each of two bonded substrates arranged with a gap.
  • the following method is known as a method for obtaining a stress acting on a measurement object having transparency such as a glass substrate.
  • the first method is to irradiate a measurement object held flat on a flat table, measure the reflected light that is reflected from the front and back surfaces of the measurement object, and change the reflected light.
  • the second method is to determine the difference and angle of the principal stress that acts on the measurement object from the change in the transmitted light that has passed through the measurement object among the light irradiated to the measurement object. Yes.
  • Non-Patent Document 1 Latest Stress 'Strain Measurement' Evaluation Technology (Page 49, Page 66) Supervision: Kozo Kawada Publication: General Technology Center Co., Ltd.
  • both the first and second methods function effectively for a single substrate, which is a measurement object having transparency, a plurality of materials having different optical characteristics, particularly refractive indexes, are laminated.
  • a single substrate which is a measurement object having transparency
  • materials having different optical characteristics, particularly refractive indexes are laminated.
  • the present invention has been made in view of such circumstances, and relates to a substrate in which a plurality of materials having different refractive indexes as optical characteristics are laminated, particularly a laminated substrate laminated with a minute gap.
  • a photoelasticity measurement method and apparatus capable of accurately classifying a substrate on which stress is applied, and accurately determining the amount of change in birefringence caused by the stress acting on the substrate and the difference and angle of principal stress.
  • the main purpose is to provide. Means for solving the problem
  • the present invention has the following configuration.
  • At least measurement is performed when irradiation light having a central wavelength force having a wavelength distribution in a predetermined range is irradiated to a measuring object having transparency and a reference surface.
  • the object is irradiated with linearly polarized light in a predetermined first direction
  • the polarized light component in the second direction orthogonal to the first direction and the reference surface force reflected light that is generated by the change in the polarization state are reflected and returned from the measurement target surface of the predetermined layer of the measurement object.
  • the linearly polarized light in the first direction is irradiated toward the measurement object, and the other polarized light is irradiated on the reference surface.
  • the linearly polarized light irradiated on the object to be measured is transmitted through a plurality of layers and reflected back from the front and back surfaces of each layer.
  • the polarization state of the linearly polarized light in the first direction reflected and returned changes.
  • the linearly polarized light in the second direction orthogonal to the linearly polarized light in the first direction in which the polarization state has changed is extracted from all reflected light reflected from the measurement object.
  • the extracted linearly polarized light in the second direction and the reflected light reflected from the reference surface Are combined so as to pass through the same optical path, causing interference.
  • the light intensity of the interference light by the same polarization components is further obtained from the two reflected lights that are superimposed.
  • the obtained light intensity change force polarization change information obtained by the birefringence in the object to be measured is obtained.
  • the thickness of the measurement object can also be calculated simultaneously by acquiring the light intensity of the interference light while moving at least one of the measurement object or the reference surface back and forth in the light traveling direction. That is, if the optical distance between the layers of the measurement object and the reference surface light intensity substantially coincides with the optical distance between the layers of the measurement object, the light intensity varies due to interference.
  • the horizontal axis is the moving distance of the object to be measured or the reference surface and the vertical axis is the light intensity
  • the change in the light intensity is plotted on a graph and the envelope of the absolute value of the light intensity is taken.
  • the distance between the peaks coincides with the optical distance between the layers of the measurement object. Therefore, the distance force between the peaks and the thickness of the measurement object can be calculated simultaneously.
  • the light intensity at which the light intensity of the interference light is maximized by moving the reference surface or the measurement target surface! /, Or back and forth with respect to the traveling direction of the irradiation light. It is preferred to obtain information U ⁇ (claim 2).
  • the light intensity information power at this time can also obtain an accurate amount of change in birefringence, and thus, the difference in principal stress of the predetermined layer can be accurately obtained.
  • the phases of the both reflected light constituting the interference light are separated into approximately half so that the phases are shifted by half wavelength, and the difference between the two phases after separation is taken to obtain the interference light. It is preferable to remove the direct component of the light intensity (Claim 3).
  • both phases are inverted by 180 ° by shifting the phases of both reflected lights causing interference by a half wavelength.
  • a periodic relationship is obtained from the relationship between the amount of movement of the reference surface or the measurement target surface and the light intensity of the interference light, and the realization of this periodic relationship. It is preferable to compare the phase with a predetermined reference phase and, based on the result, determine whether the difference in principal stress acting on the predetermined layer of the object to be measured is a force compression force, which is a tension. (Claim 4).
  • the linearly polarized light irradiated to the measurement target surface and the measurement target surface are rotated relative to each other around the optical axis of the linearly polarized light, and the polarization change due to birefringence is changed at each rotation angle. It is preferable to obtain information on the amount of change and obtain the difference and angle of the principal stress acting on the measurement object from both the information on the amount of change in polarization and the information on the rotation angle (claim 5).
  • the rotation angle is at least two angles, and it is preferable to obtain the angle of the principal stress difference by changing the direction of the linearly polarized light of the light irradiated from each angle (Claim 6).
  • the light intensity value of the interference light obtained at each rotation angle (for example, two angles) is subjected to a beta conversion, a vector of both rotation angles is synthesized, and the principal stress is calculated from the angle indicated by the vector synthesis.
  • the difference angle can be specified.
  • At least irradiation light having a wavelength distribution in a predetermined range from the center wavelength is irradiated to a measurement target having a plurality of layers and a reference surface at least.
  • the object to be measured is irradiated with substantially circularly polarized light in which a linearly polarized light in a predetermined first direction is shifted by 45 ° from a second direction component that is 45 ° different from the first direction.
  • the reflected light reflected from the measurement target surface of the predetermined layer of the measurement target is matched with the optical path length of the reflected light returning from the reference surface, and the reflected light from the measurement target surface is the second direction component.
  • 1Z4 wavelength shifted back to almost linear polarization, and the polarization state changed The polarization component in the third direction orthogonal to the first direction caused by the above is extracted, and the polarization component in the third direction and the reflected light returning from the reference surface force are combined so as to cause interference in the same optical path.
  • the irradiation light is applied to both the measurement object and the reference surface.
  • at least the surface to be measured is irradiated with the linearly polarized light in the first direction converted into substantially circularly polarized light.
  • the substantially circularly polarized light applied to the object to be measured passes through a plurality of layers and is reflected on the front and back surfaces of each layer.
  • the polarization state of the substantially circularly polarized light that is reflected back changes, that is, changes to elliptically polarized light.
  • the polarization component in the original first direction is extracted with this polarization state.
  • the linearly polarized light in the third direction orthogonal to the linearly polarized light in the first direction is extracted from all the reflected light reflected by the measurement object.
  • the linearly polarized light in the third direction and the reflected light reflected by the reference surface force are combined so as to pass through the same optical path, causing interference.
  • the light intensity of the interference light by the same polarization components is further obtained from the two reflected lights that are superimposed.
  • the obtained light intensity change force polarization change information obtained by the birefringence in the object to be measured is obtained.
  • an unknown parameter is obtained among the amount of change in birefringence caused by the stress applied to the predetermined layer to be measured, the thickness of the measurement object, and the photoelastic coefficient.
  • the parameters are aligned, the difference in principal stress acting on a given layer can be determined easily and accurately, and as a result, stress is applied to any of the multiple layers! You can also do additional IJ.
  • the light intensity at which the light intensity of the interference light is maximized by moving back and forth of the reference surface or the measurement target surface relative to the traveling direction of the irradiation light. It is preferable to obtain information U ⁇ (claim 8). [0025] In this case, by acquiring the light intensity information that maximizes the light intensity of the interference light, it is possible to easily discriminate that the stress is acting on the predetermined layer to be measured. In addition, the exact amount of change in birefringence can be obtained from the light intensity information at this time, and as a result, the difference in principal stress of the predetermined layer can be obtained with high accuracy.
  • the phases of the two reflected lights constituting the interference light are separated into approximately half so that they are shifted by a half wavelength, and the difference between the two phases after separation is taken to obtain the interference light. It is preferable to remove the direct component of the light intensity (claim 9).
  • both phases are inverted by 180 ° by shifting the reflected light by half a wavelength.
  • the circularly polarized light and the measurement object are relatively moved so that the measurement object surface orthogonal to the propagation direction of the irradiated circularly polarized light moves on the vertical plane. It is preferable to acquire information on the amount of change in polarization due to birefringence at a plurality of points in the process, and to estimate the direction of the stress acting on a predetermined layer of the measurement object from the distribution state (claim 10). In this case, it functions effectively to estimate the angle of principal stress when using substantially circular polarized light.
  • an eleventh aspect of the invention is directed to irradiation means for outputting irradiation light having a central wavelength force and a wavelength distribution in a predetermined range;
  • the irradiation light from the irradiating means is separated into two linearly polarized lights, and the separated linearly polarized light in the first direction is output to a measuring object having a plurality of layers and the other second polarized light.
  • Extraction means for extracting a second direction component of reflected light from the measurement target surface of the predetermined layer
  • Means, At least one of the measurement object and the reference surface is a straight line so that the optical path length of the reflected light returning from the measurement target surface of the predetermined layer to the coupling means and the reflected light returning from the reference surface to the coupling means match.
  • a detecting means for detecting a light intensity change of the same polarization component of the superimposed reflected light a calculating means for obtaining polarization change amount information due to birefringence based on a detection result of the detecting means;
  • the linearly polarized light in the first direction out of the irradiation light separated into two linearly polarized light by the separating means is applied to the measuring object composed of a plurality of layers. And the other linearly polarized light in the second direction is output toward the reference plane.
  • Each linearly polarized light is reflected when it reaches the output destination.
  • the transmitted linearly polarized light is reflected on the front and back surfaces of each layer. The reflected light reflected from the plurality of surfaces changes its polarization state in the process of reciprocating through the layer when stress is applied to the predetermined layer.
  • the coupling means causes the extracted polarized component and the reflected light from the reference surface to interfere together so as to pass through the same optical path.
  • the moving means moves at least one of the measurement object or the reference surface back and forth in the direction of travel of the linearly polarized light, thereby returning to the coupling means.
  • the optical path length to the reference surface force coupling means matches either one of the linearly polarized light in the second direction that is reflected back.
  • both optical path lengths coincide with each other, only the reflected light that reciprocates through the predetermined layer having the back surface can be extracted by the extraction means, and the extracted polarization component and the reflected light from the reference surface can be extracted.
  • the light intensity change of the same polarization component is detected by the detection means. Then, based on the detection result, the calculation means obtains polarization change information due to birefringence at the measurement object. That is, the first method invention can be suitably realized.
  • the irradiation means, the reference surface, the separation means, the extraction means, and the coupling hand It is preferable to provide a rotation drive means for relatively rotating the optical system consisting of the stage and the detection means and the measurement object around the optical axis of the linearly polarized light output from the optical system to the measurement object ( Claim 12).
  • the angle of the principal stress can be specified by vector synthesis using both the value obtained by vector conversion of the interference light intensity, which is information on the amount of change in the plurality of polarizations, and the rotation angle information. That is, the fifth and sixth method inventions can be suitably realized.
  • the moving amount when the moving means moves the reference surface or the sample of the same article as the object to be measured is shifted and the light intensity of the interference light
  • the relationship force of the periodic relationship is also obtained experimentally
  • the storage means stores the reference phase of the periodic relationship in advance
  • the calculation means stores the real phase of the periodic relationship based on the actual measurement of the measurement object and the storage means. It is preferable to compare the read reference phase and determine whether the difference in the principal stress acting on the specified layer of the object to be measured is a force compressive force, which is a tension. Section 13).
  • the fourteenth invention comprises an irradiating means for outputting irradiation light having a central wavelength force and a wavelength distribution in a predetermined range;
  • the irradiation light from the irradiating means is separated into two linearly polarized lights, and the separated linearly polarized light in the first direction is output to a measuring object having a plurality of layers and the other second polarized light.
  • First conversion means for converting linearly polarized light that is separated by the separating means and directed toward the measurement object into a substantially circularly polarized light by shifting a third direction component that is 45 ° different from the first direction by 1Z4 wavelength;
  • Second conversion means for converting the reflected light reflected and returned from the measurement target surface of the predetermined layer into substantially linearly polarized light by shifting the third direction component by 1Z4 wavelength;
  • Extraction means for extracting a polarization component in a third direction orthogonal to the first direction, which is caused by a change in polarization state, of reflected light that has been substantially linearly polarized by the second conversion means; and A coupling means for causing interference in such a way that polarization components in three directions and reflected light returning from the reference surface pass along the same optical path;
  • At least one of the measurement object and the reference surface is a straight line so that the optical path length of the reflected light returning from the measurement target surface of the predetermined layer to the coupling means and the reflected light returning from the reference surface to the coupling means match.
  • a detecting means for detecting a light intensity change of the same polarization component of the superimposed reflected light a calculating means for obtaining polarization change amount information due to birefringence based on a detection result of the detecting means;
  • the linearly polarized light in the first direction out of the irradiation light separated into two linearly polarized light by the separating means is applied to the measuring object composed of a plurality of layers. And the other linearly polarized light in the second direction is output toward the reference plane.
  • the linearly polarized light in the first direction toward the measurement object is converted into substantially circularly polarized light by the first conversion means.
  • Each linearly polarized light is reflected when it reaches the output destination.
  • the transmitted substantially circularly polarized light is reflected on the front and back surfaces of each layer.
  • the reflected light reflected by these surfaces changes its polarization state in the process of reciprocating through the layer when stress is applied to the predetermined layer. That is, approximately circular polarization power changes to elliptical polarization.
  • the elliptically polarized light is further returned to substantially linearly polarized light in the first direction by the second conversion means. Then, only the polarization component in the third direction orthogonal to the first direction is extracted by the extraction means.
  • the extracted polarization component and the reflected light having the reference surface force are combined so as to pass through the same optical path by the coupling means, and interference occurs.
  • the moving means moves at least one of the measurement object or the reference surface back and forth in the traveling direction of the polarization, thereby combining means.
  • the optical path length from the reference surface to the coupling means coincides with one of the substantially circularly polarized light in the first direction that is reflected back from the plurality of layers that return.
  • the light intensity of the interference light of an arbitrary layer to be measured becomes maximum.
  • this light intensity reaches a maximum, a change in the light intensity of the same polarization component of the reflected light of the measurement target force and the reflected light of the reference surface force is detected by the detection means.
  • the calculation means obtains polarization change information due to birefringence at the measurement object. That is, the seventh method invention can be suitably realized.
  • the moving means moves at least one of the measurement object and the reference surface back and forth in parallel with the traveling direction of the light, and the detecting means interferes with the movement process.
  • the light intensity of the light is sequentially detected, and the calculation means obtains the maximum value of the light intensity of the interference light based on the detection result of the detection means, and obtains the information on the amount of change in polarization due to the resulting birefringence.
  • Preferred (claim 15) That is, according to this configuration, the second and eighth method inventions can be suitably realized.
  • an optical means for separating the light into approximately half so that the phases of the both reflected light constituting the interference light caused by the coupling means are shifted by a half wavelength.
  • the means preferably obtains information on the amount of change in polarization due to birefringence by removing the direct current component of the light intensity of the interference light based on the difference between both phases of the reflected light after separation (claim 16). That is, according to this configuration, the third and ninth inventions can be suitably realized.
  • the photoelasticity measurement method and apparatus irradiates the measurement object and the reference surface with light, and extracts only the polarization component whose polarization state has changed from the reflected light of the measurement object force.
  • the polarization component By causing interference between the polarization component and the reflected light of the reference surface force, it is possible to extract the amount of change in birefringence caused by the effect of stress acting on an arbitrary layer.
  • the amount of change in birefringence can be obtained with high accuracy the difference in principal stress acting on an arbitrary layer, and thus the layer on which the stress is applied can be separated.
  • FIG. 1 is a diagram showing a schematic configuration of an apparatus for realizing a photoelasticity measurement method according to Embodiment 1.
  • FIG. 2 is a diagram showing a detection state of the light intensity of interference light.
  • FIG. 3 is a diagram showing a detection state of the light intensity of interference light.
  • FIG. 4 is a diagram showing a detection state of the light intensity of the interference light.
  • FIG. 5 is a diagram illustrating a schematic configuration of an apparatus for realizing the photoelasticity measurement method according to the second embodiment.
  • FIG. 6 is a diagram showing a configuration of first and second polarimeters in the apparatus of the second embodiment.
  • FIG. 7 is a diagram showing a configuration of a modified device.
  • FIG. 1 is a diagram showing a schematic configuration of an apparatus using the photoelasticity measurement method of the present invention.
  • the apparatus of this example is a measurement object W in which two transparent glass substrates Wl and W2, such as a liquid crystal panel and a plasma display, are held on a flat mounting table 60 at a minute interval.
  • the center frequency force is an optical system that emits light having a wavelength distribution within a predetermined range.
  • Knit 1 control system unit 2 that controls optical system unit 1, and reflected light output from optical system unit 1 are used to reciprocate and transmit the measurement object, thereby reducing the stress acting on the predetermined layer.
  • a polarization component whose polarization state has changed due to the influence is extracted, and a polarimeter 3 for detecting the light intensity of the interference light generated by using this polarization component.
  • the control system unit 2 includes an arithmetic processing unit 15 that obtains polarization change amount information based on the light intensity detected by the polarimeter 3.
  • the optical system unit 1 includes a collimating lens 5, a polarizing plate 6, a first polarizing beam splitter 7, an objective lens 8, and a second polarizing beam beam on an optical path irradiated from the light source 4 toward the measurement object W. They are deployed in the order of Plitter 9.
  • a condensing lens 10 and a photodiode 11 are arranged on the optical path of light that is separated by the first polarization beam splitter 7 and travels in a direction different from the measurement target W.
  • a polarizing plate 12 and a reference mirror 13 are arranged on the optical path of light that is separated by the second polarizing beam splitter 9 and travels in a direction different from the measurement target W.
  • the light source 4 generates light having a relatively wide frequency band.
  • a super luminescent diode having a band of 7 90 ⁇ 20 nm is used.
  • the light generated from the light source 4 is collimated by the collimating lens 5 and travels toward the polarizing plate 6.
  • the light source 4 corresponds to the irradiation means of the present invention.
  • the polarizing plate 6 is arranged at 45 °. Among the random polarized light irradiated from the light source 4, the initial linearly polarized light having a polarization plane of 45 ° is extracted, and this linearly polarized light is extracted into the first polarizing beam splitter 7. Turn to.
  • the first polarization beam splitter 7 transmits linearly polarized light having a polarization plane of 45 °. That is, linearly polarized light having a polarization plane of 45 ° that has passed through the polarizing plate 6 passes as it is. Further, the first polarization beam splitter 7 directs the polarization component returned from the second polarization beam splitter 9 to the photodiode 11.
  • the polarization plane does not rotate and the initial polarization
  • the polarization component returning while maintaining the state is also returned to the first polarization beam splitter 7 by the second polarization beam splitter 9, and this first polarization beam splitter 7 directs the returned polarization component to the photodiode 11.
  • the photodiode 11 detects the light of the polarization component returning from the second polarization beam splitter 9, and transmits a detection signal to the arithmetic processing unit 15 of the control system 2 described later.
  • the objective lens 8 is a lens that condenses the incident linearly polarized light toward the measurement target W and the reference mirror 13 on the downstream side.
  • the linearly polarized light collected by the objective lens 8 reaches the second polarization beam splitter 9.
  • the second polarization beam splitter 9 separates the light collected by the condenser lens 8 into a set of orthogonal linearly polarized light. That is, the measurement light in the first direction directed to the measurement object W and the reference light in the second direction directed to the reference mirror 13 are separated. In addition, the second polarization beam splitter 9 recombines the reference light and the measurement light that are reflected by the measurement object W and the reference mirror 13 and return on the same optical path.
  • the second polarizing beam splitter 9 functions as the separating means, extracting means, and combining means of the present invention.
  • the polarizing plate 12 is disposed on the optical path of the reference light from the second polarizing beam splitter 9 to the reference mirror 13, and transmits the linearly polarized light from the second polarizing beam splitter 9 to the polarizing surface. Is changed to linearly polarized light inclined at 45 °, and the reference light whose polarization state has changed is reflected by the reference mirror 13 and returned to the second polarizing beam splitter 9.
  • the reference mirror 13 is mounted perpendicular to the traveling direction of the reference light.
  • the reference light reflected by the reference mirror 13 is returned to the second polarization beam splitter 9 through the same optical path. Further, the reference mirror 13 is configured to be able to move a minute distance back and forth with respect to the traveling direction of the reference light by the operation of the piezo element 14.
  • the reference mirror 13 corresponds to the reference surface of the present invention, and the piezo element 14 corresponds to the moving means of the present invention.
  • the condensing lens 10 is a lens that condenses the linearly polarized light from the second polarizing beam splitter 9 toward the photodiode 11.
  • the polarimeter 3 includes condensing lenses 20 and 21 for condensing the linearly polarized lights separated by the third polarizing beam splitter 19 and the third polarizing beam splitter 19, and condensing lenses 20, 21.
  • 1st photodiode 22 and 2nd photodiode that receive linearly polarized light from It consists of 23 and.
  • each configuration will be specifically described.
  • the objective lens 18 is a lens that converts the linearly polarized light from the second polarization beam splitter 9 into parallel light toward the third polarization beam splitter 19.
  • the third polarization beam splitter 19 is disposed at 45 °, and is divided in half so that the phases of the measurement light and the reference light returning on the same optical path extracted by the second polarization beam splitter 9 are shifted by a half wavelength.
  • the separated linearly polarized light is condensed by the condensing lenses 20 and 21 so as to reach the photodiodes 22 and 23.
