WO2020261685A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2020261685A1
WO2020261685A1 PCT/JP2020/014466 JP2020014466W WO2020261685A1 WO 2020261685 A1 WO2020261685 A1 WO 2020261685A1 JP 2020014466 W JP2020014466 W JP 2020014466W WO 2020261685 A1 WO2020261685 A1 WO 2020261685A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
grating
optical
control circuit
detected
Prior art date
Application number
PCT/JP2020/014466
Other languages
French (fr)
Japanese (ja)
Inventor
青児 西脇
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020261685A1 publication Critical patent/WO2020261685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • This disclosure relates to an optical device.
  • Patent Document 1 discloses an optical phased array using such a technique.
  • the present disclosure provides a novel technique for selectively detecting reflected light from an object existing in a visual field and acquiring distance information to the object.
  • the optical device includes a photodetector, an optical system that causes light coming from a part of the light coming from the outside to enter the photodetector, the photodetector, and the above. It is equipped with a control circuit that controls the optical system. By controlling the optical system, the control circuit changes the detection direction, which is the direction in which the light detected by the photodetector arrives, and the optical system is linked to the change in the detection direction. Light coming from an object located in a single detection direction is detected by the photodetector in two or more states where the focal lengths of the optical systems are different, and the two or more are detected. The distance information to the object is generated based on the amount of two or more detected lights detected by the photodetector in the state.
  • the computer-readable recording medium may include a non-volatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory).
  • the device may consist of one or more devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device, or may be separately arranged in two or more separated devices. As used herein and in the claims, "device" can mean not only one device, but also a system consisting of a plurality of devices.
  • FIG. 1A is a perspective view schematically showing a configuration of an optical device and a path of light rays according to the first embodiment.
  • FIG. 1B is a cross-sectional view schematically showing a part of the configuration of the optical device and the path of light rays in the first embodiment.
  • FIG. 2 is a vector diagram showing the relationship of diffraction occurring on the side surface of the truncated cone prism.
  • FIG. 3 is a vector diagram showing the relationship between the incident light and the waveguide light of the input grating coupler and the relationship between the waveguide light and the synchrotron radiation of the output grating coupler.
  • FIG. 4 is a diagram schematically showing a propagation path of incident light to the input grating coupler when there is aberration correction.
  • FIG. 1B is a cross-sectional view schematically showing a part of the configuration of the optical device and the path of light rays in the first embodiment.
  • FIG. 2 is a vector diagram showing the relationship of diffraction
  • FIG. 5 is a diagram schematically showing the state of light refracted by the side surface of the truncated cone prism and incident on the input grating coupler.
  • FIG. 6A is a diagram showing an example of a pattern of a transparent electrode layer for realizing aberration correction.
  • FIG. 6B is a diagram showing an example of changes in the voltage applied to the electrodes and the effective refractive index with respect to the declination.
  • FIG. 7A is a diagram showing an example of the relationship between the angle ⁇ and the amount of change ⁇ N in the effective refractive index of the waveguide light for realizing aberration correction.
  • FIG. 7B is a diagram showing an example of the relationship between the thickness of the waveguide layer and the effective refractive index N.
  • FIG. 7C is a diagram schematically showing the arrangement of the buffer layer, the waveguide layer, and the liquid crystal layer.
  • FIG. 8A is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer and the applied voltage.
  • FIG. 8B is a diagram schematically showing the relationship between the electrode pattern in the reflective electrode layer and the applied voltage.
  • FIG. 8C is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer, the configuration in which the electrode patterns in the reflective electrode layer are aligned and overlapped, and the applied voltage.
  • FIG. 9A is a diagram schematically showing an example of an electrode pattern in the transparent electrode layer.
  • FIG. 9B is a diagram schematically showing an example of an electrode pattern in the reflective electrode layer.
  • FIG. 9C is a diagram schematically showing a configuration in which an electrode pattern on the transparent electrode layer and an electrode pattern on the reflective electrode layer are aligned and overlapped.
  • FIG. 10 is a diagram schematically showing the relationship between a part of the electrode pattern shown in FIG. 9C and the propagation path of the waveguide light.
  • FIG. 11 is a diagram showing a configuration example of a photodetector.
  • FIG. 12A is a diagram schematically showing a state of scanning of monochromatic light in the horizontal direction and the vertical direction.
  • FIG. 12B is a diagram schematically showing a state of horizontal and vertical scanning of light of a plurality of colors in a narrow band.
  • FIG. 13A is a diagram showing a configuration of an optical system equivalent to the optical device according to the first embodiment.
  • FIG. 13A is a diagram showing a configuration of an optical system equivalent to the optical device according to the first embodiment.
  • FIG. 13B is a diagram for explaining the path of the light beam passing through the truncated cone prism.
  • FIG. 13C is a diagram showing an example of the relationship between the amount of detected light and the distance to the measurement target.
  • FIG. 13D is a diagram showing an example of the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13C.
  • FIG. 13E is a diagram showing another example of the relationship between the amount of detected light and the distance to the measurement target.
  • FIG. 13F is a diagram showing an example of the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13E.
  • FIG. 14 is a diagram schematically showing a configuration of an optical device and a path of light rays in the second embodiment.
  • the term "light” is used not only for visible light but also for invisible light such as infrared light.
  • the present disclosure provides a technique that makes it possible to measure the distance to an object without using a light source.
  • the optical device includes a photodetector, an optical system that causes light coming from a part of the light coming from the outside to enter the photodetector, the photodetector, and the above. It is equipped with a control circuit that controls the optical system. By controlling the optical system, the control circuit changes the detection direction, which is the direction in which the light detected by the photodetector arrives, and the optical system is linked to the change in the detection direction. Light coming from an object located in a single detection direction is detected by the photodetector in two or more states where the focal lengths of the optical systems are different, and the two or more are detected. The distance information to the object is generated based on the amount of two or more detected lights detected by the photodetector in the state.
  • the above optical device and a light source may be used in combination.
  • a light source When a light source is used, the intensity of the reflected light from the object can be increased, so that the detection sensitivity can be improved.
  • the control circuit may periodically change the detection direction and the focal length of the optical system.
  • the two or more detected light amounts may include a first detected light amount and a second detected light amount.
  • the control circuit may generate the distance information based on the ratio of the first detected light amount to the second detected light amount.
  • the optical device may further include a recording medium that stores data that defines the correspondence between the ratio of the first detected light amount and the second detected light amount and the distance.
  • the control circuit may generate the distance information based on the data and the ratio of the first detected light amount to the second detected light amount.
  • the ratio of the first detected light amount to the second detected light amount depends on the distance to the object.
  • the distance is calculated from the ratio of the first detected light amount and the second detected light amount by referring to the data at the time of measurement. Can be sought.
  • the optical system can be realized by various structures.
  • the function of the optical system can be realized by a combination of a rotating body and a movable lens.
  • the function of the optical system can also be realized by using an optical waveguide layer having a concentric grating structure and a liquid crystal.
  • the optical system includes a rotating body that rotates around a central axis, a lens that is supported by the rotating body and is configured to be movable along an optical axis, and the lens and the light detection that are supported by the rotating body. It may be provided with a slit plate located between the vessel.
  • the slit plate member includes a slit that allows at least a part of the light focused by the lens to enter the photodetector.
  • the control circuit can change the detection direction by rotating the rotating body, and can change the focal length by moving the lens along the optical axis.
  • the control circuit may rotate the rotating body at a constant speed.
  • the control circuit may cause the photodetector to detect the light in two or more states in which the rotation angle of the rotating body is the same and the positions of the lenses in the direction along the optical axis are different.
  • the photodetector When two or more rotating bodies have the same rotation angle, the optical axes of the lenses overlap each other and the detection directions match. On the other hand, when the position in the direction along the optical axis of the lens changes, the focal length of the optical system changes. Therefore, according to the above configuration, it is possible for the photodetector to detect light coming from an object located in a single detection direction in two or more states in which the focal lengths of the optical systems are different.
  • the optical system includes an optical waveguide element that propagates light along a direction orthogonal to an axis, a bottom surface facing the surface of the optical waveguide element, a side surface that is rotationally symmetric with the axis as a central axis, and the opposite of the bottom surface. It may be provided with a transparent member having an upper surface on the side.
  • the optical waveguide element includes a first grating that expands along the radial direction of a virtual circle centered on the axis, and a first grating that expands along the radial direction outside the first grating. May include a waveguide layer having a second grating having a different grating constant on the surface.
  • a part of the light coming from the object enters the second grating through the transparent member, propagates in the waveguide layer and exits from the first grating, and the bottom surface of the transparent member and the said. It passes through the upper surface and enters the photodetector.
  • the control circuit can change the detection direction and the focal length by adjusting the effective refractive index of the waveguide layer.
  • the optical waveguide element includes a transparent electrode layer, a liquid crystal layer having a refractive index lower than that of the waveguide layer, the waveguide layer, a dielectric layer having a refractive index lower than that of the waveguide layer, and a reflective electrode.
  • the layers may be provided in this order.
  • the control circuit can adjust the effective refractive index by adjusting the voltage applied between the transparent electrode layer and the reflective electrode layer.
  • the waveguide layer may include a third grating on the surface between the first grating and the second grating for controlling the orientation of liquid crystal molecules in the liquid crystal layer.
  • At least one of the transparent electrode layer and the reflective electrode layer may include a first electrode, a second electrode, and a third electrode facing the first grating, the second grating, and the third grating, respectively. Good.
  • control circuit can individually apply a voltage to each of the first electrode, the second electrode, and the third electrode. As a result, the propagation direction of the propagating light in the waveguide can be easily controlled.
  • the third electrode may include a plurality of divided regions arranged along the circumferential direction of the virtual circle.
  • the plurality of divided regions may be isolated from each other.
  • the control circuit may individually control the voltage applied between the transparent electrode layer and the reflective electrode layer for each of the divided regions of the third electrode.
  • the propagation direction of the propagating light in the waveguide layer can be adjusted more finely.
  • the control circuit applies the voltage to each of the divided regions in such a manner that the distribution of the amplitude of the voltage applied to the plurality of divided regions of the third electrode rotates around the axis with the passage of time.
  • FIG. 1A is a perspective view schematically showing a configuration of an optical device and a path of light rays according to the first embodiment.
  • FIG. 1B is a cross-sectional view schematically showing a part of the configuration of the optical device and the path of the light beam.
  • 1A and 1B show XYZ coordinates indicating X, Y, and Z directions perpendicular to each other.
  • the configuration and operation of the optical device will be described using the XYZ coordinates.
  • the optical device of this embodiment includes a photodetector 12, an optical system, and various control circuits.
  • An optical system is a set of a plurality of optical elements.
  • the optical system in this embodiment includes an optical waveguide element 7, a truncated cone prism 6, a wavelength spectroscope 5, and a detection condenser lens 13.
  • the control circuit includes a detection circuit 33, a main control circuit 34, and a liquid crystal control circuit 32.
  • the truncated cone prism 6 and the optical waveguide element 7 are arranged so that their centers are located on the axis L parallel to the Z axis.
  • the direction parallel to the axis L is referred to as a vertical direction, and the direction orthogonal to this is referred to as a horizontal direction.
  • These names are for convenience only and do not limit the posture of the optical device when it is actually used.
  • the liquid crystal control circuit 32 controls the orientation of the liquid crystal contained in the optical waveguide element 7.
  • the main control circuit 34 controls the liquid crystal control circuit 32 based on the signal output from the detection circuit 33. As shown in FIG. 1A, the main control circuit 34, the liquid crystal control circuit 32, and the detection circuit 33 may be separate circuits separated from each other, or a part or the whole thereof is composed of a single circuit. It may have been done.
  • FIG. 1A shows a state in which the truncated cone prism 6 and the optical waveguide element 7 are separated from each other for convenience of explanation.
  • the bottom surface which is the lower bottom surface, is in contact with the optical waveguide element 7.
  • a hollow substrate 7h is provided on the surface of the optical waveguide element 7.
  • the optical waveguide element 7 is a laminated structure including a plurality of layers laminated in the Z direction.
  • the optical waveguide element 7 includes a flat substrate 7a, a reflective electrode layer 7b, a buffer layer 7c, a waveguide layer 7d, a liquid crystal layer 7e, a transparent electrode layer 7f, a flat substrate 7g, and a hollow substrate 7h in this order.
  • the flat substrates 7a and 7g are flat transparent substrates.
  • the hollow substrate 7h is a transparent substrate having a truncated cone-shaped cavity or a recess in the center.
  • the truncated cone prism 6 is arranged in the cavity or recess of the hollow substrate 7h.
  • the truncated cone prism 6 and the hollow substrate 7h are arranged with the axis L as a common central axis, and are in close contact with the flat substrate 7g.
  • the flat substrates 7a and 7g and the hollow substrate 7h are formed of a transparent material having a refractive index of n 1 '. However, they may be formed of materials with different refractive indexes.
  • a reflective electrode layer 7b, a buffer layer 7c, a waveguide layer 7d, a liquid crystal layer 7e, and a transparent electrode layer 7f are located between the flat substrate 7a and the flat substrate 7g.
  • the refractive index of the waveguide layer 7d is higher than that of any of the buffer layers 7c and the liquid crystal layer 7e on both sides thereof.
  • the buffer layer 7c, the waveguide layer 7d, and the liquid crystal layer 7e are sandwiched between the transparent electrode layer 7f and the reflective electrode layer 7b.
  • the reflective electrode layer 7b can be formed of a metal material such as aluminum (Al).
  • the buffer layer 7c is a dielectric layer formed of a transparent material having a relatively low refractive index such as silicon dioxide (SiO 2 ).
  • the waveguide layer 7d can be formed of a transparent material having a relatively high refractive index, for example, tantalum pentoxide (Ta 2 O 5 ).
  • a reflective electrode layer 7b, a buffer layer 7c, and a waveguide layer 7d are formed on the surface of the flat substrate 7a in this order.
  • the transparent electrode layer 7f can be formed of a translucent conductive material such as indium tin oxide (ITO).
  • the optical waveguide element 7 includes gratings 8a, 8b and 8c. On the surface of the waveguide layer 7d, gratings 8a, 8b and 8c having a concentric concave-convex structure centered on the axis L are provided.
  • the grating 8a is formed in a circular region located at the center of the surface of the waveguide layer 7d.
  • the grating 8a includes a plurality of recesses and a plurality of protrusions periodically arranged along the radial direction from the center.
  • the grating 8a corresponds to the above-mentioned "first grating".
  • the grating 8b is formed in a ring-shaped region located on the surface of the waveguide layer 7d outside the region where the grating 8a is formed.
  • the grating 8b corresponds to the above-mentioned "third grating”.
  • the grating 8c is formed in a ring-shaped region located on the surface of the waveguide layer 7d outside the region where the grating 8b is formed.
  • the grating 8c corresponds to the above-mentioned "second grating”.
  • the gratings 8b and 8c also include a plurality of recesses and a plurality of protrusions periodically arranged along the radial direction.
  • the grating 8a and the grating 8c act as a grating coupler.
  • the grating 8b is a grating for liquid crystal orientation.
  • the grating 8a may be referred to as an "output grating coupler 8a” or simply a “grating coupler 8a”.
  • the grating 8c may be referred to as an "input grating coupler 8c” or simply a “grating coupler 8c”.
  • Each of the gratings 8a, 8b and 8c is not limited to a circular shape or a ring shape, and may be formed in a region having a shape in which a part is missing from those shapes, for example, a fan shape.
  • Grating 8a is formed in a circular region of radius r 1 about the axis L.
  • the pitch of the grating 8a is ⁇ 0 , and the depth is d 0 .
  • the grating 8b is formed in a ring-shaped region having a radius r 1 to a radius r 2 .
  • Pitch of the grating 8b is for example 0.8Ramuda 1 or less, the depth is d 1.
  • the grating 8c is formed in a ring-shaped region having a radius r 2 to a radius r 3 .
  • the pitch of the grating 8c is ⁇ 1 , and the depth is d 1 .
  • the pitch ⁇ 0 and depth d 0 of the grating 8a and the pitch ⁇ 1 and depth d 1 of the grating 8c are set to appropriate values that satisfy the coupling conditions described later.
  • Typical sizes of the radii r 1, r 2 and r 3 are the submillimeter or the order of millimeters.
  • Typical sizes of pitches ⁇ 0 and ⁇ 1 and depths d 0 and d 1 are on the order of submicrons.
  • a concavo-convex structure similar to that of the gratings 8a, 8b and 8c is also formed on the surface of the buffer layer 7c on the waveguide layer 7d side. May be good. Since the uneven structure appears on the surface of the waveguide layer 7d on the liquid crystal layer 7e side, the grating acts as a means for aligning the liquid crystal.
  • the liquid crystal molecules are oriented in the direction along the circumferential direction in which each recess of the grating extends.
  • a transparent electrode layer 7f such as ITO is formed on the surface of the flat substrate 7g on the waveguide layer 7d side.
  • the transparent electrode layer 7f faces the waveguide layer 7d via the liquid crystal layer 7e.
  • the transparent electrode layer 7f and the reflective electrode layer 7b act as electrodes for controlling the orientation of the liquid crystal molecules in the liquid crystal layer 7e.
  • the transparent electrode layer 7f in the present embodiment is divided into three regions 9A, 9B and 9C centered on the axis L. Regions 9A, 9B and 9C face gratings 8a, 8b and 8c, respectively.
  • the liquid crystal molecules of the liquid crystal layer 7e are oriented in the direction in which the recess of the grating on the surface of the waveguide layer 7d extends, that is, in the circumferential direction centered on the axis L. ..
  • the orientation direction of the liquid crystal in the liquid crystal layer 7e is parallel to the surface of the waveguide layer 7d and perpendicular to the grating vectors of the gratings 8a, 8b and 8c.
  • Regions 9A, 9B and 9C each function as independent electrodes.
  • the regions 9A, 9B and 9C of the transparent electrode layer 7f may be referred to as "electrodes 9A, 9B and 9C".
  • the reflective electrode layer 7b may be divided into three regions.
  • each of the transparent electrode layer 7f and the reflective electrode layer 7b may be divided into three regions.
  • a concentric grating centered on the axis L may be formed on the surface of the flat substrate 7g on the electrode layer 7f side.
  • concentric gratings centered on the axis L may be formed at positions facing the gratings 8a and 8c on the surface of the flat substrate 7g on the electrode layer 7f side. If the uneven structure is formed on the surface of the flat substrate 7g, the uneven structure is also transferred to the surface of the transparent electrode layer 7f. As a result, the liquid crystal molecules of the liquid crystal layer 7e can be oriented along the direction in which the recesses extend.
  • liquid crystal molecules in the liquid crystal layer 7e by forming an alignment film such as polyimide on the surface of the waveguide layer 7d and / or the transparent electrode layer 7f and rubbing this in the circumferential direction. it can.
  • the light reflected by an external object and incident on the truncated cone prism 6 passes through the side surface of the truncated cone prism 6 twice, passes through the hollow substrate 7h, and becomes the light 10h incident on the flat substrate 7g at an angle ⁇ 1 '.
  • This light 10h excites 10g of waveguide light that is incident on the grating 8c at an angle ⁇ 1 and propagates inward along the radial direction of the concentric grating.
  • the waveguide light 10g toward the center of the optical waveguide element 7 is radiated from the grating coupler 8a and becomes the light 10f along the axis L.
  • the polarization direction 11f of the light 10f is orthogonal to the propagation direction of the waveguide light 10g. For example, when the waveguide light 10g propagates in the X-axis direction, the polarization direction 11f of the light 10f is parallel to the Y-axis direction.
  • the light 10f passes through the lower surface and the upper surface of the truncated cone prism 6 to become the light 10b.
  • the light 10b is reflected and diffracted by the wavelength spectroscope 5, condensed by the condenser lens 13 to become light 10a, and is detected by the photodetector 12.
  • the wavelength spectroscope 5 is an optical element that separates light in the diffraction direction according to the wavelength.
  • the wavelength spectroscope 5 can be, for example, a litho-type reflection diffraction grating.
  • the light emitted from the side surface of the truncated cone prism 6 enters the grating coupler 8c via the hollow substrate 7h and the flat substrate 7g. At this time, refraction occurs at the interface between the truncated cone prism 6 and the air and at the interface between the air and the hollow substrate 7h.
  • the direction of light rays inside the hollow substrate 7h having a refractive index n 1 '(angle ⁇ 1 ') and the direction of light rays inside the conical prism 6 having a refractive index n 0 (angle ⁇ 0). ) between, and n 1 'sin ⁇ 1' n 0 that the relationship sin [theta 0 holds.
  • a blaze grating 6a centered on the axis L may be formed on the side surface of the truncated cone prism 6.
  • a similar blaze grating may be formed on the truncated cone-shaped inner surface of the hollow substrate 7h.
  • the blaze grating 6a includes a plurality of grooves having a saw-like cross section. Let ⁇ 2 be the pitch of the groove of the blaze grating 6a.
  • Each groove has a structure extending along the circumferential direction of the side surface of the truncated cone prism 6 or the inner surface of the hollow substrate 7h, that is, the circumferential direction of a circle centered on the axis L.
  • the lattice lines of the blaze grating 6a extend along the circumferential direction of the side surface of the truncated cone prism 6 or the inner surface of the hollow substrate 7h.
  • FIG. 2 is a vector diagram showing the relationship of diffraction occurring on the side surface of the truncated cone prism 6.
  • the blaze grating 6a is formed only on the side surface of the truncated cone prism 6, the diffraction relationship is shown in FIG.
  • represents the wavelength of light in the air. That is, the relational expression of diffraction is described by Equation 2.
  • Equation 2 by providing the blazed gratings 6a pitch lambda 2, the incident angle theta ⁇ + theta 2 of the detectable light, than the incident angle ⁇ ⁇ '+ ⁇ 2 when the blazed gratings 6a is not provided Can also be made smaller.
  • the truncated cone prism 6 in the present embodiment is in contact with the flat substrate 7g, but may be separated from the flat substrate 7g.
  • the light incident on the side surface of the truncated cone prism 6 is emitted from the side surface or the bottom surface of the truncated cone prism 6 and is incident on the grating 8c.
  • a transparent member having a bottom surface facing the optical waveguide element 7 and a side surface that is a rotationally symmetric body with the axis L as the central axis may be used.
  • a rotationally symmetric prism having a curved generatrix on its side surface may be used instead of the truncated cone prism 6.
  • a prism having a rotational symmetry whose generatrix has a linear shape that is, a prism having a cylindrical or truncated cone shape can be used.
  • FIG. 3 is a vector diagram showing the relationship between the incident light and the waveguide light of the input grating coupler 8c and the relationship between the waveguide light and the synchrotron radiation of the output grating coupler 8a.
  • N be the effective refractive index of the waveguide layer 7d.
  • the condition for coupling the incident light to the waveguide light is a vector having a magnitude n 1 forming an angle ⁇ 1 with respect to the vertical axis.
  • Equation 3 only light having a specific wavelength and phase plane is selectively coupled to the waveguide layer 7d via the grating coupler 8c. Therefore, stray light that differs in at least one of the wavelength and the phase plane is effectively removed.
  • the coupling condition to the synchrotron radiation 10f is that the magnitude of the lattice vector PO represented by the arrow having the magnitude ⁇ / ⁇ 0 is equal to the effective refractive index N of the waveguide layer 7d. That is, the binding condition is described by Equation 4.
  • a part of the light 10h incident on the grating coupler 8c is transmitted to become the light 10ha.
  • the light 10ha is reflected by the reflective electrode layer 7b and is incident on the grating coupler 8c again to enhance the excitation of the waveguide light 10g.
  • the light 10fa emitted from the grating coupler 8a toward the reflective electrode layer 7b is reflected by the reflective electrode layer 7b and overlaps with the synchrotron radiation 10f.
  • Equation 6 the derivative of the incident angle ⁇ 1 with respect to the wavelength ⁇ is described by Equation 6.
  • Equation 7 the derivative of the incident angle ⁇ ⁇ with respect to the wavelength ⁇ of the incident beam 10i in the horizontal direction is described by Equation 7.
  • a voltage is applied to the liquid crystal layer 7e via the transparent electrode layer 7f and the reflective electrode layer 7b by the control signal from the liquid crystal control circuit 32.
  • the orientation of the liquid crystal changes when this voltage is applied.
  • the refractive index n 1 of the liquid crystal layer 7e with respect to 10 g of waveguide light changes
  • the effective refractive index N of the waveguide layer 7d with respect to 10 g of waveguide light changes.
  • the incident angle ⁇ 1 of the light that can be incident on the grating 8c from the outside changes.
  • the liquid crystal control circuit 32 can independently send signals to the electrodes 9A, 9B and 9C.
  • the voltage signal applied to the liquid crystal layer 7e is an alternating wave.
  • the tilt angle of the liquid crystal molecules is determined by the magnitude of the amplitude of the AC wave. The larger the amplitude of the AC wave, the closer the orientation direction of the liquid crystal is to the normal direction of the waveguide layer 7d.
  • the "voltage" applied to the liquid crystal layer 7e means the magnitude of the amplitude of the alternating current wave applied to the liquid crystal layer 7e.
  • the light input to the grating coupler 8c is limited to a specific wavelength and a specific angle of incidence. If the angle of incidence changes, the optimum wavelength corresponding to it also changes.
  • the wavelength of the light incident on the grating coupler 8c, coupled to the waveguide layer 7d, and guided by the waveguide has a width of about several nm.
