WO2019131029A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2019131029A1
WO2019131029A1 PCT/JP2018/044815 JP2018044815W WO2019131029A1 WO 2019131029 A1 WO2019131029 A1 WO 2019131029A1 JP 2018044815 W JP2018044815 W JP 2018044815W WO 2019131029 A1 WO2019131029 A1 WO 2019131029A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
grating
polarization
electrode
layer
Prior art date
Application number
PCT/JP2018/044815
Other languages
French (fr)
Japanese (ja)
Inventor
青児 西脇
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018205800A external-priority patent/JP7145436B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880068704.9A priority Critical patent/CN111247481B/en
Publication of WO2019131029A1 publication Critical patent/WO2019131029A1/en
Priority to US16/900,866 priority patent/US11525898B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]

Definitions

  • the present disclosure relates to an optical device.
  • Patent Document 1 discloses an optical phased array using such a technique.
  • the present disclosure provides a technique for scanning horizontally and / or vertically over an object scattered in a field of view by laser light and selectively receiving or detecting reflected light from the object.
  • An optical apparatus includes: a light source for emitting a laser beam; an optical waveguide element located on an optical path of the laser beam; a bottom surface located on the optical path and facing the optical waveguide element; A first transparent member having a side surface that is rotationally symmetric about a virtual axis along the optical path as a central axis, and a control circuit.
  • the optical waveguide element includes a plurality of portions disposed along the radial direction of a virtual circle centered on the point on which the laser beam is incident and having different refractive indices, and a part of the incident laser beam
  • a first grating propagating along the radial direction in the optical waveguide element as propagating light, and an outer side of the first grating are disposed along the radial direction, and the refractive indexes are mutually different.
  • a second grating for causing a part of the propagated light to be emitted from the optical waveguide element as an emitted light.
  • the emitted light is incident on the first transparent member from the bottom surface or the side surface, and is emitted from the side surface.
  • the above general aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium.
  • the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • an object scattered in a field of view is scanned horizontally and / or vertically by laser light without using a mechanical structure to selectively receive or reflect light reflected from the object. It can be detected.
  • FIG. 1A is a perspective view schematically showing the configuration of an optical device and the path of a light beam.
  • FIG. 1B is a cross-sectional view schematically showing the configuration of an optical device and the path of a light beam.
  • FIG. 1C is a perspective view schematically showing the configuration of a light source in the optical device.
  • FIG. 1D is a perspective view schematically showing another form of a cylindrical body in the optical device.
  • FIG. 2A is a diagram showing a vector diagram.
  • FIG. 2B is a diagram showing a vector diagram.
  • FIG. 3A is a perspective view schematically showing the polarization direction of incident light and the state of input in the first embodiment.
  • FIG. 3B is a cross-sectional view schematically showing an input grating coupler.
  • FIG. 1A is a perspective view schematically showing the configuration of an optical device and the path of a light beam.
  • FIG. 1B is a cross-sectional view schematically showing the configuration of an optical device and the
  • FIG. 3C is a cross-sectional view showing the appearance of light that is coupled in and guided by light intensity.
  • FIG. 3D is a plan view schematically showing an input grating coupler.
  • FIG. 3E is a plan view showing the relationship between the polarization direction and the input propagation direction by light intensity.
  • FIG. 3F is a plan view showing the relationship between the polarization direction and the input propagation direction by light intensity.
  • FIG. 3G is a plan view showing the relationship between the polarization direction and the input propagation direction by light intensity.
  • FIG. 4A is a graph showing the wavelength dependency of the input coupling efficiency of the input grating coupler when there is no reflective layer.
  • FIG. 4B is a cross-sectional view schematically showing the input grating coupler when there is a reflective layer.
  • FIG. 4C is a graph showing the layer thickness dependency of the input coupling efficiency with the reflective layer.
  • FIG. 4D is a graph showing the wavelength dependency of input coupling efficiency when there is a reflective layer.
  • FIG. 5A is a plan view showing the relationship between the polarization direction of incident light and the input propagation direction by light intensity.
  • FIG. 5B is a diagram showing the relationship between the deflection angle ⁇ and the intensity I of the guided light propagating and the relationship between the deflection angle ⁇ of the light energy E included in the deflection angle range from ⁇ to ⁇ .
  • FIG. 6 is a perspective view schematically showing a configuration example of a polarization rotator.
  • FIG. 7A is a view schematically showing propagation paths of radiation light in the output grating coupler when there is no aberration correction.
  • FIG. 7B is a view schematically showing propagation paths of radiation light in the output grating coupler when there is aberration correction control.
  • FIG. 8A is a view schematically showing that radiation light from the output grating coupler is refracted and emitted at a cylindrical surface.
  • FIG. 8B is a view schematically showing a pattern of a transparent electrode layer for realizing aberration correction.
  • FIG. 9A is a diagram showing the relationship between the deflection angle in the propagation direction and the effective refractive index change amount of guided light for achieving aberration correction.
  • FIG. 9A is a diagram showing the relationship between the deflection angle in the propagation direction and the effective refractive index change amount of guided light for achieving aberration correction.
  • FIG. 9B is a diagram showing the relationship between the thickness of the waveguide layer and the effective refractive index, with the liquid crystal refractive index as a parameter.
  • FIG. 9C is a view schematically showing the arrangement of the buffer layer, the waveguide layer, and the liquid crystal.
  • FIG. 10A is a view for explaining the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light.
  • FIG. 10B is a diagram for explaining a phase plane generated due to the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light.
  • FIG. 10C is a view for explaining the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light.
  • FIG. 10D is a view for explaining a phase plane generated due to the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light.
  • FIG. 10E is a view schematically showing how the aberration at the time of focusing on the point F ′ is corrected.
  • FIG. 11A is a diagram showing the relationship between the depth of the output grating coupler and the radiation loss coefficient.
  • FIG. 11B is a diagram showing the relationship between the depth of the output grating coupler and the radiation loss coefficient.
  • FIG. 11C is a diagram showing the relationship between the duty and the radiation loss coefficient.
  • FIG. 11D is a view showing the relationship between the duty and the radiation loss coefficient.
  • FIG. 11A is a diagram showing the relationship between the depth of the output grating coupler and the radiation loss coefficient.
  • FIG. 11B is a diagram showing the relationship between the depth of the output grating coupler and the radiation loss coefficient.
  • FIG. 11C is a diagram showing the relationship between the duty and the radiation loss coefficient
  • FIG. 11E is a view showing the relation between the coupling length and the waveguide strength, and the relation between the coupling length and the radiation strength.
  • FIG. 11F is a view showing the relation between the coupling length and the waveguide strength, and the relation between the coupling length and the radiation strength.
  • FIG. 12A is a diagram showing the positional relationship between radiation light from the output grating coupler and a cylindrical body.
  • FIG. 12B is a diagram showing the positional relationship between radiation light from the output grating coupler and a cylindrical body.
  • FIG. 13A is a horizontal sectional view showing the relationship between the radiation from the output grating coupler and the beam width of refracted light from the cylindrical surface.
  • FIG. 13B is a vertical sectional view showing the relationship between the radiation from the output grating coupler and the beam width of the refracted light from the cylindrical surface.
  • FIG. 14A is a view showing the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light.
  • FIG. 14B is a view showing the relationship of time course of the polarization rotation angle of input light, the voltage applied to the transparent electrode, and the rotation angle in the horizontal direction and the vertical direction.
  • FIG. 14C is a view showing horizontal and vertical scanning by laser light.
  • FIG. 15A is a view showing the relationship of time course of the polarization rotation angle of the input light, the light source wavelength, the voltage applied to the transparent electrode, and the rotation angle in the horizontal direction and the vertical direction.
  • FIG. 15B is a view showing horizontal and vertical scanning of laser light.
  • FIG. 16A is a view showing the relationship of the control signal of the polarization rotator, the polarization angle of light, the output light quantity of the light source, and the time course of the light quantity detected by the light detector.
  • FIG. 16B is a view showing the relationship of the time lapse of the control signal of the polarization rotator, the output light quantity of the light source, and the light quantity detected by the light detector.
  • FIG. 16C is a view showing the relationship of the control signals of the polarization rotator, the output light quantity of the light source, and the time course of the light quantity detected by the light detector.
  • FIG. 17A is a view schematically showing a pattern of a transparent electrode layer.
  • FIG. 17B is a view schematically showing a pattern of the transparent electrode layer.
  • FIG. 18 is a perspective view schematically showing the structure of an optical device and the path of light in the third embodiment.
  • FIG. 19A is a view showing the relationship of time course of the rotation angle of the voltage distribution pattern of the electrode 9B, the output light quantity of the light source, the light quantity detected by the light detector, and their normalized difference signal in the third embodiment.
  • FIG. 19B is a diagram showing the relationship between the divided regions of the electrode 9B and the azimuth of the horizontal scanning beam in the third embodiment.
  • FIG. 19C is a view for explaining the relationship between horizontal and vertical scanning by laser light corresponding to the divided regions of the electrode 9B in the third embodiment and the position between scanning light beams.
  • FIG. 19A is a view showing the relationship of time course of the rotation angle of the voltage distribution pattern of the electrode 9B, the output light quantity of the light source, the light quantity detected by the light detector, and their normalized difference signal in the third embodiment.
  • FIG. 20A is a diagram showing the relationship between the detection difference signal for the divided region B1 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment.
  • FIG. 20B is a diagram for explaining the relationship between the detection difference signal for the divided region B3 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment.
  • FIG. 20C is a diagram for explaining the relationship between the detection difference signal for the divided region B5 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment.
  • FIG. 20D is a diagram for explaining the relationship between the detection difference signal for the divided region B2 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment.
  • FIG. 20A is a diagram showing the relationship between the detection difference signal for the divided region B1 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment.
  • FIG. 20B is a diagram for explaining the relationship between the detection difference signal for the divided region B3 of the electrode 9B and the horizontal direction scanning azimuth
  • FIG. 20E is a diagram for explaining the relationship between the detection difference signal for the divided region B4 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment.
  • FIG. 21A is a perspective view schematically showing the configuration of an optical device and the path of light in the fourth embodiment.
  • FIG. 21B is a cross-sectional view schematically showing the configuration of an optical device and the path of light in the fourth embodiment.
  • FIG. 22 is a diagram schematically showing propagation paths of radiation light in the output grating coupler in the fourth embodiment when there is aberration correction control.
  • FIG. 23A is a view showing the relationship of time lapse of the sum of the ratio of detected light amount, detected light amount of the light detector, detected light amount of light source, and light amount in the fourth embodiment; .
  • FIG. 21A is a perspective view schematically showing the configuration of an optical device and the path of light in the fourth embodiment.
  • FIG. 21B is a cross-sectional view schematically showing the configuration of an optical device and the path of light
  • FIG. 23B is a diagram showing the relationship between the split region of the electrode 9B and the direction of the horizontal scanning beam in the fourth embodiment.
  • FIG. 23C is a diagram showing a relationship between a scanning angle and a signal indicating a detected light amount ratio with respect to the scanning light beam b1, the scanning light beam b2, the scanning light beam b3, the scanning light beam b4 and the scanning light beam b5 in the fourth embodiment.
  • FIG. 24A is a view schematically showing a relationship between an electrode pattern on the transparent electrode layer side and an applied voltage.
  • FIG. 24B is a view schematically showing the relationship between the electrode pattern on the reflective layer side and the applied voltage.
  • FIG. 24C is a view schematically showing the relationship between the configuration obtained by aligning and overlapping the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side, and the applied voltage.
  • FIG. 25A is a view for explaining patterns of electrodes on the transparent electrode layer side in the fourth embodiment.
  • FIG. 25B is a view for explaining patterns of electrodes on the reflective layer side in the fourth embodiment.
  • FIG. 25C is a view schematically showing a configuration in which the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side are aligned and overlapped in the fourth embodiment.
  • FIG. 25D is a view schematically showing a relation between a part of the electrode pattern shown in FIG. 25C and a propagation path of guided light in the fourth embodiment.
  • FIG. 26A is a view schematically showing a laser beam vertically emitted from a phased array in the conventional example.
  • FIG. 26B is a view schematically showing a laser beam emitted obliquely from the phased
  • a light source, a photodetector and a galvano mirror are placed on a rotating stage.
  • the light emitted from the light source is reflected by the galvano mirror.
  • light scanning can be performed in the vertical direction by rotating the galvano mirror up and down, and light scanning can be performed in the horizontal direction by rotating the rotation stage.
  • the scanning speed is slow, and the apparatus is large and expensive.
  • Patent Document 1 For example, a phased array shown in Patent Document 1 can be cited as an approach for making the mechanism free.
  • FIGS. 26A and 26B are diagrams schematically showing laser beams emitted in the vertical direction and in the oblique direction from the phased array in the conventional example, respectively.
  • several wave source 21 is uniformly arranged by the space
  • the excitation light propagates by forming a wavefront 21a parallel to the x axis.
  • the excitation light propagates by forming a wavefront 21 b forming an angle ⁇ with the x axis.
  • the wave sources 21 uniformly along the x-axis and y-axis and adjusting their excitation phase, it is possible to set the propagation direction of the excitation light in two axial directions.
  • the pitch ⁇ of the wave source 21 needs to be equal to or less than a fraction of the wavelength ⁇ in order to form a wavefront.
  • the wavelength is, for example, 10 cm or more.
  • the wavelength is, for example, about 1 ⁇ m.
  • a laser light oscillates through an amplification process in the resonator. Therefore, unlike radio waves, it is not easy to control the phase of the laser.
  • the present disclosure includes the optical devices described in the following items.
  • the optical device includes a light source for emitting a laser beam, an optical waveguide element located on the optical path of the laser beam, a bottom surface located on the optical path and facing the optical waveguide element, and A first transparent member having a side surface that is rotationally symmetrical about a virtual axis along the light path as a central axis, and a control circuit.
  • the optical waveguide element includes a plurality of portions disposed along the radial direction of a virtual circle centered on the point on which the laser beam is incident and having different refractive indices, and a part of the incident laser beam
  • a first grating propagating along the radial direction in the optical waveguide element as propagating light, and an outer side of the first grating are disposed along the radial direction, and the refractive indexes are mutually different.
  • a second grating for causing a part of the propagated light to be emitted from the optical waveguide element as an emitted light.
  • the emitted light is incident on the first transparent member from the bottom surface or the side surface, and is emitted from the side surface.
  • the first grating may have a concentric structure centered on the point.
  • the second grating may have a concentric structure centered at the point.
  • the first transparent member may have a cylindrical shape or a truncated cone shape.
  • the side surface of the first transparent member may include a third grating whose grating vector is parallel to the central axis.
  • the optical device further includes a cylindrical second transparent member surrounding the first transparent member and coaxial with the central axis, and the inner side surface and the outer side surface of the second transparent member May include a fourth grating whose grating vector is parallel to the central axis.
  • a transparent layer in contact with the first transparent member is further included on the first grating and the second grating, and the transparent layer is It may have a refractive index of 8 or more.
  • the control circuit causes the light source to change the wavelength of the laser light to thereby determine the direction of the laser light emitted from the optical waveguide element. It may be changed.
  • the optical waveguide device includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and the second dielectric layer. And a third dielectric layer on the dielectric layer, wherein a refractive index of the second dielectric layer is higher than a refractive index of the first dielectric layer and a refractive index of the third dielectric layer.
  • a first position between the second dielectric layer and the first dielectric layer, and a second position between the second dielectric layer and the third dielectric layer The first grating and the second grating are disposed in at least one selected from the group, and a part of the laser light incident on the second dielectric layer is the light beam as the propagation light.
  • the second grating propagates along the radial direction in the second dielectric layer and serves as the outgoing light. Et al may be emitted.
  • the optical waveguide element may further include a reflective layer, and the first dielectric layer may be disposed between the second dielectric layer and the reflective layer.
  • the optical waveguide element further includes a first electrode layer and a transparent second electrode layer, and the first electrode layer and the second electrode layer And the first dielectric layer, the second dielectric layer, and the third dielectric layer are disposed between the first electrode layer and the second electrode layer.
  • the third dielectric layer may be a liquid crystal layer including liquid crystal.
  • the alignment direction of the liquid crystal is perpendicular to the grating vector of the first grating or the grating vector of the second grating. It may be.
  • the optical waveguide element is disposed between the first grating and the second grating along the radial direction and has a plurality of portions having different refractive indexes.
  • the alignment direction of the liquid crystal may be perpendicular to the grating vector of the fifth grating in a state further including a fifth grating that does not apply a voltage to the liquid crystal layer.
  • At least one electrode layer selected from the group consisting of the first electrode layer and the second electrode layer is a first electrode facing the first grating and A second electrode facing the second grating, and a third electrode between the first electrode and the second electrode, wherein the third electrode is the virtual circle
  • the plurality of conductive divided regions may be arranged along the circumferential direction of the plurality of conductive regions, and the plurality of divided regions may be insulated from each other.
  • control circuit may control the direction of the emitted light by controlling a voltage applied to the liquid crystal layer via the second electrode.
  • control circuit controls the voltage applied to the liquid crystal layer through the first electrode to allow the laser light to be transmitted from the first grating.
  • the efficiency of coupling to the propagating light may be controlled.
  • control circuit is a divided area facing a portion in the second dielectric layer through which the propagation light propagates among the plurality of divided areas. Voltage may be sequentially applied.
  • the optical device further comprises a polarization spectroscope, a photodetector, and a polarization rotator, wherein the polarization spectroscope and the polarization rotator are the light source and the light source.
  • the control circuit changes the polarization direction of the laser beam passing through the polarization rotator by controlling the voltage applied to the polarization rotator , A part of the light emitted from the optical waveguide element, reflected by the object, and incident on the optical waveguide element is detected light after passing through the optical waveguide element, the polarization rotator, and the polarization spectroscope
  • the light may be incident on the light detector, and the light detector may generate an electrical signal according to the amount of the detection light.
  • the control circuit is configured to calculate the time between the maximum value and the minimum value of the amount of the detection light detected by the light detector while the light source emits the laser light.
  • the rotation angle of the polarization direction of the laser beam which has passed through the polarization rotator may be controlled by acquiring the interval and adjusting the voltage applied to the polarization rotator based on the time interval.
  • the optical device further comprises a first polarization spectroscope, a polarization converter, a spectroscope, and a photodetector, and the photodetector is configured to And a second light detector, wherein the first polarization spectroscope, the polarization converter, and the spectroscope are disposed on the light path between the light source and the first transparent member.
  • the other part of the light incident on the first light detector as the first detection light and incident on the spectroscope after passing through the spectroscope is the second detection light as the second detection light.
  • the first light detector receives a first electrical signal corresponding to the amount of the first detection light.
  • the second optical detector may generate a second electrical signal corresponding to the amount of the second detection light.
  • the polarization converter may be a quarter wave plate.
  • the polarization converter may convert light of linear polarization into light of circular tangential direction.
  • the optical device further comprises a second polarization spectroscope, and the photodetector further comprises a third photodetector, which is emitted from the optical waveguide element, After being reflected by the object and passing through the optical waveguide element and the spectroscope, a part of the light incident on the second polarization spectroscope is subjected to a third detection after passing through the second polarization spectroscope The other part of the light incident on the second photodetector as light and incident on the second polarization spectroscope passes through the second polarization spectroscope, and then a fourth detection light As the third light detector, the third light detector may generate an electric signal according to the amount of the fourth detection light.
  • control circuit receives the first electric signal and the second electric signal, adds the sum of the first electric signal and the second electric signal, and An electrical signal may be generated according to the ratio of the first electrical signal to the second electrical signal.
  • control circuit is configured to minimize the maximum value of the amount of light detected by the light detector while the light source emits the laser light.
  • the voltage applied to the first electrode may be controlled so that
  • the light detector includes a filter circuit
  • the control circuit is a first light pulse in which intensity modulation signals of different frequencies are superimposed on the light source.
  • the second light pulse are sequentially emitted, and the light detector emits light from the light waveguide element to the light detector, reflects the object, and enters the light waveguide element as part of the first light pulse, and A portion of the second optical pulse emitted from the optical waveguide element, reflected by the object, and incident on the optical waveguide element is detected, and a signal corresponding to the amount of the portion of the first optical pulse And a signal corresponding to the part of the second light pulse may be separated and output.
  • the boundary between two adjacent ones of the plurality of divided regions has a zigzag shape along the radial direction. Good.
  • a boundary between two adjacent divided regions of the plurality of divided regions is in the radial direction.
  • the boundary and the boundary in the second electrode layer may form a shape in which rhombuses are continuous.
  • the optical device is a light source for emitting laser light, and a photodetector for generating an electric signal according to the amount of incident light, the photodetector including a filter circuit, the light source, and A control circuit for controlling the light detector, the control circuit causing the light source to sequentially emit a first light pulse and a second light pulse on which intensity modulation signals of different frequencies are superimposed;
  • the light detector is made to detect a part of the first light pulse and a part of the second light pulse reflected by the object, and the processing of the filter circuit makes it possible to detect the one of the first light pulses.
  • a signal corresponding to the amount of part and a signal corresponding to the part of the second light pulse are separated and output.
  • the optical waveguide element according to the thirtieth item comprises a first dielectric layer, a second dielectric layer on the first dielectric layer, and a third dielectric on the second dielectric layer. And a pair of electrode layers sandwiching the first to third dielectric layers, wherein the refractive index of the second dielectric layer is equal to the refractive index of the first dielectric layer and the third dielectric layer.
  • the third dielectric layer is a liquid crystal layer, and the electrode layer closer to the first dielectric layer of the pair of electrode layers is a reflective layer
  • the electrode layer closer to the third dielectric layer is a transparent electrode layer, and at least one of the pair of electrode layers includes a plurality of conductive divided regions arranged along a certain direction, The plurality of divided regions are isolated from each other, and among the plurality of divided regions, the boundary between any two adjacent divided regions has a zigzag shape. That.
  • each of the pair of electrode layers includes the plurality of divided regions, and when viewed from a direction perpendicular to any of the first to third dielectric layers, The boundary at one of the pair of electrodes and the boundary at the other may form a continuous rhombus shape.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram represents a semiconductor device, a semiconductor integrated circuit (IC), or a large scale integration (LSI). It may be implemented by one or more electronic circuits, including: The LSI or IC may be integrated on one chip or may be configured by combining a plurality of chips. For example, functional blocks other than storage elements may be integrated on one chip.
  • LSI or “IC” is used here, the term is changed depending on the degree of integration, and may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
  • a Field Programmable Gate Array (FPGA) programmed after the manufacture of the LSI, or a reconfigurable logic device capable of reconfiguring junctions inside the LSI or setting up circuit sections inside the LSI can also be used for the same purpose.
  • FPGA Field Programmable Gate Array
  • the functions or operations of the circuits, units, devices, members or parts can be performed by software processing.
  • the software is recorded on a non-transitory recording medium such as one or more ROMs, optical disks, hard disk drives, etc., and the software is identified by the software when it is executed by a processor.
  • the functions are performed by a processor and peripherals.
  • the system or apparatus may include one or more non-transitory storage media on which software is recorded, a processor, and any hardware devices required, such as an interface.
  • FIG. 1A and FIG. 1B are a perspective view and a cross-sectional view schematically showing the configuration of an optical device and the path of light in the first embodiment, respectively.
  • FIG. 1C is a perspective view schematically showing the configuration of a light source in the optical device.
  • FIG. 1D is a perspective view schematically showing another form of a cylindrical body in the optical device.
  • FIG. 2A is a diagram showing a vector diagram of the relationship between incident light and guided light in the input grating coupler and the relationship between guided light and emitted light in the output grating coupler.
  • FIG. 2B is a diagram showing a vector diagram of the relationship of diffraction on a cylindrical surface.
  • the optical device includes the light source 1, the collimator lens 2a, the reflection mirror 3, the polarization spectroscope 4, the polarization rotator 5, the condenser lens 2b, and the cylindrical body 6 , An optical waveguide element 7, a control circuit 30, a control circuit 31, and a control circuit 32.
  • the control circuit 30, the control circuit 31, and the control circuit 32 may be integrated into one control circuit.
  • the axis L is in the vertical direction, and the direction orthogonal thereto is in the horizontal direction.
  • the polarization rotator 5, the focusing lens 2b, the cylindrical body 6, and the optical waveguide element 7 are disposed with the axis L as a central axis.
  • the light source 1 emits a laser beam 10 a which is linear polarized light of wavelength ⁇ by an oscillation signal from the control circuit 30 that controls laser oscillation.
  • the light source 1 may be a Fabry-Perot laser light source, but may be configured as shown in FIG. 1C, for example.
  • the light source 1 shown in FIG. 1C has a configuration in which a Fabry-Perot laser light source 1a is combined with a fiber Bragg grating 1b.
  • the fiber Bragg grating 1b is constituted by a fiber-shaped core 36 and a cladding 37 surrounding the core.
  • the refractive index of the core 36 is higher than the refractive index of the cladding 37.
  • the core 36 is formed with a grating that produces a periodic refractive index profile along the central axis of the fiber.
  • the light 10A emitted from the laser light source 1a enters the incident end 36a of the AR coated core 36 and becomes guided light propagating in the core. Bragg reflection diffraction light from the grating is fed back to the laser light source 1a side.
  • the feedback light causes the laser light source 1a to oscillate at a wavelength corresponding to the pitch of the grating.
  • light 10a of a stable wavelength is emitted from the emission end 36b of the fiber Bragg grating 1b.
  • the fiber Bragg grating 1 b is sandwiched by the fixing plate 39 via the piezoelectric element 38.
  • the control circuit 35 applies a voltage to deform the piezoelectric element 38 to press the fiber Bragg grating 1 b.
  • the pressure changes the condition of reflection diffraction by the grating. Thereby, the wavelength of the emitted light 10a can be controlled.
  • the displacement response of the piezoelectric element 38 is from several kilohertz to several tens of kilohertz. Therefore, wavelength tuning corresponding to the response is possible.
  • the light 10a becomes parallel light 10b by the collimator lens 2a, is reflected by the reflection mirror 3 to become light 10c incident on the polarization spectroscope 4, and becomes light 10d to be transmitted through the polarization spectroscope 4.
  • the polarization spectroscope 4 is located on the light path from the light source 1 to the polarization rotator 5.
  • the polarization spectroscope 4 is, for example, a polarization beam splitter.
  • a beam shaping prism may be inserted between the collimating lens 2 a and the reflection mirror 3 to convert the distribution of the laser light 10 a spreading in an ellipse into a circle.
  • the light 10d transmitted through the polarization spectroscope 4 enters the polarization rotator 5 along the central axis L in the state of linear polarization in the polarization direction 11d.
  • the polarization rotator 5 is located on the optical path of the light 10 a emitted from the light source 1.
  • a voltage is applied to the polarization rotator 5 by the control signal from the control circuit 31 that controls the polarization.
  • the polarization direction 11e of the light 10e emitted from the polarization rotator 5 rotates relative to the polarization direction 11d.
  • the light 10 e passes through the condenser lens 2 b along the central axis L, and enters the cylindrical body 6 which is an example of the first transparent member having the refractive index n 0 and the radius r 0 .
  • the central axis L is located on the optical path of the light 10 e that has passed through the polarization rotator 5 and can be said to be an axis along the optical path.
  • the optical waveguide element 7 is located on the optical path of the light 10 e that has passed through the polarization rotator 5.
  • the optical waveguide element 7 includes a transparent flat substrate 7 f and a flat substrate 7 a.
  • the transparent flat substrate 7 f is a transparent substrate having a refractive index n 0 ′.
  • the optical waveguide element 7 includes a buffer layer 7c having a low refractive index, a waveguide layer 7d having a high refractive index on the buffer layer 7c, and a liquid crystal layer 7e on the waveguide layer 7d.
  • the refractive index of the waveguide layer 7d is higher than the refractive index of the buffer layer 7c and the refractive index of the liquid crystal layer 7e.
  • the optical waveguide element 7 includes a reflective layer 7b on the side opposite to the side in contact with the waveguide layer 7d of the buffer layer 7c.
  • a reflective layer 7b of Al or the like For example, on the upper surface of the flat substrate 7a, a reflective layer 7b of Al or the like, a transparent buffer layer 7c of SiO 2 or the like, and a transparent waveguide layer 7d of Ta 2 O 5 or the like are formed in this order.
  • the optical waveguide element 7 includes a grating 8a which is an example of a first grating, a grating 8b which is an example of a fifth grating, and a grating 8c which is an example of a second grating.
  • the grating 8a, the grating 8b, and the grating 8c which are concavo-convex gratings having a concentric structure centering on the axis L, are formed on the surface of the waveguide layer 7d.
  • the grating 8a and the grating 8c function as a grating coupler.
  • the grating 8 b is a grating for liquid crystal alignment.
  • the grating 8a, the grating 8b, the grating 8c, and the optical waveguide element 7 may have a fan-like shape, for example, by cutting a part of the shape of a concentric circle.
  • the grating 8 a is formed in a circular area of radius r 1 centered on the axis L. Pitch of the grating 8a is lambda 0, the depth is d 0.
  • Grating 8c is formed from a radius r 2 to the annular area ranging from a radius r 3. The pitch of the grating 8c is ⁇ 1 and depth d 1 .
  • the grating 8 b is formed in an annular zone ranging from the radius r 1 to the radius r 2 . Pitch of the grating 8b is for example 0.8Ramuda 1 or less, the depth d 1. Typical sizes of radius r 1 , radius r 2 and radius r 3 are of the order of millimeters.
  • the unevenness of the grating 8b acts for liquid crystal alignment, does not function as a coupler. Therefore, the unevenness of the grating 8b does not emit the guided light.
  • the grating 8a, the grating 8b, and the grating 8c may be formed on the surface side of the buffer layer 7c if the concavo-convex shape appears on the liquid crystal side surface of the waveguide layer 7d.
  • the grating acts as an alignment means of liquid crystal. That is, the liquid crystal is aligned in the direction of the grating.
  • a transparent electrode layer 7g of ITO or the like is formed on the lower surface side of the transparent flat substrate 7f, that is, on the waveguide layer side.
  • the transparent electrode layer 7g faces the waveguide layer 7d via the liquid crystal layer 7e.
  • the transparent electrode layer 7g is divided into three electrodes 9A, an electrode 9B, and an electrode 9C having the axis L at the same center.
  • the electrode 9A, the electrode 9B, and the electrode 9C face the grating 8a, the grating 8b, and the grating 8c, respectively.
  • the liquid crystal molecules of the liquid crystal layer 7e are aligned along the direction of the unevenness on the surface of the waveguide layer 7d.
  • the alignment direction of the liquid crystal in the liquid crystal layer 7e is parallel to the surface of the waveguide layer 7d and perpendicular to the lattice vectors of the grating 8a, the grating 8b, and the grating 8c.
  • the reflective layer 7 b and the transparent electrode layer 7 g function as electrodes for controlling the alignment of liquid crystal.
  • the electrode 9A, the electrode 9B, and the electrode 9C are independent electrodes.
  • the reflective layer 7b may be divided into three electrodes, or each of the transparent electrode layer 7g and the reflective layer 7b may be divided into three electrodes.
  • the grating 8b may be formed on the lower surface side of the transparent flat substrate 7f.
  • a concentric grating centered on the axis L may be formed at a position facing the grating 8a and the grating 8c on the lower surface side of the transparent flat substrate 7f.
  • the unevenness is transferred also to the surface of the transparent electrode layer 7g.
  • the liquid crystal molecules of the liquid crystal layer 7e can be aligned along the direction of the unevenness.
  • liquid crystal molecules of the liquid crystal layer 7e can be aligned by forming an alignment film such as polyimide on the surfaces of the waveguide layer 7d and the transparent electrode layer 7g and rubbing it in the rotational direction.
  • the light 10 f passing through the lower surface of the cylindrical body 6 is focused along the central axis L to the grating 8 a which is a grating coupler.
  • the light 10 f focused on the grating 8 a excites the guided light 10 g going from the center O of the concentric circle which is the intersection of the waveguide layer 7 d and the axis L in the waveguide layer 7 d.
  • the coupling condition to the guided light 10g is that the grating vector PO represented by the arrow of size ⁇ / ⁇ 0 is equal to the effective refractive index N, as shown in FIG. 2A.
  • the said coupling conditions are described by Formula (1).
  • the light 10fa transmitted through the grating 8a is also reflected by the reflection layer 7b, and is again incident on the grating 8a to enhance the excitation of the guided light 10g.
  • the guided light 10 g propagates along the radial direction of the concentric circles, is emitted at an angle ⁇ 1 from the grating 8 c which is a grating coupler, and becomes the emitted light 10 h toward the cylindrical body 6 side.
  • Binding conditions to the emitted light as shown in FIG. 2A, the perpendicular foot of vector OP 1 'matches the end point P 1 of the grating vector PP 1 represented by the magnitude lambda / lambda 1 of dashed arrows It is.
  • the said coupling conditions are described by Formula (2).
  • the light 10 ha emitted toward the reflective layer 7 b is also reflected by the reflective layer 7 b and overlaps with the emitted light 10 h.
  • a voltage is applied to the liquid crystal layer 7 e via the pair of electrode layers of the reflective layer 7 b and the transparent electrode layer 7 g by the control signal of the control circuit 32 that controls the alignment of the liquid crystal.
  • the refractive index n 1 of the liquid crystal is changed, a change in the effective refractive index N of the guided light 10g. If the effective refractive index of the guided light 10g changes in the region of the grating 8c, the direction of the light emitted from the grating 8c to the outside of the optical waveguide element 7 changes.
  • the control circuit 32 can independently send signals to the electrode 9A, the electrode 9B, and the electrode 9C.
  • the voltage signal applied to the liquid crystal layer is an alternating wave.
  • the orientation direction of the liquid crystal is inclined toward the normal direction side of the surface of the waveguide layer 7d depending on the amplitude of the AC wave, and the inclination angle of the orientation direction is determined.
  • the voltage applied to the liquid crystal layer means the amplitude of the AC wave applied to the liquid crystal layer.
  • the emitted light 10 h passes through the lower surface of the cylindrical body 6 and becomes refracted light 10 j which refracts the cylindrical surface 6 a which is the side surface of the cylindrical body 6 from the horizontal plane at an angle of ⁇ ′.
  • the refractive equation is described by equation (3).
  • a blazed grating with a pitch of 2 may be formed on the surface of the cylindrical surface 6a, which is an example of a third grating.
  • a saw-like groove is formed along a direction perpendicular to the central axis L.
  • the blazed grating refracted light 10j diffracts in a vertical plane, the outgoing light 10i emitted to the outside at an angle theta ⁇ from the horizontal plane. Relationship diffraction, as shown in FIG.
  • the cylindrical body 6 may be surrounded by a cylindrical body 6A which is an example of a second transparent member.
  • the central axis of the cylindrical body 6A is the same as the central axis of the cylindrical body 6.
  • Blazing gratings having a pitch ⁇ 2b and a pitch ⁇ 2c which are an example of a fourth grating, are formed on the inner surface 6b and the outer surface 6c of the cylindrical body 6A.
  • the emitted light 10h is diffracted three times by a blazed grating with a pitch ⁇ 2 , a pitch ⁇ 2b and a pitch ⁇ 2c to become an emitted light 10i.
  • the pitch of each blazed grating can be set large and processing becomes easy.
  • the cylindrical body 6 is located on the transparent flat substrate 7 f.
  • a transparent member which is a rotationally symmetric object with the axis L as a central axis may be used. If the pitch of the grating 8c changes, the generatrix of the rotationally symmetric body has the shape of a curve. When the pitch is constant, the generatrix of the rotationally symmetric body has a linear shape, and the rotationally symmetric body becomes a cylinder or a cone.
  • the scanning in the vertical direction by the outgoing beam 10i is realized by the change of the wavelength of the light source 1 or the change of the refractive index of the liquid crystal layer 7e at the electrode 9C.
  • equation (2) the derivative of the effective refractive index N with respect to the radiation angle ⁇ 1 is described by equation (5), and the derivative of the radiation angle ⁇ 1 with respect to the wavelength ⁇ is described by equation (6).
  • the derivative of the emission angle ⁇ in the vertical direction with respect to the wavelength ⁇ is described by the equation (7) according to the equations (3) to (6).
  • the light emitted from the optical waveguide element 7 and reflected by the external object is returned to the optical waveguide element 7.
  • a part of the light incident on the optical waveguide device 7 propagates in the optical waveguide device 7 toward the central axis L by the grating 8 c, and is emitted from the optical waveguide device 7 by the grating 8 a, and the polarization rotator 5 and the polarization spectroscope
  • the light beam is incident on the light detector 12 through 4.
  • the light detector 12 generates an electrical signal according to the amount of incident light. This process will be described in more detail.
  • the light reflected by the surface of the external object reverses the optical path of the outgoing beam 10i and enters the cylindrical surface 6a, and then the emitted light 10h, the guided light 10g, and the light 10f on the input side, the light 10e, and Reverse the light path of the light 10d.
  • the polarization direction of the reverse light 10D is rotated by 90 degrees as compared with the polarization direction of the light 10d at the time of the forward path.
  • the photodetector 12 includes a detection circuit 33.
  • the detection signal is processed by the detection circuit 33.
  • the optical device may further comprise a control circuit.
  • the control circuit 34 generates, from the detection signal of the detection circuit 33, for example, a control signal for controlling the orientation of the light source or the liquid crystal.
  • the control circuit 30, the control circuit 31, the control circuit 32, the control circuit 34, and the control circuit 35 may be integrated into one control circuit.
  • the polarization spectroscope 4 may use a half mirror instead of the polarization beam splitter. At this time, regardless of the control of the polarization rotator 5, the backward light 10 D of the light 10 d is reflected by the half mirror and detected by the light detector 12. When a half mirror is used, the light quantity is halved in the forward path and is halved in the return path. That is, the light amount is 1 ⁇ 4 in the reciprocating path. Although the polarization control can be simplified, the amount of detected light is reduced.
  • FIG. 3A is a perspective view schematically showing the polarization direction and the input state of incident light in the first embodiment.
  • FIG. 3B is a cross-sectional view schematically showing the input grating 8a.
  • FIG. 3C is a cross-sectional view showing the appearance of light that is coupled in and guided by light intensity.
  • FIG. 3D is a plan view schematically showing an input grating coupler.
  • FIGS. 3E to 3G are plan views showing the relationship between the polarization direction and the input propagation direction by the light intensity.
  • the material of the waveguide layer 7 d is Ta 2 O 5 and the layer thickness is 0.15 ⁇ m.
  • the refractive index of the liquid crystal layer 7 e and the buffer layer 7 c is the same as the refractive index of SiO 2 .
  • guided light in the TE mode is excited by vertical incidence.
  • the grating 8a spreads a portion of the light 10f around the direction perpendicular to the polarization direction 11e in the waveguide layer 7d of the optical waveguide element 7.
  • Propagate For example, when the guided light to be excited is in the TM mode, the propagation direction is rotated by 90 degrees and aligned with the polarization direction at the time of incidence. If the polarization direction of incident light can be controlled, the propagation direction of guided light can be changed. The responsiveness of the change in propagation direction is determined by the responsiveness of control of the polarization direction.
  • the propagation direction of the guided light propagating in the waveguide layer 7 d is guided by applying a voltage to the polarization rotator 5. It can be changed in any direction parallel to the wave layer 7d.
  • FIG. 4A is a diagram showing the wavelength dependency of the input coupling efficiency of the grating 8a which is an input grating coupler in the case where there is no reflective layer in the first embodiment.
  • FIG. 4B is a cross-sectional view schematically showing the grating 8 a in the case where there is a reflective layer in the first embodiment.
  • FIG. 4C is a view showing the layer thickness dependency of the SiO 2 layer which is a buffer layer of the input coupling efficiency when there is a reflective layer.
  • FIG. 4D is a graph showing the wavelength dependency of input coupling efficiency when there is a reflective layer.
  • the analysis conditions in the example shown in FIG. 4A are the same as the analysis conditions in the example shown in FIGS. 3A to 3G. As shown in FIG. 4A, at a wavelength of 0.94 ⁇ m, an input efficiency of up to 20% can be obtained.
  • the shape conditions in the example shown to FIG. 4B are the same as the shape conditions in the example shown to FIG. 3A-FIG. 3G except having provided the reflection layer 7b of Al.
  • the input efficiency periodically increases or decreases due to the change in the layer thickness of the buffer layer 7c. When the thickness of the buffer layer 7c is 1.06 ⁇ m, the input efficiency is maximized. In the example shown in FIG.
  • FIG. 5A is a plan view showing the relationship between the polarization direction of incident light and the input propagation direction in the first embodiment by light intensity. As shown in FIGS. 3E to 3G, when TE-mode guided light is excited at normal incidence, the polarization direction is parallel to the y-axis, and the deflection angle ⁇ with respect to the x-axis is defined.
  • FIG. 5B is a diagram showing the relationship between the deflection angle ⁇ and the intensity I of the guided light propagating and the relationship between the deflection angle ⁇ of the light energy E included in the deflection angle range from ⁇ to ⁇ .
  • the argument range of - ⁇ to ⁇ also includes light propagating in the diagonal direction.
  • the light intensity is described by equation (8) and the light energy is described by equation (9). If the light propagating in the diagonal direction is not included, 41% of the excitation guided light can be used if the light in the range of -45 degrees to 45 degrees can be captured. That is, 21% of incident light can be used together with 50% of input efficiency.
  • the TM mode component is reflected by the grating 8a, and return to the polarization spectroscope 4 through the cylindrical body 6, the condenser lens 2b, and the polarization rotator 5. .
  • the polarization direction of the light is rotated by twice the rotation angle in the forward path. Therefore, the light detector 12 can detect the reflected light corresponding to the rotation angle ⁇ by the polarization rotator 5. Details will be described later with reference to the example shown in FIG. 16A.
  • the maximum value of the detected light quantity at the time of light emission of the light source is proportional to the efficiency of the light which can not be input to the grating 8 a of the incident light. By monitoring the maximum value of the detected light quantity, it can be used to control the input efficiency. Details will be described later with reference to the example shown in FIG. 16A.
  • FIG. 6 is a perspective view schematically showing a configuration example of the polarization rotator in the first embodiment.
  • the polarization rotator 5 will be described using a Faraday rotator capable of higher speed response.
  • the Faraday rotator comprises a cylindrical magnetic glass rod 5a and a coil 5b wound around it.
  • a current is supplied to the coil 5b by a control signal from the control circuit 31 that controls polarization, a magnetic field vector flowing along the central axis in the magnetic glass rod 5a changes in proportion to the amount of current.
  • FIG. 7A is a view schematically showing propagation paths of emitted light in the grating 8c which is an output grating coupler in the case where there is no aberration correction in the first embodiment.
  • FIG. 7B is a view schematically showing propagation paths of radiation light in the grating 8 c in the case where there is aberration correction control in the first embodiment.
  • an upper stage shows a top view
  • a middle stage shows a perspective view
  • a lower stage shows sectional drawing.
  • the light 10 H and the light 10 H 0 intersect on the central axis L.
  • the light 10I and the light 10I 0 intersect at a point F on the central axis L and do not bend even after exiting the surface of the cylindrical body 6 It becomes divergent light going straight along.
  • the light 10 h and the light 10 h 0 intersect on the axis L ′ away from the central axis L along the positive direction of the x axis.
  • the light 10 h and the light 10 h 0 intersect at a point F ′ on the axis L ′ and exit from the surface of the cylindrical body 6 and then bend into parallel light .
  • FIG. 8A is a view schematically showing that light radiated from the grating 8c, which is an output grating coupler, in the first embodiment is refracted at a cylindrical surface and emitted.
  • FIG. 8A The ray paths shown in FIG. 8A are as described in FIGS. 7A and 7B.
  • the intersection of the light 10h and the side surface of the cylinder 6 is Q
  • the intersection of the light 10h 0 and the surface of the cylinder 6 'and the angular QFQ' Q a and [psi, the angular FF'Q 'phi Define as Since light 10 i 0 is parallel to light 10 i, equation (10) holds. However, ⁇ ′ satisfies the relationship of equation (11).
  • Equation (12) the angle ⁇ is given by equation (12).
  • f 0 the distance between the point F and the point F ′ is defined as f 0
  • equation (13) Light 10H, and light 10H 0 is a light converging at point F
  • the light 10h and light 10h, 0 is the light converging at point F '.
  • the aberration that displaces the focal position of the focused light from F to F ′ that is, the longitudinal focal movement aberration, is given by the left side of Equation (14).
  • FIG. 8B is a view schematically showing a pattern of a transparent electrode layer for realizing aberration correction.
  • Electrode 9B is in a facing position to the grating 8b, it is formed in a range from a radius r 1 radius r 2.
  • the electrode 9B is divided in the radial direction.
  • the electrode 9B has a plurality of conductive divided regions aligned along the circumference of a virtual circle centered on the point on which the light 10f is incident.
  • the control circuit 31 rotates the polarization direction 11 e of the light 10 e by a predetermined angle by changing the voltage applied to the polarization rotator 5.
  • the control circuit 31 sequentially changes the propagation direction of the guided light 10g in the waveguide layer 7d.
  • control circuit 32 sequentially applies a voltage independently and sequentially to the division regions facing the portion of the waveguide layer 7d in which the guided light 10g propagates among the plurality of division regions in the electrode 9B. Do. Thereby, aberration correction can be realized and the radiation beam can be rotated.
  • the electrodes 9B are equally divided by 5 degrees in the rotation direction, and are divided into 72 electrodes 9B1 to 9B72 which are divided regions.
  • the fan-shaped divided regions are electrically isolated from one another and voltages can be applied independently.
  • the refractive index of the adjacent liquid crystal layer 7e changes.
  • the effective refractive index of the guided light 10g propagating through the corresponding position also changes. In this manner, the phase of the guided light can be changed for each declination of propagation.
  • FIG. 9A is a diagram showing the relationship between the deflection angle ⁇ in the propagation direction and the effective refractive index change amount of guided light for achieving aberration correction in the first embodiment.
  • FIG. 9B is a diagram showing the relationship between the layer thickness of the Ta 2 O 5 layer which is a waveguide layer and the effective refractive index, with the liquid crystal refractive index n 1 as a parameter.
  • FIG. 9C is a view schematically showing the arrangement of the buffer layer 7c, the waveguide layer 7d, and the liquid crystal 7e.
  • the refractive index difference of nematic liquid crystal molecules is as large as about 0.20. Considering that 80% of them act as an effective refractive index difference, the effective refractive index difference is about 0.15.
  • the relationship between thickness and effective refractive index N is represented by curve 13a and curve 13b, respectively. In the example shown in FIG.
  • 10A to 10D are diagrams for explaining the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light in the first embodiment.
  • the guided light propagating from the center O toward the outer peripheral side corresponds to the positions of the fan-shaped electrodes 9B1, 9B2 and 9B72 centered on the point O, respectively. , Guided light 10g2, and guided light 10g72.
  • the strip fan-shaped electrode is replaced by a square for easy understanding, and the positional relationship between the light ray propagation path and the electrode is shown.
  • a difference in elevation occurs in the refractive index of the propagation path.
  • the refractive index at the position corresponding to the electrode 9B1 is the highest and the refractive index decreases as the distance from the electrode 9B1 increases, the equiphase surface 14a of light after passing through the electrode has a stepped shape.
  • the band fan shape is deformed into a lightning bolt shape. That is, the area of the electrode 9B is divided by a circle c1a, a circle c1b, a circle c2a, a circle c2b, and a circle c3a.
  • the circles c1b and c2b are circles slightly larger than the circles c1a and c2a, respectively.
  • intersections of the guided light 10g1 with the circle c1a, the circle c1b, the circle c2a, the circle c2b, and the circle c3a are taken as an intersection point P1A, an intersection point P1b, an intersection point P2A, an intersection point P2b, and an intersection point P3A.
  • intersections of the guided light 10g2, the circle c1b, and the circle c2b are taken as an intersection P1B and an intersection P2B, respectively.
  • the lightning shape of the electrode 9B1 connects a point O, a point P1a, a point P1b, a point P2a, a point P2b, and a point P3a, and a point O, a point P1A, a point P1B, a point P2B, a point P2A, a point P2B, and a point P3A It is a shape sandwiched between lines. However, the area of the electrode 9A is not included. The point between the point P3a and the point P3A is along the circle c3a.
  • the other electrode has a shape in which the electrode 9B1 is rotated around the point O according to the dividing angle. In the case of 72 division, the division angle is 5 degrees.
  • the electrodes between the circle c1a and the circle c2b are replaced with diamonds for easy understanding, and the positional relationship between the light ray propagation path and the electrodes is shown. Since the electrodes are replaced by lozenges, the propagation directions of the illustrated guided light 10g1, the guided light 10g2 and the guided light 10g72 are respectively rotated in reverse by the deflection angle ⁇ and are expressed in parallel. A light beam propagating along the propagation direction between the guided light 10g1 and the guided light 10g2 and between the guided light 10g1 and the guided light 10g72 propagates across two adjacent electrodes. The ratio of the propagation distance for each electrode changes in proportion to the deflection angle ⁇ of the light beam.
  • FIG. 10E is a view schematically showing how the aberration at the time of focusing on the point F ′ is corrected.
  • the vertical axis represents the amount of aberration, and the horizontal axis represents the deflection angle ⁇ .
  • Aberrations in focusing at point F 'before correction are shown by curve 15. If the voltage applied to the electrodes is optimized, in the case of the electrode shape in the example shown in FIG. 10A, the aberration in focusing on the point F 'is corrected as represented by the curve 15a. In the case of the electrode shape in the example shown in FIG. 10C, the aberration in focusing on the point F 'is corrected as represented by the curve 15b.
  • the curve 15 b corresponds to the difference of the bending line 15 B with respect to the curve 15.
  • the aberration is compressed to about 1/10 even in the curve 15a, and most of the aberration is corrected in the curve 15b. Therefore, by controlling voltage application to the electrode shape in the example shown in FIG. 10C, the radiation light from the grating 8c can be emitted as parallel light from the cylindrical surface.
  • the voltage application to the electrode shape is synchronized with the propagation direction of the guided light, that is, the polarization rotation angle of the incident light. At that time, voltage application is performed to increase the refractive index of the liquid crystal so that the phase in the propagation direction where the light intensity is strongest is delayed.
  • the electrode 9B has the following configuration, and the control circuit 31 and the control circuit 32 perform the following operation.
  • the electrode 9B has a plurality of divided regions arranged along the circumference of a virtual circle centered on the point on which the light 10f is incident.
  • the control circuit 31 rotates the polarization direction 11 e of the light 10 e by a predetermined angle by changing the voltage applied to the polarization rotator 5.
  • the control circuit 31 sequentially changes the propagation direction of the guided light 10g in the waveguide layer 7d.
  • the control circuit 32 sequentially applies a voltage independently and sequentially to the division regions facing the portion of the waveguide layer 7d in which the guided light 10g propagates among the plurality of division regions in the electrode 9B. Do. Thereby, aberration correction can be realized and the radiation beam can be rotated.
  • 11A and 11B are diagrams showing the relationship between the depth d of the grating 8c and the radiation loss coefficient ⁇ when the grating duty ⁇ is fixed at 0.5 in the first embodiment.
  • the liquid crystal refractive index n 1 1.6
  • the liquid crystal refractive index n 1 1.45
  • 11C and 11D are diagrams showing the relationship between the duty ⁇ and the radiation loss coefficient ⁇ when the depth d is fixed to 0.01 ⁇ m in the first embodiment.
  • the liquid crystal refractive index n 1 1.6
  • the liquid crystal refractive index n 1 1.45.
  • the other analysis conditions in the example shown in FIGS. 11A to 11D are the same as in the case shown in FIG. 4D in which the layer thickness of the buffer layer 7c is 1.06 ⁇ m.
  • the size is about (1 / mm).
  • the radiation loss coefficient ⁇ can be reduced by shifting the duty ⁇ from 0.5.
  • the radiation loss coefficient ⁇ increases as the liquid crystal refractive index increases, and increases as the wavelength decreases.
  • the radiation loss coefficient ⁇ behaves irregularly only when the wavelength ⁇ is 0.93 ⁇ m.
  • FIG. 11E and FIG. 11F is a diagram showing the relationship between the relationship and the coupling length w 1 and the radiation intensity of the coupling length w 1 and the waveguide strength.
  • the coupling length w 1 is the distance from the start point r 2 of the coupler to the radiation position, as shown in FIGS. 12A and 12B described later.
  • the coupling length corresponding to the width of the emitted light is defined by the position where the waveguide intensity is 1 / e 2 .
  • the example shown in FIG. 11E corresponds to the condition that the liquid crystal refractive index is high or the wavelength is short. At this time, the bonding length is 1.5 mm.
  • the example shown in FIG. 11F corresponds to the condition that the liquid crystal refractive index is low or the wavelength is long. At this time, the bonding length is 2.5 mm.
  • FIGS. 12A and 12B are diagrams showing the positional relationship between the light emitted from the grating 8c and the cylinder in the first embodiment.
  • the refractive index n 0 ′ of the transparent flat substrate 7 f is 1.58, which is the same as the refractive index n 0 of the cylindrical body.
  • the refractive index n 0 ′ of the transparent flat substrate 7 f is 2.0.
  • the emitted light 10h, the emitted light 10h1, and the emitted light 10h2 from the grating 8c correspond to the condition in which the wavelengths are increased in this order.
  • the emitted light 10h, corresponding to the emitted light 10h1, and the emitted light 10h2, also coupling length w 1 is larger in this order.
  • the radiation angle theta 1 with the transparent plane substrate 7f is large. Therefore, under the condition that the radiation light 10h is made to enter the small diameter cylindrical body 6, the other radiation light 10h1 and the radiation light 10h2 can not be made to enter.
  • radiation angle (theta) 1 'in the transparent plane substrate 7f can be made small by the large refractive index of the transparent plane substrate 7f. Thereby, all the emitted light 10 h, the emitted light 10 h 1 and the emitted light 10 h 2 can be made to enter into the cylindrical body 6.
  • a large reflection loss occurs at the interface 7fa between the transparent flat substrate 7f and the liquid crystal layer 7e and at the interface 7fb between the transparent flat substrate 7f and the cylindrical body 6.
  • an AR coating process is performed on the upper and lower surfaces of the transparent flat substrate 7 f.
  • FIG. 13A and FIG. 13B are a horizontal sectional view and a vertical sectional view showing the relationship between the radiation light from the grating 8c and the beam width of the refracted light from the cylindrical surface in the first embodiment, respectively.
  • the beam width w 1 ′ in the cylindrical body 6 satisfies the relation of the equation (16) using the radiation angle ⁇ 1 in the cylindrical body 6 and the coupling length w 1 .
  • the beam width w ⁇ of the refracted light on the cylindrical surface satisfies the relationship of the equation (17) using the radiation angle ⁇ 1 and the beam width w 1 ′ in the cylindrical body 6.
  • the beam width w ⁇ is given by equation (18).
  • the spread of the beam is small, the diffusion of light in the forward path can be suppressed. Thereby, the amount of detected light can be increased.
  • FIG. 14A is a diagram showing the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light in the first embodiment.
  • FIG. 14B is a view showing the relationship between the polarization rotation angle of input light and the time course of the voltage applied to the transparent electrode in the case of laser scanning using only control of the refractive index of liquid crystal in the first embodiment.
  • the limit of the response speed of the liquid crystal is 1 ms between on and off, and the speed of beam scanning is 30 ms per frame.
  • the voltage applied to the divided electrodes 9B has a cycle of 90 degrees in the rotational direction.
  • the same voltage is applied to the electrode 9B1, the electrode 9B19, the electrode 9B37, and the electrode 9B55.
  • the same voltage is applied to the electrode 9B2, the electrode 9B20, the electrode 9B38, and the electrode 9B56.
  • the voltage applied to the electrode within an angular range of 90 degrees, which is one period exhibits a voltage distribution pattern having a difference in height under the condition for correcting the aberration.
  • the voltage distribution pattern rotates in synchronization with the rotation angle ⁇ of the polarization by the polarization rotator while maintaining the pattern shape. Polarization rotation can respond much faster than voltage distribution patterns. Therefore, it is also possible to rotate only the polarized light and detect the reflected light from a plurality of directions during a certain voltage distribution pattern.
  • the voltage applied to the electrode 9B1 represented by the solid line repeats high and low as a 2 ms cycle rectangular signal. The frequency of this repetition is close to the response limit of the liquid crystal. For this reason, the change of the refractive index of the liquid crystal represented by the broken line becomes slower than the change of the applied voltage, and becomes a movement of 2 ms cycle.
  • the phase of the applied voltage at the electrode 9B9 shifts by half a period
  • the phase of the applied voltage at the electrode 9B18 shifts by one period, that is, 2 ms. .
  • the phase shift width of the applied voltage is determined by the rule for correcting the aberration.
  • the voltage distribution pattern rotates in synchronization with the polarization rotation angle ⁇ .
  • the movement of the voltage distribution pattern corresponds to the horizontal scanning by the outgoing beam.
  • the voltage applied to the electrode 9C represented by the solid line linearly increases and decreases with a period of 30 ms.
  • the change in the refractive index of the liquid crystal represented by the dashed line also shows the same movement as the applied voltage. However, the change in the refractive index of the liquid crystal is gradual compared to the steep fall of the applied voltage.
  • the change in refractive index of the liquid crystal at the electrode 9C corresponds to the change in angle of the light emitted from the grating 8c.
  • the vertical scanning by the outgoing beam exhibits a linear oscillation with a period of 30 ms.
  • FIG. 14C is a view showing horizontal and vertical scanning by laser light.
  • the scanning in the horizontal direction in the range of 0 degrees to 90 degrees is performed by the control of the polarization and the control of the liquid crystal alignment with respect to the electrode 9B.
  • the control of the liquid crystal alignment with respect to the electrode 9C shifts the scanning position to 10 degrees in the vertical direction in 30 ms. That is, after scanning from 0 degrees to 90 degrees in the horizontal direction while shifting in the vertical direction, the horizontal position returns to 0 degrees while maintaining the vertical position. This exercise is repeated 15 times. In the next scan, the scan position is returned to the original position of 0 degree vertical position and 0 degree horizontal position, and the same motion as described above is repeated.
  • the resolution in the horizontal direction is unlimited, and the resolution in the vertical direction, that is, the number of scanning lines, is 15 per 30 ms of one frame.
  • FIG. 15A shows the polarization rotation angle of the input light, the light source wavelength, the voltage applied to the transparent electrode, and the voltage applied to the transparent electrode in the case of laser scanning in which the control of the liquid crystal refractive index and the variable control of the light source are both controlled in the first embodiment. It is a figure which shows the relationship of the time progress of the rotation angle of the horizontal direction and the perpendicular direction.
  • FIG. 15B is a view showing horizontal and vertical scanning of laser light. The relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light is as described in the example shown in FIG. 14A. Further, the limit of the response speed of liquid crystal is 1 ms between on and off, and the speed of beam scanning is described as 30 ms per frame.
  • the principle of variably controlling the wavelength has been described in the example shown in FIG. 1C.
  • a super periodic structure diffraction type DBR distributed Bragg Reflector
  • the range of 40 nm can be swept at high speed with a period of 20 KHz as the variation width of the wavelength.
  • the voltage applied to the electrode 9B1 represented by the solid line repeats high and low as a 2 ms cycle rectangular signal. The frequency of this repetition is close to the response limit of the liquid crystal. For this reason, the change of the refractive index of the liquid crystal represented by the broken line becomes slower than the change of the applied voltage, and becomes a movement of 2 ms cycle.
  • the phase of the applied voltage is shifted by a half cycle at the electrode 9B9, and the phase of the applied voltage is shifted by one cycle at the electrode 9B18, ie 2 ms. .
  • the phase shift width of the applied voltage is determined by the rule for correcting the aberration.
  • the voltage distribution pattern rotates in synchronization with the rotation angle ⁇ of polarization. The movement of the voltage distribution pattern corresponds to the horizontal scanning by the outgoing beam.
  • the voltage applied to the electrodes 9A and 9C represented by solid lines repeats high and low with a cycle of 30 ms.
  • the change of the refractive index of the liquid crystal represented by the broken line also shows the same movement as the applied voltage. However, the change in the refractive index of the liquid crystal is gradual compared to the steep fall of the applied voltage.
  • the wavelength of the light source 1 gradually increases from 0.93 ⁇ m to 0.95 ⁇ m in 30 ms while repeating high frequency oscillation with a total amplitude of 1.5 nm, and this movement is repeated in a cycle of 30 ms.
  • the input condition at the grating 8a changes. Therefore, in order to cope with changes in input conditions, the applied voltage to the electrode 9A also gradually increases in 30 ms, and this movement is repeated in 30 ms cycles.
  • the wavelength fluctuation of the high frequency of 1.5 nm in total amplitude does not greatly affect the input efficiency. For this reason, the voltage applied to the electrode 9A is set to correspond only to the variation of the low frequency of 20 nm width.
  • the change in refractive index of the liquid crystal at the electrode 9C corresponds to the change in angle of the light emitted from the grating 8c.
  • the vertical scanning by the outgoing beam exhibits a linear oscillation with a period of 30 ms.
  • FIG. 15B it is a figure which shows the mode of the scanning of the horizontal direction and the orthogonal
  • the scanning in the horizontal direction in the range of 0 degrees to 90 degrees is performed by the control of the polarization and the control of the liquid crystal alignment with respect to the electrode 9B.
  • the control of the liquid crystal alignment with respect to the electrode 9C and the control of the low frequency wavelength shift the scanning position up to 30 degrees in the vertical direction in 30 ms.
  • each scanning line vibrates with a full swing width of 2 degrees in the vertical direction. That is, after scanning from 0 degrees to 90 degrees in the horizontal direction while shifting in the vertical direction, the horizontal position returns to 0 degrees while maintaining the vertical position.
  • the voltage applied to the electrode 9A is used for control to maximize the input coupling efficiency.
  • the control circuit 32 controls the efficiency with which the light 10f is coupled to the light 10g propagating through the waveguide layer 7d, that is, the input coupling efficiency, by adjusting the voltage applied to the electrode 9A.
  • the voltage applied to the electrode 9C is used to control the radiation angle.
  • the control circuit 32 controls the direction of the light 10 h emitted from the grating 8 c to the outside by adjusting the voltage applied to the electrode 9 C. As described above, a part of the light 10 a emitted from the light source 1 passes through the polarization rotator 5 while the light source 1 emits the light 10 a and is reflected by the optical waveguide element 7.
  • the maximum value of the amount of light detected by the light detector 12 at the time of light emission of the light source is proportional to the efficiency of light of the incident light which can not be input to the grating 8 a. Therefore, the voltage applied to the electrode 9A is controlled to minimize the maximum value of the detected light amount at the time of light emission of the light source.
  • the control circuit 32 minimizes the maximum value of the light quantity of the light detected by the light detector 12 by controlling the voltage applied to the electrode 9A while the light source 1 emits the light 10a. This operation records the local maxima in time series, compares the change of the local maximum at each control cycle of the voltage applied to the polarization rotator 5 by the control circuit 31, and analyzes the direction of the minimization. It will be.
  • FIG. 16A and FIG. 16B show the relationship of the time lapse of the control signal of the polarization rotator 5, the output light quantity of the light source 1 and the light quantity detected by the light detector 12 in the first embodiment.
  • the frequency signal is superimposed on the rectangular pulse.
  • the signal waveform 16a, the signal waveform 16a1, and the signal waveform 16a2 correspond to the output light quantity of the light pulse emitted from the light source 1 by the control signal of the rectangular pulse.
  • the control signal 17a, the control signal 17a1, and the control signal 17a2 from the control circuit 31 that controls the polarization are also switched in synchronization with the signal waveform 16a that is the pulse signal, the signal waveform 16a1, and the signal waveform 16a2.
  • the polarization rotation angle is controlled as follows. First, the polarization rotation angle ⁇ is set in the time range of the rectangular pulse of the signal waveform 16a, and the polarization rotation angle ⁇ / 2- ⁇ is set in the time range between the rectangular pulse of the signal waveform 16a and the rectangular pulse of the signal waveform 16a1.
  • the polarization rotation angle in the time range between the rectangular pulse of the signal waveform 16a and the rectangular pulse of the signal waveform 16a1, ie, the polarization rotation angle at the time of detection, is generally ⁇ / 2 ⁇ + n ⁇ , where n is an integer. n is determined so as to minimize the absolute value of the polarization rotation angle.
  • a change amount ⁇ corresponding to beam scanning is added, and the polarization rotation angle ⁇ + 2 ⁇ is obtained in the time range of the rectangular pulse of the signal waveform 16a2.
  • T 2 ms, make a 1/4 rotation around axis L.
  • the polarization angle of the forward light between the polarization rotator 5 and the object is ⁇ , ⁇ + ⁇ , and ⁇ + 2 ⁇ for the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2, respectively.
  • the polarization angle of return light between the polarization rotator 5 and the polarization spectroscope 4 is 2 ⁇ , 2 in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2, respectively. ( ⁇ + ⁇ ) and 2 ( ⁇ + 2 ⁇ ), and ⁇ / 2 in the other time range.
  • the time interval 19a between the end of the signal waveform 16a and the signal waveform 18a and the time interval 19a1 between the end of the signal waveform 16a1 and the signal waveform 18a1 are called TOF signal (Time-of-Flight) signal.
  • the TOF signal may be a time interval between the front ends. Based on this time difference, the distance to an object in the outside world can be calculated. For example, when the time delay of reflected light is 250 ns, the distance to the object is 37.5 m.
  • the model shown in FIG. 16A can measure up to 37.5 m.
  • the component reflected by the optical waveguide element 7 passes again through the polarization rotator 5 and the polarization angle Are respectively rotated by 2 ⁇ , 2 ( ⁇ + ⁇ ) and 2 ( ⁇ + 2 ⁇ ) compared to the time of light emission, and detected as a signal waveform 20a, a signal waveform 20a1 and a signal waveform 20a2 by the photodetector 12 through the polarization spectroscope 4 Be done.
  • the signal waveform 20a, the signal waveform 20a1, and the signal waveform 20a2 in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 are extracted
  • the possible signal is the extraction detection signal 20, which is represented by a solid line.
  • the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 corresponds to the light emission time of the light source.
  • the polarization rotation angle in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 is extracted and drawn by a broken line.
  • the polarization rotation angle changes from 0 degrees to 90 degrees for each period T.
  • the extraction detection signal 20 draws a curve of a square of sin with a period T.
  • the signal waveform 20a, the signal waveform 20a1, and the signal waveform 20a2 correspond to the extraction detection signal 20A, the extraction detection signal 20A1, and the extraction detection signal 20A2, respectively, on the extraction detection signal 20.
  • the minimal point 20R on the extraction detection signal 20 corresponds to the start or end point of the period of the polarization rotation control signal.
  • the maximum point 20P corresponds to an intermediate point between the start point and the end point of the control signal of polarization rotation. That is, the distance between the minimum point 20R and the maximum point 20P is equal to 45 degrees. In other words, the rotation angles of the control signal of polarization rotation and the detection signal coincide with each other.
  • the polarization rotator 5 is a Faraday rotator, in the magnetic glass rod 5a constituting it, physical property values such as the Verdet constant given to the Faraday effect are changed by the change of the temperature and / or the wavelength.
  • the polarization is not rotated according to the control signal.
  • the extraction detection signal 20 extends with respect to the time axis, as represented by a dashed dotted line shown in FIG. 16A.
  • minimum point 20R 0 on extraction detection signal 20 is shifted from the start or end of the control signal of the polarization rotation, the distance between the minimum point 20R 0 and maximum point 20P 0 deviates from 45 degrees. In other words, the rotation angles of the control signal of polarization rotation and the detection signal do not match.
  • the control circuit 31 detects the local minimum 20R and the local maximum 20P in each cycle from the extraction detection signal 20.
  • the minimum point 20R corresponds to the start or end point of the period of the polarization rotation control signal.
  • the time interval between the minimum point 20R and the maximum point 20P is controlled such that the polarization rotation angle is 45 degrees.
  • the polarization rotation angle of 45 degrees is 1/2 of 90 degrees, which is the period of the control signal of polarization rotation. This operation is performed every control period (T) of the voltage applied to the polarization rotator 5 by the control circuit 31.
  • the maximum value 20P of the detection signal 20 in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 is proportional to the efficiency of the input light which can not be input. Therefore, the output value of the maximum value 20P is used as a control signal when controlling the voltage applied to the electrode 9A in order to maximize the input coupling efficiency.
  • the control circuit 32 adjusts the voltage applied to the electrode 9A so that the maximum value 20P becomes smaller every cycle (T) of the voltage applied to the polarization rotator 5.
  • the control circuit 32 controls the coupling efficiency with the light 10g in which the light 10f propagates in the waveguide layer 7d, that is, the input efficiency.
  • control circuit 31, the control circuit 32, and the control circuit 34 perform the following operations.
  • the control circuit 31 adjusts the voltage applied to the polarization rotator 5 while the light source 1 emits the light 10 a.
  • the control circuit 34 passes through the polarization rotator 5, is reflected by the optical waveguide element 7, passes again through the polarization rotator 5, and maximizes the amount of light detected by the photodetector 12 through the polarization splitter 4. Get the value and the local minimum.
  • the control circuit 34 controls the rotation angle of the polarization direction 11 e of the light 10 e that has passed through the polarization rotator 5 by comparing the time positions of the maximum value and the minimum value described above.
  • the control circuit 32 adjusts the voltage applied to the electrode 9A by comparing the change in the maximum value described above, and controls the input efficiency of the light 10g propagating through the waveguide layer 7d.
  • the superimposed signal also remains in the detection signal 18A and the detection signal 18A1 obtained in this manner.
  • the detection circuit 33 includes a filter circuit
  • the detection signal 18A and the detection signal 18A1 can be separated from the superposition signal by processing the superposition signal by the filter circuit.
  • the filter circuit functions as a high pass filter (HPF) or a low pass filter (LPF).
  • HPF high pass filter
  • LPF low pass filter
  • the detection signals 18A, and the detection signal 18A1 are respectively converted signal 18H by multiplying the high-pass filter, and the signal 18H 0.
  • Detection signals 18A, and the detection signal 18A1 are respectively converted signal 18L is multiplied to a low pass filter, and the signal 8L 0.
  • the signal 18E is obtained from the difference between the signal 18H minus the signal 18L.
  • a signal 18L 0 from both difference obtained by subtracting from the signal 18H 0, signal 18E 0 is obtained.
  • determining a positive or negative signal 18E and the signal 18E 0 it is possible to identify whether the detection signal 18A corresponds to either of the pulse waveform 16A and pulse waveform 16A1. As a result, it is possible to reliably measure the time interval 19a 0 and the time interval 19a1.
  • the model shown in FIG. 16B allows measurements up to 75 m. If the frequency of the pulse waveform 16A2 can also be differentiated, the measurement distance can be further extended.
  • the processing of the superimposed signal by such a filter circuit can also be applied to a conventional optical device that measures the distance of an object.
  • control circuit 30 and the control circuit 34 perform the following operation.
  • the control circuit 30 causes the light source 1 to sequentially emit the light pulse of the pulse waveform 16A and the light pulse of the pulse waveform 16A1 on which intensity modulation signals of different frequencies are superimposed.
  • the control circuit 34 outputs a part of the light pulse of the pulse waveform 16A and a part of the light pulse of the pulse waveform 16A1 which are emitted from the light waveguide element 7 to the light detector 12 and reflected by the object and enter the light waveguide element 7 Is detected, and a detection signal 18A corresponding to a partial amount of the light pulse of the pulse waveform 16A and a detection signal 18A1 corresponding to a part of the light pulse of the pulse waveform 16A1 are separated and output.
  • the voltage applied to the electrode layer has a cycle of 90 degrees. Therefore, four voltage distribution patterns are obtained in one rotation.
  • This voltage distribution pattern shows rotational motion at the response speed of the liquid crystal.
  • the response speed of light emission by the light source 1 and the rotation speed of polarization by the polarization rotator 5 far exceed the response speed of the liquid crystal. Therefore, the light emission and the rotation of polarization can be controlled independently in each of the plurality of directions corresponding to the voltage distribution pattern. For example, light can be emitted in two directions at a time to scan the beam and detect light reflected from the two directions.
  • the two directions are, for example, the direction in the range of -45 to 45 degrees and the direction in the range of 45 to 135 degrees.
  • FIG. 16C is a diagram showing the relationship of time passage of the control signal of the polarization rotator 5, the output light quantity of the light source 1, and the detection light quantity of the light detector 12 in the case of overlapping scanning.
  • the oscillation signal from the control circuit 30 that controls the oscillation of the light source 1 changes as, for example, a rectangular pulse having a width of 10 ns every 250 ns in a single direction.
  • the signal waveform 16a, the signal waveform 16a1, and the signal waveform 16a2 correspond to the output light quantity of the light pulse emitted from the light source 1 by the control signal of the rectangular pulse.
  • the control signal 17a, the control signal 17a1, and the control signal 17a2 from the control circuit 31 that controls the polarization are also switched in synchronization with the signal waveform 16a, the signal waveform 16a1, and the signal waveform 16a2, which are pulse signals.
  • the polarization rotation angle is controlled as follows.
  • the rectangular pulse of the signal waveform 16a has the polarization rotation angle ⁇ in the time range of the rectangular pulse of the signal waveform 16a, and the polarization rotation angle ⁇ / in the time range between the rectangular pulse of the signal waveform 16a and the rectangular pulse of the signal waveform 16a1. It becomes 2- ⁇ .
  • the rectangular pulse of the signal waveform 16a1 has a polarization rotation angle ⁇ + ⁇ / 2 in the time range of the rectangular pulse of the signal waveform 16a1, and the polarization rotation angle in the time range between the rectangular pulse of the signal waveform 16a1 and the rectangular pulse of the signal waveform 16a2. It becomes-phi + pi.
  • the amount of change ⁇ corresponding to the beam scanning is added, and the polarization rotation angle ⁇ + ⁇ is obtained.
  • the signal waveform 16a and the signal waveform 16a2 correspond to light emission within a field of view ranging from -45 degrees to 45 degrees
  • the signal waveform 16a1 corresponds to light emission within a field of view ranging from 45 degrees to 135 degrees.
  • the light 10i in the time range of the rectangular pulse of the signal waveform 16a, the light 10i is aberration-corrected and emits the cylindrical body 6 within the field of view in the range of -45 degrees to 45 degrees.
  • Light reflected from the outside world is returned outside the time range of the rectangular pulse of the signal waveform 16a.
  • the polarization direction of the reflected light is rotated by 90 degrees through the polarization rotator 5.
  • the reflected light is separated by the polarization spectroscope 4 toward the light detector 12 and detected by the light detector 12 as a signal waveform 18 a.
  • the time interval 19a between the end of the signal waveform 16a and the signal waveform 18a is a TOF signal. This makes it possible to detect the distance to an object within the field of view in the range of -45 degrees to 45 degrees.
  • the light 10i is aberration-corrected and emits the cylindrical body 6 within the field of view in the range of 45 degrees to 135 degrees.
  • Reflected light from the outside world returns outside the time range of the rectangular pulse of the signal waveform 16a1.
  • the polarization direction of the reflected light is rotated by 90 degrees through the polarization rotator 5.
  • the reflected light is separated by the polarization spectroscope 4 toward the light detector 12 and detected by the light detector 12 as a signal waveform 18a1.
  • the time interval 19a1 between the end of the signal waveform 16a1 and the end of the signal waveform 18a1 is a TOF signal. This makes it possible to detect the distance to an object within the field of view in the range of 45 degrees to 135 degrees.
  • the distance to the object is 37.5 m.
  • measurements up to 37.5 m are possible in the range of -45 degrees to 135 degrees, ie an angle range of 180 degrees.
  • the patterning of the electrodes shown in FIGS. 8B, 10A, and 10C may be formed not on the transparent electrode layer 7g side but on the reflective layer 7b side. Furthermore, the guided light 10g excited by the grating 8a may be in the TM mode.
  • a liquid crystal element is used as the polarization rotator 5
  • high-speed response can not be achieved as with a Faraday rotator. For this reason, it is impossible to switch the polarization angle at high speed synchronized with the on / off of the light emission as shown in FIG. 16A.
  • a half mirror is used as the polarization spectroscope 4
  • reflected light from the outside can be detected without switching the polarization angle.
  • the present embodiment it is possible to emit the narrowed laser light having a spread angle of 0.1 degree or less toward the external object.
  • the outgoing beam can be scanned at a moving image speed of 30 frames or more per second within the field of view of 90 degrees in the horizontal direction and 30 degrees in the vertical direction.
  • the detected light can be converted into accurate two-dimensional distance information of the object in the field of view. Three-dimensional positional relationship can be obtained from two-dimensional distance information.
  • FIG. 17A and FIG. 17B are diagrams schematically showing the pattern of the transparent electrode layer in the second embodiment.
  • the voltage applied to the divided electrode layers has a cycle of 120 degrees.
  • the same voltage is applied to the electrode 9B1, the electrode 9B25, and the electrode 9B49, and the same voltage is applied to the electrode 9B2, the electrode 9B26, and the electrode 9B50.
  • the voltage applied to the electrode within the angle range of 120 degrees exhibits a high and low voltage distribution pattern under the condition for correcting the aberration.
  • the voltage distribution pattern rotates in synchronization with the rotation angle ⁇ of the polarization by the polarization rotator while maintaining the pattern shape.
  • the electrodes 9B are equally divided in the radial direction by 4 degrees in the rotational direction, and are divided into 90 pieces of electrodes 9B1 to 9B90.
  • the applied voltage to the divided electrode layers has a period of 72 degrees.
  • the same voltage is applied to the electrode 9B1, the electrode 9B19, the electrode 9B37, the electrode 9B55, and the electrode 9B73.
  • the same voltage is applied to the electrode 9B2, the electrode 9B20, the electrode 9B38, the electrode 9B56, and the electrode 9B74.
  • the voltage applied to the electrode within the 72 ° angle range exhibits a high and low voltage distribution pattern under the condition for correcting the aberration.
  • the voltage distribution pattern rotates in synchronization with the rotation angle ⁇ of the polarization by the polarization rotator while maintaining the pattern shape.
  • light emission and polarization rotation can be controlled independently in each of the five directions corresponding to the voltage distribution pattern. Therefore, light can be emitted in five directions at a time and reflected light from five directions can be detected using the method shown in FIG. 16C.
  • the path of the light beam after the light 10f acts 180 degrees symmetrically including the return path.
  • the aberration correction is also realized with 180 degree symmetry.
  • two kinds of signals from within the field of view in the range of -45 to 45 degrees corresponding to the front and in the field of range of 135 to 225 degrees corresponding to the rear overlap Come back.
  • Light from two diagonally located directions is obtained from the same emission.
  • the two types of signals can be separated, for example, by comparison with images obtained in other imaging systems and by applying image processing.
  • the two voltage distribution patterns located on the opposite side by 180 degrees are different.
  • the phase correction is also asymmetrical, and the detection signals do not overlap. Therefore, the processing of the perspective image can be simplified as compared with the first embodiment.
  • FIG. 18 is a perspective view schematically showing the structure of an optical device and the path of light in the third embodiment.
  • the cross-sectional structure of the optical waveguide device 7 is the same as that shown in FIG. 1B.
  • the polarization rotator 5 in the first embodiment is replaced by the quarter wave plate 4a and the half mirror 4b, the control circuit 31 is omitted, and the polarization spectroscope 4c, the photodetector 12A and the light detection 12B is newly added.
  • the overlapping description will be omitted.
  • FIG. 19A shows the rotation angle of the voltage distribution pattern of the electrode 9B, the output light quantity of the light source 1, the light quantity P0 detected by the light detector 12A, the light detector 12B, and the light detector 12 in the third embodiment; And a detected light amount P45, and a relationship between time progress of a normalized difference signal of the detected light amount P0, the detected light amount P90, and the detected light amount P45.
  • FIG. 19B is a diagram showing the relationship between the divided region of the electrode 9B and the direction of the horizontal scanning beam in the third embodiment.
  • FIG. 19C is a diagram showing a relationship between horizontal and vertical scanning by laser light corresponding to divided areas of the electrode 9B area, and the position between scanning light beams.
  • the optical apparatus includes a light source 1, a collimator lens 2a, a reflection mirror 3, a polarization spectroscope 4, a quarter wavelength plate 4a, a half mirror 4b, a polarization spectroscope 4c, A lens 2b, a cylindrical body 6, an optical waveguide element 7, a control circuit 30, and a control circuit 32 are provided.
  • the polarization spectroscope 4, the quarter wavelength plate 4a, the half mirror 4b, the condenser lens 2b, the cylindrical body 6, and the optical waveguide element 7 are disposed with the axis L as a central axis.
  • the light source 1 emits a laser beam 10a which is linear polarized light of wavelength ⁇ .
  • the light 10a becomes collimated light 10b by the collimator lens 2a, is reflected by the reflection mirror 3 to become light 10c incident on the polarization spectroscope 4, and transmits the polarization spectroscope 4 to become light 10d.
  • the polarization spectroscope 4 is, for example, a polarization beam splitter.
  • a beam shaping prism may be inserted between the collimating lens 2 a and the reflection mirror 3 to convert the distribution of the laser light 10 a spreading in an ellipse into a circle.
  • Light 10d will become 1/4 light 10d 0 circularly polarized light transmitted through the wavelength plate 4a, and enters the half mirror 4b, becomes the light 10e and half is transmitted therethrough.
  • the light 10 e passes through the condenser lens 2 b along the central axis L, and enters the cylindrical body 6 which is a transparent member having a refractive index n 0 and a radius r 0 .
  • the central axis L is located on the optical path of the light 10 e that has passed through the half mirror 4 b and can be said to be an axis along the optical path.
  • Circularly polarized light is incident on the grating 8a. Therefore, the guided light 10g is excited uniformly in all deflection directions.
  • the paths of light after the light 10e are the same as in the first embodiment in both the forward and backward paths. Therefore, the description is omitted.
  • light 10E was reverse to the position of the half mirror 4b in the return path, half is reflected by the half mirror 4b, becomes light 10E 0, reflected by the polarization spectrometer 4c light 10E 1 and then branches into a transmitted light 10E 2, are detected by a photodetector 12A and the photodetector 12B.
  • the polarization spectroscope 4c is, for example, a polarization beam splitter. Reflected light 10E 1 is S-polarized component of the light 10E 0, transmitted light 10E 2 is a P-polarized component of the light 10E 0.
  • components 10D 0 transmitted through the half mirror 4b is transmitted through the 1/4-wave plate 4a, a portion is reflected polarization spectroscope 4, is detected by the photodetector 12.
  • the light detector 12, the light detector 12 A, and the light detector 12 B include a detection circuit 33.
  • the detection signal is processed by the detection circuit 33.
  • the surface normal of the reflecting surface of the half mirror 4b and the surface normal of the reflecting surface of the polarization splitter 4 may not be parallel, and for example, they are inclined at 45 degrees. For example, only the configuration from the light source 1 to the 1 ⁇ 4 wavelength plate 4a may be rotated 45 degrees around the axis L.
  • the photodetector 12A In this case, of the light 10E which is return light, light with a direction of 0 ° orthogonal to the polarization corresponding to the electric field vector is detected by the photodetector 12A, and light with a direction of 90 ° orthogonal to the polarization is a photodetector Light detected by 12 B and in a 45 degree direction orthogonal to the polarization is detected by the light detector 12.
  • pulsed light of the signal waveform 16a and pulsed light of the signal waveform 16a1 are emitted.
  • the pulse oscillation every 250 ns becomes 120,000 pulses in one frame of 30 ms.
  • the electrode 9B is divided into five fan-shaped regions B1, B2, B3, B4, and B5.
  • FIG. 19C schematically shows horizontal and vertical scanning of laser light in each of the area B1, the area B2, the area B3, the area B4, and the area B5.
  • a voltage distribution pattern for aberration correction is formed in a range of ⁇ 36 degrees centered on the direction connecting center O and points b1, b2, b3, b4 and b5 shown in FIG. 19B.
  • Ru As a result of the aberration correction, parallel light beams scan the positions of point b1, point b2, point b3, point b4 and point b5 shown in FIG. 19C.
  • the point b1, the point b2, the point b3, the point b4, and the point b5 move in each area while maintaining an angular difference of 72 degrees. That is, the point b1 shown in FIG.
  • the points b2, b3, b4 and b5 also synchronously scan the areas B2, B3, B4 and B5, respectively.
  • the horizontal scan shown in FIG. 19C can also be viewed as the 360 degree range being scanned continuously.
  • the scanning line at the point b1 is switched to the scanning line at the point b2. That is, the point itself continuously scans the 360 ° section, but the name in the figure changes according to the area.
  • the polarization direction of the light 10E reflected by the object and reversely traveled to the position of the half mirror 4b differs among the area B1, the area B2, the area B3, the area B4, and the area B5.
  • the polarization direction of light is orthogonal to the azimuth Ob1 in the area B1, orthogonal to the azimuth Ob2 in the area B2, and orthogonal to the azimuth Ob3 in the area B3.
  • FIG. 19A the time course of the detected light amount P0, the detected light amount P90, and the detected light amount P45 in the light detector 12A, the light detector 12B, and the light detector 12 is shown. Further, in FIG. 19A, return lights from the area B1, the area B2, the area B3, the area B4, and the area B5 are simultaneously detected within a time range of 250 ns after the emission of the pulsed light 16a.
  • the signal waveform 20a, the signal waveform 20a1, the signal waveform 20b, the signal waveform 20b1, the signal waveform 20c, and the signal waveform 20c1 can not be input to the grating 8a, and are detection signals of light reflected and returned as it is.
  • the return light from area B1, area B2, area B3, area B4 and area B5 is signal waveform 18a 1 , signal waveform 18a 2 , signal waveform 18a 3 , signal waveform 18a 4 , respectively, by photodetector 12A. and it is detected as a signal waveform 18a 5.
  • Return light from the regions B1, B2, B3, B4, and B5 is signal waveforms 18c 1 , 18c 2 , 18c 3 , 18c 4 , and 18c 4 by the photodetector 12, respectively. It is detected as a waveform 18c 5. From their sum signal 18a 1 + 18b 1 + 18c 1 , sum signal 18a 2 + 18b 2 + 18c 2 , sum signal 18a 3 + 18b 3 + 18c 3 , sum signal 18a 4 + 18b 4 + 18c 4 , and sum signal 18a 5 + 18b 5 + 18c 5 respectively The TOF signal of the return light from the area B1, the area B2, the area B3, the area B4, and the area B5 is detected.
  • Region B1 the area B2, the region B3, the return light TOF signals from the region B4, and regions B5, respectively signals 19a 1, signal 19a 2, signals 19a 3, signals 19a 4, and a signal 19a 5.
  • the light amount of the sum signal is used up to 3/4 of the light amount of the light 10E.
  • the signal 18e n, signals 18f n, and the signal 18 g n are respectively signals 20a n, it is generated from the signal 20b n, and the signal 20c n.
  • the time range of 250 ns five signals corresponding to each of the regions B1 to B5 are detected. At that time, it is determined which signal corresponds to which region. Each of the five signals is based on reflections from objects with different distances or reflectivities. Therefore, the correspondence between the signal and the region can not be determined from the magnitude relationship between the five signals.
  • the magnitude relationship between the detected light amount P0, the detected light amount P90, and the detected light amount P45 is based on the same reflection. Therefore, if it is the said magnitude correlation, it can apply to determination.
  • three standardized difference signals are used for the determination.
  • FIG. 20A, FIG. 20B, FIG. 20C, FIG. 20D, and FIG. 20E respectively show the region B1, the region B3, the region B5, the region of the electrode 9B when one light beam is scanned in the range of -36 degrees to 324 degrees. It is a figure which shows the behavior of the detection difference signal on the basis of the returned light in B2 and area
  • FIG. 20A shows the normalized difference signal (P0-P90) / (P0 + P45 + P90), the normalized difference signal (P0-P45) / (P0 + P45 + P90), and the normalized difference signal (P90-P45) / (P0 + P45 + P90) in the region B1.
  • the horizontal scanning azimuth angle ⁇ the normalized difference signal (P0-P90) / (P0 + P45 + P90) in the region B1.
  • the horizontal scanning azimuth angle ⁇ is the normalized difference signal (P0-P90) / (P0 + P45 + P90), the
  • the difference signal waveform and the six types of section ranges shift in azimuth by ⁇ 36 degrees each.
  • the ray is a scanning line at point b1.
  • scanning lines by the light ray b3, the light ray b5, the light ray b2 and the light ray b4 draw signal curves in the range of -36 degrees to 36 degrees in the example shown in FIGS. 20B, 20C, 20D and 20E respectively.
  • the signals in the area shown in FIG. 20A can be differentiated from the signals in the areas shown in FIGS. 20C, 20D, and 20E.
  • the light ray b1 can be separated into the light ray b5, the light ray b2, and the light ray b4.
  • the section A shown in FIG. 20B overlaps the section A shown in FIG. 20A.
  • Formula (21) it can not classify.
  • the normalized difference signal (P0-P45) / (P0 + P45 + P90) shown in FIG. 20A is larger than the normalized difference signal (P0-P45) / (P0 + P45 + P90) shown in FIG. 20B.
  • the signal shown in FIG. 20B can be distinguished from the signal shown in FIG. 20A.
  • the light ray b1 can be separated from the light ray b3. Therefore, it is possible to specify which of the five signals shown in FIG. 19A corresponds to the area B1.
  • Fourth Embodiment 21A and 21B are a perspective view and a cross-sectional view schematically showing the configuration of an optical device and the path of a light beam, respectively, in the fourth embodiment.
  • the reflection mirror 3, the polarization spectroscope 4c, the photodetector 12, the photodetector 12A, and the photodetector 12B in the third embodiment are omitted, and instead the photodetector 12a and the photodetector 12b is added, the cylindrical body 6 is changed to a truncated cone prism 6T, and a substrate 7F including a truncated cone-like hollow is inserted between the transparent flat substrate 7f and the truncated cone prism 6T.
  • the incident light 10c corresponds to the parallel light 10b shown in FIG. 21A, and its polarization is S wave. Other than that is the same as the third embodiment. Therefore, duplicate explanations are omitted.
  • the optical apparatus includes a light source 1, a collimator lens 2a, a polarization splitter 4, a quarter wavelength plate 4a, a half mirror 4b, a condenser lens 2b, a truncated cone prism 6T, and a cone.
  • Substrate 7F including a trapezoid hollow, optical waveguide device 7, photodetector 12a, photodetector 12b, detection circuit 33a, detection circuit 33b, control circuit 30, control circuit 32, and control circuit 34
  • the polarization spectroscope 4, the quarter wavelength plate 4a, the half mirror 4b, the condenser lens 2b, the truncated cone prism 6T, the substrate 7F including a truncated cone, and the optical waveguide element 7 are disposed with the axis L as a central axis Be done.
  • the light source 1 radiate
  • the laser beam 10a becomes parallel light 10b of S polarization by the collimator lens 2a, and is reflected by the polarization spectroscope 4 to become light 10d.
  • the polarization spectroscope 4 is, for example, a polarization beam splitter.
  • a beam shaping prism may be inserted between the collimating lens 2 a and the polarization spectroscope 4 to convert the distribution of the laser light 10 a spreading in an ellipse into a circle.
  • Light 10d will become 1/4 light 10d 0 circularly polarized light transmitted through the wavelength plate 4a, and enters the half mirror 4b, becomes the light 10e and half is transmitted therethrough.
  • Light 10e passes through the condenser lens 2b along the central axis L, incident on the truncated conical prism 6T which is a transparent member having a refractive index n 0.
  • the central axis L is located on the optical path of the light 10 e that has passed through the half mirror 4 b and can be said to be an axis along the optical path.
  • Circularly polarized light is incident on the grating 8a. Therefore, the guided light 10g is excited uniformly in all deflection directions.
  • the truncated cone prism 6T and the substrate 7F including a truncated cone-shaped hollow are in close contact with the transparent flat substrate 7f with the axis L as the same axis.
  • the path of light after the light 10 e is almost the same as in the first and third embodiments. Therefore, the description is omitted.
  • the light emitted from the grating 8c is refracted through the transparent flat substrate 7f and the substrate 7F, refracts the frusto-conical hollow surface of the substrate 7F, enters the side surface of the frusto-conical prism 6T, and refracts it to the light 10h.
  • the light is emitted from the side of the truncated cone on the opposite side to be refracted light 10i.
  • the truncated cone-like hollow surface of the substrate 7F and the side surface of the truncated cone prism 6T have the axis L as the same axis.
  • a blazed grating may be formed on these surfaces.
  • a saw-like groove is formed along a direction perpendicular to the central axis L.
  • the blazed grating causes the transmitted light to be diffracted in the vertical plane.
  • the refracted light 10j becomes the outgoing light 10i which is emitted to the outside at an angle of ⁇ from the horizontal surface.
  • half of the light 10E that has traveled the forward path back to the position of the half mirror 4b is reflected by the half mirror 4b to become light 10E 0 , and is detected by the light detector 12a .
  • components 10D 0 transmitted through the half mirror 4b is transmitted through 1/4-wave plate 4a.
  • a portion of the transmitted light 10D is transmitted through the polarization spectroscope 4 and detected as a transmitted light 10B by the photodetector 12b.
  • the photodetector 12a includes a detection circuit 33a
  • the photodetector 12b includes a detection circuit 33b.
  • the detection signal is processed by the detection circuit 33a and the detection circuit 33b.
  • the optical device may further comprise a control circuit 34.
  • the control circuit 34 generates, for example, a control signal for controlling the orientation of the light source or the liquid crystal from the detection signals of the detection circuit 33a and the detection circuit 33b. Further, the control circuit 30, the control circuit 32, and the control circuit 34 may be integrated into one control circuit.
  • FIG. 22 is a view schematically showing propagation paths of light emitted from the grating 8 c in the case where aberration correction control is performed in the fourth embodiment.
  • the upper part shows a plan view
  • the middle part shows a perspective view
  • the lower part shows a cross-sectional view.
  • the light 10h light 10h 0, light 10h1, and light 10h1 the axis L away from the center axis L along the positive direction of the x-axis "cross over.
  • Axis L ' Is inclined relative to the central axis L.
  • Light 10h, and light 10h 0 is "intersect at a point F 'on, light 10h1 and 10h1 0, the axis L" axis L shown upper.
  • Figure 22 that intersect at a point F "on, and in the lower the cylindrical body 6 is replaced by a truncated cone prism 6 T.
  • the light 10 h 1 on the inner circumferential side and the radius r 0 ′ of the refracting point of the light 10 h 10 change.
  • a light beam passes twice through the side surface of the truncated cone prism 6T on which the blazed grating is formed.
  • the degree of freedom in design is wider than in the mode in which the bottom surface of the cylindrical body 6 in the first and third embodiments passes.
  • the light beam receives the influence of diffraction by the blaze grating twice by passing through the side surface. If a blazed grating is also formed on the truncated hollow surface of the substrate 7F, the light beam is affected by diffraction three times. By such two or more diffractions, sufficient diffraction efficiency can be obtained even if the grating pitch is large as compared with the first and third embodiments.
  • a substrate 7F is generally arranged to extract the light emitted from the grating 8a into the air. On the other hand, if light can be extracted, the substrate 7F can be omitted.
  • the configuration in which the substrate 7F is provided with a truncated cone-like hollow can take out the radiation from the grating 8a into the air regardless of the radiation angle. Therefore, the degree of freedom in design is broadened.
  • FIG. 23A shows the rotation angle of the voltage distribution pattern of the electrode 9B, the output light quantity of the light source 1, the detected light quantity Pa of the light detector 12a and the light detector 12b, the detected light quantity Pb, and the detected light quantity in the fourth embodiment. It is a figure which shows the relationship of time progress of Pa + Pb and ratio Pb / Pa.
  • FIG. 23B is a diagram showing the relationship between the split region of the electrode 9B and the direction of the horizontal scanning beam in the fourth embodiment. From the area B1, area B2, area B3, area B4 and area B5 of the electrode 9B, the first scanning beam at the point b1, the second scanning beam at the point b2, the third scanning beam at the point b3, the fourth scanning at the point b4 A ray and a fifth scanning ray at point b5 are emitted respectively. These five scan rays rotate equiangularly around the center O at an angle of 72 degrees to one another.
  • Equation (23) the relationship between the polarization amplitude of the light 10E 0 and the polarization amplitude of the transmitted light 10B is expressed by Equation (23).
  • the first term of the left side represents the matrix of the polarization spectroscope 4, the second term represents the matrix of the 1 ⁇ 4 wavelength plate 4a, the third term represents the polarization amplitude of the light 10E 0 , and the right side represents the polarization of the transmitted light 10B. Represents the amplitude.
  • the detected light amount Pa and the detected light amount Pb at the light detector 12a and the light detector 12b are expressed by the equation (24) and the equation (25), respectively.
  • Figure 23C is a detected light intensity ratio Pb 1 / Pa 1 corresponding to the first scanning beam through point b1, the detection light amount ratio Pb 2 / Pa 2 corresponding to the second scanning beam through point b2, the third scanning light beam by point b3
  • the scanning angle ⁇ is determined by the drive signal to the electrode 9B, and if the scanning angle ⁇ is determined, the magnitude relationship between the five detected light amount ratios is determined. This allows the detection signal to identify any of the scanning rays.
  • pulsed light of the signal waveform 16a and pulsed light of the signal waveform 16a1 are emitted.
  • the pulse oscillation every 250 ns becomes 120,000 pulses in one frame of 30 ms.
  • FIG. 23A shows the time course of the detected light amount Pa and the detected light amount Pb in the light detector 12a and the light detector 12b.
  • Return light from the area B1, the area B2, the area B3, the area B4, and the area B5 is simultaneously detected within a time range of 250 ns after the emission of the pulse light of the signal waveform 16a.
  • the signal waveform 20a, the signal waveform 20a1, the signal waveform 20b, and the signal waveform 20b1 can not be input to the grating 8a, and are detection signals of light reflected and returned as it is.
  • the control circuit 34 receives an electrical signal according to the light amount Pa detected by the light detector 12a and an electrical signal according to the light amount Pb detected by the light detector 12b.
  • the control circuit 34 generates an electrical signal according to the sum and ratio of these two electrical signals.
  • a 1 + b 1 , a 2 + b 2 , a 3 + b 3 , a 4 + b 4 , and a 5 + b 5 are generated as a sum signal Pa + Pb indicating the sum of the amounts of light detected by the light detectors 12a and 12b .
  • the signal ratio Pb / Pa indicating the ratio of the detected light amount of the light detector 12a and the light detector 12b is b 1 / a 1 , b 2 / a 2 , b 3 / a 3 , b 4 / a 4 , and b 5 / A 5 is generated.
  • the five signals are used as TOF signals.
  • those signals are based on reflections from objects with different distances or reflectivities. Therefore, it is not possible to specify which signal corresponds to which of the regions B1 to B5 using only the sum signal.
  • the five signals are the first scanning beam at the point b1, the second scanning beam at the point b2, the third scanning beam at the point b3, and the point b4. It is possible to specify which of the fourth scanning beam and the fifth scanning beam according to the point b5, or which signal corresponds to which of the regions B1 to B5. For example, in the example of the signal ratio shown in FIG.
  • the scanning angle ⁇ is in the range of 0 ° to 18 °, five signals from the left, the first scanning beam, the second scanning beam, the third scanning beam, the fourth The scanning beam and the fifth scanning beam are in order, and if the scanning angle ⁇ is in the range of 18 degrees to 36 degrees, the fourth scanning beam, the third scanning beam, the second scanning beam, the first scanning beam, and the fifth scanning beam It can be determined as the order of scanning rays.
  • FIG. 24A and FIG. 24B are diagrams schematically showing the relationship between the electrode pattern on the transparent electrode layer 7g side and the reflective layer 7b side and the applied voltage. All of the electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c shown in FIG. 24A, and the electrode pattern 40A, the electrode pattern 40B, and the electrode pattern 40C shown in FIG. 24B are configured by three zigzag patterns extending from left to right It is done. Each zigzag pattern is isolated. A voltage signal is applied to the electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c shown in FIG. 24A independently by the control circuit 32a, the control circuit 32b, and the control circuit 32c. Similarly, voltage signals are applied to the electrode pattern 40A, the electrode pattern 40B and the electrode pattern 40C shown in FIG. 24B independently by the control circuit 32A, the control circuit 32B and the control circuit 32C.
  • FIG. 24C is a view schematically showing the relationship between the configuration obtained by aligning and overlapping the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side, and the applied voltage.
  • the transparent electrode layer 7g is on the upper side and the reflective layer 7b is on the lower side
  • lines formed by connecting the apexes on one side of the zigzags are in a mutually overlapping relationship.
  • the shape of the zigzag pattern on the side of the reflective layer 7 b is a shape in which the zigzag pattern on the side of the transparent electrode layer 7 g is vertically inverted. Therefore, as shown in FIG. 24C, the electrode pattern on the transparent electrode layer 7g side and the electrode pattern on the reflective layer 7b side are aligned and overlapped have a shape in which rhombuses are continuous.
  • the wiring is not easy because the diamonds are isolated one by one.
  • the fabrication is easy.
  • An alternating voltage signal 41a, an alternating voltage signal 41b, and an alternating voltage signal 41c are applied to the zigzag electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c on the transparent electrode layer 7g side, respectively.
  • the amplitude increases in the order of the AC voltage signal 41a, the AC voltage signal 41b, and the AC voltage signal 41c.
  • a difference in refractive index is generated in the liquid crystal layer corresponding to the zigzag electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c due to this amplitude gradient.
  • the waveguided light 10g propagating from the left to the right in the waveguide layer 7d sandwiched between the electrodes is refracted downward every time it passes through the inclined pattern boundary from the optical path.
  • An alternating voltage signal 41A, an alternating voltage signal 41B, and an alternating voltage signal 41C are applied to the zigzag electrode pattern 40A, the electrode pattern 40B, and the electrode pattern 40C on the reflective layer 7b side.
  • the amplitude increases in the order of the AC voltage signal 41A, the AC voltage signal 41B, and the AC voltage signal 41C. Assuming that the facing electrodes are grounded, this amplitude gradient also refracts the waveguide light 10g propagating from left to right in the waveguide layer 7d sandwiched between the electrodes downward.
  • the AC voltage signal 41A, the AC voltage signal 41B, and the AC voltage signal 41C have opposite polarities to the AC voltage signal 41a, the AC voltage signal 41b, and the AC voltage signal 41c, respectively. Therefore, as shown in FIG. 24C, in the electrode pattern in which the transparent electrode layer 7g and the reflective layer 7b are aligned and overlapped, the AC voltage signal 41a1 and the AC voltage signal 41A1 form a signal pair, and the AC voltage signal 41b1 and the AC voltage The signal 41 B 1 forms a signal pair, and the AC voltage signal 41 c 1 and the AC voltage signal 41 C 1 form a signal pair. Since their phases are inverted, the AC voltage amplitude is doubled. Thereby, the guided light 10g can be largely refracted downward.
  • the frequency with which the guided light 10g crosses the pattern boundary increases.
  • the bending of the guided light 10g is further doubled, and the variation in the bending angle due to the difference in the optical path is also improved.
  • FIG. 25A and FIG. 25B are diagrams schematically showing the patterns of the electrodes 9B on the transparent electrode layer 7g side and the reflective layer 7b side in the fourth embodiment, respectively.
  • Each of the electrode pattern shown in FIG. 25A and the electrode pattern shown in FIG. 25B is configured of 60 zigzag patterns extending from the inner circumferential side to the outer circumferential side.
  • the boundary between any two adjacent divided regions among the plurality of divided regions in the electrode 9B is a virtual one centered on the point at which the laser light is incident.
  • adjacent zigzag patterns are in a relation in which lines formed by connecting the vertices on one side of the zigzags overlap with each other.
  • the shape of the zigzag pattern on the side of the reflective layer 7 b is a shape in which the zigzag pattern on the side of the transparent electrode layer 7 g is inverted in the rotational direction.
  • FIG. 25C is a view schematically showing a configuration in which the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side are aligned and overlapped.
  • FIG. 25D is a view schematically showing the relationship between a part of the electrode pattern shown in FIG. 25C and the propagation path of the guided light 10g.
  • the pattern of the electrode 9B in which the transparent electrode layer 7g and the reflective layer 7b are aligned and overlapped has a shape in which rhombuses are continuous.
  • the boundary between any two adjacent divided regions is a movement of a virtual circle centered on the point at which the laser light is incident.
  • the above-mentioned boundary in one of the pair of electrode layers and the above-mentioned boundary in the other have a rhombus shape.
  • the liquid crystal refractive index increases along the direction of the arrow 42.
  • the propagation path of the guided light 10g propagating from the inner circumferential side to the outer circumferential side in the waveguide layer 7d can be bent to the arrow 42 side. Therefore, by controlling the voltage applied to the electrode having the shape shown in FIG. 25C, the light emitted from the grating 8c can be emitted as parallel light from the side surface of the truncated cone.
  • the method used in any of the embodiments can be applied to the other embodiments.
  • the method described with reference to the example shown in FIG. 16A in the first embodiment can be applied to the third and fourth embodiments. That is, as in the first embodiment, for example, the signal waveform 20a which is a sum signal, the signal waveform 20a1, and the maximum value 20P of the extraction detection signal formed by extracting the signal waveform 20a2 can not be input efficiency of the incident light. Proportional to Therefore, the output value of the maximum value 20P is used as a control signal when controlling the voltage applied to the electrode 9A in order to maximize the input coupling efficiency. The smaller the maximum value 20P, the higher the input efficiency.
  • the method described with reference to the example shown in FIG. 16B in the first embodiment can also be applied to the third and fourth embodiments.
  • a high frequency signal to the oscillation signal of the light source 1
  • a high-frequency intensity modulation signal to the output light intensity, for example even if the signal waveform 18a 1 exceeds the time zone of the rectangular pulse of the signal waveform 16a1, which is It can be identified that the detection signal corresponds to the rectangular pulse of the signal waveform 16a.
  • the measurement distance can be extended.
  • the quarter-wave plate 4a may be a polarization conversion element that converts linearly polarized light into circularly polarized light or polarized light in a direction orthogonal to the circular tangent.
  • linearly polarized light can be converted to light polarized in a circular tangent direction by sandwiching a nematic twist liquid crystal between a substrate aligned in the linear direction and a substrate aligned in the rotational direction.
  • the input efficiency to the grating 8a can be doubled. As a result, it is possible to excite the TE mode guided light 10g uniformly in all deflection directions.
  • the half mirror 4b intervenes between the forward paths. Therefore, the light utilization efficiency at the input is reduced to half as compared to the first embodiment.
  • light can be input to all declination azimuths, and return light from all azimuths can be detected, and detection signals can be separated for each azimuth. Therefore, the horizontal scanning range and detection range can be extended to 360 degrees at the same frame rate.
  • the relationship between transmission and reflection of light to the polarization spectroscope 4 or the half mirror 4b may be interchanged.
  • the outgoing beam can be scanned at a moving image speed of 30 frames or more per second within the field of view of 360 degrees in the horizontal direction and 10 degrees in the vertical direction.
  • the vertical field of view extends up to 30 degrees when wavelength tuning is added.
  • the detected light can be converted into accurate two-dimensional distance information of the object within the field of view. Three-dimensional positional relationship can be obtained from two-dimensional distance information.
  • the present disclosure scans laser light horizontally and vertically toward an object scattered in a field of view, selectively receives or detects reflected light from the object, and measures a three-dimensional positional relationship of the object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