  • the linearly polarized light composed of the measurement light and the reference light that are separated and aligned with each other at + 45 ° is directed to the first photodiode 22, and is measured with the 45 ° components aligned with each other.
  • Linear polarization force that also includes light and reference light power. It is configured to face the second photodiode 23.
  • the first and second photodiodes 22 and 23 output the detected signal level of the light intensity of the linearly polarized light to the calculator 24, respectively.
  • the first and second photodiodes 22 and 23 correspond to the detection means of the present invention.
  • the signal of the light intensity detected by both photodiodes 22 and 23 becomes an interference waveform as shown in FIGS. 2 and 3, and each phase is inverted by 180 °.
  • the arithmetic unit 24 synthesizes so as to take a difference in signal level corresponding to the light intensity value detected by both photodiodes 22 and 23.
  • both phases of the interference waveform detected by both photodiodes 22 and 23 are inverted by 180 °, they are synthesized so as to take the difference between the two light intensity values. .
  • the DC component of the interference waveform is removed, and only the interference light due to the birefringence change component reflected from the measurement object W is extracted.
  • control unit 2 includes an arithmetic processing unit 15, a drive control unit 16, an operation unit 17, and the like. Each configuration will be specifically described below.
  • the arithmetic processing unit 15 performs focusing of the interference light as the first process, and as a second process, based on the difference in main stress acting on the predetermined glass substrate W1 or W2 of the measurement object W. An unknown parameter among the amount of change in birefringence generated, the photoelastic coefficient, and the thickness of the glass substrate, and the stress acting on the predetermined glass substrate are obtained.
  • the arithmetic processing unit 15 corresponds to the arithmetic means of the present invention.
  • the photodiode 11 reflects the measurement object W and the reference mirror 13 from the reflected light that returns from the measurement object W and the reference mirror 13 without changing the polarization state.
  • the interference light intensity at which the lights interfere with each other is detected.
  • a command signal is transmitted to the drive control unit 16 to control the operation of the piezo element 14 while detecting the light intensity value sequentially detected by the photodiode 11 to thereby maximize the intensity of the interference light 13 Calculate the position of. That is, the position of the reference mirror 13 is also a position where the light intensity value of the interference light detected by the polarimeter 3 is maximum.
  • the light intensity incident on the photodiode 11 is greater than the light intensity incident on the polarimeter. Therefore, for example, when interference light is detected by the polarimeter 3, the birefringence variation force is too large, or the optical axis of the optical system is misaligned, especially because the measurement object W is not aligned properly. It can be determined that the light cannot be detected due to the deviation of the optical axis.
  • the drive control unit 16 moves the optical system unit 1 by a predetermined distance before and after the linearly polarized light traveling from the light source 4 toward the measurement target W according to the conditions set by the operation unit 17. Make it. That is, by driving and controlling a moving means (not shown) such as a Norse motor, the distance L1 from the second polarizing beam splitter 9 to the back surface of the glass substrate W1 and the distance L2 from the second polarizing beam splitter 9 to the reference mirror 13 The distance L3 from the second polarizing beam splitter 9 to the back surface of the glass substrate W 2 and the distance L4 from the second polarizing beam splitter 9 to the reference mirror 13 The optical system unit 1 is moved so that the distances of the respective groups of the two groups substantially coincide with each other.
  • a moving means such as a Norse motor
  • the drive control unit 16 controls the operation of the piezo element 14 so as to finely adjust the position of the reference mirror 13 so that the light intensity of the interference light is maximized according to the command signal from the arithmetic processing unit 15. I will do it.
  • the operation unit 17 is used to set and input various measurement conditions such as the thickness of the glass substrates W1 and W2, the photoelastic coefficient of each glass substrate, the material, the refractive index, and the distances L1 to L4 between the components. .
  • Measurement conditions are input from the operation unit 17, and measurement is started.
  • the drive control is performed so that the distance L1 from the second polarizing beam splitter 9 to the back surface of the glass substrate 1 is the same as the distance L2 from the second polarizing beam splitter 9 to the reference mirror 13, that is, the optical path lengths are substantially the same.
  • the drive control unit 16 controls the operation of a moving means such as a pulse motor (not shown) to move the optical system unit 1.
  • the optical system unit 1 When the optical system unit 1 reaches a position where both optical path lengths substantially coincide with each other, light is emitted from the light source 4. The irradiated light is converted into parallel light by the collimating lens 5, and then the polarization plane is changed to 45 ° linearly polarized light by the polarizing plate 6, and the first polarizing beam splitter 7 arranged at 45 ° in the subsequent stage is changed. Pass through to the second polarizing beam splitter 9.
  • the linearly polarized light collected by the objective lens 8 disposed in front of the second polarizing beam splitter 9 reaches the second polarizing beam splitter 9, it is separated into two orthogonal linearly polarized lights.
  • the separated linearly polarized light (measurement light) in the first direction (horizontal direction) passes back and forth through the glass substrates Wl and W2 toward the measurement object W, and the surface of each glass substrate Wl and W2 and And return to the second polarizing beam splitter 9.
  • the other linearly polarized light (reference light) in the second direction (vertical direction) is reflected by the reference mirror 13 and returned to the second polarizing beam splitter 9 to become linearly polarized light inclined by 45 ° by the polarizing plate 12.
  • the second polarization beam splitter 9 is a polarization component of the second direction orthogonal to the first direction generated by the change in the polarization state of the measurement light reflected and returned from each surface of the measurement object W. so Only a certain measurement light is extracted and directed to the polarimeter 3. At this time, the extracted measurement light in the second direction and the reference light returning from the reference mirror 13 are combined again so as to pass through the same optical path, thereby causing interference.
  • linearly polarized light is detected by the photodiode 11 via the upstream first polarization beam splitter 7 while the polarization state reflected and returned from the measurement object W changes.
  • the linearly polarized light in the second direction from the second polarizing beam splitter 9 toward the polarimeter 3 is collected by the condenser lens 18, and then the third polarization constituting the polarimeter 3 is formed.
  • a polarizing beam splitter 19 is reached.
  • the third polarization beam splitter 19 splits the linearly polarized light having the horizontal component force that has reached, into approximately half so that the phase is shifted by a half wavelength.
  • the + 45 ° components and 45 ° components of the measurement light and the reference light are combined and aligned with linearly polarized light in the same direction.
  • the linearly polarized light having a horizontal component force is condensed by the condensing lens 20 and detected by the first photodiode 22.
  • the linearly polarized light composed of the vertical component is collected by the condenser lens 21 and detected by the second photodiode 23.
  • Both linearly polarized lights received by the respective photodiodes 22 and 23 are converted into respective light intensity values by the calculator 24 and subtracted. At this time, since the phases of both linearly polarized light are inverted by 180 °, the direct current component of the reference light reflected from the reference mirror 13 is removed, and only the interference component of the measurement light is obtained.
  • the light intensity value of the interference component is input to the arithmetic processing unit 15, and the arithmetic processing unit 15 obtains the difference between the birefringence change amount information and the principal stress.
  • the drive control unit 16 controls the moving means to move the optical system unit 1.
  • the back surface force of the glass substrate W2 is also controlled by operating the piezo element 14 so that the optical distance between the distance L3 from the second polarizing beam splitter 9 and the optical distance L4 from the reference mirror 13 to the second polarizing beam splitter 9 is After adjusting so as to be approximately the same, the same processing as that for the glass substrate W1 is performed to obtain information on the amount of change in birefringence of the glass substrate W2 and the difference between principal stresses.
  • the optical system unit 1 is moved so that the distance from the second polarizing beam splitter 9 to the reference mirror 13 and the optical path length to the back surfaces of the glass substrates Wl and W2 are substantially matched.
  • the measurement light and reference light reflected back from the back surface of the substrates W1 and W2 and the reference mirror 13 are used, it is possible to accurately obtain the difference between the birefringence change information and the principal stress of any layer to be measured. .
  • the plane of polarization of the measurement light returning from the measurement object force on which the stress is acting changes, only the polarization component in the second direction orthogonal to the first direction is extracted by the second polarization beam splitter 9.
  • This polarization component and the reference light returning from the reference mirror 13 can be combined so as to pass through the same optical path to cause interference, and this interference light can be reflected and output toward the polarimeter 3.
  • the phase of the linearly polarized light in the second direction which is the reference light and the measurement light power, is further separated by half a wavelength, and the polarization components are aligned with each other, so that they are compounded by the difference in principal stress acting on the glass substrate. Only the refracted polarization component can be detected as the light intensity of the interference light.
  • the amount of change in birefringence caused by the difference in principal stress acting on an arbitrary layer of a measurement target having a plurality of layers and having transparency is obtained.
  • the angle between the principal stress acting on the layer and the principal stress difference can be determined arbitrarily.
  • the stress acting on each of the layers can be accurately classified by the vector component obtained from the angle of the main stress difference.
  • the magnitude and direction of the stress acting on each of the plurality of layers can be accurately determined based on the angle of the main stress difference and the vector component obtained.
  • Example 1 the light emitted from the light source 4 is used after being converted into linearly polarized light.
  • circularly polarized light is used as the polarized light output toward the measurement object W.
  • the same components as those in the above embodiment will be denoted by the same reference numerals, and different components will be specifically described.
  • FIG. 5 is a diagram showing a schematic configuration of a photoelasticity measurement apparatus using circularly polarized light according to the present invention.
  • the optical system unit 1, the control system unit 2, and the first polarimeter 3 of the apparatus of this embodiment are configured.
  • the optical system unit 1 also measures the superluminescent diode force that is the light source 30 as an object to be measured.
  • a collimating lens 31 On the optical path irradiated toward W, a collimating lens 31, a polarizing plate 32, a first polarizing beam splitter 33, and a quarter-wave plate 35 arranged at 45 ° are arranged in this order.
  • a 1Z4 wavelength plate that is output from the first polarizing beam splitter 33 toward the measurement object W, reflected by the measurement object W, and reflected on the measurement light W toward the polarimeter 3 is reflected by a reflection mirror 36, ⁇ 45 °. 37, reflecting mirror 38, polarizing plate 39, and second polarizing beam splitter 40 are arranged in this order.
  • a reference mirror 41 is provided on the optical path of the light that is separated by the first polarization beam splitter 33 and travels in a direction different from that of the measurement object W, and is further reflected by the reference mirror 41 to the polarimeter 3.
  • Reflecting mirrors 42 and 43, a polarizing plate 44, and a second polarizing beam splitter 40 are arranged in this order on the optical path of the reference light. Each configuration will be specifically described below.
  • the polarizing plate 32 is arranged at 45 °, and converts the parallel light from the collimating lens 31 into initial linearly polarized light having a polarization plane of 45 ° and directs this linearly polarized light to the first polarizing beam splitter 33. .
  • the first polarization beam splitter 33 is configured to measure linearly polarized light that has arrived from the polarizing plate 32, that is, measurement light in a first direction that is directed toward the measurement object W, and second light that is directed toward the reference mirror 13. Separated into reference light in direction.
  • the first polarization beam splitter 33 corresponds to the separation means of the present invention.
  • the 1Z4 wavelength plate 35 arranged at 45 ° changes the linearly polarized light into substantially circularly polarized light by allowing the measurement light that is linearly polarized light in the third direction to pass therethrough.
  • the 1Z4 wavelength plate 37 arranged at ⁇ 45 ° corresponds to the first conversion means of the present invention.
  • the reflection mirror 36 further reflects the reflected light reflected on each surface of the glass substrates Wl and W2 constituting the measurement object W, and the incident optical path is arranged on a different optical path at 45 °. Guide to the 1Z4 wave plate 37 of the arrangement.
  • the 1Z4 wavelength plate 37 arranged at 45 ° returns the reflected light reflected from each surface of the measurement target W to the inside thereof, thereby returning it to substantially linearly polarized light.
  • the polarization plane of the circularly polarized light rotates slightly and changes to elliptically polarized light.
  • This elliptically polarized light is passed through and converted to linearly polarized light including the amount of change in birefringence.
  • the 1Z4 wave plate 37 arranged at ⁇ 45 ° corresponds to the second conversion means of the present invention.
  • the reflection mirror 38 passes the measurement light, which has been converted into substantially linearly polarized light by the quarter-wave plate 37 arranged at 45 °, through the polarizing plate 39 and directs it to the second polarizing beam splitter 40.
  • the second polarization beam splitter 40 is arranged at a position where the measurement light reflected from the measurement object W and the reference light reflected from the reference mirror 41 intersect. Then, the second polarization beam splitter 40 again combines the reference light and the measurement light that are reflected by each measurement object W and the reference mirror 13 and return on the same optical path. At this time, only the polarization component whose polarization state has changed is extracted from the measurement light reflected and returned, and this polarization component is directed to the polarimeter 3 side, and the polarization component without change in the polarization state is the second stage. 2 Point to polarimeter 45. Note that the second polarization beam splitter 40 functions as the extracting means and the combining means of the present invention.
  • the reference mirror 41 reflects the reference light in a direction different from the reference light at the time of incidence.
  • the reflected reference light is further directed to the subsequent polarizing plate 44 by two reflecting mirrors 42 and 43.
  • the reference mirror 41 is configured to be able to move back and forth with respect to the traveling direction of the reference light by the operation of the piezo element 14.
  • the reference mirror 41 corresponds to the reference surface of the present invention.
  • the polarizing plate 44 is arranged at 45 °, and changes the reference light transmitted through the inside into 45 ° linearly polarized light. That is, the reference light is converted into linearly polarized light that differs by 90 ° by the action of the polarizing plate 32 and the polarizing plate 44 in the previous stage, and reaches the second polarizing beam splitter 40.
  • the first polarimeter 3 includes a third polarization beam splitter 46 and a first photodiode 22 that receives each linearly polarized light separated by the third polarization beam splitter 46.
  • the second photodiode 23 and the arithmetic unit 24 are included.
  • each configuration will be described in detail.
  • the third polarization beam splitter 46 is arranged at 45 °, and is halved so that the phases of the measurement light and the reference light returning on the same optical path extracted by the second polarization beam splitter 40 are shifted by half a wavelength.
  • the separated linearly polarized light is condensed by the condensing lenses 20 and 21 so as to reach the photodiodes 22 and 23. That is, in the case of the present embodiment, the measurement light and the linearly polarized light that also has the reference light power separated and aligned with the horizontal components are the first photo diode.
  • the linearly polarized light composed of the measurement light and the reference light that are aligned with each other in the vertical direction is directed to the second photodiode 23.
  • the first and second photodiodes 22 and 23 output signals of detected light intensity values of polarized light to the calculator 24, respectively.
  • the arithmetic unit 24 synthesizes so as to take a difference in signal level corresponding to the light intensity value detected by both the photodiodes 22 and 23 shown in FIG. 2 and FIG.
  • both phases of the interference waveform detected by both photodiodes 22 and 23 are inverted by 180 °, they are combined so as to take the difference between the two light intensity values.
  • the DC component of the interference waveform is removed, and only the interference light due to the birefringence change component reflected from the measurement object W is extracted.
  • the second polarimeter 45 has the same configuration as the first polarimeter 3, and includes a third polarizing beam splitter 46 and first and second photodiodes 22 and 23.
  • the second volatilizer 45 uses the polarized light separated by the third polarization beam splitter 40, and among the reflected light from the measurement object W and the reference mirror 41, the measurement object W and the reference mirror 41 The intensity of interference light in which reflected lights returning without changing the polarization state interfere with each other is detected. This signal is sent to the processing unit 15.
  • the control unit 2 has the same configuration as that of the first embodiment, and includes an arithmetic processing unit 15, a drive control unit 16, an operation unit 17, and the like.
  • Section 16 Force Moves the optical system unit 1 by controlling the operation of moving means such as a pulse motor, not shown.
  • the optical system unit 1 When the optical system unit 1 reaches a position where the optical path lengths substantially coincide with each other, light is emitted from the light source 30.
  • the irradiated light is collimated by a collimating lens 31 and then is polarized by a polarizing plate 32. Therefore, the polarization plane is changed to 45 ° linearly polarized light and reaches the first polarizing beam splitter 33.
  • the linearly polarized light is separated into two linearly polarized light orthogonal to each other by the first polarization beam splitter 33.
  • the separated linearly polarized light in the first direction (horizontal direction) is directed to the measurement object W.
  • the other linearly polarized light in the second direction (vertical direction) is directed to the reference mirror 41.
  • the linearly polarized light directed toward the measurement object W is transmitted through the 1Z4 wavelength plate 35 arranged at 45 °.
  • the measurement light that is linearly polarized light is changed to measurement light that is substantially circularly polarized light.
  • This measurement light is reflected on the front and back surfaces of each measurement object Wl, W2 in the process of passing through the glass substrates Wl, W2 while facing the measurement object W.
  • the measurement light is converted into circularly polarized light and elliptically polarized light in the process of reciprocating transmission.
  • the elliptically polarized measurement light is reflected obliquely and directed to the reflection mirror 42 because the measurement object W is arranged in an obliquely inclined posture.
  • the measurement light reaching the reflection mirror 36 is directed to the 1Z4 wavelength plate 37 arranged at ⁇ 45 °.
  • the measurement light that has reached the quarter-wave plate 37 arranged at ⁇ 45 ° is transmitted through the inside and returned to linearly polarized light including the amount of change in birefringence.
  • the measurement light that has passed through the 1Z4 wavelength plate 37 disposed at 45 ° and returned to linearly polarized light is reflected by the reflecting mirror 38 and reaches the second polarizing beam splitter 40.
  • the reference light that is linearly polarized light in the second direction separated by the other first polarizing beam splitter 33 is reflected in an oblique direction different from the incident direction by the reference mirror 41 arranged in an obliquely inclined posture. .
  • the reference light is reflected in the order of the reflection mirrors 42 and 43, passes through the polarizing plate 44, and reaches the second polarizing beam splitter 40.
  • the second polarization beam splitter 40 reflects the polarization component in the second direction caused by the change in the polarization state of the measurement light reflected and returned from each surface of the measurement object W and the reference mirror 41.
  • the polarized light component in the first direction is extracted from the reference light that has passed through the polarizing plate 44 after being emitted, and is caused to interfere with the first polarimeter 3 so as to pass through the same optical path.
  • the second polarization beam splitter 40 includes a polarization component in the first direction, which is a component of the measurement light reflected and returned from each surface of the measurement object W and whose polarization state does not change.
  • the polarized light component in the second direction is extracted from the reference light that has passed through the polarizing plate 44 after being reflected by the reference mirror 41, and causes the second polarimeter 45 to collectively interfere so as to pass through the same optical path.
  • the third polarization beam splitter 46 of the first polarimeter 3 separates the linearly polarized light composed of the horizontal components of the measurement light and the reference light that have arrived into approximately half so that the phase is shifted by a half wavelength.
  • linearly polarized light having a horizontal component force is condensed by the condenser lens 20 and detected by the first photodiode 22.
  • the linearly polarized light, which is the vertical component is collected by the condenser lens 21 and detected by the second photodiode 23.
  • the photodiodes 22 and 23 are combined so as to obtain a difference in signal level according to the light intensity value detected.
  • the phases of the interference waveforms detected by both photodiodes 22 and 23 are inverted by 180 °, so that they are combined so as to obtain the difference between the two light intensity values.
  • the DC component of the interference waveform shown in Fig. 4 is removed.
  • the light intensity value of the interference component is input to the arithmetic processing unit 15, and the arithmetic processing unit 15 obtains the difference between the birefringence change amount information and the principal stress.
  • the fourth polarization beam splitter 46 of the second polarimeter 45 separates the linearly polarized light composed of the horizontal components of the measurement light and the reference light that have arrived into approximately half so that the phase is shifted by a half wavelength.
  • the horizontal components and the vertical components of the measurement light and the reference light are combined and aligned with linearly polarized light in the same direction.
  • linearly polarized light having a horizontal component force is condensed by the condenser lens 20 and detected by the third photodiode 22.
  • the linearly polarized light, which is the vertical component is collected by the condenser lens 21 and detected by the fourth photodiode 23.
  • the interference waveform corresponding to the linearly polarized light composed of the horizontal components of the measurement light and the reference light can be detected.
  • the phase of this waveform can be used as a reference phase for determining whether the difference in main stress applied to a predetermined layer of the measurement object is a force or compressive force.
  • the reference phase is a relational force between the amount of movement when either the reference mirror 41 or the measurement target surface W is moved and the light intensity of the interference light. Relational force Indicates the phase to be obtained.
  • the light intensity of the interference light is used to act on an arbitrary layer of the measuring object having a plurality of layers of transparency.
  • the amount of change in birefringence caused by the difference in principal stress can be obtained, and by using this amount of change in birefringence, the difference in principal stress acting on any layer can also be obtained. . That is, it is possible to accurately separate the stress acting on each of the plurality of layers.
  • a half mirror is used instead of the first polarizing beam splitter 7 and the second polarizing beam splitter 9 in Example 1 on the optical path irradiated from the light source 4 and directed to the measurement object W.
  • 50 and polarization beam splitter 51 are arranged in order, and return from measurement object W and reference mirror 13 Of the polarized light, the measurement light with its polarization plane reflected back from measurement object W and reflected from reference mirror 13 is reflected.
  • the reference light guided through the plurality of reflecting mirrors 42 and 43 may be collectively output to the polarimeter 3.
  • the half mirror 50 corresponds to the separation means of the present invention, and the polarization beam splitter 51 functions as the extraction means and the coupling means of the present invention.
  • the object to be measured W and the optical system unit are rotated relative to each other around the optical axis, the difference and angle of principal stresses in a plurality of directions are obtained, and the direction at each rotation angle is determined. May be obtained by the arithmetic processing unit 15 to obtain the magnitude and direction of the stress acting on the measurement target W.
  • the optical system unit 1 itself may be rotated around the optical axis, or the measurement object W or turn the mounting table 60.
  • the force provided with the photodiode 11 and the second polarimeter 45 for obtaining the maximum value of the interference light From each polarization beam splitter 9, 33 to the measurement object W. If the distance between the polarizing beam splitters 9 and 33 and the distance from the reference mirrors 13 and 41 can be accurately adjusted in advance, this configuration may not be provided.
  • the measurement object W provided with the glass substrate is used.
  • the measurement object W is not limited to this form, and has a plurality of transmittances. What laminated
  • stacked the target object may be sufficient.
  • the optical path lengths of the reflected light reflected from the measurement object W and the reference mirror 13 are made to coincide with each other.
  • both reflected light returning from the measurement object W and the reference mirror 13 are passed through the diffraction grating and orthogonal to the second direction.
  • the maximum interference intensity required when the piezo element 14 is operated may be obtained by calculation by detecting the interference intensity of each wavelength and performing Fourier transform.
  • a super luminescent diode is used as the light source 4.
  • the present invention is not limited to this, and any light source may be used as long as it generates light in a predetermined frequency band.
  • it may be configured such that light having a halogen lamp power is limited to a predetermined frequency band by a band pass filter.
  • the apparatus of the present invention can be modified into a plurality of types of layouts by changing the type and number of mirrors of the optical element that is not limited to the above embodiment.
  • the present invention is suitable for determining the difference between V and principal stress acting on each layer of a workpiece having a multi-layer force having permeability, and its direction.