  • the light 10b emitted from the truncated cone prism 6 also contains the same wavelength component. The light 10b is diffracted by the wavelength spectroscope 5 and separated for each wavelength.
  • the dispersed light 10a is focused by the condensing lens 13, and a plurality of condensing spots 17a1, 17a2, ... Are formed on the light receiving surface of the photodetector 12.
  • condensing spots 17a1, 17a2, ... are formed on the light receiving surface of the photodetector 12.
  • innumerable condensing spots that are continuously overlapped are formed on the light receiving surface, but in FIG. 1A, for the sake of simplicity, the condensing spots are drawn so as to be formed discretely.
  • the photodetector 12 includes a plurality of light receiving elements divided into strips. When each light receiving element receives light, it generates an electric signal according to the amount of light received. As a result, the photodetector 12 can separate and detect a plurality of focused spots 17a1, 17a2, ... For each wavelength range.
  • the photodetector 12 is connected to the detection circuit 33.
  • the detection circuit 33 drives the photodetector 12 in accordance with a command from the main control circuit 34, and processes the detection signal output from the photodetector 12. For example, based on the signal output from the photodetector 12, the distance to the detection target can be calculated by the method described later.
  • the optical device of this embodiment further includes a main control circuit 34 connected to the detection circuit 33.
  • the main control circuit 34 generates a control signal for controlling the liquid crystal control circuit 32 based on the signal output from the detection circuit 33.
  • the liquid crystal control circuit 32 adjusts the refractive index of the liquid crystal layer 7e by adjusting the voltage between the transparent electrode layer 7f and the reflective electrode layer 7b in response to the control signal input from the main control circuit 34. ..
  • the liquid crystal control circuit 32 and the main control circuit 34 do not have to be realized by different hardware, and may be realized by a single circuit.
  • the light passing through the side surface of the truncated cone prism 6 is incident on the grating coupler 8c.
  • the structure is not limited to this, and for example, light 10h may be incident on the grating coupler 8c from the lower surface of the prism.
  • the pitch of the blaze grating 6a can be increased, and the production becomes easy.
  • a blaze grating may be formed on the truncated cone-shaped inner surface of the hollow substrate 7h. In that case, the light beam is affected by diffraction three times. As the number of diffractions increases, the pitch of the blaze grating can be increased, the fabrication becomes easier, and the overall diffraction efficiency increases.
  • the hollow substrate 7h is arranged around the truncated cone prism 6. This is because the light emitted from the side surface of the truncated cone prism 6 is easily incident on the flat substrate 7g and the grating coupler 8c via the air layer.
  • the hollow substrate 7h may be omitted as long as the light can be easily incident on the grating coupler 8c.
  • the hollow substrate 7h having a truncated cone-shaped cavity by providing the hollow substrate 7h having a truncated cone-shaped cavity, light can be incident on the grating coupler 8c regardless of the angle of incidence thereof. Therefore, the degree of freedom in design can be increased.
  • FIG. 4 is a diagram schematically showing an example of a propagation path of incident light to the input grating coupler 8c.
  • (a) is a plan view
  • (b) is a perspective view
  • (c) is a cross-sectional view.
  • the influence of the refraction on the side where the light is emitted is small and can be ignored. Therefore, in the following description, only refraction on the incident side, which accounts for most of the refraction effect, will be discussed.
  • Light coming from various directions is incident on the truncated cone prism 6.
  • the light 10i and 10i1 are light propagating in the X direction in the XZ plane including the central axis L of the optical waveguide element 7, and their paths are different in the Z direction.
  • the paths of light 10i and 10i 0 are consistent in the Z direction and different in the Y direction.
  • Path of light 10i1 and 10i1 0 are consistent with respect to the Z direction are different with respect to the Y direction.
  • Path of light 10i 0 and light 10i1 0 is different for both Y and Z directions.
  • Light 10i, 10i 0, 10i1, and 10i1 0 are respectively refracted at the side surface of the truncated cone prism 6, light 10h, 10h 0, 10h1, and becomes 10h1 0.
  • Light 10h, 10h 0, 10h1, and 10h1 0 passes through the axis L 1 away in the positive direction of the inclined and the X-axis from the central axis L.
  • Light 10h and 10h 0 intersect at a point F 1 on the axis L 1
  • light 10h1 and 10h1 0 intersect at a point on the axis L 1 F 1 '.
  • Light 10h and 10h 0 is incident on the outer portion of the grating coupler 8c, optical 10h1 and 10h1 0 is incident on the inner portion of the grating coupler 8c.
  • Light 10h and 10h1 excites the guided light 10 g, light 10h 0 and 10h1 0 excites the guided light 10 g 0.
  • the propagation direction of the waveguide light 10g and 10g 0 is not along the radial direction at the time of excitation, but is corrected so as to be along the radial direction while passing through the region of the electrode 9B.
  • This correction that is, the aberration correction, can be realized by setting the voltage between the transparent electrode layer 7f and the reflective electrode layer 7b in the region of the grating 8b to a different value depending on the declination position, as will be described later.
  • FIG. 5 is a diagram schematically showing the state of light refracted by the side surface of the truncated cone prism 6 and incident on the input grating coupler 8c.
  • the refraction of the incident light occurs twice on the incident side and the exit side of the side surface of the truncated cone prism 6, but as described above, only the refraction on the incident side, which occupies most of the refraction effect, will be discussed here.
  • the amount of aberration correction can be estimated by comparing a light ray that is incident on the side surface of the truncated cone prism 6 parallel to the X-axis with a light ray that is vertically incident on the side surface of the truncated cone prism 6 in the horizontal plane and is not refracted.
  • the path of the light beam 10i and 10i 0 incident on the side surface parallel frustoconical prism 6 in the X-axis is as described with reference to FIG.
  • the path of the light beam perpendicularly incident on the side surface of the truncated cone prism 6 in the horizontal plane is as follows. First, the light rays 10I and 10I 0 reflected by an external object and directed toward the center F of the truncated cone prism 6 are incident on the side surfaces of the truncated cone prism 6, respectively, and become light 10H and 10H 0 toward the center F of the truncated cone prism 6. And intersect at point F.
  • the light 10H and 10H 0 are vertically emitted from the side surface of the truncated cone prism 6 in the horizontal plane and incident on the grating coupler 8c to excite the waveguide light 10G and 10G 0 along the radial direction, respectively.
  • f 0 the distance between the point F and the point F 1, and the radius of the truncated cone prism 6 shown in FIG. 5 (a) is defined as r 0, f 0 is given by the number 11.
  • Light 10H and 10H 0 is focused at a point F
  • the light 10h and 10h 0 is focused at point F 1.
  • the aberration that shifts the focal position of the focused light from F to F 1 that is, the longitudinal focal movement aberration is given by n 0 f 0 (1-cos ⁇ ).
  • FIG. 6A is a diagram schematically showing an example of a pattern of the transparent electrode layer 7f for realizing aberration correction.
  • the electrode 9B is located at a position facing the grating 8b and is formed in a radius r 1 to a radius r 2 .
  • the electrode 9B in the example of FIG. 6A forms a plurality of conductive divided regions arranged along the circumferential direction of a virtual circle centered on the point where the light 10f is emitted (that is, the intersection of the X-axis and the Y-axis). Including. Each divided region extends in a zigzag along the radial direction of the circle.
  • the control circuit 32 can independently and sequentially apply a voltage to a region in which the waveguide light 10 g propagates among the plurality of divided regions in the electrode 9B. As a result, aberration correction can be realized, and the propagation of 10 g of waveguide light can be aligned in the radial direction.
  • the electrode 9B is equally divided in 6-degree increments in the circumferential direction, and is divided into 60 zigzag fan-shaped division regions 9B1 to 9B60. These divided regions 9B1 to 9B60 are electrically isolated from each other, and voltages can be applied independently. When different voltages are applied to the plurality of divided regions 9B1 to 9B60, the refractive index of the liquid crystal layer 7e changes depending on the declination position. As a result, the effective refractive index of 10 g of waveguide light also changes depending on the declination position.
  • FIG. 6B is a diagram showing an example of changes in the voltage applied to the electrode 9B and the effective refractive index with respect to the declination.
  • the waveform 18 shows a curve in which points corresponding to the positions of the 60 divided regions 9B1 to 9B60 are plotted on the horizontal axis and the amplitude of the AC voltage applied to each divided region is plotted.
  • the voltage applied to each divided region is controlled so that the waveform 18 moves in the direction of the arrow shown in FIG. 6B (hereinafter, may be referred to as “rotational direction”).
  • the region between the two split regions represented by the thin zigzag lines in FIG. 6A represents the split region to which a parabolic voltage is applied at a given moment.
  • the effective refractive index N of the waveguide layer 7d with respect to 10 g of the waveguide light also changes in a parabolic shape within a range of 1/5 of the circumference with respect to the declination, and becomes a constant value in other ranges. It forms a waveform 19.
  • This waveform 19 also moves in the direction of the arrow shown in FIG. 6B, that is, in the direction of rotation.
  • Equation 13 the change width ⁇ N of the effective refractive index for aberration correction is given by Equation 13.
  • FIG. 7A is a diagram showing an example of the relationship between the angle ⁇ and the amount of change ⁇ N in the effective refractive index of the waveguide light for realizing aberration correction.
  • the change width ⁇ N is plotted as a function of the angle ⁇ based on the equation 13.
  • ⁇ N 0.041 should be set in order to secure the required phase difference in the range of, for example, ⁇ 36 degrees to 36 degrees for the angle ⁇ .
  • FIG. 7B is a refractive index n 1 of the liquid crystal layer 7e as a parameter is a diagram showing an example of a relationship between the thickness and the effective refractive index N of the waveguide layer 7d.
  • FIG. 7C is a diagram schematically showing the arrangement of the buffer layer 7c, the waveguide layer 7d, and the liquid crystal layer 7e.
  • the buffer layer 7c is made of SiO 2
  • the waveguide layer 7d is made of Ta 2 O 5 .
  • the difference in refractive index of the nematic liquid crystal molecules is about 0.20 at most. Considering that 80% of them act as a difference in refractive index, the effective difference in refractive index is about 0.15.
  • the wavelength of light was 0.94 ⁇ m, and the refractive index of the buffer layer 7c was 1.45.
  • both the transparent electrode layer 7f and the reflective electrode layer 7b have a plurality of divided zigzag electrode patterns.
  • FIG. 8A is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer 7f and the applied voltage.
  • FIG. 8B is a diagram schematically showing the relationship between the electrode pattern in the reflective electrode layer 7b and the applied voltage.
  • FIG. 8A illustrates three zigzag electrode patterns 40a, 40b and 40c in the transparent electrode layer 7f.
  • FIG. 8B illustrates the three zigzag electrode patterns 40A, 40B and 40C in the reflective electrode layer 7b. These electrode patterns are isolated from each other.
  • Voltage signals are independently applied to the electrode patterns 40a, 40b and 40c shown in FIG. 8A from the control circuits 32a, 32b and 32c, respectively.
  • voltage signals are independently applied to the electrode patterns 40A, 40B and 40C shown in FIG. 8B from the control circuits 32A, 32B and 32C, respectively.
  • FIG. 8C is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer 7f, the configuration in which the electrode patterns in the reflective electrode layer 7b are aligned and overlapped, and the applied voltage.
  • the zigzag patterns located above and below have a relationship in which the lines formed by connecting the vertices on one side of the zigzag overlap each other on the top and bottom. It is in.
  • the shape of the zigzag pattern on the reflective electrode layer 7b side is a shape in which the zigzag pattern on the transparent electrode layer 7f side is inverted up and down. Therefore, as shown in FIG. 8C, the pattern in which the electrode pattern on the transparent electrode layer 7f side and the electrode pattern on the reflective electrode layer 7b side are aligned and overlapped has a shape in which rhombuses are continuous.
  • the electrode pattern shown in FIG. 8C may be produced on only one side. However, since each rhombus is isolated, it may not be easy to route the wiring. By superimposing the electrode pattern shown in FIG. 8A and the electrode pattern shown in FIG. 8B, the pattern itself functions as wiring, so that the production can be facilitated.
  • AC voltage signals 41a, 41b and 41c are applied to the zigzag electrode patterns 40a, 40b and 40c in the transparent electrode layer 7f, respectively.
  • the amplitude increases in the order of signals 41a, 41b and 41c. Assuming that the facing electrodes are grounded, this amplitude gradient causes a difference in refractive index at the positions of the liquid crystal layers corresponding to the zigzag electrode patterns 40a, 40b and 40c.
  • the waveguide light 10 g propagating from the left to the right in the waveguide layer 7d sandwiched between the electrodes is refracted to the lower side of the figure each time it passes through the boundary between the patterns inclined with respect to the optical path.
  • AC voltage signals 41A, 41B and 41C are applied to the zigzag electrode patterns 40A, 40B and 40C in the reflective electrode layer 7b, respectively.
  • the amplitude increases in the order of signals 41A, 41B and 41C. Assuming that the facing electrodes are grounded, this amplitude gradient causes 10 g of the waveguide light propagating from left to right in the figure to be refracted downward in the waveguide layer 7d sandwiched between the electrodes.
  • the AC voltage signals 41A, 41B and 41C have the opposite polarities of the AC voltage signals 41a, 41b and 41c, respectively. Therefore, as shown in FIG. 8C, the voltage shown in FIG. 8C is applied to the electrode pattern in which the transparent electrode layer 7f and the reflective electrode layer 7b are aligned and overlapped.
  • the AC voltage signal 41a1 and the AC voltage signal 41A1 form a pair
  • the AC voltage signal 41b1 and the AC voltage signal 41B1 form a pair
  • the AC voltage signal 41c1 and the AC voltage signal 41C1 form a pair.
  • the AC voltage amplitude is doubled.
  • FIGS. 9A and 9B are diagrams schematically showing an example of the pattern of the electrode 9B in the transparent electrode layer 7f and the reflective electrode layer 7b, respectively.
  • Both the electrode pattern shown in FIG. 9A and the electrode pattern shown in FIG. 9B are composed of 60 zigzag patterns each extending from the inner peripheral side to the outer peripheral side. Such a zigzag pattern electrode may be provided only on one of the transparent electrode layer 7f and the reflective electrode layer 7b.
  • the boundary between two adjacent divided regions has a zigzag shape along the radial direction of the circle. Each zigzag pattern is isolated from each other, and a voltage signal is applied to each independently. In the example shown in FIGS.
  • FIG. 9A and 9B in the adjacent zigzag pattern, the lines formed by connecting the vertices on one side of the zigzag coincide with each other in the radial direction, and these are in a relationship of overlapping each other next to each other.
  • the shape of the zigzag pattern on the reflective electrode layer 7b side is a shape obtained by reversing the zigzag pattern on the transparent electrode layer 7f side in the rotational direction.
  • FIG. 9C is a diagram schematically showing a configuration in which the electrode pattern on the transparent electrode layer 7f and the electrode pattern on the reflective electrode layer 7b are aligned and overlapped.
  • FIG. 10 is a diagram schematically showing the relationship between a part of the electrode pattern shown in FIG. 9C and the propagation path of the waveguide light 10 g.
  • the pattern of the electrodes 9B in which the transparent electrode layer 7f and the reflective electrode layer 7b are aligned and overlapped has a shape in which rhombuses are continuous in the radial direction.
  • the boundary between two adjacent divided regions in the plurality of divided regions in the region 9B has a zigzag shape along the radial direction of the circle.
  • the boundary between one of the pair of electrode layers and the boundary at the other have a shape in which rhombuses are continuous in the radial direction.
  • the magnitude of the amplitude of the AC voltage applied to the zigzag pattern is controlled to have a gradient along the circumferential direction. For example, when a voltage gradient such as the parabolic waveform 18 shown in FIG. 6B is given around the Y axis, the liquid crystal is formed in the direction of arrow 42, that is, in the direction approaching the Y axis, as shown in FIG.
  • the refractive index increases.
  • the propagation path of the waveguide light 10g propagating in the waveguide layer 7d from the outer peripheral side to the inner peripheral side can be bent in the direction of the arrow 42, that is, in the direction approaching the Y axis.
  • the parallel light incident on the side surface of the truncated cone prism 6 is taken in by the grating coupler 8c and adjusted so as to become a waveguide light toward the center. can do.
  • it can be extracted as synchrotron radiation from the central grating coupler 8a and detected.
  • FIG. 11 is a diagram showing a configuration example of the photodetector 12.
  • the photodetector 12 includes a plurality of light receiving elements arranged in a row. Each light receiving element has a strip-shaped shape.
  • the photodetector 12 is divided into n light receiving regions 12a1, 12a2, ..., 12an having a width of d 1 , and n pieces of light 17 dispersed according to the wavelength by the wavelength spectroscope 5 are transmitted. It can be detected separately by wavelength range or color.
  • each light receiving region includes five strip-shaped light receiving element width d 2. That is, five light receiving elements are assigned to one wavelength region or color.
  • Each light receiving region can be slid together by the width of the strip-shaped light receiving element or an integral multiple thereof, if necessary.
  • the configuration of the photodetector 12 is only an example. The number of light receiving regions and the number of light receiving elements included in each light receiving region may be arbitrarily determined. Further, the photodetector 12 does not have to be divided into a plurality of light receiving regions. For example, a general one-dimensional or two-dimensional image sensor may be used as the photodetector 12.
  • FIG. 12A is a diagram schematically showing a state of scanning monochromatic light in the horizontal direction and the vertical direction.
  • scanning or light ray scanning means, when considering a virtual optical path that reverses with respect to an optical path incident on the truncated cone prism 6 from an external reflector, the virtual optical path is transferred to an electrode. It means that it is operated by controlling the applied voltage of. Further, the movement of the virtual optical path means that the direction of the external object that can be detected by the present device is moved and controlled.
  • FIG. 12A shows an example of ray scanning of monochromatic light detected by a single light receiving region (for example, 12a1 only) shown in FIG.
  • a voltage having a distribution for aberration correction as represented by the waveform 18 shown in FIG. 6B is applied to the electrode 9B, for example.
  • This makes it possible to capture parallel light in an angle range of, for example, 2 ⁇ / 5 ( 72 degrees).
  • the capture direction can be scanned horizontally in the range of 360 degrees.
  • a voltage that changes linearly is applied to the electrode 9C so that the intake direction changes in the vertical direction.
  • the capture angle represents the degree of spread on the horizontal plane of the light incident on the truncated cone prism 6 from various directions and reaching the photodetector 12 at the position incident on the truncated cone prism 6.
  • the capture angle may be referred to as "spread angle”.
  • the capture angle depends on the voltage waveform 18 shown in FIG. 6B.
  • the capture angle is changed by changing the coefficient value or exponential value of the function expressing the shape of the waveform 18.
  • the first scan is performed at the capture angle ⁇ 1.
  • the state at this time is represented by the arrow line b1 in FIG. 12A.
  • the capture angle is adjusted to ⁇ 2, the voltage of the electrode 9C is restored, and the same scan as the arrow line b1 is performed in the range of 360 degrees. That is, the optical device repeats scanning with different capture angles twice.
  • the arrow line b2 is scanned while continuously increasing the vertical angle in the state of the capture angle ⁇ 2.
  • the intake angle is returned to ⁇ 1
  • the voltage of the electrode 9C is returned to the initial state of the third time
  • the same scan as the arrow line b2 is performed in the range of 360 degrees.
  • the above operation is repeated while gradually changing the voltage of the electrode 9C, the angle in the vertical direction is gradually increased, and the scanning of the arrow line b15 is continued.
  • the period of the voltage distribution of the electrode 9B that is, the period in which the waveform 18 goes around the range of 360 degrees depends on the responsiveness of the liquid crystal.
  • the period is set to 2 ms including the response time of the shape change of the waveform 18, and scanning is performed at a moving speed of 33 frames per second, that is, a period of 30 ms
  • the change in the refractive index of the liquid crystal 0.15
  • FIG. 12B is a diagram schematically showing an example of horizontal and vertical scanning of light of a plurality of colors in a narrow band (hereinafter, referred to as “narrow multicolor light”).
  • FIG. 12B shows an example of light ray scanning of narrow multicolor light detected by n light receiving regions 12a1, 12a2, ..., 12an of the photodetector 12 shown in FIG.
  • Narrow multicolored light means the overlap of a plurality of single-mode lights forming a minute interval in the vicinity of a specific wavelength ⁇ .
  • the narrow multicolored light can be, for example, an overlap of single-mode light having wavelengths ⁇ 1 , ⁇ 2 , ... ⁇ n , which are spaced by about 0.2 nm in the vicinity of the wavelength ⁇ .
  • the incident angle changes according to the change in wavelength, but any light can be coupled to the waveguide layer 7d via the grating coupler 8c in an optimum state.
  • the wavelength difference of 0.2 nm corresponds to about 0.1 degree as the angle difference of the incident light on the grating 8c. Therefore, if the narrow multicolored light is a set of seven monochromatic lights, the gaps between the scanning lines in FIG. 12A can be filled without gaps as shown in FIG. 12B.
  • narrow multicolored light is not a set of discontinuous monochromatic light but a set of light of continuous wavelength.
  • the detection of the light is equivalent to detecting the discrete light of a plurality of wavelengths as a result. is there.
  • reflected light can be scanned and detected at a frame rate of 100 or more vertical scanning lines and 30 frames or more per second.
  • FIG. 13A is a diagram showing a configuration example of an optical system equivalent to the optical device in the present embodiment.
  • the optical system shown in FIG. 13A includes a truncated cone prism 6, a condenser lens 14a, and a slit plate 14b.
  • the condenser lens 14a and the slit plate 14b perform an action equivalent to that of the optical waveguide element 7 in the present embodiment.
  • the light entering the grating coupler 8c is controlled by the voltage applied to the electrodes, the optical waveguide The light is adjusted so as to be waveguide light toward the center of the element 7.
  • the optical waveguide element 7 in the present embodiment includes a lens capable of changing the focal length and a slit plate that limits the light passing through the lens.
  • FIG. 13A exemplifies the light 15 incident at the capture angle ⁇ (capture full-width 2 ⁇ ) and the light 16 incident at the capture angle ⁇ '(capture full-width 2 ⁇ ').
  • the light 15 incident at the captured full-width 2 ⁇ is refracted by the side surface of the truncated cone prism 6 and focused at the point F1, and then focused at the point F0 by the condenser lens 14a.
  • the point F0 is located at the opening of the slit 14b.
  • Light is focused to a point F0 is detected by the photodetector 12 is transmitted through the slit opening width 2r 1, which corresponds to the diameter of the grating coupler 8c.
  • the light 16 reflected from the reflector S separated from the truncated cone prism 6 by a distance d in the X-axis direction is incident on the side surface of the truncated cone prism 6 at a captured full angle of 2 ⁇ 'and is refracted.
  • the refracted light is focused at a point F1'distant from the point F1 by ⁇ s, and then focused on the slit by the condenser lens 14a with a spot diameter of 2r'. Since the spot diameter 2r'is larger than the aperture width 2r 1, only a part of the focused light can pass through the slit. Therefore, the detected light amount of the light 16 is smaller than the detected light amount of the light 15.
  • FIG. 13B is a diagram for explaining the path of light rays passing through the truncated cone prism 6 in the optical system shown in FIG. 13A.
  • the light 15 and light 16 is incident on a point to Q 1 side of the truncated cone prism 6. Normal of the point Q 1 is angled in ⁇ with respect to the X axis. With the center of the truncated cone prism 6 as the point F, the points F, F1, and F1'are all on the X-axis.
  • the detected light amount ⁇ becomes the maximum value 1, but when they do not match, the detected light amount ⁇ becomes smaller than 1.
  • the position of the light intake angle ⁇ and its focusing point F1 can be controlled by, for example, adjusting the shape of the parabolic waveform 19 shown in FIG. 6B. Further, by moving the waveform 19 in the declination direction, the light uptake direction can be rotated around the central axis L of the truncated cone prism 6. Therefore, the reflected light from the external reflector S in a single direction can be detected at high speed with two or more capture angles. Further, in the present embodiment, by adjusting the voltage of the electrode 9C, the direction of the detectable light can be changed to the vertical direction for scanning.
  • FIG. 13C is a diagram showing an example of the relationship between the amount of detected light and the distance to the measurement target with the capture angle (also referred to as “spread angle”) ⁇ as a parameter.
  • FIG. 13D is a diagram showing the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13C.
  • FIG. 13E is a diagram showing another example of the relationship between the amount of detected light and the distance to the measurement target, with the capture angle ⁇ as a parameter.
  • FIG. 13F is a diagram showing the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13E.
  • 13C and 13E show an example of the relationship between the detected light amount ⁇ and the distance d for a plurality of capture angles ⁇ .
  • the refractive index n 0 1.58 frustoconical prism 6
  • the radius r 0 1.5 mm
  • the normal and the X-axis of the slit width 2r 1 0.02 mm
  • FIG. 13C when the intake angle ⁇ is 0 or more, all the curves monotonically increase with respect to the distance d.
  • the intake angle ⁇ is 0 or more, and all of them increase monotonically with respect to the distance d.
  • the rate of change is particularly large in the range of d> 0.9 m. Therefore, the distance to the reflector S can be accurately measured in the range of 0.9 m ⁇ d ⁇ 10 m.
  • data showing the relationship between one or both of FIGS. 13D and 13F is recorded in advance on the recording medium.