An optical device according to one embodiment is provided with: a light source for emitting laser light; an optical waveguide element positioned on the light path for the laser light; a first transparent member positioned on the light path and having a bottom surface facing the optical waveguide element and side surfaces having rotational symmetry with respect to the light path; and a control circuit. The optical waveguide element includes: a first grating that includes a plurality of parts with different refractive indices from each other disposed along the radial direction and propagates part of the incident laser light along the radial direction within the optical waveguide element; and a second grating that is disposed outside of the first grating, includes a plurality of parts with different refractive indices from each other disposed along the radial direction, and emits light from the optical waveguide element.

Description

光学装置Optical device
 本開示は、光学装置に関する。 The present disclosure relates to an optical device.
 従来、視野内に散在する物体の位置を把握するために、光源からの光パルスで物体を照射し、物体からの反射光の時間遅れを方向ごとに計測することにより、物体表面までの距離が計測される。例えば、特許文献1は、そのような技術を用いた光フェーズドアレイを開示している。 Conventionally, in order to determine the position of an object scattered in the field of view, the distance to the object surface can be determined by irradiating the object with light pulses from a light source and measuring the time delay of reflected light from the object for each direction. It is measured. For example, Patent Document 1 discloses an optical phased array using such a technique.
特開2017-187649号公報JP, 2017-187649, A
 本開示は、レーザー光によって視野内に散在する物体の上を水平方向および/または垂直方向に走査し、物体からの反射光を選択的に受光または検出する技術を提供する。 The present disclosure provides a technique for scanning horizontally and / or vertically over an object scattered in a field of view by laser light and selectively receiving or detecting reflected light from the object.
 本開示の一態様に係る光学装置は、レーザー光を出射する光源と、前記レーザー光の光路上に位置する光導波素子と、前記光路上に位置し、前記光導波素子に面する底面、および前記光路に沿った仮想的な軸を中心軸として回転対称である側面を有する第1の透明部材と、制御回路と、を備える。前記光導波素子は、前記レーザー光が入射する点を中心とする仮想的な円の動径方向に沿って配置され互いに屈折率が異なる複数の部分を含み、入射した前記レーザー光の一部を、伝搬光として、前記光導波素子内を前記動径方向に沿って伝搬させる第1のグレーティング、及び前記第1のグレーティングの外側に配置され、前記動径方向に沿って配置され互いに屈折率が異なる複数の部分を含み、前記伝搬光の一部を、出射光として、前記光導波素子から出射させる第2のグレーティング、を含む。前記出射光は、前記底面または前記側面から前記第1の透明部材に入射し、前記側面から出射する。 An optical apparatus according to an aspect of the present disclosure includes: a light source for emitting a laser beam; an optical waveguide element located on an optical path of the laser beam; a bottom surface located on the optical path and facing the optical waveguide element; A first transparent member having a side surface that is rotationally symmetric about a virtual axis along the optical path as a central axis, and a control circuit. The optical waveguide element includes a plurality of portions disposed along the radial direction of a virtual circle centered on the point on which the laser beam is incident and having different refractive indices, and a part of the incident laser beam A first grating propagating along the radial direction in the optical waveguide element as propagating light, and an outer side of the first grating are disposed along the radial direction, and the refractive indexes are mutually different. And a second grating for causing a part of the propagated light to be emitted from the optical waveguide element as an emitted light. The emitted light is incident on the first transparent member from the bottom surface or the side surface, and is emitted from the side surface.
 上記の包括的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体によって実現されてもよい。あるいは、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意の組み合わせによって実現されてもよい。 The above general aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium. Alternatively, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 本開示の一態様によれば、機械的な構造を用いずに、レーザー光によって視野内に散在する物体を水平方向および/または垂直方向に走査し、物体からの反射光を選択的に受光または検出することができる。 According to one aspect of the present disclosure, an object scattered in a field of view is scanned horizontally and / or vertically by laser light without using a mechanical structure to selectively receive or reflect light reflected from the object. It can be detected.
図1Aは、光学装置の構成と、光線の経路とを模式的に示す斜視図である。FIG. 1A is a perspective view schematically showing the configuration of an optical device and the path of a light beam. 図1Bは、光学装置の構成と、光線の経路とを模式的に示す断面図である。FIG. 1B is a cross-sectional view schematically showing the configuration of an optical device and the path of a light beam. 図1Cは、光学装置における光源の構成を模式的に示す斜視図である。FIG. 1C is a perspective view schematically showing the configuration of a light source in the optical device. 図1Dは、光学装置における円柱体の別の形態を模式的に示す斜視図である。FIG. 1D is a perspective view schematically showing another form of a cylindrical body in the optical device. 図2Aは、ベクトルダイアグラムを示す図である。FIG. 2A is a diagram showing a vector diagram. 図2Bは、ベクトルダイアグラムを示す図である。FIG. 2B is a diagram showing a vector diagram. 図3Aは、第1実施形態における入射光の偏光方向と、入力の様子とを模式的に示す斜視図である。FIG. 3A is a perspective view schematically showing the polarization direction of incident light and the state of input in the first embodiment. 図3Bは、入力グレーティングカプラを模式的に示す断面図である。FIG. 3B is a cross-sectional view schematically showing an input grating coupler. 図3Cは、入力結合し導波する光の様子を光強度によって示す断面図である。FIG. 3C is a cross-sectional view showing the appearance of light that is coupled in and guided by light intensity. 図3Dは、入力グレーティングカプラを模式的に示す平面図である。FIG. 3D is a plan view schematically showing an input grating coupler. 図3Eは、偏光方向と入力伝搬方向の関係を光強度によって示す平面図である。FIG. 3E is a plan view showing the relationship between the polarization direction and the input propagation direction by light intensity. 図3Fは、偏光方向と入力伝搬方向の関係を光強度によって示す平面図である。FIG. 3F is a plan view showing the relationship between the polarization direction and the input propagation direction by light intensity. 図3Gは、偏光方向と入力伝搬方向の関係を光強度によって示す平面図である。FIG. 3G is a plan view showing the relationship between the polarization direction and the input propagation direction by light intensity. 図4Aは、反射層がない場合の、入力グレーティングカプラの入力結合効率の波長依存性を示す図である。FIG. 4A is a graph showing the wavelength dependency of the input coupling efficiency of the input grating coupler when there is no reflective layer. 図4Bは、反射層がある場合の、入力グレーティングカプラを模式的に示す断面図である。FIG. 4B is a cross-sectional view schematically showing the input grating coupler when there is a reflective layer. 図4Cは、反射層がある場合の、入力結合効率のバッファー層の層厚依存性を示す図である。FIG. 4C is a graph showing the layer thickness dependency of the input coupling efficiency with the reflective layer. 図4Dは、反射層がある場合の、入力結合効率の波長依存性を示す図である。FIG. 4D is a graph showing the wavelength dependency of input coupling efficiency when there is a reflective layer. 図5Aは、入射光の偏光方向と入力伝搬方向との関係を光強度によって示す平面図である。FIG. 5A is a plan view showing the relationship between the polarization direction of incident light and the input propagation direction by light intensity. 図5Bは、偏角φと伝搬する導波光の強度Iとの関係、および-φからφの偏角範囲に含まれる光エネルギーEの偏角φに対する関係を示す図である。FIG. 5B is a diagram showing the relationship between the deflection angle φ and the intensity I of the guided light propagating and the relationship between the deflection angle φ of the light energy E included in the deflection angle range from −φ to φ. 図6は、偏光回転子の構成例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing a configuration example of a polarization rotator. 図7Aは、収差補正がない場合の、出力グレーティングカプラにおける放射光の伝搬経路を模式的に示す図である。FIG. 7A is a view schematically showing propagation paths of radiation light in the output grating coupler when there is no aberration correction. 図7Bは、収差補正制御がある場合の、出力グレーティングカプラにおける放射光の伝搬経路を模式的に示す図である。FIG. 7B is a view schematically showing propagation paths of radiation light in the output grating coupler when there is aberration correction control. 図8Aは、出力グレーティングカプラからの放射光が、円柱面において屈折して出射することを模式的に示す図である。FIG. 8A is a view schematically showing that radiation light from the output grating coupler is refracted and emitted at a cylindrical surface. 図8Bは、収差補正を実現するための透明電極層のパターンの様子を模式的に示す図である。FIG. 8B is a view schematically showing a pattern of a transparent electrode layer for realizing aberration correction. 図9Aは、伝搬方向の偏角と、収差補正を実現するための導波光の実効屈折率変化量との関係を示す図である。FIG. 9A is a diagram showing the relationship between the deflection angle in the propagation direction and the effective refractive index change amount of guided light for achieving aberration correction. 図9Bは、液晶屈折率をパラメータにした、導波層の層厚と実効屈折率との関係を示す図である。FIG. 9B is a diagram showing the relationship between the thickness of the waveguide layer and the effective refractive index, with the liquid crystal refractive index as a parameter. 図9Cは、バッファー層、導波層、および液晶の配置を模式的に示す図である。FIG. 9C is a view schematically showing the arrangement of the buffer layer, the waveguide layer, and the liquid crystal. 図10Aは、透明電極層のパターンと導波光の伝搬方向との関係を説明する図である。FIG. 10A is a view for explaining the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light. 図10Bは、透明電極層のパターンと導波光の伝搬方向との関係によって発生する位相面を説明する図である。FIG. 10B is a diagram for explaining a phase plane generated due to the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light. 図10Cは、透明電極層のパターンと導波光の伝搬方向との関係を説明する図である。FIG. 10C is a view for explaining the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light. 図10Dは、透明電極層のパターンと導波光の伝搬方向との関係によって発生する位相面を説明する図である。FIG. 10D is a view for explaining a phase plane generated due to the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light. 図10Eは、点F’への集光における収差が補正される様子を模式的に示す図である。FIG. 10E is a view schematically showing how the aberration at the time of focusing on the point F ′ is corrected. 図11Aは、出力グレーティングカプラの深さと放射損失係数との関係を示す図である。FIG. 11A is a diagram showing the relationship between the depth of the output grating coupler and the radiation loss coefficient. 図11Bは、出力グレーティングカプラの深さと放射損失係数との関係を示す図である。FIG. 11B is a diagram showing the relationship between the depth of the output grating coupler and the radiation loss coefficient. 図11Cは、デューティーと放射損失係数との関係を示す図である。FIG. 11C is a diagram showing the relationship between the duty and the radiation loss coefficient. 図11Dは、デューティーと放射損失係数との関係を示す図である。FIG. 11D is a view showing the relationship between the duty and the radiation loss coefficient. 図11Eは、結合長と導波強度との関係、および結合長と放射強度との関係を示す図である。FIG. 11E is a view showing the relation between the coupling length and the waveguide strength, and the relation between the coupling length and the radiation strength. 図11Fは、結合長と導波強度との関係、および結合長と放射強度との関係を示す図である。FIG. 11F is a view showing the relation between the coupling length and the waveguide strength, and the relation between the coupling length and the radiation strength. 図12Aは、出力グレーティングカプラからの放射光と円柱体との位置関係を示す図である。FIG. 12A is a diagram showing the positional relationship between radiation light from the output grating coupler and a cylindrical body. 図12Bは、出力グレーティングカプラからの放射光と円柱体との位置関係を示す図である。FIG. 12B is a diagram showing the positional relationship between radiation light from the output grating coupler and a cylindrical body. 図13Aは、出力グレーティングカプラからの放射光と円柱面からの屈折光のビーム幅との関係を示す水平断面図である。FIG. 13A is a horizontal sectional view showing the relationship between the radiation from the output grating coupler and the beam width of refracted light from the cylindrical surface. 図13Bは、出力グレーティングカプラからの放射光と円柱面からの屈折光のビーム幅との関係を示す垂直断面図である。FIG. 13B is a vertical sectional view showing the relationship between the radiation from the output grating coupler and the beam width of the refracted light from the cylindrical surface. 図14Aは、透明電極層のパターンと導波光の伝搬方向との関係を示す図である。FIG. 14A is a view showing the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light. 図14Bは、入力光の偏光回転角、透明電極への印加電圧、ならびに、水平方向および垂直方向の回転角の時間経過の関係を示す図である。FIG. 14B is a view showing the relationship of time course of the polarization rotation angle of input light, the voltage applied to the transparent electrode, and the rotation angle in the horizontal direction and the vertical direction. 図14Cは、レーザー光による水平方向および垂直方向の走査の様子を示す図である。FIG. 14C is a view showing horizontal and vertical scanning by laser light. 図15Aは、入力光の偏光回転角、光源波長、透明電極への印加電圧、ならびに、水平方向および垂直方向の回転角の時間経過の関係を示す図である。FIG. 15A is a view showing the relationship of time course of the polarization rotation angle of the input light, the light source wavelength, the voltage applied to the transparent electrode, and the rotation angle in the horizontal direction and the vertical direction. 図15Bは、レーザー光の水平方向および垂直方向の走査の様子を示す図である。FIG. 15B is a view showing horizontal and vertical scanning of laser light. 図16Aは、偏光回転子の制御信号、光の偏光角、光源の出力光量、および光検出器での検出光量の時間経過の関係を示す図である。FIG. 16A is a view showing the relationship of the control signal of the polarization rotator, the polarization angle of light, the output light quantity of the light source, and the time course of the light quantity detected by the light detector. 図16Bは、偏光回転子の制御信号、光源の出力光量、および光検出器での検出光量の時間経過の関係を示す図である。FIG. 16B is a view showing the relationship of the time lapse of the control signal of the polarization rotator, the output light quantity of the light source, and the light quantity detected by the light detector. 図16Cは、偏光回転子の制御信号、光源の出力光量、および光検出器での検出光量の時間経過の関係を示す図である。FIG. 16C is a view showing the relationship of the control signals of the polarization rotator, the output light quantity of the light source, and the time course of the light quantity detected by the light detector. 図17Aは、透明電極層のパターンを模式的に示す図である。FIG. 17A is a view schematically showing a pattern of a transparent electrode layer. 図17Bは、透明電極層のパターンを模式的に示す図である。FIG. 17B is a view schematically showing a pattern of the transparent electrode layer. 図18は、第3実施形態における、光学装置の構成と、光線の経路とを模式的に示す斜視図である。FIG. 18 is a perspective view schematically showing the structure of an optical device and the path of light in the third embodiment. 図19Aは、第3実施形態における、電極9Bの電圧分布パターンの回転角、光源の出力光量、光検出器での検出光量、およびそれらの規格化差信号の時間経過の関係を示す図である。FIG. 19A is a view showing the relationship of time course of the rotation angle of the voltage distribution pattern of the electrode 9B, the output light quantity of the light source, the light quantity detected by the light detector, and their normalized difference signal in the third embodiment. . 図19Bは、第3実施形態における、電極9Bの分割領域と、水平方向走査光線の方位との関係を示す図である。FIG. 19B is a diagram showing the relationship between the divided regions of the electrode 9B and the azimuth of the horizontal scanning beam in the third embodiment. 図19Cは、第3実施形態における、電極9Bの分割領域に対応したレーザー光による水平方向および垂直方向の走査の様子と、走査光線間の位置との関係を説明する図である。FIG. 19C is a view for explaining the relationship between horizontal and vertical scanning by laser light corresponding to the divided regions of the electrode 9B in the third embodiment and the position between scanning light beams. 図20Aは、第3実施形態における、電極9Bの分割領域B1に対する検出差信号と、水平方向走査方位角との関係を示す図である。FIG. 20A is a diagram showing the relationship between the detection difference signal for the divided region B1 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment. 図20Bは、第3実施形態における、電極9Bの分割領域B3に対する検出差信号と、水平方向走査方位角との関係を説明する図である。FIG. 20B is a diagram for explaining the relationship between the detection difference signal for the divided region B3 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment. 図20Cは、第3実施形態における、電極9Bの分割領域B5に対する検出差信号と、水平方向走査方位角との関係を説明する図である。FIG. 20C is a diagram for explaining the relationship between the detection difference signal for the divided region B5 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment. 図20Dは、第3実施形態における、電極9Bの分割領域B2に対する検出差信号と、水平方向走査方位角との関係を説明する図である。FIG. 20D is a diagram for explaining the relationship between the detection difference signal for the divided region B2 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment. 図20Eは、第3実施形態における、電極9Bの分割領域B4に対する検出差信号と、水平方向走査方位角との関係を説明する図である。FIG. 20E is a diagram for explaining the relationship between the detection difference signal for the divided region B4 of the electrode 9B and the horizontal direction scanning azimuth angle in the third embodiment. 図21Aは、第4実施形態における、光学装置の構成と、光線の経路とを模式的に示す斜視図である。FIG. 21A is a perspective view schematically showing the configuration of an optical device and the path of light in the fourth embodiment. 図21Bは、第4実施形態における、光学装置の構成と、光線の経路とを模式的に示す断面図である。FIG. 21B is a cross-sectional view schematically showing the configuration of an optical device and the path of light in the fourth embodiment. 図22は、収差補正制御がある場合の、第4実施形態における、出力グレーティングカプラにおける放射光の伝搬経路を模式的に示す図である。FIG. 22 is a diagram schematically showing propagation paths of radiation light in the output grating coupler in the fourth embodiment when there is aberration correction control. 図23Aは、第4実施形態における、電極9Bの電圧分布パターンの回転角、光源の出力光量、光検出器での検出光量、ならびに検出光量の和および比の時間経過の関係を示す図である。FIG. 23A is a view showing the relationship of time lapse of the sum of the ratio of detected light amount, detected light amount of the light detector, detected light amount of light source, and light amount in the fourth embodiment; . 図23Bは、第4実施形態における、電極9Bの分割領域と水平方向走査光線の方向との関係を示す図である。FIG. 23B is a diagram showing the relationship between the split region of the electrode 9B and the direction of the horizontal scanning beam in the fourth embodiment. 図23Cは、第4実施形態における、走査光線b1、走査光線b2、走査光線b3、走査光線b4、および走査光線b5に対する検出光量比を示す信号と、走査角との関係を示す図である。FIG. 23C is a diagram showing a relationship between a scanning angle and a signal indicating a detected light amount ratio with respect to the scanning light beam b1, the scanning light beam b2, the scanning light beam b3, the scanning light beam b4 and the scanning light beam b5 in the fourth embodiment. 図24Aは、透明電極層側での電極パターンと、印加電圧との関係を模式的に示す図である。FIG. 24A is a view schematically showing a relationship between an electrode pattern on the transparent electrode layer side and an applied voltage. 図24Bは、反射層側での電極パターンと、印加電圧との関係を模式的に示す図である。FIG. 24B is a view schematically showing the relationship between the electrode pattern on the reflective layer side and the applied voltage. 図24Cは、透明電極層側での電極パターン、およびお反射層側での電極パターンを揃えて重ねた構成と印加電圧との関係を模式的に示す図である。FIG. 24C is a view schematically showing the relationship between the configuration obtained by aligning and overlapping the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side, and the applied voltage. 図25Aは、第4実施形態における、透明電極層側での電極のパターンを説明する図である。FIG. 25A is a view for explaining patterns of electrodes on the transparent electrode layer side in the fourth embodiment. 図25Bは、第4実施形態における、反射層側での電極のパターンを説明する図である。FIG. 25B is a view for explaining patterns of electrodes on the reflective layer side in the fourth embodiment. 図25Cは、第4実施形態における、透明電極層側での電極パターン、および反射層側での電極パターンを揃えて重ねた構成を模式的に示す図である。FIG. 25C is a view schematically showing a configuration in which the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side are aligned and overlapped in the fourth embodiment. 図25Dは、第4実施形態における、図25Cに示す電極パターンの一部と、導波光の伝搬経路との関係を模式的に示す図である。FIG. 25D is a view schematically showing a relation between a part of the electrode pattern shown in FIG. 25C and a propagation path of guided light in the fourth embodiment. 図26Aは、従来例におけるフェーズドアレイから垂直方向に出射されるレーザービームを模式的に示す図である。FIG. 26A is a view schematically showing a laser beam vertically emitted from a phased array in the conventional example. 図26Bは、従来例におけるフェーズドアレイから斜め方向に出射されるレーザービームを模式的に示す図である。FIG. 26B is a view schematically showing a laser beam emitted obliquely from the phased array in the conventional example.
 (本開示の基礎となった知見)
 本開示の実施形態を説明する前に、本開示の基礎となった知見を説明する。本明細書では、可視光のみならず赤外線についても「光」の用語を用いる。
(Findings that formed the basis of this disclosure)
Before describing the embodiments of the present disclosure, the findings underlying the present disclosure will be described. In this specification, the term "light" is used not only for visible light but also for infrared light.
 視野内に散在する物体の位置を把握するための光を照射するのに、2つの代表的な方法がある。1つは、光パルスで視野内全域を一様に照射する方法である。もう一つは、指向性のあるレーザービームによって視野内全域を網羅的に走査する方法である。前者の方法よりも後者の方法の方が、発光光量を小さく押さえることができ、物体側に位置する人間にも安全である。 There are two representative ways to illuminate the light to determine the position of objects scattered in the field of view. One is a method of uniformly illuminating the entire area of the field of view with light pulses. The other is a method of comprehensively scanning the entire area of the field of view with a directional laser beam. The latter method can suppress the amount of emitted light smaller than the former method, and is safe for humans located on the object side.
 一般に、レーザービームによる走査では、光源、光検出器、およびガルバノミラーが、回転ステージ上に配置される。光源から出射された光は、ガルバノミラーによって反射される。その際、ガルバノミラーを上下に回動させることによって垂直方向に光走査することができ、回転ステージを回転させることによって水平方向に光走査することができる。しかし、メカニカルな構造であることから、走査速度が遅いうえ、装置が大きく、高価である。 Generally, in scanning with a laser beam, a light source, a photodetector and a galvano mirror are placed on a rotating stage. The light emitted from the light source is reflected by the galvano mirror. At that time, light scanning can be performed in the vertical direction by rotating the galvano mirror up and down, and light scanning can be performed in the horizontal direction by rotating the rotation stage. However, due to the mechanical structure, the scanning speed is slow, and the apparatus is large and expensive.
 メカレスにするための取り組みとして、例えば、特許文献1に示されるフェーズドアレイ(Phased Array)が挙げられる。 For example, a phased array shown in Patent Document 1 can be cited as an approach for making the mechanism free.
 以下に、フェーズドアレイによる光走査の原理を説明する。 The principle of light scanning by the phased array will be described below.
 図26Aおよび図26Bは、それぞれ、従来例におけるフェーズドアレイから垂直方向および斜め方向に出射されるレーザービームを模式的に示す図である。図26Aおよび図26Bに示す例では、複数の波源21が、x軸上においてピッチΛの間隔で均一に配列されている。複数の波源21から位相の揃った波長λの光を発振させると、図26Aに示すように、励振光は、x軸と平行な波面21aを形成して伝搬する。隣り合う左右の波源の位相差がΛsinθになるように光を発振させると、図26Bに示すように、励振光は、x軸と角度θをなす波面21bを形成して伝搬する。波源21をx軸およびy軸に沿って均一に配列し、それらの励振位相を調整すれば、励振光の伝搬方向を2軸方向に設定することができる。 FIGS. 26A and 26B are diagrams schematically showing laser beams emitted in the vertical direction and in the oblique direction from the phased array in the conventional example, respectively. In the example shown to FIG. 26A and FIG. 26B, several wave source 21 is uniformly arranged by the space | interval of pitch (xi) on x-axis. When light of the wavelength λ having the same phase is oscillated from the plurality of wave sources 21, as shown in FIG. 26A, the excitation light propagates by forming a wavefront 21a parallel to the x axis. When light is oscillated such that the phase difference between adjacent left and right wave sources becomes Λ sin θ, as shown in FIG. 26B, the excitation light propagates by forming a wavefront 21 b forming an angle θ with the x axis. By arranging the wave sources 21 uniformly along the x-axis and y-axis and adjusting their excitation phase, it is possible to set the propagation direction of the excitation light in two axial directions.
 しかしながら、上記の従来の方法では、波面を形成するために、波源21のピッチΛは波長λの数分の1以下である必要がある。電波の場合、波長は例えば10cm以上である。このため、アンテナとして機能する複数の波源21を波長の数分の1以下の間隔で配列することは可能である。しかし、光の場合、波長は例えば1μm程度である。このため、複数の波源21をサブミクロンの間隔で配列することは容易ではない。また、レーザーの場合、光は共振器内における増幅過程を経て発振する。よって、電波と異なり、レーザーの位相を制御することは容易ではない。 However, in the above-described conventional method, the pitch Λ of the wave source 21 needs to be equal to or less than a fraction of the wavelength λ in order to form a wavefront. In the case of radio waves, the wavelength is, for example, 10 cm or more. For this reason, it is possible to arrange a plurality of wave sources 21 functioning as an antenna at intervals of a fraction of the wavelength or less. However, in the case of light, the wavelength is, for example, about 1 μm. For this reason, it is not easy to arrange a plurality of wave sources 21 at submicron intervals. In the case of a laser, light oscillates through an amplification process in the resonator. Therefore, unlike radio waves, it is not easy to control the phase of the laser.
 そこで本発明者は、新規な光学装置に想到した。 Therefore, the inventor has conceived of a novel optical device.
 本開示は、以下の項目に記載の光学装置を含む。 The present disclosure includes the optical devices described in the following items.
 [項目1]
 第1の項目に係る光学装置は、レーザー光を出射する光源と、前記レーザー光の光路上に位置する光導波素子と、前記光路上に位置し、前記光導波素子に面する底面、および前記光路に沿った仮想的な軸を中心軸として回転対称である側面を有する第1の透明部材と、制御回路と、を備える。前記光導波素子は、前記レーザー光が入射する点を中心とする仮想的な円の動径方向に沿って配置され互いに屈折率が異なる複数の部分を含み、入射した前記レーザー光の一部を、伝搬光として、前記光導波素子内を前記動径方向に沿って伝搬させる第1のグレーティング、及び前記第1のグレーティングの外側に配置され、前記動径方向に沿って配置され互いに屈折率が異なる複数の部分を含み、前記伝搬光の一部を、出射光として、前記光導波素子から出射させる第2のグレーティング、を含む。前記出射光は、前記底面または前記側面から前記第1の透明部材に入射し、前記側面から出射する。
[Item 1]
The optical device according to the first item includes a light source for emitting a laser beam, an optical waveguide element located on the optical path of the laser beam, a bottom surface located on the optical path and facing the optical waveguide element, and A first transparent member having a side surface that is rotationally symmetrical about a virtual axis along the light path as a central axis, and a control circuit. The optical waveguide element includes a plurality of portions disposed along the radial direction of a virtual circle centered on the point on which the laser beam is incident and having different refractive indices, and a part of the incident laser beam A first grating propagating along the radial direction in the optical waveguide element as propagating light, and an outer side of the first grating are disposed along the radial direction, and the refractive indexes are mutually different. And a second grating for causing a part of the propagated light to be emitted from the optical waveguide element as an emitted light. The emitted light is incident on the first transparent member from the bottom surface or the side surface, and is emitted from the side surface.
 [項目2]
 第1の項目に係る光学装置において、前記第1のグレーティングは、前記点を中心とする同心円状の構造を有していてもよい。
[Item 2]
In the optical device according to the first item, the first grating may have a concentric structure centered on the point.
 [項目3]
 第1の項目に係る光学装置において、前記第2のグレーティングは、前記点を中心とする同心円状の構造を有していてもよい。
[Item 3]
In the optical device according to the first item, the second grating may have a concentric structure centered at the point.
 [項目4]
 第1の項目に係る光学装置において、前記第1の透明部材は、円柱形状または円錐台形状を有していてもよい。
[Item 4]
In the optical device according to the first item, the first transparent member may have a cylindrical shape or a truncated cone shape.
 [項目5]
 第4の項目に係る光学装置において、前記第1の透明部材の前記側面は、格子ベクトルが前記中心軸に平行である第3のグレーティングを含んでいてもよい。
[Item 5]
In the optical device according to the fourth item, the side surface of the first transparent member may include a third grating whose grating vector is parallel to the central axis.
 [項目6]
 第5の項目に係る光学装置は、前記第1の透明部材を囲み、前記中心軸と同軸である円筒形状の第2の透明部材をさらに備え、前記第2の透明部材の内側面および外側面は、格子ベクトルが前記中心軸に平行である第4のグレーティングを含んでいてもよい。
[Item 6]
The optical device according to the fifth item further includes a cylindrical second transparent member surrounding the first transparent member and coaxial with the central axis, and the inner side surface and the outer side surface of the second transparent member May include a fourth grating whose grating vector is parallel to the central axis.
 [項目7]
 第4から第6の項目のいずれかに係る光学装置において、前記第1のグレーティングおよび前記第2のグレーティング上に、前記第1の透明部材と接する透明層をさらに含み、前記透明層は、1.8以上の屈折率を有していてもよい。
[Item 7]
In the optical device according to any of the fourth to sixth items, a transparent layer in contact with the first transparent member is further included on the first grating and the second grating, and the transparent layer is It may have a refractive index of 8 or more.
 [項目8]
 第1から第7の項目のいずれかに係る光学装置において、前記制御回路は、前記光源に、前記レーザー光の波長を変化させることにより、前記光導波素子から出射される前記レーザー光の方向を変化させてもよい。
[Item 8]
In the optical device according to any one of the first to seventh items, the control circuit causes the light source to change the wavelength of the laser light to thereby determine the direction of the laser light emitted from the optical waveguide element. It may be changed.
 [項目9]
 第1から第8の項目のいずれかに係る光学装置において、前記光導波素子は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、前記第2の誘電体層と前記第1の誘電体層との間である第1位置および前記第2の誘電体層と前記第3の誘電体層との間である第2位置からなる群から選択される少なくとも1つに、前記第1のグレーティングおよび前記第2のグレーティングが配置され、前記第2の誘電体層に入射した前記レーザー光の一部は、前記伝搬光として、前記第2の誘電体層内を前記動径方向に沿って伝搬し、前記出射光として、前記第2のグレーティングから出射してもよい。
[Item 9]
In the optical device according to any one of the first to eighth items, the optical waveguide device includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and the second dielectric layer. And a third dielectric layer on the dielectric layer, wherein a refractive index of the second dielectric layer is higher than a refractive index of the first dielectric layer and a refractive index of the third dielectric layer. A first position between the second dielectric layer and the first dielectric layer, and a second position between the second dielectric layer and the third dielectric layer The first grating and the second grating are disposed in at least one selected from the group, and a part of the laser light incident on the second dielectric layer is the light beam as the propagation light. The second grating propagates along the radial direction in the second dielectric layer and serves as the outgoing light. Et al may be emitted.
 [項目10]
 第9の項目に係る光学装置において、前記光導波素子は、反射層をさらに含み、前記第2の誘電体層と反射層との間に、前記第1の誘電体層が配置されてもよい。
[Item 10]
In the optical device pertaining to the ninth item, the optical waveguide element may further include a reflective layer, and the first dielectric layer may be disposed between the second dielectric layer and the reflective layer. .
 [項目11]
 第9または第10の項目に係る光学装置において、前記光導波素子は、第1の電極層、及び透明な第2の電極層をさらに含み、前記第1の電極層と前記第2の電極層との間に、前記第1の誘電体層、前記第2の誘電体層及び第3の誘電体層が配置され、前記第2の電極層は、前記第1の電極層よりも前記第3の誘電体層に近く、前記第3の誘電体層は、液晶を含む液晶層であってもよい。
[Item 11]
In the optical device pertaining to the ninth or tenth item, the optical waveguide element further includes a first electrode layer and a transparent second electrode layer, and the first electrode layer and the second electrode layer And the first dielectric layer, the second dielectric layer, and the third dielectric layer are disposed between the first electrode layer and the second electrode layer. The third dielectric layer may be a liquid crystal layer including liquid crystal.
 [項目12]
 第11の項目に係る光学装置において、前記液晶層に電圧が印加されていない状態において、前記液晶の配向方向は、前記第1のグレーティングの格子ベクトルまたは前記第2のグレーティングの格子ベクトルに垂直であってもよい。
[Item 12]
In the optical device according to the eleventh item, in a state where a voltage is not applied to the liquid crystal layer, the alignment direction of the liquid crystal is perpendicular to the grating vector of the first grating or the grating vector of the second grating. It may be.
 [項目13]
 第11の項目に係る光学装置において、前記光導波素子は、前記第1のグレーティングと前記第2のグレーティングとの間に、前記動径方向に沿って配置され互いに屈折率が異なる複数の部分を含む第5のグレーティングをさらに含み、前記液晶層に電圧が印加されていない状態において、前記液晶の配向方向は、前記第5のグレーティングの格子ベクトルに垂直であってもよい。
[Item 13]
In the optical device according to the eleventh item, the optical waveguide element is disposed between the first grating and the second grating along the radial direction and has a plurality of portions having different refractive indexes. The alignment direction of the liquid crystal may be perpendicular to the grating vector of the fifth grating in a state further including a fifth grating that does not apply a voltage to the liquid crystal layer.
 [項目14]
 第11の項目に係る光学装置において、前記第1の電極層及び前記第2の電極層からなる群から選択される少なくとも1つの電極層は、前記第1のグレーティングに対向する第1の電極と、前記第2のグレーティングに対向する第2の電極と、前記第1の電極と前記第2の電極との間の第3の電極とを含み、前記第3の電極は、前記仮想的な円の周方向に沿って配置された、導電性の複数の分割領域を含み、前記複数の分割領域は、互いに絶縁されていてもよい。
[Item 14]
In the optical device pertaining to the eleventh item, at least one electrode layer selected from the group consisting of the first electrode layer and the second electrode layer is a first electrode facing the first grating and A second electrode facing the second grating, and a third electrode between the first electrode and the second electrode, wherein the third electrode is the virtual circle The plurality of conductive divided regions may be arranged along the circumferential direction of the plurality of conductive regions, and the plurality of divided regions may be insulated from each other.
 [項目15]
 第14の項目に係る光学装置において、前記制御回路は、前記第2の電極を介して前記液晶層に印加する電圧を制御することにより、前記出射光の方向を制御してもよい。
[Item 15]
In the optical device pertaining to the fourteenth item, the control circuit may control the direction of the emitted light by controlling a voltage applied to the liquid crystal layer via the second electrode.
 [項目16]
 第14または第15の項目に係る光学装置において、前記制御回路は、前記第1の電極を介して前記液晶層に印加する電圧を制御することにより、前記レーザー光が前記第1のグレーティングから前記伝搬光に結合する効率を制御してもよい。
[Item 16]
In the optical device according to the fourteenth or fifteenth item, the control circuit controls the voltage applied to the liquid crystal layer through the first electrode to allow the laser light to be transmitted from the first grating. The efficiency of coupling to the propagating light may be controlled.
 [項目17]
 第14から第16の項目のいずれかに係る光学装置において、前記制御回路は、前記複数の分割領域のうち、前記伝搬光が伝搬する前記第2の誘電体層内の部分に対向する分割領域に、電圧を順次印加してもよい。
[Item 17]
In the optical device according to any of the fourteenth to the sixteenth items, the control circuit is a divided area facing a portion in the second dielectric layer through which the propagation light propagates among the plurality of divided areas. Voltage may be sequentially applied.
 [項目18]
 第14から第17の項目のいずれかに係る光学装置は、偏光分光器と、光検出器と、偏光回転子と、をさらに備え、前記偏光分光器および前記偏光回転子は、前記光源と前記第1の透明部材との間の前記光路上に位置し、前記制御回路は、前記偏光回転子に印加する電圧を制御することにより、前記偏光回転子を通過する前記レーザー光の偏光方向を変化させ、前記光導波素子から出射され、物体によって反射され、前記光導波素子に入射した光の一部は、前記光導波素子、前記偏光回転子、及び前記偏光分光器を通過した後、検出光として、前記光検出器に入射し、前記光検出器は、前記検出光の量に応じた電気信号を生成してもよい。
[Item 18]
The optical device according to any of the fourteenth to seventeenth aspects further comprises a polarization spectroscope, a photodetector, and a polarization rotator, wherein the polarization spectroscope and the polarization rotator are the light source and the light source. Located on the optical path to the first transparent member, the control circuit changes the polarization direction of the laser beam passing through the polarization rotator by controlling the voltage applied to the polarization rotator , A part of the light emitted from the optical waveguide element, reflected by the object, and incident on the optical waveguide element is detected light after passing through the optical waveguide element, the polarization rotator, and the polarization spectroscope The light may be incident on the light detector, and the light detector may generate an electrical signal according to the amount of the detection light.
 [項目19]
 第18の項目に係る光学装置において、前記制御回路は、前記光源が前記レーザー光を出射している間に前記光検出器によって検出される前記検出光の量の極大値と極小値との時間間隔を取得し、前記時間間隔に基づき前記偏光回転子に印加する前記電圧を調整することにより、前記偏光回転子を通過した前記レーザー光の前記偏光方向の回転角を制御してもよい。
[Item 19]
In the optical device pertaining to the eighteenth item, the control circuit is configured to calculate the time between the maximum value and the minimum value of the amount of the detection light detected by the light detector while the light source emits the laser light. The rotation angle of the polarization direction of the laser beam which has passed through the polarization rotator may be controlled by acquiring the interval and adjusting the voltage applied to the polarization rotator based on the time interval.
 [項目20]
 第14から第17の項目のいずれかに係る光学装置は、第1の偏光分光器と、偏光変換器と、分光器と、光検出器と、をさらに備え、前記光検出器は、第1の光検出器及び第2の光検出器を含み、前記第1の偏光分光器、前記偏光変換器、および前記分光器は、前記光源と前記第1の透明部材との間の前記光路上に位置し、前記光導波素子から出射され、物体によって反射され、前記光導波素子を通過した後、前記分光器に入射した光の一部は、前記分光器及び前記偏光変換器を通過した後、第1の検出光として、前記第1の光検出器に入射し、前記分光器に入射した前記光の他の一部は、前記分光器を通過した後、第2の検出光として、前記第2の光検出器に入射し、前記第1の光検出器は、前記第1の検出光の量に応じた第1電気信号を生成し、第2の光検出器は、前記第2の検出光の量に応じた第2電気信号を生成してもよい。
[Item 20]
The optical device according to any of the fourteenth to seventeenth items further comprises a first polarization spectroscope, a polarization converter, a spectroscope, and a photodetector, and the photodetector is configured to And a second light detector, wherein the first polarization spectroscope, the polarization converter, and the spectroscope are disposed on the light path between the light source and the first transparent member. A portion of the light that is located, emitted from the optical waveguide element, reflected by the object, and passed through the optical waveguide element, and then enters the spectroscope, passes through the spectroscope and the polarization converter, The other part of the light incident on the first light detector as the first detection light and incident on the spectroscope after passing through the spectroscope is the second detection light as the second detection light. And the first light detector receives a first electrical signal corresponding to the amount of the first detection light. Form, the second optical detector may generate a second electrical signal corresponding to the amount of the second detection light.
 [項目21]
 第20の項目に係る光学装置において、前記偏光変換器は、1/4波長板であってもよい。
[Item 21]
In the optical device pertaining to the twentieth item, the polarization converter may be a quarter wave plate.
 [項目22]
 第20の項目に係る光学装置において、前記偏光変換器は、直線偏光の光を円接線方向の偏光の光に変換してもよい。
[Item 22]
In the optical device pertaining to the twentieth item, the polarization converter may convert light of linear polarization into light of circular tangential direction.
 [項目23]
 第20から第22の項目のいずれかに係る光学装置は、第2の偏光分光器をさらに備え、前記光検出器は、第3の光検出器をさらに含み、前記光導波素子から出射され、物体によって反射され、前記光導波素子及び前記分光器を通過した後、前記第2の偏光分光器に入射した光の一部は、前記第2の偏光分光器を通過した後、第3の検出光として、前記第2の光検出器に入射し、前記第2の偏光分光器に入射した前記光の他の一部は、前記第2の偏光分光器を通過した後、第4の検出光として、前記第3の光検出器に入射し、前記第3の光検出器は、前記第4の検出光の量に応じた電気信号を生成してもよい。
[Item 23]
The optical device according to any of the twentieth to twenty-second items further comprises a second polarization spectroscope, and the photodetector further comprises a third photodetector, which is emitted from the optical waveguide element, After being reflected by the object and passing through the optical waveguide element and the spectroscope, a part of the light incident on the second polarization spectroscope is subjected to a third detection after passing through the second polarization spectroscope The other part of the light incident on the second photodetector as light and incident on the second polarization spectroscope passes through the second polarization spectroscope, and then a fourth detection light As the third light detector, the third light detector may generate an electric signal according to the amount of the fourth detection light.
 [項目24]
 第20または第21の項目に係る光学装置において、前記制御回路は、前記第1電気信号と、前記第2電気信号とを受け取り、前記第1電気信号と前記第2電気信号との和および前記第1電気信号と前記第2電気信号との比に応じた電気信号を生成してもよい。
[Item 24]
In the optical apparatus according to the twentieth or twenty first item, the control circuit receives the first electric signal and the second electric signal, adds the sum of the first electric signal and the second electric signal, and An electrical signal may be generated according to the ratio of the first electrical signal to the second electrical signal.
 [項目25]
 第18から第24の項目のいずれかに係る光学装置において、前記制御回路は、前記光源が前記レーザー光を出射している間に前記光検出器によって検出される光の量の極大値が最小になるよう、前記第1の電極に印加する電圧を制御してもよい。
[Item 25]
In the optical device according to any of the eighteenth to twenty-fourth items, the control circuit is configured to minimize the maximum value of the amount of light detected by the light detector while the light source emits the laser light. The voltage applied to the first electrode may be controlled so that
 [項目26]
 第18から第25の項目のいずれかに係る光学装置において、前記光検出器はフィルター回路を含み、前記制御回路は、前記光源に、異なる周波数の強度変調信号が重畳された第1の光パルスと第2の光パルスとを順次出射させ、前記光検出器に、前記光導波素子から出射され、前記物体によって反射され、前記光導波素子に入射した前記第1の光パルスの一部、および前記光導波素子から出射され、前記物体によって反射され、前記光導波素子に入射した前記第2の光パルスの一部を検出させ、前記第1の光パルスの前記一部の量に応じた信号と、前記第2の光パルスの前記一部に応じた信号と、を分離して出力させてもよい。
[Item 26]
In the optical device according to any of the eighteenth to twenty-fifth items, the light detector includes a filter circuit, and the control circuit is a first light pulse in which intensity modulation signals of different frequencies are superimposed on the light source. And the second light pulse are sequentially emitted, and the light detector emits light from the light waveguide element to the light detector, reflects the object, and enters the light waveguide element as part of the first light pulse, and A portion of the second optical pulse emitted from the optical waveguide element, reflected by the object, and incident on the optical waveguide element is detected, and a signal corresponding to the amount of the portion of the first optical pulse And a signal corresponding to the part of the second light pulse may be separated and output.
 [項目27]
 第14の項目に係る光学装置において、前記少なくとも1つの電極層において、前記複数の分割領域うち、隣り合う2つの分割領域の境界は、前記動径方向に沿ってジグザグ形状を有していてもよい。
[Item 27]
In the optical device according to the fourteenth item, in the at least one electrode layer, the boundary between two adjacent ones of the plurality of divided regions has a zigzag shape along the radial direction. Good.
 [項目28]
 第27の項目に係る光学装置において、前記第1の電極層及び前記第2の電極層の各々において、前記複数の分割領域のうち、隣り合う2つの分割領域の境界は、前記動径方向に沿ってジグザグ形状を有し、前記第1の誘電体層、前記第2の誘電体層及び前記第3の誘電体層のいずれかに垂直な方向から見たとき、前記第1の電極層における前記境界と、前記第2の電極層における前記境界とは、菱形が連なった形状を形成してもよい。
[Item 28]
In the optical device according to the twenty-seventh item, in each of the first electrode layer and the second electrode layer, a boundary between two adjacent divided regions of the plurality of divided regions is in the radial direction. In the first electrode layer when viewed in a direction perpendicular to any of the first dielectric layer, the second dielectric layer, and the third dielectric layer. The boundary and the boundary in the second electrode layer may form a shape in which rhombuses are continuous.
 [項目29]
 第29の項目に係る光学装置は、レーザー光を出射する光源と、入射した光の量に応じた電気信号を生成する光検出器であって、フィルター回路を含む光検出器と、前記光源および前記光検出器を制御する制御回路と、を備え、前記制御回路は、前記光源に、異なる周波数の強度変調信号が重畳された第1の光パルスと第2の光パルスとを順次出射させ、前記光検出器に、物体によって反射された前記第1の光パルスの一部および前記第2の光パルスの一部を検出させ、前記フィルター回路の処理により、前記第1の光パルスの前記一部の量に応じた信号と、前記第2の光パルスの前記一部に応じた信号と、を分離して出力させる。
[Item 29]
The optical device according to the twenty-ninth item is a light source for emitting laser light, and a photodetector for generating an electric signal according to the amount of incident light, the photodetector including a filter circuit, the light source, and A control circuit for controlling the light detector, the control circuit causing the light source to sequentially emit a first light pulse and a second light pulse on which intensity modulation signals of different frequencies are superimposed; The light detector is made to detect a part of the first light pulse and a part of the second light pulse reflected by the object, and the processing of the filter circuit makes it possible to detect the one of the first light pulses. A signal corresponding to the amount of part and a signal corresponding to the part of the second light pulse are separated and output.
 [項目30]
 第30の項目に係る光導波素子は、第1の誘電体層と、前記第1の誘電体層上の第2の誘電体層と、前記第2の誘電体層上の第3の誘電体層と、前記第1から第3の誘電体層を挟む一対の電極層と、を備え、前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、前記第3の誘電体層は、液晶層であり、前記一対の電極層のうち、前記第1の誘電体層に近い方の電極層は反射層であり、前記第3の誘電体層に近い方の電極層は透明電極層であり、前記一対の電極層の少なくとも一方は、ある方向に沿って配列された導電性の複数の分割領域を含み、前記複数の分割領域は、互いに絶縁されており、前記複数の分割領域のうち、任意の隣り合う2つの分割領域の境界は、ジグザグ形状を有する。
[Item 30]
The optical waveguide element according to the thirtieth item comprises a first dielectric layer, a second dielectric layer on the first dielectric layer, and a third dielectric on the second dielectric layer. And a pair of electrode layers sandwiching the first to third dielectric layers, wherein the refractive index of the second dielectric layer is equal to the refractive index of the first dielectric layer and the third dielectric layer. The third dielectric layer is a liquid crystal layer, and the electrode layer closer to the first dielectric layer of the pair of electrode layers is a reflective layer The electrode layer closer to the third dielectric layer is a transparent electrode layer, and at least one of the pair of electrode layers includes a plurality of conductive divided regions arranged along a certain direction, The plurality of divided regions are isolated from each other, and among the plurality of divided regions, the boundary between any two adjacent divided regions has a zigzag shape. That.
 [項目31]
 第30の項目に係る光導波素子において、前記一対の電極層の各々は、前記複数の分割領域を含み、前記第1から第3の誘電体層のいずれかに垂直な方向から見たとき、前記一対の電極の一方における前記境界と、他方における前記境界とは、菱形が連なった形状を形成してもよい。
[Item 31]
In the optical waveguide element according to the thirtieth item, each of the pair of electrode layers includes the plurality of divided regions, and when viewed from a direction perpendicular to any of the first to third dielectric layers, The boundary at one of the pair of electrodes and the boundary at the other may form a continuous rhombus shape.