Abstract

A rectilinear polarized light changed into a rectilinear polarized light by a deflection plate (6) is separated by a second polarization beam splitter into a measurement light and a reference light which intersect orthogonally. Among measurement lights which have passed through a measurement object (W) and are reflected by a rear surface of a predetermined layer, a polarized component of the second direction orthogonally intersecting the first direction generated by a change of the polarized state and a rectilinear polarized light of the second direction reflected by a reference mirror are collected by the beam splitter so that they pass through the same optical path and generate interference and the interference light is outputted toward a polarimeter. The polarimeter removes a DC component so as to obtain an interference light intensity value. According to the light intensity value, it is possible to obtain birefringence change amount information, a main stress difference, and angle of respective layers of the measurement object (W) to which the stress is functioning.

Description

光弾性測定方法およびその装置  Photoelasticity measuring method and apparatus
技術分野  Technical field
[0001] 本発明は、液晶パネルやプラズマディスプレイパネルなどのような透過性を有する 測定対象物に作用する応力や歪みなどを測定するための光弾性測定方法およびそ の装置に係り、特に、微小間隙をおいて配備された 2枚の貼り合せ基板のそれぞれ の基板に作用している応力を精度よく測定する技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a photoelasticity measurement method and apparatus for measuring stress and strain acting on a measurement object having transparency such as a liquid crystal panel and a plasma display panel, and more particularly to a microscopic method. The present invention relates to a technique for accurately measuring stress acting on each of two bonded substrates arranged with a gap.
背景技術  Background art
[0002] ガラス基板のような透過性を有する測定対象物に作用している応力を求める方法と して、次のような方法が知られている。第 1の方法として、平坦なテーブルに平面保持 された測定対象物に光を照射し、測定対象物の表面および裏面力 反射して戻る反 射光を測定し、その反射光の変化力 測定対象物に作用している主応力の差と角度 を求めている。また、第 2の方法として、測定対象物に向けて照射した光のうち、測定 対象物を透過した透過光の変化から測定対象物に作用して!ヽる主応力の差と角度 を求めている。  [0002] The following method is known as a method for obtaining a stress acting on a measurement object having transparency such as a glass substrate. The first method is to irradiate a measurement object held flat on a flat table, measure the reflected light that is reflected from the front and back surfaces of the measurement object, and change the reflected light. The difference and angle of the main stress acting on The second method is to determine the difference and angle of the principal stress that acts on the measurement object from the change in the transmitted light that has passed through the measurement object among the light irradiated to the measurement object. Yes.
[0003] 非特許文献 1 :最新 応力'ひずみ測定'評価技術 (第 49頁 第 66頁) 監修:河田 幸三 発行:株式会社 総合技術センター  [0003] Non-Patent Document 1: Latest Stress 'Strain Measurement' Evaluation Technology (Page 49, Page 66) Supervision: Kozo Kawada Publication: General Technology Center Co., Ltd.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、従来の方法では次のような問題がある。 [0004] However, the conventional method has the following problems.
[0005] 第 1および第 2の方法のいずれも 1枚の透過性を有する測定対象物である基板に 対しては、有効に機能するが、光学特性、特に屈折率の異なる複数の素材が積層さ れた基板、特に微小間隙をおいて配備された 2枚の貼り合せ基板について主応力の 差と角度を測定する場合、 2枚の基板のいずれの基板に、または両方の基板に作用 する主応力の差と角度を精度よく求めることができないといった問題がある。  [0005] Although both the first and second methods function effectively for a single substrate, which is a measurement object having transparency, a plurality of materials having different optical characteristics, particularly refractive indexes, are laminated. When measuring the difference and angle of the principal stress on a bonded substrate, especially two bonded substrates deployed with a small gap, the principal acting on either substrate or both substrates There is a problem that the difference and angle of stress cannot be obtained with high accuracy.
[0006] すなわち、上記貼り合せ基板について、 2枚の基板のいずれの基板、または両方の 基板に作用する主応力の差と角度を測定するために第 1の方法を適用した場合、貼 り合せ基板から反射して戻る反射光は、各基板の表面および裏面から戻るものが全 て合成される。そのため、主応力の差と角度を知るのに必要なそれぞれの基板の裏 面からの反射光のみを取得したくても、個々に容易に分離することができない。また、 第 2の方法を適用した場合、貼り合せ基板を透過した透過光は、全てが合成され、基 板ごとに透過した透過光を個々に分離することができない。 [0006] That is, when the first method is applied to the bonded substrate described above to measure the difference and angle of principal stress acting on either one of the two substrates or both substrates, All of the reflected light that is reflected back from the bonded substrates is synthesized from the front and back surfaces of each substrate. Therefore, even if it is desired to obtain only the reflected light from the back surface of each substrate necessary to know the difference and angle of the main stress, it cannot be easily separated individually. In addition, when the second method is applied, all the transmitted light transmitted through the bonded substrate is synthesized, and the transmitted light transmitted for each substrate cannot be separated individually.
[0007] 本発明はこのような事情に鑑みてなされたものであって、光学特性として屈折率の 異なる複数の素材が積層された基板、特に微小間隙をおいて積層された貼り合せ基 板について、応力の作用している基板を正確に分別するとともに、その基板に作用 する応力で生じる複屈折の変化量および主応力の差と角度を精度よく求めることの できる光弾性測定方法およびその装置を提供することを主たる目的としている。 課題を解決するための手段 The present invention has been made in view of such circumstances, and relates to a substrate in which a plurality of materials having different refractive indexes as optical characteristics are laminated, particularly a laminated substrate laminated with a minute gap. A photoelasticity measurement method and apparatus capable of accurately classifying a substrate on which stress is applied, and accurately determining the amount of change in birefringence caused by the stress acting on the substrate and the difference and angle of principal stress. The main purpose is to provide. Means for solving the problem
[0008] この発明は、このような目的を達成するために、次のような構成をとる。 In order to achieve such an object, the present invention has the following configuration.
[0009] すなわち、第 1の発明は、中心波長力 所定の範囲の波長分布をもった照射光を、 複数の層からなる透過性を有する測定対象物と参照面に照射するとき、少なくとも測 定対象物には所定の第 1の方向の直線偏光を照射し、 That is, according to the first aspect of the present invention, at least measurement is performed when irradiation light having a central wavelength force having a wavelength distribution in a predetermined range is irradiated to a measuring object having transparency and a reference surface. The object is irradiated with linearly polarized light in a predetermined first direction,
前記測定対象物の所定層の測定対象面から反射して戻る反射光のうち偏光状態 が変化したことにより生じる前記第 1の方向と直交する第 2の方向の偏光成分と参照 面力 戻る反射光とが同一光路を通るようにまとめて干渉を生じさせ、  Of the reflected light that is reflected and returned from the measurement target surface of the predetermined layer of the measurement object, the polarized light component in the second direction orthogonal to the first direction and the reference surface force reflected light that is generated by the change in the polarization state. Together to cause interference in such a way that
前記重ね合わせた両反射光の同一偏光成分同士による干渉光の光強度を取得し て複屈折による偏光の変化量情報を取得する  Acquire light intensity of interference light by the same polarization components of the two reflected light beams and obtain information on the amount of change in polarization due to birefringence.
ことを特徴とする。  It is characterized by that.
[0010] 第 1の発明に係る光弾性測定方法によれば、第 1の方向の直線偏光が測定対象物 に向けて照射されるとともに、他方の偏光が参照面に照射される。測定対象物に照 射された直線偏光が複数の層を透過し、各層の表面や裏面から反射して戻る。この とき、測定対象である所定層に応力が作用している場合、反射して戻る第 1の方向の 直線偏光の偏光状態が変化する。この偏光状態の変化した第 1の方向の直線偏光と 直交する第 2の方向の直線偏光を、測定対象物から反射する全ての反射光の中から 抽出する。そして、この抽出した第 2の方向の直線偏光と参照面から反射する反射光 とを同一光路を通るようにまとめて干渉を生じさせる。 [0010] According to the photoelasticity measurement method according to the first invention, the linearly polarized light in the first direction is irradiated toward the measurement object, and the other polarized light is irradiated on the reference surface. The linearly polarized light irradiated on the object to be measured is transmitted through a plurality of layers and reflected back from the front and back surfaces of each layer. At this time, when a stress is applied to the predetermined layer to be measured, the polarization state of the linearly polarized light in the first direction reflected and returned changes. The linearly polarized light in the second direction orthogonal to the linearly polarized light in the first direction in which the polarization state has changed is extracted from all reflected light reflected from the measurement object. The extracted linearly polarized light in the second direction and the reflected light reflected from the reference surface Are combined so as to pass through the same optical path, causing interference.
[0011] 重ね合わせた両反射光から、さらに同一偏光成分同士による干渉光の光強度を取 得する。この取得した光強度の変化力 測定対象物で複屈折により変化を受けた偏 光の変化情報が取得される。このとき主応力の差を求める演算式である複屈折の変 化量 =主応力の差 X測定対象物の厚み X光弾性係数を利用する。この演算式内の 3つのパラメータが既知であれば、残りの未知パラメータを求めることができる。一般 に、測定対象物の厚み、光弾性係数は他の手段で容易に求める事ができるので、未 知パラメータとして複屈折量を求めることにより複数層の中の所定層の主応力の差を 求めることができる。  [0011] The light intensity of the interference light by the same polarization components is further obtained from the two reflected lights that are superimposed. The obtained light intensity change force polarization change information obtained by the birefringence in the object to be measured is obtained. At this time, the amount of change in birefringence = the difference in main stress, the difference in main stress, the thickness of the object to be measured, and the photoelastic coefficient are used. If the three parameters in this equation are known, the remaining unknown parameters can be found. In general, the thickness and photoelastic coefficient of the measurement object can be easily obtained by other means. Therefore, the difference in principal stress of a predetermined layer in a plurality of layers is obtained by obtaining the amount of birefringence as an unknown parameter. be able to.
[0012] このとき、測定対象物または参照面の少なくとも一方を光の進行方向の前後に移動 させながら干渉光の光強度を取得することにより、測定対象物の厚みも同時に算出 できる。つまり、測定対象物の各層と参照面光強度の波形は、測定対象物の層間の 光学的距離とが略一致すると干渉による光強度の変動が生じる。このとき、例えば、 横軸を測定対象物または参照面の移動距離に、縦軸を光強度として光強度の変化 をグラフにプロットして光強度の絶対値の包絡線を取ると、この包絡線のピーク間の 距離が測定対象物の層間の光学的距離と一致する。したがって、このピーク間の距 離力も測定対象物の厚みも同時に算出することもできる。  At this time, the thickness of the measurement object can also be calculated simultaneously by acquiring the light intensity of the interference light while moving at least one of the measurement object or the reference surface back and forth in the light traveling direction. That is, if the optical distance between the layers of the measurement object and the reference surface light intensity substantially coincides with the optical distance between the layers of the measurement object, the light intensity varies due to interference. At this time, for example, if the horizontal axis is the moving distance of the object to be measured or the reference surface and the vertical axis is the light intensity, the change in the light intensity is plotted on a graph and the envelope of the absolute value of the light intensity is taken. The distance between the peaks coincides with the optical distance between the layers of the measurement object. Therefore, the distance force between the peaks and the thickness of the measurement object can be calculated simultaneously.
[0013] なお、この方法発明によれば、参照面または測定対象面の!/、ずれかを照射光の進 行方向に対して前後に移動させ、干渉光の光強度が最大となる光強度情報を取得 することが好ま Uヽ(請求項 2)。  [0013] According to this method invention, the light intensity at which the light intensity of the interference light is maximized by moving the reference surface or the measurement target surface! /, Or back and forth with respect to the traveling direction of the irradiation light. It is preferred to obtain information U ヽ (claim 2).
[0014] また、このときの光強度情報力も正確な複屈折の変化量を求めることができ、ひい ては所定層の主応力の差を精度よく求めることができる。  [0014] In addition, the light intensity information power at this time can also obtain an accurate amount of change in birefringence, and thus, the difference in principal stress of the predetermined layer can be accurately obtained.
[0015] また、この方法発明によれば、干渉光を構成する両反射光の各位相が半波長ずれ るように略半分に分離し、分離後の両位相の差分をとつて、干渉光の光強度のうち直 流成分を除去することが好ま 、 (請求項 3)。  [0015] Further, according to this method invention, the phases of the both reflected light constituting the interference light are separated into approximately half so that the phases are shifted by half wavelength, and the difference between the two phases after separation is taken to obtain the interference light. It is preferable to remove the direct component of the light intensity (Claim 3).
[0016] この場合、干渉を生じさせた両反射光の位相を半波長ずらすことにより、両位相が 1 80° 反転した状態になる。つまり、この状態で両位相の差分をとることにより、参照面 力も反射する偏光状態に変化のない直流成分を除去することができ、偏光状態の変 化の生じた偏光成分のみを抽出することができる。すなわち、応力の作用している所 定層で複屈折したときの偏光の変化量のみを精度よく求めることができる。 In this case, both phases are inverted by 180 ° by shifting the phases of both reflected lights causing interference by a half wavelength. In other words, by taking the difference between both phases in this state, it is possible to remove the direct current component that does not change the polarization state that also reflects the reference surface force, and change the polarization state. It is possible to extract only the polarized components that have undergone conversion. That is, only the amount of change in polarization when birefringent at a predetermined layer on which stress is applied can be obtained with high accuracy.
[0017] また、この方法発明によれば 参照面または測定対象面のいずれかを移動させた 移動量と干渉光の光強度との関係から周期的な関係を求め、この周期的な関係の実 位相と予め決めた基準位相とを比較し、その結果に基づいて測定対象物の所定層 に作用している主応力の差が張力である力圧縮力であるかを判定することが好まし い(請求項 4)。  [0017] Further, according to the method invention, a periodic relationship is obtained from the relationship between the amount of movement of the reference surface or the measurement target surface and the light intensity of the interference light, and the realization of this periodic relationship. It is preferable to compare the phase with a predetermined reference phase and, based on the result, determine whether the difference in principal stress acting on the predetermined layer of the object to be measured is a force compression force, which is a tension. (Claim 4).
[0018] この場合、測定対象物と同じ試料を利用して実験、理論演算、およびシミュレーショ ンなどを行い、この試料に応力として作用した張力および圧縮力の条件を特定して 基準位相を決めておく。この基準位相と、測定対象物の所定層を測定したときの実 位相とを比較することにより、作用している主応力の差が張力である力圧縮力である かを判定する。  In this case, experiments, theoretical calculations, simulations, etc. are performed using the same sample as the object to be measured, and the reference phase is determined by specifying the conditions of tension and compressive force acting as stress on this sample. Keep it. By comparing this reference phase with the actual phase when the predetermined layer of the measurement object is measured, it is determined whether the difference in the acting main stress is a force compression force, which is a tension.
[0019] また、この方法発明によれば、測定対象面に照射した直線偏光と該測定対象面と を直線偏光の光軸回りに相対的に回転させ、回転角度ごとに複屈折による偏光の変 化量情報を求め、これら複数個の偏光の変化量情報と回転角度の両情報から測定 対象物に作用している主応力の差と角度を求めることが好ましい(請求項 5)。例えば 、回転角度は少なくとも 2つの角度であり、各角度から照射する光の直線偏光の方向 が異なるようにして主応力の差の角度を求めることが好ま ヽ (請求項 6)。  In addition, according to this method invention, the linearly polarized light irradiated to the measurement target surface and the measurement target surface are rotated relative to each other around the optical axis of the linearly polarized light, and the polarization change due to birefringence is changed at each rotation angle. It is preferable to obtain information on the amount of change and obtain the difference and angle of the principal stress acting on the measurement object from both the information on the amount of change in polarization and the information on the rotation angle (claim 5). For example, the rotation angle is at least two angles, and it is preferable to obtain the angle of the principal stress difference by changing the direction of the linearly polarized light of the light irradiated from each angle (Claim 6).
[0020] この場合、回転角度ごと(例えば 2つの角度)に求まる干渉光の光強度の値をべタト ル変換し、両回転角度のベクトルを合成し、そのベクトル合成により示される角度から 主応力の差の角度を特定することができる。  [0020] In this case, the light intensity value of the interference light obtained at each rotation angle (for example, two angles) is subjected to a beta conversion, a vector of both rotation angles is synthesized, and the principal stress is calculated from the angle indicated by the vector synthesis. The difference angle can be specified.
[0021] 次に、第 7の発明は、中心波長から所定の範囲の波長分布をもった照射光を、複 数の層からなる透過性を有する測定対象物と参照面に照射するとき、少なくとも測定 対象物には所定の第 1の方向の直線偏光を第 1の方向と 45° 異なる第 2の方向成 分を 1Z4波長ずらした略円偏光を照射し、  [0021] Next, according to a seventh aspect of the present invention, at least irradiation light having a wavelength distribution in a predetermined range from the center wavelength is irradiated to a measurement target having a plurality of layers and a reference surface at least. The object to be measured is irradiated with substantially circularly polarized light in which a linearly polarized light in a predetermined first direction is shifted by 45 ° from a second direction component that is 45 ° different from the first direction.
前記測定対象物の所定層の測定対象面から反射して戻る反射光と、参照面から戻 る反射光の光路長を一致させるとともに、測定対象面からの反射光は前記第 2の方 向成分を 1Z4波長ずらして略直線偏光に戻し、そのうち偏光状態が変化したこと により生じる前記第 1の方向と直交する第 3の方向の偏光成分を抽出し、この第 3の 方向の偏光成分と参照面力 戻る反射光とが同一光路を通るようにまとめて干渉を 生じさせ、 The reflected light reflected from the measurement target surface of the predetermined layer of the measurement target is matched with the optical path length of the reflected light returning from the reference surface, and the reflected light from the measurement target surface is the second direction component. 1Z4 wavelength shifted back to almost linear polarization, and the polarization state changed The polarization component in the third direction orthogonal to the first direction caused by the above is extracted, and the polarization component in the third direction and the reflected light returning from the reference surface force are combined so as to cause interference in the same optical path. ,
前記重ね合わせた両反射光の同一偏光成分同士による干渉光の光強度を取得し て複屈折による偏光の変化量情報を取得する  Acquire light intensity of interference light by the same polarization components of the two reflected light beams and obtain information on the amount of change in polarization due to birefringence.
ことを特徴とする。  It is characterized by that.
[0022] 第 7の発明に係る光弾性測定方法によれば、照射光が測定対象物と参照面の両方 に照射される。このとき、少なくとも測定対象面へは、第 1の方向の直線偏光が略円 偏光に変換されて照射される。測定対象物に照射された略円偏光が複数の層を透 過し、各層の表面や裏面で反射する。このとき、測定対象である所定層に応力が作 用している場合、反射して戻る略円偏光の偏光状態が変化、つまり楕円偏光に変化 する。この偏光状態のまま、元の第 1の方向の偏光成分を抽出する。そして、この第 1 の方向の直線偏光と直交する第 3の方向の直線偏光を、測定対象物で反射した全て の反射光の中から抽出する。この第 3の方向の直線偏光と参照面力 反射してくる反 射光とを同一光路を通るようにまとめて干渉を生じさせる。  [0022] According to the photoelasticity measurement method according to the seventh aspect of the invention, the irradiation light is applied to both the measurement object and the reference surface. At this time, at least the surface to be measured is irradiated with the linearly polarized light in the first direction converted into substantially circularly polarized light. The substantially circularly polarized light applied to the object to be measured passes through a plurality of layers and is reflected on the front and back surfaces of each layer. At this time, when a stress is applied to the predetermined layer to be measured, the polarization state of the substantially circularly polarized light that is reflected back changes, that is, changes to elliptically polarized light. The polarization component in the original first direction is extracted with this polarization state. Then, the linearly polarized light in the third direction orthogonal to the linearly polarized light in the first direction is extracted from all the reflected light reflected by the measurement object. The linearly polarized light in the third direction and the reflected light reflected by the reference surface force are combined so as to pass through the same optical path, causing interference.
[0023] 重ね合わせた両反射光から、さらに同一偏光成分同士による干渉光の光強度を取 得する。この取得した光強度の変化力 測定対象物で複屈折により変化を受けた偏 光の変化情報が取得される。この偏光の変化情報としては、測定対象の所定層に作 用している応力の影響で生じる複屈折の変化量、測定対象物の厚み、および光弾性 係数のうちの未知パラメータが取得される。例えば、主応力の差を求める演算式であ る複屈折の変化量 =主応力の差 X測定対象物の厚み X光弾性係数を利用し、少な くとも 2つのパラメータが既知であれば、残りの未知パラメータを容易に求めることが できる。さらに、各パラメータが揃えば、所定層に作用している主応力の差も容易か つ精度よく求めることができ、ひいては、複数の層のうち、いずれの層に応力が作用 して!/ヽるカゝも分另 IJすることができる。  [0023] The light intensity of the interference light by the same polarization components is further obtained from the two reflected lights that are superimposed. The obtained light intensity change force polarization change information obtained by the birefringence in the object to be measured is obtained. As the polarization change information, an unknown parameter is obtained among the amount of change in birefringence caused by the stress applied to the predetermined layer to be measured, the thickness of the measurement object, and the photoelastic coefficient. For example, the amount of change in birefringence, which is an arithmetic expression for calculating the difference in principal stress = difference in principal stress X thickness of measurement object X photoelastic coefficient, and if at least two parameters are known, the remaining The unknown parameters can be easily obtained. Furthermore, if the parameters are aligned, the difference in principal stress acting on a given layer can be determined easily and accurately, and as a result, stress is applied to any of the multiple layers! You can also do additional IJ.