  • the recording medium may be provided with a control circuit such as the detection circuit 33 shown in FIG.
  • the control circuit can obtain the distance from the ratio of two light amounts detected at different focal lengths in the same direction.
  • the distance can be obtained more accurately.
  • the curve data shown in FIG. 13D may be used for a short distance (for example, d ⁇ 2m)
  • the curve data shown in FIG. 13F may be used for a long distance (for example, d> 2m).
  • the distance to an external reflector can be measured without emitting light. Further, since the measurement only compares the detected light amounts of the light of at least two capture angles arriving from the same direction, the calculation load is extremely small. Further, since the direction of the captured light can be scanned at high speed in the rotation direction or the direction orthogonal to the rotation direction, the distance information in all directions can be acquired at high speed.
  • the position of the focusing point by the truncated cone prism 6 is one point, but strictly speaking, the positions of the focusing points are dispersed.
  • the parabolic waveform 19 in FIG. 6B may be corrected or controlled in response to the dispersed focus points.
  • FIG. 14 is a plan view schematically showing the configuration of the optical device and the path of light rays in the second embodiment.
  • This optical device includes a rotating body 50, an optical table 51 on the rotating body 50, a condenser lens 52 on the optical table 51, a slit plate 53, a photodetector 54, and a control circuit 55.
  • the condenser lens 52, the slit plate 53, and the photodetector 54 are arranged along the axis L0 passing through the center O of the rotating body 50.
  • the rotating body 50 is driven to rotate around the center O by a motor (not shown).
  • the condenser lens 52 is configured to be able to move at high speed along the axis L0 by an actuator (not shown).
  • the condenser lens 52 can also move in a direction orthogonal to the surface of the rotating body 50 (hereinafter, referred to as a “vertical direction”).
  • the slit of the slit plate 53 has an opening having an elongated shape in the vertical direction.
  • the control circuit 55 synchronously controls the rotational movement of the rotating body 50 and the translational movement of the lens 52.
  • the rotating body 50 is controlled to rotate at a constant velocity, for example.
  • the movement of the condenser lens 52 in the direction along the axis L0 can be, for example, a simple vibration having a period of an integral multiple or a fraction of an integral multiple of the rotation cycle of the rotating body 50.
  • the movement of the condenser lens 52 in the vertical direction may be, for example, a simple vibration having a period of several times to several hundred times the rotation period of the rotating body 50.
  • the light 15 incident at the captured full-width 2 ⁇ is focused at the point F0 by the condenser lens 52.
  • Point F0 is located in the opening of the slit plate 53, the light is focused to a point F0 is detected through the slit opening width 2r 1 by the light detector 54.
  • the light 16 reflected by the reflector S on the axis L0 which is at a distance d from the condenser lens 52, enters the condenser lens 52 at a captured full angle of 2 ⁇ 'and is focused on the slit with a spot diameter of 2r'. Will be done. Since the spot diameter 2r'is larger than the aperture width 2r 1, only a part of the focused light can pass through the slit. Therefore, the detected light amount of the light 16 is smaller than the detected light amount of the light 15.
  • the spot on the slit also moves in the vertical direction while maintaining the spot diameter.
  • the opening of the slit has a shape extending in the vertical direction, the amount of light detected through the slit does not change.
  • the optical device in the second embodiment has different components from the optical device in the first embodiment, but its functions and effects are the same. That is, also in the present embodiment, as in the first embodiment, the reflected light is detected through the slit plate 53 arranged at the condensing position of the reflected light from the external reflector S in a single direction. it can. Similar to the first embodiment, the detection direction can be changed at high speed in the horizontal direction and the vertical direction, and the capture angle can be changed to two or more at high speed. Therefore, the principle of distance measurement exactly the same as that of the first embodiment is established, and the same effect as that of the first embodiment can be obtained.
  • a photodetector including a condensing means, which changes the direction of detectable light, for example, periodically, and is linked to the change in the direction.
  • the purpose is to change the focal length of the condensing means, for example, periodically.
  • Distances can be measured based on the amount of light coming from a single direction detected using at least two different focal length optics. In particular, distance information can be obtained more accurately than before, based on the light amount ratio of the two detection lights and the data that defines the relationship between the light amount ratio and the distance recorded in advance.
  • the distance to the external reflector can be measured more accurately. Since the measurement only compares the detected light amounts of the lights of the two capture angles facing in the same direction, the calculation load is extremely small. Further, according to the configuration in which the direction of the captured light is scanned at high speed in the rotation direction or the direction orthogonal to the rotation direction, the distance information in all directions can be acquired at high speed.
  • the technique of the present disclosure can be used, for example, for acquiring three-dimensional position information of an object in a target scene.
  • Wavelength spectroscope 6 Conical prism 7 Optical waveguide 7a Flat substrate 7b Reflective electrode layer 7c Buffer layer 7d waveguide layer 7e Liquid crystal layer 7f Transparent electrode layer 7g Flat substrate 7h Hollow substrate 8a, 8c Glazing coupler 8b Orientation grating 9A 9B, 9C Electrode region 12 Optical detector 13 Condensing lens 32, 34 Control circuit 33 Detection circuit 50 Rotating body 51 Optical stand 52 Condensing lens 53 Slit plate 54 Light detector 55 Control circuit

Abstract

This optical device comprises a light detector, an optical system, and a control circuit that controls the light detector and the optical system. In the optical system, light arriving from one direction, from light arriving from the outside, is caused to impinge on the light detector. By controlling the optical system, the control circuit: changes a detection direction, which is the direction of arriving light detected by the light detector; changes the focal distance of the optical system in tandem with the change in the detection direction; causes light arriving from an object positioned in the one detection direction to be detected by the light detector in two or more states in which the focal distances of the optical system differ from each other; and generates information pertaining to the distance to the object on the basis of two or more light detection amounts that were respectively detected by the light detector in the two or more states.

Description

光学装置Optical device
 本開示は、光学装置に関する。 This disclosure relates to an optical device.
 従来、視野内に散在する物体の位置を把握するために様々な技術が開発されてきた。例えば、光パルスで物体を照射し、物体からの反射光の時間的な遅れを方向ごとに計測することにより、物体表面までの距離を計測する技術が存在する。特許文献1は、そのような技術を用いた光フェーズドアレイを開示している。 Conventionally, various technologies have been developed to grasp the positions of objects scattered in the field of view. For example, there is a technique for measuring the distance to the surface of an object by irradiating the object with an optical pulse and measuring the time delay of the reflected light from the object for each direction. Patent Document 1 discloses an optical phased array using such a technique.
特開2017-187649号公報JP-A-2017-187649
 本開示は、視野中に存在する物体からの反射光を選択的に検出し、物体までの距離情報を取得するための新規な技術を提供する。 The present disclosure provides a novel technique for selectively detecting reflected light from an object existing in a visual field and acquiring distance information to the object.
 本開示の一態様に係る光学装置は、光検出器と、外部から到来する光のうち、一部の方向から到来する光を前記光検出器に入射させる光学系と、前記光検出器および前記光学系を制御する制御回路とを備える。前記制御回路は、前記光学系を制御することにより、前記光検出器によって検出される光が到来する方向である検出方向を変化させ、かつ、前記検出方向の変化に連動して、前記光学系の焦点距離を変化させ、単一の検出方向に位置する物体から到来する光を、前記光学系の焦点距離が異なる2つ以上の状態で、前記光検出器に検出させ、前記2つ以上の状態において前記光検出器によってそれぞれ検出された2つ以上の検出光量に基づいて、前記物体までの距離情報を生成する。 The optical device according to one aspect of the present disclosure includes a photodetector, an optical system that causes light coming from a part of the light coming from the outside to enter the photodetector, the photodetector, and the above. It is equipped with a control circuit that controls the optical system. By controlling the optical system, the control circuit changes the detection direction, which is the direction in which the light detected by the photodetector arrives, and the optical system is linked to the change in the detection direction. Light coming from an object located in a single detection direction is detected by the photodetector in two or more states where the focal lengths of the optical systems are different, and the two or more are detected. The distance information to the object is generated based on the amount of two or more detected lights detected by the photodetector in the state.
 本開示の包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、またはコンピュータ読み取り可能な記録媒体で実現されてもよい。あるいは、システム、装置、方法、集積回路、コンピュータプログラム、および記録媒体の任意な組み合わせで実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えばCD-ROM(Compact Disc‐Read Only Memory)等の不揮発性の記録媒体を含み得る。装置は、1つ以上の装置で構成されてもよい。装置が2つ以上の装置で構成される場合、当該2つ以上の装置は、1つの機器内に配置されてもよく、分離した2つ以上の機器内に分かれて配置されてもよい。本明細書及び特許請求の範囲では、「装置」とは、1つの装置を意味し得るだけでなく、複数の装置からなるシステムも意味し得る。 Comprehensive or specific embodiments of the present disclosure may be implemented in systems, devices, methods, integrated circuits, computer programs, or computer-readable recording media. Alternatively, it may be realized by any combination of systems, devices, methods, integrated circuits, computer programs, and recording media. The computer-readable recording medium may include a non-volatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory). The device may consist of one or more devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device, or may be separately arranged in two or more separated devices. As used herein and in the claims, "device" can mean not only one device, but also a system consisting of a plurality of devices.
 本開示の一態様によれば、視野中に存在する物体からの反射光を選択的に検出し、物体までの距離情報を取得することができる。 According to one aspect of the present disclosure, it is possible to selectively detect the reflected light from an object existing in the field of view and acquire distance information to the object.
図1Aは、第1実施形態における光学装置の構成と光線の経路とを模式的に示す斜視図である。FIG. 1A is a perspective view schematically showing a configuration of an optical device and a path of light rays according to the first embodiment. 図1Bは、第1実施形態における光学装置の構成の一部と光線の経路とを模式的に示す断面図である。FIG. 1B is a cross-sectional view schematically showing a part of the configuration of the optical device and the path of light rays in the first embodiment. 図2は、円錐台プリズムの側面で生じる回折の関係を示すベクトルダイアグラムである。FIG. 2 is a vector diagram showing the relationship of diffraction occurring on the side surface of the truncated cone prism. 図3は、入力グレーティングカプラの入射光と導波光との関係、および出力グレーティングカプラの導波光と放射光の関係を示すベクトルダイアグラムである。FIG. 3 is a vector diagram showing the relationship between the incident light and the waveguide light of the input grating coupler and the relationship between the waveguide light and the synchrotron radiation of the output grating coupler. 図4は、収差補正がある場合の、入力グレーティングカプラへの入射光の伝搬経路を模式的に示す図である。FIG. 4 is a diagram schematically showing a propagation path of incident light to the input grating coupler when there is aberration correction. 図5は、円錐台プリズムの側面で屈折され、入力グレーティングカプラへ入射する光の様子を模式的に示す図である。FIG. 5 is a diagram schematically showing the state of light refracted by the side surface of the truncated cone prism and incident on the input grating coupler. 図6Aは、収差補正を実現するための透明電極層のパターンの例を示す図である。FIG. 6A is a diagram showing an example of a pattern of a transparent electrode layer for realizing aberration correction. 図6Bは、電極への印加電圧および実効屈折率の、偏角に対する変化の例を示す図である。FIG. 6B is a diagram showing an example of changes in the voltage applied to the electrodes and the effective refractive index with respect to the declination. 図7Aは、角度φと、収差補正を実現するための導波光の実効屈折率の変化量ΔNとの関係の例を示す図である。FIG. 7A is a diagram showing an example of the relationship between the angle φ and the amount of change ΔN in the effective refractive index of the waveguide light for realizing aberration correction. 図7Bは、導波層の厚さと実効屈折率Nとの関係の例を示す図である。FIG. 7B is a diagram showing an example of the relationship between the thickness of the waveguide layer and the effective refractive index N. 図7Cは、バッファー層、導波層、および液晶層の配置を模式的に示す図である。FIG. 7C is a diagram schematically showing the arrangement of the buffer layer, the waveguide layer, and the liquid crystal layer. 図8Aは、透明電極層における電極パターンと、印加電圧との関係を模式的に示す図である。FIG. 8A is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer and the applied voltage. 図8Bは、反射電極層における電極パターンと、印加電圧との関係を模式的に示す図である。FIG. 8B is a diagram schematically showing the relationship between the electrode pattern in the reflective electrode layer and the applied voltage. 図8Cは、透明電極層における電極パターン、および反射電極層における電極パターンを揃えて重ねた構成と、印加電圧との関係を模式的に示す図である。FIG. 8C is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer, the configuration in which the electrode patterns in the reflective electrode layer are aligned and overlapped, and the applied voltage. 図9Aは、透明電極層での電極パターンの例を模式的に示す図である。FIG. 9A is a diagram schematically showing an example of an electrode pattern in the transparent electrode layer. 図9Bは、反射電極層での電極パターンの例を模式的に示す図である。FIG. 9B is a diagram schematically showing an example of an electrode pattern in the reflective electrode layer. 図9Cは、透明電極層での電極パターン、および反射電極層での電極パターンを揃えて重ねた構成を模式的に示す図である。FIG. 9C is a diagram schematically showing a configuration in which an electrode pattern on the transparent electrode layer and an electrode pattern on the reflective electrode layer are aligned and overlapped. 図10は、図9Cに示す電極パターンの一部と、導波光の伝搬経路との関係を模式的に示す図である。FIG. 10 is a diagram schematically showing the relationship between a part of the electrode pattern shown in FIG. 9C and the propagation path of the waveguide light. 図11は、光検出器の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a photodetector. 図12Aは、単色光の水平方向および垂直方向の走査の様子を模式的に示す図である。FIG. 12A is a diagram schematically showing a state of scanning of monochromatic light in the horizontal direction and the vertical direction. 図12Bは、狭帯域の複数の色の光の水平方向および垂直方向の走査の様子を模式的に示す図である。FIG. 12B is a diagram schematically showing a state of horizontal and vertical scanning of light of a plurality of colors in a narrow band. 図13Aは、第1実施形態における光学装置と等価な光学系の構成を示す図である。FIG. 13A is a diagram showing a configuration of an optical system equivalent to the optical device according to the first embodiment. 図13Bは、円錐台プリズムを通過する光線の経路を説明するための図である。FIG. 13B is a diagram for explaining the path of the light beam passing through the truncated cone prism. 図13Cは、検出光量と測定対象までの距離との関係の例を示す図である。FIG. 13C is a diagram showing an example of the relationship between the amount of detected light and the distance to the measurement target. 図13Dは、図13Cの例における2つの検出光量の比と測定対象までの距離との関係の例を示す図である。FIG. 13D is a diagram showing an example of the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13C. 図13Eは、検出光量と測定対象までの距離との関係の他の例を示す図である。FIG. 13E is a diagram showing another example of the relationship between the amount of detected light and the distance to the measurement target. 図13Fは、図13Eの例における2つの検出光量の比と測定対象までの距離との関係の例を示す図である。FIG. 13F is a diagram showing an example of the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13E. 図14は、第2実施形態における光学装置の構成と光線の経路とを模式的に示す図である。FIG. 14 is a diagram schematically showing a configuration of an optical device and a path of light rays in the second embodiment.
 本開示の実施形態を説明する前に、本開示の基礎となった知見を説明する。本明細書では、可視光のみならず赤外線などの非可視光についても「光」の用語を用いる。 Before explaining the embodiments of the present disclosure, the findings underlying the present disclosure will be explained. In this specification, the term "light" is used not only for visible light but also for invisible light such as infrared light.
 視野内に散在する物体の位置を把握する方法として、2つの代表的な方法がある。1つは、光パルスで視野内全域を一様に照射し、反射光を検出する方法である。もう一つは、指向性のあるレーザービームによって視野内全域を網羅的に走査し、反射光を検出する方法である。いずれの方法も、対象シーンの全域を光で照射するための光源を必要とする。 There are two typical methods for grasping the positions of objects scattered in the field of view. One is a method of detecting reflected light by uniformly irradiating the entire field of view with an optical pulse. The other is a method of detecting reflected light by comprehensively scanning the entire field of view with a directional laser beam. Both methods require a light source to illuminate the entire area of the target scene with light.
 しかし、光源を用いることなく、自然光または外部の照明光を利用して対象シーン内の物体の距離情報を取得できれば、装置の構成を簡素化でき、コスト削減につながる。そこで、本開示は、光源を用いることなく、物体までの距離を計測することを可能にする技術を提供する。 However, if the distance information of the object in the target scene can be acquired by using natural light or external illumination light without using a light source, the configuration of the device can be simplified and the cost can be reduced. Therefore, the present disclosure provides a technique that makes it possible to measure the distance to an object without using a light source.
 以下、本開示の実施形態の概要を説明する。 The outline of the embodiment of the present disclosure will be described below.
 本開示の一態様に係る光学装置は、光検出器と、外部から到来する光のうち、一部の方向から到来する光を前記光検出器に入射させる光学系と、前記光検出器および前記光学系を制御する制御回路とを備える。前記制御回路は、前記光学系を制御することにより、前記光検出器によって検出される光が到来する方向である検出方向を変化させ、かつ、前記検出方向の変化に連動して、前記光学系の焦点距離を変化させ、単一の検出方向に位置する物体から到来する光を、前記光学系の焦点距離が異なる2つ以上の状態で、前記光検出器に検出させ、前記2つ以上の状態において前記光検出器によってそれぞれ検出された2つ以上の検出光量に基づいて、前記物体までの距離情報を生成する。 The optical device according to one aspect of the present disclosure includes a photodetector, an optical system that causes light coming from a part of the light coming from the outside to enter the photodetector, the photodetector, and the above. It is equipped with a control circuit that controls the optical system. By controlling the optical system, the control circuit changes the detection direction, which is the direction in which the light detected by the photodetector arrives, and the optical system is linked to the change in the detection direction. Light coming from an object located in a single detection direction is detected by the photodetector in two or more states where the focal lengths of the optical systems are different, and the two or more are detected. The distance information to the object is generated based on the amount of two or more detected lights detected by the photodetector in the state.
 このような構成により、光源を用いることなく、物体までの距離を計測することができる。なお、上記の光学装置と光源とを組み合わせて使用してもよい。光源を用いた場合、物体からの反射光の強度を増加させることができるため、検出感度を向上できる。 With such a configuration, it is possible to measure the distance to an object without using a light source. The above optical device and a light source may be used in combination. When a light source is used, the intensity of the reflected light from the object can be increased, so that the detection sensitivity can be improved.
 前記制御回路は、前記検出方向を周期的に変化させ、かつ、前記光学系の焦点距離を周期的に変化させてもよい。 The control circuit may periodically change the detection direction and the focal length of the optical system.
 このような構成により、シンプルな制御で物体の距離分布の情報を得ることができる。 With such a configuration, it is possible to obtain information on the distance distribution of an object with simple control.
 前記2つ以上の検出光量は、第1検出光量と、第2検出光量とを含み得る。前記制御回路は、前記第1検出光量と前記第2検出光量との比に基づいて、前記距離情報を生成してもよい。 The two or more detected light amounts may include a first detected light amount and a second detected light amount. The control circuit may generate the distance information based on the ratio of the first detected light amount to the second detected light amount.
 前記光学装置は、前記第1検出光量と前記第2検出光量との比と、距離との対応関係を規定するデータを格納する記録媒体をさらに備え得る。前記制御回路は、前記データと、前記第1検出光量と前記第2検出光量との比に基づいて、前記距離情報を生成してもよい。 The optical device may further include a recording medium that stores data that defines the correspondence between the ratio of the first detected light amount and the second detected light amount and the distance. The control circuit may generate the distance information based on the data and the ratio of the first detected light amount to the second detected light amount.
 後述するように、第1検出光量と第2検出光量との比は、物体までの距離に依存する。当該比と距離との対応関係を示すテーブルなどのデータを予め取得して記録しておくことにより、計測時には、そのデータを参照して、第1検出光量と第2検出光量との比から距離を求めることができる。 As will be described later, the ratio of the first detected light amount to the second detected light amount depends on the distance to the object. By acquiring and recording data such as a table showing the correspondence between the ratio and the distance in advance, the distance is calculated from the ratio of the first detected light amount and the second detected light amount by referring to the data at the time of measurement. Can be sought.
 前記光学系は、様々な構造によって実現され得る。例えば、回転体と、可動レンズとの組み合わせによって前記光学系の機能が実現され得る。あるいは、同心円状のグレーティング構造を有する光導波層と、液晶とを利用することによっても前記光学系の機能を実現することができる。 The optical system can be realized by various structures. For example, the function of the optical system can be realized by a combination of a rotating body and a movable lens. Alternatively, the function of the optical system can also be realized by using an optical waveguide layer having a concentric grating structure and a liquid crystal.
 前記光学系は、中心軸の周りに回転する回転体と、前記回転体に支持され、光軸に沿って移動可能に構成されたレンズと、前記回転体に支持され、前記レンズと前記光検出器との間に位置するスリット板とを備え得る。前記スリット板部材は、前記レンズによって集束された光の少なくとも一部を前記光検出器に入射させるスリットを含む。前記制御回路は、前記回転体を回転させることにより、前記検出方向を変化させ、前記レンズを前記光軸に沿って移動させることにより、前記焦点距離を変化させることができる。 The optical system includes a rotating body that rotates around a central axis, a lens that is supported by the rotating body and is configured to be movable along an optical axis, and the lens and the light detection that are supported by the rotating body. It may be provided with a slit plate located between the vessel. The slit plate member includes a slit that allows at least a part of the light focused by the lens to enter the photodetector. The control circuit can change the detection direction by rotating the rotating body, and can change the focal length by moving the lens along the optical axis.
 前記制御回路は、前記回転体を等速で回転させてもよい。 The control circuit may rotate the rotating body at a constant speed.
 前記制御回路は、前記回転体の回転角が同一で且つ前記レンズの前記光軸に沿った方向の位置が異なる2つ以上の状態で、前記光検出器に前記光を検出させてもよい。 The control circuit may cause the photodetector to detect the light in two or more states in which the rotation angle of the rotating body is the same and the positions of the lenses in the direction along the optical axis are different.
 回転体の回転角が同一の2つ以上の状態では、レンズの光軸が互いに重なり、検出方向は一致する。一方、レンズの光軸に沿った方向の位置が変化すると、光学系の焦点距離は変化する。よって、上記構成により、単一の検出方向に位置する物体から到来する光を、光学系の焦点距離が異なる2つ以上の状態で、光検出器に検出させることができる。 When two or more rotating bodies have the same rotation angle, the optical axes of the lenses overlap each other and the detection directions match. On the other hand, when the position in the direction along the optical axis of the lens changes, the focal length of the optical system changes. Therefore, according to the above configuration, it is possible for the photodetector to detect light coming from an object located in a single detection direction in two or more states in which the focal lengths of the optical systems are different.
 前記光学系は、軸に直交する方向に沿って光を伝搬させる光導波素子と、前記光導波素子の表面に面する底面、前記軸を中心軸として回転対称である側面、および前記底面の反対側の上面を有する透明部材とを備えていてもよい。前記光導波素子は、前記軸を中心とする仮想的な円の動径方向に沿って拡がる第1グレーティングと、前記第1グレーティングの外側において前記動径方向に沿って拡がり、前記第1グレーティングとは異なる格子定数を有する第2グレーティングとを表面に含む導波層を備えていてもよい。前記物体から到来する光の一部は、前記透明部材を介して前記第2グレーティングに入射し、前記導波層内を伝搬して前記第1グレーティングから出射し、前記透明部材の前記底面および前記上面を通過して前記光検出器に入射する。前記制御回路は、前記導波層の実効屈折率を調整することにより、前記検出方向および前記焦点距離を変化させることができる。 The optical system includes an optical waveguide element that propagates light along a direction orthogonal to an axis, a bottom surface facing the surface of the optical waveguide element, a side surface that is rotationally symmetric with the axis as a central axis, and the opposite of the bottom surface. It may be provided with a transparent member having an upper surface on the side. The optical waveguide element includes a first grating that expands along the radial direction of a virtual circle centered on the axis, and a first grating that expands along the radial direction outside the first grating. May include a waveguide layer having a second grating having a different grating constant on the surface. A part of the light coming from the object enters the second grating through the transparent member, propagates in the waveguide layer and exits from the first grating, and the bottom surface of the transparent member and the said. It passes through the upper surface and enters the photodetector. The control circuit can change the detection direction and the focal length by adjusting the effective refractive index of the waveguide layer.
 前記光導波素子は、透明電極層と、前記導波層よりも低い屈折率を有する液晶層と、前記導波層と、前記導波層よりも低い屈折率を有する誘電体層と、反射電極層と、をこの順に備えていてもよい。前記制御回路は、前記透明電極層と前記反射電極層との間に印加する電圧を調整することにより、前記実効屈折率を調整することができる。 The optical waveguide element includes a transparent electrode layer, a liquid crystal layer having a refractive index lower than that of the waveguide layer, the waveguide layer, a dielectric layer having a refractive index lower than that of the waveguide layer, and a reflective electrode. The layers may be provided in this order. The control circuit can adjust the effective refractive index by adjusting the voltage applied between the transparent electrode layer and the reflective electrode layer.