 本開示において、回路、ユニット、装置、部材又は部の全部又は一部、又はブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(large scale integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、若しくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram represents a semiconductor device, a semiconductor integrated circuit (IC), or a large scale integration (LSI). It may be implemented by one or more electronic circuits, including: The LSI or IC may be integrated on one chip or may be configured by combining a plurality of chips. For example, functional blocks other than storage elements may be integrated on one chip. Although the term “LSI” or “IC” is used here, the term is changed depending on the degree of integration, and may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration). A Field Programmable Gate Array (FPGA) programmed after the manufacture of the LSI, or a reconfigurable logic device capable of reconfiguring junctions inside the LSI or setting up circuit sections inside the LSI can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウエア処理によって実行することが可能である。この場合、ソフトウエアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウエアが処理装置(processor)によって実行されたときに、そのソフトウエアで特定された機能が処理装置(processor)および周辺装置によって実行される。システム又は装置は、ソフトウエアが記録されている一つ又は複数の非一時的記録媒体、処理装置(processor)、及び必要とされるハードウエアデバイス、例えばインターフェース、を備えていても良い。 Furthermore, all or part of the functions or operations of the circuits, units, devices, members or parts can be performed by software processing. In this case, the software is recorded on a non-transitory recording medium such as one or more ROMs, optical disks, hard disk drives, etc., and the software is identified by the software when it is executed by a processor. The functions are performed by a processor and peripherals. The system or apparatus may include one or more non-transitory storage media on which software is recorded, a processor, and any hardware devices required, such as an interface.
 以下、本開示のより具体的な実施形態を説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明および実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、本発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似する機能を有する構成要素については、同じ参照符号を付している。 Hereinafter, more specific embodiments of the present disclosure will be described. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art. The present inventors provide the attached drawings and the following description so that those skilled in the art can fully understand the present disclosure, and intend to limit the subject matter described in the claims by these is not. In the following description, components having the same or similar functions are given the same reference numerals.
 (第1実施形態)
 図1Aおよび図1Bは、それぞれ、第1実施形態のおける、光学装置の構成と、光線の経路とを模式的に示す斜視図および断面図である。図1Cは、光学装置における光源の構成を模式的に示す斜視図である。図1Dは、光学装置における円柱体の別の形態を模式的に示す斜視図である。図2Aは、入力グレーティングカプラにおける入射光と導波光との関係、および出力グレーティングカプラにおける導波光と放射光との関係についてのベクトルダイアグラムを示す図である。図2Bは、円柱面での回折の関係についてのベクトルダイアグラムを示す図である。
First Embodiment
FIG. 1A and FIG. 1B are a perspective view and a cross-sectional view schematically showing the configuration of an optical device and the path of light in the first embodiment, respectively. FIG. 1C is a perspective view schematically showing the configuration of a light source in the optical device. FIG. 1D is a perspective view schematically showing another form of a cylindrical body in the optical device. FIG. 2A is a diagram showing a vector diagram of the relationship between incident light and guided light in the input grating coupler and the relationship between guided light and emitted light in the output grating coupler. FIG. 2B is a diagram showing a vector diagram of the relationship of diffraction on a cylindrical surface.
 第1実施形態における光線の進路を説明する。 The course of the light beam in the first embodiment will be described.
 図1Aおよび図1Bに示す例では、光学装置は、光源1と、コリメートレンズ2aと、反射ミラー3と、偏光分光器4と、偏光回転子5と、集光レンズ2bと、円柱体6と、光導波素子7と、制御回路30、制御回路31、および制御回路32とを備える。制御回路30、制御回路31、および制御回路32をまとめて1つの制御回路としてもよい。以下の説明では、便宜上、軸Lを垂直方向とし、それに直交する方向を水平方向とする。偏光回転子5、集光レンズ2b、円柱体6、および光導波素子7は、軸Lを中心軸として配置される。 In the example shown in FIGS. 1A and 1B, the optical device includes the light source 1, the collimator lens 2a, the reflection mirror 3, the polarization spectroscope 4, the polarization rotator 5, the condenser lens 2b, and the cylindrical body 6 , An optical waveguide element 7, a control circuit 30, a control circuit 31, and a control circuit 32. The control circuit 30, the control circuit 31, and the control circuit 32 may be integrated into one control circuit. In the following description, for the sake of convenience, the axis L is in the vertical direction, and the direction orthogonal thereto is in the horizontal direction. The polarization rotator 5, the focusing lens 2b, the cylindrical body 6, and the optical waveguide element 7 are disposed with the axis L as a central axis.
 レーザー発振を制御する制御回路30からの発振信号により、光源1は、波長λの直線偏光であるレーザー光10aを出射する。光源1はファブリーペローのレーザー光源であってもよいが、例えば、図1Cに示す構成であってもよい。図1Cに示す光源1は、ファブリーペローのレーザー光源1aにファイバーブラッググレーティング1bを組み合わせた構成である。ファイバーブラッググレーティング1bは、ファイバー形状のコア36とコアの周りを取り巻くクラッド37とによって構成される。コア36の屈折率は、クラッド37の屈折率より高い。コア36には、ファイバーの中心軸に沿って周期的な屈折率分布を生むグレーティングが形成されている。レーザー光源1aから出射された光10Aは、ARコートが施されたコア36の入射端36aに入射してコア内を伝搬する導波光になる。グレーティングによるブラッグ反射回折光がレーザー光源1a側に帰還する。この帰還光により、レーザー光源1aはグレーティングのピッチに対応した波長で発振する。その結果、ファイバーブラッググレーティング1bの出射端36bからは、安定した波長の光10aが出射される。図1Cに示す構成では、ファイバーブラッググレーティング1bは、圧電素子38を介して固定板39によって挟まれている。制御回路35は、電圧を印加して圧電素子38を変形させることにより、ファイバーブラッググレーティング1bを加圧する。この加圧により、グレーティングによる反射回折の条件が変化する。これにより、出射光10aの波長を制御することができる。圧電素子38の変位応答性は数KHzから数十KHzである。したがって、その応答性に対応した波長可変が可能である。 The light source 1 emits a laser beam 10 a which is linear polarized light of wavelength λ by an oscillation signal from the control circuit 30 that controls laser oscillation. The light source 1 may be a Fabry-Perot laser light source, but may be configured as shown in FIG. 1C, for example. The light source 1 shown in FIG. 1C has a configuration in which a Fabry-Perot laser light source 1a is combined with a fiber Bragg grating 1b. The fiber Bragg grating 1b is constituted by a fiber-shaped core 36 and a cladding 37 surrounding the core. The refractive index of the core 36 is higher than the refractive index of the cladding 37. The core 36 is formed with a grating that produces a periodic refractive index profile along the central axis of the fiber. The light 10A emitted from the laser light source 1a enters the incident end 36a of the AR coated core 36 and becomes guided light propagating in the core. Bragg reflection diffraction light from the grating is fed back to the laser light source 1a side. The feedback light causes the laser light source 1a to oscillate at a wavelength corresponding to the pitch of the grating. As a result, light 10a of a stable wavelength is emitted from the emission end 36b of the fiber Bragg grating 1b. In the configuration shown in FIG. 1C, the fiber Bragg grating 1 b is sandwiched by the fixing plate 39 via the piezoelectric element 38. The control circuit 35 applies a voltage to deform the piezoelectric element 38 to press the fiber Bragg grating 1 b. The pressure changes the condition of reflection diffraction by the grating. Thereby, the wavelength of the emitted light 10a can be controlled. The displacement response of the piezoelectric element 38 is from several kilohertz to several tens of kilohertz. Therefore, wavelength tuning corresponding to the response is possible.
 光10aは、コリメートレンズ2aにより平行光10bになり、反射ミラー3を反射して偏光分光器4に入射する光10cになり、偏光分光器4を透過する光10dになる。偏光分光器4は、光源1から偏光回転子5までの光路上に位置する。偏光分光器4は、例えば偏光ビームスプリッタである。コリメートレンズ2aと反射ミラー3との間に、楕円に広がるレーザー光10aの分布を円形に変換するビーム整形プリズムを挿入してもよい。偏光分光器4を透過する光10dは、偏光方向11dの直線偏光の状態で、中心軸Lに沿って偏光回転子5に入射する。偏光回転子5は、光源1から出射された光10aの光路上に位置する。偏光を制御する制御回路31からの制御信号により、偏光回転子5に電圧が印加される。これにより、偏光回転子5を出射する光10eの偏光方向11eは、偏光方向11dに比べて回転する。光10eは、中心軸Lに沿って集光レンズ2bを通過し、屈折率nおよび半径rの第1の透明部材の一例である円柱体6に入射する。中心軸Lは、偏光回転子5を通過した光10eの光路上に位置し、当該光路に沿った軸であるといえる。 The light 10a becomes parallel light 10b by the collimator lens 2a, is reflected by the reflection mirror 3 to become light 10c incident on the polarization spectroscope 4, and becomes light 10d to be transmitted through the polarization spectroscope 4. The polarization spectroscope 4 is located on the light path from the light source 1 to the polarization rotator 5. The polarization spectroscope 4 is, for example, a polarization beam splitter. A beam shaping prism may be inserted between the collimating lens 2 a and the reflection mirror 3 to convert the distribution of the laser light 10 a spreading in an ellipse into a circle. The light 10d transmitted through the polarization spectroscope 4 enters the polarization rotator 5 along the central axis L in the state of linear polarization in the polarization direction 11d. The polarization rotator 5 is located on the optical path of the light 10 a emitted from the light source 1. A voltage is applied to the polarization rotator 5 by the control signal from the control circuit 31 that controls the polarization. As a result, the polarization direction 11e of the light 10e emitted from the polarization rotator 5 rotates relative to the polarization direction 11d. The light 10 e passes through the condenser lens 2 b along the central axis L, and enters the cylindrical body 6 which is an example of the first transparent member having the refractive index n 0 and the radius r 0 . The central axis L is located on the optical path of the light 10 e that has passed through the polarization rotator 5 and can be said to be an axis along the optical path.
 光導波素子7は、偏光回転子5を通過した光10eの光路上に位置する。光導波素子7は、透明平面基板7f、および平面基板7aを含む。透明平面基板7fは、屈折率n’の透明基板である。光導波素子7は、低屈折率であるバッファー層7c、バッファー層7c上の高屈折率である導波層7d、および導波層7d上の液晶層7eを含む。導波層7dの屈折率は、バッファー層7cの屈折率、および液晶層7eの屈折率よりも高い。光導波素子7は、バッファー層7cの、導波層7dに接する側とは反対の側に反射層7bを含む。例えば、平面基板7aの上表面には、Alなどの反射層7b、SiOなどの透明なバッファー層7c、およびTaなどの透明な導波層7dがこの順に成膜される。 The optical waveguide element 7 is located on the optical path of the light 10 e that has passed through the polarization rotator 5. The optical waveguide element 7 includes a transparent flat substrate 7 f and a flat substrate 7 a. The transparent flat substrate 7 f is a transparent substrate having a refractive index n 0 ′. The optical waveguide element 7 includes a buffer layer 7c having a low refractive index, a waveguide layer 7d having a high refractive index on the buffer layer 7c, and a liquid crystal layer 7e on the waveguide layer 7d. The refractive index of the waveguide layer 7d is higher than the refractive index of the buffer layer 7c and the refractive index of the liquid crystal layer 7e. The optical waveguide element 7 includes a reflective layer 7b on the side opposite to the side in contact with the waveguide layer 7d of the buffer layer 7c. For example, on the upper surface of the flat substrate 7a, a reflective layer 7b of Al or the like, a transparent buffer layer 7c of SiO 2 or the like, and a transparent waveguide layer 7d of Ta 2 O 5 or the like are formed in this order.
 光導波素子7は、第1のグレーティングの一例であるグレーティング8a、第5のグレーティングの一例であるグレーティング8b、および第2のグレーティングの一例であるグレーティング8cを含む。図1Aおよび図1Bに示す例では、導波層7dの表面に、軸Lを同じ中心とする同心円の構造を有する凹凸グレーティングであるグレーティング8a、グレーティング8b、およびグレーティング8cが形成される。グレーティング8a、およびグレーティング8cは、グレーティングカプラとして作用する。グレーティング8bは、液晶配向用のグレーティングである。用途によっては、グレーティング8a、グレーティング8b、グレーティング8c、および光導波素子7は、同心円の形状から一部を切り取った、扇形などの形状を有してもよい。 The optical waveguide element 7 includes a grating 8a which is an example of a first grating, a grating 8b which is an example of a fifth grating, and a grating 8c which is an example of a second grating. In the example shown in FIGS. 1A and 1B, the grating 8a, the grating 8b, and the grating 8c, which are concavo-convex gratings having a concentric structure centering on the axis L, are formed on the surface of the waveguide layer 7d. The grating 8a and the grating 8c function as a grating coupler. The grating 8 b is a grating for liquid crystal alignment. Depending on the application, the grating 8a, the grating 8b, the grating 8c, and the optical waveguide element 7 may have a fan-like shape, for example, by cutting a part of the shape of a concentric circle.
 グレーティング8aは、軸Lを中心とする半径rの円形領域内に形成される。グレーティング8aのピッチはΛであり、深さはdである。グレーティング8cは、半径rから半径rの範囲の輪帯領域内に形成される。グレーティング8cのピッチはΛであり、深さdである。グレーティング8bは、半径rから半径rの範囲の輪帯領域内に形成される。グレーティング8bのピッチは例えば0.8Λ以下であり、深さdである。半径r、半径r、および半径rの典型的なサイズは、ミリメートルのオーダーである。グレーティング8bのピッチを0.8Λ以下とすることにより、グレーティング8bの凹凸は、液晶配向のために作用し、カプラとして機能しない。したがって、グレーティング8bの凹凸は、導波光を放射させない。 The grating 8 a is formed in a circular area of radius r 1 centered on the axis L. Pitch of the grating 8a is lambda 0, the depth is d 0. Grating 8c is formed from a radius r 2 to the annular area ranging from a radius r 3. The pitch of the grating 8c is Λ 1 and depth d 1 . The grating 8 b is formed in an annular zone ranging from the radius r 1 to the radius r 2 . Pitch of the grating 8b is for example 0.8Ramuda 1 or less, the depth d 1. Typical sizes of radius r 1 , radius r 2 and radius r 3 are of the order of millimeters. By the pitch of the grating 8b and 0.8Ramuda 1 or less, the unevenness of the grating 8b acts for liquid crystal alignment, does not function as a coupler. Therefore, the unevenness of the grating 8b does not emit the guided light.
 グレーティング8a、グレーティング8b、およびグレーティング8cは、凹凸形状が導波層7dの液晶側表面に現れるのであれば、バッファー層7cの表面側に形成されてもよい。導波層7dの表面に凹凸形状を形成することにより、グレーティングが液晶の配向手段として作用する。すなわち、液晶がグレーティングの方位に配向する。透明平面基板7fの下表面側、すなわち導波層側には、ITOなどの透明電極層7gが形成される。透明電極層7gは、液晶層7eを介して、導波層7dに対面する。透明電極層7gは、軸Lを同じ中心とする3つの電極9A、電極9B、および電極9Cに分けられる。電極9A、電極9B、および電極9Cは、それぞれグレーティング8a、グレーティング8b、およびグレーティング8cに対面する。液晶層7eに電圧が印加されていない状態において、液晶層7eの液晶分子は、導波層7d表面の凹凸の方向に沿って配向する。言い換えれば、液晶層7eにおける液晶の配向方向は、導波層7d表面に平行で、グレーティング8a、グレーティング8b、およびグレーティング8cの格子ベクトルに垂直である。反射層7bおよび透明電極層7gは、液晶の配向制御用の電極として作用する。電極9A、電極9B、および電極9Cは、それぞれ独立した電極である。透明電極層7gの代わりに、反射層7bを3つの電極に分けてもよいし、透明電極層7gおよび反射層7bの各々を3つの電極に分けてもよい。 The grating 8a, the grating 8b, and the grating 8c may be formed on the surface side of the buffer layer 7c if the concavo-convex shape appears on the liquid crystal side surface of the waveguide layer 7d. By forming an uneven shape on the surface of the waveguide layer 7d, the grating acts as an alignment means of liquid crystal. That is, the liquid crystal is aligned in the direction of the grating. On the lower surface side of the transparent flat substrate 7f, that is, on the waveguide layer side, a transparent electrode layer 7g of ITO or the like is formed. The transparent electrode layer 7g faces the waveguide layer 7d via the liquid crystal layer 7e. The transparent electrode layer 7g is divided into three electrodes 9A, an electrode 9B, and an electrode 9C having the axis L at the same center. The electrode 9A, the electrode 9B, and the electrode 9C face the grating 8a, the grating 8b, and the grating 8c, respectively. When no voltage is applied to the liquid crystal layer 7e, the liquid crystal molecules of the liquid crystal layer 7e are aligned along the direction of the unevenness on the surface of the waveguide layer 7d. In other words, the alignment direction of the liquid crystal in the liquid crystal layer 7e is parallel to the surface of the waveguide layer 7d and perpendicular to the lattice vectors of the grating 8a, the grating 8b, and the grating 8c. The reflective layer 7 b and the transparent electrode layer 7 g function as electrodes for controlling the alignment of liquid crystal. The electrode 9A, the electrode 9B, and the electrode 9C are independent electrodes. Instead of the transparent electrode layer 7g, the reflective layer 7b may be divided into three electrodes, or each of the transparent electrode layer 7g and the reflective layer 7b may be divided into three electrodes.
 なお、グレーティング8bは、透明平面基板7fの下表面側に形成されてもよい。また、透明平面基板7fの下表面側におけるグレーティング8aおよびグレーティング8cに対面する位置にも、軸Lを中心とする同心円状のグレーティングが形成されていてもよい。下表面に凹凸が形成されていれば、透明電極層7gの表面にも、凹凸形状が転写する。これにより、液晶層7eの液晶分子をこの凹凸の方向に沿って配向させることができる。当然、導波層7dおよび透明電極層7gの表面にポリイミドなどの配向膜を成膜し、これを回転方向にラビング処理することにより、液晶層7eの液晶分子を配向させることもできる。 The grating 8b may be formed on the lower surface side of the transparent flat substrate 7f. A concentric grating centered on the axis L may be formed at a position facing the grating 8a and the grating 8c on the lower surface side of the transparent flat substrate 7f. When the unevenness is formed on the lower surface, the unevenness is transferred also to the surface of the transparent electrode layer 7g. Thereby, the liquid crystal molecules of the liquid crystal layer 7e can be aligned along the direction of the unevenness. Naturally, liquid crystal molecules of the liquid crystal layer 7e can be aligned by forming an alignment film such as polyimide on the surfaces of the waveguide layer 7d and the transparent electrode layer 7g and rubbing it in the rotational direction.
 円柱体6の下面を経た光10fは、中心軸Lに沿ってグレーティングカプラであるグレーティング8aに集束する。グレーティング8aに集束した光10fは、導波層7d内において、導波層7dと軸Lとの交点である同心円の中心Oから外周側に向かう導波光10gを励起する。 The light 10 f passing through the lower surface of the cylindrical body 6 is focused along the central axis L to the grating 8 a which is a grating coupler. The light 10 f focused on the grating 8 a excites the guided light 10 g going from the center O of the concentric circle which is the intersection of the waveguide layer 7 d and the axis L in the waveguide layer 7 d.
 導波光10gへの結合条件は、図2Aに示すように、大きさλ/Λの矢印によって表された格子ベクトルPOが、実効屈折率Nに等しいことである。当該結合条件は式(1)によって記述される。 The coupling condition to the guided light 10g is that the grating vector PO represented by the arrow of size λ / Λ 0 is equal to the effective refractive index N, as shown in FIG. 2A. The said coupling conditions are described by Formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 グレーティング8aを透過する光10faも、反射層7bによって反射され、再びグレーティング8aに入射し、導波光10gの励起を強める。導波光10gは、同心円の動径方向に沿って伝搬し、グレーティングカプラであるグレーティング8cから角度θで放射され、円柱体6側に向かう放射光10hになる。 The light 10fa transmitted through the grating 8a is also reflected by the reflection layer 7b, and is again incident on the grating 8a to enhance the excitation of the guided light 10g. The guided light 10 g propagates along the radial direction of the concentric circles, is emitted at an angle θ 1 from the grating 8 c which is a grating coupler, and becomes the emitted light 10 h toward the cylindrical body 6 side.
 放射光への結合条件は、図2Aに示すように、ベクトルOP’の垂線の足が、大きさλ/Λの破線矢印によって表された格子ベクトルPPの終点Pに一致することである。当該結合条件は、式(2)によって記述される。 Binding conditions to the emitted light, as shown in FIG. 2A, the perpendicular foot of vector OP 1 'matches the end point P 1 of the grating vector PP 1 represented by the magnitude lambda / lambda 1 of dashed arrows It is. The said coupling conditions are described by Formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 反射層7b側に放射される光10haも、反射層7bによって反射され、放射光10hと重なる。液晶の配向を制御する制御回路32の制御信号により、反射層7bおよび透明電極層7gの一対の電極層を介して液晶層7eに電圧を印加する。これによる液晶の配向の変化に伴い、液晶の屈折率nが変化し、導波光10gの実効屈折率Nが変化する。グレーティング8cの領域において導波光10gの実効屈折率が変化すれば、グレーティング8cから光導波素子7の外部に出射する光の方向が変化する。制御回路32は、電極9A、電極9B、および電極9Cに独立して信号を送ることができる。なお、液晶層に印加する電圧信号は交流波である。交流波の振幅の大きさによって液晶の配向方向が導波層7d表面の法線方向側へ傾斜し、配向方向の傾斜角が決定される。以下の説明では、液晶層に印加する電圧とは、液晶層に印加する交流波の振幅の大きさを意味する。 The light 10 ha emitted toward the reflective layer 7 b is also reflected by the reflective layer 7 b and overlaps with the emitted light 10 h. A voltage is applied to the liquid crystal layer 7 e via the pair of electrode layers of the reflective layer 7 b and the transparent electrode layer 7 g by the control signal of the control circuit 32 that controls the alignment of the liquid crystal. This according with the change in orientation of the liquid crystal, the refractive index n 1 of the liquid crystal is changed, a change in the effective refractive index N of the guided light 10g. If the effective refractive index of the guided light 10g changes in the region of the grating 8c, the direction of the light emitted from the grating 8c to the outside of the optical waveguide element 7 changes. The control circuit 32 can independently send signals to the electrode 9A, the electrode 9B, and the electrode 9C. The voltage signal applied to the liquid crystal layer is an alternating wave. The orientation direction of the liquid crystal is inclined toward the normal direction side of the surface of the waveguide layer 7d depending on the amplitude of the AC wave, and the inclination angle of the orientation direction is determined. In the following description, the voltage applied to the liquid crystal layer means the amplitude of the AC wave applied to the liquid crystal layer.
 放射光10hは、円柱体6の下面を経て、円柱体6の側面である円柱面6aを水平面からθ’の角度で屈折する屈折光10jになる。屈折の関係式は、式(3)によって記述される。 The emitted light 10 h passes through the lower surface of the cylindrical body 6 and becomes refracted light 10 j which refracts the cylindrical surface 6 a which is the side surface of the cylindrical body 6 from the horizontal plane at an angle of θθ ′. The refractive equation is described by equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 円柱面6aの表面には、第3のグレーティングの一例である、ピッチΛのブレーズグレーティングが形成されてもよい。ブレーズグレーティングでは、中心軸Lに直交する方向に沿って鋸状の溝が形成されている。ブレーズグレーティングにより、屈折光10jは、垂直面内において回折して、水平面からθの角度で外部に出射する出射光10iになる。回折の関係は、図2Bに示すように、ベクトルOP’の垂線の足PとベクトルOP’の垂線の足Pとの距離が、格子ベクトルP(大きさλ/Λの破線矢印)に等しいことによって表される。回折の関係式は、式(4)によって記述される。 A blazed grating with a pitch of 2 may be formed on the surface of the cylindrical surface 6a, which is an example of a third grating. In the blazed grating, a saw-like groove is formed along a direction perpendicular to the central axis L. The blazed grating, refracted light 10j diffracts in a vertical plane, the outgoing light 10i emitted to the outside at an angle theta from the horizontal plane. Relationship diffraction, as shown in FIG. 2B, the distance between the 'foot P 2 and vector OP 3 of a perpendicular' foot P 3 of a perpendicular vector OP 2 is lattice vector P 3 P 2 (size lambda / lambda Expressed by equaling two dashed arrows). The relationship of diffraction is described by equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、図1Dに示すように、円柱体6の周りを、第2の透明部材の一例である円筒体6Aによって囲んでもよい。円筒体6Aの中心軸は、円柱体6の中心軸と同じである。円筒体6Aの内側表面6b、および外側表面6cには、第4のグレーティングの一例である、それぞれピッチΛ2b、およびピッチΛ2cのブレーズグレーティングが形成されている。図1Dに示す例では、放射光10hはピッチΛ、ピッチΛ2b、およびピッチΛ2cのブレーズグレーティングによって3回回折して出射光10iになる。回折を3回に分散することにより、それぞれのブレーズグレーティングのピッチを大きく設定でき、加工が容易になる。 As shown in FIG. 1D, the cylindrical body 6 may be surrounded by a cylindrical body 6A which is an example of a second transparent member. The central axis of the cylindrical body 6A is the same as the central axis of the cylindrical body 6. Blazing gratings having a pitch 表面2b and a pitch Λ 2c , which are an example of a fourth grating, are formed on the inner surface 6b and the outer surface 6c of the cylindrical body 6A. In the example shown in FIG. 1D, the emitted light 10h is diffracted three times by a blazed grating with a pitch Λ 2 , a pitch Λ 2b and a pitch Λ 2c to become an emitted light 10i. By dispersing the diffraction three times, the pitch of each blazed grating can be set large and processing becomes easy.
 円柱体6は、透明平面基板7f上に位置する。一般には、円柱体6の代わりに、軸Lを中心軸とする回転対称体である透明部材を用いてもよい。グレーティング8cのピッチが変化する場合、回転対称体の母線は曲線の形状を有する。ピッチが一定の場合、回転対称体の母線は直線の形状を有し、回転対称体は円柱体または円錐体になる。 The cylindrical body 6 is located on the transparent flat substrate 7 f. In general, instead of the cylindrical body 6, a transparent member which is a rotationally symmetric object with the axis L as a central axis may be used. If the pitch of the grating 8c changes, the generatrix of the rotationally symmetric body has the shape of a curve. When the pitch is constant, the generatrix of the rotationally symmetric body has a linear shape, and the rotationally symmetric body becomes a cylinder or a cone.
 出射ビーム10iによる垂直方向の走査は、光源1の波長変化、または電極9Cにおける液晶層7eの屈折率変化によって実現される。式(2)から、実効屈折率Nの放射角θに対する微分は、式(5)によって記述され、放射角θの波長λに対する微分は、式(6)によって記述される。式(3)から式(6)により、垂直方向の出射角θの波長λに対する微分は式(7)によって記述される。 The scanning in the vertical direction by the outgoing beam 10i is realized by the change of the wavelength of the light source 1 or the change of the refractive index of the liquid crystal layer 7e at the electrode 9C. From equation (2), the derivative of the effective refractive index N with respect to the radiation angle θ 1 is described by equation (5), and the derivative of the radiation angle θ 1 with respect to the wavelength λ is described by equation (6). The derivative of the emission angle θθ in the vertical direction with respect to the wavelength λ is described by the equation (7) according to the equations (3) to (6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 光導波素子7から出射され、外界の物体によって反射された光は、光導波素子7に帰還する。光導波素子7に入射した光の一部は、グレーティング8cによって光導波素子7内を中心軸Lに向かって伝搬し、グレーティング8aによって光導波素子7から出射され、偏光回転子5および偏光分光器4を経て、光検出器12に入射する。光検出器12は、入射した光の量に応じた電気信号を生成する。この過程をより詳細に説明する。 The light emitted from the optical waveguide element 7 and reflected by the external object is returned to the optical waveguide element 7. A part of the light incident on the optical waveguide device 7 propagates in the optical waveguide device 7 toward the central axis L by the grating 8 c, and is emitted from the optical waveguide device 7 by the grating 8 a, and the polarization rotator 5 and the polarization spectroscope The light beam is incident on the light detector 12 through 4. The light detector 12 generates an electrical signal according to the amount of incident light. This process will be described in more detail.
 外界にある物体の表面によって反射された光は、出射ビーム10iの光路を逆進し、円柱面6aに入射した後、放射光10h、導波光10g、ならびに入力側の光10f、光10e、および光10dの光路を逆進する。グレーティング8cにおける入力では、往路の出力時と同じ波長、および同じ位相面の光だけが、選択的に結合する。したがって、波長および位相の少なくとも一方が異なる迷光は、効果的に除去される。偏光回転子5の制御により、逆進光10Dの偏光方向は、往路時の光10dの偏光方向と比較して、90度回転している。このため、逆進光10Dは、偏光分光器4を反射して光10Dになり、光検出器12によって検出される。光検出器12は、検出回路33を含む。検出信号は、検出回路33によって信号処理される。図1Aおよび図1Bに示す例において、光学装置は、制御回路34をさらに備えてもよい。制御回路34は、検出回路33の検出信号から、例えば光源または液晶の配向を制御する制御信号を生成する。また、制御回路30、制御回路31、制御回路32、制御回路34、および制御回路35をまとめて1つの制御回路としてもよい。 The light reflected by the surface of the external object reverses the optical path of the outgoing beam 10i and enters the cylindrical surface 6a, and then the emitted light 10h, the guided light 10g, and the light 10f on the input side, the light 10e, and Reverse the light path of the light 10d. At the input at grating 8c, only light of the same wavelength and the same phase plane as at the output of the forward pass is selectively coupled. Therefore, stray light having different wavelengths and / or phases is effectively eliminated. By the control of the polarization rotator 5, the polarization direction of the reverse light 10D is rotated by 90 degrees as compared with the polarization direction of the light 10d at the time of the forward path. Therefore, backward light 10D will become light 10D 0 reflects the polarization spectroscope 4, it is detected by the photodetector 12. The photodetector 12 includes a detection circuit 33. The detection signal is processed by the detection circuit 33. In the example shown in FIGS. 1A and 1B, the optical device may further comprise a control circuit. The control circuit 34 generates, from the detection signal of the detection circuit 33, for example, a control signal for controlling the orientation of the light source or the liquid crystal. Further, the control circuit 30, the control circuit 31, the control circuit 32, the control circuit 34, and the control circuit 35 may be integrated into one control circuit.
 なお、偏光分光器4は、偏光ビームスプリッタの代わりに、ハーフミラーを用いてもよい。このとき、偏光回転子5の制御に関係なく、光10dの逆進光10Dは、ハーフミラーによって反射され、光検出器12によって検出される。ハーフミラーを用いる場合、光量は、往路において半分になり、復路においてさらに半分になる。すなわち、光量は、往復路において1/4になる。偏光制御の簡素化が図れるものの、検出光量は小さくなる。 The polarization spectroscope 4 may use a half mirror instead of the polarization beam splitter. At this time, regardless of the control of the polarization rotator 5, the backward light 10 D of the light 10 d is reflected by the half mirror and detected by the light detector 12. When a half mirror is used, the light quantity is halved in the forward path and is halved in the return path. That is, the light amount is 1⁄4 in the reciprocating path. Although the polarization control can be simplified, the amount of detected light is reduced.
 図3Aは、第1実施形態における入射光の偏光方向および入力の様子を模式的に示す斜視図である。図3Bは、入力グレーティング8aを模式的に示す断面図である。図3Cは、入力結合し導波する光の様子を光強度によって示す断面図である。図3Dは、入力グレーティングカプラを模式的に示す平面図である。図3Eから図3Gは、偏光方向と入力伝搬方向との関係を光強度によって示す平面図である。図3Bおよび図3Dに示す例では、グレーティング8aの直径は2r=10μmであり、ピッチはΛ=0.57μmであり、深さはd=0.10μmである。導波層7dの材質はTaであり、層厚は0.15μmである。液晶層層7eおよびバッファー層7cの屈折率はSiOの屈折率と同じであるとした。このとき、垂直入射により、TEモードの導波光が励起される。図3C、および図3Eから図3Gに示す例では、波長λ=0.94μmの解析結果が示されている。 FIG. 3A is a perspective view schematically showing the polarization direction and the input state of incident light in the first embodiment. FIG. 3B is a cross-sectional view schematically showing the input grating 8a. FIG. 3C is a cross-sectional view showing the appearance of light that is coupled in and guided by light intensity. FIG. 3D is a plan view schematically showing an input grating coupler. FIGS. 3E to 3G are plan views showing the relationship between the polarization direction and the input propagation direction by the light intensity. In the example shown in FIGS. 3B and 3D, the diameter of the grating 8a is 2r 1 = 10 μm, the pitch is Λ 0 = 0.57 μm, and the depth is d 0 = 0.10 μm. The material of the waveguide layer 7 d is Ta 2 O 5 and the layer thickness is 0.15 μm. The refractive index of the liquid crystal layer 7 e and the buffer layer 7 c is the same as the refractive index of SiO 2 . At this time, guided light in the TE mode is excited by vertical incidence. In the examples shown in FIG. 3C and FIGS. 3E to 3G, analysis results of wavelength λ = 0.94 μm are shown.
 図3Cおよび図3Eに示すように、入射光である光10fの偏光方向11eがy軸方向に平行である場合には、励起される導波光は、x軸方向に強く伝搬する。図3Fに示すように、光10fの偏光方向11eが135度方向に平行である場合には、励起される導波光は、45度方向に強く伝搬する。図3Gに示すように、光10fの偏光方向11eがx軸方向に平行である場合には、励起される導波光は、y軸方向に強く伝搬する。図3C、および図3Eから図3Gに示すように、グレーティング8aは、光10fの一部を、光導波素子7における導波層7d内で、偏光方向11eに垂直な方向を中心にした広がりで伝搬させる。例えば、励起される導波光がTMモードの場合には、伝搬方向は90度回転し、入射時の偏光方向に揃う。入射光の偏光方向を制御できれば、導波光の伝搬方向を変化させることができる。伝搬方向の変化の応答性は、偏光方向の制御の応答性によって決定される。 As shown in FIGS. 3C and 3E, when the polarization direction 11e of the light 10f which is incident light is parallel to the y-axis direction, the guided wave light to be excited propagates strongly in the x-axis direction. As shown in FIG. 3F, when the polarization direction 11e of the light 10f is parallel to the 135 degree direction, the guided wave light to be excited propagates strongly in the 45 degree direction. As shown in FIG. 3G, when the polarization direction 11e of the light 10f is parallel to the x-axis direction, the guided wave light to be excited propagates strongly in the y-axis direction. As shown in FIGS. 3C and 3E to 3G, the grating 8a spreads a portion of the light 10f around the direction perpendicular to the polarization direction 11e in the waveguide layer 7d of the optical waveguide element 7. Propagate. For example, when the guided light to be excited is in the TM mode, the propagation direction is rotated by 90 degrees and aligned with the polarization direction at the time of incidence. If the polarization direction of incident light can be controlled, the propagation direction of guided light can be changed. The responsiveness of the change in propagation direction is determined by the responsiveness of control of the polarization direction.
 光源1と、偏光回転子5と、光導波素子7とを備える光学装置であれば、偏光回転子5に電圧を印加することにより、導波層7dを伝搬する導波光の伝搬方向を、導波層7dに平行な任意の方向に変化させることができる。 In the case of an optical device including the light source 1, the polarization rotator 5, and the optical waveguide device 7, the propagation direction of the guided light propagating in the waveguide layer 7 d is guided by applying a voltage to the polarization rotator 5. It can be changed in any direction parallel to the wave layer 7d.
 図4Aは、第1実施形態における、反射層がない場合の、入力グレーティングカプラであるグレーティング8aの入力結合効率の波長依存性を示す図である。図4Bは、第1実施形態における、反射層がある場合の、グレーティング8aを模式的に示す断面図である。図4Cは、反射層がある場合の、入力結合効率のバッファー層であるSiO層の層厚依存性を示す図である。図4Dは、反射層がある場合の、入力結合効率の波長依存性を示す図である。 FIG. 4A is a diagram showing the wavelength dependency of the input coupling efficiency of the grating 8a which is an input grating coupler in the case where there is no reflective layer in the first embodiment. FIG. 4B is a cross-sectional view schematically showing the grating 8 a in the case where there is a reflective layer in the first embodiment. FIG. 4C is a view showing the layer thickness dependency of the SiO 2 layer which is a buffer layer of the input coupling efficiency when there is a reflective layer. FIG. 4D is a graph showing the wavelength dependency of input coupling efficiency when there is a reflective layer.
 図4Aに示す例における解析条件は、図3Aから図3Gに示す例における解析条件と同じである。図4Aに示すように、波長0.94μmの場合、最大20%の入力効率が得られる。図4Bに示す例における形状条件は、Alの反射層7bを設けた以外は、図3Aから図3Gに示す例における形状条件と同じである。図4Cに示すように、バッファー層7cの層厚の変化により、入力効率が周期的に増減する。バッファー層7cの層厚1.06μmの場合、入力効率は極大になる。図4Dに示す例では、バッファー層7cの層厚を1.06μmに固定した場合の波長依存性が示されている。波長0.944μmの場合、入力効率は極大になり、極大値は50%である。入射光のうち、TEモード成分だけが入力結合して導波するとすれば、反射層を導入し、バッファー層の層厚を最適化することにより、ほぼ100%の結合効率が得られる。 The analysis conditions in the example shown in FIG. 4A are the same as the analysis conditions in the example shown in FIGS. 3A to 3G. As shown in FIG. 4A, at a wavelength of 0.94 μm, an input efficiency of up to 20% can be obtained. The shape conditions in the example shown to FIG. 4B are the same as the shape conditions in the example shown to FIG. 3A-FIG. 3G except having provided the reflection layer 7b of Al. As shown in FIG. 4C, the input efficiency periodically increases or decreases due to the change in the layer thickness of the buffer layer 7c. When the thickness of the buffer layer 7c is 1.06 μm, the input efficiency is maximized. In the example shown in FIG. 4D, the wavelength dependency when the layer thickness of the buffer layer 7c is fixed to 1.06 μm is shown. At a wavelength of 0.944 μm, the input efficiency is at a maximum, and the maximum is 50%. Assuming that only the TE mode component of the incident light is coupled in and guided, a coupling efficiency of approximately 100% can be obtained by introducing a reflective layer and optimizing the layer thickness of the buffer layer.
 図5Aは、第1実施形態における、入射光の偏光方向と入力伝搬方向との関係を光強度によって示す平面図である。図3Eから図3Gに示したように、垂直入射でTEモードの導波光が励起される場合、偏光方向をy軸に平行として、x軸に対する偏角φを定義する。 FIG. 5A is a plan view showing the relationship between the polarization direction of incident light and the input propagation direction in the first embodiment by light intensity. As shown in FIGS. 3E to 3G, when TE-mode guided light is excited at normal incidence, the polarization direction is parallel to the y-axis, and the deflection angle φ with respect to the x-axis is defined.
 図5Bは、偏角φと伝搬する導波光の強度Iとの関係、および-φからφの偏角範囲に含まれる光エネルギーEの偏角φに対する関係を示す図である。-φからφの偏角範囲は対角方向に伝搬する光も含む。光強度は式(8)によって記述され、光エネルギーは式(9)によって記述される。対角方向に伝搬する光を含まない場合、-45度から45度の範囲の光を捕捉できれば、41%の励起導波光を利用することができる。すなわち、入力効率50%と合わせて、入射光の21%を利用することができる。 FIG. 5B is a diagram showing the relationship between the deflection angle φ and the intensity I of the guided light propagating and the relationship between the deflection angle φ of the light energy E included in the deflection angle range from −φ to φ. The argument range of -φ to φ also includes light propagating in the diagonal direction. The light intensity is described by equation (8) and the light energy is described by equation (9). If the light propagating in the diagonal direction is not included, 41% of the excitation guided light can be used if the light in the range of -45 degrees to 45 degrees can be captured. That is, 21% of incident light can be used together with 50% of input efficiency.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 一方、入射光のうち、TMモードの成分などの結合できなかった成分は、グレーティング8aによって反射され、円柱体6、集光レンズ2b、および偏光回転子5を経て偏光分光器4まで帰ってくる。光源1の発光時間内で偏光回転子5を往復することにより、光の偏光方向は、往路における回転角の2倍だけ回転する。したがって、光検出器12は、偏光回転子5による回転角φに対応した反射光を検出できる。詳細には、図16Aに示す例を参照して後述する。 On the other hand, among the incident light, components that can not be coupled, such as the TM mode component, are reflected by the grating 8a, and return to the polarization spectroscope 4 through the cylindrical body 6, the condenser lens 2b, and the polarization rotator 5. . By reciprocating the polarization rotator 5 within the light emission time of the light source 1, the polarization direction of the light is rotated by twice the rotation angle in the forward path. Therefore, the light detector 12 can detect the reflected light corresponding to the rotation angle φ by the polarization rotator 5. Details will be described later with reference to the example shown in FIG. 16A.
 一方、光源発光時の検出光量の極大値は、入射光のうちのグレーティング8aに入力できなかった光の効率に比例する。検出光量の極大値をモニターすることにより、入力効率の制御に利用することができる。詳細には、図16Aに示す例を参照して後述する。 On the other hand, the maximum value of the detected light quantity at the time of light emission of the light source is proportional to the efficiency of the light which can not be input to the grating 8 a of the incident light. By monitoring the maximum value of the detected light quantity, it can be used to control the input efficiency. Details will be described later with reference to the example shown in FIG. 16A.
 次に、偏光回転子の原理を説明する。 Next, the principle of the polarization rotator will be described.
 図6は、第1実施形態における偏光回転子の構成例を模式的に示す斜視図である。ここでは、偏光回転子5として、より高速応答が可能なファラデー回転子を用いて説明する。ファラデー回転子は、円柱状の磁性ガラス棒5aと、その周りに巻かれているコイル5bとを備える。偏光を制御する制御回路31からの制御信号によって、コイル5bに電流を流すと、電流量に比例して磁性ガラス棒5a内を中心軸に沿って流れる磁界ベクトルが変化する。その結果、ファラデー効果により、光が中心軸に沿って伝搬して光10dから光10eになると、その偏光方向は、偏光方向11dから偏光方向11eに回転する。ファラデー回転子の場合、偏光回転の応答性はGHzオーダーに達し、極めて高速である。なお、応答性はファラデー回転子には劣るが、偏光回転は液晶素子でもできる。 FIG. 6 is a perspective view schematically showing a configuration example of the polarization rotator in the first embodiment. Here, the polarization rotator 5 will be described using a Faraday rotator capable of higher speed response. The Faraday rotator comprises a cylindrical magnetic glass rod 5a and a coil 5b wound around it. When a current is supplied to the coil 5b by a control signal from the control circuit 31 that controls polarization, a magnetic field vector flowing along the central axis in the magnetic glass rod 5a changes in proportion to the amount of current. As a result, when light propagates along the central axis from light 10 d to light 10 e due to the Faraday effect, the polarization direction is rotated from polarization direction 11 d to polarization direction 11 e. In the case of a Faraday rotator, the response of polarization rotation reaches GHz order and is extremely fast. Although the response is inferior to that of the Faraday rotator, polarization rotation can also be performed with a liquid crystal element.
 図7Aは、第1実施形態における、収差補正がない場合の、出力グレーティングカプラであるグレーティング8cにおける放射光の伝搬経路を模式的に示す図である。図7Bは、第1実施形態における、収差補正制御がある場合の、グレーティング8cにおける放射光の伝搬経路を模式的に示す図である。図7Aおよび図7Bに示す例では、上段は平面図を示し、中段は斜視図を示し、下段は断面図を示す。 FIG. 7A is a view schematically showing propagation paths of emitted light in the grating 8c which is an output grating coupler in the case where there is no aberration correction in the first embodiment. FIG. 7B is a view schematically showing propagation paths of radiation light in the grating 8 c in the case where there is aberration correction control in the first embodiment. In the example shown to FIG. 7A and 7B, an upper stage shows a top view, a middle stage shows a perspective view, and a lower stage shows sectional drawing.
 図7Aに示すように、収差補正がない場合、導波層7d内を伝搬する導波光10g、および導波光10gはグレーティング8cを出射し、円柱体6内を伝搬する光10H、および光10Hになり、円柱体表面、すなわち側面を屈折して外部に出射する光10I、および光10Iになる。図7Aの中段に示すように、光10H、および光10Hは中心軸L上において交差する。図7Aの上段に示すように、平面図では、光10I、および光10Iは、中心軸L上の点Fにおいて交差し、円柱体6の表面を出射した後も屈曲せず円柱の動径に沿って直進する発散光になる。 As shown in FIG. 7A, in the absence of aberration correction, the guided light 10g propagating in the waveguide layer 7d and the guided light 10g 0 exit the grating 8c and propagate the light 10H propagating in the cylindrical body 6 and the light 10H. becomes 0, the cylindrical surface, that is, light 10I, and light 10I 0 emitted to the outside is refracted side. As shown in the middle of FIG. 7A, the light 10 H and the light 10 H 0 intersect on the central axis L. As shown in the upper part of FIG. 7A, in plan view, the light 10I and the light 10I 0 intersect at a point F on the central axis L and do not bend even after exiting the surface of the cylindrical body 6 It becomes divergent light going straight along.
 図7Bに示すように、収差補正がある場合、導波層7d内を伝搬する導波光10g、および導波光10gはグレーティング8cを出射し、円柱体6内を伝搬する光10h、および光10hになり、円柱体表面、すなわち側面を屈折して外部に出射する光10i、および光10iになる。図7Bの中段に示すように、光10h、および光10hはx軸の正方向に沿って中心軸Lから離れた軸L’上において交差する。図7Bの上段に示すように、平面図では、光10h、および光10hは、軸L’上の点F’において交差し、円柱体6の表面を出射した後、屈曲し平行光になる。 As shown in FIG. 7B, when aberration correction is performed, the guided light 10g propagating in the waveguide layer 7d and the guided light 10g 0 exit the grating 8c, and the light 10h propagating in the cylindrical body 6 and the light 10h It becomes 0 and becomes light 10i and light 10i 0 which are refracted to the surface of the cylindrical body, that is, the side surface and emitted to the outside. As shown in the middle part of FIG. 7B, the light 10 h and the light 10 h 0 intersect on the axis L ′ away from the central axis L along the positive direction of the x axis. As shown in the upper part of FIG. 7B, in plan view, the light 10 h and the light 10 h 0 intersect at a point F ′ on the axis L ′ and exit from the surface of the cylindrical body 6 and then bend into parallel light .
 次に、収差補正量を見積もる方法を説明する。 Next, a method of estimating the amount of aberration correction will be described.
 図8Aは、第1実施形態において、出力グレーティングカプラであるグレーティング8cからの放射光が、円柱面において屈折して出射することを模式的に示す図である。 FIG. 8A is a view schematically showing that light radiated from the grating 8c, which is an output grating coupler, in the first embodiment is refracted at a cylindrical surface and emitted.
 図8Aに示す光線の経路は、図7Aおよび図7Bにおいて説明した通りである。平面図において、光10hと円柱体6の側面との交点をQとし、光10hと円柱体6の表面との交点をQ’とし、角QFQ’をψとし、角FF’Q’をφと定義する。光10iが光10iに平行になることから、式(10)が成り立つ。ただし、角ψ’は式(11)の関係を満たす。 The ray paths shown in FIG. 8A are as described in FIGS. 7A and 7B. In plan view, the intersection of the light 10h and the side surface of the cylinder 6 is Q, the intersection of the light 10h 0 and the surface of the cylinder 6 'and the angular QFQ' Q a and [psi, the angular FF'Q 'phi Define as Since light 10 i 0 is parallel to light 10 i, equation (10) holds. However, ψ ′ satisfies the relationship of equation (11).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(10)および式(11)から、角ψは式(12)によって与えられる。一方、点Fと点F’との間隔をfと定義すると、fは式(13)によって与えられる。光10H、および光10Hは、点Fにおいて集束する光であり、光10h、および光10hは点F’において集束する光である。収差論によると、集束光の焦点位置をFからF’に変位させる収差、すなわち縦の焦点移動収差は、式(14)の左辺によって与えられる。 From equation (10) and equation (11), the angle ψ is given by equation (12). On the other hand, when the distance between the point F and the point F ′ is defined as f 0 , f 0 is given by equation (13). Light 10H, and light 10H 0 is a light converging at point F, the light 10h and light 10h, 0 is the light converging at point F '. According to the aberration theory, the aberration that displaces the focal position of the focused light from F to F ′, that is, the longitudinal focal movement aberration, is given by the left side of Equation (14).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 図8Bは、収差補正を実現するための透明電極層のパターンの様子を模式的に示す図である。電極9Bは、グレーティング8bに対面した位置にあり、半径rから半径rの範囲に形成される。電極9Bは、放射方向に分割される。言い換えれば、電極9Bは、光10fが入射する点を中心とする仮想的な円の周に沿って並ぶ、導電性の複数の分割領域を有している。制御回路31は、偏光回転子5に印加する電圧を変化させることにより、光10eの偏光方向11eを所定の角度ずつ回転させる。これにより、制御回路31は、導波層7d内における導波光10gの伝搬方向を順次変化させる。当該伝搬方向の変化に同期して、制御回路32は、電極9Bにおける複数の分割領域のうち、導波光10gが伝搬する導波層7dの部分に対向する分割領域に電圧を独立して順次印加する。これにより、収差補正を実現し、且つ放射ビームを回転させることができる。 FIG. 8B is a view schematically showing a pattern of a transparent electrode layer for realizing aberration correction. Electrode 9B is in a facing position to the grating 8b, it is formed in a range from a radius r 1 radius r 2. The electrode 9B is divided in the radial direction. In other words, the electrode 9B has a plurality of conductive divided regions aligned along the circumference of a virtual circle centered on the point on which the light 10f is incident. The control circuit 31 rotates the polarization direction 11 e of the light 10 e by a predetermined angle by changing the voltage applied to the polarization rotator 5. Thus, the control circuit 31 sequentially changes the propagation direction of the guided light 10g in the waveguide layer 7d. In synchronization with the change in the propagation direction, the control circuit 32 sequentially applies a voltage independently and sequentially to the division regions facing the portion of the waveguide layer 7d in which the guided light 10g propagates among the plurality of division regions in the electrode 9B. Do. Thereby, aberration correction can be realized and the radiation beam can be rotated.