[0024] なお、この方法発明によれば、参照面または測定対象面の!/、ずれかを照射光の進 行方向に対して前後に移動させ、干渉光の光強度が最大となる光強度情報を取得 することが好ま Uヽ(請求項 8)。 [0025] この場合、干渉光の光強度が最大となる光強度情報を取得することにより、測定対 象である所定層に応力が作用していることを容易に分別することができる。また、この ときの、光強度情報から正確な複屈折の変化量を求めることができ、ひいては所定層 の主応力の差を精度よく求めることができる。 [0024] According to the method invention, the light intensity at which the light intensity of the interference light is maximized by moving back and forth of the reference surface or the measurement target surface relative to the traveling direction of the irradiation light. It is preferable to obtain information U ヽ (claim 8). [0025] In this case, by acquiring the light intensity information that maximizes the light intensity of the interference light, it is possible to easily discriminate that the stress is acting on the predetermined layer to be measured. In addition, the exact amount of change in birefringence can be obtained from the light intensity information at this time, and as a result, the difference in principal stress of the predetermined layer can be obtained with high accuracy.
[0026] また、この方法発明によれば、干渉光を構成する両反射光の各位相が半波長ずれ るように略半分に分離し、分離後の両位相の差分をとつて、干渉光の光強度のうち直 流成分を除去することが好ま 、 (請求項 9)。  [0026] Further, according to this method invention, the phases of the two reflected lights constituting the interference light are separated into approximately half so that they are shifted by a half wavelength, and the difference between the two phases after separation is taken to obtain the interference light. It is preferable to remove the direct component of the light intensity (claim 9).
[0027] この場合、両反射光の移送を半波長ずらすことにより、両位相が 180° 反転した状 態になる。つまり、この状態で両位相の差分をとることにより、参照面で反射する偏光 状態に変化のない直流成分を除去することができ、偏光状態に変化の生じた偏光成 分のみを抽出することができる。したがって、応力の作用している所定層で複屈折し たときの偏光の変化量のみを精度よく求めることができる。  [0027] In this case, both phases are inverted by 180 ° by shifting the reflected light by half a wavelength. In other words, by taking the difference between the two phases in this state, it is possible to remove the DC component that does not change in the polarization state reflected by the reference surface, and to extract only the polarization component that has changed in the polarization state. it can. Therefore, it is possible to accurately obtain only the amount of change in polarization when birefringence occurs in a predetermined layer on which stress is applied.
[0028] また、この方法発明によれば、照射される円偏光の伝播方向と直交する測定対象 面が垂直平面上で移動するように円偏光と測定対象物とを相対的に移動させ、その 過程で複数箇所の複屈折による偏光の変化量情報を取得し、その分布状態から測 定対象物の所定層に作用する応力の方向を推定することが好ま ヽ(請求項 10)。こ の場合、略円偏光を利用した場合の主応力の角度を推定するのに有効に機能する  [0028] Further, according to this method invention, the circularly polarized light and the measurement object are relatively moved so that the measurement object surface orthogonal to the propagation direction of the irradiated circularly polarized light moves on the vertical plane. It is preferable to acquire information on the amount of change in polarization due to birefringence at a plurality of points in the process, and to estimate the direction of the stress acting on a predetermined layer of the measurement object from the distribution state (claim 10). In this case, it functions effectively to estimate the angle of principal stress when using substantially circular polarized light.
[0029] 次に、第 11の発明は、中心波長力も所定の範囲の波長分布をもった照射光を出力 する照射手段と、 [0029] Next, an eleventh aspect of the invention is directed to irradiation means for outputting irradiation light having a central wavelength force and a wavelength distribution in a predetermined range;
前記照射手段からの照射光を 2つの直線偏光に分離し、前記分離された第 1の方 向の直線偏光を複数の層からなる透過性を有する測定対象物に出力し、他方の第 2 の方向の直線偏光を参照面に出力する分離手段と、  The irradiation light from the irradiating means is separated into two linearly polarized lights, and the separated linearly polarized light in the first direction is output to a measuring object having a plurality of layers and the other second polarized light. Separating means for outputting linearly polarized light in the direction to the reference surface;
前記所定層の測定対象面からの反射光のうち第 2の方向成分を抽出する抽出手段 と、  Extraction means for extracting a second direction component of reflected light from the measurement target surface of the predetermined layer;
前記測定対象物の所定層の測定対象面から反射して戻る抽出手段を介して抽出 された反射光と、参照面力 戻る反射光とが同一光路を通るようにまとめて干渉を生 じさせる結合手段と、 前記所定層の測定対象面から結合手段に戻る反射光と、前記参照面から結合手 段に戻る反射光の光路長が一致するように前記測定対象物または前記参照面の少 なくとも一方を直線偏光の進行方向の前後に移動させる移動手段と、 A combination of the reflected light extracted through the extraction means reflected from the measurement target surface of the predetermined layer of the measurement object and the reflected light returning from the reference surface force so as to cause interference by collectively passing through the same optical path. Means, At least one of the measurement object and the reference surface is a straight line so that the optical path length of the reflected light returning from the measurement target surface of the predetermined layer to the coupling means and the reflected light returning from the reference surface to the coupling means match. Moving means for moving back and forth in the traveling direction of polarized light;
前記重ね合わせた両反射光の同一偏光成分の光強度変化を検出する検出手段と 前記検出手段の検出結果に基づいて、複屈折による偏光の変化量情報を求める 演算手段と、  A detecting means for detecting a light intensity change of the same polarization component of the superimposed reflected light; a calculating means for obtaining polarization change amount information due to birefringence based on a detection result of the detecting means;
を備えたことを特徴とする。  It is provided with.
[0030] 第 11の発明に係る光弾性測定装置によれば、分離手段によって 2つの直線偏光 に分離された照射光のうち、第 1の方向の直線偏光が複数の層からなる測定対象物 に向けて出力され、他方の第 2の方向の直線偏光が参照面に向けて出力される。そ れぞれの直線偏光は、出力先に到達すると反射する。特に、透過性を有する測定対 象物では、透過した直線偏光が各層の表面および裏面で反射する。これら複数の面 で反射する反射光は、所定層に応力が作用していると、その層を往復透過する過程 で偏光状態が変化する。この偏光状態の変化した直線偏光から、第 1の方向と直交 する第 2の方向の偏光成分だけを抽出手段により抽出する。そして、結合手段によつ て、この抽出された偏光成分と参照面からの反射光とが同一光路を通るようにまとめ て干渉を生じさせる。  [0030] According to the photoelasticity measurement apparatus according to the eleventh aspect of the present invention, the linearly polarized light in the first direction out of the irradiation light separated into two linearly polarized light by the separating means is applied to the measuring object composed of a plurality of layers. And the other linearly polarized light in the second direction is output toward the reference plane. Each linearly polarized light is reflected when it reaches the output destination. In particular, in a measurement object having transparency, the transmitted linearly polarized light is reflected on the front and back surfaces of each layer. The reflected light reflected from the plurality of surfaces changes its polarization state in the process of reciprocating through the layer when stress is applied to the predetermined layer. From this linearly polarized light whose polarization state has changed, only the polarization component in the second direction orthogonal to the first direction is extracted by the extraction means. Then, the coupling means causes the extracted polarized component and the reflected light from the reference surface to interfere together so as to pass through the same optical path.
[0031] この両反射光を結合手段にまとめるまでに、移動手段によって、測定対象物または 参照面の少なくとも一方を直線偏光の進行方向の前後に移動させることにより、結合 手段にもどる複数の層で裏面反射して戻る第 2の方向の直線偏光のいずれかと、参 照面力 結合手段までの光路長が一致する。この場合、両光路長が一致したときに、 その裏面を有する所定層を往復透過して戻る反射光のみを抽出手段により抽出する ことができ、この抽出した偏光成分と参照面からの反射光のうち同一偏光成分の光 強度変化を検出手段により検出する。そして、この検出結果に基づいて、演算手段 が測定対象物での複屈折による偏光の変化情報を求める。すなわち、第 1の方法発 明を好適に実現することができる。  [0031] By combining the reflected light into the coupling means, the moving means moves at least one of the measurement object or the reference surface back and forth in the direction of travel of the linearly polarized light, thereby returning to the coupling means. The optical path length to the reference surface force coupling means matches either one of the linearly polarized light in the second direction that is reflected back. In this case, when both optical path lengths coincide with each other, only the reflected light that reciprocates through the predetermined layer having the back surface can be extracted by the extraction means, and the extracted polarization component and the reflected light from the reference surface can be extracted. Of these, the light intensity change of the same polarization component is detected by the detection means. Then, based on the detection result, the calculation means obtains polarization change information due to birefringence at the measurement object. That is, the first method invention can be suitably realized.
[0032] なお、この装置発明によれば、照射手段、参照面、分離手段、抽出手段、結合手 段、および検出手段からなる光学系と測定対象物とを、光学系から測定対象物に出 力される直線偏光の光軸回りに相対的に回転させる回転駆動手段を備えることが好 ましい (請求項 12)。 [0032] According to the apparatus invention, the irradiation means, the reference surface, the separation means, the extraction means, and the coupling hand It is preferable to provide a rotation drive means for relatively rotating the optical system consisting of the stage and the detection means and the measurement object around the optical axis of the linearly polarized light output from the optical system to the measurement object ( Claim 12).
[0033] この構成によれば、異なる角度の直線偏光を測定対象物に照射することができる。  [0033] According to this configuration, it is possible to irradiate the measurement object with linearly polarized light at different angles.
つまり、回転角度ごとに複屈折による偏光の変化量情報を求めることができる。これら 複数個の偏光の変化量情報である干渉の光強度をベクトル変換した値と回転角度 情報の両方を利用し、ベクトル合成して主応力の角度を特定することができる。すな わち、第 5、第 6の方法発明を好適に実現することができる。  That is, information on the amount of change in polarization due to birefringence can be obtained for each rotation angle. The angle of the principal stress can be specified by vector synthesis using both the value obtained by vector conversion of the interference light intensity, which is information on the amount of change in the plurality of polarizations, and the rotation angle information. That is, the fifth and sixth method inventions can be suitably realized.
[0034] また、この装置発明によれば、さらに、移動手段により参照面または測定対象物と 同条の試料の!/、ずれかを移動させたときの移動量と前記干渉光の光強度との関係 力も実験的に周期的な関係を求め、この周期的な関係の基準位相を予め記憶した 記憶手段を備え、演算手段は、測定対象物の実測による周期的な関係の実位相と 記憶手段力 読み出した基準位相を比較し、その結果に基づいて測定対象物の所 定層に作用している主応力の差が張力である力圧縮力であるかを判定することが好 ましい (請求項 13)。  [0034] Further, according to the invention of the apparatus, the moving amount when the moving means moves the reference surface or the sample of the same article as the object to be measured is shifted and the light intensity of the interference light The relationship force of the periodic relationship is also obtained experimentally, and the storage means stores the reference phase of the periodic relationship in advance, and the calculation means stores the real phase of the periodic relationship based on the actual measurement of the measurement object and the storage means. It is preferable to compare the read reference phase and determine whether the difference in the principal stress acting on the specified layer of the object to be measured is a force compressive force, which is a tension. Section 13).
[0035] この構成によれば、測定対象物と同じ試料を利用して実験、理論演算、およびシミ ユレーシヨンなどを行い、この試料に応力として作用した張力および圧縮力の条件を 特定して基準位相を決めて記憶手段に記憶する。そして、この基準位相と、測定対 象物の所定層を測定したときの実位相とを比較することにより、作用している主応力 の差が張力である力圧縮力であるかを判定することができる。つまり、第 4の方法発明 を好適に実現することができる。  [0035] According to this configuration, experiments, theoretical calculations, simulations, and the like are performed using the same sample as the object to be measured, and the conditions of tension and compressive force acting as stress on this sample are identified and the reference phase is determined. Is stored in the storage means. Then, by comparing this reference phase with the actual phase when a predetermined layer of the measurement object is measured, it is determined whether the difference in the acting main stress is a force compression force, which is a tension. Can do. That is, the fourth method invention can be suitably realized.
[0036] 次に、第 14の発明は、中心波長力も所定の範囲の波長分布をもった照射光を出力 する照射手段と、  [0036] Next, the fourteenth invention comprises an irradiating means for outputting irradiation light having a central wavelength force and a wavelength distribution in a predetermined range;
前記照射手段からの照射光を 2つの直線偏光に分離し、前記分離された第 1の方 向の直線偏光を複数の層からなる透過性を有する測定対象物に出力し、他方の第 2 の方向の直線偏光を参照面に出力する分離手段と、  The irradiation light from the irradiating means is separated into two linearly polarized lights, and the separated linearly polarized light in the first direction is output to a measuring object having a plurality of layers and the other second polarized light. Separating means for outputting linearly polarized light in the direction to the reference surface;
前記分離手段で分離されて前記測定対象物に向う直線偏光を第 1の方向と 45° 異なる第 3の方向成分を 1Z4波長ずらして略円偏光に変換する第 1変換手段と、 前記所定層の測定対象面で反射して戻る反射光を前記第 3の方向成分を 1Z4 波長ずらして略直線偏光に変換する第 2変換手段と、 First conversion means for converting linearly polarized light that is separated by the separating means and directed toward the measurement object into a substantially circularly polarized light by shifting a third direction component that is 45 ° different from the first direction by 1Z4 wavelength; Second conversion means for converting the reflected light reflected and returned from the measurement target surface of the predetermined layer into substantially linearly polarized light by shifting the third direction component by 1Z4 wavelength;
前記第 2変換手段で略直線偏光となった反射光のうち、偏光状態が変化したことに より生じる前記第 1の方向と直交する第 3の方向の偏光成分を抽出する抽出手段と、 前記第 3方向の偏光成分と、参照面から戻る反射光とが同一光路を通るようにまと めて干渉を生じさせる結合手段と、  Extraction means for extracting a polarization component in a third direction orthogonal to the first direction, which is caused by a change in polarization state, of reflected light that has been substantially linearly polarized by the second conversion means; and A coupling means for causing interference in such a way that polarization components in three directions and reflected light returning from the reference surface pass along the same optical path;
前記所定層の測定対象面から結合手段に戻る反射光と、前記参照面から結合手 段に戻る反射光の光路長が一致するように前記測定対象物または前記参照面の少 なくとも一方を直線偏光の進行方向の前後に移動させる移動手段と、  At least one of the measurement object and the reference surface is a straight line so that the optical path length of the reflected light returning from the measurement target surface of the predetermined layer to the coupling means and the reflected light returning from the reference surface to the coupling means match. Moving means for moving back and forth in the traveling direction of polarized light;
前記重ね合わせた両反射光の同一偏光成分の光強度変化を検出する検出手段と 前記検出手段の検出結果に基づいて、複屈折による偏光の変化量情報を求める 演算手段と、  A detecting means for detecting a light intensity change of the same polarization component of the superimposed reflected light; a calculating means for obtaining polarization change amount information due to birefringence based on a detection result of the detecting means;
を備えたことを特徴とする。  It is provided with.
[0037] 第 14の発明に係る光弾性測定装置によれば、分離手段によって 2つの直線偏光 に分離された照射光のうち、第 1の方向の直線偏光が複数の層からなる測定対象物 に向けて出力され、他方の第 2の方向の直線偏光が参照面に向けて出力される。こ の測定対象物に向う第 1の方向の直線偏光は、第 1変換手段によって、略円偏光の 変換される。それぞれ直線偏光は、出力先に到達すると反射する。特に、透過性を 有する測定対象物では、透過した略円偏光が各層の表面および裏面で反射する。こ れら複数の面で反射する反射光は、所定層に応力が作用していると、その層を往復 透過する過程で偏光状態が変化する。つまり、略円偏光力 楕円偏光に変化する。 この楕円偏光を、さらに、第 2変換手段により第 1の方向の略直線偏光に戻す。そし て、この第 1の方向と直交する第 3の方向の偏光成分だけが抽出手段により抽出され る。この抽出された偏光成分と参照面力もの反射光とが結合手段によって、同一光 路を通るようにまとめられて干渉が生じる。  [0037] According to the photoelasticity measurement apparatus of the fourteenth aspect of the invention, the linearly polarized light in the first direction out of the irradiation light separated into two linearly polarized light by the separating means is applied to the measuring object composed of a plurality of layers. And the other linearly polarized light in the second direction is output toward the reference plane. The linearly polarized light in the first direction toward the measurement object is converted into substantially circularly polarized light by the first conversion means. Each linearly polarized light is reflected when it reaches the output destination. In particular, in a measurement object having transparency, the transmitted substantially circularly polarized light is reflected on the front and back surfaces of each layer. The reflected light reflected by these surfaces changes its polarization state in the process of reciprocating through the layer when stress is applied to the predetermined layer. That is, approximately circular polarization power changes to elliptical polarization. The elliptically polarized light is further returned to substantially linearly polarized light in the first direction by the second conversion means. Then, only the polarization component in the third direction orthogonal to the first direction is extracted by the extraction means. The extracted polarization component and the reflected light having the reference surface force are combined so as to pass through the same optical path by the coupling means, and interference occurs.
[0038] この両反射光を結合手段にまとめるまでに、移動手段によって、測定対象物または 参照面の少なくとも一方を偏光の進行方向の前後に移動させることにより、結合手段 にもどる複数の層で裏面反射する第 1の方向の略円偏光のいずれかと、参照面から 結合手段までの光路長が一致する。この場合、両光路長が一致した状態で干渉を生 じさせると、測定したい任意の層の干渉光の光強度が最大となる。この光強度が最大 となるときに測定対象物力 の反射光と参照面力 の反射光のうち同一偏光成分の 光強度変化を検出手段により検出する。そして、この検出結果に基づいて、演算手 段が測定対象物での複屈折による偏光の変化情報を求める。すなわち、第 7の方法 発明を好適に実現することができる。 [0038] Before the two reflected lights are combined into the combining means, the moving means moves at least one of the measurement object or the reference surface back and forth in the traveling direction of the polarization, thereby combining means. The optical path length from the reference surface to the coupling means coincides with one of the substantially circularly polarized light in the first direction that is reflected back from the plurality of layers that return. In this case, if interference is caused in a state where the optical path lengths coincide with each other, the light intensity of the interference light of an arbitrary layer to be measured becomes maximum. When this light intensity reaches a maximum, a change in the light intensity of the same polarization component of the reflected light of the measurement target force and the reflected light of the reference surface force is detected by the detection means. Then, based on this detection result, the calculation means obtains polarization change information due to birefringence at the measurement object. That is, the seventh method invention can be suitably realized.
[0039] 上記第 11ないし第 14の発明において、移動手段は、測定対象物または参照面の 少なくとも一方を光の進行方向に対して平行に前後移動させ、検出手段は、移動過 程での干渉光の光強度を逐次に検出し、演算手段は、検出手段の検出結果に基づ いて干渉光の光強度の最大値を求め、この求まる結果力 複屈折による偏光の変化 量情報を求めることが好ましい(請求項 15)。すなわち、この構成によれば、第 2およ び第 8の方法発明を好適に実現することができる。  [0039] In the eleventh to fourteenth inventions, the moving means moves at least one of the measurement object and the reference surface back and forth in parallel with the traveling direction of the light, and the detecting means interferes with the movement process. The light intensity of the light is sequentially detected, and the calculation means obtains the maximum value of the light intensity of the interference light based on the detection result of the detection means, and obtains the information on the amount of change in polarization due to the resulting birefringence. Preferred (claim 15). That is, according to this configuration, the second and eighth method inventions can be suitably realized.
[0040] また、上記第 11ないし第 15の発明において、結合手段により干渉の生じた干渉光 を構成する両反射光の各位相が半波長ずれるように略半分に分離する光学手段を 備え、演算手段は、分離後の前記反射光の両位相の差分により干渉光の光強度のう ち直流成分を除去して複屈折による偏光の変化量情報を求めることが好ましい (請 求項 16)。すなわち、この構成によれば、第 3および第 9の発明を好適に実現すること ができる。  [0040] Further, in the eleventh to fifteenth inventions, an optical means is provided for separating the light into approximately half so that the phases of the both reflected light constituting the interference light caused by the coupling means are shifted by a half wavelength. The means preferably obtains information on the amount of change in polarization due to birefringence by removing the direct current component of the light intensity of the interference light based on the difference between both phases of the reflected light after separation (claim 16). That is, according to this configuration, the third and ninth inventions can be suitably realized.
発明の効果  The invention's effect