 前記導波層は、前記第1グレーティングと前記第2グレーティングとの間に、前記液晶層における液晶分子の配向を制御するための第3グレーティングを前記表面に含んでいてもよい。前記透明電極層および前記反射電極層の少なくとも一方は、前記第1グレーティング、前記第2グレーティング、および前記第3グレーティングにそれぞれ対面する第1電極、第2電極、および第3電極を含んでいてもよい。 The waveguide layer may include a third grating on the surface between the first grating and the second grating for controlling the orientation of liquid crystal molecules in the liquid crystal layer. At least one of the transparent electrode layer and the reflective electrode layer may include a first electrode, a second electrode, and a third electrode facing the first grating, the second grating, and the third grating, respectively. Good.
 このような構造により、制御回路は、第1電極、第2電極、第3電極のそれぞれに個別に電圧を印加することができる。これにより、導波層内の伝搬光の伝搬方向を容易に制御することができる。 With such a structure, the control circuit can individually apply a voltage to each of the first electrode, the second electrode, and the third electrode. As a result, the propagation direction of the propagating light in the waveguide can be easily controlled.
 前記第3電極は、前記仮想的な円の周方向に沿って並ぶ複数の分割領域を含んでいてもよい。前記複数の分割領域は、互いに絶縁され得る。 The third electrode may include a plurality of divided regions arranged along the circumferential direction of the virtual circle. The plurality of divided regions may be isolated from each other.
 前記制御回路は、前記透明電極層と前記反射電極層との間に印加する電圧を、前記第3電極の前記分割領域ごとに個別に制御してもよい。 The control circuit may individually control the voltage applied between the transparent electrode layer and the reflective electrode layer for each of the divided regions of the third electrode.
 このような構成によれば、導波層内の伝搬光の伝搬方向をさらに細やかに調整することができる。 According to such a configuration, the propagation direction of the propagating light in the waveguide layer can be adjusted more finely.
 前記制御回路は、前記第3電極の前記複数の分割領域に印加される電圧の振幅の分布が、時間の経過とともに前記軸の周りに回転する態様で各分割領域に前記電圧を印加し、前記電圧の振幅の分布の回転が一周するごとに前記分布を変化させることにより、単一の検出方向に位置する物体から到来する光を、前記光学系の焦点距離が異なる2つ以上の状態で、前記光検出器に検出させてもよい。 The control circuit applies the voltage to each of the divided regions in such a manner that the distribution of the amplitude of the voltage applied to the plurality of divided regions of the third electrode rotates around the axis with the passage of time. By changing the distribution each time the rotation of the voltage amplitude distribution goes around, light coming from an object located in a single detection direction can be emitted from two or more states with different focal lengths of the optical system. It may be detected by the photodetector.
 このような制御によれば、単一の検出方向から到来する光を、光学系の焦点距離が異なる2つ以上の状態で、容易に検出することができる。 According to such control, light arriving from a single detection direction can be easily detected in two or more states having different focal lengths of the optical system.
 以下、本開示の実施形態を、図面を参照しながら具体的に説明する。なお、以下で説明される実施形態は、いずれも包括的または具体的な例を示すものである。以下の実施形態で示される数値、形状、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示の技術を限定することを意図するものではない。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は模式図であり、必ずしも厳密に図示されたものではない。さらに、各図において、実質的に同一の構成要素に対しては同一または類似の符号を付しており、重複する説明は省略または簡略化されることがある。 Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings. It should be noted that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, components, arrangement positions and connection forms of components, steps, step sequences, and the like shown in the following embodiments are examples, and are not intended to limit the techniques of the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components. Further, each figure is a schematic view and is not necessarily exactly shown. Further, in each figure, substantially the same components are designated by the same or similar reference numerals, and duplicate description may be omitted or simplified.
 (第1実施形態)
 図1Aは、第1実施形態における光学装置の構成と光線の経路とを模式的に示す斜視図である。図1Bは、光学装置の構成の一部と光線の経路とを模式的に示す断面図である。図1Aおよび図1Bには、互いに垂直なX、Y、Z方向を示すXYZ座標が示されている。以下、このXYZ座標を用いて光学装置の構成および動作を説明する。
(First Embodiment)
FIG. 1A is a perspective view schematically showing a configuration of an optical device and a path of light rays according to the first embodiment. FIG. 1B is a cross-sectional view schematically showing a part of the configuration of the optical device and the path of the light beam. 1A and 1B show XYZ coordinates indicating X, Y, and Z directions perpendicular to each other. Hereinafter, the configuration and operation of the optical device will be described using the XYZ coordinates.
 本実施形態の光学装置は、光検出器12と、光学系と、各種の制御回路とを備える。光学系は、複数の光学素子の集合である。本実施形態における光学系は、光導波素子7と、円錐台プリズム6と、波長分光器5と、検出集光レンズ13とを含む。制御回路は、検出回路33と、主制御回路34と、液晶制御回路32とを含む。円錐台プリズム6および光導波素子7は、それぞれの中心がZ軸に平行な軸L上に位置するように配置されている。以下の説明では、便宜上、軸Lに平行な方向を垂直方向と呼び、これに直交する方向を水平方向と呼ぶ。これらの呼称はあくまでも便宜上のものにすぎず、現実に使用されるときの光学装置の姿勢を限定するものではない。 The optical device of this embodiment includes a photodetector 12, an optical system, and various control circuits. An optical system is a set of a plurality of optical elements. The optical system in this embodiment includes an optical waveguide element 7, a truncated cone prism 6, a wavelength spectroscope 5, and a detection condenser lens 13. The control circuit includes a detection circuit 33, a main control circuit 34, and a liquid crystal control circuit 32. The truncated cone prism 6 and the optical waveguide element 7 are arranged so that their centers are located on the axis L parallel to the Z axis. In the following description, for convenience, the direction parallel to the axis L is referred to as a vertical direction, and the direction orthogonal to this is referred to as a horizontal direction. These names are for convenience only and do not limit the posture of the optical device when it is actually used.
 液晶制御回路32は、光導波素子7に含まれる液晶の配向を制御する。主制御回路34は、検出回路33から出力された信号に基づき、液晶制御回路32を制御する。主制御回路34、液晶制御回路32、および検出回路33は、図1Aに示すように、互いに分離された別々の回路であってもよいし、これらの一部または全体が単一の回路によって構成されていてもよい。 The liquid crystal control circuit 32 controls the orientation of the liquid crystal contained in the optical waveguide element 7. The main control circuit 34 controls the liquid crystal control circuit 32 based on the signal output from the detection circuit 33. As shown in FIG. 1A, the main control circuit 34, the liquid crystal control circuit 32, and the detection circuit 33 may be separate circuits separated from each other, or a part or the whole thereof is composed of a single circuit. It may have been done.
 なお、図1Aでは、説明の便宜上、円錐台プリズム6と光導波素子7とが離れた状態が示されている。実際には、円錐台プリズム6の2つの対向する底面(下面と上面)のうち、面積が小さい方の底面である下面は、光導波素子7に接している。また、図1Aでは省略されているが、実際には、図1Bに示すように、光導波素子7の表面に中空基板7hが設けられている。 Note that FIG. 1A shows a state in which the truncated cone prism 6 and the optical waveguide element 7 are separated from each other for convenience of explanation. Actually, of the two opposite bottom surfaces (bottom surface and top surface) of the truncated cone prism 6, the bottom surface, which is the lower bottom surface, is in contact with the optical waveguide element 7. Further, although omitted in FIG. 1A, in reality, as shown in FIG. 1B, a hollow substrate 7h is provided on the surface of the optical waveguide element 7.
 図1Bに示すように、光導波素子7は、Z方向に積層された複数の層を含む積層構造体である。光導波素子7は、平面基板7a、反射電極層7b、バッファー層7c、導波層7d、液晶層7e、透明電極層7f、平面基板7g、および中空基板7hをこの順に含む。平面基板7aおよび7gは、平面状の透明基板である。中空基板7hは、円錐台状の空洞または窪みを中央部に有する透明基板である。円錐台プリズム6は、中空基板7hの空洞または窪み内に配置される。円錐台プリズム6および中空基板7hは、軸Lを共通の中心軸として配置され、平面基板7gに密着している。本実施形態では、平面基板7aおよび7g、ならびに中空基板7hは、屈折率n’の透明材料によって形成されている。しかし、これらが異なる屈折率の材料によって形成されていてもよい。 As shown in FIG. 1B, the optical waveguide element 7 is a laminated structure including a plurality of layers laminated in the Z direction. The optical waveguide element 7 includes a flat substrate 7a, a reflective electrode layer 7b, a buffer layer 7c, a waveguide layer 7d, a liquid crystal layer 7e, a transparent electrode layer 7f, a flat substrate 7g, and a hollow substrate 7h in this order. The flat substrates 7a and 7g are flat transparent substrates. The hollow substrate 7h is a transparent substrate having a truncated cone-shaped cavity or a recess in the center. The truncated cone prism 6 is arranged in the cavity or recess of the hollow substrate 7h. The truncated cone prism 6 and the hollow substrate 7h are arranged with the axis L as a common central axis, and are in close contact with the flat substrate 7g. In this embodiment, the flat substrates 7a and 7g and the hollow substrate 7h are formed of a transparent material having a refractive index of n 1 '. However, they may be formed of materials with different refractive indexes.
 平面基板7aと平面基板7gとの間に、反射電極層7b、バッファー層7c、導波層7d、および液晶層7e、および透明電極層7fが位置している。導波層7dの屈折率は、その両側のバッファー層7cおよび液晶層7eのいずれの屈折率よりも高い。バッファー層7c、導波層7d、および液晶層7eは、透明電極層7fと反射電極層7bとに挟まれている。反射電極層7bは、例えばアルミニウム(Al)などの金属材料によって形成され得る。バッファー層7cは、例えば二酸化珪素(SiO)などの比較的低屈折率の透明材料によって形成される誘電体層である。導波層7dは、例えば五酸化タンタル(Ta)などの比較的高屈折率の透明材料によって形成され得る。平面基板7aの表面に、反射電極層7b、バッファー層7c、および導波層7dがこの順に成膜される。透明電極層7fは、例えば酸化インジウムスズ(ITO)などの、透光性を有する導電性材料によって形成され得る。 A reflective electrode layer 7b, a buffer layer 7c, a waveguide layer 7d, a liquid crystal layer 7e, and a transparent electrode layer 7f are located between the flat substrate 7a and the flat substrate 7g. The refractive index of the waveguide layer 7d is higher than that of any of the buffer layers 7c and the liquid crystal layer 7e on both sides thereof. The buffer layer 7c, the waveguide layer 7d, and the liquid crystal layer 7e are sandwiched between the transparent electrode layer 7f and the reflective electrode layer 7b. The reflective electrode layer 7b can be formed of a metal material such as aluminum (Al). The buffer layer 7c is a dielectric layer formed of a transparent material having a relatively low refractive index such as silicon dioxide (SiO 2 ). The waveguide layer 7d can be formed of a transparent material having a relatively high refractive index, for example, tantalum pentoxide (Ta 2 O 5 ). A reflective electrode layer 7b, a buffer layer 7c, and a waveguide layer 7d are formed on the surface of the flat substrate 7a in this order. The transparent electrode layer 7f can be formed of a translucent conductive material such as indium tin oxide (ITO).
 光導波素子7は、グレーティング8a、8bおよび8cを含む。導波層7dの表面に、軸Lを中心軸とする同心円状の凹凸構造を有するグレーティング8a、8bおよび8cが設けられる。グレーティング8aは、導波層7dの表面の中央に位置する円形状の領域に形成されている。グレーティング8aは、中心から動径方向に沿って周期的に配列された複数の凹部および複数の凸部を含む。グレーティング8aは、前述の「第1のグレーティング」に相当する。グレーティング8bは、導波層7dの表面の、グレーティング8aが形成された領域の外側に位置するリング状の領域に形成されている。グレーティング8bは、前述の「第3のグレーティング」に相当する。グレーティング8cは、導波層7dの表面の、グレーティング8bが形成された領域の外側に位置するリング状の領域に形成されている。グレーティング8cは、前述の「第2のグレーティング」に相当する。グレーティング8bおよび8cも、動径方向に沿って周期的に配列された複数の凹部および複数の凸部を含む。グレーティング8aおよびグレーティング8cは、グレーティングカプラとして作用する。グレーティング8bは、液晶配向用のグレーティングである。以下の説明において、グレーティング8aを「出力グレーティングカプラ8a」または単に「グレーティングカプラ8a」と称することがある。また、グレーティング8cを「入力グレーティングカプラ8c」または単に「グレーティングカプラ8c」と称することがある。グレーティング8a、8bおよび8cの各々は、円形状またはリング形状に限らず、それらの形状から一部が欠落した形状、例えば扇形の形状の領域に形成されてもよい。 The optical waveguide element 7 includes gratings 8a, 8b and 8c. On the surface of the waveguide layer 7d, gratings 8a, 8b and 8c having a concentric concave-convex structure centered on the axis L are provided. The grating 8a is formed in a circular region located at the center of the surface of the waveguide layer 7d. The grating 8a includes a plurality of recesses and a plurality of protrusions periodically arranged along the radial direction from the center. The grating 8a corresponds to the above-mentioned "first grating". The grating 8b is formed in a ring-shaped region located on the surface of the waveguide layer 7d outside the region where the grating 8a is formed. The grating 8b corresponds to the above-mentioned "third grating". The grating 8c is formed in a ring-shaped region located on the surface of the waveguide layer 7d outside the region where the grating 8b is formed. The grating 8c corresponds to the above-mentioned "second grating". The gratings 8b and 8c also include a plurality of recesses and a plurality of protrusions periodically arranged along the radial direction. The grating 8a and the grating 8c act as a grating coupler. The grating 8b is a grating for liquid crystal orientation. In the following description, the grating 8a may be referred to as an "output grating coupler 8a" or simply a "grating coupler 8a". Further, the grating 8c may be referred to as an "input grating coupler 8c" or simply a "grating coupler 8c". Each of the gratings 8a, 8b and 8c is not limited to a circular shape or a ring shape, and may be formed in a region having a shape in which a part is missing from those shapes, for example, a fan shape.
 グレーティング8aは、軸Lを中心とする半径rの円形状の領域内に形成されている。グレーティング8aのピッチはΛであり、深さはdである。グレーティング8bは、半径rから半径rの範囲のリング状の領域内に形成されている。グレーティング8bのピッチは例えば0.8Λ以下であり、深さはdである。グレーティング8cは、半径rから半径rの範囲のリング状の領域内に形成されている。グレーティング8cのピッチはΛであり、深さはdである。グレーティング8aのピッチΛおよび深さd、ならびにグレーティング8cのピッチΛおよび深さdは、後述する結合条件を満たす適切な値に設定される。本実施形態では、Λ>Λであり、d>dである。半径r、rおよびrの典型的なサイズは、サブミリ、またはミリメートルのオーダーである。ピッチΛおよびΛ、ならびに深さdおよびdの典型的なサイズは、サブミクロンのオーダーである。グレーティング8bのピッチを例えば0.8Λ以下にした場合、グレーティング8bの凹凸構造は、液晶配向のためだけに作用し、グレーティングカプラとして機能しない。したがって、グレーティング8bの凹凸構造は、導波光を放射させない。これに対し、グレーティング8cの凹凸構造は、入射光を入力結合させ、導波光に変換する。 Grating 8a is formed in a circular region of radius r 1 about the axis L. The pitch of the grating 8a is Λ 0 , and the depth is d 0 . The grating 8b is formed in a ring-shaped region having a radius r 1 to a radius r 2 . Pitch of the grating 8b is for example 0.8Ramuda 1 or less, the depth is d 1. The grating 8c is formed in a ring-shaped region having a radius r 2 to a radius r 3 . The pitch of the grating 8c is Λ 1 , and the depth is d 1 . The pitch Λ 0 and depth d 0 of the grating 8a and the pitch Λ 1 and depth d 1 of the grating 8c are set to appropriate values that satisfy the coupling conditions described later. In this embodiment, Λ 0 > Λ 1 and d 0 > d 1 . Typical sizes of the radii r 1, r 2 and r 3 are the submillimeter or the order of millimeters. Typical sizes of pitches Λ 0 and Λ 1 and depths d 0 and d 1 are on the order of submicrons. When the pitch of the grating 8b for example 0.8Ramuda 1 below, the uneven structure of the grating 8b acts only for liquid crystal alignment, does not function as a grating coupler. Therefore, the uneven structure of the grating 8b does not radiate waveguide light. On the other hand, the uneven structure of the grating 8c inputs and couples the incident light and converts it into waveguide light.
 導波層7dの液晶層7e側の表面に凹凸構造が現れるのであれば、バッファー層7cの導波層7d側の表面にも、グレーティング8a、8bおよび8cと同様の凹凸構造が形成されていてもよい。導波層7dの液晶層7e側の表面に凹凸構造が現れることにより、グレーティングが液晶の配向手段として作用する。液晶分子は、グレーティングの各凹部が延びる円周方向に沿った方向に配向する。 If a concavo-convex structure appears on the surface of the waveguide layer 7d on the liquid crystal layer 7e side, a concavo-convex structure similar to that of the gratings 8a, 8b and 8c is also formed on the surface of the buffer layer 7c on the waveguide layer 7d side. May be good. Since the uneven structure appears on the surface of the waveguide layer 7d on the liquid crystal layer 7e side, the grating acts as a means for aligning the liquid crystal. The liquid crystal molecules are oriented in the direction along the circumferential direction in which each recess of the grating extends.
 平面基板7gの導波層7d側の表面には、ITOなどの透明電極層7fが形成される。透明電極層7fは、液晶層7eを介して、導波層7dに対面する。透明電極層7fおよび反射電極層7bは、液晶層7e内の液晶分子の配向制御用の電極として作用する。本実施形態における透明電極層7fは、軸Lを中心とする3つの領域9A、9Bおよび9Cに分割されている。領域9A、9Bおよび9Cは、グレーティング8a、8bおよび8cにそれぞれ対面する。液晶層7eに電圧が印加されていない状態において、液晶層7eの液晶分子は、導波層7dの表面のグレーティングの凹部が延びる方向、すなわち軸Lを中心とする円周方向に沿って配向する。言い換えれば、液晶層7eにおける液晶の配向方向は、導波層7dの表面に平行で、グレーティング8a、8bおよび8cの格子ベクトルに垂直である。領域9A、9Bおよび9Cは、それぞれ独立した電極として機能する。以下の説明では、透明電極層7fの領域9A、9Bおよび9Cを、「電極9A、9Bおよび9C」と称することがある。透明電極層7fの代わりに、反射電極層7bを3つの領域に分けてもよい。あるいは、透明電極層7fおよび反射電極層7bの各々を3つの領域に分けてもよい。 A transparent electrode layer 7f such as ITO is formed on the surface of the flat substrate 7g on the waveguide layer 7d side. The transparent electrode layer 7f faces the waveguide layer 7d via the liquid crystal layer 7e. The transparent electrode layer 7f and the reflective electrode layer 7b act as electrodes for controlling the orientation of the liquid crystal molecules in the liquid crystal layer 7e. The transparent electrode layer 7f in the present embodiment is divided into three regions 9A, 9B and 9C centered on the axis L. Regions 9A, 9B and 9C face gratings 8a, 8b and 8c, respectively. In a state where no voltage is applied to the liquid crystal layer 7e, the liquid crystal molecules of the liquid crystal layer 7e are oriented in the direction in which the recess of the grating on the surface of the waveguide layer 7d extends, that is, in the circumferential direction centered on the axis L. .. In other words, the orientation direction of the liquid crystal in the liquid crystal layer 7e is parallel to the surface of the waveguide layer 7d and perpendicular to the grating vectors of the gratings 8a, 8b and 8c. Regions 9A, 9B and 9C each function as independent electrodes. In the following description, the regions 9A, 9B and 9C of the transparent electrode layer 7f may be referred to as " electrodes 9A, 9B and 9C". Instead of the transparent electrode layer 7f, the reflective electrode layer 7b may be divided into three regions. Alternatively, each of the transparent electrode layer 7f and the reflective electrode layer 7b may be divided into three regions.
 グレーティング8bと同様の、軸Lを中心とする同心円状のグレーティングが、平面基板7gの電極層7f側の表面に形成されていてもよい。同様に、平面基板7gの電極層7f側の表面の、グレーティング8aおよび8cに対面する位置にも、軸Lを中心とする同心円状のグレーティングが形成されていてもよい。平面基板7gの当該表面に凹凸構造が形成されていれば、透明電極層7fの表面にも凹凸構造が転写される。これにより、液晶層7eの液晶分子を、凹部が延びる方向に沿って配向させることができる。当然、導波層7dおよび/または透明電極層7fの表面にポリイミドなどの配向膜を成膜し、これを円周方向にラビング処理することにより、液晶層7e内の液晶分子を配向させることもできる。 A concentric grating centered on the axis L, similar to the grating 8b, may be formed on the surface of the flat substrate 7g on the electrode layer 7f side. Similarly, concentric gratings centered on the axis L may be formed at positions facing the gratings 8a and 8c on the surface of the flat substrate 7g on the electrode layer 7f side. If the uneven structure is formed on the surface of the flat substrate 7g, the uneven structure is also transferred to the surface of the transparent electrode layer 7f. As a result, the liquid crystal molecules of the liquid crystal layer 7e can be oriented along the direction in which the recesses extend. Naturally, it is also possible to orient the liquid crystal molecules in the liquid crystal layer 7e by forming an alignment film such as polyimide on the surface of the waveguide layer 7d and / or the transparent electrode layer 7f and rubbing this in the circumferential direction. it can.
 外部の物体で反射され、円錐台プリズム6に入射する光は、円錐台プリズム6の側面を2回通過し、中空基板7hを経て角度θ’で平面基板7gに入射する光10hになる。この光10hは、角度θでグレーティング8cに入射して同心円グレーティングの動径方向に沿って内向きに伝搬する導波光10gを励起する。 The light reflected by an external object and incident on the truncated cone prism 6 passes through the side surface of the truncated cone prism 6 twice, passes through the hollow substrate 7h, and becomes the light 10h incident on the flat substrate 7g at an angle θ 1 '. This light 10h excites 10g of waveguide light that is incident on the grating 8c at an angle θ 1 and propagates inward along the radial direction of the concentric grating.
 光導波素子7の中心に向かう導波光10gはグレーティングカプラ8aから放射され、軸Lに沿った光10fとなる。光10fの偏光方向11fは導波光10gの伝播方向に直交する。例えば、導波光10gがX軸方向に伝搬する場合、光10fの偏光方向11fはY軸方向に平行である。光10fは円錐台プリズム6の下面および上面を経て光10bになる。光10bは、波長分光器5で反射および回折され、集光レンズ13によって集光されて光10aとなり、光検出器12によって検出される。波長分光器5は、波長に応じて光を回折方向に分離する光学素子である。波長分光器5は、例えばリトロー型の反射回折格子であり得る。 The waveguide light 10g toward the center of the optical waveguide element 7 is radiated from the grating coupler 8a and becomes the light 10f along the axis L. The polarization direction 11f of the light 10f is orthogonal to the propagation direction of the waveguide light 10g. For example, when the waveguide light 10g propagates in the X-axis direction, the polarization direction 11f of the light 10f is parallel to the Y-axis direction. The light 10f passes through the lower surface and the upper surface of the truncated cone prism 6 to become the light 10b. The light 10b is reflected and diffracted by the wavelength spectroscope 5, condensed by the condenser lens 13 to become light 10a, and is detected by the photodetector 12. The wavelength spectroscope 5 is an optical element that separates light in the diffraction direction according to the wavelength. The wavelength spectroscope 5 can be, for example, a litho-type reflection diffraction grating.
 図1Bにおいて点線矢印で示すように、円錐台プリズム6の側面に水平面から角度θ’だけ傾斜した方向から光10iが入射するとする。この光10jは、円錐台プリズム6の側面で屈折される。ここで、円錐台プリズム6の内部を伝搬する光線の経路と鉛直方向とのなす角度をθ0とし、円錐台プリズム6の側面と鉛直方向とのなす角度をθとする。円錐台プリズム6が屈折率nの透明部材であるとすると、屈折の関係式は、数1によって記述される。
Figure JPOXMLDOC01-appb-M000001
As shown by the dotted arrow in FIG. 1B, it is assumed that light 10i is incident on the side surface of the truncated cone prism 6 from a direction inclined by an angle θ ⊥'from the horizontal plane. This light 10j is refracted on the side surface of the truncated cone prism 6. Here, the angle formed by the path of the light beam propagating inside the truncated cone prism 6 and the vertical direction is θ 0, and the angle formed by the side surface of the truncated cone prism 6 and the vertical direction is θ 2 . Assuming that the truncated cone prism 6 is a transparent member having a refractive index of n 0 , the relational expression of refraction is described by Equation 1.
Figure JPOXMLDOC01-appb-M000001
 円錐台プリズム6の側面から出射された光は、中空基板7hおよび平面基板7gを経てグレーティングカプラ8cに入射する。このとき、円錐台プリズム6と空気との界面、および空気と中空基板7hとの界面で屈折が生じる。ここで簡単のため、屈折率n’の中空基板7hの内部での光線の方向(角度θ’)と、屈折率nの円錐台プリズム6の内部での光線の方向(角度θ)との間に、n’sinθ’=nsinθの関係が成り立つものとする。 The light emitted from the side surface of the truncated cone prism 6 enters the grating coupler 8c via the hollow substrate 7h and the flat substrate 7g. At this time, refraction occurs at the interface between the truncated cone prism 6 and the air and at the interface between the air and the hollow substrate 7h. Here, for simplicity, the direction of light rays inside the hollow substrate 7h having a refractive index n 1 '(angle θ 1 ') and the direction of light rays inside the conical prism 6 having a refractive index n 0 (angle θ 0). ) between, and n 1 'sinθ 1' = n 0 that the relationship sin [theta 0 holds.