 図8Bに示す例では、電極9Bは、回転方向に5度刻みに等分され、各々が分割領域である72個の電極9B1から電極9B72に分割されている。図8Bに示す例では、一部だけが表示されている。これらの帯扇形の分割領域は、互いに電気的に絶縁されており、電圧を独立して印加することができる。各分割領域に異なった電圧を印加すると、隣接する液晶層7eの屈折率が変化する。その結果、対応する位置を伝搬する導波光10gの実効屈折率も変化する。このようにして、導波光の位相を、伝搬の偏角ごとに変化させることができる。実効屈折率の変化幅をΔNとすると、伝搬距離(r-r)の間において発生する位相差は式(14)の右辺によって与えられる。したがって、放射光が円柱面において屈折して平行光になるための条件式は、式(14)によって記述される。収差補正におけるΔNは、式(13)および式(14)から、式(15)によって与えられる。 In the example shown in FIG. 8B, the electrodes 9B are equally divided by 5 degrees in the rotation direction, and are divided into 72 electrodes 9B1 to 9B72 which are divided regions. In the example shown in FIG. 8B, only a part is displayed. The fan-shaped divided regions are electrically isolated from one another and voltages can be applied independently. When different voltages are applied to the divided regions, the refractive index of the adjacent liquid crystal layer 7e changes. As a result, the effective refractive index of the guided light 10g propagating through the corresponding position also changes. In this manner, the phase of the guided light can be changed for each declination of propagation. Assuming that the change width of the effective refractive index is ΔN, the phase difference generated between the propagation distances (r 2 −r 1 ) is given by the right side of equation (14). Therefore, the conditional expression for refracting the emitted light at the cylindrical surface to become parallel light is described by Expression (14). The ΔN in the aberration correction is given by the equation (15) from the equations (13) and (14).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 図9Aは、第1実施形態において、伝搬方向の偏角φと、収差補正を実現するための導波光の実効屈折率変化量との関係を示す図である。図9Aに示す例では、式(15)に基づき、円柱体6の屈折率n=1.58、半径r=1.25mm、および電極9Bの幅(r-r)=4mmとした場合における変化幅ΔNが、プロットされている。-45度から45度の偏角範囲の光を捕捉するには、ΔN=0.056になることが分かる。 FIG. 9A is a diagram showing the relationship between the deflection angle φ in the propagation direction and the effective refractive index change amount of guided light for achieving aberration correction in the first embodiment. In the example shown in FIG. 9A, the refractive index n 0 = 1.58, radius r 0 = 1.25 mm, and the width (r 2 −r 1 ) of the electrode 9B = 4 mm based on the equation (15). The variation width ΔN in the case is plotted. It can be seen that ΔN = 0.056 for capturing light in the declination range of −45 degrees to 45 degrees.
 図9Bは、液晶屈折率nをパラメータにした、導波層であるTa層の層厚と実効屈折率との関係を示す図である。図9Cは、バッファー層7c、導波層7d、および液晶7eの配置を模式的に示す図である。 FIG. 9B is a diagram showing the relationship between the layer thickness of the Ta 2 O 5 layer which is a waveguide layer and the effective refractive index, with the liquid crystal refractive index n 1 as a parameter. FIG. 9C is a view schematically showing the arrangement of the buffer layer 7c, the waveguide layer 7d, and the liquid crystal 7e.
 ネマティック液晶分子の屈折率差は、大きいもので0.20程度ある。そのうちの8割が実効的な屈折率差として作用することを考えると、実効的な屈折率差は0.15程度である。図9Bに示す例では、光の波長0.94μm、バッファー層7cの屈折率1.45の場合において、n=1.50、およびn=1.65として計算した導波層7dの層厚と実効屈折率Nとの関係が、それぞれ曲線13a、および曲線13bによって表わされている。図9Cに示す例において、液晶の屈折率差0.15の場合、Taから形成された導波層7dの層厚を0.10μmから0.15μm程度にすれば、ΔN=0.06からΔN=0.04の変化を期待できることが分かる。 The refractive index difference of nematic liquid crystal molecules is as large as about 0.20. Considering that 80% of them act as an effective refractive index difference, the effective refractive index difference is about 0.15. In the example shown in FIG. 9B, in the case of a light wavelength of 0.94 μm and the refractive index of 1.45 of the buffer layer 7c, the layer of the waveguide layer 7d calculated as n 1 = 1.50 and n 1 = 1.65. The relationship between thickness and effective refractive index N is represented by curve 13a and curve 13b, respectively. In the example shown in FIG. 9C, in the case where the refractive index difference of the liquid crystal is 0.15, ΔN = 0 if the layer thickness of the waveguide layer 7d formed of Ta 2 O 5 is about 0.10 μm to 0.15 μm. It can be seen that a change from 06 to ΔN = 0.04 can be expected.
 図10Aから図10Dは、第1実施形態における、透明電極層のパターンと導波光の伝搬方向との関係を説明する図である。 10A to 10D are diagrams for explaining the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light in the first embodiment.
 図10Aに示す例において、点Oを中心とする帯扇形の電極9B1、電極9B2、および電極9B72の位置に対応して、中心Oから外周側に向かって伝搬する導波光を、それぞれ導波光10g1、導波光10g2、および導波光10g72とする。 In the example shown in FIG. 10A, the guided light propagating from the center O toward the outer peripheral side corresponds to the positions of the fan-shaped electrodes 9B1, 9B2 and 9B72 centered on the point O, respectively. , Guided light 10g2, and guided light 10g72.
 図10Bに示す例では、分かりやすいように帯扇形の電極を方形に置き換えて、光線の伝搬経路と電極との位置関係が示されている。電極に印加する電圧に応じて、伝搬経路の屈折率に高低差が発生する。仮に電極9B1に対応する位置の屈折率が最も高く、電極9B1から離れるにしたがって低くなるとすると、電極通過後の光の等位相面14aは階段形状になる。 In the example shown in FIG. 10B, the strip fan-shaped electrode is replaced by a square for easy understanding, and the positional relationship between the light ray propagation path and the electrode is shown. Depending on the voltage applied to the electrodes, a difference in elevation occurs in the refractive index of the propagation path. Assuming that the refractive index at the position corresponding to the electrode 9B1 is the highest and the refractive index decreases as the distance from the electrode 9B1 increases, the equiphase surface 14a of light after passing through the electrode has a stepped shape.
 図10Cに示す例では、帯扇形の形状は、稲妻形に変形されている。すなわち、電極9Bの領域は、円c1a、円c1b、円c2a、円c2b、および円c3aによって分割される。円c1b、および円c2bは、それぞれ円c1a、および円c2aより僅かに大きい円である。導波光10g72と、円c1a、円c2a、および円c3aとの交点を、それぞれ交点P1a、交点P2a、および交点P3aとする。導波光10g1と、円c1a、円c1b、円c2a、円c2b、および円c3aとの交点を、それぞれ交点P1A、交点P1b、交点P2A、交点P2b、および交点P3Aとする。導波光10g2と、円c1b、および円c2bとの交点を、それぞれ交点P1B、および交点P2Bとする。電極9B1の稲妻形は、点O、点P1a、点P1b、点P2a、点P2b、および点P3aを結ぶ線と、点O、点P1A、点P1B、点P2A、点P2B、および点P3Aを結ぶ線との間に挟まれた形状である。ただし、電極9Aの領域は含まない。点P3aと点P3Aとの間は円c3aに沿う。他の電極は、電極9B1を分割角に応じて点Oの周りに回転した形状になる。72分割の場合、分割角は5度である。 In the example shown in FIG. 10C, the band fan shape is deformed into a lightning bolt shape. That is, the area of the electrode 9B is divided by a circle c1a, a circle c1b, a circle c2a, a circle c2b, and a circle c3a. The circles c1b and c2b are circles slightly larger than the circles c1a and c2a, respectively. Let the intersections of the guided light 10g72, the circle c1a, the circle c2a, and the circle c3a be an intersection point P1a, an intersection point P2a, and an intersection point P3a, respectively. The intersections of the guided light 10g1 with the circle c1a, the circle c1b, the circle c2a, the circle c2b, and the circle c3a are taken as an intersection point P1A, an intersection point P1b, an intersection point P2A, an intersection point P2b, and an intersection point P3A. The intersections of the guided light 10g2, the circle c1b, and the circle c2b are taken as an intersection P1B and an intersection P2B, respectively. The lightning shape of the electrode 9B1 connects a point O, a point P1a, a point P1b, a point P2a, a point P2b, and a point P3a, and a point O, a point P1A, a point P1B, a point P2B, a point P2A, a point P2B, and a point P3A It is a shape sandwiched between lines. However, the area of the electrode 9A is not included. The point between the point P3a and the point P3A is along the circle c3a. The other electrode has a shape in which the electrode 9B1 is rotated around the point O according to the dividing angle. In the case of 72 division, the division angle is 5 degrees.
 図10Dに示す例では、分かりやすいように円c1a、および円c2bの間の電極を菱形に置き換えて、光線の伝搬経路と電極との位置関係が示されている。電極を菱形に置き換えたので、図示された導波光10g1、導波光10g2、および導波光10g72のそれぞれの伝搬方向は、偏角φの分だけ逆に回転され、平行に表されている。導波光10g1と導波光10g2との間、および、導波光10g1と導波光10g72との間の伝搬方向に沿って伝搬する光線は、隣接する2つの電極を跨いで伝搬する。電極ごとの伝搬距離の比率は、光線の偏角φに比例して変化する。この関係は、円c2aと円c3aとの間でも成り立つ。したがって、電極に印加する電圧に応じて、伝搬経路の屈折率に高低差が発生する。例えば、電極9B1に対応する位置の屈折率が最も高く、電極9B1から離れるにしたがって低くなると、電極通過後の光の等位相面は、階段形状14aを線形補間した形状14bになる。なお、図10Cに示す例では、5つの分割円を用いたが、7つ、または9つなどの他の組み合わせであってもよい。 In the example shown in FIG. 10D, the electrodes between the circle c1a and the circle c2b are replaced with diamonds for easy understanding, and the positional relationship between the light ray propagation path and the electrodes is shown. Since the electrodes are replaced by lozenges, the propagation directions of the illustrated guided light 10g1, the guided light 10g2 and the guided light 10g72 are respectively rotated in reverse by the deflection angle φ and are expressed in parallel. A light beam propagating along the propagation direction between the guided light 10g1 and the guided light 10g2 and between the guided light 10g1 and the guided light 10g72 propagates across two adjacent electrodes. The ratio of the propagation distance for each electrode changes in proportion to the deflection angle φ of the light beam. This relationship also holds between the circle c2a and the circle c3a. Therefore, depending on the voltage applied to the electrodes, a difference in elevation occurs in the refractive index of the propagation path. For example, when the refractive index at the position corresponding to the electrode 9B1 is the highest and becomes lower as the distance from the electrode 9B1 is reached, the equiphase surface of light after passing through the electrode becomes a shape 14b obtained by linear interpolation of the step shape 14a. Although five divided circles are used in the example shown in FIG. 10C, other combinations such as seven or nine may be used.
 図10Eは、点F’への集光における収差が補正される様子を模式的に示す図である。縦軸は収差量を表し、横軸は偏角φを表している。補正前の、点F’への集光における収差は、曲線15によって示される。電極に印加する電圧を最適にすると、図10Aに示す例における電極形状の場合、点F’への集光における収差は、曲線15aに表すように補正される。図10Cに示す例における電極形状の場合、点F’への集光における収差は、曲線15bに表すように補正される。曲線15bは、曲線15に対する屈曲線15Bの差分に相当する。曲線15aでも収差は1/10程度に圧縮され、曲線15bでは、殆どの収差が補正されることが分かる。したがって、図10Cに示す例における電極形状への電圧印加を制御することにより、グレーティング8cからの放射光を、円柱面から平行光として出射させることができる。なお、電極形状への電圧印加は導波光の伝搬方向、すなわち入射光の偏光回転角に同期している。その際、最も光強度が強い伝搬方向の位相が遅れるように、液晶屈折率を高くする電圧印加が行なわれる。 FIG. 10E is a view schematically showing how the aberration at the time of focusing on the point F ′ is corrected. The vertical axis represents the amount of aberration, and the horizontal axis represents the deflection angle φ. Aberrations in focusing at point F 'before correction are shown by curve 15. If the voltage applied to the electrodes is optimized, in the case of the electrode shape in the example shown in FIG. 10A, the aberration in focusing on the point F 'is corrected as represented by the curve 15a. In the case of the electrode shape in the example shown in FIG. 10C, the aberration in focusing on the point F 'is corrected as represented by the curve 15b. The curve 15 b corresponds to the difference of the bending line 15 B with respect to the curve 15. It is understood that the aberration is compressed to about 1/10 even in the curve 15a, and most of the aberration is corrected in the curve 15b. Therefore, by controlling voltage application to the electrode shape in the example shown in FIG. 10C, the radiation light from the grating 8c can be emitted as parallel light from the cylindrical surface. The voltage application to the electrode shape is synchronized with the propagation direction of the guided light, that is, the polarization rotation angle of the incident light. At that time, voltage application is performed to increase the refractive index of the liquid crystal so that the phase in the propagation direction where the light intensity is strongest is delayed.
 以上から、電極9Bは以下の構成を備え、制御回路31、および制御回路32は以下の動作を行う。 From the above, the electrode 9B has the following configuration, and the control circuit 31 and the control circuit 32 perform the following operation.
 電極9Bは、光10fが入射する点を中心とする仮想的な円の周に沿って並ぶ複数の分割領域を有している。制御回路31は、偏光回転子5に印加する電圧を変化させることにより、光10eの偏光方向11eを所定の角度ずつ回転させる。これにより、制御回路31は、導波層7d内における導波光10gの伝搬方向を順次変化させる。当該伝搬方向の変化に同期して、制御回路32は、電極9Bにおける複数の分割領域のうち、導波光10gが伝搬する導波層7dの部分に対向する分割領域に電圧を独立して順次印加する。これにより、収差補正を実現し、且つ放射ビームを回転させることができる。 The electrode 9B has a plurality of divided regions arranged along the circumference of a virtual circle centered on the point on which the light 10f is incident. The control circuit 31 rotates the polarization direction 11 e of the light 10 e by a predetermined angle by changing the voltage applied to the polarization rotator 5. Thus, the control circuit 31 sequentially changes the propagation direction of the guided light 10g in the waveguide layer 7d. In synchronization with the change in the propagation direction, the control circuit 32 sequentially applies a voltage independently and sequentially to the division regions facing the portion of the waveguide layer 7d in which the guided light 10g propagates among the plurality of division regions in the electrode 9B. Do. Thereby, aberration correction can be realized and the radiation beam can be rotated.
 図11Aおよび図11Bは、第1実施形態における、グレーティングのデューティーεを0.5に固定した場合の、グレーティング8cの深さdと放射損失係数αとの関係を示す図である。図11Aに示す例では、液晶屈折率n=1.6であり、図11Bに示す例では、液晶屈折率n=1.45である。図11Cおよび図11Dは、第1実施形態における、深さd=0.01μmに固定された場合の、デューティーεと放射損失係数αとの関係を示す図である。図11Cに示す例では、液晶屈折率n=1.6であり、図11Dに示す例では、液晶屈折率n=1.45である。図11Aから図11Dに示す例におけるその他の解析条件は、図4Dに示す例においてバッファー層7cの層厚を1.06μmとした場合と同じである。 11A and 11B are diagrams showing the relationship between the depth d of the grating 8c and the radiation loss coefficient α when the grating duty ε is fixed at 0.5 in the first embodiment. In the example shown in FIG. 11A, the liquid crystal refractive index n 1 = 1.6, and in the example shown in FIG. 11B, the liquid crystal refractive index n 1 = 1.45. 11C and 11D are diagrams showing the relationship between the duty ε and the radiation loss coefficient α when the depth d is fixed to 0.01 μm in the first embodiment. In the example shown in FIG. 11C, the liquid crystal refractive index n 1 = 1.6, and in the example shown in FIG. 11D, the liquid crystal refractive index n 1 = 1.45. The other analysis conditions in the example shown in FIGS. 11A to 11D are the same as in the case shown in FIG. 4D in which the layer thickness of the buffer layer 7c is 1.06 μm.
 グレーティングの深さd=0.01μmの場合、図11Aに示す例では、放射損失係数α=2(1/mm)程度の大きさであり、図11Bに示す例では、放射損失係数α=1(1/mm)程度の大きさである。図11Cおよび図11Dに示すように、デューティーεを0.5からずらすことにより、放射損失係数αを小さくできる。放射損失係数αは、液晶屈折率が高いほど大きくなり、また、波長が短いほど大きくなる。ただし、本実施形態の設計例では、反射層7bからの反射光の干渉効果により、放射損失係数αは、波長λ=0.93μmの場合だけイレギュラーな振る舞いをする。 When the grating depth d = 0.01 μm, the radiation loss coefficient α is about 2 (1 / mm) in the example shown in FIG. 11A, and the radiation loss coefficient α = 1 in the example shown in FIG. 11B. The size is about (1 / mm). As shown in FIGS. 11C and 11D, the radiation loss coefficient α can be reduced by shifting the duty ε from 0.5. The radiation loss coefficient α increases as the liquid crystal refractive index increases, and increases as the wavelength decreases. However, in the design example of the present embodiment, due to the interference effect of the reflected light from the reflective layer 7b, the radiation loss coefficient α behaves irregularly only when the wavelength λ is 0.93 μm.
 図11Eおよび図11Fは、結合長wと導波強度との関係、および結合長wと放射強度との関係を示す図である。図11Eに示す例では、w=0mmから1.5mmにおいてα=0.4から2.0は線形比例的に増加し、w>1.5mmにおいてα=2.0に固定されている。図11Fに示す例では、w=0mmから1.5mmにおいてα=0.2から1.0は線形比例的に増加し、w>1.5mmにおいてα=1.0に固定されている。結合長wは、後述する図12Aおよび図12Bに示すように、カプラの始点rから放射位置までの距離である。ここでは、放射光の幅に相当する結合長は、導波強度が1/eになる位置によって定義されている。 FIG. 11E and FIG. 11F is a diagram showing the relationship between the relationship and the coupling length w 1 and the radiation intensity of the coupling length w 1 and the waveguide strength. In the example shown in FIG. 11E, α = 0.4 to 2.0 increases linearly proportionally at w 1 = 0 mm to 1.5 mm, and is fixed at α = 2.0 at w 1 > 1.5 mm . In the example shown in FIG. 11F, α = 0.2 to 1.0 increases linearly proportionally at w 1 = 0 mm to 1.5 mm, and is fixed at α = 1.0 at w 1 > 1.5 mm . The coupling length w 1 is the distance from the start point r 2 of the coupler to the radiation position, as shown in FIGS. 12A and 12B described later. Here, the coupling length corresponding to the width of the emitted light is defined by the position where the waveguide intensity is 1 / e 2 .
 図11Eに示す例は、液晶屈折率が高い、または波長が短い条件に相当する。その際、結合長は1.5mmになる。図11Fに示す例は、液晶屈折率が低い、または波長が長い条件に相当する。その際、結合長は2.5mmになる。 The example shown in FIG. 11E corresponds to the condition that the liquid crystal refractive index is high or the wavelength is short. At this time, the bonding length is 1.5 mm. The example shown in FIG. 11F corresponds to the condition that the liquid crystal refractive index is low or the wavelength is long. At this time, the bonding length is 2.5 mm.
 図12Aおよび図12Bは、第1実施形態におけるグレーティング8cからの放射光と円柱体との位置関係を示す図である。図12Aに示す例では、透明平面基板7fの屈折率n’は、円柱体の屈折率nと同じ1.58である。図12Bに示す例では、透明平面基板7fの屈折率n’は、2.0である。図12Aおよび図12Bに示す例において、グレーティング8cからの放射光10h、放射光10h1、および放射光10h2は、波長をこの順に大きくした条件に相当する。その際、放射光10h、放射光10h1、および放射光10h2に対応して、結合長wもこの順に大きくしている。 12A and 12B are diagrams showing the positional relationship between the light emitted from the grating 8c and the cylinder in the first embodiment. In the example shown in FIG. 12A, the refractive index n 0 ′ of the transparent flat substrate 7 f is 1.58, which is the same as the refractive index n 0 of the cylindrical body. In the example shown in FIG. 12B, the refractive index n 0 ′ of the transparent flat substrate 7 f is 2.0. In the example shown in FIGS. 12A and 12B, the emitted light 10h, the emitted light 10h1, and the emitted light 10h2 from the grating 8c correspond to the condition in which the wavelengths are increased in this order. At that time, the emitted light 10h, corresponding to the emitted light 10h1, and the emitted light 10h2, also coupling length w 1 is larger in this order.
 図12Aに示す例では、透明平面基板7f内での放射角度θは大きい。このため、放射光10hを径の小さい円柱体6内に入射させる条件では、他の放射光10h1、および放射光10h2を入射させることができない。図12Bに示す例では、透明平面基板7fの大きい屈折率により、透明平面基板7f内での放射角度θ’を小さくすることができる。これにより、全ての放射光10h、放射光10h1、および放射光10h2を円柱体6内に入射させることができる。なお、透明平面基板7fの屈折率を大きくすることにより、透明平面基板7fと液晶層7eとの界面7fa、および透明平面基板7fと円柱体6との界面7fbにおいて大きな反射損が発生する。反射損を抑制するために、透明平面基板7fの上下面には、例えば、ARコート処理が施される。 In the example shown in FIG. 12A, the radiation angle theta 1 with the transparent plane substrate 7f is large. Therefore, under the condition that the radiation light 10h is made to enter the small diameter cylindrical body 6, the other radiation light 10h1 and the radiation light 10h2 can not be made to enter. In the example shown to FIG. 12B, radiation angle (theta) 1 'in the transparent plane substrate 7f can be made small by the large refractive index of the transparent plane substrate 7f. Thereby, all the emitted light 10 h, the emitted light 10 h 1 and the emitted light 10 h 2 can be made to enter into the cylindrical body 6. By increasing the refractive index of the transparent flat substrate 7f, a large reflection loss occurs at the interface 7fa between the transparent flat substrate 7f and the liquid crystal layer 7e and at the interface 7fb between the transparent flat substrate 7f and the cylindrical body 6. In order to suppress reflection loss, for example, an AR coating process is performed on the upper and lower surfaces of the transparent flat substrate 7 f.
 このように、円柱体6とグレーティング8cとの間の媒体の屈折率を、たとえば屈折率1.8以上のように大きくすることにより、放射角の異なる放射光を効率的に円柱体6内に導くことができる。 As described above, by increasing the refractive index of the medium between the cylindrical body 6 and the grating 8 c to, for example, a refractive index of 1.8 or more, emitted light with different radiation angles can be efficiently stored in the cylindrical body 6. It can lead.
 図13Aおよび図13Bは、それぞれ、第1実施形態におけるグレーティング8cからの放射光と円柱面からの屈折光のビーム幅との関係を示す水平断面図および垂直断面図である。図13Bに示す例では、円柱体6内のビーム幅w’は、円柱体6内での放射角度θと結合長wとを用いて、式(16)の関係を満たす。円柱面での屈折光のビーム幅wは、円柱体6内での放射角度θとビーム幅w’とを用いて、式(17)の関係を満たす。したがって、ビーム幅wは式(18)によって与えられる。一方、図13Aに示すように、水平断面では偏角-45度から45度の範囲の光10hが収差補正され平行光10iになるとすると、水平断面でのビーム幅wは円柱体6の直径2rに近い。したがって、円柱面からの屈折光は、ビーム幅w、およびビーム幅wの平行光になる。これらの光は、十分長い距離の伝搬でフラウンホッファー回折する。その広がり角α、および広がり角αは、それぞれ式(19)、および式(20)によって与えられる。 FIG. 13A and FIG. 13B are a horizontal sectional view and a vertical sectional view showing the relationship between the radiation light from the grating 8c and the beam width of the refracted light from the cylindrical surface in the first embodiment, respectively. In the example shown in FIG. 13B, the beam width w 1 ′ in the cylindrical body 6 satisfies the relation of the equation (16) using the radiation angle θ 1 in the cylindrical body 6 and the coupling length w 1 . The beam width w 屈折 of the refracted light on the cylindrical surface satisfies the relationship of the equation (17) using the radiation angle θ 1 and the beam width w 1 ′ in the cylindrical body 6. Thus, the beam width w is given by equation (18). On the other hand, as shown in FIG. 13A, when the light 10h 0 ranging 45 degrees declination -45 degrees is aberration corrected parallel light 10i 0 in horizontal cross section, the beam width w in horizontal cross-section cylindrical body 6 The diameter of 2r is close to 0 . Therefore, the refracted light from the cylindrical surface becomes parallel light of the beam width w⊥ and the beam width w . These lights are Fraunhofer diffracted at a sufficiently long distance propagation. Its divergence angle alpha ⊥, and divergence angle alpha ∥, respectively (19), and is given by equation (20).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 波長λ=0.94μm、半径r=1.25mm、結合長w=1.5mm、放射角度θ=66度の場合には、α=0.1度、およびα=0.02度になり、ビームの広がりを十分小さく抑えられている。ビームの広がりが小さいと、往路の光の拡散を抑えることができる。これにより、検出光量を大きくすることができる。 Wavelength lambda = 0.94 .mu.m, the radius r 0 = 1.25 mm, the coupling length w 1 = 1.5 mm, in the case of the radiation angle theta 1 = 66 degrees, alpha = 0.1 °, and α = 0. It becomes 02 degrees, and the spread of the beam is suppressed sufficiently small. When the spread of the beam is small, the diffusion of light in the forward path can be suppressed. Thereby, the amount of detected light can be increased.
 図14Aは、第1実施形態における、透明電極層のパターンと導波光の伝搬方向との関係を示す図である。図14Bは、第1実施形態における、液晶の屈折率の制御だけを利用したレーザー走査の場合の、入力光の偏光回転角、および透明電極への印加電圧の時間経過の関係を示す図である。なお、液晶の応答速度の限界をオンオフ間において1msとし、ビーム走査の速度を1フレームあたり30msとして説明する。 FIG. 14A is a diagram showing the relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light in the first embodiment. FIG. 14B is a view showing the relationship between the polarization rotation angle of input light and the time course of the voltage applied to the transparent electrode in the case of laser scanning using only control of the refractive index of liquid crystal in the first embodiment. . The limit of the response speed of the liquid crystal is 1 ms between on and off, and the speed of beam scanning is 30 ms per frame.
 図14Aに示す例では、分割された電極9Bへの印加電圧は、回転方向に90度の周期を有する。例えば、電極9B1、電極9B19、電極9B37、および電極9B55には同じ電圧が印加される。電極9B2、電極9B20、電極9B38、および電極9B56にも同じ電圧が印加される。1つの周期である90度の角度範囲内において電極に印加される電圧は、収差を補正する条件で高低差のある電圧分布パターンを示す。この電圧分布パターンは、パターン形状を維持した状態で、偏光回転子による偏光の回転角φに同期して回転する。偏光の回転は、電圧分布パターンに比べ遥かに高速応答することができる。したがって、ある電圧分布パターンの期間において、偏光のみを回転させ、複数の方向から反射光を検出することも可能である。 In the example shown in FIG. 14A, the voltage applied to the divided electrodes 9B has a cycle of 90 degrees in the rotational direction. For example, the same voltage is applied to the electrode 9B1, the electrode 9B19, the electrode 9B37, and the electrode 9B55. The same voltage is applied to the electrode 9B2, the electrode 9B20, the electrode 9B38, and the electrode 9B56. The voltage applied to the electrode within an angular range of 90 degrees, which is one period, exhibits a voltage distribution pattern having a difference in height under the condition for correcting the aberration. The voltage distribution pattern rotates in synchronization with the rotation angle φ of the polarization by the polarization rotator while maintaining the pattern shape. Polarization rotation can respond much faster than voltage distribution patterns. Therefore, it is also possible to rotate only the polarized light and detect the reflected light from a plurality of directions during a certain voltage distribution pattern.
 図14Bに示す例では、入力光の偏光回転角φは、T=2msを周期にして、0度から90度の範囲を反復する。実線によって表された電極9B1への印加電圧は、2ms周期の矩形信号として高低を繰り返す。この繰り返しの周波数は、液晶の応答限界に近い。このため、破線によって表された液晶の屈折率の変化は、印加電圧の変化よりも緩やかになり、2ms周期の動きになる。斜め矢印によって表すように、印加電圧の位相を電極9B2から電極9B3へと次第にずらすことにより、電極9B9における印加電圧の位相は半周期ずれ、電極9B18における印加電圧の位相は1周期、すなわち2msずれる。印加電圧の位相のずらし幅は、収差を補正するルールによって決定される。電極9B全体として、電圧分布パターンは、偏光の回転角φに同期して回転する。電圧分布パターンの動きは、出射ビームによる水平方向の走査に相当する。 In the example shown in FIG. 14B, the polarization rotation angle φ of the input light repeats the range of 0 degree to 90 degrees with a period of T = 2 ms. The voltage applied to the electrode 9B1 represented by the solid line repeats high and low as a 2 ms cycle rectangular signal. The frequency of this repetition is close to the response limit of the liquid crystal. For this reason, the change of the refractive index of the liquid crystal represented by the broken line becomes slower than the change of the applied voltage, and becomes a movement of 2 ms cycle. By gradually shifting the phase of the applied voltage from the electrode 9B2 to the electrode 9B3 as represented by the oblique arrows, the phase of the applied voltage at the electrode 9B9 shifts by half a period, and the phase of the applied voltage at the electrode 9B18 shifts by one period, that is, 2 ms. . The phase shift width of the applied voltage is determined by the rule for correcting the aberration. As a whole of the electrode 9B, the voltage distribution pattern rotates in synchronization with the polarization rotation angle φ. The movement of the voltage distribution pattern corresponds to the horizontal scanning by the outgoing beam.
 実線によって表された電極9Cへの印加電圧は、30msを周期として線形的に増減する。破線によって表された液晶の屈折率の変化も、印加電圧と同じ動きを示す。ただし、急峻な印加電圧の立下りに比べ、液晶の屈折率の変化は緩やかになる。電極9Cでの液晶の屈折率変化は、グレーティング8cからの放射光の角度変化に対応する。したがって、出射ビームによる垂直方向の走査は、30msを周期とする線形的な振動を示す。式(5)から、n=1.58、θ=75度、ΔN=0.045とすると、θの変化幅は6.3度になる。式(3)および式(4)から、Λ=2.5μmとすると、垂直方向における出射角θの変化は、10度程度になる。したがって、電極9Cへの電圧印加により、30msを周期とする出射角の変化10度での垂直方向の走査が可能である。 The voltage applied to the electrode 9C represented by the solid line linearly increases and decreases with a period of 30 ms. The change in the refractive index of the liquid crystal represented by the dashed line also shows the same movement as the applied voltage. However, the change in the refractive index of the liquid crystal is gradual compared to the steep fall of the applied voltage. The change in refractive index of the liquid crystal at the electrode 9C corresponds to the change in angle of the light emitted from the grating 8c. Thus, the vertical scanning by the outgoing beam exhibits a linear oscillation with a period of 30 ms. Assuming that n 0 = 1.58, θ 1 = 75 degrees, and ΔN = 0.045 from the equation (5), the change width of θ 1 is 6.3 degrees. From Eq. (3) and Eq. (4), assuming that Λ 2 = 2.5 μm, the change of the output angle in the vertical direction becomes about 10 degrees. Therefore, by applying a voltage to the electrode 9C, scanning in the vertical direction at a change of 10 degrees of the emission angle with a cycle of 30 ms is possible.
 図14Cは、レーザー光による水平方向および垂直方向の走査の様子を示す図である。 FIG. 14C is a view showing horizontal and vertical scanning by laser light.
 偏光の制御と、電極9Bに対する液晶配向の制御とにより、0度から90度の範囲の水平方向に走査が行われる。電極9Cに対する液晶配向の制御により、30msかけて垂直方向に走査位置が10度までずらされる。すなわち、垂直方向にシフトしながら水平方向に0度から90度まで走査したあと、垂直位置をそのままにして水平位置が0度に戻る。この運動が、15回繰り返される。次の走査では、走査位置を元の位置である垂直位置0度および水平位置0度に戻し、上記と同じ運動が繰り返される。水平方向の解像度は無制限であり、垂直方向の解像度、すなわち、走査線数は、1フレーム30ms当たり15本である。 The scanning in the horizontal direction in the range of 0 degrees to 90 degrees is performed by the control of the polarization and the control of the liquid crystal alignment with respect to the electrode 9B. The control of the liquid crystal alignment with respect to the electrode 9C shifts the scanning position to 10 degrees in the vertical direction in 30 ms. That is, after scanning from 0 degrees to 90 degrees in the horizontal direction while shifting in the vertical direction, the horizontal position returns to 0 degrees while maintaining the vertical position. This exercise is repeated 15 times. In the next scan, the scan position is returned to the original position of 0 degree vertical position and 0 degree horizontal position, and the same motion as described above is repeated. The resolution in the horizontal direction is unlimited, and the resolution in the vertical direction, that is, the number of scanning lines, is 15 per 30 ms of one frame.
 図15Aは、第1実施形態における、液晶屈折率の制御と光源の波長の可変制御とを兼用したレーザー走査の場合の、入力光の偏光回転角、光源波長、透明電極への印加電圧、ならびに、水平方向および垂直方向の回転角の時間経過の関係を示す図である。図15Bは、レーザー光の水平方向および垂直方向の走査の様子を示す図である。透明電極層のパターンと、導波光の伝搬方向との関係は、図14Aに示す例において説明した通りである。また、液晶の応答速度の限界をオンオフ間において1msとし、ビーム走査の速度を1フレームあたり30msとして説明する。波長を可変制御する原理は、図1Cに示す例において説明した。それ以外にも、例えば超周期構造回折型DBR(Distributed Bragg Reflector)がある。超周期構造回折型DBRでは、波長の変化幅として40nmの範囲を20KHzの周期で高速にスイープすることができる。 FIG. 15A shows the polarization rotation angle of the input light, the light source wavelength, the voltage applied to the transparent electrode, and the voltage applied to the transparent electrode in the case of laser scanning in which the control of the liquid crystal refractive index and the variable control of the light source are both controlled in the first embodiment. It is a figure which shows the relationship of the time progress of the rotation angle of the horizontal direction and the perpendicular direction. FIG. 15B is a view showing horizontal and vertical scanning of laser light. The relationship between the pattern of the transparent electrode layer and the propagation direction of the guided light is as described in the example shown in FIG. 14A. Further, the limit of the response speed of liquid crystal is 1 ms between on and off, and the speed of beam scanning is described as 30 ms per frame. The principle of variably controlling the wavelength has been described in the example shown in FIG. 1C. Besides, for example, there is a super periodic structure diffraction type DBR (Distributed Bragg Reflector). In the super periodic structure diffraction type DBR, the range of 40 nm can be swept at high speed with a period of 20 KHz as the variation width of the wavelength.
 図15Aに示す例では、入力光の偏光回転角φは、T=2msを周期として0度から90度の範囲を反復する。実線によって表された電極9B1への印加電圧は、2ms周期の矩形信号として高低を繰り返す。この繰り返しの周波数は、液晶の応答限界に近い。このため、破線によって表された液晶の屈折率の変化は、印加電圧の変化よりも緩やかになり、2ms周期の動きになる。斜め矢印によって表すように、印加電圧の位相を電極9B2から電極9B3へと次第にずらすことにより、電極9B9において印加電圧の位相は半周期ずれ、電極9B18において印加電圧の位相は1周期、すなわち2msずれる。印加電圧の位相のずらし幅は、収差を補正するルールによって決定される。電極9B全体として、電圧分布パターンは偏光の回転角φに同期して回転する。電圧分布パターンの動きは、出射ビームによる水平方向の走査に相当する。 In the example shown in FIG. 15A, the polarization rotation angle φ of the input light repeats the range of 0 degree to 90 degrees with a period of T = 2 ms. The voltage applied to the electrode 9B1 represented by the solid line repeats high and low as a 2 ms cycle rectangular signal. The frequency of this repetition is close to the response limit of the liquid crystal. For this reason, the change of the refractive index of the liquid crystal represented by the broken line becomes slower than the change of the applied voltage, and becomes a movement of 2 ms cycle. By gradually shifting the phase of the applied voltage from the electrode 9B2 to the electrode 9B3 as represented by the oblique arrows, the phase of the applied voltage is shifted by a half cycle at the electrode 9B9, and the phase of the applied voltage is shifted by one cycle at the electrode 9B18, ie 2 ms. . The phase shift width of the applied voltage is determined by the rule for correcting the aberration. As a whole of the electrode 9B, the voltage distribution pattern rotates in synchronization with the rotation angle φ of polarization. The movement of the voltage distribution pattern corresponds to the horizontal scanning by the outgoing beam.
 実線で表された電極9A、および電極9Cへの印加電圧は、30msを周期とする高低を繰り返す。破線で表された液晶の屈折率の変化も、印加電圧と同じ動きを示す。ただし、急峻な印加電圧の立下りに比べ、液晶の屈折率の変化は緩やかになる。 The voltage applied to the electrodes 9A and 9C represented by solid lines repeats high and low with a cycle of 30 ms. The change of the refractive index of the liquid crystal represented by the broken line also shows the same movement as the applied voltage. However, the change in the refractive index of the liquid crystal is gradual compared to the steep fall of the applied voltage.
 光源1の波長は、全振幅1.5nmの高周波振動を繰り返しながら30msの間で0.93μmから0.95μmまで徐々に増加し、この動きが30ms周期で繰り返される。光源1の波長が変化すると、グレーティング8aでの入力条件が変化する。したがって、入力条件の変化に対応するために、電極9Aへの印加電圧も30msの間で徐々に増加し、この動きが30ms周期で繰り返される。全振幅1.5nmの高周波の波長変動は、入力効率に大きな影響を及ぼさない。このため、電極9Aへの印加電圧は、低周波の20nm幅の変動のみに対応するように設定される。電極9Cでの液晶の屈折率変化は、グレーティング8cからの放射光の角度変化に対応する。したがって、波長変化と合わさって、出射ビームによる垂直方向の走査は、30msを周期とする線形的な振動を示す。 The wavelength of the light source 1 gradually increases from 0.93 μm to 0.95 μm in 30 ms while repeating high frequency oscillation with a total amplitude of 1.5 nm, and this movement is repeated in a cycle of 30 ms. When the wavelength of the light source 1 changes, the input condition at the grating 8a changes. Therefore, in order to cope with changes in input conditions, the applied voltage to the electrode 9A also gradually increases in 30 ms, and this movement is repeated in 30 ms cycles. The wavelength fluctuation of the high frequency of 1.5 nm in total amplitude does not greatly affect the input efficiency. For this reason, the voltage applied to the electrode 9A is set to correspond only to the variation of the low frequency of 20 nm width. The change in refractive index of the liquid crystal at the electrode 9C corresponds to the change in angle of the light emitted from the grating 8c. Thus, combined with the wavelength change, the vertical scanning by the outgoing beam exhibits a linear oscillation with a period of 30 ms.
 式(7)から、n=1.58、θ=75度、Λ=0.29μm、Λ=2.5μmとすると、20nmの波長変化、ΔN=0.045の実効屈折率変化により、垂直方向における出射角θの変化は30度程度になる。さらに、全振幅1.5nmの高周波の波長振動により、垂直方向において全振幅2度の出射角振動が得られる。 Assuming that n 0 = 1.58, θ 1 = 75 °, Λ 1 = 0.29 μm, and Λ 2 = 2.5 μm from the equation (7), the wavelength change of 20 nm, the effective refractive index change of ΔN = 0.045 Thus, the change in the output angle θ⊥ in the vertical direction is about 30 degrees. Furthermore, high frequency wavelength oscillation with a total amplitude of 1.5 nm provides an output angular oscillation with a total amplitude of 2 degrees in the vertical direction.
 図15Bに示す例では、レーザー光による水平方向および垂直方向の走査の様子を示す図である。偏光の制御と、電極9Bに対する液晶配向の制御とにより、0度から90度の範囲の水平方向に走査が行われる。電極9Cに対する液晶配向の制御と低周波の波長制御とにより、30msかけて垂直方向に走査位置が30度までずらされる。また、高周波の波長制御により、各走査線は垂直方向において2度の全振れ幅で振動する。すなわち、垂直方向にシフトしながら水平方向に0度から90度まで走査したあと、垂直位置をそのままにして水平位置が0度に戻る。この運動が15回繰り返される。次の走査では、走査位置を元の位置である垂直位置0度および水平位置0度に戻し、同じ運動が繰り返される。水平方向の解像度は無制限である。垂直方向の解像度、すなわち、走査線数は、1フレーム30ms当たり15本である。走査線間の間隔は30度/15=2度である。一方で、走査線は垂直方向の間を埋めるように振動している。したがって、垂直方向の解像度もほぼ無制限になる。 In the example shown to FIG. 15B, it is a figure which shows the mode of the scanning of the horizontal direction and the orthogonal | vertical direction by a laser beam. The scanning in the horizontal direction in the range of 0 degrees to 90 degrees is performed by the control of the polarization and the control of the liquid crystal alignment with respect to the electrode 9B. The control of the liquid crystal alignment with respect to the electrode 9C and the control of the low frequency wavelength shift the scanning position up to 30 degrees in the vertical direction in 30 ms. In addition, due to wavelength control of high frequency, each scanning line vibrates with a full swing width of 2 degrees in the vertical direction. That is, after scanning from 0 degrees to 90 degrees in the horizontal direction while shifting in the vertical direction, the horizontal position returns to 0 degrees while maintaining the vertical position. This exercise is repeated 15 times. In the next scan, the scan position is returned to the original position of 0 degree vertical position and 0 degree horizontal position, and the same motion is repeated. Horizontal resolution is unlimited. The resolution in the vertical direction, that is, the number of scanning lines, is 15 per 30 ms of one frame. The spacing between scan lines is 30 degrees / 15 = 2 degrees. On the other hand, the scanning lines vibrate to fill in the vertical direction. Therefore, the vertical resolution is also almost unlimited.
 電極9Aへの印加電圧は、入力結合効率を最大化するための制御に用いられる。制御回路32は、電極9Aに印加する電圧を調整することにより、光10fが導波層7dを伝搬する光10gに結合する効率、すなわち、入力結合効率を制御する。電極9Cへの印加電圧は、放射角度の制御に用いられる。制御回路32は、電極9Cに印加する電圧を調整することにより、グレーティング8cから外部に出射する光10hの方向を制御する。前述したように、光源1が出射した光10aの一部は、光源1が光10aを出射している間に、偏光回転子5を通過し、光導波素子7によって反射され、偏光回転子5を再び通過し、偏光分光器4を介して光検出器12によって検出される。よって、光源発光時の光検出器12による検出光量の極大値は、入射光のうちのグレーティング8aに入力できなかった光の効率に比例する。したがって、電極9Aへの印加電圧は、光源発光時の検出光量の極大値を最小化するように制御される。制御回路32は、光源1が光10aを出射している間に、電極9Aに印加する電圧を制御することにより、光検出器12によって検出される光の光量の極大値を最小にする。この操作は、極大値を時系列的に記録し、制御回路31が偏光回転子5に印加する電圧の制御周期のたびに極大値の変化を比較し、最小化の方向を分析することによって行われる。 The voltage applied to the electrode 9A is used for control to maximize the input coupling efficiency. The control circuit 32 controls the efficiency with which the light 10f is coupled to the light 10g propagating through the waveguide layer 7d, that is, the input coupling efficiency, by adjusting the voltage applied to the electrode 9A. The voltage applied to the electrode 9C is used to control the radiation angle. The control circuit 32 controls the direction of the light 10 h emitted from the grating 8 c to the outside by adjusting the voltage applied to the electrode 9 C. As described above, a part of the light 10 a emitted from the light source 1 passes through the polarization rotator 5 while the light source 1 emits the light 10 a and is reflected by the optical waveguide element 7. Through the polarization splitter 4 and detected by the light detector 12. Therefore, the maximum value of the amount of light detected by the light detector 12 at the time of light emission of the light source is proportional to the efficiency of light of the incident light which can not be input to the grating 8 a. Therefore, the voltage applied to the electrode 9A is controlled to minimize the maximum value of the detected light amount at the time of light emission of the light source. The control circuit 32 minimizes the maximum value of the light quantity of the light detected by the light detector 12 by controlling the voltage applied to the electrode 9A while the light source 1 emits the light 10a. This operation records the local maxima in time series, compares the change of the local maximum at each control cycle of the voltage applied to the polarization rotator 5 by the control circuit 31, and analyzes the direction of the minimization. It will be.
 図16Aおよび図16Bは、第1実施形態における、偏光回転子5の制御信号、光源1の出力光量、および光検出器12での検出光量の時間経過の関係を示す。図16Aに示す例と比較して、図16Bに示す例では、矩形パルスに周波数信号が重畳されている。 FIG. 16A and FIG. 16B show the relationship of the time lapse of the control signal of the polarization rotator 5, the output light quantity of the light source 1 and the light quantity detected by the light detector 12 in the first embodiment. Compared to the example shown in FIG. 16A, in the example shown in FIG. 16B, the frequency signal is superimposed on the rectangular pulse.
 図16Aに示す例において、光源1の発振を制御する制御回路30からの発振信号は、例えばΔ=250nsおきに10nsの幅の矩形パルスとして変化する。信号波形16a、信号波形16a1、および信号波形16a2は、矩形パルスの制御信号によって光源1から出射される光パルスの出力光量に相当する。250ns毎のパルス発振は、30msの1フレーム内において12万パルスになる。これは、水平方向および垂直方向において解像度を揃えれば、90度×30度の範囲を600×200(=12万)の画素解像度で走査することに相当する。 In the example shown in FIG. 16A, the oscillation signal from the control circuit 30 that controls the oscillation of the light source 1 changes, for example, as a rectangular pulse having a width of 10 ns every Δ = 250 ns. The signal waveform 16a, the signal waveform 16a1, and the signal waveform 16a2 correspond to the output light quantity of the light pulse emitted from the light source 1 by the control signal of the rectangular pulse. The pulse oscillation every 250 ns becomes 120,000 pulses in one frame of 30 ms. This corresponds to scanning a range of 90 degrees × 30 degrees at a pixel resolution of 600 × 200 (= 120,000) if the resolutions in the horizontal direction and the vertical direction are equal.
 このパルス信号である信号波形16a、信号波形16a1、および信号波形16a2に同期して、偏光を制御する制御回路31からの制御信号17a、制御信号17a1、および制御信号17a2も切り替わる。例えば、偏光回転角は、以下のように制御される。まず、信号波形16aの矩形パルスの時間範囲において偏光回転角φとし、信号波形16aの矩形パルスと信号波形16a1の矩形パルスとの間の時間範囲において偏光回転角π/2-φとする。信号波形16aの矩形パルスと信号波形16a1の矩形パルスとの間の時間範囲における偏光回転角、すなわち検出時の偏光回転角は、一般には、nを整数としてπ/2-φ+nπとする。nは、偏光回転角の絶対値を極小にするように定める。信号波形16a1の矩形パルスでは、ビーム走査に対応した変化量δ(=πΔ/2T)が加わり、信号波形16a1の矩形パルスの時間範囲において偏光回転角φ+δになり、信号波形16a1の矩形パルスと信号波形16a2の矩形パルスとの間の時間範囲において偏光回転角π/2-φ-δになる。信号波形16a2の矩形パルスでは、ビーム走査に対応した変化量δが加わり、信号波形16a2の矩形パルスの時間範囲において偏光回転角φ+2δになる。T=2msの間に、軸Lの周りを1/4回転する。偏光回転子5から物体までの間における往路光の偏光角は、信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスにおいて、それぞれφ、φ+δ、およびφ+2δになる。偏光回転子5から偏光分光器4までの間における復路光の偏光角は、信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスの時間範囲において、それぞれ2φ、2(φ+δ)、および2(φ+2δ)になり、それ以外の時間範囲でπ/2になる。 The control signal 17a, the control signal 17a1, and the control signal 17a2 from the control circuit 31 that controls the polarization are also switched in synchronization with the signal waveform 16a that is the pulse signal, the signal waveform 16a1, and the signal waveform 16a2. For example, the polarization rotation angle is controlled as follows. First, the polarization rotation angle φ is set in the time range of the rectangular pulse of the signal waveform 16a, and the polarization rotation angle π / 2-φ is set in the time range between the rectangular pulse of the signal waveform 16a and the rectangular pulse of the signal waveform 16a1. The polarization rotation angle in the time range between the rectangular pulse of the signal waveform 16a and the rectangular pulse of the signal waveform 16a1, ie, the polarization rotation angle at the time of detection, is generally π / 2−φ + nπ, where n is an integer. n is determined so as to minimize the absolute value of the polarization rotation angle. In the rectangular pulse of the signal waveform 16a1, the variation δ (= πΔ / 2T) corresponding to beam scanning is added, and the polarization rotation angle φ + δ is obtained in the time range of the rectangular pulse of the signal waveform 16a1, and the rectangular pulse and signal of the signal waveform 16a1 are The polarization rotation angle π / 2-φ-δ is obtained in the time range between the rectangular pulse of the waveform 16a2. In the rectangular pulse of the signal waveform 16a2, a change amount δ corresponding to beam scanning is added, and the polarization rotation angle φ + 2δ is obtained in the time range of the rectangular pulse of the signal waveform 16a2. During T = 2 ms, make a 1/4 rotation around axis L. The polarization angle of the forward light between the polarization rotator 5 and the object is φ, φ + δ, and φ + 2δ for the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2, respectively. The polarization angle of return light between the polarization rotator 5 and the polarization spectroscope 4 is 2φ, 2 in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2, respectively. (Φ + δ) and 2 (φ + 2 δ), and π / 2 in the other time range.