[0041] この発明に係る光弾性測定方法およびその装置は、測定対象物と参照面に光を照 射し、測定対象物力 の反射光のうち偏光状態の変化した偏光成分のみを抽出し、 この偏光成分と参照面力 の反射光とによって干渉を生じさせることにより、任意の層 に作用している応力の影響で生じる複屈折の変化量を抽出することができる。また、 この複屈折の変化量力 任意の層に作用している主応力の差を精度よく求めること ができ、ひいては応力の作用している層を分別することができる。  [0041] The photoelasticity measurement method and apparatus according to the present invention irradiates the measurement object and the reference surface with light, and extracts only the polarization component whose polarization state has changed from the reflected light of the measurement object force. By causing interference between the polarization component and the reflected light of the reference surface force, it is possible to extract the amount of change in birefringence caused by the effect of stress acting on an arbitrary layer. In addition, the amount of change in birefringence can be obtained with high accuracy the difference in principal stress acting on an arbitrary layer, and thus the layer on which the stress is applied can be separated.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]実施例 1に係る光弾性測定方法を実現する装置の概略構成を示す図である。 圆 2]干渉光の光強度の検出状態を示す図である。 FIG. 1 is a diagram showing a schematic configuration of an apparatus for realizing a photoelasticity measurement method according to Embodiment 1. [2] FIG. 2 is a diagram showing a detection state of the light intensity of interference light.
圆 3]干渉光の光強度の検出状態を示す図である。  [3] FIG. 3 is a diagram showing a detection state of the light intensity of interference light.
圆 4]干渉光の光強度の検出状態を示す図である。  [4] FIG. 4 is a diagram showing a detection state of the light intensity of the interference light.
圆 5]実施例 2に係る光弾性測定方法を実現する装置の概略構成を示す図である。 圆 6]実施例 2の装置における第 1および第 2ポラリメータの構成を示す図である。 圆 7]変形例装置の構成を示す図である。  [5] FIG. 5 is a diagram illustrating a schematic configuration of an apparatus for realizing the photoelasticity measurement method according to the second embodiment. 6] FIG. 6 is a diagram showing a configuration of first and second polarimeters in the apparatus of the second embodiment. [7] FIG. 7 is a diagram showing a configuration of a modified device.
符号の説明  Explanation of symbols
1 · ·· 光学系ユニット  1 ··· Optical unit
2 · ·· 制御系ユニット  2 ··· Control unit
3 · ·· ポラリメータ  3 ··· Polarimeter
4 · ,· 光源  4,, Light source
5 · ·· コリメートレンズ  5 ··· Collimating lens
6 · ·· 偏光板  6 ··· Polarizing plate
9 · ·· 第 2偏光ビームスプリッタ  9 ··· 2nd polarization beam splitter
12 · ' ·· 偏光板  12 · '··· Polarizer
13 · ' ·. 参照ミラー  13 · '·. Reference mirror
14 · ' .· ピエゾ素子  14 · '.. Piezo element
19 · ' '· 第 3ビームスプリッタ  19 · '' · Third beam splitter
22 · ' '· 第 1フォトダイオード  22 · '' · First photodiode
23 · ' '· 第 2フォトダイオード  23 '' 'Second photodiode
24 · ' ·· 演算器  24 · '··· Calculator
実施例 1  Example 1
[0044] 以下、図面を参照して本発明の実施例を説明する。なお、本実施例では、直線偏 光を利用した場合を例に採って説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, a case where linear polarization is used will be described as an example.
[0045] 図 1は、本発明の光弾性測定方法を利用した装置の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of an apparatus using the photoelasticity measurement method of the present invention.
[0046] この実施例装置は、液晶パネルやプラズマディスプレイのように 2枚の透過性を有 するガラス基板 Wl, W2を、微小間隔をおいて平坦な載置台 60に保持した測定対 象物 Wに、中心周波数力 所定の範囲の波長分布をもった光を照射する光学系ュ ニット 1と、光学系ユニット 1を制御する制御系ユニット 2と、光学系ユニット 1から出力 される反射光を利用し、測定対象物を往復透過することにより、所定層に作用してい る応力の影響で偏光状態の変化した偏光成分が抽出され、この偏光成分を利用して 生じさせた干渉光の光強度を検出するポラリメータ 3とから構成されている。また、制 御系ユニット 2の中にはポラリメータ 3で検出されされる光強度に基づいて、偏光の変 化量情報を求める演算処理部 15が含まれる。以下、各構成について詳述する。 [0046] The apparatus of this example is a measurement object W in which two transparent glass substrates Wl and W2, such as a liquid crystal panel and a plasma display, are held on a flat mounting table 60 at a minute interval. The center frequency force is an optical system that emits light having a wavelength distribution within a predetermined range. Knit 1, control system unit 2 that controls optical system unit 1, and reflected light output from optical system unit 1 are used to reciprocate and transmit the measurement object, thereby reducing the stress acting on the predetermined layer. A polarization component whose polarization state has changed due to the influence is extracted, and a polarimeter 3 for detecting the light intensity of the interference light generated by using this polarization component. Further, the control system unit 2 includes an arithmetic processing unit 15 that obtains polarization change amount information based on the light intensity detected by the polarimeter 3. Hereinafter, each configuration will be described in detail.
[0047] 光学系ユニット 1は、光源 4から測定対象物 Wに向けて照射される光路上に、コリメ 一トレンズ 5、偏光板 6、第 1偏光ビームスプリッタ 7、対物レンズ 8、第 2偏光ビームス プリッタ 9の順番に配備されている。また、第 1偏光ビームスプリッタ 7で分離されて測 定対象物 Wとは異なる方向に進む光の光路上に集光レンズ 10およびフォトダイォー ド 11が配備されている。さらに、第 2偏光ビームスプリッタ 9で分離されて測定対象物 Wとは異なる方向に進む光の光路上に偏光板 12および参照ミラー 13が配備されて いる。以下、各構成について具体的に説明する。  The optical system unit 1 includes a collimating lens 5, a polarizing plate 6, a first polarizing beam splitter 7, an objective lens 8, and a second polarizing beam beam on an optical path irradiated from the light source 4 toward the measurement object W. They are deployed in the order of Plitter 9. In addition, a condensing lens 10 and a photodiode 11 are arranged on the optical path of light that is separated by the first polarization beam splitter 7 and travels in a direction different from the measurement target W. Furthermore, a polarizing plate 12 and a reference mirror 13 are arranged on the optical path of light that is separated by the second polarizing beam splitter 9 and travels in a direction different from the measurement target W. Each configuration will be specifically described below.
[0048] 光源 4は、比較的広 、周波数帯域の光を発生させる。例えば、本実施例の場合、 7 90 ± 20nmの帯域を有するスーパールミネッセントダイオードが利用される。この光 源 4から発生した光は、コリメートレンズ 5によって平行光とされ、偏光板 6に向う。なお 、光源 4は、本発明の照射手段に相当する。  [0048] The light source 4 generates light having a relatively wide frequency band. For example, in this embodiment, a super luminescent diode having a band of 7 90 ± 20 nm is used. The light generated from the light source 4 is collimated by the collimating lens 5 and travels toward the polarizing plate 6. The light source 4 corresponds to the irradiation means of the present invention.
[0049] 偏光板 6は、 45° 配置されており、光源 4から照射されたランダム偏光の内、偏光 面が 45° の初期の直線偏光を抽出し、この直線偏光を第 1偏光ビームスプリッタ 7に 向わせる。  [0049] The polarizing plate 6 is arranged at 45 °. Among the random polarized light irradiated from the light source 4, the initial linearly polarized light having a polarization plane of 45 ° is extracted, and this linearly polarized light is extracted into the first polarizing beam splitter 7. Turn to.
[0050] 第 1偏光ビームスプリッタ 7は、偏光面が 45° の直線偏光を通過させる。つまり、偏 光板 6を通過した偏光面が 45° の直線偏光は、そのまま通過する。また、第 1偏光ビ 一ムスプリッタ 7は、第 2偏光ビームスプリッタ 9から戻る偏光成分をフォトダイオード 1 1に向わせる。つまり、測定対象物 Wの各ガラス基板 Wl、 W2の表面と裏面および参 照ミラー 13で反射して第 2偏光ビームスプリッタ 9に戻る直線偏光のうち、偏光面が回 転せずに初期の偏光状態を維持したまま戻る偏光成分が第 2偏光ビームスプリッタ 9 力も第 1偏光ビームスプリッタ 7に戻され、この第 1偏光ビームスプリッタ 7は、戻された 偏光成分をフォトダイオード 11に向わせる。 [0051] フォトダイオード 11は、第 2偏光ビームスプリッタ 9から戻る偏光成分の光を検出し、 後述する制御系 2の演算処理部 15に検出信号を送信する。 [0050] The first polarization beam splitter 7 transmits linearly polarized light having a polarization plane of 45 °. That is, linearly polarized light having a polarization plane of 45 ° that has passed through the polarizing plate 6 passes as it is. Further, the first polarization beam splitter 7 directs the polarization component returned from the second polarization beam splitter 9 to the photodiode 11. In other words, of the linearly polarized light that is reflected by the front and back surfaces of the glass substrates Wl and W2 of the measurement object W and the reference mirror 13 and returns to the second polarizing beam splitter 9, the polarization plane does not rotate and the initial polarization The polarization component returning while maintaining the state is also returned to the first polarization beam splitter 7 by the second polarization beam splitter 9, and this first polarization beam splitter 7 directs the returned polarization component to the photodiode 11. [0051] The photodiode 11 detects the light of the polarization component returning from the second polarization beam splitter 9, and transmits a detection signal to the arithmetic processing unit 15 of the control system 2 described later.
[0052] 対物レンズ 8は、入射してきた直線偏光を下流側の測定対象 Wおよび参照ミラー 1 3に向けて集光するレンズである。この対物レンズ 8によって集光される直線偏光は、 第 2偏光ビームスプリッタ 9に到達する。  The objective lens 8 is a lens that condenses the incident linearly polarized light toward the measurement target W and the reference mirror 13 on the downstream side. The linearly polarized light collected by the objective lens 8 reaches the second polarization beam splitter 9.
[0053] 第 2偏光ビームスプリッタ 9は、集光レンズ 8で集光される光を直交する 1組の直線 偏光に分離する。つまり、測定対象物 Wに向わせる第 1の方向の測定光と、参照ミラ 一 13に向わせる第 2の方向の参照光とに分離する。また、第 2偏光ビームスプリッタ 9 は、測定対象物 Wと参照ミラー 13のそれぞれで反射して同一光路を戻る参照光と測 定光とを再びまとめる。このとき、測定光と参照光のそれそれから偏光状態の変化し た偏光成分のみを抽出し、この偏光成分は、初期光路と異なるポラリメータ 3側に向 わせ、偏光状態に変化のない偏光成分は、初期光路を通して第 1偏光ビームスプリ ッタ 7に戻す。なお、第 2偏光ビームスプリッタ 9は、本発明の分離手段、抽出手段、 および結合手段として機能する。  The second polarization beam splitter 9 separates the light collected by the condenser lens 8 into a set of orthogonal linearly polarized light. That is, the measurement light in the first direction directed to the measurement object W and the reference light in the second direction directed to the reference mirror 13 are separated. In addition, the second polarization beam splitter 9 recombines the reference light and the measurement light that are reflected by the measurement object W and the reference mirror 13 and return on the same optical path. At this time, only the polarization component of which the polarization state has changed is extracted from each of the measurement light and the reference light, this polarization component is directed to the polarimeter 3 side different from the initial optical path, and the polarization component which has no change in the polarization state is Return to the first polarized beam splitter 7 through the initial optical path. Note that the second polarizing beam splitter 9 functions as the separating means, extracting means, and combining means of the present invention.
[0054] 偏光板 12は、第 2偏光ビームスプリッタ 9から参照ミラー 13に向う参照光の光路上 に配備されており、第 2偏光ビームスプリッタ 9からの直線偏光を内部に透過させて偏 光面が 45° 傾いた直線偏光に変え、この偏光状態の変化した参照光を参照ミラー 1 3で反射させて第 2偏光ビームスプリッタ 9に戻す。  [0054] The polarizing plate 12 is disposed on the optical path of the reference light from the second polarizing beam splitter 9 to the reference mirror 13, and transmits the linearly polarized light from the second polarizing beam splitter 9 to the polarizing surface. Is changed to linearly polarized light inclined at 45 °, and the reference light whose polarization state has changed is reflected by the reference mirror 13 and returned to the second polarizing beam splitter 9.
[0055] 参照ミラー 13は、参照光の進行方向に対して垂直に取り付けられている。この参照 ミラー 13によって反射された参照光は、同一光路を通って第 2偏光ビームスプリッタ 9 に戻される。また、参照ミラー 13は、ピエゾ素子 14の作動により参照光の進行方向に 対して前後に微小距離移動できるように構成されている。なお、参照ミラー 13は、本 発明の参照面に相当し、ピエゾ素子 14は、本発明の移動手段に相当する。  [0055] The reference mirror 13 is mounted perpendicular to the traveling direction of the reference light. The reference light reflected by the reference mirror 13 is returned to the second polarization beam splitter 9 through the same optical path. Further, the reference mirror 13 is configured to be able to move a minute distance back and forth with respect to the traveling direction of the reference light by the operation of the piezo element 14. The reference mirror 13 corresponds to the reference surface of the present invention, and the piezo element 14 corresponds to the moving means of the present invention.
[0056] 集光レンズ 10は、第 2偏光ビームスプリッタ 9からの直線偏光をフォトダイオード 11 に向けて集光するレンズである。  The condensing lens 10 is a lens that condenses the linearly polarized light from the second polarizing beam splitter 9 toward the photodiode 11.
[0057] 次に、ポラリメータ 3は、第 3偏光ビームスプリッタ 19および第 3偏光ビームスプリッタ 19で分離されたそれぞれの直線偏光を集光する集光レンズ 20、 21、および集光レ ンズ 20、 21からの直線偏光を受光する第 1フォトダイオード 22、第 2フォトダイオード 23とから構成されている。以下、各構成にいて具体的に説明する。 Next, the polarimeter 3 includes condensing lenses 20 and 21 for condensing the linearly polarized lights separated by the third polarizing beam splitter 19 and the third polarizing beam splitter 19, and condensing lenses 20, 21. 1st photodiode 22 and 2nd photodiode that receive linearly polarized light from It consists of 23 and. Hereinafter, each configuration will be specifically described.
[0058] 対物レンズ 18は、第 2偏光ビームスプリッタ 9からの直線偏光を第 3偏光ビームスプ リツタ 19に向けて平行光にするレンズである。 The objective lens 18 is a lens that converts the linearly polarized light from the second polarization beam splitter 9 into parallel light toward the third polarization beam splitter 19.
[0059] 第 3偏光ビームスプリッタ 19は、 45° 配置のものであって、第 2偏光ビームスプリツ タ 9で抽出された同一光路を戻る測定光と参照光の各位相が半波長ずれるように半 分に分離し、これら分離された直線偏光が各集光レンズ 20、 21で集光されて各フォ トダイオード 22、 23に到達するように向わせる。つまり、本実施例の場合、分離されて +45° の成分同士に揃えられた測定光と参照光からなる直線偏光が、第 1フォトダ ィオード 22に向い、 45° の成分同士に揃えられた測定光と参照光力もなる直線 偏光力 第 2フォトダイオード 23に向うように構成されている。 [0059] The third polarization beam splitter 19 is disposed at 45 °, and is divided in half so that the phases of the measurement light and the reference light returning on the same optical path extracted by the second polarization beam splitter 9 are shifted by a half wavelength. The separated linearly polarized light is condensed by the condensing lenses 20 and 21 so as to reach the photodiodes 22 and 23. In other words, in the case of this example, the linearly polarized light composed of the measurement light and the reference light that are separated and aligned with each other at + 45 ° is directed to the first photodiode 22, and is measured with the 45 ° components aligned with each other. Linear polarization force that also includes light and reference light power. It is configured to face the second photodiode 23.
[0060] 第 1および第 2フォトダイオード 22、 23は、検出した直線偏光の光強度の信号レべ ルを演算器 24にそれぞれ出力する。なお、第 1および第 2フォトダイオード 22、 23は 、本発明の検出手段に相当する。このとき、両フォトダイオード 22、 23によって検出し た光強度の信号は図 2および図 3に示すように干渉波形となり、それぞれの位相は 1 80° 反転している。 [0060] The first and second photodiodes 22 and 23 output the detected signal level of the light intensity of the linearly polarized light to the calculator 24, respectively. The first and second photodiodes 22 and 23 correspond to the detection means of the present invention. At this time, the signal of the light intensity detected by both photodiodes 22 and 23 becomes an interference waveform as shown in FIGS. 2 and 3, and each phase is inverted by 180 °.
[0061] 演算器 24は、両フォトダイオード 22、 23が検出した光強度値に応じた信号レベル の差分をとるように合成する。この場合、図 2および図 3に示すように、両フォトダイォ ード 22、 23によって検出した干渉波形の両位相が 180° 反転しているので、両光強 度値の差分をとるように合成する。その結果、図 4に示すように、干渉波形の直流成 分が除去され、測定対象物 Wから反射してきた複屈折の変化量成分による干渉光の みが抽出されるようになって 、る。  The arithmetic unit 24 synthesizes so as to take a difference in signal level corresponding to the light intensity value detected by both photodiodes 22 and 23. In this case, as shown in FIGS. 2 and 3, since both phases of the interference waveform detected by both photodiodes 22 and 23 are inverted by 180 °, they are synthesized so as to take the difference between the two light intensity values. . As a result, as shown in FIG. 4, the DC component of the interference waveform is removed, and only the interference light due to the birefringence change component reflected from the measurement object W is extracted.
[0062] 次に、制御ユニット 2は、演算処理部 15、駆動制御部 16、および操作部 17などを 含む。以下、各構成について具体的に説明する。  Next, the control unit 2 includes an arithmetic processing unit 15, a drive control unit 16, an operation unit 17, and the like. Each configuration will be specifically described below.
[0063] 演算処理部 15は、第 1の処理として干渉光の焦点合せを行い、第 2の処理として測 定対象物 Wの所定のガラス基板 W1または W2に作用している主応力の差によって 発生する複屈折の変化量、光弾性係数、およびガラス基板の厚みのうちの未知パラ メータ、並びに所定のガラス基板に作用する応力を求める。なお、演算処理部 15は 、本発明の演算手段に相当する。 [0064] 第 1の処理としては、例えば、フォトダイオード 11は測定対象物 Wと参照ミラー 13か らの反射光のうち、測定対象物 Wおよび参照ミラー 13において偏光状態が変化しな いで戻る反射光同士が干渉する干渉光強度を検出する。このとき、駆動制御部 16に 命令信号を送信し、ピエゾ素子 14を作動制御させながら、フォトダイオード 11で逐次 に検出される光強度値を検出して干渉光の強度が最大となる参照ミラー 13の位置を 算出する。つまり、この参照ミラー 13の位置は、ポラリメータ 3によって検出される干渉 光の光強度値が最大となる位置でもある。 [0063] The arithmetic processing unit 15 performs focusing of the interference light as the first process, and as a second process, based on the difference in main stress acting on the predetermined glass substrate W1 or W2 of the measurement object W. An unknown parameter among the amount of change in birefringence generated, the photoelastic coefficient, and the thickness of the glass substrate, and the stress acting on the predetermined glass substrate are obtained. The arithmetic processing unit 15 corresponds to the arithmetic means of the present invention. [0064] As the first processing, for example, the photodiode 11 reflects the measurement object W and the reference mirror 13 from the reflected light that returns from the measurement object W and the reference mirror 13 without changing the polarization state. The interference light intensity at which the lights interfere with each other is detected. At this time, a command signal is transmitted to the drive control unit 16 to control the operation of the piezo element 14 while detecting the light intensity value sequentially detected by the photodiode 11 to thereby maximize the intensity of the interference light 13 Calculate the position of. That is, the position of the reference mirror 13 is also a position where the light intensity value of the interference light detected by the polarimeter 3 is maximum.
[0065] フォトダイオード 11に入射する光強度は、ポラリメータに入射する光強度よりも大き い。したがって、例えば、ポラリメータ 3によって干渉光が検出されな力つた場合は、 複屈折の変化量力 、さい過ぎるため、または光学系の光軸のズレ、特に測定対象物 Wのァオリが合っていないための光軸のズレにより光を検出できないと判定すること ができる。  [0065] The light intensity incident on the photodiode 11 is greater than the light intensity incident on the polarimeter. Therefore, for example, when interference light is detected by the polarimeter 3, the birefringence variation force is too large, or the optical axis of the optical system is misaligned, especially because the measurement object W is not aligned properly. It can be determined that the light cannot be detected due to the deviation of the optical axis.
[0066] 第 2の処理としては、演算器 24によって検出された干渉光の光強度値から、測定対 象物 Wで変化した複屈折の変化量情報を取得する。また、所定の測定対象物に作 用している主応力の差は、複屈折の変化量情報 =主応力の差 X測定対象物の厚み X光弾性係数の式により求まる。つまり、複屈折の変化量情報が求まれば、既知の 測定対象物の厚みと光弾性係数から、その測定対象物に作用する主応力の差を容 易に求めることができる。例えば測定対象物が所定のガラス基板である場合、所定の ガラス基板に作用している主応力の差は、複屈折の変化量情報 =主応力の差 Xガ ラス基板の厚み X光弾性係数の式により求まる。つまり、複屈折の変化量情報が求 まれば、既知のガラス基板の厚みと光弾性係数から、そのガラス基板に作用する主 応力の差を容易に求めることができる。  [0066] As the second processing, from the light intensity value of the interference light detected by the computing unit 24, information on the amount of change in birefringence changed at the measurement object W is acquired. In addition, the difference in principal stress applied to a predetermined measurement object can be obtained by the formula of change information of birefringence = difference in principal stress X thickness of measurement object X photoelastic coefficient. In other words, if information on the amount of change in birefringence is obtained, the difference in principal stress acting on the measurement object can be easily obtained from the known thickness and photoelastic coefficient of the measurement object. For example, when the object to be measured is a predetermined glass substrate, the difference in main stress acting on the predetermined glass substrate is the amount of change in birefringence information = the difference in main stress X the thickness of the glass substrate X the photoelastic coefficient. It is obtained by the formula. In other words, if information on the amount of change in birefringence is obtained, the difference in principal stress acting on the glass substrate can be easily obtained from the known thickness and photoelastic coefficient of the glass substrate.
[0067] 駆動制御部 16は、操作部 17から入力設定された条件に応じて、光源 4から測定対 象物 Wに向う直線偏光の進路方向の前後に光学系ユニット 1を所定距離だけ移動さ せる。つまり、図示しない、ノ ルスモータなどの移動手段を駆動制御し、第 2偏光ビー ムスプリッタ 9からガラス基板 W1の裏面までの距離 L1と第 2偏光ビームスプリッタ 9か ら参照ミラー 13までの距離 L2、および、第 2偏光ビームスプリッタ 9からガラス基板 W 2の裏面までの距離 L3と第 2偏光ビームスプリッタ 9から参照ミラー 13までの距離 L4 のそれぞれの組の距離同士が略一致するように光学系ユニット 1を移動させる。 The drive control unit 16 moves the optical system unit 1 by a predetermined distance before and after the linearly polarized light traveling from the light source 4 toward the measurement target W according to the conditions set by the operation unit 17. Make it. That is, by driving and controlling a moving means (not shown) such as a Norse motor, the distance L1 from the second polarizing beam splitter 9 to the back surface of the glass substrate W1 and the distance L2 from the second polarizing beam splitter 9 to the reference mirror 13 The distance L3 from the second polarizing beam splitter 9 to the back surface of the glass substrate W 2 and the distance L4 from the second polarizing beam splitter 9 to the reference mirror 13 The optical system unit 1 is moved so that the distances of the respective groups of the two groups substantially coincide with each other.
[0068] また、駆動制御部 16は、演算処理部 15から命令信号に応じて、干渉光の光強度 が最大となるように参照ミラー 13の位置を微調整するようにピエゾ素子 14を作動制 御する。 In addition, the drive control unit 16 controls the operation of the piezo element 14 so as to finely adjust the position of the reference mirror 13 so that the light intensity of the interference light is maximized according to the command signal from the arithmetic processing unit 15. I will do it.