 図1Aにおいて円形の点線枠内に示すように、円錐台プリズム6の側面には軸Lを中心とするブレーズグレーティング6aが形成されていてもよい。中空基板7hの円錐台状の内表面にも、同様のブレーズグレーティングが形成されていてもよい。適切に設計されたブレーズグレーティングを設けることにより、検出可能な光の方向を水平方向に近づけることができる。例えば、図1Bに示すように、検出可能な光の到来方向が水平面となす角度を、ブレーズグレーティング6aが設けられていない場合における角度θ’から角度θに減少させることができる。ブレーズグレーティング6aは、断面形状が鋸状の複数の溝を含む。ブレーズグレーティング6aの溝のピッチをΛとする。各溝は、円錐台プリズム6の側面または中空基板7hの内表面の周方向すなわち軸Lを中心とする円の円周方向に沿って延びた構造を有する。言い換えれば、ブレーズグレーティング6aの格子線は、円錐台プリズム6の側面または中空基板7hの内表面の周方向に沿って延びる。ブレーズグレーティング6aが設けられた円錐台プリズム6の側面を通過する光は、軸Lを含む平面内で回折される。これにより、図1Bに示すように、水平面からθの角度で入射する光10iは、円錐台プリズム6の側面で回折され、グレーティング8cに角度θで入射する光10hになる。 As shown in the circular dotted line frame in FIG. 1A, a blaze grating 6a centered on the axis L may be formed on the side surface of the truncated cone prism 6. A similar blaze grating may be formed on the truncated cone-shaped inner surface of the hollow substrate 7h. By providing a properly designed blaze grating, the direction of detectable light can be brought closer to the horizontal direction. For example, as shown in FIG. 1B, the direction of arrival of detectable light is the angle between the horizontal plane, can be reduced from the angle theta 'the angle theta when the blazed gratings 6a is not provided. The blaze grating 6a includes a plurality of grooves having a saw-like cross section. Let Λ 2 be the pitch of the groove of the blaze grating 6a. Each groove has a structure extending along the circumferential direction of the side surface of the truncated cone prism 6 or the inner surface of the hollow substrate 7h, that is, the circumferential direction of a circle centered on the axis L. In other words, the lattice lines of the blaze grating 6a extend along the circumferential direction of the side surface of the truncated cone prism 6 or the inner surface of the hollow substrate 7h. Light passing through the side surface of the truncated cone prism 6 provided with the blaze grating 6a is diffracted in a plane including the axis L. As a result, as shown in FIG. 1B, the light 10i incident on the horizontal plane at an angle θ is diffracted by the side surface of the truncated cone prism 6 to become the light 10h incident on the grating 8c at an angle θ 1 .
 図2は、円錐台プリズム6の側面で生じる回折の関係を示すベクトルダイアグラムである。ブレーズグレーティング6aが円錐台プリズム6の側面のみに形成されている場合、回折の関係は、図2で表される。すなわち、縦軸に対して角度θ+θをなす大きさ1のベクトルOP’の垂線の足Pと、縦軸に対して角度θ’+θをなす大きさ1のベクトルOP’の垂線の足Pとの距離が、格子ベクトルの2倍の大きさ2λ/Λに等しいという関係で表される。ここでλは光の空気中での波長を表す。つまり、回折の関係式は、数2によって記述される。
Figure JPOXMLDOC01-appb-M000002
FIG. 2 is a vector diagram showing the relationship of diffraction occurring on the side surface of the truncated cone prism 6. When the blaze grating 6a is formed only on the side surface of the truncated cone prism 6, the diffraction relationship is shown in FIG. In other words, 'the foot P 2 of a perpendicular angle theta to the longitudinal axis' angle θ + θ 2 vector OP 2 size 1 forming a to the longitudinal axis + theta 2 eggplants size 1 vector OP 3 It is expressed by the relation that the distance of the perpendicular line from the foot P 3 is equal to 2λ / Λ 2 , which is twice the magnitude of the lattice vector. Here, λ represents the wavelength of light in the air. That is, the relational expression of diffraction is described by Equation 2.
Figure JPOXMLDOC01-appb-M000002
 数2からわかるように、ピッチΛのブレーズグレーティング6aを設けることにより、検出可能な光の入射角θ+θを、ブレーズグレーティング6aが設けられていない場合における入射角θ’+θよりも小さくすることができる。 As can be seen from Equation 2, by providing the blazed gratings 6a pitch lambda 2, the incident angle theta + theta 2 of the detectable light, than the incident angle θ '+ θ 2 when the blazed gratings 6a is not provided Can also be made smaller.
 本実施形態における円錐台プリズム6は、平面基板7gに接しているが、平面基板7gから離れていてもよい。円錐台プリズム6の側面に入射する光は、円錐台プリズム6の側面または底面から出射し、グレーティング8cに入射する。 The truncated cone prism 6 in the present embodiment is in contact with the flat substrate 7g, but may be separated from the flat substrate 7g. The light incident on the side surface of the truncated cone prism 6 is emitted from the side surface or the bottom surface of the truncated cone prism 6 and is incident on the grating 8c.
 円錐台プリズム6の代わりに、光導波素子7に面する底面と、軸Lを中心軸とする回転対称体である側面とを有する透明部材を用いてもよい。グレーティング8cのピッチが導波方向に沿って一定ではない場合、円錐台プリズム6に代えて、その側面の母線が曲線の形状を有する回転対称体のプリズムが用いられ得る。一方、グレーティング8cのピッチが一定の場合には、母線が直線の形状を有する回転対称体、すなわち円柱または円錐台の形状の回転対称体のプリズムが用いられ得る。 Instead of the truncated cone prism 6, a transparent member having a bottom surface facing the optical waveguide element 7 and a side surface that is a rotationally symmetric body with the axis L as the central axis may be used. If the pitch of the grating 8c is not constant along the waveguide direction, a rotationally symmetric prism having a curved generatrix on its side surface may be used instead of the truncated cone prism 6. On the other hand, when the pitch of the grating 8c is constant, a prism having a rotational symmetry whose generatrix has a linear shape, that is, a prism having a cylindrical or truncated cone shape can be used.
 図3は、入力グレーティングカプラ8cの入射光と導波光との関係、および出力グレーティングカプラ8aの導波光と放射光の関係を示すベクトルダイアグラムである。ここで、導波層7dの実効屈折率をNとする。図3に示すように、半径Nの円と横軸との交点を点Pとすると、入射光の導波光への結合条件は、縦軸に対して角度θをなす大きさnのベクトルOP’の横軸への垂線の足が、大きさλ/Λの破線矢印によって表された格子ベクトルPPの終点Pに一致することである。当該結合条件は-nsinθ=N-λ/Λと表される。スネルの法則(nsinθ=n’sinθ’)と、前述のn’sinθ’=nsinθの関係から、当該結合条件は、数3によって記述される。
Figure JPOXMLDOC01-appb-M000003
FIG. 3 is a vector diagram showing the relationship between the incident light and the waveguide light of the input grating coupler 8c and the relationship between the waveguide light and the synchrotron radiation of the output grating coupler 8a. Here, let N be the effective refractive index of the waveguide layer 7d. As shown in FIG. 3, assuming that the intersection of a circle having a radius N and the horizontal axis is a point P, the condition for coupling the incident light to the waveguide light is a vector having a magnitude n 1 forming an angle θ 1 with respect to the vertical axis. perpendicular foot to the horizontal axis of the OP 1 'it can, is to match the end point P 1 of the grating vector PP 1 represented by the magnitude lambda / lambda 1 of the dashed arrows. The coupling condition is expressed as -n 1 sin θ 1 = N-λ / Λ 1 . And Snell's law (n 1 sinθ 1 = n 1 'sinθ 1'), the relationship of n 1 'sinθ 1' = n 0 sinθ 0 described above, the join condition is described by the number 3.
Figure JPOXMLDOC01-appb-M000003
 数3からわかるように、特定の波長および位相面をもつ光だけが選択的にグレーティングカプラ8cを介して導波層7dに結合される。したがって、波長および位相面の少なくとも一方が異なる迷光は効果的に除去される。 As can be seen from Equation 3, only light having a specific wavelength and phase plane is selectively coupled to the waveguide layer 7d via the grating coupler 8c. Therefore, stray light that differs in at least one of the wavelength and the phase plane is effectively removed.
 一方、放射光10fへの結合条件は、大きさλ/Λの矢印によって表される格子ベクトルPOの大きさが、導波層7dの実効屈折率Nに等しいことである。すなわち、当該結合条件は、数4によって記述される。
Figure JPOXMLDOC01-appb-M000004
On the other hand, the coupling condition to the synchrotron radiation 10f is that the magnitude of the lattice vector PO represented by the arrow having the magnitude λ / Λ 0 is equal to the effective refractive index N of the waveguide layer 7d. That is, the binding condition is described by Equation 4.
Figure JPOXMLDOC01-appb-M000004
 図1Bに示すように、グレーティングカプラ8cに入射する光10hの一部は透過して光10haになる。光10haは、反射電極層7bによって反射され、再びグレーティングカプラ8cに入射し、導波光10gの励起を増強させる。一方、グレーティングカプラ8aから反射電極層7b側に出射する光10faは、反射電極層7bによって反射され、放射光10fと重なる。 As shown in FIG. 1B, a part of the light 10h incident on the grating coupler 8c is transmitted to become the light 10ha. The light 10ha is reflected by the reflective electrode layer 7b and is incident on the grating coupler 8c again to enhance the excitation of the waveguide light 10g. On the other hand, the light 10fa emitted from the grating coupler 8a toward the reflective electrode layer 7b is reflected by the reflective electrode layer 7b and overlaps with the synchrotron radiation 10f.
 結合条件-nsinθ=N-λ/Λより、実効屈折率Nの入射角θに対する微分は、数5によって記述される。
Figure JPOXMLDOC01-appb-M000005
From the coupling condition −n 1 sin θ 1 = N−λ / Λ 1 , the derivative of the effective refractive index N with respect to the incident angle θ 1 is described by Equation 5.
Figure JPOXMLDOC01-appb-M000005
 また、結合条件-nsinθ=N-λ/Λより、入射角θの波長λに対する微分は、数6によって記述される。
Figure JPOXMLDOC01-appb-M000006
Further, from the coupling condition −n 1 sin θ 1 = N−λ / Λ 1 , the derivative of the incident angle θ 1 with respect to the wavelength λ is described by Equation 6.
Figure JPOXMLDOC01-appb-M000006
 nsinθ=nsinθの関係を利用すると、入射ビーム10iの水平方向に対する入射角θの波長λに対する微分は、数7によって記述される。
Figure JPOXMLDOC01-appb-M000007
Using the relationship of n 1 sin θ 1 = n 0 sin θ 0 , the derivative of the incident angle θ with respect to the wavelength λ of the incident beam 10i in the horizontal direction is described by Equation 7.
Figure JPOXMLDOC01-appb-M000007
 数5、数6から、波長λまたは実効屈折率Nが変化すると、許容される入射角θが変化することがわかる。液晶層7eの屈折率が変化すると実効屈折率Nも変化する。よって、外部の反射体からの光の波長λ、または電極9Cにおける液晶層7eの屈折率が変化すると、検出可能な入射ビーム10iの方向が図1Bの上下方向(すなわち垂直方向)に沿って変化する。したがって、電極9Cに印加される電圧を変化させることにより、数7などに従って、検出可能な入射ビーム10iの方向を垂直方向に沿って変化させることができる。これにより、垂直方向の視野の走査が可能である。 From Equations 5 and 6, it can be seen that when the wavelength λ or the effective refractive index N changes, the permissible incident angle θ 1 changes. When the refractive index of the liquid crystal layer 7e changes, the effective refractive index N also changes. Therefore, when the wavelength λ of the light from the external reflector or the refractive index of the liquid crystal layer 7e at the electrode 9C changes, the direction of the detectable incident beam 10i changes along the vertical direction (that is, the vertical direction) of FIG. 1B. To do. Therefore, by changing the voltage applied to the electrode 9C, the direction of the detectable incident beam 10i can be changed along the vertical direction according to Equation 7 and the like. This makes it possible to scan the field of view in the vertical direction.
 本実施形態では、液晶制御回路32からの制御信号により、透明電極層7fおよび反射電極層7bを介して液晶層7eに電圧が印加される。この電圧の印加によって液晶の配向が変化する。これに伴い、液晶層7eの導波光10gに対する屈折率nが変化し、導波層7dの導波光10gに対する実効屈折率Nが変化する。グレーティング8cの領域において実効屈折率Nが変化すると、外部からグレーティング8cに入射できる光の入射角θが変化する。 In the present embodiment, a voltage is applied to the liquid crystal layer 7e via the transparent electrode layer 7f and the reflective electrode layer 7b by the control signal from the liquid crystal control circuit 32. The orientation of the liquid crystal changes when this voltage is applied. Along with this, the refractive index n 1 of the liquid crystal layer 7e with respect to 10 g of waveguide light changes, and the effective refractive index N of the waveguide layer 7d with respect to 10 g of waveguide light changes. When the effective refractive index N changes in the region of the grating 8c, the incident angle θ 1 of the light that can be incident on the grating 8c from the outside changes.
 液晶制御回路32は、電極9A、9Bおよび9Cに独立して信号を送ることができる。なお、液晶層7eに印加される電圧信号は交流波である。交流波の振幅の大きさによって液晶分子の傾斜角が決定される。交流波の振幅が大きいほど、液晶の配向方向が導波層7dの法線方向に近づく。以下の説明では、液晶層7eに印加される「電圧」は、液晶層7eに印加される交流波の振幅の大きさを意味する。 The liquid crystal control circuit 32 can independently send signals to the electrodes 9A, 9B and 9C. The voltage signal applied to the liquid crystal layer 7e is an alternating wave. The tilt angle of the liquid crystal molecules is determined by the magnitude of the amplitude of the AC wave. The larger the amplitude of the AC wave, the closer the orientation direction of the liquid crystal is to the normal direction of the waveguide layer 7d. In the following description, the "voltage" applied to the liquid crystal layer 7e means the magnitude of the amplitude of the alternating current wave applied to the liquid crystal layer 7e.
 グレーティングカプラ8cへの光の入力は、特定の波長および特定の入射角に限定される。入射角が変わればそれに対応する最適な波長も変わる。なお、グレーティングカプラ8cに入射して導波層7dに結合され導波する光の波長には数nm程度の幅がある。円錐台プリズム6から出射される光10bにも同じ波長成分が含まれる。光10bは、波長分光器5によって回折され、波長毎に分光される。 The light input to the grating coupler 8c is limited to a specific wavelength and a specific angle of incidence. If the angle of incidence changes, the optimum wavelength corresponding to it also changes. The wavelength of the light incident on the grating coupler 8c, coupled to the waveguide layer 7d, and guided by the waveguide has a width of about several nm. The light 10b emitted from the truncated cone prism 6 also contains the same wavelength component. The light 10b is diffracted by the wavelength spectroscope 5 and separated for each wavelength.
 分光された光10aは、集光レンズ13によって集束され、複数の集光スポット17a1、17a2、・・・を光検出器12の受光面に形成する。なお、実際には、連続的に重なった無数の集光スポットが受光面に形成されるが、図1Aでは、簡単のため、集光スポットが離散的に形成されるように描かれている。 The dispersed light 10a is focused by the condensing lens 13, and a plurality of condensing spots 17a1, 17a2, ... Are formed on the light receiving surface of the photodetector 12. In reality, innumerable condensing spots that are continuously overlapped are formed on the light receiving surface, but in FIG. 1A, for the sake of simplicity, the condensing spots are drawn so as to be formed discretely.
 光検出器12は、短冊状に分割された複数の受光素子を含む。各受光素子は、光を受けると、受光量に応じた電気信号を生成する。これにより、光検出器12は、複数の集光スポット17a1、17a2、・・・を波長域ごとに分別して検出できる。 The photodetector 12 includes a plurality of light receiving elements divided into strips. When each light receiving element receives light, it generates an electric signal according to the amount of light received. As a result, the photodetector 12 can separate and detect a plurality of focused spots 17a1, 17a2, ... For each wavelength range.
 光検出器12は、検出回路33に接続されている。検出回路33は、主制御回路34からの指令に従い、光検出器12を駆動し、光検出器12から出力された検出信号を処理する。例えば、光検出器12から出力された信号に基づいて、後述する方法により、検出対象物までの距離を計算することができる。 The photodetector 12 is connected to the detection circuit 33. The detection circuit 33 drives the photodetector 12 in accordance with a command from the main control circuit 34, and processes the detection signal output from the photodetector 12. For example, based on the signal output from the photodetector 12, the distance to the detection target can be calculated by the method described later.
 本実施形態の光学装置は、検出回路33に接続された主制御回路34をさらに備える。主制御回路34は、検出回路33から出力された信号に基づき、液晶制御回路32を制御するための制御信号を生成する。液晶制御回路32は、主制御回路34から入力された制御信号に応答して、透明電極層7fと反射電極層7bとの間の電圧を調整することにより、液晶層7eの屈折率を調整する。なお、液晶制御回路32および主制御回路34は、異なるハードウェアによって実現されている必要はなく、単一の回路によって実現されていてもよい。 The optical device of this embodiment further includes a main control circuit 34 connected to the detection circuit 33. The main control circuit 34 generates a control signal for controlling the liquid crystal control circuit 32 based on the signal output from the detection circuit 33. The liquid crystal control circuit 32 adjusts the refractive index of the liquid crystal layer 7e by adjusting the voltage between the transparent electrode layer 7f and the reflective electrode layer 7b in response to the control signal input from the main control circuit 34. .. The liquid crystal control circuit 32 and the main control circuit 34 do not have to be realized by different hardware, and may be realized by a single circuit.
 本実施形態では、円錐台プリズム6の側面を通過する光がグレーティングカプラ8cに入射する。このような構成により、設計の自由度を高くすることができる。このような構造に限らず、例えば、光10hがプリズムの下面からグレーティングカプラ8cに入射する構成であってもよい。本実施形態では、光線は、円錐台プリズム6の側面を2回通過するため、ブレーズグレーティング6aによる回折の影響を2回受ける。このため、ブレーズグレーティング6aのピッチを大きくでき、作製が容易になる。さらに、中空基板7hの円錐台状の内表面にもブレーズグレーティングを形成してもよい。その場合、光線は、回折の影響を3回受ける。回折回数が多いほど、ブレーズグレーティングのピッチを大きくでき、作製が容易になり、全体の回折効率も高くなる。 In the present embodiment, the light passing through the side surface of the truncated cone prism 6 is incident on the grating coupler 8c. With such a configuration, the degree of freedom in design can be increased. The structure is not limited to this, and for example, light 10h may be incident on the grating coupler 8c from the lower surface of the prism. In the present embodiment, since the light beam passes through the side surface of the truncated cone prism 6 twice, it is affected by the diffraction by the blaze grating 6a twice. Therefore, the pitch of the blaze grating 6a can be increased, and the production becomes easy. Further, a blaze grating may be formed on the truncated cone-shaped inner surface of the hollow substrate 7h. In that case, the light beam is affected by diffraction three times. As the number of diffractions increases, the pitch of the blaze grating can be increased, the fabrication becomes easier, and the overall diffraction efficiency increases.
 本実施形態では、円錐台プリズム6の周囲に中空基板7hが配置されている。これは、円錐台プリズム6の側面から出射した光を、空気層を経て容易に平面基板7gおよびグレーティングカプラ8cに入射させるためである。光を容易にグレーティングカプラ8cに入射できるのであれば、中空基板7hが省略されていてもよい。しかし、本実施形態のように、円錐台状の空洞を有する中空基板7hが設けられることにより、その入射角とは無関係に光をグレーティングカプラ8cに入射させることができる。したがって、設計の自由度を高くすることができる。 In the present embodiment, the hollow substrate 7h is arranged around the truncated cone prism 6. This is because the light emitted from the side surface of the truncated cone prism 6 is easily incident on the flat substrate 7g and the grating coupler 8c via the air layer. The hollow substrate 7h may be omitted as long as the light can be easily incident on the grating coupler 8c. However, as in the present embodiment, by providing the hollow substrate 7h having a truncated cone-shaped cavity, light can be incident on the grating coupler 8c regardless of the angle of incidence thereof. Therefore, the degree of freedom in design can be increased.
 次に、本実施形態における収差補正について説明する。 Next, aberration correction in this embodiment will be described.
 図4は、入力グレーティングカプラ8cへの入射光の伝搬経路の例を模式的に示す図である。図4において、(a)は平面図であり、(b)は斜視図であり、(c)は断面図である。なお、図4の構成では、円錐台プリズム6の側面で生じる2回の屈折のうち、光が出射する側での屈折の影響は小さく無視できる。よって、以下の説明では、屈折効果の殆どを占める入射側での屈折のみを議論する。 FIG. 4 is a diagram schematically showing an example of a propagation path of incident light to the input grating coupler 8c. In FIG. 4, (a) is a plan view, (b) is a perspective view, and (c) is a cross-sectional view. In the configuration of FIG. 4, of the two refractions that occur on the side surface of the truncated cone prism 6, the influence of the refraction on the side where the light is emitted is small and can be ignored. Therefore, in the following description, only refraction on the incident side, which accounts for most of the refraction effect, will be discussed.
 円錐台プリズム6には、様々な方向から到来する光が入射する。そのうち、X軸に平行に伝搬して円錐台プリズム6に入射する光10i、10i、10i1、および10i1を考える。光10iおよび10i1は、光導波素子7の中心軸Lを含むXZ面内をX方向に伝搬する光であり、両者の経路は、Z方向に関して異なっている。光10iおよび10iの経路は、Z方向に関して一致しており、Y方向に関して異なっている。光10i1および10i1の経路は、Z方向に関して一致しており、Y方向に関して異なっている。光10iおよび光10i1の経路は、Y方向およびZ方向の両方に関して異なっている。これらの光10i、10i、10i1、および10i1は、それぞれ、円錐台プリズム6の側面で屈折され、光10h、10h、10h1、および10h1になる。光10h、10h、10h1、および10h1は、中心軸Lから傾斜し且つX軸の正方向に離れた軸Lを通過する。光10hおよび10hは、軸L上の点Fで交差し、光10h1および10h1は軸L上の点F1’で交差する。光10hおよび10hは、グレーティングカプラ8cの外側の部分に入射し、光10h1および10h1は、グレーティングカプラ8cの内側の部分に入射する。光10hおよび10h1は導波光10gを励起し、光10hおよび10h1は導波光10gを励起する。 Light coming from various directions is incident on the truncated cone prism 6. Among them, consider light 10i that enters propagating parallel to the X axis in the truncated cone prism 6, 10i 0, 10i1, and 10i1 0. The light 10i and 10i1 are light propagating in the X direction in the XZ plane including the central axis L of the optical waveguide element 7, and their paths are different in the Z direction. The paths of light 10i and 10i 0 are consistent in the Z direction and different in the Y direction. Path of light 10i1 and 10i1 0 are consistent with respect to the Z direction are different with respect to the Y direction. Path of light 10i 0 and light 10i1 0 is different for both Y and Z directions. These light 10i, 10i 0, 10i1, and 10i1 0 are respectively refracted at the side surface of the truncated cone prism 6, light 10h, 10h 0, 10h1, and becomes 10h1 0. Light 10h, 10h 0, 10h1, and 10h1 0 passes through the axis L 1 away in the positive direction of the inclined and the X-axis from the central axis L. Light 10h and 10h 0 intersect at a point F 1 on the axis L 1, light 10h1 and 10h1 0 intersect at a point on the axis L 1 F 1 '. Light 10h and 10h 0 is incident on the outer portion of the grating coupler 8c, optical 10h1 and 10h1 0 is incident on the inner portion of the grating coupler 8c. Light 10h and 10h1 excites the guided light 10 g, light 10h 0 and 10h1 0 excites the guided light 10 g 0.
 導波光10g、10gの伝播方向は、励起時には動径方向に沿っていないが、電極9Bの領域を通過する間に動径方向に沿うように補正される。この補正、すなわち収差補正は、後述するように、グレーティング8bの領域で透明電極層7fと反射電極層7bとの間の電圧を偏角位置に応じて異なる値にすることによって実現され得る。 The propagation direction of the waveguide light 10g and 10g 0 is not along the radial direction at the time of excitation, but is corrected so as to be along the radial direction while passing through the region of the electrode 9B. This correction, that is, the aberration correction, can be realized by setting the voltage between the transparent electrode layer 7f and the reflective electrode layer 7b in the region of the grating 8b to a different value depending on the declination position, as will be described later.
 以下、光線を動径方向に補正するための収差補正量を見積もる方法を説明する。 Hereinafter, a method of estimating the amount of aberration correction for correcting a light ray in the radial direction will be described.