 図1Aに示す例では、信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスに応じて出射する光が、円柱体6を平行ビーム10iとして出射する。外界からの反射光は、矩形パルス外の時間範囲に帰還する。したがって、当該反射光の偏光方向は、偏光回転子5を経て発光時に比べ90度回転する。偏光方向が90度回転した反射光は、偏光分光器4を介して光検出器12により、例えば信号波形18aおよび信号波形18a1として検出される。信号波形16aと信号波形18aとの終端間の時間間隔19a、および、信号波形16a1と信号波形18a1との終端間の時間間隔19a1は、TOF信号(Time-of-Flight)信号と呼ばれる。TOF信号は、前端間の時間間隔であってもよい。この時間差に基づいて、外界にある物体までの距離を算出することができる。例えば、反射光の時間遅れが250nsの場合、物体までの距離は37.5mである。図16Aに示すモデルでは、37.5mまでの測定が可能である。 In the example shown in FIG. 1A, light emitted according to the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 emits the cylindrical body 6 as a parallel beam 10i. Reflected light from the outside world returns to a time range outside the rectangular pulse. Therefore, the polarization direction of the reflected light passes through the polarization rotator 5 and is rotated by 90 degrees as compared with the time of light emission. The reflected light whose polarization direction has been rotated by 90 degrees is detected by, for example, the signal waveform 18 a and the signal waveform 18 a 1 by the photodetector 12 through the polarization spectroscope 4. The time interval 19a between the end of the signal waveform 16a and the signal waveform 18a and the time interval 19a1 between the end of the signal waveform 16a1 and the signal waveform 18a1 are called TOF signal (Time-of-Flight) signal. The TOF signal may be a time interval between the front ends. Based on this time difference, the distance to an object in the outside world can be calculated. For example, when the time delay of reflected light is 250 ns, the distance to the object is 37.5 m. The model shown in FIG. 16A can measure up to 37.5 m.
 一方、信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスの光の内、光導波素子7によって反射される成分は、偏光回転子5を再び通過し、偏光角が発光時に比べてそれぞれ2φ、2(φ+δ)、および2(φ+2δ)だけ回転し、偏光分光器4を介して光検出器12により、それぞれ信号波形20a、信号波形20a1、および信号波形20a2として検出される。検出信号のうち、例えば、信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスの時間範囲における、それぞれ信号波形20a、信号波形20a1、および信号波形20a2を抽出してできる信号が、抽出検出信号20であり、実線によって表されている。信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスの時間範囲は、光源の発光時間に対応する。参考として、信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスの時間範囲での偏光回転角が抽出され、破線によって重ね描きされている。偏光回転の制御信号のT=2msを周期とする。偏光回転角は、周期Tごとに0度から90度まで変化する。これに対し、抽出検出信号20は、周期をTとするsinの2乗のカーブを描く。信号波形20a、信号波形20a1、および信号波形20a2は、抽出検出信号20上では、それぞれ抽出検出信号20A、抽出検出信号20A1、および抽出検出信号20A2に対応する。 On the other hand, among the light of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2, the component reflected by the optical waveguide element 7 passes again through the polarization rotator 5 and the polarization angle Are respectively rotated by 2φ, 2 (φ + δ) and 2 (φ + 2δ) compared to the time of light emission, and detected as a signal waveform 20a, a signal waveform 20a1 and a signal waveform 20a2 by the photodetector 12 through the polarization spectroscope 4 Be done. Among the detection signals, for example, the signal waveform 20a, the signal waveform 20a1, and the signal waveform 20a2 in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 are extracted The possible signal is the extraction detection signal 20, which is represented by a solid line. The time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 corresponds to the light emission time of the light source. As a reference, the polarization rotation angle in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 is extracted and drawn by a broken line. The period is T = 2 ms of the control signal of polarization rotation. The polarization rotation angle changes from 0 degrees to 90 degrees for each period T. On the other hand, the extraction detection signal 20 draws a curve of a square of sin with a period T. The signal waveform 20a, the signal waveform 20a1, and the signal waveform 20a2 correspond to the extraction detection signal 20A, the extraction detection signal 20A1, and the extraction detection signal 20A2, respectively, on the extraction detection signal 20.
 抽出検出信号20上で極小点20Rは、偏光回転の制御信号の周期の始点または終点に対応する。極大点20Pは、偏光回転の制御信号の始点と終点との中間点に対応する。すなわち、極小点20Rと極大点20Pとの間隔は45度に等しい。言い換えれば、偏光回転の制御信号と検出信号との回転角が一致する。偏光回転子5がファラデー回転子の場合、それを構成する磁性ガラス棒5aでは、温度および/または波長の変化によってファラデー効果に与えるベルデ定数などの物性値が変化する。偏光回転子5の特性が狂ったとき、制御信号通りに偏光は回転しない。例えば、印加電圧に対する偏光の回転感度が小さくなると、図16Aに示す一点破線で表すように、抽出検出信号20は時間軸に対して伸びる。このとき、抽出検出信号20上で極小点20Rは偏光回転の制御信号の始点または終点からずれ、極小点20Rと極大点20Pとの間隔は45度からずれる。言い換えれば、偏光回転の制御信号と検出信号との回転角が一致しない。この問題を解消するため、制御回路31は、抽出検出信号20から各周期における極小点20Rと極大点20Pとを検出する。極小点20Rは、偏光回転の制御信号の周期の始点または終点に対応する。極小点20Rと極大点20Pの間の時間間隔は、偏光回転角が45度となる時間になるように制御される。偏光回転角45度は、偏光回転の制御信号の周期である90度の1/2である。この操作は、制御回路31が、偏光回転子5に印加する電圧の制御周期(T)のたびに行われる。 The minimal point 20R on the extraction detection signal 20 corresponds to the start or end point of the period of the polarization rotation control signal. The maximum point 20P corresponds to an intermediate point between the start point and the end point of the control signal of polarization rotation. That is, the distance between the minimum point 20R and the maximum point 20P is equal to 45 degrees. In other words, the rotation angles of the control signal of polarization rotation and the detection signal coincide with each other. When the polarization rotator 5 is a Faraday rotator, in the magnetic glass rod 5a constituting it, physical property values such as the Verdet constant given to the Faraday effect are changed by the change of the temperature and / or the wavelength. When the characteristics of the polarization rotator 5 are out of order, the polarization is not rotated according to the control signal. For example, when the rotational sensitivity of the polarization to the applied voltage decreases, the extraction detection signal 20 extends with respect to the time axis, as represented by a dashed dotted line shown in FIG. 16A. In this case, minimum point 20R 0 on extraction detection signal 20 is shifted from the start or end of the control signal of the polarization rotation, the distance between the minimum point 20R 0 and maximum point 20P 0 deviates from 45 degrees. In other words, the rotation angles of the control signal of polarization rotation and the detection signal do not match. In order to solve this problem, the control circuit 31 detects the local minimum 20R and the local maximum 20P in each cycle from the extraction detection signal 20. The minimum point 20R corresponds to the start or end point of the period of the polarization rotation control signal. The time interval between the minimum point 20R and the maximum point 20P is controlled such that the polarization rotation angle is 45 degrees. The polarization rotation angle of 45 degrees is 1/2 of 90 degrees, which is the period of the control signal of polarization rotation. This operation is performed every control period (T) of the voltage applied to the polarization rotator 5 by the control circuit 31.
 信号波形16aの矩形パルス、信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスの時間範囲での検出信号20の極大値20Pは、入射光のうちの入力できなかった効率に比例する。したがって、極大値20Pの出力値は、入力結合効率を最大化するために電極9Aへの印加電圧を制御する際の、制御信号として用いられる。極大値20Pが小さいほど入力効率は高くなる。制御回路32は、偏光回転子5に印加する電圧の周期(T)のたびに、極大値20Pが小さくなるように電極9Aに印加する電圧を調整する。これにより、制御回路32は、光10fが導波層7dを伝搬する光10gとの結合効率、すなわち、入力効率を制御する。 The maximum value 20P of the detection signal 20 in the time range of the rectangular pulse of the signal waveform 16a, the rectangular pulse of the signal waveform 16a1, and the rectangular pulse of the signal waveform 16a2 is proportional to the efficiency of the input light which can not be input. Therefore, the output value of the maximum value 20P is used as a control signal when controlling the voltage applied to the electrode 9A in order to maximize the input coupling efficiency. The smaller the maximum value 20P, the higher the input efficiency. The control circuit 32 adjusts the voltage applied to the electrode 9A so that the maximum value 20P becomes smaller every cycle (T) of the voltage applied to the polarization rotator 5. Thus, the control circuit 32 controls the coupling efficiency with the light 10g in which the light 10f propagates in the waveguide layer 7d, that is, the input efficiency.
 以上から、制御回路31、制御回路32、および制御回路34は以下の動作を行う。 From the above, the control circuit 31, the control circuit 32, and the control circuit 34 perform the following operations.
 制御回路31は、光源1が光10aを出射している間に、偏光回転子5に印加する電圧を調整する。制御回路34は、偏光回転子5を通過し、光導波素子7によって反射され、偏光回転子5を再び通過し、偏光分光器4を介して光検出器12によって検出される光の光量の極大値と極小値とを取得する。制御回路34は、上記の極大値および極小値の時間位置を比較することにより、偏光回転子5を通過した光10eの偏光方向11eの回転角を制御する。制御回路32は、上記の極大値の変化を比較することにより、電極9Aに印加する電圧を調整し、導波層7dを伝搬する光10gの入力効率を制御する。 The control circuit 31 adjusts the voltage applied to the polarization rotator 5 while the light source 1 emits the light 10 a. The control circuit 34 passes through the polarization rotator 5, is reflected by the optical waveguide element 7, passes again through the polarization rotator 5, and maximizes the amount of light detected by the photodetector 12 through the polarization splitter 4. Get the value and the local minimum. The control circuit 34 controls the rotation angle of the polarization direction 11 e of the light 10 e that has passed through the polarization rotator 5 by comparing the time positions of the maximum value and the minimum value described above. The control circuit 32 adjusts the voltage applied to the electrode 9A by comparing the change in the maximum value described above, and controls the input efficiency of the light 10g propagating through the waveguide layer 7d.
 なお、図16Aに示す例のように、時間間隔19aが長くなり時間間隔19aになると、信号波形18aが信号波形16a1の矩形パルス、および信号波形16a2の矩形パルスの間に割り込み、信号波形18aになる。その結果、信号波形18aと信号波形18a1との判別が困難な場合がある。このとき、図16Bに示すように、光源1の発振信号に高周波信号を重畳して、出力光量に高周波の強度変調信号を乗せることによって、隣り合うパルス波形16Aとパルス波形16A1との周波数が差別化される。周波数の差別化として、例えば、パルス波形16A、およびパルス波形16A2に高周波の信号が重畳され、パルス波形16A1に低周波の信号が重畳される。 Incidentally, as in the example shown in FIG. 16A, when the time interval 19a is made time interval 19a 0 long, rectangular pulse signal waveform 18a is the signal waveform 16a1, and interrupts between the rectangular pulse of the signal waveform 16a2, the signal waveform 18a It will be 0 . As a result, it may be determined between the signal waveform 18a 0 and the signal waveform 18a1 difficult. At this time, as shown in FIG. 16B, the high frequency signal is superimposed on the oscillation signal of the light source 1 and the intensity modulation signal of the high frequency is put on the output light amount to discriminate the frequency between the adjacent pulse waveform 16A and the pulse waveform 16A1. Be As the frequency differentiation, for example, a high frequency signal is superimposed on the pulse waveform 16A and the pulse waveform 16A2, and a low frequency signal is superimposed on the pulse waveform 16A1.
 このようにして得られた検出信号18A、および検出信号18A1にも重畳信号は残存する。検出回路33がフィルター回路を含む場合、フィルター回路によって重畳信号を処理することにより、重畳信号から検出信号18A、および検出信号18A1を分離することができる。フィルター回路は、ハイパスフィルター(HPF)またはローパスフィルター(LPF)として機能する。例えば、検出信号18A、および検出信号18A1に、それぞれハイパスフィルターを掛ければ信号18H、および信号18Hに変換される。検出信号18A、および検出信号18A1に、それぞれローパスフィルターを掛ければ信号18L、および信号8Lに変換される。信号18Hから信号18Lを引いた両者の差分から、信号18Eが得られる。信号18Hから信号18Lを引いた両者の差分から、信号18Eが得られる。信号18Eおよび信号18Eの正または負の極性を判定することにより、検出信号18Aがパルス波形16Aおよびパルス波形16A1のどちらに対応するかを識別することができる。その結果、時間間隔19aおよび時間間隔19a1を確実に測定することができる。図16Bに示すモデルでは、75mまでの測定が可能である。パルス波形16A2の周波数も差別化できれば、さらに測定距離を伸ばすことができる。このようなフィルター回路による重畳信号の処理は、物体の距離を測定する従来の光学装置にも適用することができる。 The superimposed signal also remains in the detection signal 18A and the detection signal 18A1 obtained in this manner. When the detection circuit 33 includes a filter circuit, the detection signal 18A and the detection signal 18A1 can be separated from the superposition signal by processing the superposition signal by the filter circuit. The filter circuit functions as a high pass filter (HPF) or a low pass filter (LPF). For example, the detection signals 18A, and the detection signal 18A1, are respectively converted signal 18H by multiplying the high-pass filter, and the signal 18H 0. Detection signals 18A, and the detection signal 18A1, are respectively converted signal 18L is multiplied to a low pass filter, and the signal 8L 0. The signal 18E is obtained from the difference between the signal 18H minus the signal 18L. A signal 18L 0 from both difference obtained by subtracting from the signal 18H 0, signal 18E 0 is obtained. By determining a positive or negative signal 18E and the signal 18E 0, it is possible to identify whether the detection signal 18A corresponds to either of the pulse waveform 16A and pulse waveform 16A1. As a result, it is possible to reliably measure the time interval 19a 0 and the time interval 19a1. The model shown in FIG. 16B allows measurements up to 75 m. If the frequency of the pulse waveform 16A2 can also be differentiated, the measurement distance can be further extended. The processing of the superimposed signal by such a filter circuit can also be applied to a conventional optical device that measures the distance of an object.
 以上から、制御回路30、および制御回路34は以下の動作を行う。 From the above, the control circuit 30 and the control circuit 34 perform the following operation.
 制御回路30は、光源1に、異なる周波数の強度変調信号が重畳された、パルス波形16Aの光パルスとパルス波形16A1の光パルスとを順次出射させる。 The control circuit 30 causes the light source 1 to sequentially emit the light pulse of the pulse waveform 16A and the light pulse of the pulse waveform 16A1 on which intensity modulation signals of different frequencies are superimposed.
 制御回路34は、光検出器12に、光導波素子7から出射され、物体によって反射され、光導波素子7に入射したパルス波形16Aの光パルスの一部およびパルス波形16A1の光パルスの一部を検出させ、パルス波形16Aの光パルスの一部の量に応じた検出信号18Aと、パルス波形16A1の光パルスの一部に応じた検出信号18A1とを分離して出力させる。 The control circuit 34 outputs a part of the light pulse of the pulse waveform 16A and a part of the light pulse of the pulse waveform 16A1 which are emitted from the light waveguide element 7 to the light detector 12 and reflected by the object and enter the light waveguide element 7 Is detected, and a detection signal 18A corresponding to a partial amount of the light pulse of the pulse waveform 16A and a detection signal 18A1 corresponding to a part of the light pulse of the pulse waveform 16A1 are separated and output.
 なお、図14Aに示したように、電極層への印加電圧は90度の周期を有する。したがって、一回転で4つの電圧分布パターンが得られる。この電圧分布パターンが、液晶の応答速度で回転運動を示す。光源1による発光の応答速度および偏光回転子5による偏光の回転速度は、液晶の応答速度を遥かに超える。したがって、電圧分布パターンに対応した複数の方向のそれぞれにおいて、独立して発光および偏光の回転を制御することができる。例えば、一度に2つの方向に光を出射して、ビームを走査させ、2つの方向からの反射光を検出することができる。2つの方向とは、例えば、-45から45度の範囲における方向、および45から135度の範囲における方向である。 As shown in FIG. 14A, the voltage applied to the electrode layer has a cycle of 90 degrees. Therefore, four voltage distribution patterns are obtained in one rotation. This voltage distribution pattern shows rotational motion at the response speed of the liquid crystal. The response speed of light emission by the light source 1 and the rotation speed of polarization by the polarization rotator 5 far exceed the response speed of the liquid crystal. Therefore, the light emission and the rotation of polarization can be controlled independently in each of the plurality of directions corresponding to the voltage distribution pattern. For example, light can be emitted in two directions at a time to scan the beam and detect light reflected from the two directions. The two directions are, for example, the direction in the range of -45 to 45 degrees and the direction in the range of 45 to 135 degrees.
 図16Cは、重複走査をした場合の、偏光回転子5の制御信号、光源1の出力光量、および光検出器12の検出光量の時間経過の関係を示す図である。 FIG. 16C is a diagram showing the relationship of time passage of the control signal of the polarization rotator 5, the output light quantity of the light source 1, and the detection light quantity of the light detector 12 in the case of overlapping scanning.
 図16Cに示す例において、光源1の発振を制御する制御回路30からの発振信号は、例えば単一方向250nsおきに10nsの幅の矩形パルスとして変化する。信号波形16a、信号波形16a1、および信号波形16a2は、矩形パルスの制御信号によって光源1から出射された光パルスの出力光量に相当する。これらのパルス信号である信号波形16a、信号波形16a1、および信号波形16a2に同期して、偏光を制御する制御回路31からの制御信号17a、制御信号17a1、および制御信号17a2もそれぞれ切り替わる。例えば、偏光回転角は、以下のように制御される。信号波形16aの矩形パルスでは、信号波形16aの矩形パルスの時間範囲において偏光回転角φになり、信号波形16aの矩形パルスと信号波形16a1の矩形パルスとの間の時間範囲において偏光回転角π/2-φになる。信号波形16a1の矩形パルスでは、信号波形16a1の矩形パルスの時間範囲において偏光回転角φ+π/2になり、信号波形16a1の矩形パルスと信号波形16a2の矩形パルスとの間の時間範囲において偏光回転角-φ+πになる。信号波形16a2の矩形パルスでは、ビーム走査に対応した変化量δが加わり、偏光回転角φ+δになる。信号波形16a、および信号波形16a2は-45度から45度の範囲の視野内での発光に対応し、信号波形16a1は45度から135度の範囲の視野内での発光に対応する。 In the example shown in FIG. 16C, the oscillation signal from the control circuit 30 that controls the oscillation of the light source 1 changes as, for example, a rectangular pulse having a width of 10 ns every 250 ns in a single direction. The signal waveform 16a, the signal waveform 16a1, and the signal waveform 16a2 correspond to the output light quantity of the light pulse emitted from the light source 1 by the control signal of the rectangular pulse. The control signal 17a, the control signal 17a1, and the control signal 17a2 from the control circuit 31 that controls the polarization are also switched in synchronization with the signal waveform 16a, the signal waveform 16a1, and the signal waveform 16a2, which are pulse signals. For example, the polarization rotation angle is controlled as follows. The rectangular pulse of the signal waveform 16a has the polarization rotation angle φ in the time range of the rectangular pulse of the signal waveform 16a, and the polarization rotation angle π / in the time range between the rectangular pulse of the signal waveform 16a and the rectangular pulse of the signal waveform 16a1. It becomes 2-φ. The rectangular pulse of the signal waveform 16a1 has a polarization rotation angle φ + π / 2 in the time range of the rectangular pulse of the signal waveform 16a1, and the polarization rotation angle in the time range between the rectangular pulse of the signal waveform 16a1 and the rectangular pulse of the signal waveform 16a2. It becomes-phi + pi. In the rectangular pulse of the signal waveform 16a2, the amount of change δ corresponding to the beam scanning is added, and the polarization rotation angle φ + δ is obtained. The signal waveform 16a and the signal waveform 16a2 correspond to light emission within a field of view ranging from -45 degrees to 45 degrees, and the signal waveform 16a1 corresponds to light emission within a field of view ranging from 45 degrees to 135 degrees.
 図1Aに示す例では、信号波形16aの矩形パルスの時間範囲において、光10iは、収差補正されて円柱体6を-45度から45度の範囲の視野内において出射する。外界からの反射光は、信号波形16aの矩形パルスの時間範囲外に帰還する。当該反射光の偏光方向は、偏光回転子5を経て90度回転する。その後、当該反射光は、偏光分光器4によって光検出器12に向けて分離され、光検出器12によって信号波形18aとして検出される。信号波形16aと信号波形18aとの終端間の時間間隔19aは、TOF信号である。これにより、-45度から45度の範囲の視野内にある物体までの距離を検出することができる。 In the example shown in FIG. 1A, in the time range of the rectangular pulse of the signal waveform 16a, the light 10i is aberration-corrected and emits the cylindrical body 6 within the field of view in the range of -45 degrees to 45 degrees. Light reflected from the outside world is returned outside the time range of the rectangular pulse of the signal waveform 16a. The polarization direction of the reflected light is rotated by 90 degrees through the polarization rotator 5. Thereafter, the reflected light is separated by the polarization spectroscope 4 toward the light detector 12 and detected by the light detector 12 as a signal waveform 18 a. The time interval 19a between the end of the signal waveform 16a and the signal waveform 18a is a TOF signal. This makes it possible to detect the distance to an object within the field of view in the range of -45 degrees to 45 degrees.
 同様に、信号波形16a1の矩形パルスの時間範囲でも、光10iは収差補正されて円柱体6を45度から135度の範囲の視野内において出射する。外界からの反射光は、信号波形16a1の矩形パルスの時間範囲外に帰還する。当該反射光の偏光方向は、偏光回転子5を経て90度回転する。その後、当該反射光は、偏光分光器4によって光検出器12に向けて分離され、光検出器12によって信号波形18a1として検出される。信号波形16a1および信号波形18a1の終端間の時間間隔19a1はTOF信号である。これにより、45度から135度の範囲の視野内にある物体までの距離を検出することができる。 Similarly, even in the time range of the rectangular pulse of the signal waveform 16a1, the light 10i is aberration-corrected and emits the cylindrical body 6 within the field of view in the range of 45 degrees to 135 degrees. Reflected light from the outside world returns outside the time range of the rectangular pulse of the signal waveform 16a1. The polarization direction of the reflected light is rotated by 90 degrees through the polarization rotator 5. Thereafter, the reflected light is separated by the polarization spectroscope 4 toward the light detector 12 and detected by the light detector 12 as a signal waveform 18a1. The time interval 19a1 between the end of the signal waveform 16a1 and the end of the signal waveform 18a1 is a TOF signal. This makes it possible to detect the distance to an object within the field of view in the range of 45 degrees to 135 degrees.
 例えば、反射光の時間遅れが250nsの場合、物体までの距離は37.5mである。図16Cに示すモデルでは、37.5mまでの測定が、-45度から135度の範囲、すなわち180度の角度範囲において可能である。 For example, when the time delay of reflected light is 250 ns, the distance to the object is 37.5 m. In the model shown in FIG. 16C, measurements up to 37.5 m are possible in the range of -45 degrees to 135 degrees, ie an angle range of 180 degrees.
 なお、図8B、図10A、および図10Cに示す電極のパターニングは、透明電極層7g側ではなく反射層7b側に形成されてもよい。さらに、グレーティング8aによって励起される導波光10gは、TMモードであってもよい。偏光回転子5に液晶素子を使う場合は、ファラデー回転子のように高速応答できない。このため、図16Aに示したような発光のオンオフに同期した高速な偏光角の切り替えはできない。しかし、偏光分光器4にハーフミラーを用いれば、偏光角を切り替えなくとも、外界からの反射光を検出することができる。偏光回転子5の代わりに1/4波長板を使う場合、グレーティング8aには円偏光の光が入射する。したがって、全偏角方向に均等に導波光10gが励起される。励起光の内の一部の方位しか収差補正されず、光の利用効率は数分の1に落ちる。この場合も、偏光分光器4にハーフミラーを用いれば、外界からの反射光を検出することができる。 The patterning of the electrodes shown in FIGS. 8B, 10A, and 10C may be formed not on the transparent electrode layer 7g side but on the reflective layer 7b side. Furthermore, the guided light 10g excited by the grating 8a may be in the TM mode. When a liquid crystal element is used as the polarization rotator 5, high-speed response can not be achieved as with a Faraday rotator. For this reason, it is impossible to switch the polarization angle at high speed synchronized with the on / off of the light emission as shown in FIG. 16A. However, if a half mirror is used as the polarization spectroscope 4, reflected light from the outside can be detected without switching the polarization angle. When a quarter wave plate is used instead of the polarization rotator 5, circularly polarized light is incident on the grating 8a. Therefore, the guided light 10g is excited uniformly in all deflection directions. Only a part of the excitation light is aberration corrected, and the light utilization efficiency drops to a fraction. Also in this case, if a half mirror is used for the polarization spectroscope 4, reflected light from the outside can be detected.
 したがって、本実施形態により、広がり角0.1度以下の絞れたレーザー光を外部の物体に向かって出射することができる。その際、水平方向90度および垂直方向30度の視野内において出射ビームを1秒あたり30フレーム以上の動画速度で走査することができる。さらに、物体からの反射光のうち、迷光を除去して波長および位相が揃った光のみを選択的に受光または検出することができる。また、検出した光を視野内における物体の正確な2次元距離情報に変換することができる。2次元距離情報から、3次元的位置関係が得られる。 Therefore, according to the present embodiment, it is possible to emit the narrowed laser light having a spread angle of 0.1 degree or less toward the external object. At that time, the outgoing beam can be scanned at a moving image speed of 30 frames or more per second within the field of view of 90 degrees in the horizontal direction and 30 degrees in the vertical direction. Furthermore, it is possible to selectively receive or detect only the light having the same wavelength and phase as the reflected light from the object by removing the stray light. Also, the detected light can be converted into accurate two-dimensional distance information of the object in the field of view. Three-dimensional positional relationship can be obtained from two-dimensional distance information.
 (第2実施形態)
 図17Aおよび図17Bは、第2実施形態における透明電極層のパターンを模式的に示す図である。
Second Embodiment
FIG. 17A and FIG. 17B are diagrams schematically showing the pattern of the transparent electrode layer in the second embodiment.
 図17Aに示す例では、分割された電極層への印加電圧は、120度の周期を有する。例えば、電極9B1、電極9B25、および電極9B49には同じ電圧が印加され、電極9B2、電極9B26、および電極9B50にも同じ電圧が印加される。120度の角度範囲内において電極に印加される電圧は、収差を補正する条件で高低の電圧分布パターンを示す。この電圧分布パターンは、パターン形状を維持した状態で、偏光回転子による偏光の回転角φに同期して回転する。図17Aに示す分割方法では、光源1による発光の応答速度、および偏光回転子5による偏光の回転速度は、液晶の応答速度を遥かに超える。このため、電圧分布パターンに対応した3つの方向のそれぞれにおいて、独立して発光および偏光の回転を制御することができる。したがって、図16Cに示した方法を用いて、一度に3つの方向に光を出射し、3つの方向からの反射光を検出することができる。 In the example shown in FIG. 17A, the voltage applied to the divided electrode layers has a cycle of 120 degrees. For example, the same voltage is applied to the electrode 9B1, the electrode 9B25, and the electrode 9B49, and the same voltage is applied to the electrode 9B2, the electrode 9B26, and the electrode 9B50. The voltage applied to the electrode within the angle range of 120 degrees exhibits a high and low voltage distribution pattern under the condition for correcting the aberration. The voltage distribution pattern rotates in synchronization with the rotation angle φ of the polarization by the polarization rotator while maintaining the pattern shape. In the division method shown in FIG. 17A, the response speed of light emission by the light source 1 and the rotation speed of polarization by the polarization rotator 5 far exceed the response speed of the liquid crystal. For this reason, it is possible to control emission and polarization rotation independently in each of the three directions corresponding to the voltage distribution pattern. Therefore, using the method shown in FIG. 16C, light can be emitted in three directions at a time, and reflected light from three directions can be detected.
 図17Bに示す例では、電極9Bは、回転方向に4度刻みで放射方向に等分され、電極9B1から電極9B90の90個に分割されている。分割された電極層への印加電圧は、72度の周期を有する。例えば、電極9B1、電極9B19、電極9B37、電極9B55、および電極9B73には同じ電圧が印加される。電極9B2、電極9B20、電極9B38、電極9B56、および電極9B74にも同じ電圧が印加される。72度の角度範囲内において電極に印加される電圧は、収差を補正する条件で高低の電圧分布パターンを示す。この電圧分布パターンは、パターン形状を維持した状態で、偏光回転子による偏光の回転角φに同期して回転する。図17Bに示す分割方法では、電圧分布パターンに対応した5つの方向のそれぞれにおいて、独立して発光および偏光回転を制御することができる。したがって、図16Cに示した方法を用いて、一度に5つの方向に光を出射し、5つの方向からの反射光を検出することができる。 In the example shown in FIG. 17B, the electrodes 9B are equally divided in the radial direction by 4 degrees in the rotational direction, and are divided into 90 pieces of electrodes 9B1 to 9B90. The applied voltage to the divided electrode layers has a period of 72 degrees. For example, the same voltage is applied to the electrode 9B1, the electrode 9B19, the electrode 9B37, the electrode 9B55, and the electrode 9B73. The same voltage is applied to the electrode 9B2, the electrode 9B20, the electrode 9B38, the electrode 9B56, and the electrode 9B74. The voltage applied to the electrode within the 72 ° angle range exhibits a high and low voltage distribution pattern under the condition for correcting the aberration. The voltage distribution pattern rotates in synchronization with the rotation angle φ of the polarization by the polarization rotator while maintaining the pattern shape. In the division method shown in FIG. 17B, light emission and polarization rotation can be controlled independently in each of the five directions corresponding to the voltage distribution pattern. Therefore, light can be emitted in five directions at a time and reflected light from five directions can be detected using the method shown in FIG. 16C.
 図1Aおよび図1Bから分かるように、光10f以降の光線の進路は、復路も含めて180度対称に作用する。第1実施形態では、図14Aから図14Cに示したように、収差補正も180度対称に実現される。その結果、外界からの反射信号として、前方に相当する-45度から45度の範囲の視野内と、後方に相当する135度から225度の範囲の視野内とからの2種類の信号が重なって帰ってくる。対角に位置する2つの方向からの光は、同じ発光から得られる。この場合、2種類の信号は、例えば、他の撮像系において得られた画像と比較し、画像処理を加えることによって分離され得る。これに対し、図17Aおよび図17Bに示す分割方法では、180度反対側に位置する2つの電圧分布パターンが異なる。これにより、一方では収差補正が行われるが、対角方向では大きな収差が残る。このため、位相補正も非対称になり、検出信号が重なることはない。したがって、第1実施形態に比べ、遠近画像の処理を簡素化することができる。 As can be seen from FIGS. 1A and 1B, the path of the light beam after the light 10f acts 180 degrees symmetrically including the return path. In the first embodiment, as shown in FIG. 14A to FIG. 14C, the aberration correction is also realized with 180 degree symmetry. As a result, as reflected signals from the outside world, two kinds of signals from within the field of view in the range of -45 to 45 degrees corresponding to the front and in the field of range of 135 to 225 degrees corresponding to the rear overlap Come back. Light from two diagonally located directions is obtained from the same emission. In this case, the two types of signals can be separated, for example, by comparison with images obtained in other imaging systems and by applying image processing. On the other hand, in the division method shown in FIGS. 17A and 17B, the two voltage distribution patterns located on the opposite side by 180 degrees are different. As a result, although aberration correction is performed on the one hand, large aberrations remain in the diagonal direction. For this reason, the phase correction is also asymmetrical, and the detection signals do not overlap. Therefore, the processing of the perspective image can be simplified as compared with the first embodiment.
 (第3実施形態)
 図18は、第3実施形態における、光学装置の構成と、光線の経路とを模式的に示す斜視図である。光導波素子7の断面構造は、図1Bに示した構造と同様である。第3実施形態では、第1実施形態における偏光回転子5が、1/4波長板4aおよびハーフミラー4bに置き換えられ、制御回路31が省かれ、偏光分光器4cならびに光検出器12Aおよび光検出器12Bが新たに追加されている。それ以外は第1実施形態と同じであり、重複する説明は省略する。
Third Embodiment
FIG. 18 is a perspective view schematically showing the structure of an optical device and the path of light in the third embodiment. The cross-sectional structure of the optical waveguide device 7 is the same as that shown in FIG. 1B. In the third embodiment, the polarization rotator 5 in the first embodiment is replaced by the quarter wave plate 4a and the half mirror 4b, the control circuit 31 is omitted, and the polarization spectroscope 4c, the photodetector 12A and the light detection 12B is newly added. Other than that is the same as that of the first embodiment, and the overlapping description will be omitted.
 図19Aは、第3実施形態における、電極9Bの電圧分布パターンの回転角、光源1の出力光量、光検出器12A、光検出器12B、および光検出器12での検出光量P0、検出光量P90、および検出光量P45、ならびに検出光量P0、検出光量P90、および検出光量P45の規格化差信号の時間経過の関係を示す図である。 FIG. 19A shows the rotation angle of the voltage distribution pattern of the electrode 9B, the output light quantity of the light source 1, the light quantity P0 detected by the light detector 12A, the light detector 12B, and the light detector 12 in the third embodiment; And a detected light amount P45, and a relationship between time progress of a normalized difference signal of the detected light amount P0, the detected light amount P90, and the detected light amount P45.
 図19Bは、第3実施形態における、電極9Bの分割領域と、水平方向走査光線の方向との関係を示す図である。図19Cは、電極9B領域の分割領域に対応したレーザー光による水平方向および垂直方向の走査の様子と、走査光線間の位置との関係を示す図である。 FIG. 19B is a diagram showing the relationship between the divided region of the electrode 9B and the direction of the horizontal scanning beam in the third embodiment. FIG. 19C is a diagram showing a relationship between horizontal and vertical scanning by laser light corresponding to divided areas of the electrode 9B area, and the position between scanning light beams.
 第3実施形態における光学装置は、光源1と、コリメートレンズ2aと、反射ミラー3と、偏光分光器4と、1/4波長板4aと、ハーフミラー4bと、偏光分光器4cと、集光レンズ2bと、円柱体6と、光導波素子7と、制御回路30、および制御回路32とを備える。偏光分光器4、1/4波長板4a、ハーフミラー4b、集光レンズ2b、円柱体6、および光導波素子7は、軸Lを中心軸として配置される。 The optical apparatus according to the third embodiment includes a light source 1, a collimator lens 2a, a reflection mirror 3, a polarization spectroscope 4, a quarter wavelength plate 4a, a half mirror 4b, a polarization spectroscope 4c, A lens 2b, a cylindrical body 6, an optical waveguide element 7, a control circuit 30, and a control circuit 32 are provided. The polarization spectroscope 4, the quarter wavelength plate 4a, the half mirror 4b, the condenser lens 2b, the cylindrical body 6, and the optical waveguide element 7 are disposed with the axis L as a central axis.
 図18に示す例では、光源1は、波長λの直線偏光であるレーザー光10aを出射する。光10aは、コリメートレンズ2aによって平行光10bになり、反射ミラー3を反射して偏光分光器4に入射する光10cになり、偏光分光器4を透過して光10dになる。偏光分光器4は、例えば偏光ビームスプリッタである。コリメートレンズ2aと反射ミラー3との間に、楕円に広がるレーザー光10aの分布を円形に変換するビーム整形プリズムを挿入してもよい。光10dは、1/4波長板4aを透過して円偏光の光10dになり、ハーフミラー4bに入射し、半分がこれを透過して光10eになる。光10eは、中心軸Lに沿って集光レンズ2bを通過し、屈折率nおよび半径rの透明部材である円柱体6に入射する。中心軸Lは、ハーフミラー4bを通過した光10eの光路上に位置し、当該光路に沿った軸であるといえる。グレーティング8aには円偏光の光が入射する。したがって、全偏角方向に均等に導波光10gが励起される。 In the example shown in FIG. 18, the light source 1 emits a laser beam 10a which is linear polarized light of wavelength λ. The light 10a becomes collimated light 10b by the collimator lens 2a, is reflected by the reflection mirror 3 to become light 10c incident on the polarization spectroscope 4, and transmits the polarization spectroscope 4 to become light 10d. The polarization spectroscope 4 is, for example, a polarization beam splitter. A beam shaping prism may be inserted between the collimating lens 2 a and the reflection mirror 3 to convert the distribution of the laser light 10 a spreading in an ellipse into a circle. Light 10d will become 1/4 light 10d 0 circularly polarized light transmitted through the wavelength plate 4a, and enters the half mirror 4b, becomes the light 10e and half is transmitted therethrough. The light 10 e passes through the condenser lens 2 b along the central axis L, and enters the cylindrical body 6 which is a transparent member having a refractive index n 0 and a radius r 0 . The central axis L is located on the optical path of the light 10 e that has passed through the half mirror 4 b and can be said to be an axis along the optical path. Circularly polarized light is incident on the grating 8a. Therefore, the guided light 10g is excited uniformly in all deflection directions.
 光10e以降の光線の経路は往路および復路とも第1実施形態と同じである。したがって、説明を省略する。外界にある物体の表面を反射した後、復路においてハーフミラー4bの位置まで逆進した光10Eは、その半分がハーフミラー4bを反射して、光10Eになり、偏光分光器4cによって反射光10Eと透過光10Eとに分岐し、それぞれ光検出器12Aと光検出器12Bとによって検出される。偏光分光器4cは、例えば偏光ビームスプリッタである。反射光10Eは、光10EのS偏光成分であり、透過光10Eは、光10EのP偏光成分である。 The paths of light after the light 10e are the same as in the first embodiment in both the forward and backward paths. Therefore, the description is omitted. After reflecting the surface of the object in the external world, light 10E was reverse to the position of the half mirror 4b in the return path, half is reflected by the half mirror 4b, becomes light 10E 0, reflected by the polarization spectrometer 4c light 10E 1 and then branches into a transmitted light 10E 2, are detected by a photodetector 12A and the photodetector 12B. The polarization spectroscope 4c is, for example, a polarization beam splitter. Reflected light 10E 1 is S-polarized component of the light 10E 0, transmitted light 10E 2 is a P-polarized component of the light 10E 0.
 光10Eの内、ハーフミラー4bを透過する成分10Dは、1/4波長板4aを透過し、一部が偏光分光器4を反射して、光検出器12によって検出される。光検出器12、光検出器12A、および光検出器12Bは、検出回路33を含む。検出信号は、検出回路33によって信号処理される。ハーフミラー4bの反射面の面法線と、偏光分光器4の反射面の面法線とは、平行でなくてよく、例えば45度傾いている。例えば、光源1から1/4波長板4aまでの構成だけ、軸Lの周りに45度回転していてもよい。この場合、戻り光である光10Eの内、電界ベクトルに相当する偏光に直交する方向0度の光は、光検出器12Aによって検出され、偏光に直交する方向90度の光は、光検出器12Bによって検出され、偏光に直交する方向45度の光は、光検出器12によって検出される。 Among the light 10E, components 10D 0 transmitted through the half mirror 4b is transmitted through the 1/4-wave plate 4a, a portion is reflected polarization spectroscope 4, is detected by the photodetector 12. The light detector 12, the light detector 12 A, and the light detector 12 B include a detection circuit 33. The detection signal is processed by the detection circuit 33. The surface normal of the reflecting surface of the half mirror 4b and the surface normal of the reflecting surface of the polarization splitter 4 may not be parallel, and for example, they are inclined at 45 degrees. For example, only the configuration from the light source 1 to the 1⁄4 wavelength plate 4a may be rotated 45 degrees around the axis L. In this case, of the light 10E which is return light, light with a direction of 0 ° orthogonal to the polarization corresponding to the electric field vector is detected by the photodetector 12A, and light with a direction of 90 ° orthogonal to the polarization is a photodetector Light detected by 12 B and in a 45 degree direction orthogonal to the polarization is detected by the light detector 12.
 図19Aに示す例において、光源1の発振を制御する制御回路30からの発振信号は、例えばΔ=250nsおきに10nsの幅の矩形パルスとして変化する。それに対応して、信号波形16aのパルス光、および信号波形16a1のパルス光が発光する。250ns毎のパルス発振は30msの1フレーム内において12万パルスになる。このパルス信号に同期して、電極9Bへの印加電圧の回転角には、ビーム走査に対応した変化量δ(=2πΔ/5T)が加わり、電極9Bの電圧分布パターンは、T=2msの間に、軸Lの周りを1/5回転する。 In the example shown in FIG. 19A, the oscillation signal from the control circuit 30 that controls the oscillation of the light source 1 changes, for example, as a rectangular pulse having a width of 10 ns every Δ = 250 ns. Correspondingly, pulsed light of the signal waveform 16a and pulsed light of the signal waveform 16a1 are emitted. The pulse oscillation every 250 ns becomes 120,000 pulses in one frame of 30 ms. In synchronization with this pulse signal, the amount of change δ (= 2πΔ / 5T) corresponding to beam scanning is added to the rotational angle of the voltage applied to the electrode 9B, and the voltage distribution pattern of the electrode 9B is for T = 2 ms , 1/5 rotation around the axis L.
 図19Bに示す例では、電極9Bは、5つの扇状の領域B1、領域B2、領域B3、領域B4、および領域B5に分けられる。それぞれの領域において、光線走査のための導波光が伝搬する。領域B1、領域B2、領域B3、領域B4、および領域B5は、それぞれφ=-36度から36度、36度から108度、108度から180度、180度から252度、および252度から324度の範囲の水平走査範囲を受け持つ。 In the example shown in FIG. 19B, the electrode 9B is divided into five fan-shaped regions B1, B2, B3, B4, and B5. In each of the regions, guided light for beam scanning propagates. Region B1, region B2, region B3, region B4, and region B5 have φ = -36 degrees to 36 degrees, 36 degrees to 108 degrees, 108 degrees to 180 degrees, 180 degrees to 252 degrees, and 252 degrees to 324, respectively. It is responsible for the horizontal scanning range in the range of degrees.
 図19Cは、領域B1、領域B2、領域B3、領域B4、および領域B5の各々における、レーザー光の水平方向および垂直方向の走査の様子を模式的に示す図である。図19Bに示す中心Oと点b1、点b2、点b3、点b4、および点b5の各々とを結ぶ方向を中心とした±36度の範囲に、収差補正のための電圧分布パターンが形成される。収差補正の結果、平行ビームになった光が、図19Cに示す点b1、点b2、点b3、点b4、および点b5の位置を走査する。点b1、点b2、点b3、点b4、および点b5はそれぞれ72度の角度差を維持しながら各領域を移動する。すなわち、図19Cに示す点b1は、φ=-36度から36度の範囲に相当する領域B1を走査する。同様に、点b2、点b3、点b4、および点b5も、それぞれ領域B2、領域B3、領域B4,および領域B5の領域を同期して走査する。図19Cに示す水平方向の走査は、360度の範囲が連続して走査されていると見ることもできる。点b1が領域B1と領域B2との境界を跨ぐと、点b1による走査線は、点b2による走査線に切り替わる。すなわち、点そのものは連続して360度の区間を走査するが、領域に応じて、図中での名称が変わる。 FIG. 19C schematically shows horizontal and vertical scanning of laser light in each of the area B1, the area B2, the area B3, the area B4, and the area B5. A voltage distribution pattern for aberration correction is formed in a range of ± 36 degrees centered on the direction connecting center O and points b1, b2, b3, b4 and b5 shown in FIG. 19B. Ru. As a result of the aberration correction, parallel light beams scan the positions of point b1, point b2, point b3, point b4 and point b5 shown in FIG. 19C. The point b1, the point b2, the point b3, the point b4, and the point b5 move in each area while maintaining an angular difference of 72 degrees. That is, the point b1 shown in FIG. 19C scans the area B1 corresponding to the range of φ = −36 degrees to 36 degrees. Similarly, the points b2, b3, b4 and b5 also synchronously scan the areas B2, B3, B4 and B5, respectively. The horizontal scan shown in FIG. 19C can also be viewed as the 360 degree range being scanned continuously. When the point b1 crosses the boundary between the area B1 and the area B2, the scanning line at the point b1 is switched to the scanning line at the point b2. That is, the point itself continuously scans the 360 ° section, but the name in the figure changes according to the area.
 物体で反射され、ハーフミラー4bの位置まで逆進した光10Eの偏光方向は、領域B1、領域B2、領域B3、領域B4、および領域B5ごとに異なる。領域B1、領域B2、領域B3、領域B4、および領域B5での光は、それぞれφ=90度、162度、234度、306度、および18度を中心とする偏光を有する。具体的には、光の偏光方向は、図19Bに示すxy面内において、領域B1内では方位Ob1に直交し、領域B2内では方位Ob2に直交し、領域B3内では方位Ob3に直交し、領域B4内では方位Ob4に直交し、領域B5内では方位Ob5に直交する。 The polarization direction of the light 10E reflected by the object and reversely traveled to the position of the half mirror 4b differs among the area B1, the area B2, the area B3, the area B4, and the area B5. The light in the regions B1, B2, B3, B4 and B5 has polarizations centered at φ = 90 degrees, 162 degrees, 234 degrees, 306 degrees and 18 degrees, respectively. Specifically, in the xy plane shown in FIG. 19B, the polarization direction of light is orthogonal to the azimuth Ob1 in the area B1, orthogonal to the azimuth Ob2 in the area B2, and orthogonal to the azimuth Ob3 in the area B3. In the area B4, it is orthogonal to the azimuth Ob4, and in the area B5, it is orthogonal to the azimuth Ob5.
 図19Aには、光検出器12A、光検出器12B、および光検出器12での検出光量P0、検出光量P90、および検出光量P45の時間経過が示されている。さらに、図19Aには、パルス光16aの出射後250nsの時間範囲で、領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光が同時に検出される。信号波形20a、信号波形20a1、信号波形20b、信号波形20b1、信号波形20c、および信号波形20c1は、グレーティング8aに入力できず、そのまま反射して帰還した光の検出信号である。 In FIG. 19A, the time course of the detected light amount P0, the detected light amount P90, and the detected light amount P45 in the light detector 12A, the light detector 12B, and the light detector 12 is shown. Further, in FIG. 19A, return lights from the area B1, the area B2, the area B3, the area B4, and the area B5 are simultaneously detected within a time range of 250 ns after the emission of the pulsed light 16a. The signal waveform 20a, the signal waveform 20a1, the signal waveform 20b, the signal waveform 20b1, the signal waveform 20c, and the signal waveform 20c1 can not be input to the grating 8a, and are detection signals of light reflected and returned as it is.
 例えば、光検出器12Aにより、領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光が、それぞれ信号波形18a、信号波形18a、信号波形18a、信号波形18a、および信号波形18aとして検出される。光検出器12Bにより、領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光が、それぞれ信号波形18b、信号波形18b、信号波形18b,信号波形18b、および信号波形18bとして検出される。光検出器12により、領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光が、それぞれ信号波形18c、信号波形18c、信号波形18c、信号波形18c、および信号波形18cとして検出される。それらの和信号18a+18b+18c、和信号18a+18b+18c、和信号18a+18b+18c、和信号18a+18b+18c、および和信号18a+18b+18cから、それぞれ領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光のTOF信号が検出される。領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光のTOF信号は、それぞれ信号19a、信号19a、信号19a、信号19a、および信号19aである。和信号の光量は、光10Eの光量の3/4まで利用している。 For example, the return light from area B1, area B2, area B3, area B4 and area B5 is signal waveform 18a 1 , signal waveform 18a 2 , signal waveform 18a 3 , signal waveform 18a 4 , respectively, by photodetector 12A. and it is detected as a signal waveform 18a 5. By the photodetector 12B, region B1, the area B2, the region B3, the region B4, and return light from the region B5, respectively the signal waveform 18b 1, the signal waveform 18b 2, the signal waveform 18b 3, the signal waveform 18b 4, and the signal It is detected as a waveform 18b 5. Return light from the regions B1, B2, B3, B4, and B5 is signal waveforms 18c 1 , 18c 2 , 18c 3 , 18c 4 , and 18c 4 by the photodetector 12, respectively. It is detected as a waveform 18c 5. From their sum signal 18a 1 + 18b 1 + 18c 1 , sum signal 18a 2 + 18b 2 + 18c 2 , sum signal 18a 3 + 18b 3 + 18c 3 , sum signal 18a 4 + 18b 4 + 18c 4 , and sum signal 18a 5 + 18b 5 + 18c 5 respectively The TOF signal of the return light from the area B1, the area B2, the area B3, the area B4, and the area B5 is detected. Region B1, the area B2, the region B3, the return light TOF signals from the region B4, and regions B5, respectively signals 19a 1, signal 19a 2, signals 19a 3, signals 19a 4, and a signal 19a 5. The light amount of the sum signal is used up to 3/4 of the light amount of the light 10E.
 なお、3つの検出光量から、3つの規格化差信号(P0-P90)/(P0+P45+P90)、規格化差信号(P0-P45)/(P0+P45+P90)、および規格化差信号(P90-P45)/(P0+P45+P90)が生成される。nを1から5の整数として、信号18e、信号18f、および信号18gは、それぞれ信号20a、信号20b、および信号20cから生成される。 From the three detected light amounts, three normalized difference signals (P0-P90) / (P0 + P45 + P90), normalized difference signals (P0-P45) / (P0 + P45 + P90), and normalized difference signals (P90-P45) / ( P0 + P45 + P90) is generated. As the n from 1 5 integer, the signal 18e n, signals 18f n, and the signal 18 g n are respectively signals 20a n, it is generated from the signal 20b n, and the signal 20c n.
 250nsの時間範囲では、領域B1から領域B5のそれぞれに対応する5つの信号が検出される。その際、どの信号がどの領域に対応するのかが判定される。5つの信号のそれぞれは、距離または反射率が異なる被写体からの反射に基づいている。したがって、5つの信号の大小関係から、信号と領域との対応は判定できない。これに対し、検出光量P0と、検出光量P90と、検出光量P45との間の大小関係は、同じ反射に基づいている。したがって、当該大小関係であれば、判定に応用することができる。本実施形態では、判定に3つの規格化差信号が利用される。 In the time range of 250 ns, five signals corresponding to each of the regions B1 to B5 are detected. At that time, it is determined which signal corresponds to which region. Each of the five signals is based on reflections from objects with different distances or reflectivities. Therefore, the correspondence between the signal and the region can not be determined from the magnitude relationship between the five signals. On the other hand, the magnitude relationship between the detected light amount P0, the detected light amount P90, and the detected light amount P45 is based on the same reflection. Therefore, if it is the said magnitude correlation, it can apply to determination. In the present embodiment, three standardized difference signals are used for the determination.