[0069] 操作部 17は、ガラス基板 Wl、 W2の厚み、ガラス基板ごとの光弾性係数、材料、屈 折率、各構成部同士の距離 L1〜L4など各種測定条件を設定入力するものである。  [0069] The operation unit 17 is used to set and input various measurement conditions such as the thickness of the glass substrates W1 and W2, the photoelastic coefficient of each glass substrate, the material, the refractive index, and the distances L1 to L4 between the components. .
[0070] 次に、上記実施例装置を用いて、測定対象物 Wに作用する主応力の差を測定す る一巡の動作について説明する。なお、測定対象物 Wを構成するガラス基板 Wl、 W 2の両方に応力が作用して 、る場合を例にとつて説明する。  [0070] Next, a description will be given of a one-round operation for measuring the difference in principal stress acting on the measurement object W using the above-described embodiment apparatus. Note that a case where stress is applied to both of the glass substrates Wl and W2 constituting the measurement target W will be described as an example.
[0071] 操作部 17から測定条件を入力し、測定を開始する。先ず、駆動制御され、第 2偏光 ビームスプリッタ 9からガラス基板 1の裏面までの距離 L1と、第 2偏光ビームスプリッタ 9から参照ミラー 13まで距離 L2とが同じ、つまり、両光路長が略一致するように駆動 制御部 16が、図示しないパルスモータなどの移動手段を作動制御して光学系ュニッ ト 1を移動させる。  [0071] Measurement conditions are input from the operation unit 17, and measurement is started. First, the drive control is performed so that the distance L1 from the second polarizing beam splitter 9 to the back surface of the glass substrate 1 is the same as the distance L2 from the second polarizing beam splitter 9 to the reference mirror 13, that is, the optical path lengths are substantially the same. As described above, the drive control unit 16 controls the operation of a moving means such as a pulse motor (not shown) to move the optical system unit 1.
[0072] 両光路長が略一致する位置に光学系ユニット 1が到達すると、光源 4から光を照射 する。照射された光は、コリメートレンズ 5によって平行光にされた後、偏光板 6によつ て偏光面が 45° の直線偏光に変えられ、後段の 45° 配置された第 1偏光ビームス プリッタ 7を通過して第 2偏光ビームスプリッタ 9に向う。  [0072] When the optical system unit 1 reaches a position where both optical path lengths substantially coincide with each other, light is emitted from the light source 4. The irradiated light is converted into parallel light by the collimating lens 5, and then the polarization plane is changed to 45 ° linearly polarized light by the polarizing plate 6, and the first polarizing beam splitter 7 arranged at 45 ° in the subsequent stage is changed. Pass through to the second polarizing beam splitter 9.
[0073] 第 2偏光ビームスプリッタ 9の前段に配備された対物レンズ 8で集光された直線偏光 は、第 2偏光ビームスプリッタ 9に到達すると、直交する 2つの直線偏光に分離される 。分離された第 1の方向(水平方向)の直線偏光 (測定光)は、測定対象物 Wに向か つてガラス基板 Wl、 W2を往復透過する過程で、各ガラス基板 Wl、 W2の表面およ び裏面で反射し、第 2偏光ビームスプリッタ 9に戻る。他方の第 2の方向(垂直方向) の直線偏光 (参照光)は、参照ミラー 13で反射して第 2偏光ビームスプリッタ 9に戻る 過程で、偏光板 12によって 45° 傾いた直線偏光となり、第 2偏光ビームスプリッタ 9 に戻る。  [0073] When the linearly polarized light collected by the objective lens 8 disposed in front of the second polarizing beam splitter 9 reaches the second polarizing beam splitter 9, it is separated into two orthogonal linearly polarized lights. The separated linearly polarized light (measurement light) in the first direction (horizontal direction) passes back and forth through the glass substrates Wl and W2 toward the measurement object W, and the surface of each glass substrate Wl and W2 and And return to the second polarizing beam splitter 9. The other linearly polarized light (reference light) in the second direction (vertical direction) is reflected by the reference mirror 13 and returned to the second polarizing beam splitter 9 to become linearly polarized light inclined by 45 ° by the polarizing plate 12. Return to 2 Polarizing Beam Splitter 9.
[0074] 第 2偏光ビームスプリッタ 9は、測定対象物 Wの各面で反射して戻る測定光のうち、 偏光状態の変化したことにより生じる第 1の方向と直行する第 2の方向の偏光成分で ある測定光のみを抽出し、ポラリメータ 3に向わせる。このとき、抽出した第 2の方向の 測定光と参照ミラー 13から戻る参照光とが同一光路を通るように再びまとめて干渉を 生じさせる。 [0074] The second polarization beam splitter 9 is a polarization component of the second direction orthogonal to the first direction generated by the change in the polarization state of the measurement light reflected and returned from each surface of the measurement object W. so Only a certain measurement light is extracted and directed to the polarimeter 3. At this time, the extracted measurement light in the second direction and the reference light returning from the reference mirror 13 are combined again so as to pass through the same optical path, thereby causing interference.
[0075] なお、測定対象物 Wから反射して戻る偏光状態の変化して 、な 、直線偏光は、上 流側の第 1偏光ビームスプリッタ 7を経由してフォトダイオード 11によって検出される。  It should be noted that the linearly polarized light is detected by the photodiode 11 via the upstream first polarization beam splitter 7 while the polarization state reflected and returned from the measurement object W changes.
[0076] 参照ミラー 13の位置が決定すると、第 2偏光ビームスプリッタ 9からポラリメータ 3に 向う第 2の方向の直線偏光は、集光レンズ 18によって集光された後に、ポラリメータ 3 を構成する第 3偏光ビームスプリッタ 19に到達する。  [0076] When the position of the reference mirror 13 is determined, the linearly polarized light in the second direction from the second polarizing beam splitter 9 toward the polarimeter 3 is collected by the condenser lens 18, and then the third polarization constituting the polarimeter 3 is formed. A polarizing beam splitter 19 is reached.
[0077] 第 3偏光ビームスプリッタ 19は、到達した水平成分力もなる直線偏光を、位相が半 波長ずれるように、略半分に分離する。このとき、測定光と参照光の +45° 成分同士 、および 45° 成分同士にまとめられ、同じ方向の直線偏光同士に揃えられる。こ れら方向の揃った各組みの直線偏光のうち、水平成分力 なる直線偏光は集光レン ズ 20で集光されて第 1フォトダイオード 22によって検出される。垂直成分からなる直 線偏光は、集光レンズ 21で集光されて第 2フォトダイオード 23によって検出される。  [0077] The third polarization beam splitter 19 splits the linearly polarized light having the horizontal component force that has reached, into approximately half so that the phase is shifted by a half wavelength. At this time, the + 45 ° components and 45 ° components of the measurement light and the reference light are combined and aligned with linearly polarized light in the same direction. Of each set of linearly polarized light in which these directions are aligned, the linearly polarized light having a horizontal component force is condensed by the condensing lens 20 and detected by the first photodiode 22. The linearly polarized light composed of the vertical component is collected by the condenser lens 21 and detected by the second photodiode 23.
[0078] 各フォトダイオード 22、 23によって受光された両直線偏光は、演算器 24によってそ れぞれの光強度値に変換され、減算される。このとき、両直線偏光の位相が 180° 反転しているので、参照ミラー 13から反射してきた参照光の直流成分は除去され、 測定光の干渉成分のみが得られる。  [0078] Both linearly polarized lights received by the respective photodiodes 22 and 23 are converted into respective light intensity values by the calculator 24 and subtracted. At this time, since the phases of both linearly polarized light are inverted by 180 °, the direct current component of the reference light reflected from the reference mirror 13 is removed, and only the interference component of the measurement light is obtained.
[0079] この干渉成分の光強度値が、演算処理部 15に入力され、演算処理部 15が複屈折 の変化量情報と主応力の差を求める。  The light intensity value of the interference component is input to the arithmetic processing unit 15, and the arithmetic processing unit 15 obtains the difference between the birefringence change amount information and the principal stress.
[0080] 以上で、ガラス基板 W1の複屈折の変化量情報と主応力の差を求める処理が終了 し、次に、駆動制御部 16が、移動手段を作動制御して光学系ユニット 1を移動させる とともに、ピエゾ素子 14を作動制御してガラス基板 W2の裏面力も第 2偏光ビームス プリッタ 9までの距離 L3と、参照ミラー 13から第 2偏光ビームスプリッタ 9までの光学距 離 L4との光学距離が略一致するように調整した後、上記ガラス基板 W1と同じ処理を 行うことによってガラス基板 W2の複屈折の変化量情報と主応力の差を求める。  This completes the processing for obtaining the difference between the birefringence change information and the principal stress of the glass substrate W1, and then the drive control unit 16 controls the moving means to move the optical system unit 1. The back surface force of the glass substrate W2 is also controlled by operating the piezo element 14 so that the optical distance between the distance L3 from the second polarizing beam splitter 9 and the optical distance L4 from the reference mirror 13 to the second polarizing beam splitter 9 is After adjusting so as to be approximately the same, the same processing as that for the glass substrate W1 is performed to obtain information on the amount of change in birefringence of the glass substrate W2 and the difference between principal stresses.
[0081] 上述のように、光学系ユニット 1を移動させて第 2偏光ビームスプリッタ 9から参照ミラ 一 13までの距離とガラス基板 Wl、 W2の裏面までの光路長を略一致させ、各ガラス 基板 W1、W2の裏面と参照ミラー 13で反射して戻る測定光と参照光を利用した場合 、測定対象の任意の層の複屈折の変化量情報と主応力の差を正確に求めることが できる。つまり、応力が作用している測定対象物力 戻る測定光は偏光面が変化して いるので、第 1の方向と直交する第 2の方向の偏光成分のみを第 2偏光ビームスプリ ッタ 9により抽出することができ、この偏光成分と参照ミラー 13から戻る参照光を同一 光路を通るようにまとめて干渉を生じさせ、この干渉光をポラリメータ 3に向けて反射 出力させることができる。この参照光と測定光力 なる第 2の方向の直線偏光の位相 を、さらに半波長ずらして分離し、偏光成分を同じ成分同士に揃えることにより、ガラ ス基板に作用する主応力の差によって複屈折した偏光成分のみを干渉光の光強度 として検出することができる。 [0081] As described above, the optical system unit 1 is moved so that the distance from the second polarizing beam splitter 9 to the reference mirror 13 and the optical path length to the back surfaces of the glass substrates Wl and W2 are substantially matched. When the measurement light and reference light reflected back from the back surface of the substrates W1 and W2 and the reference mirror 13 are used, it is possible to accurately obtain the difference between the birefringence change information and the principal stress of any layer to be measured. . In other words, since the plane of polarization of the measurement light returning from the measurement object force on which the stress is acting changes, only the polarization component in the second direction orthogonal to the first direction is extracted by the second polarization beam splitter 9. This polarization component and the reference light returning from the reference mirror 13 can be combined so as to pass through the same optical path to cause interference, and this interference light can be reflected and output toward the polarimeter 3. The phase of the linearly polarized light in the second direction, which is the reference light and the measurement light power, is further separated by half a wavelength, and the polarization components are aligned with each other, so that they are compounded by the difference in principal stress acting on the glass substrate. Only the refracted polarization component can be detected as the light intensity of the interference light.
[0082] したがって、この干渉光の光強度を利用することにより、複数の層からなる透過性を 有する測定対象物の、任意の層に作用する主応力の差により生じる複屈折の変化量 を求めることができ、ひいては、この複屈折の変化量を利用することにより、任意に層 に作用する主応力の差と主応力の差の角度をも求めることができる。すなわち、主応 力の差の角度から求まるベクトル成分により複数の層ごとに作用する応力を正確に 分別することが可能となる。また、主応力の差の角度およびその求まるベクトル成分 により複数の層ごとに作用する応力の大きさおよび方向を正確に判別することもでき る。 Therefore, by using the light intensity of the interference light, the amount of change in birefringence caused by the difference in principal stress acting on an arbitrary layer of a measurement target having a plurality of layers and having transparency is obtained. Thus, by using the amount of change in birefringence, the angle between the principal stress acting on the layer and the principal stress difference can be determined arbitrarily. In other words, the stress acting on each of the layers can be accurately classified by the vector component obtained from the angle of the main stress difference. In addition, the magnitude and direction of the stress acting on each of the plurality of layers can be accurately determined based on the angle of the main stress difference and the vector component obtained.
実施例 2  Example 2
[0083] 上記実施例 1では、光源 4から照射された光を直線偏光に変換して利用していたが 、本実施では、測定対象物 Wに向けて出力する偏光に円偏光を利用した場合を例 に採って説明する。なお、本実施例では、上記実施例と同じ構成については同一符 号を付すに留め、異なる構成について具体的に説明する。  In Example 1 above, the light emitted from the light source 4 is used after being converted into linearly polarized light. However, in this embodiment, circularly polarized light is used as the polarized light output toward the measurement object W. Will be described as an example. In the present embodiment, the same components as those in the above embodiment will be denoted by the same reference numerals, and different components will be specifically described.
[0084] 図 5は、本発明の円偏光を利用した場合の光弾性測定装置の概略構成を示す図 である。  FIG. 5 is a diagram showing a schematic configuration of a photoelasticity measurement apparatus using circularly polarized light according to the present invention.
[0085] 本実施例装置の光学系ユニット 1、制御系ユニット 2、および第 1ポラリメータ 3とから 構成されている。  The optical system unit 1, the control system unit 2, and the first polarimeter 3 of the apparatus of this embodiment are configured.
[0086] 光学系ユニット 1は、光源 30であるスーパールミネセントダイオード力も測定対象物 Wに向けて照射される光路上に、コリメートレンズ 31、偏光板 32、第 1偏光ビームス プリッタ 33、および 45° 配置の 1/4波長板 35の順番に配備されている。また、第 1 偏光ビームスプリッタ 33から測定対象物 Wに向けて出力され、測定対象物 Wで反射 してポラリメータ 3に向う測定光の光路上に、反射ミラー 36、—45° 配置の 1Z4波長 板 37、反射ミラー 38、偏光板 39、および第 2偏光ビームスプリッタ 40の順番に配備 されている。また、第 1偏光ビームスプリッタ 33で分離されて測定対象物 Wへとは異 なるに方向に進む光の光路上に参照ミラー 41が配備され、さらに、この参照ミラー 41 で反射してポラリメータ 3に向う参照光の光路上に反射ミラー 42、 43、偏光板 44、お よび第 2偏光ビームスプリッタ 40の順番に配備されている。以下、各構成について具 体的に説明する。 [0086] The optical system unit 1 also measures the superluminescent diode force that is the light source 30 as an object to be measured. On the optical path irradiated toward W, a collimating lens 31, a polarizing plate 32, a first polarizing beam splitter 33, and a quarter-wave plate 35 arranged at 45 ° are arranged in this order. In addition, a 1Z4 wavelength plate that is output from the first polarizing beam splitter 33 toward the measurement object W, reflected by the measurement object W, and reflected on the measurement light W toward the polarimeter 3 is reflected by a reflection mirror 36, −45 °. 37, reflecting mirror 38, polarizing plate 39, and second polarizing beam splitter 40 are arranged in this order. In addition, a reference mirror 41 is provided on the optical path of the light that is separated by the first polarization beam splitter 33 and travels in a direction different from that of the measurement object W, and is further reflected by the reference mirror 41 to the polarimeter 3. Reflecting mirrors 42 and 43, a polarizing plate 44, and a second polarizing beam splitter 40 are arranged in this order on the optical path of the reference light. Each configuration will be specifically described below.
[0087] 偏光板 32は、 45° 配置されており、コリメートレンズ 31からの平行光を偏光面が 45 ° の初期の直線偏光に変え、この直線偏光を第 1偏光ビームスプリッタ 33に向わせ る。  The polarizing plate 32 is arranged at 45 °, and converts the parallel light from the collimating lens 31 into initial linearly polarized light having a polarization plane of 45 ° and directs this linearly polarized light to the first polarizing beam splitter 33. .
[0088] 第 1偏光ビームスプリッタ 33は、偏光板 32から到達した直線偏光を、つまり、測定 対象物 Wに向わせる第 1の方向の測定光と、参照ミラー 13に向わせる第 2の方向の 参照光とに分離する。なお、第 1偏光ビームスプリッタ 33は、本発明の分離手段に相 当する。  [0088] The first polarization beam splitter 33 is configured to measure linearly polarized light that has arrived from the polarizing plate 32, that is, measurement light in a first direction that is directed toward the measurement object W, and second light that is directed toward the reference mirror 13. Separated into reference light in direction. The first polarization beam splitter 33 corresponds to the separation means of the present invention.
[0089] 45° 配置の 1Z4波長板 35は、第 3の方向の直線偏光である測定光を通過させる ことにより、直線偏光を略円偏光に変える。なお、—45° 配置の 1Z4波長板 37は、 本発明の第 1変換手段に相当する。  The 1Z4 wavelength plate 35 arranged at 45 ° changes the linearly polarized light into substantially circularly polarized light by allowing the measurement light that is linearly polarized light in the third direction to pass therethrough. The 1Z4 wavelength plate 37 arranged at −45 ° corresponds to the first conversion means of the present invention.
[0090] 次に、反射ミラー 36は、測定対象物 Wを構成するガラス基板 Wl、 W2の各面で反 射する反射光を、さらに反射して入射光路を異なる光路上に配備された 45° 配置 の 1Z4波長板 37に導く。  [0090] Next, the reflection mirror 36 further reflects the reflected light reflected on each surface of the glass substrates Wl and W2 constituting the measurement object W, and the incident optical path is arranged on a different optical path at 45 °. Guide to the 1Z4 wave plate 37 of the arrangement.
[0091] 45° 配置の 1Z4波長板 37は、測定対象物 Wの各面から反射して戻る反射光を その内部に通過させることにより、略直線偏光に戻す。つまり、測定対象物 Wのガラ ス基板 W1や W2に応力が作用している場合、円偏光の偏光面が微小回転して楕円 偏光に変化する。この楕円偏光を通過させて、複屈折の変化量を含む直線偏光に 変換する。なお、—45° 配置の 1Z4波長板 37は、本発明の第 2変換手段に相当す る。 [0091] The 1Z4 wavelength plate 37 arranged at 45 ° returns the reflected light reflected from each surface of the measurement target W to the inside thereof, thereby returning it to substantially linearly polarized light. In other words, when a stress is applied to the glass substrate W1 or W2 of the measuring object W, the polarization plane of the circularly polarized light rotates slightly and changes to elliptically polarized light. This elliptically polarized light is passed through and converted to linearly polarized light including the amount of change in birefringence. The 1Z4 wave plate 37 arranged at −45 ° corresponds to the second conversion means of the present invention. The
[0092] 反射ミラー 38は、 45° 配置の 1/4波長板 37によって略直線偏光に変えられた 測定光を、偏光板 39を通過させて第 2偏光ビームスプリッタ 40に向わせる。  The reflection mirror 38 passes the measurement light, which has been converted into substantially linearly polarized light by the quarter-wave plate 37 arranged at 45 °, through the polarizing plate 39 and directs it to the second polarizing beam splitter 40.
[0093] 第 2偏光ビームスプリッタ 40は、測定対象物 Wから反射してくる測定光と、参照ミラ 一 41から反射してくる参照光とが交差する位置に配備されている。そして、第 2偏光 ビームスプリッタ 40は、各測定対象物 Wと参照ミラー 13のそれぞれで反射して同一 光路を戻る参照光と測定光とを再びまとめる。このとき、反射して戻る測定光のうち偏 光状態の変化している偏光成分のみを抽出し、この偏光成分をポラリメータ 3側に向 わせ、偏光状態に変化のない偏光成分は、後段の第 2ポラリメータ 45に向わせる。な お、第 2偏光ビームスプリッタ 40は、本発明の抽出手段および結合手段として機能す る。  The second polarization beam splitter 40 is arranged at a position where the measurement light reflected from the measurement object W and the reference light reflected from the reference mirror 41 intersect. Then, the second polarization beam splitter 40 again combines the reference light and the measurement light that are reflected by each measurement object W and the reference mirror 13 and return on the same optical path. At this time, only the polarization component whose polarization state has changed is extracted from the measurement light reflected and returned, and this polarization component is directed to the polarimeter 3 side, and the polarization component without change in the polarization state is the second stage. 2 Point to polarimeter 45. Note that the second polarization beam splitter 40 functions as the extracting means and the combining means of the present invention.
[0094] 参照ミラー 41は、入射時の参照光とは異なる方向に参照光を反射する。この反射 した参照光は、さらに 2つの反射ミラー 42, 43によって、後段の偏光板 44に向けられ る。また、参照ミラー 41は、ピエゾ素子 14の作動により参照光の進行方向に対して前 後に微小距離移動できるように構成されている。なお、参照ミラー 41は、本発明の参 照面に相当する。  [0094] The reference mirror 41 reflects the reference light in a direction different from the reference light at the time of incidence. The reflected reference light is further directed to the subsequent polarizing plate 44 by two reflecting mirrors 42 and 43. Further, the reference mirror 41 is configured to be able to move back and forth with respect to the traveling direction of the reference light by the operation of the piezo element 14. The reference mirror 41 corresponds to the reference surface of the present invention.
[0095] 偏光板 44は、 45° 配置されており、内部を透過する参照光を 45° の直線偏光に 変える。つまり、参照光は、前段の偏光板 32と該偏光板 44との作用により 90° 異な る直線偏光に変えられ、第 2偏光ビームスプリッタ 40に到達する。  The polarizing plate 44 is arranged at 45 °, and changes the reference light transmitted through the inside into 45 ° linearly polarized light. That is, the reference light is converted into linearly polarized light that differs by 90 ° by the action of the polarizing plate 32 and the polarizing plate 44 in the previous stage, and reaches the second polarizing beam splitter 40.
[0096] 次に、第 1ポラリメータ 3は、図 6に示すように、第 3偏光ビームスプリッタ 46、この第 3 偏光ビームスプリッタ 46で分離されたそれぞれの直線偏光を受光する第 1フォトダイ オード 22、第 2フォトダイオード 23、および演算器 24とから構成せれている。以下、 各構成にいて具体的に説明する。  Next, as shown in FIG. 6, the first polarimeter 3 includes a third polarization beam splitter 46 and a first photodiode 22 that receives each linearly polarized light separated by the third polarization beam splitter 46. The second photodiode 23 and the arithmetic unit 24 are included. Hereinafter, each configuration will be described in detail.
[0097] 第 3偏光ビームスプリッタ 46は、 45° 配置のものであって、第 2偏光ビームスプリツ タ 40で抽出された同一光路を戻る測定光と参照光の各位相が半波長ずれるように 半分に分離し、これら分離された直線偏光が各集光レンズ 20、 21で集光されて各フ オトダイオード 22、 23に到達するように向わせる。つまり、本実施例の場合、分離され て水平成分同士に揃えられた測定光と参照光力もなる直線偏光が、第 1フォトダイォ ード 22に向い、垂直成分同士に揃えられた測定光と参照光からなる直線偏光が、第 2フォトダイオード 23に向うように構成されて 、る。 [0097] The third polarization beam splitter 46 is arranged at 45 °, and is halved so that the phases of the measurement light and the reference light returning on the same optical path extracted by the second polarization beam splitter 40 are shifted by half a wavelength. The separated linearly polarized light is condensed by the condensing lenses 20 and 21 so as to reach the photodiodes 22 and 23. That is, in the case of the present embodiment, the measurement light and the linearly polarized light that also has the reference light power separated and aligned with the horizontal components are the first photo diode. The linearly polarized light composed of the measurement light and the reference light that are aligned with each other in the vertical direction is directed to the second photodiode 23.