 図5は、円錐台プリズム6の側面で屈折され、入力グレーティングカプラ8cに入射する光の様子を模式的に示す図である。入射光の屈折は、円錐台プリズム6の側面の入射側と出射側とで2回発生するが、前述のように、ここでは屈折効果の殆どを占める入射側での屈折のみを議論する。収差補正量は、X軸に平行に円錐台プリズム6の側面に入射する光線を、水平面内で円錐台プリズム6の側面に垂直に入射し、屈折されない光線と比較する形で見積もることができる。 FIG. 5 is a diagram schematically showing the state of light refracted by the side surface of the truncated cone prism 6 and incident on the input grating coupler 8c. The refraction of the incident light occurs twice on the incident side and the exit side of the side surface of the truncated cone prism 6, but as described above, only the refraction on the incident side, which occupies most of the refraction effect, will be discussed here. The amount of aberration correction can be estimated by comparing a light ray that is incident on the side surface of the truncated cone prism 6 parallel to the X-axis with a light ray that is vertically incident on the side surface of the truncated cone prism 6 in the horizontal plane and is not refracted.
 図5に示す光線の経路のうち、X軸に平行に円錐台プリズム6の側面に入射する光線10iおよび10iの経路は図4を参照して説明したとおりである。一方、水平面内で円錐台プリズム6の側面に垂直に入射する光線の経路は次の通りである。まず、外部の物体で反射され円錐台プリズム6の中心Fに向かう光線10I、10Iは、それぞれ円錐台プリズム6の側面に入射し、円錐台プリズム6の中心Fに向かう光10H、10Hになり、点Fで交差する。その後、光10Hおよび10Hは、円錐台プリズム6の側面から水平面内で垂直に出射されてグレーティングカプラ8cに入射し、動径方向に沿った導波光10G、10Gをそれぞれ励起する。 Of light path shown in FIG. 5, the path of the light beam 10i and 10i 0 incident on the side surface parallel frustoconical prism 6 in the X-axis is as described with reference to FIG. On the other hand, the path of the light beam perpendicularly incident on the side surface of the truncated cone prism 6 in the horizontal plane is as follows. First, the light rays 10I and 10I 0 reflected by an external object and directed toward the center F of the truncated cone prism 6 are incident on the side surfaces of the truncated cone prism 6, respectively, and become light 10H and 10H 0 toward the center F of the truncated cone prism 6. And intersect at point F. After that, the light 10H and 10H 0 are vertically emitted from the side surface of the truncated cone prism 6 in the horizontal plane and incident on the grating coupler 8c to excite the waveguide light 10G and 10G 0 along the radial direction, respectively.
 図5の(a)に示すように、光10hと円錐台プリズム6の側面との交点をQとし、光10hと円錐台プリズム6の側面との交点をQとする。角QFQをψとし、角FFをφとし、角FQをψ’とする。光10iが光10iに平行であることから、数8が成立する。
Figure JPOXMLDOC01-appb-M000008
As shown in FIG. 5A, let Q be the intersection of the light 10h and the side surface of the truncated cone prism 6, and let Q 1 be the intersection of the light 10h 0 and the side surface of the truncated cone prism 6. Let the angle QFQ 1 be ψ, the angle FF 1 Q 1 be φ, and the angle FQ 1 F 1 be ψ'. Since the light 10i 0 is parallel to the light 10i, the equation 8 holds.
Figure JPOXMLDOC01-appb-M000008
 ここで、角φ、ψ、ψ’は、数9の関係を満たす。
Figure JPOXMLDOC01-appb-M000009
Here, the angles φ, ψ, and ψ'satisfy the relationship of equation 9.
Figure JPOXMLDOC01-appb-M000009
 数8および数9から、角ψは数10によって与えられる。
Figure JPOXMLDOC01-appb-M000010
From equations 8 and 9, the angle ψ is given by equation 10.
Figure JPOXMLDOC01-appb-M000010
 一方、点Fと点Fとの間隔をf、図5(a)に示す円錐台プリズム6の半径をrと定義すると、fは数11によって与えられる。
Figure JPOXMLDOC01-appb-M000011
On the other hand, f 0 the distance between the point F and the point F 1, and the radius of the truncated cone prism 6 shown in FIG. 5 (a) is defined as r 0, f 0 is given by the number 11.
Figure JPOXMLDOC01-appb-M000011
 光10Hおよび10Hは、点Fに集束し、光10hおよび10hは点Fに集束する。収差論によれば、集束光の焦点位置をFからFに変位させる収差、すなわち縦の焦点移動収差は、n(1-cosφ)によって与えられる。 Light 10H and 10H 0 is focused at a point F, the light 10h and 10h 0 is focused at point F 1. According to the aberration theory, the aberration that shifts the focal position of the focused light from F to F 1 , that is, the longitudinal focal movement aberration is given by n 0 f 0 (1-cosφ).
 図6Aは、収差補正を実現するための透明電極層7fのパターンの例を模式的に示す図である。電極9Bは、グレーティング8bに対面する位置にあり、半径rから半径rの範囲に形成されている。図6Aの例における電極9Bは、光10fが出射する点(すなわち、X軸とY軸との交点)を中心とする仮想的な円の周方向に沿って並ぶ導電性の複数の分割領域を含む。各分割領域は、当該円の動径方向に沿ってジグザグに延びている。制御回路32は、電極9Bにおける複数の分割領域のうち、導波光10gが伝搬する領域に電圧を独立して順次印加することができる。これにより収差補正を実現し、導波光10gの伝播を動径方向に揃えることができる。 FIG. 6A is a diagram schematically showing an example of a pattern of the transparent electrode layer 7f for realizing aberration correction. The electrode 9B is located at a position facing the grating 8b and is formed in a radius r 1 to a radius r 2 . The electrode 9B in the example of FIG. 6A forms a plurality of conductive divided regions arranged along the circumferential direction of a virtual circle centered on the point where the light 10f is emitted (that is, the intersection of the X-axis and the Y-axis). Including. Each divided region extends in a zigzag along the radial direction of the circle. The control circuit 32 can independently and sequentially apply a voltage to a region in which the waveguide light 10 g propagates among the plurality of divided regions in the electrode 9B. As a result, aberration correction can be realized, and the propagation of 10 g of waveguide light can be aligned in the radial direction.
 図6Aに示す例では、電極9Bは、円周方向に6度刻みに等分され、60個のジグザグな帯扇形の分割領域9B1から9B60に分割されている。これらの分割領域9B1から9B60は、互いに電気的に絶縁されており、電圧を独立して印加することができる。複数の分割領域9B1から9B60に異なる電圧を印加すると、液晶層7eの屈折率が、偏角位置によって変化する。その結果、導波光10gの実効屈折率も偏角位置によって変化する。 In the example shown in FIG. 6A, the electrode 9B is equally divided in 6-degree increments in the circumferential direction, and is divided into 60 zigzag fan-shaped division regions 9B1 to 9B60. These divided regions 9B1 to 9B60 are electrically isolated from each other, and voltages can be applied independently. When different voltages are applied to the plurality of divided regions 9B1 to 9B60, the refractive index of the liquid crystal layer 7e changes depending on the declination position. As a result, the effective refractive index of 10 g of waveguide light also changes depending on the declination position.
 図6Bは、電極9Bへの印加電圧および実効屈折率の偏角に対する変化の例を示す図である。図6Bにおいて、波形18は、60個の分割領域9B1から9B60の位置に対応する偏角を横軸にとり、各分割領域に印加される交流電圧の振幅をプロットした点を繋げた曲線を示す。この例では、電極9Bへの印加電圧は、軸Lを中心とする偏角に対して一周の1/5(=72度)の範囲で放物線状に変化し、他の範囲では一定値になる波形18をなす。この波形18が図6Bに示す矢印の方向(以下、「回転方向」と称することがある。)に移動するように各分割領域への印加電圧が制御される。図6Aにおいて薄いジグザグの線で表された2つの分割領域の間の領域は、ある瞬間において放物線状の電圧が印加される分割領域を表している。この印加電圧に同期して、導波光10gに対する導波層7dの実効屈折率Nも、偏角に対して一周の1/5の範囲で放物線状に変化し、他の範囲では一定値になる波形19をなす。この波形19も、図6Bに示す矢印の方向すなわち回転方向に移動する。 FIG. 6B is a diagram showing an example of changes in the voltage applied to the electrode 9B and the effective refractive index with respect to the declination. In FIG. 6B, the waveform 18 shows a curve in which points corresponding to the positions of the 60 divided regions 9B1 to 9B60 are plotted on the horizontal axis and the amplitude of the AC voltage applied to each divided region is plotted. In this example, the voltage applied to the electrode 9B changes in a parabolic shape within a range of 1/5 (= 72 degrees) of the circumference with respect to the declination centered on the axis L, and becomes a constant value in other ranges. It forms a waveform 18. The voltage applied to each divided region is controlled so that the waveform 18 moves in the direction of the arrow shown in FIG. 6B (hereinafter, may be referred to as “rotational direction”). The region between the two split regions represented by the thin zigzag lines in FIG. 6A represents the split region to which a parabolic voltage is applied at a given moment. Synchronized with this applied voltage, the effective refractive index N of the waveguide layer 7d with respect to 10 g of the waveguide light also changes in a parabolic shape within a range of 1/5 of the circumference with respect to the declination, and becomes a constant value in other ranges. It forms a waveform 19. This waveform 19 also moves in the direction of the arrow shown in FIG. 6B, that is, in the direction of rotation.
 このようにして、放物線状の波形の範囲内で導波光の位相を偏角ごとに変化させることができる。実効屈折率の変化幅をΔNとすると、伝搬距離(r-r)の間において発生する位相差の範囲は、(r-r)ΔNによって与えられる。したがって、導波光10gの伝播方向を動径方向に揃えるための条件は、数12によって記述される。
Figure JPOXMLDOC01-appb-M000012
In this way, the phase of the waveguide light can be changed for each declination within the range of the parabolic waveform. When the variation width of the effective refractive index and .DELTA.N, range of the phase difference that occurs between the propagation distance (r 2 -r 1) is given by (r 2 -r 1) ΔN. Therefore, the condition for aligning the propagation direction of the waveguide light 10 g in the radial direction is described by Equation 12.
Figure JPOXMLDOC01-appb-M000012
 数12より、収差補正のための実効屈折率の変化幅ΔNは、数13によって与えられる。
Figure JPOXMLDOC01-appb-M000013
From Equation 12, the change width ΔN of the effective refractive index for aberration correction is given by Equation 13.
Figure JPOXMLDOC01-appb-M000013
 図7Aは、角度φと、収差補正を実現するための導波光の実効屈折率の変化量ΔNとの関係の例を示す図である。図7Aには、数13に基づき、変化幅ΔNが角度φの関数としてプロットされている。この例では、円錐台プリズム6の屈折率をn=1.58、半径をr=1.25mm、電極9Bの幅を(r-r)=8mmに設定した。角度φが例えば-36度から36度の範囲で必要な位相差を確保するには、ΔN=0.041にすればよいことがわかる。 FIG. 7A is a diagram showing an example of the relationship between the angle φ and the amount of change ΔN in the effective refractive index of the waveguide light for realizing aberration correction. In FIG. 7A, the change width ΔN is plotted as a function of the angle φ based on the equation 13. In this example, the refractive index of the truncated cone prism 6 was set to n 0 = 1.58, the radius was set to r 0 = 1.25 mm, and the width of the electrode 9B was set to (r 2- r 1 ) = 8 mm. It can be seen that ΔN = 0.041 should be set in order to secure the required phase difference in the range of, for example, −36 degrees to 36 degrees for the angle φ.
 図7Bは、液晶層7eの屈折率nをパラメータとした、導波層7dの厚さと実効屈折率Nとの関係の例を示す図である。図7Cは、バッファー層7c、導波層7d、および液晶層7eの配置を模式的に示す図である。この例では、バッファー層7cはSiOで形成され、導波層7dはTaで形成されている。 7B is a refractive index n 1 of the liquid crystal layer 7e as a parameter is a diagram showing an example of a relationship between the thickness and the effective refractive index N of the waveguide layer 7d. FIG. 7C is a diagram schematically showing the arrangement of the buffer layer 7c, the waveguide layer 7d, and the liquid crystal layer 7e. In this example, the buffer layer 7c is made of SiO 2 , and the waveguide layer 7d is made of Ta 2 O 5 .
 ネマティック液晶分子の屈折率差は、大きいもので0.20程度である。そのうちの8割が実質的に屈折率差として作用すると考えると、実効的な屈折率差は0.15程度である。図7Bに示す例では、光の波長を0.94μm、バッファー層7cの屈折率を1.45とした。図7Bには、n=1.50およびn=1.65として計算された、導波層7dの厚さと実効屈折率Nとの関係が、それぞれ曲線23a、および曲線23bによって表わされている。 The difference in refractive index of the nematic liquid crystal molecules is about 0.20 at most. Considering that 80% of them act as a difference in refractive index, the effective difference in refractive index is about 0.15. In the example shown in FIG. 7B, the wavelength of light was 0.94 μm, and the refractive index of the buffer layer 7c was 1.45. In FIG. 7B, the relationship between the thickness of the waveguide layer 7d and the effective refractive index N, which is calculated as n 1 = 1.50 and n 1 = 1.65, is represented by curves 23a and 23b, respectively. ing.
 図7Cのモデルで液晶の屈折率差を0.15とすると、図7Bより、Taから形成された導波層7dの厚さを0.10μmから0.15μm程度にすれば、ΔN=0.04からΔN=0.06の変化が期待でき、十分な位相差を確保できることがわかる。 Assuming that the refractive index difference of the liquid crystal is 0.15 in the model of FIG. 7C, if the thickness of the waveguide layer 7d formed from Ta 2 O 5 is changed from 0.10 μm to 0.15 μm from FIG. 7B, ΔN A change from = 0.04 to ΔN = 0.06 can be expected, and it can be seen that a sufficient phase difference can be secured.
 次に、液晶層7eへの電圧の印加による導波光の伝搬方向の制御原理を説明する。以下では、透明電極層7fおよび反射電極層7bの両方が、分割された複数のジグザグの電極パターンを有する例を説明する。 Next, the principle of controlling the propagation direction of the waveguide light by applying a voltage to the liquid crystal layer 7e will be described. In the following, an example will be described in which both the transparent electrode layer 7f and the reflective electrode layer 7b have a plurality of divided zigzag electrode patterns.
 図8Aは、透明電極層7fにおける電極パターンと、印加電圧との関係を模式的に示す図である。図8Bは、反射電極層7bにおける電極パターンと、印加電圧との関係を模式的に示す図である。図8Aには、透明電極層7fにおける3本のジグザグの電極パターン40a、40bおよび40cが例示されている。同様に、図8Bには、反射電極層7bにおける3本のジグザグの電極パターン40A、40Bおよび40Cが例示されている。これらの電極パターンは互いに絶縁されている。図8Aに示す電極パターン40a、40bおよび40cには、それぞれ独立して制御回路32a、32bおよび32cから電圧信号が印加される。同様に、図8Bに示す電極パターン40A、40Bおよび40Cには、それぞれ独立して制御回路32A、32Bおよび32Cから電圧信号が印加される。 FIG. 8A is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer 7f and the applied voltage. FIG. 8B is a diagram schematically showing the relationship between the electrode pattern in the reflective electrode layer 7b and the applied voltage. FIG. 8A illustrates three zigzag electrode patterns 40a, 40b and 40c in the transparent electrode layer 7f. Similarly, FIG. 8B illustrates the three zigzag electrode patterns 40A, 40B and 40C in the reflective electrode layer 7b. These electrode patterns are isolated from each other. Voltage signals are independently applied to the electrode patterns 40a, 40b and 40c shown in FIG. 8A from the control circuits 32a, 32b and 32c, respectively. Similarly, voltage signals are independently applied to the electrode patterns 40A, 40B and 40C shown in FIG. 8B from the control circuits 32A, 32B and 32C, respectively.
 図8Cは、透明電極層7fにおける電極パターン、および反射電極層7bにおける電極パターンを揃えて重ねた構成と、印加電圧との関係を模式的に示す図である。透明電極層7fの側を上とし、反射電極層7bの側を下とすると、上下に位置するジグザグパターンは、ジグザグの一方の側の頂点を結んで形成される線が、上下で互いに重なる関係にある。反射電極層7b側のジグザグパターンの形状は、透明電極層7f側のジグザグパターンを上下に反転した形状である。したがって、図8Cに示すように、透明電極層7f側での電極パターンと、反射電極層7b側での電極パターンとを揃えて重ねたパターンは、菱形が連なった形状を有する。 FIG. 8C is a diagram schematically showing the relationship between the electrode pattern in the transparent electrode layer 7f, the configuration in which the electrode patterns in the reflective electrode layer 7b are aligned and overlapped, and the applied voltage. When the side of the transparent electrode layer 7f is on the top and the side of the reflective electrode layer 7b is on the bottom, the zigzag patterns located above and below have a relationship in which the lines formed by connecting the vertices on one side of the zigzag overlap each other on the top and bottom. It is in. The shape of the zigzag pattern on the reflective electrode layer 7b side is a shape in which the zigzag pattern on the transparent electrode layer 7f side is inverted up and down. Therefore, as shown in FIG. 8C, the pattern in which the electrode pattern on the transparent electrode layer 7f side and the electrode pattern on the reflective electrode layer 7b side are aligned and overlapped has a shape in which rhombuses are continuous.
 図8Cに示す電極パターンを片面のみに作製してもよい。しかし、1つ1つの菱形が孤立していることから、配線の引き回しが容易ではない可能性がある。図8Aに示す電極パターンと、図8Bに示す電極パターンとを重ね合わせた構成にすることにより、パターンそのものが配線として機能することから、作製をより容易にすることができる。 The electrode pattern shown in FIG. 8C may be produced on only one side. However, since each rhombus is isolated, it may not be easy to route the wiring. By superimposing the electrode pattern shown in FIG. 8A and the electrode pattern shown in FIG. 8B, the pattern itself functions as wiring, so that the production can be facilitated.
 透明電極層7fにおけるジグザグの電極パターン40a、40bおよび40cには、交流電圧信号41a、41bおよび41cがそれぞれ印加される。振幅は、信号41a、41bおよび41cの順に大きくなる。対面する電極が接地されているとすると、この振幅勾配により、ジグザグの電極パターン40a、40bおよび40cに対応する液晶層の位置で、屈折率差が発生する。電極間に挟まれる導波層7d内を図の左から右に伝搬する導波光10gは、光路に対して傾斜したパターン間の境界を通過する度に、図の下側に屈折される。反射電極層7bでのジグザグの電極パターン40A、40Bおよび40Cには、交流電圧信号41A、41Bおよび41Cがそれぞれ印加される。振幅は、信号41A、41Bおよび41Cの順に大きくなる。対面する電極が接地されているとすると、この振幅勾配により、電極間に挟まれる導波層7d内を図の左から右に伝搬する導波光10gは下側に屈折される。 AC voltage signals 41a, 41b and 41c are applied to the zigzag electrode patterns 40a, 40b and 40c in the transparent electrode layer 7f, respectively. The amplitude increases in the order of signals 41a, 41b and 41c. Assuming that the facing electrodes are grounded, this amplitude gradient causes a difference in refractive index at the positions of the liquid crystal layers corresponding to the zigzag electrode patterns 40a, 40b and 40c. The waveguide light 10 g propagating from the left to the right in the waveguide layer 7d sandwiched between the electrodes is refracted to the lower side of the figure each time it passes through the boundary between the patterns inclined with respect to the optical path. AC voltage signals 41A, 41B and 41C are applied to the zigzag electrode patterns 40A, 40B and 40C in the reflective electrode layer 7b, respectively. The amplitude increases in the order of signals 41A, 41B and 41C. Assuming that the facing electrodes are grounded, this amplitude gradient causes 10 g of the waveguide light propagating from left to right in the figure to be refracted downward in the waveguide layer 7d sandwiched between the electrodes.
 交流電圧信号41A、41Bおよび41Cは、それぞれ、交流電圧信号41a、41bおよび41cの逆極性を有する。したがって、図8Cに示すように、透明電極層7fおよび反射電極層7bを揃えて重ねた電極パターンでは、図8Cに示す電圧が印加される。図8Cの例では、交流電圧信号41a1と交流電圧信号41A1とが対を形成し、交流電圧信号41b1と交流電圧信号41B1とが対を形成し、交流電圧信号41c1と交流電圧信号41C1とが対を形成する。各対を形成する2つの交流電圧信号の位相が反転していることから、交流電圧振幅が倍増する。これにより、導波光10gは大きく下側に屈折される。さらに、図8Aおよび図8Bに示す電極パターンに比べて、導波光10gがパターン間の境界を跨ぐ頻度が増える。これにより、導波光10gの曲がりが倍増し、光路の違いによる曲がり角のばらつきも改善する。 The AC voltage signals 41A, 41B and 41C have the opposite polarities of the AC voltage signals 41a, 41b and 41c, respectively. Therefore, as shown in FIG. 8C, the voltage shown in FIG. 8C is applied to the electrode pattern in which the transparent electrode layer 7f and the reflective electrode layer 7b are aligned and overlapped. In the example of FIG. 8C, the AC voltage signal 41a1 and the AC voltage signal 41A1 form a pair, the AC voltage signal 41b1 and the AC voltage signal 41B1 form a pair, and the AC voltage signal 41c1 and the AC voltage signal 41C1 form a pair. To form. Since the phases of the two AC voltage signals forming each pair are inverted, the AC voltage amplitude is doubled. As a result, 10 g of waveguide light is largely refracted downward. Further, as compared with the electrode patterns shown in FIGS. 8A and 8B, the frequency with which the waveguide light 10 g straddles the boundary between the patterns increases. As a result, the bending of the waveguide light of 10 g is doubled, and the variation in the bending angle due to the difference in the optical path is also improved.
 次に、図8Aから図8Cを参照して説明した原理を踏まえて、導波光の伝搬方向を制御する方法の例を説明する。 Next, an example of a method of controlling the propagation direction of the waveguide light will be described based on the principle described with reference to FIGS. 8A to 8C.
 図9Aおよび図9Bは、それぞれ、透明電極層7fおよび反射電極層7bでの電極9Bのパターンの例を模式的に示す図である。図9Aに示す電極パターン、および図9Bに示す電極パターンのいずれも、各々が内周側から外周側に延びる60本のジグザグパターンによって構成されている。このようなジグザグパターンの電極は、透明電極層7fおよび反射電極層7bの一方にのみ設けられていてもよい。電極9Bにおける複数の分割領域のうち、任意の隣り合う2つの分割領域の境界は、円の動径方向に沿ってジグザグ形状を有する。各ジグザグパターンは互いに絶縁されており、各々に独立して電圧信号が印加される。図9Aおよび図9Bに示す例では、隣接するジグザグパターンは、ジグザグの一方の側の頂点を結んで形成される線が動径方向に一致し、これらが隣同士で互いに重なる関係にある。この例において、反射電極層7b側のジグザグパターンの形状は、透明電極層7f側のジグザグパターンを回転方向に反転した形状である。図9Cは、透明電極層7fでの電極パターンと、反射電極層7bでの電極パターンとを揃えて重ねた構成を模式的に示す図である。 9A and 9B are diagrams schematically showing an example of the pattern of the electrode 9B in the transparent electrode layer 7f and the reflective electrode layer 7b, respectively. Both the electrode pattern shown in FIG. 9A and the electrode pattern shown in FIG. 9B are composed of 60 zigzag patterns each extending from the inner peripheral side to the outer peripheral side. Such a zigzag pattern electrode may be provided only on one of the transparent electrode layer 7f and the reflective electrode layer 7b. Of the plurality of divided regions in the electrode 9B, the boundary between two adjacent divided regions has a zigzag shape along the radial direction of the circle. Each zigzag pattern is isolated from each other, and a voltage signal is applied to each independently. In the example shown in FIGS. 9A and 9B, in the adjacent zigzag pattern, the lines formed by connecting the vertices on one side of the zigzag coincide with each other in the radial direction, and these are in a relationship of overlapping each other next to each other. In this example, the shape of the zigzag pattern on the reflective electrode layer 7b side is a shape obtained by reversing the zigzag pattern on the transparent electrode layer 7f side in the rotational direction. FIG. 9C is a diagram schematically showing a configuration in which the electrode pattern on the transparent electrode layer 7f and the electrode pattern on the reflective electrode layer 7b are aligned and overlapped.