 図20A、図20B、図20C、図20D、および図20Eは、それぞれ、1つの光線を-36度から324度の範囲で走査させた場合、電極9Bの領域B1、領域B3、領域B5、領域B2、および領域B4における、戻ってきた光を基準とした検出差信号の振る舞いを示す図である。例えば、図20Aは、領域B1における規格化差信号(P0-P90)/(P0+P45+P90)、規格化差信号(P0-P45)/(P0+P45+P90)、および規格化差信号(P90-P45)/(P0+P45+P90)と、水平方向走査方位角φとの関係を示している。差信号の大小関係の違いから、180度周期の範囲において、区画A、区画B、区画C、区画D、区画E、および区画Fの6種類の区画に分類することができる。図20B、図20C、図20D、および図20Eに変化するに従って、差信号波形、および6種類の区画範囲は、-36度ずつ方位角が移動する。図19Bに示す例から、領域B1は、φ=-36度からφ=36度の範囲である。図20Aに示す例において、光線がφ=-36度からφ=36度の範囲にあれば、その光線は点b1による走査線である。そのとき、光線b3、光線b5、光線b2、および光線b4による走査線は、それぞれ図20B、図20C、図20D、および図20Eに示す例における-36度から36度の範囲の信号カーブを描く。例えば、図19Bに示す例から、領域B2は、φ=36度からφ=108度の範囲である。図20Dに示す例では、φ=-36度からφ=36度の範囲は、点b1から72度だけ離れた点b2の走査線の動きに対応する。したがって、光線が走査線b1に起因するのであれば、規格化差信号は図20Aに示す例におけるφ=-36度からφ=36度の範囲のカーブを描く。したがって、式(21)が成り立つ。 FIG. 20A, FIG. 20B, FIG. 20C, FIG. 20D, and FIG. 20E respectively show the region B1, the region B3, the region B5, the region of the electrode 9B when one light beam is scanned in the range of -36 degrees to 324 degrees. It is a figure which shows the behavior of the detection difference signal on the basis of the returned light in B2 and area | region B4. For example, FIG. 20A shows the normalized difference signal (P0-P90) / (P0 + P45 + P90), the normalized difference signal (P0-P45) / (P0 + P45 + P90), and the normalized difference signal (P90-P45) / (P0 + P45 + P90) in the region B1. And the horizontal scanning azimuth angle φ. From the difference in magnitude relationship of the difference signal, it can be classified into six types of divisions of division A, division B, division C, division D, division E, and division F in the range of 180 degree cycle. As shown in FIG. 20B, FIG. 20C, FIG. 20D, and FIG. 20E, the difference signal waveform and the six types of section ranges shift in azimuth by −36 degrees each. From the example shown in FIG. 19B, the region B1 is in the range of φ = −36 degrees to φ = 36 degrees. In the example shown in FIG. 20A, if the ray is in the range of φ = −36 degrees to φ = 36 degrees, the ray is a scanning line at point b1. At that time, scanning lines by the light ray b3, the light ray b5, the light ray b2 and the light ray b4 draw signal curves in the range of -36 degrees to 36 degrees in the example shown in FIGS. 20B, 20C, 20D and 20E respectively. . For example, from the example shown in FIG. 19B, the region B2 is in the range of φ = 36 degrees to φ = 108 degrees. In the example shown in FIG. 20D, the range of φ = −36 degrees to φ = 36 degrees corresponds to the movement of the scanning line at point b2 that is 72 degrees away from point b1. Therefore, if the light beam is caused by the scanning line b1, the normalized difference signal draws a curve in the range of φ = −36 degrees to φ = 36 degrees in the example shown in FIG. 20A. Therefore, equation (21) holds.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 図20C、図20D、および図20Eに示す例では、φ=-36度からφ=36度の範囲内で、いずれの差信号の大小関係も、式(21)を満たさない。したがって、図20Aに示す領域での信号を、図20C、図20D、および図20Eに示す領域における信号と分別することができる。これにより、光線b1を、光線b5、光線b2、および光線b4と分別することができる。一方、φ=-22度からφ=9度の範囲において、図20Bに示す区画Aが、図20Aに示す区画Aに重なる。その結果、式(21)では分別することができない。しかし、この重なる区画では、図20Aに示す規格化差信号(P0-P45)/(P0+P45+P90)は、図20Bに示す規格化差信号(P0-P45)/(P0+P45+P90)よりも大きい。したがって、図20Bに示す信号を、図20Aに示す信号と区別することができる。これにより、光線b1を、光線b3と分別することができる。したがって、図19Aに示す5つの信号の内、どれが領域B1に対応した信号であるかを特定することができる。同じ関係が、他の領域B2、領域B3、領域B4、および領域B5でも成り立つ。結局、5つの検出信号が、どの領域、またはどの走査線に対応した信号なのかを全て分別することができる。 In the examples shown in FIGS. 20C, 20D, and 20E, the magnitude relationship of any difference signal does not satisfy Formula (21) within the range of φ = −36 degrees to φ = 36 degrees. Thus, the signals in the area shown in FIG. 20A can be differentiated from the signals in the areas shown in FIGS. 20C, 20D, and 20E. Thereby, the light ray b1 can be separated into the light ray b5, the light ray b2, and the light ray b4. On the other hand, in the range of φ = −22 degrees to φ = 9 degrees, the section A shown in FIG. 20B overlaps the section A shown in FIG. 20A. As a result, in Formula (21), it can not classify. However, in this overlapping section, the normalized difference signal (P0-P45) / (P0 + P45 + P90) shown in FIG. 20A is larger than the normalized difference signal (P0-P45) / (P0 + P45 + P90) shown in FIG. 20B. Thus, the signal shown in FIG. 20B can be distinguished from the signal shown in FIG. 20A. Thereby, the light ray b1 can be separated from the light ray b3. Therefore, it is possible to specify which of the five signals shown in FIG. 19A corresponds to the area B1. The same relationship holds for the other regions B2, B3, B4 and B5. As a result, it is possible to distinguish all of the five detection signals corresponding to which region or which scan line.
 (第4実施形態)
 図21Aおよび図21Bは、それぞれ、第4実施形態における、光学装置の構成と、光線の経路とを模式的に示す斜視図および断面図である。
Fourth Embodiment
21A and 21B are a perspective view and a cross-sectional view schematically showing the configuration of an optical device and the path of a light beam, respectively, in the fourth embodiment.
 第4実施形態では、第3実施形態における反射ミラー3、偏光分光器4c、光検出器12、光検出器12A、および光検出器12Bが省かれ、代わりに光検出器12a、および光検出器12bが追加され、円柱体6が円錐台プリズム6Tに変更され、透明平面基板7fと円錐台プリズム6Tとの間に、円錐台状の中空を含む基板7Fが挿入され、偏光分光器4への入射光10cが図21Aに示す平行光10bに相当し、その偏光がS波とされている。それ以外は、第3実施形態と同じである。したがって、重複する説明は省略する。 In the fourth embodiment, the reflection mirror 3, the polarization spectroscope 4c, the photodetector 12, the photodetector 12A, and the photodetector 12B in the third embodiment are omitted, and instead the photodetector 12a and the photodetector 12b is added, the cylindrical body 6 is changed to a truncated cone prism 6T, and a substrate 7F including a truncated cone-like hollow is inserted between the transparent flat substrate 7f and the truncated cone prism 6T. The incident light 10c corresponds to the parallel light 10b shown in FIG. 21A, and its polarization is S wave. Other than that is the same as the third embodiment. Therefore, duplicate explanations are omitted.
 第4実施形態における光学装置は、光源1と、コリメートレンズ2aと、偏光分光器4と、1/4波長板4aと、ハーフミラー4bと、集光レンズ2bと、円錐台プリズム6Tと、円錐台状の中空を含む基板7Fと、光導波素子7と、光検出器12a、および光検出器12bと、検出回路33a、および検出回路33bと、制御回路30、制御回路32、および制御回路34とを備える。偏光分光器4、1/4波長板4a、ハーフミラー4b、集光レンズ2b、円錐台プリズム6T、円錐台状の中空を含む基板7F、および光導波素子7は、軸Lを中心軸として配置される。 The optical apparatus according to the fourth embodiment includes a light source 1, a collimator lens 2a, a polarization splitter 4, a quarter wavelength plate 4a, a half mirror 4b, a condenser lens 2b, a truncated cone prism 6T, and a cone. Substrate 7F including a trapezoid hollow, optical waveguide device 7, photodetector 12a, photodetector 12b, detection circuit 33a, detection circuit 33b, control circuit 30, control circuit 32, and control circuit 34 And The polarization spectroscope 4, the quarter wavelength plate 4a, the half mirror 4b, the condenser lens 2b, the truncated cone prism 6T, the substrate 7F including a truncated cone, and the optical waveguide element 7 are disposed with the axis L as a central axis Be done.
 図21Aに示す例において、光源1は、波長λの直線偏光であるレーザー光10aを出射する。レーザー光10aは、コリメートレンズ2aによりS偏光の平行光10bになり、偏光分光器4を反射して光10dになる。偏光分光器4は、例えば偏光ビームスプリッタである。コリメートレンズ2aと偏光分光器4との間に、楕円に広がるレーザー光10aの分布を円形に変換するビーム整形プリズムを挿入してもよい。光10dは、1/4波長板4aを透過して円偏光の光10dになり、ハーフミラー4bに入射し、半分がこれを透過して光10eになる。光10eは、中心軸Lに沿って集光レンズ2bを通過し、屈折率nの透明部材である円錐台プリズム6Tに入射する。中心軸Lは、ハーフミラー4bを通過した光10eの光路上に位置し、当該光路に沿った軸であるといえる。グレーティング8aには、円偏光の光が入射する。したがって、全偏角方向に均等に導波光10gが励起される。円錐台プリズム6Tと円錐台状の中空を含む基板7Fとは、軸Lを同じ軸として透明平面基板7fに密着している。 In the example shown to FIG. 21A, the light source 1 radiate | emits the laser beam 10a which is a linear polarization of wavelength (lambda). The laser beam 10a becomes parallel light 10b of S polarization by the collimator lens 2a, and is reflected by the polarization spectroscope 4 to become light 10d. The polarization spectroscope 4 is, for example, a polarization beam splitter. A beam shaping prism may be inserted between the collimating lens 2 a and the polarization spectroscope 4 to convert the distribution of the laser light 10 a spreading in an ellipse into a circle. Light 10d will become 1/4 light 10d 0 circularly polarized light transmitted through the wavelength plate 4a, and enters the half mirror 4b, becomes the light 10e and half is transmitted therethrough. Light 10e passes through the condenser lens 2b along the central axis L, incident on the truncated conical prism 6T which is a transparent member having a refractive index n 0. The central axis L is located on the optical path of the light 10 e that has passed through the half mirror 4 b and can be said to be an axis along the optical path. Circularly polarized light is incident on the grating 8a. Therefore, the guided light 10g is excited uniformly in all deflection directions. The truncated cone prism 6T and the substrate 7F including a truncated cone-shaped hollow are in close contact with the transparent flat substrate 7f with the axis L as the same axis.
 光10e以降の光線の経路は、第1および第3実施形態とほとんど同じである。したがって、説明は省略する。ただし、グレーティング8cから放射された光は、透明平面基板7f、および基板7Fを経て、基板7Fの円錐台状の中空表面を屈折し、円錐台プリズム6Tの側面に入射し、屈折する光10hになり、対向する側の円錐台側面から出射し、屈折する光10iになる。基板7Fの円錐台状の中空表面および円錐台プリズム6Tの側面は、軸Lを同じ軸としている。これらの表面には、ブレーズグレーティングが形成されてもよい。ブレーズグレーティングでは、中心軸Lに直交する方向に沿って鋸状の溝が形成されている。ブレーズグレーティングにより、通過光は、垂直面内で回折する。これにより、円錐台プリズム6Tの側面位置では、屈折光10jが水平面からθの角度で外部に出射する出射光10iになる。 The path of light after the light 10 e is almost the same as in the first and third embodiments. Therefore, the description is omitted. However, the light emitted from the grating 8c is refracted through the transparent flat substrate 7f and the substrate 7F, refracts the frusto-conical hollow surface of the substrate 7F, enters the side surface of the frusto-conical prism 6T, and refracts it to the light 10h. The light is emitted from the side of the truncated cone on the opposite side to be refracted light 10i. The truncated cone-like hollow surface of the substrate 7F and the side surface of the truncated cone prism 6T have the axis L as the same axis. A blazed grating may be formed on these surfaces. In the blazed grating, a saw-like groove is formed along a direction perpendicular to the central axis L. The blazed grating causes the transmitted light to be diffracted in the vertical plane. As a result, at the side surface position of the truncated cone prism 6T, the refracted light 10j becomes the outgoing light 10i which is emitted to the outside at an angle of θ⊥ from the horizontal surface.
 被写体を反射した後の復路では、往路の経路をハーフミラー4bの位置まで逆進した光10Eは、その半分がハーフミラー4bを反射して光10Eになり、光検出器12aによって検出される。光10Eの内、ハーフミラー4bを透過する成分10Dは、1/4波長板4aを透過する。透過光10Dの一部は、偏光分光器4を透過し、透過光10Bとして光検出器12bによって検出される。光検出器12aは、検出回路33aを含み、光検出器12bは検出回路33bを含む。検出信号は、検出回路33a、および検出回路33bによって信号処理される。光学装置は、制御回路34をさらに備えてもよい。制御回路34は、検出回路33aおよび検出回路33bの検出信号から、例えば光源または液晶の配向を制御する制御信号を生成する。また、制御回路30、制御回路32、および制御回路34をまとめて1つの制御回路としてもよい。 In the return path after reflecting the object, half of the light 10E that has traveled the forward path back to the position of the half mirror 4b is reflected by the half mirror 4b to become light 10E 0 , and is detected by the light detector 12a . Among the light 10E, components 10D 0 transmitted through the half mirror 4b is transmitted through 1/4-wave plate 4a. A portion of the transmitted light 10D is transmitted through the polarization spectroscope 4 and detected as a transmitted light 10B by the photodetector 12b. The photodetector 12a includes a detection circuit 33a, and the photodetector 12b includes a detection circuit 33b. The detection signal is processed by the detection circuit 33a and the detection circuit 33b. The optical device may further comprise a control circuit 34. The control circuit 34 generates, for example, a control signal for controlling the orientation of the light source or the liquid crystal from the detection signals of the detection circuit 33a and the detection circuit 33b. Further, the control circuit 30, the control circuit 32, and the control circuit 34 may be integrated into one control circuit.
 図22は、第4実施形態における、収差補正制御がある場合の、グレーティング8cからの放射光の伝搬経路を模式的に示す図である。図22に示す例では、上段は平面図を示し、中段は斜視図を示し、下段は断面図を示す。図22に示すように、導波層7d内を伝搬する導波光10g、および導波光10gは、グレーティング8cを出射し、円錐台プリズム6Tの側面に入射し、屈折してその内部を伝搬する光10h、光10h、光10h1、および光10h1になり、対向する側の円錐台側面を屈折して外部に出射する光10i,光10i、光10i1、および光10i1になる。図22の中段に示すように、光10h、光10h、光10h1、および光10h1は、x軸の正方向に沿って中心軸Lから離れた軸L”上で交差する。軸L”は、中心軸Lに比べ傾斜する。光10h、および光10hは、軸L”上の点F’において交差し、光10h1、および10h1は、軸L”上の点F”において交差する。図22の上段、および下段に示す例では、円柱体6が、円錐台プリズム6Tに置き換えられている。これにより、軸L”の傾斜に対応して、外周側の光10h、および光10hの屈折点の半径rと、内周側の光10h1、および光10h1の屈折点の半径r’とが変化する。その結果、円錐台プリズム6Tの側面を出射した後の光線を平行光にすることができる。 FIG. 22 is a view schematically showing propagation paths of light emitted from the grating 8 c in the case where aberration correction control is performed in the fourth embodiment. In the example shown in FIG. 22, the upper part shows a plan view, the middle part shows a perspective view, and the lower part shows a cross-sectional view. As shown in FIG. 22, the waveguided light 10g propagating in the waveguide layer 7d and the waveguided light 10g 0 exit the grating 8c, enter the side surface of the truncated cone prism 6T, refract and propagate the inside light 10h light 10h 0, becomes light 10h1, and light 10h1 0, the light 10i emitted to the outside is refracted the frustoconical side surface of the opposite side, the light 10i 0, becomes light 10i1, and light 10i1 0. As shown in the middle of FIG. 22, the light 10h light 10h 0, light 10h1, and light 10h1 0, the axis L away from the center axis L along the positive direction of the x-axis "cross over. Axis L ' Is inclined relative to the central axis L. Light 10h, and light 10h 0 is "intersect at a point F 'on, light 10h1 and 10h1 0, the axis L" axis L shown upper. Figure 22 that intersect at a point F "on, and in the lower In the example, the cylindrical body 6 is replaced by a truncated cone prism 6 T. Thereby, the light 10 h on the outer peripheral side and the radius r 0 of the refracting point of the light 10 h 0 corresponding to the inclination of the axis L ′ ′ The light 10 h 1 on the inner circumferential side and the radius r 0 ′ of the refracting point of the light 10 h 10 change. As a result, it is possible to collimate the light beam after exiting the side surface of the truncated cone prism 6T.
 第4実施形態では、光線が、ブレーズグレーティングの形成された円錐台プリズム6Tの側面を2回通過する。光線が側面を通過する形態では、第1および第3実施形態における円柱体6の底面を通過する形態に比べ、設計の自由度が広くなる。また、光線は、側面を通過することにより、ブレーズグレーティングによる回折の影響を2回受ける。基板7Fの円錐台状の中空表面にもブレーズグレーティングを形成すれば、光線は、回折の影響を3回受ける。このような2回以上の回折により、第1および第3実施形態に比べてグレーティングのピッチが大きくても、十分な回折効率が得られる。グレーティングのピッチが大きいことから、作製が容易になり、回折効率も高くなる。グレーティング8aから放射する光を空気中に取り出すために、一般に基板7Fが配置される。一方で、光が取り出せるのであれば、基板7Fを省くこともできる。基板7Fに円錐台状の中空を設けた構成は、グレーティング8aから放射光を、その放射角に関係なく空気中に取り出すことができる。したがって、設計の自由度が広くなる。 In the fourth embodiment, a light beam passes twice through the side surface of the truncated cone prism 6T on which the blazed grating is formed. In the mode in which the light beam passes the side, the degree of freedom in design is wider than in the mode in which the bottom surface of the cylindrical body 6 in the first and third embodiments passes. Also, the light beam receives the influence of diffraction by the blaze grating twice by passing through the side surface. If a blazed grating is also formed on the truncated hollow surface of the substrate 7F, the light beam is affected by diffraction three times. By such two or more diffractions, sufficient diffraction efficiency can be obtained even if the grating pitch is large as compared with the first and third embodiments. The large pitch of the grating facilitates fabrication and increases the diffraction efficiency. A substrate 7F is generally arranged to extract the light emitted from the grating 8a into the air. On the other hand, if light can be extracted, the substrate 7F can be omitted. The configuration in which the substrate 7F is provided with a truncated cone-like hollow can take out the radiation from the grating 8a into the air regardless of the radiation angle. Therefore, the degree of freedom in design is broadened.
 図23Aは、第4実施形態における、電極9Bの電圧分布パターンの回転角、光源1の出力光量、光検出器12a、光検出器12bでの検出光量Pa、検出光量Pb、ならびに検出光量の和Pa+Pbおよび比Pb/Paの時間経過の関係を示す図である。 FIG. 23A shows the rotation angle of the voltage distribution pattern of the electrode 9B, the output light quantity of the light source 1, the detected light quantity Pa of the light detector 12a and the light detector 12b, the detected light quantity Pb, and the detected light quantity in the fourth embodiment. It is a figure which shows the relationship of time progress of Pa + Pb and ratio Pb / Pa.
 図23Bは、第4実施形態における、電極9Bの分割領域と、水平方向走査光線の方向との関係を示す図である。電極9Bの領域B1、領域B2、領域B3、領域B4、および領域B5から、点b1による第1走査光線、点b2による第2走査光線、点b3による第3走査光線、点b4による第4走査光線、および点b5による第5走査光線がそれぞれ放射される。これら5つの走査光線は、互いに72度の角度をなして中心Oの周りを等角回転する。 FIG. 23B is a diagram showing the relationship between the split region of the electrode 9B and the direction of the horizontal scanning beam in the fourth embodiment. From the area B1, area B2, area B3, area B4 and area B5 of the electrode 9B, the first scanning beam at the point b1, the second scanning beam at the point b2, the third scanning beam at the point b3, the fourth scanning at the point b4 A ray and a fifth scanning ray at point b5 are emitted respectively. These five scan rays rotate equiangularly around the center O at an angle of 72 degrees to one another.
 点bkによる走査光線に対応する光10Eの偏光振幅は、akを振幅係数、φを方位角または走査角として、式(22)によって表される。ただしk=1、2、3、4、5である。 Polarization amplitude of the light 10E 0 corresponding to the scanning beam through point bk is, ak amplitude coefficients, as azimuth or scanning angle phi, is expressed by equation (22). However, k = 1, 2, 3, 4, and 5.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ジョーンズ行列を利用すると、光10Eの偏光振幅と、透過光10Bの偏光振幅との関係が、式(23)によって表される。 Using the Jones matrix, the relationship between the polarization amplitude of the light 10E 0 and the polarization amplitude of the transmitted light 10B is expressed by Equation (23).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 左辺の第1項は偏光分光器4の行列を表し、第2項は1/4波長板4aの行列を表し、第3項は光10Eの偏光振幅を表し、右辺は透過光10Bの偏光振幅を表す。 The first term of the left side represents the matrix of the polarization spectroscope 4, the second term represents the matrix of the 1⁄4 wavelength plate 4a, the third term represents the polarization amplitude of the light 10E 0 , and the right side represents the polarization of the transmitted light 10B. Represents the amplitude.
 式(22)および式(23)から、光検出器12aおよび光検出器12bでの検出光量Paおよび検出光量Pbが、それぞれ式(24)、および式(25)によって表される。 From the equations (22) and (23), the detected light amount Pa and the detected light amount Pb at the light detector 12a and the light detector 12b are expressed by the equation (24) and the equation (25), respectively.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 式(24)および式(25)から、検出光量比Pb/Paが、式(26)によって表される。 From Expression (24) and Expression (25), the detected light amount ratio Pb / Pa is expressed by Expression (26).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 図23Cは、点b1による第1走査光線に対応する検出光量比Pb/Pa、点b2による第2走査光線に対応する検出光量比Pb/Pa、点b3による第3走査光線に対応する検出光量比Pb/Pa、点b4による第4走査光線に対応する検出光量比Pb/Pa、および点b5による第5走査光線に対応する検出光量比Pb/Paを示す信号と、液晶パターン回転角である走査角φとの関係を示す図である。当該関係は、式(26)から得られる。図23Cに示す例では、φ=0度からφ=18度の範囲では、Pb/Pa<Pb/Pa<Pb/Pa<Pb/Pa<Pb/Paの関係が、φ=18度からφ=36度の範囲ではPb/Pa<Pb/Pa<Pb/Pa<Pb/Pa<Pb/Paの関係が、φ=36度からφ=54度の範囲ではPb/Pa<Pb/Pa<Pb/Pa<Pb/Pa<Pb/Paの関係が、φ=54度からφ=72度の範囲ではPb/Pa<Pb/Pa<Pb/Pa<Pb/Pa<Pb/Paの関係が成り立つ。φ=72度からφ=90度の範囲でのPb/Pa<Pb/Pa<Pb/Pa<Pb/Pa<Pb/Paの関係において、φ=0度からφ=18度の範囲での関係と比較して、Pb/PaがPb/Paに、Pb/PaがPb/Paに、Pb/PaがPb/Paに、Pb/PaがPb/Paに、Pb/PaがPb/Paに繰り上がっている。それ以降の角度範囲でも、繰り上がりの関係が成り立つ。これにより、360度までの大小関係が全て分かる。したがって、電極9Bへの駆動信号によって走査角φが決定され、走査角φが決定されれば、5つの検出光量比の大小関係が決定される。これにより、検出信号が、走査光線の内のどれかを特定することができる。 Figure 23C is a detected light intensity ratio Pb 1 / Pa 1 corresponding to the first scanning beam through point b1, the detection light amount ratio Pb 2 / Pa 2 corresponding to the second scanning beam through point b2, the third scanning light beam by point b3 The corresponding detected light amount ratio Pb 3 / Pa 3 , the detected light amount ratio Pb 4 / Pa 4 corresponding to the fourth scanning beam at the point b 4 , and the detected light amount ratio Pb 5 / Pa 5 corresponding to the fifth scanning beam at the point b 5 It is a figure which shows the relationship between the signal to show and the scanning angle (phi) which is a liquid crystal pattern rotation angle. The relationship is obtained from equation (26). In the example shown in FIG. 23C, Pb 1 / Pa 1 <Pb 4 / Pa 4 <Pb 3 / Pa 3 <Pb 2 / Pa 2 <Pb 5 / Pa 5 in the range from φ = 0 ° to φ = 18 ° In the range of φ = 18 degrees to φ = 36 degrees, the relationship of Pb 4 / Pa 4 <Pb 1 / Pa 1 <Pb 2 / Pa 2 <Pb 3 / Pa 3 <Pb 5 / Pa 5 is φ = In the range of 36 degrees to φ = 54 degrees, the relationship of Pb 4 / Pa 4 <Pb 2 / Pa 2 <Pb 1 / Pa 1 <Pb 5 / Pa 5 <Pb 3 / Pa 3 is obtained, and from φ = 54 degrees to φ = In the range of 72 degrees, a relationship of Pb 2 / Pa 2 <Pb 4 / Pa 4 <Pb 5 / Pa 5 <Pb 1 / Pa 1 <Pb 3 / Pa 3 holds. In the relationship of Pb 2 / Pa 2 <Pb 5 / Pa 5 <Pb 4 / Pa 4 <Pb 3 / Pa 3 <Pb 1 / Pa 1 in the range of φ = 72 ° to φ = 90 °, φ = 0 ° Pb 1 / Pa 1 is Pb 2 / Pa 2 , Pb 2 / Pa 2 is Pb 3 / Pa 3 , and Pb 3 / Pa 3 is Pb 4 /, compared to the relationship from φ to 18 ° in Pa 4, Pb 4 / Pa 4 is in Pb 5 / Pa 5, Pb 5 / Pa 5 is up repeatedly in Pb 1 / Pa 1. Also in the angle range after that, the relation of carry-up holds. By this, all the magnitude relationships up to 360 degrees can be known. Therefore, the scanning angle φ is determined by the drive signal to the electrode 9B, and if the scanning angle φ is determined, the magnitude relationship between the five detected light amount ratios is determined. This allows the detection signal to identify any of the scanning rays.
 図23Aに示す例において、光源1の発振を制御する制御回路30からの発振信号は、例えばΔ=250nsおきに10nsの幅の矩形パルスとして変化する。それに対応して、信号波形16aのパルス光、および信号波形16a1のパルス光が発光する。250ns毎のパルス発振は、30msの1フレーム内において12万パルスになる。このパルス信号に同期して、電極9Bへの印加電圧の回転角には、ビーム走査に対応した変化量δ(=2πΔ/5T)が加わり、電極9Bの電圧分布パターンは、T=2msの間に、軸Lの周りを1/5回転する。 In the example shown in FIG. 23A, the oscillation signal from the control circuit 30 that controls the oscillation of the light source 1 changes, for example, as a rectangular pulse having a width of 10 ns every Δ = 250 ns. Correspondingly, pulsed light of the signal waveform 16a and pulsed light of the signal waveform 16a1 are emitted. The pulse oscillation every 250 ns becomes 120,000 pulses in one frame of 30 ms. In synchronization with this pulse signal, the amount of change δ (= 2πΔ / 5T) corresponding to beam scanning is added to the rotational angle of the voltage applied to the electrode 9B, and the voltage distribution pattern of the electrode 9B is for T = 2 ms , 1/5 rotation around the axis L.
 図23Aには、光検出器12aおよび光検出器12bでの検出光量Paおよび検出光量Pbの時間経過が示されている。信号波形16aのパルス光の出射後250nsの時間範囲で、領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光が同時に検出される。信号波形20a、信号波形20a1、信号波形20b、および信号波形20b1は、グレーティング8aに入力できず、そのまま反射して帰還した光の検出信号である。 FIG. 23A shows the time course of the detected light amount Pa and the detected light amount Pb in the light detector 12a and the light detector 12b. Return light from the area B1, the area B2, the area B3, the area B4, and the area B5 is simultaneously detected within a time range of 250 ns after the emission of the pulse light of the signal waveform 16a. The signal waveform 20a, the signal waveform 20a1, the signal waveform 20b, and the signal waveform 20b1 can not be input to the grating 8a, and are detection signals of light reflected and returned as it is.
 例えば、光検出器12aには、領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光が、それぞれ信号波形18a、信号波形18a、信号波形18a,信号波形18a、および信号波形18aとして検出される。光検出器12bには、領域B1、領域B2、領域B3、領域B4、および領域B5からの戻り光が、それぞれ信号波形18b、信号波形18b、信号波形18b,信号波形18b、および信号波形18bとして検出される。制御回路34は、光検出器12aでの検出光量Paに応じた電気信号と、光検出器12bでの検出光量Pbに応じた電気信号とを受け取る。制御回路34は、これら2つの電気信号の和および比に応じた電気信号を生成する。光検出器12aおよび光検出器12bの検出光量の和を示す和信号Pa+Pbとして、a+b、a+b、a+b、a+b、およびa+bが生成される。光検出器12aおよび光検出器12bの検出光量の比を示す信号比Pb/Paとして、b/a、b/a、b/a、b/a、およびb/aが生成される。 For example, the photodetector 12a, a region B1, the area B2, the region B3, the region B4, and return light from the region B5, respectively the signal waveform 18a 1, the signal waveform 18a 2, the signal waveform 18a 3, the signal waveform 18a 4 , and is detected as a signal waveform 18a 5. The photodetector 12b, a region B1, the area B2, the region B3, the return light from the region B4, and the region B5, respectively the signal waveform 18b 1, the signal waveform 18b 2, the signal waveform 18b 3, the signal waveform 18b 4, and It is detected as a signal waveform 18b 5. The control circuit 34 receives an electrical signal according to the light amount Pa detected by the light detector 12a and an electrical signal according to the light amount Pb detected by the light detector 12b. The control circuit 34 generates an electrical signal according to the sum and ratio of these two electrical signals. A 1 + b 1 , a 2 + b 2 , a 3 + b 3 , a 4 + b 4 , and a 5 + b 5 are generated as a sum signal Pa + Pb indicating the sum of the amounts of light detected by the light detectors 12a and 12b . The signal ratio Pb / Pa indicating the ratio of the detected light amount of the light detector 12a and the light detector 12b is b 1 / a 1 , b 2 / a 2 , b 3 / a 3 , b 4 / a 4 , and b 5 / A 5 is generated.
 和信号Pa+Pbでは、5つの信号がTOF信号として用いられる。一方、それらの信号は、距離または反射率が異なる被写体からの反射に基づいている。したがって、和信号だけでは、どの信号が領域B1から領域B5の内のどの領域に対応するのかを特定することができない。しかし、信号比Pb/Paを加えることにより、信号比の大小関係から、5つの信号が点b1による第1走査光線、点b2による第2走査光線、点b3による第3走査光線、点b4による第4走査光線、および点b5による第5走査光線の内のどれか、または、どの信号が領域B1から領域B5の内のどの領域に対応するのかを特定することができる。例えば、図23Aに示す信号比の例では、走査角φが0度から18度の範囲であれば、5つの信号が左から第1走査光線、第2走査光線、第3走査光線、第4走査光線、および第5走査光線の順であり、走査角φが18度から36度の範囲であれば第4走査光線、第3走査光線、第2走査光線、第1走査光線、および第5走査光線の順と判別することができる。 In the sum signal Pa + Pb, five signals are used as TOF signals. On the other hand, those signals are based on reflections from objects with different distances or reflectivities. Therefore, it is not possible to specify which signal corresponds to which of the regions B1 to B5 using only the sum signal. However, by adding the signal ratio Pb / Pa, from the magnitude relationship of the signal ratio, the five signals are the first scanning beam at the point b1, the second scanning beam at the point b2, the third scanning beam at the point b3, and the point b4. It is possible to specify which of the fourth scanning beam and the fifth scanning beam according to the point b5, or which signal corresponds to which of the regions B1 to B5. For example, in the example of the signal ratio shown in FIG. 23A, if the scanning angle φ is in the range of 0 ° to 18 °, five signals from the left, the first scanning beam, the second scanning beam, the third scanning beam, the fourth The scanning beam and the fifth scanning beam are in order, and if the scanning angle φ is in the range of 18 degrees to 36 degrees, the fourth scanning beam, the third scanning beam, the second scanning beam, the first scanning beam, and the fifth scanning beam It can be determined as the order of scanning rays.
 次に、電極9Bにおける導波光の伝搬方向の制御原理を説明する。 Next, the control principle of the propagation direction of the guided light in the electrode 9B will be described.
 図24Aおよび図24Bは、それぞれ透明電極層7g側および反射層7b側での電極パターンと、印加電圧との関係を模式的に示す図である。図24Aに示す電極パターン40a、電極パターン40b、および電極パターン40c、ならびに図24Bに示す電極パターン40A、電極パターン40B、および電極パターン40Cのいずれも、左側から右側に延びる3本のジグザグパターンによって構成されている。各ジグザグパターンは絶縁されている。図24Aに示す電極パターン40a、電極パターン40b、および電極パターン40cには、それぞれ独立して制御回路32a、制御回路32b、および制御回路32cによって電圧信号が印加される。同様に、図24Bに示す電極パターン40A、電極パターン40B、および電極パターン40Cには、それぞれ独立して制御回路32A、制御回路32B、および制御回路32Cによって電圧信号が印加される。 FIG. 24A and FIG. 24B are diagrams schematically showing the relationship between the electrode pattern on the transparent electrode layer 7g side and the reflective layer 7b side and the applied voltage. All of the electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c shown in FIG. 24A, and the electrode pattern 40A, the electrode pattern 40B, and the electrode pattern 40C shown in FIG. 24B are configured by three zigzag patterns extending from left to right It is done. Each zigzag pattern is isolated. A voltage signal is applied to the electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c shown in FIG. 24A independently by the control circuit 32a, the control circuit 32b, and the control circuit 32c. Similarly, voltage signals are applied to the electrode pattern 40A, the electrode pattern 40B and the electrode pattern 40C shown in FIG. 24B independently by the control circuit 32A, the control circuit 32B and the control circuit 32C.
 図24Cは、透明電極層側での電極パターン、および反射層側での電極パターンを揃えて重ねた構成と、印加電圧との関係を模式的に示す図である。透明電極層7gを上として、反射層7bを下とすると、上下に位置するジグザグパターンは、ジグザグの一方の側の頂点を結んで形成される線が、上下で互いに重なる関係にある。反射層7b側のジグザグパターンの形状は、透明電極層7g側のジグザグパターンを上下に反転した形状である。したがって、図24Cに示すように、透明電極層7g側での電極パターン、および反射層7b側での電極パターンを揃えて重ねた電極パターンは、菱形が連なった形状を有する。 FIG. 24C is a view schematically showing the relationship between the configuration obtained by aligning and overlapping the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side, and the applied voltage. When the transparent electrode layer 7g is on the upper side and the reflective layer 7b is on the lower side, in the zigzag patterns located in the upper and lower sides, lines formed by connecting the apexes on one side of the zigzags are in a mutually overlapping relationship. The shape of the zigzag pattern on the side of the reflective layer 7 b is a shape in which the zigzag pattern on the side of the transparent electrode layer 7 g is vertically inverted. Therefore, as shown in FIG. 24C, the electrode pattern on the transparent electrode layer 7g side and the electrode pattern on the reflective layer 7b side are aligned and overlapped have a shape in which rhombuses are continuous.
 図24Cに示す電極パターンを片面のみにおいて作製する場合、1つ1つの菱形が孤立していることから、配線の引き回しが容易ではない。これに対し、図24Aに示す電極パターン、および図24Bに示す電極パターンを重ね合わせる方法では、パターンそのものが配線になっていることから、作製が容易である。透明電極層7g側でのジグザグの電極パターン40a、電極パターン40b、および電極パターン40cには、それぞれ交流電圧信号41a、交流電圧信号41b、および交流電圧信号41cが印加される。これにより、振幅は、交流電圧信号41a、交流電圧信号41b、および交流電圧信号41cの順に大きくなる。対面する電極が接地されているとすると、この振幅勾配により、ジグザグの電極パターン40a、電極パターン40b、および電極パターン40cに対応した液晶層に、屈折率差が発生する。電極間に挟まれる導波層7d内を左から右に伝搬する導波光10gは、光路から傾斜したパターン境界を通過する度に、下側に屈折する。反射層7b側でのジグザグの電極パターン40A、電極パターン40B、および電極パターン40Cには、交流電圧信号41A、交流電圧信号41B、および交流電圧信号41Cが印加される。これにより、振幅は交流電圧信号41A、交流電圧信号41B、および交流電圧信号41Cの順に大きくなる。対面する電極が接地されているとすると、この振幅勾配により、電極間に挟まれる導波層7d内を左から右に伝搬する導波光10gも下側に屈折する。 In the case of producing the electrode pattern shown in FIG. 24C on only one side, the wiring is not easy because the diamonds are isolated one by one. On the other hand, in the method of superposing the electrode pattern shown in FIG. 24A and the electrode pattern shown in FIG. 24B, since the pattern itself is a wiring, the fabrication is easy. An alternating voltage signal 41a, an alternating voltage signal 41b, and an alternating voltage signal 41c are applied to the zigzag electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c on the transparent electrode layer 7g side, respectively. Thus, the amplitude increases in the order of the AC voltage signal 41a, the AC voltage signal 41b, and the AC voltage signal 41c. Assuming that the facing electrodes are grounded, a difference in refractive index is generated in the liquid crystal layer corresponding to the zigzag electrode pattern 40a, the electrode pattern 40b, and the electrode pattern 40c due to this amplitude gradient. The waveguided light 10g propagating from the left to the right in the waveguide layer 7d sandwiched between the electrodes is refracted downward every time it passes through the inclined pattern boundary from the optical path. An alternating voltage signal 41A, an alternating voltage signal 41B, and an alternating voltage signal 41C are applied to the zigzag electrode pattern 40A, the electrode pattern 40B, and the electrode pattern 40C on the reflective layer 7b side. As a result, the amplitude increases in the order of the AC voltage signal 41A, the AC voltage signal 41B, and the AC voltage signal 41C. Assuming that the facing electrodes are grounded, this amplitude gradient also refracts the waveguide light 10g propagating from left to right in the waveguide layer 7d sandwiched between the electrodes downward.
 交流電圧信号41A、交流電圧信号41B、および交流電圧信号41Cは、それぞれ交流電圧信号41a、交流電圧信号41b、および交流電圧信号41cに比べて逆極性を有する。したがって、図24Cに示すように、透明電極層7gおよび反射層7bを揃えて重ねた電極パターンでは、交流電圧信号41a1と交流電圧信号41A1とが信号対を形成し、交流電圧信号41b1と交流電圧信号41B1とが信号対を形成し、交流電圧信号41c1と交流電圧信号41C1とが信号対を形成する。それらの位相は反転していることから、交流電圧振幅が倍増する。これにより、導波光10gは大きく下側に屈折することができる。さらに、図24Aおよび図24Bに示す電極パターンに比べて、導波光10gがパターン境界を跨ぐ頻度が増える。これにより、導波光10gの曲がりはさらに倍増し、光路の違いによる曲がり角のバラツキも改善する。 The AC voltage signal 41A, the AC voltage signal 41B, and the AC voltage signal 41C have opposite polarities to the AC voltage signal 41a, the AC voltage signal 41b, and the AC voltage signal 41c, respectively. Therefore, as shown in FIG. 24C, in the electrode pattern in which the transparent electrode layer 7g and the reflective layer 7b are aligned and overlapped, the AC voltage signal 41a1 and the AC voltage signal 41A1 form a signal pair, and the AC voltage signal 41b1 and the AC voltage The signal 41 B 1 forms a signal pair, and the AC voltage signal 41 c 1 and the AC voltage signal 41 C 1 form a signal pair. Since their phases are inverted, the AC voltage amplitude is doubled. Thereby, the guided light 10g can be largely refracted downward. Furthermore, as compared with the electrode patterns shown in FIGS. 24A and 24B, the frequency with which the guided light 10g crosses the pattern boundary increases. As a result, the bending of the guided light 10g is further doubled, and the variation in the bending angle due to the difference in the optical path is also improved.
 図24Aから図24Cに示す例を参照して説明した原理を踏まえて、第4実施形態における導波光の伝搬方向の制御を説明する。 Based on the principle described with reference to the examples shown in FIGS. 24A to 24C, control of the propagation direction of guided light in the fourth embodiment will be described.
 図25Aおよび図25Bは、第4実施形態における、それぞれ透明電極層7g側および反射層7b側での電極9Bのパターンを模式的に示す図である。図25Aに示す電極パターン、および図25Bに示す電極パターンのいずれも、内周側から外周側に延びる60本のジグザグパターンによって構成されている。このように、反射層7bおよび透明電極層7gの少なくとも一方において、電極9Bにおける複数の分割領域うち、任意の隣り合う2つの分割領域の境界は、レーザー光が入射する点を中心とする仮想的な円の動径方向に沿ってジグザグ形状を有する。各ジグザグパターンは絶縁されており、独立して電圧信号が印加される。図25Aおよび図25Bに示す例では、隣接するジグザグパターンは、ジグザグの一方の側の頂点を結んで形成される線が隣同士で互いに重なる関係にある。反射層7b側のジグザグパターンの形状は、透明電極層7g側のジグザグパターンを回転方向に反転した形状である。 FIG. 25A and FIG. 25B are diagrams schematically showing the patterns of the electrodes 9B on the transparent electrode layer 7g side and the reflective layer 7b side in the fourth embodiment, respectively. Each of the electrode pattern shown in FIG. 25A and the electrode pattern shown in FIG. 25B is configured of 60 zigzag patterns extending from the inner circumferential side to the outer circumferential side. As described above, in at least one of the reflective layer 7b and the transparent electrode layer 7g, the boundary between any two adjacent divided regions among the plurality of divided regions in the electrode 9B is a virtual one centered on the point at which the laser light is incident. Has a zigzag shape along the radial direction of the circle. Each zigzag pattern is isolated and a voltage signal is applied independently. In the example shown in FIG. 25A and FIG. 25B, adjacent zigzag patterns are in a relation in which lines formed by connecting the vertices on one side of the zigzags overlap with each other. The shape of the zigzag pattern on the side of the reflective layer 7 b is a shape in which the zigzag pattern on the side of the transparent electrode layer 7 g is inverted in the rotational direction.
 図25Cは、透明電極層側での電極パターン、および反射層側での電極パターンを揃えて重ねた構成を模式的に示す図である。図25Dは、図25Cに示す電極パターンの一部と、導波光10gの伝搬経路との関係を模式的に示す図である。図25Cに示すように、透明電極層7gおよび反射層7bを揃えて重ねた電極9Bのパターンは、菱形が連なった形状を有する。反射層7bおよび透明電極層7gの各々において、領域9Bにおける複数の分割領域のうち、任意の隣り合う2つの分割領域の境界は、レーザー光が入射する点を中心とする仮想的な円の動径方向に沿ってジグザグ形状を有する。バッファー層7c、導波層7d、および液晶層7eのいずれかに垂直な方向から見たとき、一対の電極層の一方における上記の境界と、他方における上記の境界とは、菱形が連なった形状を形成する。 FIG. 25C is a view schematically showing a configuration in which the electrode pattern on the transparent electrode layer side and the electrode pattern on the reflective layer side are aligned and overlapped. FIG. 25D is a view schematically showing the relationship between a part of the electrode pattern shown in FIG. 25C and the propagation path of the guided light 10g. As shown in FIG. 25C, the pattern of the electrode 9B in which the transparent electrode layer 7g and the reflective layer 7b are aligned and overlapped has a shape in which rhombuses are continuous. In each of the reflective layer 7b and the transparent electrode layer 7g, among the plurality of divided regions in the region 9B, the boundary between any two adjacent divided regions is a movement of a virtual circle centered on the point at which the laser light is incident. It has a zigzag shape along the radial direction. When viewed from a direction perpendicular to any of the buffer layer 7c, the waveguide layer 7d, and the liquid crystal layer 7e, the above-mentioned boundary in one of the pair of electrode layers and the above-mentioned boundary in the other have a rhombus shape. Form
 したがって、図25Dに示すように、ジグザグパターンに印加する交流電圧振幅の大きさが回転方向に沿った勾配を有すると、矢印42方向に沿って液晶屈折率が大きくなる。これにより、導波層7d内を内周側から外周側に伝搬する導波光10gの伝搬経路を、矢印42側に曲げることができる。したがって、図25Cに示す形状を有する電極への印加電圧を制御することにより、グレーティング8cからの放射光を、円錐台側面から平行光として出射させることができる。 Therefore, as shown in FIG. 25D, when the magnitude of the AC voltage amplitude applied to the zigzag pattern has a gradient along the rotational direction, the liquid crystal refractive index increases along the direction of the arrow 42. Thus, the propagation path of the guided light 10g propagating from the inner circumferential side to the outer circumferential side in the waveguide layer 7d can be bent to the arrow 42 side. Therefore, by controlling the voltage applied to the electrode having the shape shown in FIG. 25C, the light emitted from the grating 8c can be emitted as parallel light from the side surface of the truncated cone.
 なお、いずれかの実施形態に用いた手法を、他の実施形態に応用することができる。例えば、実施形態1において図16Aに示す例を参照して説明した手法を、第3および第4の実施形態に応用することができる。すなわち、実施形態1と同様に、例えば和信号である信号波形20a、信号波形20a1、および信号波形20a2を抽出してできる抽出検出信号の極大値20Pは、入射光のうちの入力できなかった効率に比例する。したがって、極大値20Pの出力値は、入力結合効率を最大化するために電極9Aへの印加電圧を制御する際の、制御信号として用いられる。極大値20Pが小さいほど入力効率は高くなる。 Note that the method used in any of the embodiments can be applied to the other embodiments. For example, the method described with reference to the example shown in FIG. 16A in the first embodiment can be applied to the third and fourth embodiments. That is, as in the first embodiment, for example, the signal waveform 20a which is a sum signal, the signal waveform 20a1, and the maximum value 20P of the extraction detection signal formed by extracting the signal waveform 20a2 can not be input efficiency of the incident light. Proportional to Therefore, the output value of the maximum value 20P is used as a control signal when controlling the voltage applied to the electrode 9A in order to maximize the input coupling efficiency. The smaller the maximum value 20P, the higher the input efficiency.
 また、実施形態1において図16Bに示す例を参照して説明した手法を、第3および第4の実施形態に応用することもできる。この場合、光源1の発振信号に高周波信号を重畳して、出力光量に高周波の強度変調信号を乗せることにより、例えば信号波形18aが信号波形16a1の矩形パルスの時間域を超えても、これが信号波形16aの矩形パルスに対応する検出信号であることを識別することができる。これにより、測定距離を伸ばすことができる。 The method described with reference to the example shown in FIG. 16B in the first embodiment can also be applied to the third and fourth embodiments. In this case, by superimposing a high frequency signal to the oscillation signal of the light source 1, by placing a high-frequency intensity modulation signal to the output light intensity, for example even if the signal waveform 18a 1 exceeds the time zone of the rectangular pulse of the signal waveform 16a1, which is It can be identified that the detection signal corresponds to the rectangular pulse of the signal waveform 16a. Thereby, the measurement distance can be extended.
 なお、第3および第4の実施形態において、1/4波長板4aは、直線偏光を円接線方向の偏光、または円接線に直交する方向の偏光に変換させる偏光変換素子であってもよい。一般に、直線方向に配向処理された基板と、回転方向に配向処理された基板との間にネマティックツイスト液晶を挟むと、直線偏光を円接線方向の偏光に変換することができる。このような偏光変換素子を用いることにより、グレーティング8aへの入力効率を2倍にすることができる。これにより、全偏角方向に均等にTEモードの導波光10gを励起することができる。 In the third and fourth embodiments, the quarter-wave plate 4a may be a polarization conversion element that converts linearly polarized light into circularly polarized light or polarized light in a direction orthogonal to the circular tangent. Generally, linearly polarized light can be converted to light polarized in a circular tangent direction by sandwiching a nematic twist liquid crystal between a substrate aligned in the linear direction and a substrate aligned in the rotational direction. By using such a polarization conversion element, the input efficiency to the grating 8a can be doubled. As a result, it is possible to excite the TE mode guided light 10g uniformly in all deflection directions.
 第3および第4の実施形態では、往路経路間にハーフミラー4bが介在する。このため、実施形態1に比べて、入力における光利用効率は半減する。一方で、全偏角方位に光を入力することができ、かつ全方位からの戻り光を検出し、方位ごとに検出信号を分別することができる。したがって、同じフレームレートにおいて水平方向の走査範囲および検出範囲を360度まで広げることができる。 In the third and fourth embodiments, the half mirror 4b intervenes between the forward paths. Therefore, the light utilization efficiency at the input is reduced to half as compared to the first embodiment. On the other hand, light can be input to all declination azimuths, and return light from all azimuths can be detected, and detection signals can be separated for each azimuth. Therefore, the horizontal scanning range and detection range can be extended to 360 degrees at the same frame rate.
 なお、光学配置において、偏光分光器4またはハーフミラー4bへの光の透過および反射の関係は、入れ替わってもよい。 In the optical arrangement, the relationship between transmission and reflection of light to the polarization spectroscope 4 or the half mirror 4b may be interchanged.
 以上において説明した実施形態により、広がり角0.1度以下の絞れたレーザー光を外部の物体に向かって出射することができる。その際、水平方向360度および垂直方向10度の視野内において出射ビームを1秒あたり30フレーム以上の動画速度で走査することができる。波長可変を加えると垂直方向の視野は30度まで広がる。さらに、物体からの反射光のうち、迷光が除去され、かつ波長および位相が揃った光のみを選択的に受光または検出することができる。また、検出した光を、視野内での物体の正確な2次元距離情報に変換することができる。2次元距離情報から、3次元的位置関係が得られる。 According to the embodiment described above, it is possible to emit a narrowed laser beam with a spread angle of 0.1 degree or less toward an external object. At that time, the outgoing beam can be scanned at a moving image speed of 30 frames or more per second within the field of view of 360 degrees in the horizontal direction and 10 degrees in the vertical direction. The vertical field of view extends up to 30 degrees when wavelength tuning is added. Furthermore, it is possible to selectively receive or detect only the light from which the stray light is removed and the wavelength and the phase are aligned among the reflected light from the object. Also, the detected light can be converted into accurate two-dimensional distance information of the object within the field of view. Three-dimensional positional relationship can be obtained from two-dimensional distance information.
 本開示は、レーザー光を、視野内に散在する物体に向かって水平方向および垂直方向に走査し、物体からの反射光を選択的に受光または検出し、物体の3次元的位置関係を測定する技術を提供する。 The present disclosure scans laser light horizontally and vertically toward an object scattered in a field of view, selectively receives or detects reflected light from the object, and measures a three-dimensional positional relationship of the object. Provide technology.
  1    光源
  2a   コリメートレンズ
  2b   集光レンズ
  3    反射ミラー
  4    偏光分光器
  5    偏光回転子
  6    円柱体
  7    光導波素子
  7a   平面基板
  7b   反射層
  7c   バッファー層
  7d   導波層
  7e   液晶層
  7f   透明平面基板
  7g   透明電極層
  8a,8b,8c  グレーティング
  9A,9B,9C  電極
  10a,10b,10c,10d,10e,10f,10h,10i  光
  10g  導波光
  10D  逆進光
  11d,11e  偏光方向
  30,31,32,34  制御回路
  33   検出回路
DESCRIPTION OF SYMBOLS 1 light source 2a collimate lens 2b condensing lens 3 reflective mirror 5 polarization splitter 5 polarization rotator 6 cylindrical body 7 light waveguide element 7a planar substrate 7b reflective layer 7c buffer layer 7d waveguide layer 7e liquid crystal layer 7f transparent planar substrate 7g transparent electrode Layers 8a, 8b, 8c Gratings 9A, 9B, 9C Electrodes 10a, 10b, 10c, 10d, 10e, 10h, 10i Light 10g Guided Light 10D Reversed Light 11d, 11e Polarization Direction 30, 31, 32, 34 Control Circuit 33 Detection circuit