[0098] 第 1および第 2フォトダイオード 22、 23は、検出した偏光の光強度値の信号を演算 器 24にそれぞれ出力する。  [0098] The first and second photodiodes 22 and 23 output signals of detected light intensity values of polarized light to the calculator 24, respectively.
[0099] 演算器 24は、図 2および図 3に示す両フォトダイオード 22、 23が検出した光強度値 に応じた信号レベルの差分をとるように合成する。この場合、図 2および図 3に示すよ うに、両フォトダイオード 22、 23によって検出した干渉波形の両位相が 180° 反転し ているので、両光強度値の差分をとるように合成する。その結果、図 4に示すように、 干渉波形の直流成分が除去され、測定対象物 Wから反射してきた複屈折の変化量 成分による干渉光のみが抽出されるようになっている。  The arithmetic unit 24 synthesizes so as to take a difference in signal level corresponding to the light intensity value detected by both the photodiodes 22 and 23 shown in FIG. 2 and FIG. In this case, as shown in FIGS. 2 and 3, since both phases of the interference waveform detected by both photodiodes 22 and 23 are inverted by 180 °, they are combined so as to take the difference between the two light intensity values. As a result, as shown in FIG. 4, the DC component of the interference waveform is removed, and only the interference light due to the birefringence change component reflected from the measurement object W is extracted.
[0100] 第 2ポラリメータ 45は、第 1ポラリメータ 3と同じ構成であり、第 3偏光ビームスプリッタ 46と第 1および第 2フォトダイオード 22、 23とから構成されている。つまり、第 2ボラリメ ータ 45は、第 3偏光ビームスプリッタ 40によって分離された偏光を利用し、測定対象 物 Wと参照ミラー 41からの反射光のうち、測定対象物 Wおよび参照ミラー 41におい て偏光状態が変化しないで戻る反射光同士が干渉する干渉光強度を検出する。こ の信号を演算処理部 15に送信して 、る。  [0100] The second polarimeter 45 has the same configuration as the first polarimeter 3, and includes a third polarizing beam splitter 46 and first and second photodiodes 22 and 23. In other words, the second volatilizer 45 uses the polarized light separated by the third polarization beam splitter 40, and among the reflected light from the measurement object W and the reference mirror 41, the measurement object W and the reference mirror 41 The intensity of interference light in which reflected lights returning without changing the polarization state interfere with each other is detected. This signal is sent to the processing unit 15.
[0101] 制御ユニット 2は、実施例 1と同じ構成であり、演算処理部 15、駆動制御部 16、およ び操作部 17などを含む。  [0101] The control unit 2 has the same configuration as that of the first embodiment, and includes an arithmetic processing unit 15, a drive control unit 16, an operation unit 17, and the like.
[0102] 次に、上記実施例装置を用いて、測定対象物 Wに作用する主応力の差を測定す る一巡の動作について説明する。なお、測定対象物 Wを構成するガラス基板 Wl、 W 2の両方に応力が作用して 、る場合を例にとつて説明する。  [0102] Next, a round of operations for measuring the difference in principal stress acting on the measuring object W using the above-described embodiment apparatus will be described. Note that a case where stress is applied to both of the glass substrates Wl and W2 constituting the measurement target W will be described as an example.
[0103] 操作部 17から測定条件を入力し、測定を開始する。先ず、駆動制御され、第 1偏光 ビームスプリッタ 33からガラス基板 W1の裏面までの距離と、第 1偏光ビームスプリッタ 33から参照ミラー 41まで距離が同じ、つまり、両光路長が一致するように駆動制御部 16力 図示しな 、パルスモータなどの移動手段を作動制御して光学系ュ-ット 1を移 動させる。  [0103] Input measurement conditions from the operation unit 17 to start measurement. First, it is driven and controlled so that the distance from the first polarizing beam splitter 33 to the back surface of the glass substrate W1 is the same as the distance from the first polarizing beam splitter 33 to the reference mirror 41, that is, the optical path lengths coincide. Section 16 Force Moves the optical system unit 1 by controlling the operation of moving means such as a pulse motor, not shown.
[0104] 光路長が略一致する位置に光学系ユニット 1が到達すると、光源 30から光を照射 する。照射された光は、コリメートレンズ 31によって平行光にされた後、偏光板 32によ つて偏光面が 45° の直線偏光に変えられ、第 1偏光ビームスプリッタ 33に到達する When the optical system unit 1 reaches a position where the optical path lengths substantially coincide with each other, light is emitted from the light source 30. The irradiated light is collimated by a collimating lens 31 and then is polarized by a polarizing plate 32. Therefore, the polarization plane is changed to 45 ° linearly polarized light and reaches the first polarizing beam splitter 33.
[0105] この直線偏光は、第 1偏光ビームスプリッタ 33によって直交する 2つの直線偏光に 分離される。分離された第 1の方向(水平方向)の直線偏光は、測定対象物 Wに向う 。他方の第 2の方向(垂直方向)の直線偏光は、参照ミラー 41に向う。 The linearly polarized light is separated into two linearly polarized light orthogonal to each other by the first polarization beam splitter 33. The separated linearly polarized light in the first direction (horizontal direction) is directed to the measurement object W. The other linearly polarized light in the second direction (vertical direction) is directed to the reference mirror 41.
[0106] ここで、測定対象物 Wに向う直線偏光は、 45° 配置の 1Z4波長板 35を透過する。  Here, the linearly polarized light directed toward the measurement object W is transmitted through the 1Z4 wavelength plate 35 arranged at 45 °.
このとき、直線偏光である測定光が、略円偏光の測定光に変えられる。  At this time, the measurement light that is linearly polarized light is changed to measurement light that is substantially circularly polarized light.
[0107] この測定光は、測定対象物 Wに向力つてガラス基板 Wl、 W2を透過する過程で、 各測定対象物 Wl、 W2の表面および裏面で反射する。このとき、ガラス基板 W1には 応力が作用して 、るので、測定光が往復透過する過程で円偏光力 楕円偏光に変 化する。この楕円偏光となった測定光は、測定対象物 Wが斜め傾斜姿勢で配備され ているので、斜めに反射されて反射ミラー 42に向う。反射ミラー 36に到達する測定光 は、—45° 配置の 1Z4波長板 37に向う。—45° 配置の 1/4波長板 37に到達した 測定光は、その内部を透過して複屈折の変化量を含む直線偏光に戻される。 45 ° 配置の 1Z4波長板 37を透過して直線偏光に戻った測定光は、反射ミラー 38によ つて反射させられて、第 2偏光ビームスプリッタ 40に到達する。  [0107] This measurement light is reflected on the front and back surfaces of each measurement object Wl, W2 in the process of passing through the glass substrates Wl, W2 while facing the measurement object W. At this time, since stress acts on the glass substrate W1, the measurement light is converted into circularly polarized light and elliptically polarized light in the process of reciprocating transmission. The elliptically polarized measurement light is reflected obliquely and directed to the reflection mirror 42 because the measurement object W is arranged in an obliquely inclined posture. The measurement light reaching the reflection mirror 36 is directed to the 1Z4 wavelength plate 37 arranged at −45 °. The measurement light that has reached the quarter-wave plate 37 arranged at −45 ° is transmitted through the inside and returned to linearly polarized light including the amount of change in birefringence. The measurement light that has passed through the 1Z4 wavelength plate 37 disposed at 45 ° and returned to linearly polarized light is reflected by the reflecting mirror 38 and reaches the second polarizing beam splitter 40.
[0108] 他方の第 1偏光ビームスプリッタ 33で分離された第 2の方向の直線偏光である参照 光は、斜め傾斜姿勢で配備された参照ミラー 41で入射方向と異なる斜め方向に反 射される。そして、この参照光は、反射ミラー 42、 43の順番で反射され、偏光板 44を 透過して第 2偏光ビームスプリッタ 40に到達する。  [0108] The reference light that is linearly polarized light in the second direction separated by the other first polarizing beam splitter 33 is reflected in an oblique direction different from the incident direction by the reference mirror 41 arranged in an obliquely inclined posture. . The reference light is reflected in the order of the reflection mirrors 42 and 43, passes through the polarizing plate 44, and reaches the second polarizing beam splitter 40.
[0109] 第 2偏光ビームスプリッタ 40は、測定対象物 Wの各面で反射して戻る測定光のうち の偏光状態の変化したことにより生じる第 2の方向の偏光成分と、参照ミラー 41で反 射した後に偏光板 44を通ってきた参照光のうちの第 1の方向の偏光成分を抽出し、 第 1ポラリメータ 3に同一光路を通るようにまとめて干渉を生じさせる。  [0109] The second polarization beam splitter 40 reflects the polarization component in the second direction caused by the change in the polarization state of the measurement light reflected and returned from each surface of the measurement object W and the reference mirror 41. The polarized light component in the first direction is extracted from the reference light that has passed through the polarizing plate 44 after being emitted, and is caused to interfere with the first polarimeter 3 so as to pass through the same optical path.
[0110] また、第 2偏光ビームスプリッタ 40は、測定対象物 Wの各面で反射して戻る測定光 のうちの偏光状態の変化しな力つた成分である第 1の方向の偏光成分と、参照ミラー 41で反射した後に偏光板 44を通ってきた参照光のうちの第 2の方向の偏光成分を 抽出し、第 2ポラリメータ 45に同一光路を通るようにまとめて干渉を生じさせる。 [0111] 第 1ポラリメータ 3の第 3偏光ビームスプリッタ 46は、到達した測定光と参照光の水 平成分同士からなる直線偏光を、位相が半波長ずれるように、略半分に分離する。こ のとき、測定光と参照光の水平成分同士、および垂直成分同士にまとめられ、同じ方 向の直線偏光同士に揃えられる。これら方向の揃った各組みの直線偏光のうち、水 平成分力もなる直線偏光は集光レンズ 20で集光されて第 1フォトダイオード 22によつ て検出される。垂直成分カゝらなる直線偏光は、集光レンズ 21で集光されて第 2フォト ダイオード 23によって検出される。 [0110] In addition, the second polarization beam splitter 40 includes a polarization component in the first direction, which is a component of the measurement light reflected and returned from each surface of the measurement object W and whose polarization state does not change. The polarized light component in the second direction is extracted from the reference light that has passed through the polarizing plate 44 after being reflected by the reference mirror 41, and causes the second polarimeter 45 to collectively interfere so as to pass through the same optical path. [0111] The third polarization beam splitter 46 of the first polarimeter 3 separates the linearly polarized light composed of the horizontal components of the measurement light and the reference light that have arrived into approximately half so that the phase is shifted by a half wavelength. At this time, the horizontal components and the vertical components of the measurement light and the reference light are combined and aligned with linearly polarized light in the same direction. Of each set of linearly polarized light in which these directions are aligned, linearly polarized light having a horizontal component force is condensed by the condenser lens 20 and detected by the first photodiode 22. The linearly polarized light, which is the vertical component, is collected by the condenser lens 21 and detected by the second photodiode 23.
[0112] 各フォトダイオード 22、 23が検出した光強度値に応じた信号レベルの差分をとるよ うに合成する。この場合、図 2および図 3に示すように、両フォトダイオード 22、 23によ つて検出した干渉波形の両位相が 180° 反転しているので、両光強度値の差分をと るように合成し、図 4に示す干渉波形の直流成分を除去する。  [0112] The photodiodes 22 and 23 are combined so as to obtain a difference in signal level according to the light intensity value detected. In this case, as shown in Fig. 2 and Fig. 3, the phases of the interference waveforms detected by both photodiodes 22 and 23 are inverted by 180 °, so that they are combined so as to obtain the difference between the two light intensity values. The DC component of the interference waveform shown in Fig. 4 is removed.
[0113] この干渉成分の光強度値が、演算処理部 15に入力され、演算処理部 15が複屈折 の変化量情報と主応力の差を求める。  The light intensity value of the interference component is input to the arithmetic processing unit 15, and the arithmetic processing unit 15 obtains the difference between the birefringence change amount information and the principal stress.
[0114] 第 2ポラリメータ 45の第 4偏光ビームスプリッタ 46は、到達した測定光と参照光の水 平成分同士からなる直線偏光を、位相が半波長ずれるように略半分に分離する。こ のとき、測定光と参照光の水平成分同士、および垂直成分同士にまとめられ、同じ方 向の直線偏光同士に揃えられる。これら方向の揃った各組みの直線偏光のうち、水 平成分力もなる直線偏光は集光レンズ 20で集光されて第 3フォトダイオード 22によつ て検出される。垂直成分カゝらなる直線偏光は、集光レンズ 21で集光されて第 4フォト ダイオード 23によって検出される。これにより測定光と参照光のうち水平成分からなる 直線偏光分の干渉波形を検出できる。この波形の位相を測定対象物の所定層に作 用している主応力の差が張力である力圧縮力であるかを判定するための基準位相と して用いることができる。  [0114] The fourth polarization beam splitter 46 of the second polarimeter 45 separates the linearly polarized light composed of the horizontal components of the measurement light and the reference light that have arrived into approximately half so that the phase is shifted by a half wavelength. At this time, the horizontal components and the vertical components of the measurement light and the reference light are combined and aligned with linearly polarized light in the same direction. Of each set of linearly polarized light in which these directions are aligned, linearly polarized light having a horizontal component force is condensed by the condenser lens 20 and detected by the third photodiode 22. The linearly polarized light, which is the vertical component, is collected by the condenser lens 21 and detected by the fourth photodiode 23. As a result, the interference waveform corresponding to the linearly polarized light composed of the horizontal components of the measurement light and the reference light can be detected. The phase of this waveform can be used as a reference phase for determining whether the difference in main stress applied to a predetermined layer of the measurement object is a force or compressive force.
[0115] なお、基準位相とは、参照ミラー 41または測定対象面 Wのいずれかを移動させたと きの移動量と干渉光の光強度との関係力 周期的な関係を求め、この周期的な関係 力 求まる位相を意味する。  [0115] The reference phase is a relational force between the amount of movement when either the reference mirror 41 or the measurement target surface W is moved and the light intensity of the interference light. Relational force Indicates the phase to be obtained.
[0116] 以上で、ガラス基板 W1の複屈折の変化量情報と主応力の差を求める処理が終了 し、次に、駆動制御部 16が、図示しない移動手段を作動制御して光学系ユニット 1を 移動させるとともに、ピエゾ素子 14を作動制御してガラス基板 W2の裏面力も第 1偏 光ビームスプリッタ 33までの距離と、参照ミラー 41から第 1偏光ビームスプリッタ 33ま での距離が一致するように調整した後、上記ガラス基板 W1と同じ処理を行うことによ つてガラス基板 W2の複屈折の変化量情報と主応力の差を求める。 [0116] This completes the processing for obtaining the difference between the birefringence change information and the principal stress of the glass substrate W1, and then the drive control unit 16 controls the movement means (not shown) to control the optical system unit 1 The At the same time, the piezo element 14 is operated and controlled so that the back surface force of the glass substrate W2 is adjusted so that the distance from the first polarizing beam splitter 33 and the distance from the reference mirror 41 to the first polarizing beam splitter 33 are the same. After that, by performing the same processing as that for the glass substrate W1, information on the amount of change in birefringence of the glass substrate W2 and the difference between principal stresses are obtained.
[0117] 上述の構成によれば、直線偏光を利用した場合と同様に、干渉光の光強度を利用 することにより、複数の層からなる透過性を有する測定対象物の、任意の層に作用す る主応力の差により生じる複屈折の変化量を求めることができ、ひいては、この複屈 折の変化量を利用することにより、任意の層に作用する主応力の差をも求めることが できる。すなわち、複数の層ごとに作用する応力を正確に分別することが可能となる。 [0117] According to the configuration described above, similarly to the case of using linearly polarized light, the light intensity of the interference light is used to act on an arbitrary layer of the measuring object having a plurality of layers of transparency. The amount of change in birefringence caused by the difference in principal stress can be obtained, and by using this amount of change in birefringence, the difference in principal stress acting on any layer can also be obtained. . That is, it is possible to accurately separate the stress acting on each of the plurality of layers.
[0118] また、本実施例では、円偏光を利用することにより、応力の方向によらず 1回の測定 で応力の有無を確実に判別することができる。 [0118] Further, in this example, by using circularly polarized light, it is possible to reliably determine the presence or absence of stress by a single measurement regardless of the direction of stress.
[0119] なお、本発明は上述した実施例に限らず、次のように変形実施することができる。 [0119] The present invention is not limited to the above-described embodiments, and can be modified as follows.
[0120] (1)上記実施例 1の直線偏光を利用する場合、次のように変形してもよい。 (1) When the linearly polarized light of Example 1 is used, the following modifications may be made.
[0121] 例えば、図 7に示すように、光源 4から照射され測定対象物 Wに向う光路上に、実 施例 1の第 1偏光ビームスプリッタ 7と第 2偏光ビームスプリッタ 9に代えてハーフミラー 50と偏光ビームスプリッタ 51を順番に配備し、測定対象物 Wと参照ミラー 13から戻る 偏光のうち、測定対象物 Wから反射して戻る偏光面の回転した測定光と参照ミラー 1 3から反射し、複数の反射ミラー 42、 43を介して誘導された参照光とをまとめてポラリ メータ 3に出力するように構成してもよい。なお、ハーフミラー 50は、本発明の分離手 段に相当し、偏光ビームスプリッタ 51は、本発明の抽出手段および結合手段として 機能する。 For example, as shown in FIG. 7, a half mirror is used instead of the first polarizing beam splitter 7 and the second polarizing beam splitter 9 in Example 1 on the optical path irradiated from the light source 4 and directed to the measurement object W. 50 and polarization beam splitter 51 are arranged in order, and return from measurement object W and reference mirror 13 Of the polarized light, the measurement light with its polarization plane reflected back from measurement object W and reflected from reference mirror 13 is reflected. Alternatively, the reference light guided through the plurality of reflecting mirrors 42 and 43 may be collectively output to the polarimeter 3. The half mirror 50 corresponds to the separation means of the present invention, and the polarization beam splitter 51 functions as the extraction means and the coupling means of the present invention.
[0122] (2)上記各実施例において、測定対象物 Wと光学系ユニットをその光軸回りに相対 的に回転させ、複数方向の主応力の差と角度を求め、各回転角度での方向を演算 処理部 15で合成することにより、測定対象物 Wに作用している応力の大きさと、その 方向を求めてもよい。  (2) In each of the above embodiments, the object to be measured W and the optical system unit are rotated relative to each other around the optical axis, the difference and angle of principal stresses in a plurality of directions are obtained, and the direction at each rotation angle is determined. May be obtained by the arithmetic processing unit 15 to obtain the magnitude and direction of the stress acting on the measurement target W.
[0123] ここで、実施例 1および変形装置を利用して主応力の差の大きさおよび方向を求め る場合、光学系ユニット 1自体を光軸回りに回転させてもよいし、測定対象物 Wまたは 載置台 60を回させてもよ 、。 [0124] (3)上記各実施例では、干渉光の最大値を求めるためのフォトダイオード 11や第 2 ポラリメータ 45を備えた構成であった力 各偏光ビームスプリッタ 9、 33から測定対象 物 Wまでの距離と、各偏光ビームスプリッタ 9、 33から参照ミラー 13、 41までの距離 を予め精度よく合わせることができる場合などは、この構成を備えなくてもよい。 Here, when the magnitude and direction of the difference in principal stress are obtained using Example 1 and the deformation device, the optical system unit 1 itself may be rotated around the optical axis, or the measurement object W or turn the mounting table 60. [0124] (3) In each of the above embodiments, the force provided with the photodiode 11 and the second polarimeter 45 for obtaining the maximum value of the interference light. From each polarization beam splitter 9, 33 to the measurement object W. If the distance between the polarizing beam splitters 9 and 33 and the distance from the reference mirrors 13 and 41 can be accurately adjusted in advance, this configuration may not be provided.
[0125] (4)上記各実施例では、ガラス基板をおいて配備した測定対象物 Wを利用したが、 測定対象物 Wはこの形態に限定されるものではなぐ複数枚の透過性を有する測定 対象物を密着させて積層したものであってもよい。例えば、ガラス基板同士、ガラス基 板とフィルムなどのように屈折率の異なる測定対象物の組合せなどがある。特に、裏 面反射率の低 、測定対象物の組合せを測定するのに有効に機能する。  (4) In each of the above-described embodiments, the measurement object W provided with the glass substrate is used. However, the measurement object W is not limited to this form, and has a plurality of transmittances. What laminated | stacked the target object may be sufficient. For example, there are combinations of objects to be measured having different refractive indexes, such as glass substrates and glass substrates and films. In particular, it has a low back surface reflectance and functions effectively for measuring combinations of objects to be measured.
[0126] (5)上記各実施例では、測定対象物 Wと参照ミラー 13から反射して戻る反射光の 光路長を一致させていたが、一致させない構成であってもよい。例えば、ピエゾ素子 14を作動させずに参照ミラー 13、 41を固定にした状態で、測定対象物 Wと参照ミラ 一 13から戻る両反射光を回折格子を通過させ、第 2の方向と直交する単色光に変え た後、各波長の干渉強度を検出し、フーリエ変換することによりピエゾ素子 14を作動 させた際に求められる最大の干渉強度を演算により求めてもよい。  (5) In each of the above embodiments, the optical path lengths of the reflected light reflected from the measurement object W and the reference mirror 13 are made to coincide with each other. For example, in a state where the reference mirrors 13 and 41 are fixed without operating the piezo element 14, both reflected light returning from the measurement object W and the reference mirror 13 are passed through the diffraction grating and orthogonal to the second direction. After changing to monochromatic light, the maximum interference intensity required when the piezo element 14 is operated may be obtained by calculation by detecting the interference intensity of each wavelength and performing Fourier transform.
[0127] (6)上記各実施例では、光源 4としてスーパールミネッセントダイオードを利用して いたが、これに限定されるものではなぐ所定周波数帯域の光を発生させるものであ ればよい。例えば、ハロゲンランプ力もの光をバンドパスフィルタ一により所定周波数 帯域に制限するように構成したものであってもよ 、。  (6) In each of the above embodiments, a super luminescent diode is used as the light source 4. However, the present invention is not limited to this, and any light source may be used as long as it generates light in a predetermined frequency band. For example, it may be configured such that light having a halogen lamp power is limited to a predetermined frequency band by a band pass filter.
[0128] (7)本発明の装置は、上記実施形態に限定されるものではなぐ光学素子のミラー の種類や個数を変更することにより、複数種類のレイアウトに変形することができる。 産業上の利用可能性  (7) The apparatus of the present invention can be modified into a plurality of types of layouts by changing the type and number of mirrors of the optical element that is not limited to the above embodiment. Industrial applicability
[0129] 以上のように、本発明は、透過性を有する複数層力もなるワークの各層に作用して V、る主応力の差とその方向を求めるのに適して 、る。 [0129] As described above, the present invention is suitable for determining the difference between V and principal stress acting on each layer of a workpiece having a multi-layer force having permeability, and its direction.

Claims

請求の範囲 The scope of the claims
[1] 中心波長力 所定の範囲の波長分布をもった照射光を、複数の層からなる透過性 を有する測定対象物と参照面に照射するとき、少なくとも測定対象物には所定の第 1 の方向の直線偏光を照射し、  [1] Central wavelength force When irradiating irradiation light having a wavelength distribution in a predetermined range to a measurement object having a plurality of layers and a reference surface, at least the measurement object has a predetermined first Irradiate linearly polarized light in the direction,
前記測定対象物の所定層の測定対象面から反射して戻る反射光のうち偏光状態 が変化したことにより生じる前記第 1の方向と直交する第 2の方向の偏光成分と参照 面力 戻る反射光とが同一光路を通るようにまとめて干渉を生じさせ、  Of the reflected light that is reflected and returned from the measurement target surface of the predetermined layer of the measurement object, the polarized light component in the second direction orthogonal to the first direction and the reference surface force reflected light that is generated by the change in the polarization state. Together to cause interference in such a way that
前記重ね合わせた両反射光の同一偏光成分同士による干渉光の光強度を取得し て複屈折による偏光の変化量情報を取得する  Acquire light intensity of interference light by the same polarization components of the two reflected light beams and obtain information on the amount of change in polarization due to birefringence.
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[2] 請求項 1に記載の光弾性計測方法にお!、て、 [2] In the photoelasticity measuring method according to claim 1,!
前記参照面または前記測定対象面のいずれかを照射光の進行方向に対して前後 に移動させ、干渉光の光強度が最大となる光強度情報を取得する  Either the reference surface or the measurement target surface is moved back and forth with respect to the traveling direction of the irradiation light to obtain light intensity information that maximizes the light intensity of the interference light.
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[3] 請求項 1または請求項 2に記載の光弾性計測方法にぉ 、て、 [3] In the photoelasticity measurement method according to claim 1 or claim 2,
前記干渉光を構成する両反射光の各位相が半波長ずれるように略半分に分離し、 分離後の両位相の差分をとつて、干渉光の光強度のうち直流成分を除去する ことを特徴とする光弾性計測方法。  The phases of both reflected lights constituting the interference light are separated into approximately half so that the phases are shifted by a half wavelength, and the direct current component is removed from the light intensity of the interference light by taking the difference between the two phases after separation. A photoelasticity measuring method.
[4] 請求項 2または請求項 3に記載の光弾性計測方法にぉ 、て、 [4] In the photoelasticity measurement method according to claim 2 or claim 3,
前記参照面または前記測定対象面のいずれかを移動させた移動量と前記干渉光 の光強度との関係力 周期的な関係を求め、この周期的な関係の実位相と予め決め た基準位相とを比較し、  The relationship force between the amount of movement of either the reference surface or the measurement target surface and the light intensity of the interference light is obtained as a periodic relationship, and the actual phase of this periodic relationship and a predetermined reference phase Compare
その結果に基づ 、て測定対象物の所定層に作用して 、る主応力の差が張力であ る力圧縮力であるかを判定する  Based on the result, it is determined whether the difference in principal stress acting on the predetermined layer of the object to be measured is a force compression force that is a tension.
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[5] 請求項 1な 、し請求項 4の 、ずれかに記載の光弾性計測方法にぉ 、て、 [5] The photoelasticity measurement method according to any one of claims 1 and 4 and
前記測定対象面に照射した直線偏光と該測定対象面とを直線偏光の光軸回り〖こ 相対的に回転させ、回転角度ごとに複屈折による偏光の変化量情報を求め、これら 複数個の偏光の変化量情報と回転角度の両情報から測定対象物に作用している主 応力の差と角度を求める The linearly polarized light irradiated on the measurement target surface and the measurement target surface are rotated relative to each other around the optical axis of the linearly polarized light, and the amount of change in polarization due to birefringence is obtained for each rotation angle. Find the difference and angle of the principal stress acting on the measurement object from both the information on the amount of change in polarization and the information on the rotation angle.
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[6] 請求項 5に記載の光弾性計測方法において、  [6] In the photoelasticity measurement method according to claim 5,
前記回転角度は少なくとも 2つの角度であり、各角度から照射する光の直線偏光の 方向が異なるようにする  The rotation angle is at least two angles so that the direction of the linearly polarized light of the light irradiated from each angle is different.
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[7] 中心波長力 所定の範囲の波長分布をもった照射光を、複数の層からなる透過性 を有する測定対象物と参照面に照射するとき、少なくとも測定対象物には所定の第 1 の方向の直線偏光を第 1の方向と 45° 異なる第 2の方向成分を 1Z4波長ずらした 略円偏光を照射し、 [7] Central wavelength force When irradiating irradiation light having a wavelength distribution in a predetermined range to a measurement object having a plurality of layers and a reference surface, at least the measurement object has a predetermined first Irradiate a nearly circularly polarized light with a second direction component that is 45 ° different from the first direction by 1Z4 wavelength.
前記測定対象物の所定層の測定対象面から反射して戻る反射光と、参照面から戻 る反射光の光路長を一致させるとともに、測定対象面からの反射光は前記第 2の方 向成分を 1Z4波長ずらして略直線偏光に戻し、そのうち偏光状態が変化したこと により生じる前記第 1の方向と直交する第 3の方向の偏光成分を抽出し、この第 3の 方向の偏光成分と参照面力 戻る反射光とが同一光路を通るようにまとめて干渉を 生じさせ、  The reflected light reflected from the measurement target surface of the predetermined layer of the measurement target is matched with the optical path length of the reflected light returning from the reference surface, and the reflected light from the measurement target surface is the second direction component. Is shifted by 1Z4 wavelength to return to substantially linearly polarized light, and the polarization component in the third direction perpendicular to the first direction resulting from the change in the polarization state is extracted, and the polarization component in the third direction and the reference surface are extracted. Forces the reflected light back together to cause interference in the same optical path,
前記重ね合わせた両反射光の同一偏光成分同士による干渉光の光強度を取得し て複屈折による偏光の変化量情報を取得する  Acquire light intensity of interference light by the same polarization components of the two reflected light beams and obtain information on the amount of change in polarization due to birefringence.
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[8] 請求項 7に記載の光弾性計測方法にお 、て、 [8] In the photoelasticity measurement method according to claim 7,
前記参照面または前記測定対象面のいずれかを照射光の進行方向に対して前後 に移動させ、干渉光の光強度が最大となる光強度情報を取得する  Either the reference surface or the measurement target surface is moved back and forth with respect to the traveling direction of the irradiation light to obtain light intensity information that maximizes the light intensity of the interference light.
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[9] 請求項 7または請求項 8に記載の光弾性計測方法にぉ 、て、 [9] In the photoelasticity measurement method according to claim 7 or claim 8,
前記干渉光を構成する両反射光の各位相が半波長ずれるように略半分に分離し、 分離後の両位相の差分をとつて、干渉光の光強度のうち直流成分を除去する ことを特徴とする光弾性計測方法。 The phases of both reflected lights constituting the interference light are separated into approximately half so that the phases are shifted by a half wavelength, and the direct current component is removed from the light intensity of the interference light by taking the difference between the two phases after separation. A photoelasticity measuring method.
[10] 請求項 7な 、し請求項 9の 、ずれかに記載の光弾性計測方法にぉ 、て、 照射される前記円偏光の伝播方向と直交する前記測定対象面が垂直平面上で移 動するように円偏光と測定対象物とを相対的に移動させ、その過程で複数箇所の複 屈折による偏光の変化量情報を取得し、その分布状態力 測定対象物の所定層に 作用する主応力の差と角度を推定する [10] According to the photoelasticity measurement method according to any one of claims 7 and 9, the measurement object plane perpendicular to the propagation direction of the irradiated circularly polarized light moves on a vertical plane. The circularly polarized light and the measurement object are moved relative to each other so that the information on the amount of change in polarization due to birefringence at multiple locations is acquired in the process, and the distribution state force is applied to a predetermined layer of the measurement object. Estimate stress difference and angle
ことを特徴とする光弾性計測方法。  The photoelasticity measuring method characterized by the above-mentioned.
[11] 中心波長力 所定の範囲の波長分布をもった照射光を出力する照射手段と、 前記照射手段からの照射光を 2つの直線偏光に分離し、前記分離された第 1の方 向の直線偏光を複数の層からなる透過性を有する測定対象物に出力し、他方の第 2 の方向の直線偏光を参照面に出力する分離手段と、 [11] Central wavelength force: Irradiation means for outputting irradiation light having a wavelength distribution in a predetermined range; and irradiation light from the irradiation means is separated into two linearly polarized lights, and the separated first direction Separation means for outputting linearly polarized light to a measuring object having a plurality of layers and transmitting the other direction of linearly polarized light to a reference surface;
前記所定層の測定対象面からの反射光のうち第 2の方向成分を抽出する抽出手段 と、  Extraction means for extracting a second direction component of reflected light from the measurement target surface of the predetermined layer;
前記測定対象物の所定層の測定対象面から反射して戻る抽出手段を介して抽出 された反射光と、参照面力 戻る反射光とが同一光路を通るようにまとめて干渉を生 じさせる結合手段と、  A combination of the reflected light extracted through the extraction means reflected from the measurement target surface of the predetermined layer of the measurement object and the reflected light returning from the reference surface force so as to cause interference by collectively passing through the same optical path. Means,
前記所定層の測定対象面から結合手段に戻る反射光と、前記参照面から結合手 段に戻る反射光の光路長が一致するように前記測定対象物または前記参照面の少 なくとも一方を直線偏光の進行方向の前後に移動させる移動手段と、  At least one of the measurement object and the reference surface is a straight line so that the optical path length of the reflected light returning from the measurement target surface of the predetermined layer to the coupling means and the reflected light returning from the reference surface to the coupling means match. Moving means for moving back and forth in the traveling direction of polarized light;
前記重ね合わせた両反射光の同一偏光成分の光強度変化を検出する検出手段と 前記検出手段の検出結果に基づいて、複屈折による偏光の変化量情報を求める 演算手段と、  A detecting means for detecting a light intensity change of the same polarization component of the superimposed reflected light; a calculating means for obtaining polarization change amount information due to birefringence based on a detection result of the detecting means;
を備えたことを特徴とする光弾性測定装置。  A photoelasticity measuring device comprising:
[12] 請求項 11に記載の光弾性測定装置にお 、て、 [12] In the photoelasticity measuring device according to claim 11,
前記照射手段、参照面、分離手段、抽出手段、結合手段、および検出手段からな る光学系と前記測定対象物とを、光学系から測定対象物に出力される直線偏光の光 軸回りに相対的に回転させる回転駆動手段を備えた  The optical system composed of the irradiation means, the reference surface, the separation means, the extraction means, the coupling means, and the detection means and the measurement object are relative to each other around the optical axis of linearly polarized light output from the optical system to the measurement object. Provided with rotational drive means for rotating automatically
ことを特徴とする光弾性測定装置。 A photoelasticity measuring apparatus.
[13] 請求項 11または請求項 12に記載の光弾性測定装置において、 [13] In the photoelasticity measurement device according to claim 11 or claim 12,
前記移動手段により前記参照面または前記測定対象物と同条の試料のいずれか を移動させたときの移動量と前記干渉光の光強度との関係力 実験的に周期的な関 係を求め、この周期的な関係の基準位相を予め記憶した記憶手段を備え、  Relationship between the amount of movement and the light intensity of the interference light when either the reference surface or the sample to be measured is moved by the moving means and the light intensity of the interference light. Comprising storage means for storing the reference phase of this periodic relationship in advance;
前記演算手段は、測定対象物の実測による周期的な関係の実位相と記憶手段か ら読み出した基準位相を比較し、  The arithmetic means compares the actual phase of the periodic relationship based on the actual measurement of the measurement object and the reference phase read from the storage means,
その結果に基づ 、て測定対象物の所定層に作用して 、る主応力の差が張力であ る力圧縮力であるかを判定する  Based on the result, it is determined whether the difference in principal stress acting on the predetermined layer of the object to be measured is a force compression force that is a tension.
ことを特徴とする光弾性測定装置。  A photoelasticity measuring apparatus.
[14] 中心波長力 所定の範囲の波長分布をもった照射光を出力する照射手段と、 前記照射手段からの照射光を 2つの直線偏光に分離し、前記分離された第 1の方 向の直線偏光を複数の層からなる透過性を有する測定対象物に出力し、他方の第 2 の方向の直線偏光を参照面に出力する分離手段と、 [14] Central wavelength force: Irradiation means for outputting irradiation light having a wavelength distribution in a predetermined range; and irradiation light from the irradiation means is separated into two linearly polarized lights, and the separated first direction Separation means for outputting linearly polarized light to a measuring object having a plurality of layers and transmitting the other direction of linearly polarized light to a reference surface;
前記分離手段で分離されて前記測定対象物に向う直線偏光を第 1の方向と 45° 異なる第 3の方向成分を 1Z4波長ずらして略円偏光に変換する第 1変換手段と、 前記所定層の測定対象面で反射して戻る反射光を前記第 3の方向成分を 1Z4 波長ずらして略直線偏光に変換する第 2変換手段と、  First conversion means for converting linearly polarized light that is separated by the separating means and directed toward the measurement object into substantially circularly polarized light by shifting a third direction component that is 45 ° different from the first direction by 1Z4 wavelength; and A second conversion means for converting the reflected light that is reflected back from the measurement target surface into substantially linearly polarized light by shifting the third direction component by 1Z4 wavelength; and
前記第 2変換手段で略直線偏光となった反射光のうち、偏光状態が変化したことに より生じる前記第 1の方向と直交する第 3の方向の偏光成分を抽出する抽出手段と、 前記第 3方向の偏光成分と、参照面から戻る反射光とが同一光路を通るようにまと めて干渉を生じさせる結合手段と、  Extraction means for extracting a polarization component in a third direction orthogonal to the first direction, which is caused by a change in polarization state, of reflected light that has been substantially linearly polarized by the second conversion means; and A coupling means for causing interference in such a way that polarization components in three directions and reflected light returning from the reference surface pass along the same optical path;
前記所定層の測定対象面から結合手段に戻る反射光と、前記参照面から結合手 段に戻る反射光の光路長が一致するように前記測定対象物または前記参照面の少 なくとも一方を直線偏光の進行方向の前後に移動させる移動手段と、  At least one of the measurement object and the reference surface is a straight line so that the optical path length of the reflected light returning from the measurement target surface of the predetermined layer to the coupling means and the reflected light returning from the reference surface to the coupling means match. Moving means for moving back and forth in the traveling direction of polarized light;
前記重ね合わせた両反射光の同一偏光成分の光強度変化を検出する検出手段と 前記検出手段の検出結果に基づいて、複屈折による偏光の変化量情報を求める 演算手段と、 を備えたことを特徴とする光弾性測定装置。 A detecting means for detecting a light intensity change of the same polarization component of the superimposed reflected light; a calculating means for obtaining polarization change amount information due to birefringence based on a detection result of the detecting means; A photoelasticity measuring device comprising:
[15] 請求項 11な 、し請求項 14の 、ずれかに記載の光弾性測定装置にお!/、て、  [15] In the photoelasticity measuring device according to any one of claims 11 and 14!
前記移動手段は、前記測定対象物または前記参照面の少なくとも一方を光の進行 方向の前後に移動させ、  The moving means moves at least one of the measurement object or the reference surface back and forth in the light traveling direction,
前記検出手段は、前記移動過程での干渉光の光強度を逐次に検出し、 前記演算手段は、前記検出手段の検出結果に基づいて前記干渉光の光強度の最 大値を求め、この求まる結果力 複屈折による偏光の変化量情報を求める  The detection means sequentially detects the light intensity of the interference light in the movement process, and the calculation means obtains the maximum value of the light intensity of the interference light based on the detection result of the detection means, and obtains this. Resulting power Find information on the amount of change in polarization due to birefringence
ことを特徴とする光弾性測定装置。  A photoelasticity measuring apparatus.
[16] 請求項 11な 、し請求項 15の 、ずれかに記載の光弾性測定装置にお!/、て、 [16] In the photoelasticity measuring device according to any one of claims 11 and 15!
前記結合手段により干渉の生じた干渉光を構成する両反射光の各位相が半波長 ずれるように略半分に分離する光学手段を備え、  Optical means for separating the reflected light constituting the interference light caused by the coupling means into substantially half so that the phases of both reflected lights are shifted by a half wavelength;
前記演算手段は、分離後の前記反射光の両位相の差分により干渉光の光強度の うち直流成分を除去して複屈折による偏光の変化量情報を求める  The calculation means obtains information on the amount of change in polarization due to birefringence by removing a direct current component from the light intensity of the interference light based on the difference between both phases of the reflected light after separation.
ことを特徴とする光弾性測定装置。  A photoelasticity measuring apparatus.
PCT/JP2007/064076 2006-07-19 2007-07-17 Optical elasticity measuring method and its device WO2008010482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008525858A JPWO2008010482A1 (en) 2006-07-19 2007-07-17 Photoelasticity measuring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-196894 2006-07-19
JP2006196894 2006-07-19

Publications (1)

Publication Number Publication Date
WO2008010482A1 true WO2008010482A1 (en) 2008-01-24

Family

ID=38956813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064076 WO2008010482A1 (en) 2006-07-19 2007-07-17 Optical elasticity measuring method and its device

Country Status (4)

Country Link
JP (1) JPWO2008010482A1 (en)
KR (1) KR20090034870A (en)
TW (1) TW200813393A (en)
WO (1) WO2008010482A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241585A (en) * 2007-03-28 2008-10-09 Keio Gijuku Photoelasticimetry and its apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116253A (en) 2009-04-22 2010-11-01 삼성전자주식회사 Input/output circuit and integrated circuit apparatus including the same
TWI394317B (en) 2010-12-21 2013-04-21 Ind Tech Res Inst Apparatus and method for compensating axial ratio of antenna for testing rfid tags
CN102494875A (en) * 2011-12-12 2012-06-13 中国科学院长春光学精密机械与物理研究所 Stress birefringence detecting method for standard lenses of linearly polarized light fizeau interferometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147986A (en) * 1992-11-12 1994-05-27 Sadao Nakai Method for measuring distribution of double refraction
JPH06147984A (en) * 1992-11-10 1994-05-27 Moritetsukusu:Kk Polarized light measuring method
JP2000155264A (en) * 1998-09-14 2000-06-06 Canon Inc Optical element, optical apparatus as well as evaluation method of optical element
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element
JP2006112887A (en) * 2004-10-14 2006-04-27 Topcon Corp Optical image measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147984A (en) * 1992-11-10 1994-05-27 Moritetsukusu:Kk Polarized light measuring method
JPH06147986A (en) * 1992-11-12 1994-05-27 Sadao Nakai Method for measuring distribution of double refraction
JP2000155264A (en) * 1998-09-14 2000-06-06 Canon Inc Optical element, optical apparatus as well as evaluation method of optical element
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element
JP2006112887A (en) * 2004-10-14 2006-04-27 Topcon Corp Optical image measuring instrument

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDRUSHCHAK A.S. ET AL.: "Two-fold interferometric measurements of piezo-optic constants: application to beta-BaB204 crystals", OPTICS & LASER TECHNOLOGY, vol. 37, no. 4, 2005, pages 319 - 328, XP004710912 *
BHATTACHARYA K. ET AL.: "Photoelastic testing using a birefringence-sensitive interferometer", OPTICS COMMUNICATIONS, vol. 109, no. 5-6, 15 July 1994 (1994-07-15), pages 380 - 386, XP000454741 *
FUKANO T. ET AL.: "Analysis of Multiple Layers to Transparent Objects Using a Confocal Microscope with Low-Coherence Interferometer", THE REVIEW OF LASER ENGINEERING, vol. 26, no. 9, 15 September 1998 (1998-09-15), pages 672 - 676, XP003018718 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241585A (en) * 2007-03-28 2008-10-09 Keio Gijuku Photoelasticimetry and its apparatus

Also Published As

Publication number Publication date
TW200813393A (en) 2008-03-16
JPWO2008010482A1 (en) 2009-12-17
KR20090034870A (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP3689681B2 (en) Measuring device and device group having the same
JP4905695B2 (en) Photoelasticity measuring method and apparatus
JP4455024B2 (en) Birefringence measuring device
KR20060103868A (en) Displacement detection apparatus, displacement gauging apparatus and fixed point detection apparatus
JP2015232562A5 (en)
CN106092905B (en) Polarized infrared spectrometer
KR20170031642A (en) Apparatus and method for snapshot interferometric spectro-polarimetry
WO2008010482A1 (en) Optical elasticity measuring method and its device
CN113959336A (en) System and method for semiconductor wafer inspection and metrology
JP4969057B2 (en) Displacement detection device, displacement measurement device, and fixed point detection device
KR100608892B1 (en) Displacement, yaw and pitch measuring method and measuring apparatus therefor
TWI579525B (en) An optical system and measuring methods for simultanuous absolute positioning distance and tilting angular measurements of a moving object
KR100997948B1 (en) a system for simultaneous measurement of linear and angilar displacement
JP5087753B2 (en) Photoelasticity measuring method and apparatus
KR101936792B1 (en) Optical Meter for Measuring of Film Structures based on Ellipsometry and Interferometer
KR20090012101A (en) Photoelastic measuring method and apparatus
RU2302623C2 (en) Ellipsometer
CN102519712A (en) One-eighth wave plate phase retardation measurer and measuring method
KR101085061B1 (en) Viration-insensitive interferometer using high-speed camera and continuous phase-scanning method
JP6169420B2 (en) Optical interferometer
JP2005233772A (en) Interferometer
US20230098439A1 (en) Systems and methods for concurrent measurements of interferometric and ellipsometric signals of multi-layer thin films
US20230000343A1 (en) Optical measurement apparatus, measuring method using the same, and method of fabricating semiconductor device using the same
KR100922142B1 (en) Apparatus for realtime film thickness monitoring using phase difference of polarized laser and the method thereof
JP2010091332A (en) Photoelasticity measuring method, and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525858

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097000665

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790838

Country of ref document: EP

Kind code of ref document: A1