 図10は、図9Cに示す電極パターンの一部と、導波光10gの伝搬経路との関係を模式的に示す図である。図9Cに示すように、透明電極層7fおよび反射電極層7bを揃えて重ねた電極9Bのパターンは、動径方向に菱形が連なった形状を有する。反射電極層7bおよび透明電極層7fの各々において、領域9Bにおける複数の分割領域のうち、任意の隣り合う2つの分割領域の境界は、円の動径方向に沿ってジグザグ形状を有する。バッファー層7c、導波層7d、および液晶層7eのいずれかに垂直な方向から見たとき、一対の電極層の一方における境界と、他方における境界は、動径方向に菱形が連なった形状を形成する。ジグザグパターンに印加される交流電圧の振幅の大きさが円周方向に沿って勾配を有するように制御される。例えば、図6Bに示す放物線状の波形18のような電圧勾配がY軸を中心にして与えられると、図10に示すように、矢印42の方向、すなわちY軸に近付く方向に沿って液晶の屈折率が大きくなる。これにより、導波層7d内を外周側から内周側に伝搬する導波光10gの伝搬経路を、矢印42の方向、すなわちY軸に近付く方向に曲げることができる。このように、図10に示す構造を有する電極への印加電圧を制御することにより、円錐台プリズム6の側面に入射する平行光をグレーティングカプラ8cで取り込み、中心に向かう導波光になるように調整することができる。その結果、中心にあるグレーティングカプラ8aから放射光として取り出し、検出することができる。 FIG. 10 is a diagram schematically showing the relationship between a part of the electrode pattern shown in FIG. 9C and the propagation path of the waveguide light 10 g. As shown in FIG. 9C, the pattern of the electrodes 9B in which the transparent electrode layer 7f and the reflective electrode layer 7b are aligned and overlapped has a shape in which rhombuses are continuous in the radial direction. In each of the reflective electrode layer 7b and the transparent electrode layer 7f, the boundary between two adjacent divided regions in the plurality of divided regions in the region 9B has a zigzag shape along the radial direction of the circle. When viewed from a direction perpendicular to any of the buffer layer 7c, the waveguide layer 7d, and the liquid crystal layer 7e, the boundary between one of the pair of electrode layers and the boundary at the other have a shape in which rhombuses are continuous in the radial direction. Form. The magnitude of the amplitude of the AC voltage applied to the zigzag pattern is controlled to have a gradient along the circumferential direction. For example, when a voltage gradient such as the parabolic waveform 18 shown in FIG. 6B is given around the Y axis, the liquid crystal is formed in the direction of arrow 42, that is, in the direction approaching the Y axis, as shown in FIG. The refractive index increases. As a result, the propagation path of the waveguide light 10g propagating in the waveguide layer 7d from the outer peripheral side to the inner peripheral side can be bent in the direction of the arrow 42, that is, in the direction approaching the Y axis. By controlling the voltage applied to the electrode having the structure shown in FIG. 10 in this way, the parallel light incident on the side surface of the truncated cone prism 6 is taken in by the grating coupler 8c and adjusted so as to become a waveguide light toward the center. can do. As a result, it can be extracted as synchrotron radiation from the central grating coupler 8a and detected.
 次に、本実施形態における光検出器12の構成例を説明する。 Next, a configuration example of the photodetector 12 in this embodiment will be described.
 図11は、光検出器12の構成例を示す図である。この例において、光検出器12は、一列に並んだ複数の受光素子を含む。各受光素子は、短冊状の形状を有する。光検出器12は、dの幅のn個の受光領域12a1、12a2、・・・、12anに分割されており、波長分光器5によって波長に応じて分光された光17を、n個の波長域または色ごとに分別して検出できる。図示される例において、各受光領域は、幅dの5つの短冊状の受光素子を含む。すなわち、1つの波長域または色に対して5つの受光素子が割り当てられている。各受光領域は必要に応じて短冊状の受光素子の幅、またはその整数倍分だけ一括してスライドできる。この光検出器12の構成は一例にすぎない。受光領域の数、および各受光領域に含まれる受光素子の数は、任意に決定してよい。また、光検出器12は、複数の受光領域に分割されていなくてもよい。例えば、一般的な1次元または2次元のイメージセンサを光検出器12として用いてもよい。 FIG. 11 is a diagram showing a configuration example of the photodetector 12. In this example, the photodetector 12 includes a plurality of light receiving elements arranged in a row. Each light receiving element has a strip-shaped shape. The photodetector 12 is divided into n light receiving regions 12a1, 12a2, ..., 12an having a width of d 1 , and n pieces of light 17 dispersed according to the wavelength by the wavelength spectroscope 5 are transmitted. It can be detected separately by wavelength range or color. In the illustrated example, each light receiving region includes five strip-shaped light receiving element width d 2. That is, five light receiving elements are assigned to one wavelength region or color. Each light receiving region can be slid together by the width of the strip-shaped light receiving element or an integral multiple thereof, if necessary. The configuration of the photodetector 12 is only an example. The number of light receiving regions and the number of light receiving elements included in each light receiving region may be arbitrarily determined. Further, the photodetector 12 does not have to be divided into a plurality of light receiving regions. For example, a general one-dimensional or two-dimensional image sensor may be used as the photodetector 12.
 図12Aは、水平方向および垂直方向についての単色光の走査の様子を模式的に示す図である。本明細書において、走査または光線走査とは、外部の反射体から円錐台プリズム6に入射する光路に対して逆進する仮想的な光路を考えた場合に、その仮想的な光路を、電極への印加電圧の制御によって動かすことを意味する。また、仮想的な光路が動くことは、本装置が検出できる外部対象の方位を動かし、制御することを意味する。 FIG. 12A is a diagram schematically showing a state of scanning monochromatic light in the horizontal direction and the vertical direction. In the present specification, scanning or light ray scanning means, when considering a virtual optical path that reverses with respect to an optical path incident on the truncated cone prism 6 from an external reflector, the virtual optical path is transferred to an electrode. It means that it is operated by controlling the applied voltage of. Further, the movement of the virtual optical path means that the direction of the external object that can be detected by the present device is moved and controlled.
 図12Aは、図11に示す単一の受光領域(例えば12a1のみ)によって検出される単色光の光線走査の例を示している。前述のように、電極9Bには、例えば図6Bに示す波形18で表されるような収差補正のための分布をなす電圧が印加される。これにより、例えば2π/5(=72度)の角度範囲で平行光の取り込みが可能となる。波形18を回転方向に移動させることで、取り込み方位を360度の範囲で水平に走査できる。このとき、電極9Cには、取り込み方位が垂直方向に変化するように、線形的に変化する電圧が加えられる。放物線状の波形18の形状には2種類あり、それぞれ放物線状の形状を表現する関数の係数値または指数値を変えることで集光点F1の位置を異なる位置に移動させることで取り込み角α1およびα2の2種類の光の取り込みが可能になる。ここで「取り込み角」とは、様々な方向から円錐台プリズム6に入射し光検出器12まで到達できる光について、円錐台プリズム6に入射する位置での水平面上での広がりの程度を表す。以下の説明において、取り込み角を「広がり角」と称することもある。取り込み角は、図6Bに示す電圧の波形18に依存する。波形18の形状を表現する関数の係数値または指数値を変えることにより、取り込み角が変化する。 FIG. 12A shows an example of ray scanning of monochromatic light detected by a single light receiving region (for example, 12a1 only) shown in FIG. As described above, a voltage having a distribution for aberration correction as represented by the waveform 18 shown in FIG. 6B is applied to the electrode 9B, for example. This makes it possible to capture parallel light in an angle range of, for example, 2π / 5 (= 72 degrees). By moving the waveform 18 in the rotation direction, the capture direction can be scanned horizontally in the range of 360 degrees. At this time, a voltage that changes linearly is applied to the electrode 9C so that the intake direction changes in the vertical direction. There are two types of parabolic waveform 18 shapes, and by changing the coefficient value or exponential value of the function that expresses the parabolic shape, the position of the focusing point F1 is moved to a different position, and the capture angle α1 and Two types of light of α2 can be taken in. Here, the "capture angle" represents the degree of spread on the horizontal plane of the light incident on the truncated cone prism 6 from various directions and reaching the photodetector 12 at the position incident on the truncated cone prism 6. In the following description, the capture angle may be referred to as "spread angle". The capture angle depends on the voltage waveform 18 shown in FIG. 6B. The capture angle is changed by changing the coefficient value or exponential value of the function expressing the shape of the waveform 18.
 図12Aの例において、1回目は取り込み角α1で走査される。このときの様子は図12Aの矢印線b1によって表される。2回目の走査では取り込み角α2に調整され、電極9Cの電圧を元に戻して、360度の範囲を矢印線b1と同じ走査が行われる。すなわち、光学装置は、取り込み角が異なる走査を2回繰り返す。3回目の走査は、取り込み角α2の状態で垂直方向の角度を継続して増やしながら、矢印線b2の走査をする。4回目の走査は、取り込み角をα1に戻し電極9Cの電圧を3回目の初期状態に戻して、360度の範囲を矢印線b2と同じ走査をする。以上の操作を電極9Cの電圧を徐々に変えながら繰り返し、次第に垂直方向の角度を増やし、矢印線b15の走査まで続ける。 In the example of FIG. 12A, the first scan is performed at the capture angle α1. The state at this time is represented by the arrow line b1 in FIG. 12A. In the second scan, the capture angle is adjusted to α2, the voltage of the electrode 9C is restored, and the same scan as the arrow line b1 is performed in the range of 360 degrees. That is, the optical device repeats scanning with different capture angles twice. In the third scan, the arrow line b2 is scanned while continuously increasing the vertical angle in the state of the capture angle α2. In the fourth scan, the intake angle is returned to α1, the voltage of the electrode 9C is returned to the initial state of the third time, and the same scan as the arrow line b2 is performed in the range of 360 degrees. The above operation is repeated while gradually changing the voltage of the electrode 9C, the angle in the vertical direction is gradually increased, and the scanning of the arrow line b15 is continued.
 電極9Bの電圧分布の周期、すなわち波形18が360度の範囲を一周する周期は、液晶の応答性に依存する。当該周期を例えば波形18の形状変化の応答時間を含め2msとし、1秒あたり33フレーム、すなわち周期30msの動画速度で走査させる場合、垂直方向の走査線数は30/2=15本になる。このため、図12Aの例では、垂直方向の回転角が15分割され、それぞれの分割角度範囲について、取り込み角の異なる2回の水平走査が行われる。液晶の屈折率変化を0.15とすると、図7Bより、ΔN=0.04程度の実効屈折率の変化で上記走査線数を実現できる。数5から、この実効屈折率変化の幅はグレーティングカプラ8cへの入射光の角度差として10度程度に相当する。このため、10度の垂直角範囲を15等分した間隔で、垂直方向走査が行われ得る。この場合、各走査線の隔てる角度は10/15=0.67度程度である。 The period of the voltage distribution of the electrode 9B, that is, the period in which the waveform 18 goes around the range of 360 degrees depends on the responsiveness of the liquid crystal. When the period is set to 2 ms including the response time of the shape change of the waveform 18, and scanning is performed at a moving speed of 33 frames per second, that is, a period of 30 ms, the number of scanning lines in the vertical direction is 30/2 = 15. Therefore, in the example of FIG. 12A, the rotation angle in the vertical direction is divided into 15, and two horizontal scans with different capture angles are performed for each division angle range. Assuming that the change in the refractive index of the liquid crystal is 0.15, the number of scanning lines can be realized by changing the effective refractive index by about ΔN = 0.04 from FIG. 7B. From Equation 5, the width of this change in the effective refractive index corresponds to about 10 degrees as the angle difference of the incident light on the grating coupler 8c. Therefore, vertical scanning can be performed at intervals of 15 equal parts of the vertical angle range of 10 degrees. In this case, the angle at which each scanning line is separated is about 10/15 = 0.67 degrees.
 図12Bは、狭帯域の複数の色の光(以下、「狭い複色光」と称する。)の水平方向および垂直方向の走査の例を模式的に示す図である。図12Bは、図11に示す光検出器12のn個の受光領域12a1、12a2、・・・、12anによって検出される狭い複色光の光線走査の例を示している。狭い複色光とは、特定の波長λの近傍で微小な間隔をなす複数のシングルモード光の重なりを意味する。狭い複色光は、例えば波長λの近傍で0.2nm程度の間隔をなす波長λ、λ、・・・λのシングルモード光の重なりであり得る。これらの光の波長が数nmの波長範囲内であれば、波長の変化に応じて入射角が変わるものの、いずれの光も最適な状態でグレーティングカプラ8cを介して導波層7dに結合できる。数7から、0.2nmの波長差はグレーティング8cへの入射光の角度差として0.1度程度に相当する。従って、狭い複色光を7本の単色光の集合とすれば、図12Bに示すように、図12Aにおける走査線の間を隙間無く埋めることができる。図12Bの各走査線に対応する検出光は、光検出器12の受光領域12ak(k=1,・・・,n)によって独立して検出される。この場合、信号検出における空間解像度は、図12Aの場合の7倍になる。言い換えれば、15×7=105本以上の垂直走査線数を実現できる。 FIG. 12B is a diagram schematically showing an example of horizontal and vertical scanning of light of a plurality of colors in a narrow band (hereinafter, referred to as “narrow multicolor light”). FIG. 12B shows an example of light ray scanning of narrow multicolor light detected by n light receiving regions 12a1, 12a2, ..., 12an of the photodetector 12 shown in FIG. Narrow multicolored light means the overlap of a plurality of single-mode lights forming a minute interval in the vicinity of a specific wavelength λ. The narrow multicolored light can be, for example, an overlap of single-mode light having wavelengths λ 1 , λ 2 , ... λ n , which are spaced by about 0.2 nm in the vicinity of the wavelength λ. If the wavelength of these lights is within the wavelength range of several nm, the incident angle changes according to the change in wavelength, but any light can be coupled to the waveguide layer 7d via the grating coupler 8c in an optimum state. From Equation 7, the wavelength difference of 0.2 nm corresponds to about 0.1 degree as the angle difference of the incident light on the grating 8c. Therefore, if the narrow multicolored light is a set of seven monochromatic lights, the gaps between the scanning lines in FIG. 12A can be filled without gaps as shown in FIG. 12B. The detection light corresponding to each scanning line in FIG. 12B is independently detected by the light receiving region 12ak (k = 1, ..., N) of the photodetector 12. In this case, the spatial resolution in signal detection is 7 times that in the case of FIG. 12A. In other words, 15 × 7 = 105 or more vertical scanning lines can be realized.
 なお、実際には狭い複色光は不連続な単色光の集合ではなく連続した波長の光の集合である。しかし、本実施形態のように光検出器12が離散的で有限数の受光領域で構成される場合、当該光の検出は、結果として離散的な複数の波長の光を検出することと等価である。 Actually, narrow multicolored light is not a set of discontinuous monochromatic light but a set of light of continuous wavelength. However, when the photodetector 12 is composed of discrete and finite number of light receiving regions as in the present embodiment, the detection of the light is equivalent to detecting the discrete light of a plurality of wavelengths as a result. is there.
 以上のように、本実施形態の構成によれば、外部の物体で反射される広がり角の小さい、ほぼ平行な光を検出することができる。例えば、水平方向360度および垂直方向10度の視野内において、反射光を垂直走査線数で100本以上、1秒あたり30フレーム以上のフレームレートで走査し、検出することができる。 As described above, according to the configuration of the present embodiment, it is possible to detect almost parallel light with a small spread angle reflected by an external object. For example, within a field of view of 360 degrees in the horizontal direction and 10 degrees in the vertical direction, reflected light can be scanned and detected at a frame rate of 100 or more vertical scanning lines and 30 frames or more per second.
 次に、本実施形態における距離測定の原理を説明する。 Next, the principle of distance measurement in this embodiment will be described.
 図13Aは、本実施形態における光学装置と等価な光学系の構成例を示す図である。図13Aに示す光学系は、円錐台プリズム6と、集光レンズ14aと、スリット板14bとを含む。集光レンズ14aおよびスリット板14bは、本実施形態における光導波素子7と等価な作用を果たす。図10を参照して説明したように、円錐台プリズム6の側面に入射し軸L上に集束された後、グレーティングカプラ8cに入射する光は、電極への印加電圧の制御により、光導波素子7の中心に向かう導波光になるように調整される。本実施形態では、印加電圧の制御によって軸Lの位置を微調整できる。この作用は、図13Aに示すX軸上で移動が可能な集光レンズ14aの作用と等価である。また、中心に向かう導波光のうち、グレーティングカプラ8aの中心に集束される光のみが出射光10fとして取り出され、検出される。この作用は、図13Aに示す集光レンズ14aの集光点F0に集束される光だけを選択的に通過させるスリット板14bの作用と等価である。したがって、本実施形態における光導波素子7は、焦点距離を変化させることが可能なレンズと、レンズを通過した光を制限するスリット板とを含んでいると解釈することができる。 FIG. 13A is a diagram showing a configuration example of an optical system equivalent to the optical device in the present embodiment. The optical system shown in FIG. 13A includes a truncated cone prism 6, a condenser lens 14a, and a slit plate 14b. The condenser lens 14a and the slit plate 14b perform an action equivalent to that of the optical waveguide element 7 in the present embodiment. As described with reference to FIG. 10, after being focused onto the axis L 1 incident on the side surface of the truncated cone prism 6, the light entering the grating coupler 8c is controlled by the voltage applied to the electrodes, the optical waveguide The light is adjusted so as to be waveguide light toward the center of the element 7. In the present embodiment, it can be finely adjust the position of the axis L 1 by controlling the applied voltage. This action is equivalent to the action of the condenser lens 14a that can move on the X-axis shown in FIG. 13A. Further, of the waveguide light toward the center, only the light focused on the center of the grating coupler 8a is taken out as the emitted light 10f and detected. This action is equivalent to the action of the slit plate 14b that selectively passes only the light focused at the focusing point F0 of the focusing lens 14a shown in FIG. 13A. Therefore, it can be interpreted that the optical waveguide element 7 in the present embodiment includes a lens capable of changing the focal length and a slit plate that limits the light passing through the lens.
 図13Aには、取り込み角α(取り込み全角2α)で入射する光15と、取り込み角α’(取り込み全角2α’)で入射する光16が例示されている。取り込み全角2αで入射する光15は、円錐台プリズム6の側面で屈折され点F1に集束された後、集光レンズ14aによって点F0に集束される。点F0はスリット14bの開口部に位置する。点F0に集束される光は、グレーティングカプラ8cの直径に相当する開口幅2rのスリットを透過して光検出器12によって検出される。一方、円錐台プリズム6からX軸方向に距離dだけ離れた反射体Sから反射された光16は、取り込み全角2α’で円錐台プリズム6の側面に入射して屈折される。この屈折された光は、点F1からΔsだけ離れた点F1’に集束された後、集光レンズ14aによってスリット上にスポット径2r’で集束される。スポット径2r’は開口幅2rよりも大きいので、集束光の一部しかスリットを透過できない。このため、光16の検出光量は光15の検出光量よりも少ない。 FIG. 13A exemplifies the light 15 incident at the capture angle α (capture full-width 2α) and the light 16 incident at the capture angle α'(capture full-width 2α'). The light 15 incident at the captured full-width 2α is refracted by the side surface of the truncated cone prism 6 and focused at the point F1, and then focused at the point F0 by the condenser lens 14a. The point F0 is located at the opening of the slit 14b. Light is focused to a point F0 is detected by the photodetector 12 is transmitted through the slit opening width 2r 1, which corresponds to the diameter of the grating coupler 8c. On the other hand, the light 16 reflected from the reflector S separated from the truncated cone prism 6 by a distance d in the X-axis direction is incident on the side surface of the truncated cone prism 6 at a captured full angle of 2α'and is refracted. The refracted light is focused at a point F1'distant from the point F1 by Δs, and then focused on the slit by the condenser lens 14a with a spot diameter of 2r'. Since the spot diameter 2r'is larger than the aperture width 2r 1, only a part of the focused light can pass through the slit. Therefore, the detected light amount of the light 16 is smaller than the detected light amount of the light 15.
 図13Bは、図13Aに示す光学系における円錐台プリズム6を通過する光線の経路を説明するための図である。図13Bに示す例では、光15および光16は、円錐台プリズム6の側面の点Qに入射する。点Qの法線はX軸に対してβの角をなす。円錐台プリズム6の中心を点Fとして、点F、F1、F1’はいずれもX軸上にある。FQF1のなす角をψ、角FQF1’をψ’、角FF1Qをφ、角FF1’Qをφ’、FF1=s、FF1’=s’とすると、数14~20が成り立つ。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
FIG. 13B is a diagram for explaining the path of light rays passing through the truncated cone prism 6 in the optical system shown in FIG. 13A. In the example shown in FIG. 13B, the light 15 and light 16 is incident on a point to Q 1 side of the truncated cone prism 6. Normal of the point Q 1 is angled in β with respect to the X axis. With the center of the truncated cone prism 6 as the point F, the points F, F1, and F1'are all on the X-axis. If the angle formed by FQ 1 F1 is ψ, the angle FQ 1 F1'is ψ', the angle FF1Q 1 is φ, and the angle FF1'Q 1 is φ', FF1 = s, FF1'= s', the numbers 14 to 20 are It holds.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 s’-s=Δsとすると、|Δs|tanφ’=F1F2はスリット位置のビーム半径に相当する。この値を使い、ビーム径とスリット径の比の関係を変形して、規格化された検出光量ηを次式で定義する。
Figure JPOXMLDOC01-appb-M000021
If s'-s = Δs, | Δs | tanφ'= F1F2 corresponds to the beam radius at the slit position. Using this value, the relationship between the ratio of the beam diameter and the slit diameter is transformed, and the normalized detection light amount η is defined by the following equation.
Figure JPOXMLDOC01-appb-M000021
 この定義によれば、集光点F1’がF1に一致する場合(Δs=0)、検出光量ηは最大値1になるが、一致しない場合、検出光量ηは1よりも小さくなる。 According to this definition, when the focusing point F1'matches F1 (Δs = 0), the detected light amount η becomes the maximum value 1, but when they do not match, the detected light amount η becomes smaller than 1.
 光の取り込み角αおよびその集光点F1の位置は、例えば図6Bに示す放物線状の波形19の形状を調整することで制御できる。また、波形19を偏角方向に移動させることで、光の取り込み方向を、円錐台プリズム6の中心軸Lの周りに回転させることができる。従って、単一の方向にある外部の反射体Sからの反射光を、2つ以上の取り込み角で高速に検出できる。また、本実施形態では、電極9Cの電圧を調整することにより、検出可能な光の方向を垂直方向にも変化させ、走査することができる。 The position of the light intake angle α and its focusing point F1 can be controlled by, for example, adjusting the shape of the parabolic waveform 19 shown in FIG. 6B. Further, by moving the waveform 19 in the declination direction, the light uptake direction can be rotated around the central axis L of the truncated cone prism 6. Therefore, the reflected light from the external reflector S in a single direction can be detected at high speed with two or more capture angles. Further, in the present embodiment, by adjusting the voltage of the electrode 9C, the direction of the detectable light can be changed to the vertical direction for scanning.
 図13Cは、検出光量と測定対象までの距離との関係の一例を、取り込み角(「広がり角」とも称する。)αをパラメータにして示す図である。図13Dは、図13Cの例における2つの検出光量の比と測定対象までの距離との関係を示す図である。図13Eは、検出光量と測定対象までの距離との関係の他の例を、取り込み角αをパラメータにして示す図である。図13Fは、図13Eの例における2つの検出光量の比と測定対象までの距離との関係を示す図である。 FIG. 13C is a diagram showing an example of the relationship between the amount of detected light and the distance to the measurement target with the capture angle (also referred to as “spread angle”) α as a parameter. FIG. 13D is a diagram showing the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13C. FIG. 13E is a diagram showing another example of the relationship between the amount of detected light and the distance to the measurement target, with the capture angle α as a parameter. FIG. 13F is a diagram showing the relationship between the ratio of the two detected light amounts and the distance to the measurement target in the example of FIG. 13E.
 図13Cおよび図13Eは、検出光量ηと距離dとの関係の例を、複数の取り込み角αについて示している。これらの例では、円錐台プリズム6の屈折率をn=1.58、半径をr=1.5mm、スリット幅を2r=0.02mm、点Qでの法線とX軸とのなす角をβ=30度に設定した。図13Cに示すように、取り込み角αが0以上の場合、いずれの曲線も距離dに対して単調増加する。 13C and 13E show an example of the relationship between the detected light amount η and the distance d for a plurality of capture angles α. In these examples, the refractive index n 0 = 1.58 frustoconical prism 6, the radius r 0 = 1.5 mm, and the normal and the X-axis of the slit width 2r 1 = 0.02 mm, the point Q 1 The angle between the two was set to β = 30 degrees. As shown in FIG. 13C, when the intake angle α is 0 or more, all the curves monotonically increase with respect to the distance d.
 図13Dは、図13Cにおける検出光量ηをα=0.00度における検出光量ηα=0.00で割った値と距離dとの関係を、取り込み角αをパラメータにして示している。検出光量比η/ηα=0.00は、どの取り込み角αでも反射体Sまでの距離dに対して単調に減少する。特にd<2mの範囲で変化幅が大きいので、検出光量比η/ηα=0.00を検出できれば反射体Sまでの距離を正確に測定できる。検出光量ηは、数21に示す式の上では規格化されているが、実際の光量は反射体の反射率および光検出器12の感度のばらつきによって変動する。しかし、η/ηα=0.00は光量比なのでそのようなばらつきの影響を受けず、校正処理の必要がない。また、検出光量に含まれるノイズおよび誤差の影響も除去される。 Figure 13D shows the relationship between the detected light quantity eta alpha = divided by 0.00 and the distance d in the quantity of detected light eta alpha = 0.00 ° in FIG. 13C, it is shown by the acceptance angle alpha to the parameters. The detected light amount ratio η / η α = 0.00 decreases monotonically with respect to the distance d to the reflector S at any capture angle α. In particular, since the range of change is large in the range of d <2 m, the distance to the reflector S can be accurately measured if the detected light amount ratio η / η α = 0.00 can be detected. The detected light amount η is standardized in the formula shown in Equation 21, but the actual light amount varies depending on the reflectance of the reflector and the sensitivity of the photodetector 12. However, since η / η α = 0.00 is a light intensity ratio, it is not affected by such variations and does not require calibration processing. In addition, the influence of noise and error included in the detected light amount is also removed.