Claims (28)

  1.  レーザー光を出射する光源と、
     前記レーザー光の光路上に位置する光導波素子と、
     前記光路上に位置し、前記光導波素子に面する底面、および前記光路に沿った仮想的な軸を中心軸として回転対称である側面を有する第1の透明部材と、
     制御回路と、を備え、
     前記光導波素子は、
      前記レーザー光が入射する点を中心とする仮想的な円の動径方向に沿って配置され互いに屈折率が異なる複数の部分を含み、入射した前記レーザー光の一部を、伝搬光として、前記光導波素子内を前記動径方向に沿って伝搬させる第1のグレーティング、及び
      前記第1のグレーティングの外側に配置され、前記動径方向に沿って配置され互いに屈折率が異なる複数の部分を含み、前記伝搬光の一部を、出射光として、前記光導波素子から出射させる第2のグレーティング、
     を含み、
     前記出射光は、前記底面または前記側面から前記第1の透明部材に入射し、前記側面から出射する、
    光学装置。
    A light source for emitting laser light,
    An optical waveguide element located on the optical path of the laser light;
    A first transparent member located on the optical path and having a bottom surface facing the optical waveguide element, and a side surface that is rotationally symmetric about a virtual axis along the optical path as a central axis;
    Control circuit, and
    The optical waveguide device is
    It includes a plurality of portions arranged along the radial direction of a virtual circle centered on the point where the laser beam is incident and has different refractive indices, and a part of the incident laser beam is used as the propagation light. A first grating for propagating in the optical waveguide element along the radial direction, and a plurality of portions disposed outside the first grating and disposed along the radial direction and having mutually different refractive indices A second grating for emitting a part of the propagated light from the optical waveguide element as an emitted light;
    Including
    The emitted light is incident on the first transparent member from the bottom surface or the side surface and emitted from the side surface.
    Optical device.
  2.  前記第1のグレーティングは、前記点を中心とする同心円状の構造を有する、
    請求項1に記載の光学装置。
    The first grating has a concentric structure centered on the point,
    An optical device according to claim 1.
  3.  前記第2のグレーティングは、前記点を中心とする同心円状の構造を有する、
    請求項1に記載の光学装置。
    The second grating has a concentric structure centered on the point,
    An optical device according to claim 1.
  4.  前記第1の透明部材は、円柱形状または円錐台形状を有する、
    請求項1に記載の光学装置。
    The first transparent member has a cylindrical shape or a truncated cone shape.
    An optical device according to claim 1.
  5.  前記第1の透明部材の前記側面は、格子ベクトルが前記中心軸に平行である第3のグレーティングを含む、
    請求項4に記載の光学装置。
    The side of the first transparent member includes a third grating whose grating vector is parallel to the central axis
    The optical device according to claim 4.
  6.  前記第1の透明部材を囲み、前記中心軸と同軸である円筒形状の第2の透明部材をさらに備え、
     前記第2の透明部材の内側面および外側面は、格子ベクトルが前記中心軸に平行である第4のグレーティングを含む、
    請求項5に記載の光学装置。
    It further comprises a cylindrical second transparent member surrounding the first transparent member and coaxial with the central axis,
    The inner and outer sides of the second transparent member include a fourth grating whose grating vector is parallel to the central axis,
    The optical device according to claim 5.
  7.  前記光導波素子は、前記第1のグレーティングおよび前記第2のグレーティング上に、前記第1の透明部材と接する透明層をさらに含み、
     前記透明層は、1.8以上の屈折率を有する、
    請求項4から6のいずれかに記載の光学装置。
    The optical waveguide device further includes a transparent layer in contact with the first transparent member on the first grating and the second grating,
    The transparent layer has a refractive index of 1.8 or more.
    The optical device according to any one of claims 4 to 6.
  8.  前記制御回路は、前記光源に、前記レーザー光の波長を変化させることにより、前記光導波素子から出射される前記レーザー光の方向を変化させる、
    請求項1から7のいずれかに記載の光学装置。
    The control circuit causes the light source to change the wavelength of the laser light, thereby changing the direction of the laser light emitted from the optical waveguide element.
    The optical device according to any one of claims 1 to 7.
  9.  前記光導波素子は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、
     前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、
     前記第2の誘電体層と前記第1の誘電体層との間である第1位置および前記第2の誘電体層と前記第3の誘電体層との間である第2位置からなる群から選択される少なくとも1つに、前記第1のグレーティングおよび前記第2のグレーティングが配置され、
     前記第2の誘電体層に入射した前記レーザー光の一部は、前記伝搬光として、前記第2の誘電体層内を前記動径方向に沿って伝搬し、前記出射光として、前記第2のグレーティングから出射する、
    請求項1から8のいずれかに記載の光学装置。
    The optical waveguide element includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a third dielectric layer on the second dielectric layer,
    The refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer,
    A group consisting of a first position between the second dielectric layer and the first dielectric layer and a second position between the second dielectric layer and the third dielectric layer The first grating and the second grating are arranged in at least one selected from
    A portion of the laser beam incident on the second dielectric layer propagates in the second dielectric layer along the radial direction as the propagation light, and the second light beam is output as the emission light. Emit from the grating of
    The optical device according to any one of claims 1 to 8.
  10.  前記光導波素子は、反射層をさらに含み、
     前記第2の誘電体層と反射層との間に、前記第1の誘電体層が配置される、
    請求項9に記載の光学装置。
    The optical waveguide device further includes a reflective layer,
    The first dielectric layer is disposed between the second dielectric layer and the reflective layer,
    The optical device according to claim 9.
  11.  前記光導波素子は、第1の電極層、及び透明な第2の電極層をさらに含み、
     前記第1の電極層と前記第2の電極層との間に、前記第1の誘電体層、前記第2の誘電体層及び第3の誘電体層が配置され、
     前記第2の電極層は、前記第1の電極層よりも前記第3の誘電体層に近く、
     前記第3の誘電体層は、液晶を含む液晶層である、
     請求項9または10に記載の光学装置。
    The optical waveguide device further includes a first electrode layer and a transparent second electrode layer,
    The first dielectric layer, the second dielectric layer, and the third dielectric layer are disposed between the first electrode layer and the second electrode layer,
    The second electrode layer is closer to the third dielectric layer than the first electrode layer,
    The third dielectric layer is a liquid crystal layer containing liquid crystal,
    An optical device according to claim 9 or 10.
  12.  前記液晶層に電圧が印加されていない状態において、前記液晶の配向方向は、前記第1のグレーティングの格子ベクトルまたは前記第2のグレーティングの格子ベクトルに垂直である、
    請求項11に記載の光学装置。
    When no voltage is applied to the liquid crystal layer, the alignment direction of the liquid crystal is perpendicular to the grating vector of the first grating or the grating vector of the second grating.
    The optical device according to claim 11.
  13.  前記光導波素子は、前記第1のグレーティングと前記第2のグレーティングとの間に、前記動径方向に沿って配置され互いに屈折率が異なる複数の部分を含む第5のグレーティングをさらに含み、
     前記液晶層に電圧が印加されていない状態において、前記液晶の配向方向は、前記第5のグレーティングの格子ベクトルに垂直である、
    請求項11に記載の光学装置。
    The optical waveguide device further includes, between the first grating and the second grating, a fifth grating including a plurality of portions arranged along the radial direction and having mutually different refractive indices,
    When no voltage is applied to the liquid crystal layer, the alignment direction of the liquid crystal is perpendicular to the grating vector of the fifth grating.
    The optical device according to claim 11.
  14.  前記第1の電極層及び前記第2の電極層からなる群から選択される少なくとも1つの電極層は、前記第1のグレーティングに対向する第1の電極と、前記第2のグレーティングに対向する第2の電極と、前記第1の電極と前記第2の電極との間の第3の電極とを含み、
     前記第3の電極は、前記仮想的な円の周方向に沿って配置された、導電性の複数の分割領域を含み、
     前記複数の分割領域は、互いに絶縁されている、
    請求項11に記載の光学装置。
    At least one electrode layer selected from the group consisting of the first electrode layer and the second electrode layer includes a first electrode facing the first grating and a second electrode facing the second grating. Two electrodes, and a third electrode between the first electrode and the second electrode,
    The third electrode includes a plurality of conductive divided regions disposed along the circumferential direction of the virtual circle,
    The plurality of divided regions are mutually isolated
    The optical device according to claim 11.
  15.  前記制御回路は、前記第2の電極を介して前記液晶層に印加する電圧を制御することにより、前記出射光の方向を制御する、
    請求項14に記載の光学装置。
    The control circuit controls the direction of the emitted light by controlling a voltage applied to the liquid crystal layer through the second electrode.
    The optical device according to claim 14.
  16.  前記制御回路は、前記第1の電極を介して前記液晶層に印加する電圧を制御することにより、前記レーザー光が前記第1のグレーティングから前記伝搬光に結合する効率を制御する、
    請求項14または15に記載の光学装置。
    The control circuit controls the efficiency of coupling of the laser light from the first grating to the propagation light by controlling a voltage applied to the liquid crystal layer through the first electrode.
    An optical device according to claim 14 or 15.
  17.  前記制御回路は、前記複数の分割領域のうち、前記伝搬光が伝搬する前記第2の誘電体層内の部分に対向する分割領域に、電圧を順次印加する、
    請求項14から16のいずれかに記載の光学装置。
    The control circuit sequentially applies a voltage to the divided regions facing the portion in the second dielectric layer through which the propagation light propagates among the plurality of divided regions.
    The optical device according to any one of claims 14 to 16.
  18.  偏光分光器と、
     光検出器と、
     偏光回転子と、をさらに備え、
     前記偏光分光器および前記偏光回転子は、前記光源と前記第1の透明部材との間の前記光路上に位置し、
     前記制御回路は、前記偏光回転子に印加する電圧を制御することにより、前記偏光回転子を通過する前記レーザー光の偏光方向を変化させ、
     前記光導波素子から出射され、物体によって反射され、前記光導波素子に入射した光の一部は、前記光導波素子、前記偏光回転子、及び前記偏光分光器を通過した後、検出光として、前記光検出器に入射し、
     前記光検出器は、前記検出光の量に応じた電気信号を生成する、
    請求項14から17のいずれかに記載の光学装置。
    A polarization spectrometer,
    A photodetector,
    Further comprising a polarization rotator,
    The polarization spectroscope and the polarization rotator are located on the optical path between the light source and the first transparent member.
    The control circuit changes the polarization direction of the laser beam passing through the polarization rotator by controlling a voltage applied to the polarization rotator.
    A part of light emitted from the optical waveguide element, reflected by the object, and incident on the optical waveguide element passes through the optical waveguide element, the polarization rotator, and the polarization spectroscope, and then, as detection light, Is incident on the light detector,
    The light detector generates an electrical signal according to the amount of the detected light,
    An optical device according to any of claims 14-17.
  19.  前記制御回路は、前記光源が前記レーザー光を出射している間に前記光検出器によって検出される前記検出光の量の極大値と極小値との時間間隔を取得し、前記時間間隔に基づき前記偏光回転子に印加する前記電圧を調整することにより、前記偏光回転子を通過した前記レーザー光の前記偏光方向の回転角を制御する、
    請求項18に記載の光学装置。
    The control circuit acquires a time interval between the maximum value and the minimum value of the amount of the detection light detected by the light detector while the light source emits the laser light, and based on the time interval The rotation angle of the polarization direction of the laser beam having passed through the polarization rotator is controlled by adjusting the voltage applied to the polarization rotator.
    An optical device according to claim 18.
  20.  第1の偏光分光器と、
     偏光変換器と、
     分光器と、
     光検出器と、をさらに備え、
     前記光検出器は、第1の光検出器及び第2の光検出器を含み、
     前記第1の偏光分光器、前記偏光変換器、および前記分光器は、前記光源と前記第1の透明部材との間の前記光路上に位置し、
     前記光導波素子から出射され、物体によって反射され、前記光導波素子を通過した後、前記分光器に入射した光の一部は、前記分光器及び前記偏光変換器を通過した後、第1の検出光として、前記第1の光検出器に入射し、
     前記分光器に入射した前記光の他の一部は、前記分光器を通過した後、第2の検出光として、前記第2の光検出器に入射し、
     前記第1の光検出器は、前記第1の検出光の量に応じた第1電気信号を生成し、
     第2の光検出器は、前記第2の検出光の量に応じた第2電気信号を生成する、
    請求項14から17のいずれかに記載の光学装置。
    A first polarization spectrometer,
    A polarization converter,
    A spectrometer,
    And a light detector,
    The light detector includes a first light detector and a second light detector,
    The first polarization spectroscope, the polarization converter, and the spectroscope are located on the light path between the light source and the first transparent member.
    A part of light emitted from the optical waveguide element, reflected by an object, and passed through the optical waveguide element and then incident on the spectroscope is transmitted to the first spectroscope after passing through the spectroscope and the polarization converter. As the detection light, it is incident on the first light detector,
    Another part of the light incident on the spectroscope is incident on the second light detector as a second detection light after passing through the spectroscope.
    The first photodetector generates a first electrical signal according to the amount of the first detection light,
    The second photodetector generates a second electrical signal according to the amount of the second detection light,
    An optical device according to any of claims 14-17.
  21.  前記偏光変換器は、1/4波長板である、
    請求項20に記載の光学装置。
    The polarization converter is a quarter wave plate,
    An optical device according to claim 20.
  22.  前記偏光変換器は、直線偏光の光を円接線方向の偏光の光に変換する、
    請求項20に記載の光学装置。
    The polarization converter converts linearly polarized light into circularly polarized light.
    An optical device according to claim 20.
  23.  第2の偏光分光器をさらに備え、
     前記光検出器は、第3の光検出器をさらに含み、
     前記光導波素子から出射され、物体によって反射され、前記光導波素子及び前記分光器を通過した後、前記第2の偏光分光器に入射した光の一部は、
     前記第2の偏光分光器を通過した後、第3の検出光として、前記第2の光検出器に入射し、
     前記第2の偏光分光器に入射した前記光の他の一部は、前記第2の偏光分光器を通過した後、第4の検出光として、前記第3の光検出器に入射し、
     前記第3の光検出器は、前記第4の検出光の量に応じた電気信号を生成する、
    請求項20から22のいずれかに記載の光学装置。
    Further comprising a second polarization spectrometer,
    The light detector further includes a third light detector,
    A part of the light emitted from the optical waveguide element, reflected by the object, passed through the optical waveguide element and the spectroscope, and then incident on the second polarization spectroscope,
    After passing through the second polarization spectroscope, as a third detection light, it enters the second light detector,
    The other part of the light incident on the second polarization spectroscope passes through the second polarization spectroscope and then enters the third light detector as fourth detection light,
    The third light detector generates an electrical signal according to the amount of the fourth detection light.
    An optical device according to any of claims 20-22.
  24.  前記制御回路は、
      前記第1電気信号と、前記第2電気信号とを受け取り、
      前記第1電気信号と前記第2電気信号との和および前記第1電気信号と前記第2電気信号との比に応じた電気信号を生成する、
    請求項20または21に記載の光学装置。
    The control circuit
    Receiving the first electrical signal and the second electrical signal;
    Generating an electrical signal according to a sum of the first electrical signal and the second electrical signal and a ratio of the first electrical signal to the second electrical signal;
    22. An optical device according to claim 20 or 21.
  25.  前記制御回路は、前記光源が前記レーザー光を出射している間に前記光検出器によって検出される光の量の極大値が最小になるよう、前記第1の電極に印加する電圧を制御する、
    請求項18から24いずれかに記載の光学装置。
    The control circuit controls a voltage applied to the first electrode such that a local maximum of the amount of light detected by the light detector is minimized while the light source emits the laser light. ,
    An optical device according to any one of claims 18 to 24.
  26.  前記光検出器はフィルター回路を含み、
     前記制御回路は、
     前記光源に、異なる周波数の強度変調信号が重畳された第1の光パルスと第2の光パルスとを順次出射させ、
     前記光検出器に、前記光導波素子から出射され、前記物体によって反射され、前記光導波素子に入射した前記第1の光パルスの一部、および前記光導波素子から出射され、前記物体によって反射され、前記光導波素子に入射した前記第2の光パルスの一部を検出させ、前記第1の光パルスの前記一部の量に応じた信号と、前記第2の光パルスの前記一部に応じた信号と、を分離して出力させる、
    請求項18から25のいずれかに記載の光学装置。
    The light detector includes a filter circuit,
    The control circuit
    Causing the light source to sequentially emit a first light pulse and a second light pulse on which intensity modulation signals of different frequencies are superimposed;
    A part of the first light pulse emitted from the optical waveguide element, reflected by the object, and incident on the optical waveguide element to the light detector and emitted from the optical waveguide element and reflected by the object A portion of the second optical pulse incident on the optical waveguide element, and a signal according to the amount of the portion of the first optical pulse and the portion of the second optical pulse Separate and output the signal according to
    26. An optical device according to any of claims 18-25.
  27.  前記少なくとも1つの電極層において、前記複数の分割領域うち、隣り合う2つの分割領域の境界は、前記動径方向に沿ってジグザグ形状を有する、
    請求項14に記載の光学装置。
    In the at least one electrode layer, a boundary between two adjacent ones of the plurality of divided regions has a zigzag shape along the radial direction.
    The optical device according to claim 14.
  28.  前記第1の電極層及び前記第2の電極層の各々において、前記複数の分割領域のうち、隣り合う2つの分割領域の境界は、前記動径方向に沿ってジグザグ形状を有し、
     前記第1の誘電体層、前記第2の誘電体層及び前記第3の誘電体層のいずれかに垂直な方向から見たとき、前記第1の電極層における前記境界と、前記第2の電極層における前記境界とは、菱形が連なった形状を形成する、
    請求項27に記載の光学装置。
    In each of the first electrode layer and the second electrode layer, a boundary between two adjacent divided regions among the plurality of divided regions has a zigzag shape along the radial direction,
    When viewed from a direction perpendicular to any one of the first dielectric layer, the second dielectric layer, and the third dielectric layer, the boundary in the first electrode layer and the second dielectric layer The boundaries in the electrode layer form a series of rhombuses,
    The optical device according to claim 27.
PCT/JP2018/044815 2017-12-27 2018-12-06 Optical device WO2019131029A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880068704.9A CN111247481B (en) 2017-12-27 2018-12-06 Optical device
US16/900,866 US11525898B2 (en) 2017-12-27 2020-06-12 Optical device comprising an optical waveguide element having a first and a second grating arranged in a radial direction of a virtual circle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017251788 2017-12-27
JP2017-251788 2017-12-27
JP2018205800A JP7145436B2 (en) 2017-12-27 2018-10-31 optical device
JP2018-205800 2018-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/900,866 Continuation US11525898B2 (en) 2017-12-27 2020-06-12 Optical device comprising an optical waveguide element having a first and a second grating arranged in a radial direction of a virtual circle

Publications (1)

Publication Number Publication Date
WO2019131029A1 true WO2019131029A1 (en) 2019-07-04

Family

ID=67066464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044815 WO2019131029A1 (en) 2017-12-27 2018-12-06 Optical device

Country Status (1)

Country Link
WO (1) WO2019131029A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246412A (en) * 1988-08-05 1990-02-15 Matsushita Electric Ind Co Ltd Optical head device
WO1990001722A1 (en) * 1988-08-05 1990-02-22 Matsushita Electric Industrial Co., Ltd. Light deflecting element
JPH04168427A (en) * 1990-10-31 1992-06-16 Matsushita Electric Ind Co Ltd Light polarizing element
JPH07141688A (en) * 1993-11-19 1995-06-02 Matsushita Electric Ind Co Ltd Optical waveguide and converging device
KR20170071394A (en) * 2015-12-15 2017-06-23 (주)다울아토닉스 Detecting device for lidar light source without rotation and scanning
WO2018230024A1 (en) * 2017-06-14 2018-12-20 三菱電機株式会社 Optical scanning device, method for controlling same, and mobile body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246412A (en) * 1988-08-05 1990-02-15 Matsushita Electric Ind Co Ltd Optical head device
WO1990001722A1 (en) * 1988-08-05 1990-02-22 Matsushita Electric Industrial Co., Ltd. Light deflecting element
JPH04168427A (en) * 1990-10-31 1992-06-16 Matsushita Electric Ind Co Ltd Light polarizing element
JPH07141688A (en) * 1993-11-19 1995-06-02 Matsushita Electric Ind Co Ltd Optical waveguide and converging device
KR20170071394A (en) * 2015-12-15 2017-06-23 (주)다울아토닉스 Detecting device for lidar light source without rotation and scanning
WO2018230024A1 (en) * 2017-06-14 2018-12-20 三菱電機株式会社 Optical scanning device, method for controlling same, and mobile body

Similar Documents

Publication Publication Date Title
JP7145436B2 (en) optical device
US6775009B2 (en) Differential interferometric scanning near-field confocal microscopy
CN102589420B (en) Optical position measuring instrument
JP5821511B2 (en) Optical device and detection apparatus
JP6076589B2 (en) Displacement detector
WO2021093259A1 (en) Arbitrary singularity beam order detection device and method
JP5599790B2 (en) Method and apparatus for reducing optical interference and crosstalk of double optical tweezers using one laser light source
TW201416810A (en) Off-axis alignment system and alignment method
JP4669995B2 (en) Optical microscope and observation method
TW201213790A (en) Discrete polarization permutation angular scatterometer
JP2009300486A (en) Optical equipment and optical apparatus
JPS62211503A (en) Step measuring instrument
JP2006138734A (en) Optical spectrum analyzer
KR101028061B1 (en) Fringe Stabilized Inerferometer using Coherent Fiber Optic Tapers
JP5900970B2 (en) Surface plasmon sensor and method of measuring refractive index
WO2019131029A1 (en) Optical device
JP2010025922A (en) Interference device
CN117091503A (en) Semiconductor measuring device
JP6586459B2 (en) Interference fringe projection optical system and shape measuring apparatus
WO2020179342A1 (en) Optical device
WO2020261685A1 (en) Optical device
WO2017006369A1 (en) Digital holographic imaging device and illumination device
WO2023195345A1 (en) Optical element, optical cell, analysis device, and optical element design method
US20050232330A1 (en) Fabry-perot resonator apparatus and method including an in-resonator polarizing element
JPH01150120A (en) High speed optical deflection device for surface acoustic wave

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893525

Country of ref document: EP

Kind code of ref document: A1