 図13Eの例では、取り込み角αが負の値(α=-0.05度)を含む。αが負であるということは、例えば図13Aに示す光16のように、光線を仮想的に逆進させた場合に、その光線が反射体Sに向かって集束される位置関係にあることを表す。図13Eの例では、α=-0.05度は、d=0.9mの位置に反射体Sが存在する場合に相当し、対応する曲線はd=0.9mで極大となる。それ以外の曲線は取り込み角αが0以上であり、いずれも距離dに対して単調に増加する。 In the example of FIG. 13E, the intake angle α includes a negative value (α = −0.05 degrees). The fact that α is negative means that, as in the case of light 16 shown in FIG. 13A, when a light beam is virtually reversed, the light beam is focused toward the reflector S. Represent. In the example of FIG. 13E, α = −0.05 degrees corresponds to the case where the reflector S exists at the position of d = 0.9 m, and the corresponding curve becomes the maximum at d = 0.9 m. In the other curves, the intake angle α is 0 or more, and all of them increase monotonically with respect to the distance d.
 図13Fは、図13Eにおける検出光量ηをα=-0.05度に於ける検出光量ηα=-0.05で割った値と距離dとの関係を、取り込み角αをパラメータにして示している。検出光量比η/ηα=-0.05は、どの取り込み角αでも距離d<0.9mに対し単調に減少し、d>0.9mに対し単調に増加する。図13Dの例に比べ、特にd>0.9mの範囲で変化率が大きい。このため、0.9m<d<10mの範囲で反射体Sまでの距離を正確に測定できる。図13Dの例と同様、η/ηα=-0.05は光量比なので校正処理の必要がなく、検出光量に含まれるノイズおよび誤差の影響も除去される。 FIG. 13F, the relationship between the value obtained by dividing the distance d by in detected light intensity eta alpha = -0.05 to detect light intensity eta an alpha = -0.05 ° in FIG. 13E, is shown in an uptake angle alpha to the parameter .. The detected light amount ratio η / η α = -0.05 decreases monotonically with respect to the distance d <0.9 m and increases monotonically with respect to d> 0.9 m at any capture angle α. Compared with the example of FIG. 13D, the rate of change is particularly large in the range of d> 0.9 m. Therefore, the distance to the reflector S can be accurately measured in the range of 0.9 m <d <10 m. Similar to the example of FIG. 13D, since η / η α = -0.05 is a light amount ratio, there is no need for calibration processing, and the influence of noise and error included in the detected light amount is also eliminated.
 本実施形態では、図13Dおよび図13Fの一方または両方の関係を示すデータが予め記録媒体に記録されている。記録媒体は、例えば図1に示す検出回路33などの制御回路が備えていてもよい。制御回路は、当該データを参照することにより、同一の方向について異なる焦点距離で検出された2つの光量の比から距離を求めることができる。図13Dおよび図13Fの両方の関係を示すデータを同時に用いた場合、より正確に距離を求めることができる。例えば、近距離(例えばd<2m)については図13Dに示す曲線のデータを用い、遠距離(例えばd>2m)については図13Fに示す曲線のデータを用いてもよい。 In the present embodiment, data showing the relationship between one or both of FIGS. 13D and 13F is recorded in advance on the recording medium. The recording medium may be provided with a control circuit such as the detection circuit 33 shown in FIG. By referring to the data, the control circuit can obtain the distance from the ratio of two light amounts detected at different focal lengths in the same direction. When the data showing the relationship of both FIGS. 13D and 13F are used at the same time, the distance can be obtained more accurately. For example, the curve data shown in FIG. 13D may be used for a short distance (for example, d <2m), and the curve data shown in FIG. 13F may be used for a long distance (for example, d> 2m).
 本実施形態によれば、光を出射することなく、外部の反射体までの距離を測定することができる。また、測定には、同一方向から到来する少なくとも2つの取り込み角の光の検出光量を比較するだけなので、演算負荷が極めて小さい。さらに、取り込み光の方位を回転方向、またはそれに直交する方向に高速に走査できるので全方位の距離情報を高速に取得できる。 According to this embodiment, the distance to an external reflector can be measured without emitting light. Further, since the measurement only compares the detected light amounts of the light of at least two capture angles arriving from the same direction, the calculation load is extremely small. Further, since the direction of the captured light can be scanned at high speed in the rotation direction or the direction orthogonal to the rotation direction, the distance information in all directions can be acquired at high speed.
 なお、本実施形態の説明では、円錐台プリズム6による集光点の位置が一点であるものとして記述したが、厳密には集光点の位置は分散する。分散した集光点に対応して、図6Bにおける放物線状の波形19を補正または制御してもよい。 In the description of this embodiment, it is described that the position of the focusing point by the truncated cone prism 6 is one point, but strictly speaking, the positions of the focusing points are dispersed. The parabolic waveform 19 in FIG. 6B may be corrected or controlled in response to the dispersed focus points.
 (第2実施形態)
 図14は、第2実施形態における光学装置の構成と光線の経路とを模式的に示す平面図である。
(Second Embodiment)
FIG. 14 is a plan view schematically showing the configuration of the optical device and the path of light rays in the second embodiment.
 この光学装置は、回転体50と、回転体50上の光学台51と、光学台51上の集光レンズ52、スリット板53、および光検出器54と、制御回路55とを備える。集光レンズ52、スリット板53、および光検出器54は、回転体50の中心Oを通る軸L0に沿って配置されている。回転体50は、不図示のモータによって中心Oの周りに回転するように駆動される。集光レンズ52は、不図示のアクチュエータによって軸L0に沿って高速に移動できるように構成されている。集光レンズ52は、回転体50の表面に直交する方向(以下、「垂直方向」と称する。)にも移動できる。スリット板53のスリットは、この垂直方向に細長い形状の開口を有する。制御回路55は、回転体50の回転運動、およびレンズ52の並進運動を同期して制御する。 This optical device includes a rotating body 50, an optical table 51 on the rotating body 50, a condenser lens 52 on the optical table 51, a slit plate 53, a photodetector 54, and a control circuit 55. The condenser lens 52, the slit plate 53, and the photodetector 54 are arranged along the axis L0 passing through the center O of the rotating body 50. The rotating body 50 is driven to rotate around the center O by a motor (not shown). The condenser lens 52 is configured to be able to move at high speed along the axis L0 by an actuator (not shown). The condenser lens 52 can also move in a direction orthogonal to the surface of the rotating body 50 (hereinafter, referred to as a “vertical direction”). The slit of the slit plate 53 has an opening having an elongated shape in the vertical direction. The control circuit 55 synchronously controls the rotational movement of the rotating body 50 and the translational movement of the lens 52.
 回転体50は、例えば等速に回転するように制御される。軸L0に沿った方向における集光レンズ52の運動は、例えば、回転体50の回転周期の整数倍または整数倍分の1の周期の単振動であり得る。垂直方向における集光レンズ52の運動は、例えば、回転体50の回転周期の数倍から数百倍程度の周期の単振動であり得る。図14の例において、取り込み全角2αで入射する光15は、集光レンズ52によって点F0に集束される。点F0はスリット板53の開口部に位置し、点F0に集束される光は開口幅2rのスリットを通過して光検出器54によって検出される。一方、集光レンズ52からdの距離にある、軸L0上の反射体Sで反射される光16は、取り込み全角2α’で集光レンズ52に入射し、スリット上にスポット径2r’で集束される。スポット径2r’は開口幅2rよりも大きいので、集束光の一部しかスリットを透過できない。このため、光16の検出光量は光15の検出光量よりも少ない。集光レンズ52が垂直方向に移動するとスリット上のスポットもスポット径を維持して垂直方向に移動する。しかし、スリットの開口は垂直方向に延びた形状を有するので、スリットを通過して検出される光量は変化しない。 The rotating body 50 is controlled to rotate at a constant velocity, for example. The movement of the condenser lens 52 in the direction along the axis L0 can be, for example, a simple vibration having a period of an integral multiple or a fraction of an integral multiple of the rotation cycle of the rotating body 50. The movement of the condenser lens 52 in the vertical direction may be, for example, a simple vibration having a period of several times to several hundred times the rotation period of the rotating body 50. In the example of FIG. 14, the light 15 incident at the captured full-width 2α is focused at the point F0 by the condenser lens 52. Point F0 is located in the opening of the slit plate 53, the light is focused to a point F0 is detected through the slit opening width 2r 1 by the light detector 54. On the other hand, the light 16 reflected by the reflector S on the axis L0, which is at a distance d from the condenser lens 52, enters the condenser lens 52 at a captured full angle of 2α'and is focused on the slit with a spot diameter of 2r'. Will be done. Since the spot diameter 2r'is larger than the aperture width 2r 1, only a part of the focused light can pass through the slit. Therefore, the detected light amount of the light 16 is smaller than the detected light amount of the light 15. When the condenser lens 52 moves in the vertical direction, the spot on the slit also moves in the vertical direction while maintaining the spot diameter. However, since the opening of the slit has a shape extending in the vertical direction, the amount of light detected through the slit does not change.
 第2実施形態における光学装置は、第1実施形態における光学装置と構成要素が異なるが、その作用効果は共通している。すなわち、本実施形態においても、第1実施形態と同様、単一の方位にある外部の反射体Sからの反射光の集光位置に配置されたスリット板53を介して、当該反射光を検出できる。第1実施形態と同様、検出方位を水平方向および垂直方向に高速に変化させることができ、かつ取り込み角を高速に2つ以上に変化させることができる。従って第1実施形態と全く同じ距離測定の原理が成立し、第1実施形態と全く同じ効果が得られる。 The optical device in the second embodiment has different components from the optical device in the first embodiment, but its functions and effects are the same. That is, also in the present embodiment, as in the first embodiment, the reflected light is detected through the slit plate 53 arranged at the condensing position of the reflected light from the external reflector S in a single direction. it can. Similar to the first embodiment, the detection direction can be changed at high speed in the horizontal direction and the vertical direction, and the capture angle can be changed to two or more at high speed. Therefore, the principle of distance measurement exactly the same as that of the first embodiment is established, and the same effect as that of the first embodiment can be obtained.
 第1実施形態および第2実施形態に共通していることは、集光手段を含む光検出装置であって、検出可能な光の方向を例えば周期的に変化させ、当該方向の変化に連動して、集光手段の焦点距離を例えば周期的に変化させることにある。単一の方向から到来する光を少なくとも2つの異なる焦点距離の光学系を用いて検出した光量に基づいて、距離を測定できる。特に2つの検出光の光量比と、予め記録された光量比と距離との関係を規定するデータとに基づいて、従来よりも正確に距離情報を得ることができる。 What is common to the first embodiment and the second embodiment is a photodetector including a condensing means, which changes the direction of detectable light, for example, periodically, and is linked to the change in the direction. The purpose is to change the focal length of the condensing means, for example, periodically. Distances can be measured based on the amount of light coming from a single direction detected using at least two different focal length optics. In particular, distance information can be obtained more accurately than before, based on the light amount ratio of the two detection lights and the data that defines the relationship between the light amount ratio and the distance recorded in advance.
 以上のように、前述の実施形態によれば、外部の反射体までの距離をより正確に測定することができる。測定には同一方向に向いた、2つの取り込み角の光の検出光量を比較するだけなので、演算負荷が極めて小さい。さらに、取り込み光の方位を、回転方向またはそれに直交する方向に高速に走査する構成によれば、全方位の距離情報を高速に取得できる。 As described above, according to the above-described embodiment, the distance to the external reflector can be measured more accurately. Since the measurement only compares the detected light amounts of the lights of the two capture angles facing in the same direction, the calculation load is extremely small. Further, according to the configuration in which the direction of the captured light is scanned at high speed in the rotation direction or the direction orthogonal to the rotation direction, the distance information in all directions can be acquired at high speed.
 本開示の技術は、例えば、対象シーン中の物体の3次元的な位置情報を取得する用途に使用され得る。 The technique of the present disclosure can be used, for example, for acquiring three-dimensional position information of an object in a target scene.
  5    波長分光器
  6    円錐台プリズム
  7    光導波素子
  7a   平面基板
  7b   反射電極層
  7c   バッファー層
  7d   導波層
  7e   液晶層
  7f   透明電極層
  7g   平面基板
  7h   中空基板
  8a、8c  グレーティングカプラ
  8b        配向用グレーティング
  9A、9B、9C  電極領域
  12        光検出器
  13        集光レンズ
  32、34     制御回路
  33        検出回路
  50        回転体
  51        光学台
  52        集光レンズ
  53        スリット板
  54        光検出器
  55        制御回路
5 Wavelength spectroscope 6 Conical prism 7 Optical waveguide 7a Flat substrate 7b Reflective electrode layer 7c Buffer layer 7d waveguide layer 7e Liquid crystal layer 7f Transparent electrode layer 7g Flat substrate 7h Hollow substrate 8a, 8c Glazing coupler 8b Orientation grating 9A 9B, 9C Electrode region 12 Optical detector 13 Condensing lens 32, 34 Control circuit 33 Detection circuit 50 Rotating body 51 Optical stand 52 Condensing lens 53 Slit plate 54 Light detector 55 Control circuit

Claims (13)

  1.  光検出器と、
     外部から到来する光のうち、一部の方向から到来する光を前記光検出器に入射させる光学系と、
     前記光検出器および前記光学系を制御する制御回路と、
    を備え、
     前記制御回路は、
      前記光学系を制御することにより、前記光検出器によって検出される光が到来する方向である検出方向を変化させ、かつ、前記検出方向の変化に連動して、前記光学系の焦点距離を変化させ、
      単一の検出方向に位置する物体から到来する光を、前記光学系の焦点距離が異なる2つ以上の状態で、前記光検出器に検出させ、
      前記2つ以上の状態において前記光検出器によってそれぞれ検出された2つ以上の検出光量に基づいて、前記物体までの距離情報を生成する、
     光学装置。
    With a photodetector
    An optical system that causes light coming from a part of the light coming from the outside to enter the photodetector, and
    A control circuit that controls the photodetector and the optical system,
    With
    The control circuit
    By controlling the optical system, the detection direction, which is the direction in which the light detected by the photodetector arrives, is changed, and the focal length of the optical system is changed in conjunction with the change in the detection direction. Let me
    Light coming from an object located in a single detection direction is detected by the photodetector in two or more states where the focal lengths of the optical systems are different.
    Distance information to the object is generated based on the amount of two or more detected lights detected by the photodetector in each of the two or more states.
    Optical device.
  2.  前記制御回路は、前記検出方向を周期的に変化させ、かつ、前記光学系の焦点距離を周期的に変化させる、請求項1に記載の光学装置。 The optical device according to claim 1, wherein the control circuit periodically changes the detection direction and periodically changes the focal length of the optical system.
  3.  前記2つ以上の検出光量は、第1検出光量と、第2検出光量とを含み、
     前記制御回路は、前記第1検出光量と前記第2検出光量との比に基づいて、前記距離情報を生成する、
     請求項1または2に記載の光学装置。
    The two or more detected light amounts include a first detected light amount and a second detected light amount.
    The control circuit generates the distance information based on the ratio of the first detected light amount to the second detected light amount.
    The optical device according to claim 1 or 2.
  4.  前記第1検出光量と前記第2検出光量との比と、距離との対応関係を規定するデータを格納する記録媒体をさらに備え、
     前記制御回路は、前記データと、前記第1検出光量と前記第2検出光量との比に基づいて、前記距離情報を生成する、
     請求項3に記載の光学装置。
    A recording medium for storing data that defines the correspondence between the ratio of the first detected light amount and the second detected light amount and the distance is further provided.
    The control circuit generates the distance information based on the data and the ratio of the first detected light amount to the second detected light amount.
    The optical device according to claim 3.
  5.  前記光学系は、
      中心軸の周りに回転する回転体と、
      前記回転体に支持され、光軸に沿って移動可能に構成されたレンズと、
      前記回転体に支持され、前記レンズと前記光検出器との間に位置するスリット板であって、前記レンズによって集束された光の少なくとも一部を前記光検出器に入射させるスリットを含むスリット板と、
     を備え、
     前記制御回路は、前記回転体を回転させることにより、前記検出方向を変化させ、前記レンズを前記光軸に沿って移動させることにより、前記焦点距離を変化させる、
     請求項1から4のいずれかに記載の光学装置。
    The optical system is
    A rotating body that rotates around the central axis,
    A lens supported by the rotating body and configured to be movable along the optical axis,
    A slit plate that is supported by the rotating body and is located between the lens and the photodetector, and includes a slit that allows at least a part of the light focused by the lens to enter the photodetector. When,
    With
    The control circuit changes the detection direction by rotating the rotating body, and changes the focal length by moving the lens along the optical axis.
    The optical device according to any one of claims 1 to 4.
  6.  前記制御回路は、前記回転体を等速で回転させる、請求項5に記載の光学装置。 The optical device according to claim 5, wherein the control circuit rotates the rotating body at a constant speed.
  7.  前記制御回路は、前記回転体の回転角が同一で且つ前記レンズの前記光軸に沿った方向の位置が異なる2つ以上の状態で、前記光検出器に前記光を検出させる、請求項5または6に記載の光学装置。 5. The control circuit causes the photodetector to detect the light in two or more states where the rotation angle of the rotating body is the same and the positions of the lenses in the direction along the optical axis are different. Or the optical device according to 6.
  8.  前記光学系は、
      軸に直交する方向に沿って光を伝搬させる光導波素子と、
      前記光導波素子の表面に面する底面、前記軸を中心軸として回転対称である側面、および前記底面の反対側の上面を有する透明部材と、
     を備え、
     前記光導波素子は、
      前記軸を中心とする仮想的な円の動径方向に沿って拡がる第1グレーティングと、
      前記第1グレーティングの外側において前記動径方向に沿って拡がり、前記第1グレーティングとは異なる格子定数を有する第2グレーティングと、
     を表面に含む導波層を備え、
     前記物体から到来する光の一部は、前記透明部材を介して前記第2グレーティングに入射し、前記導波層内を伝搬して前記第1グレーティングから出射し、前記透明部材の前記底面および前記上面を通過して前記光検出器に入射し、
     前記制御回路は、前記導波層の実効屈折率を調整することにより、前記検出方向および前記焦点距離を変化させる、
     請求項1から4のいずれかに記載の光学装置。
    The optical system is
    An optical waveguide element that propagates light along a direction orthogonal to the axis,
    A transparent member having a bottom surface facing the surface of the optical waveguide element, a side surface symmetrical about the axis as a central axis, and an upper surface opposite to the bottom surface.
    With
    The optical waveguide element is
    A first grating that extends along the radial direction of a virtual circle centered on the axis, and
    A second grating that spreads along the radial direction outside the first grating and has a lattice constant different from that of the first grating.
    With a waveguide layer containing on the surface,
    A part of the light coming from the object enters the second grating through the transparent member, propagates in the waveguide layer and exits from the first grating, and the bottom surface of the transparent member and the said. Passing through the upper surface and incident on the photodetector,
    The control circuit changes the detection direction and the focal length by adjusting the effective refractive index of the waveguide layer.
    The optical device according to any one of claims 1 to 4.
  9.  前記光導波素子は、
      透明電極層と、
      前記導波層よりも低い屈折率を有する液晶層と、
      前記導波層と、
      前記導波層よりも低い屈折率を有する誘電体層と、
      反射電極層と、
     をこの順に備え、
     前記制御回路は、前記透明電極層と前記反射電極層との間に印加する電圧を調整することにより、前記実効屈折率を調整する、請求項8に記載の光学装置。
    The optical waveguide element is
    Transparent electrode layer and
    A liquid crystal layer having a refractive index lower than that of the waveguide layer,
    With the waveguide layer
    A dielectric layer having a refractive index lower than that of the waveguide layer,
    Reflective electrode layer and
    In this order,
    The optical device according to claim 8, wherein the control circuit adjusts the effective refractive index by adjusting a voltage applied between the transparent electrode layer and the reflective electrode layer.
  10.  前記導波層は、前記第1グレーティングと前記第2グレーティングとの間に、前記液晶層における液晶分子の配向を制御するための第3グレーティングを前記表面に含み、
     前記透明電極層および前記反射電極層の少なくとも一方は、前記第1グレーティング、前記第2グレーティング、および前記第3グレーティングにそれぞれ対面する第1電極、第2電極、および第3電極を含む、
     請求項9に記載の光学装置。
    The waveguide includes a third grating on the surface between the first grating and the second grating for controlling the orientation of liquid crystal molecules in the liquid crystal layer.
    At least one of the transparent electrode layer and the reflective electrode layer includes a first electrode, a second electrode, and a third electrode facing the first grating, the second grating, and the third grating, respectively.
    The optical device according to claim 9.
  11.  前記第3電極は、前記仮想的な円の周方向に沿って並ぶ複数の分割領域を含み、前記複数の分割領域は、互いに絶縁されている、請求項10に記載の光学装置。 The optical device according to claim 10, wherein the third electrode includes a plurality of divided regions arranged along the circumferential direction of the virtual circle, and the plurality of divided regions are insulated from each other.
  12.  前記制御回路は、前記透明電極層と前記反射電極層との間に印加する電圧を、前記第3電極の前記分割領域ごとに個別に制御する、請求項11に記載の光学装置。 The optical device according to claim 11, wherein the control circuit individually controls a voltage applied between the transparent electrode layer and the reflective electrode layer for each of the divided regions of the third electrode.
  13.  前記制御回路は、前記第3電極の前記複数の分割領域に印加される電圧の振幅の分布が、時間の経過とともに前記軸の周りに回転する態様で各分割領域に前記電圧を印加し、前記電圧の振幅の分布の回転が一周するごとに前記分布を変化させることにより、単一の検出方向に位置する物体から到来する光を、前記光学系の焦点距離が異なる2つ以上の状態で、前記光検出器に検出させる、請求項12に記載の光学装置。 The control circuit applies the voltage to each of the divided regions in such a manner that the distribution of the amplitude of the voltage applied to the plurality of divided regions of the third electrode rotates around the axis with the passage of time. By changing the distribution each time the rotation of the voltage amplitude distribution goes around, light coming from an object located in a single detection direction can be emitted from two or more states with different focal distances of the optical system. The optical device according to claim 12, which is detected by the photodetector.
PCT/JP2020/014466 2019-06-25 2020-03-30 Optical device WO2020261685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117685A JP2022116381A (en) 2019-06-25 2019-06-25 optical device
JP2019-117685 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020261685A1 true WO2020261685A1 (en) 2020-12-30

Family

ID=74061353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014466 WO2020261685A1 (en) 2019-06-25 2020-03-30 Optical device

Country Status (2)

Country Link
JP (1) JP2022116381A (en)
WO (1) WO2020261685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168427A (en) * 1990-10-31 1992-06-16 Matsushita Electric Ind Co Ltd Light polarizing element
JPH05240640A (en) * 1992-02-26 1993-09-17 Omron Corp Optical distance measuring device
US20020076129A1 (en) * 2000-11-17 2002-06-20 Wolfgang Holzapfel Position measuring system
JP2007333458A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Peripheral obstacle detector
WO2015001770A1 (en) * 2013-07-01 2015-01-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor device having plurality of light sources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168427A (en) * 1990-10-31 1992-06-16 Matsushita Electric Ind Co Ltd Light polarizing element
JPH05240640A (en) * 1992-02-26 1993-09-17 Omron Corp Optical distance measuring device
US20020076129A1 (en) * 2000-11-17 2002-06-20 Wolfgang Holzapfel Position measuring system
JP2007333458A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Peripheral obstacle detector
WO2015001770A1 (en) * 2013-07-01 2015-01-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor device having plurality of light sources

Also Published As

Publication number Publication date
JP2022116381A (en) 2022-08-10

Similar Documents

Publication Publication Date Title
JP7145436B2 (en) optical device
US5502567A (en) Micropolarimeter, microsensor system and method of characterizing thin films
US7433052B2 (en) Systems and methods for tilt and range measurement
US20070279635A1 (en) Measuring apparatus and method using surface plasmon resonance
JP5599790B2 (en) Method and apparatus for reducing optical interference and crosstalk of double optical tweezers using one laser light source
US20120309116A1 (en) Substrate Analysis Using Surface Acoustic Wave Metrology
JPH03209136A (en) Light beam in collimating condition, device for detecting angle and method for detecting focal position
JP5900970B2 (en) Surface plasmon sensor and method of measuring refractive index
WO2020261685A1 (en) Optical device
TWI485438B (en) Optical system and reflection type diffraction grating thereof
JP4609257B2 (en) Interface position measuring method and position measuring apparatus
US20230266233A1 (en) System for measuring thickness and physical properties of thin film using spatial light modulator
WO2020179342A1 (en) Optical device
JP2014119262A (en) Optical device, detection device and electronic device
CN110178005A (en) Optical splitter, analytical equipment and Wavelength variable light source
WO2019131029A1 (en) Optical device
EP3514482A1 (en) Exit pupil expander used to distribute light over a liquid-crystal variable retarder
JP2654366B2 (en) Micro polarimeter and micro polarimeter system
JP5028660B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
KR102417939B1 (en) Apparatus for measuring Light Detection and Ranging
JP2010091716A (en) Photo elasticity modulator and photo elasticity measuring device including the same
JP2005249576A (en) Interference measuring method and interferometer
JP2009109374A (en) X-ray wavefront sensor
JP2005107098A (en) Confocal inspection device
JP2019045294A (en) Surface plasmon excitation enhanced fluorescence detection device and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP