JPH07141688A - Optical waveguide and converging device - Google Patents

Optical waveguide and converging device

Info

Publication number
JPH07141688A
JPH07141688A JP5290519A JP29051993A JPH07141688A JP H07141688 A JPH07141688 A JP H07141688A JP 5290519 A JP5290519 A JP 5290519A JP 29051993 A JP29051993 A JP 29051993A JP H07141688 A JPH07141688 A JP H07141688A
Authority
JP
Japan
Prior art keywords
layer
light
waveguide
refractive index
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5290519A
Other languages
Japanese (ja)
Other versions
JP3250346B2 (en
Inventor
Seiji Nishiwaki
青児 西脇
Junichi Asada
潤一 麻田
Tetsuo Kitagawa
徹夫 北川
Kiyoko Oshima
希代子 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29051993A priority Critical patent/JP3250346B2/en
Publication of JPH07141688A publication Critical patent/JPH07141688A/en
Application granted granted Critical
Publication of JP3250346B2 publication Critical patent/JP3250346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently convert an incident beam to a waveguide beam and to provide a circular spot excellently converged on one focal point by equalizing an equivalent refractive index of a TM mode waveguide beam propagating through a waveguide layer with the equivalent refractive in-dex of a TE mode waveguide beam. CONSTITUTION:A transparent substrate 1, a phase correction layer 2, a buffer layer 3, the waveguide layer 4 and a grating coupler 6 formed on the waveguide layer 4 and constituted of a concentric circular rugged structure are all provided with an axis L orthogonally intersecting with the waveguide layer 4 as a central axis. The coupler 5 is formed on a circular area around the axis L, and the coupler 6 is formed on a ring-shaped area surrounding the coupler 5. A beam 7 incident on the coupler 5 along the axis L excites the waveguide beam 8. The waveguide beam 8 is radiated from the grating coupler 6 propagating from the center to an outer periphery. Then, the equivalent difractive index of the TM mode waveguide beam propagating through the waveguide layer 4 is made equal to the equivalent difractive index of the TE mode waveguide beam by the phase correction layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜内に光を伝送する光
導波路、および光を1点に集束する集光装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide for transmitting light in a thin film and a light condensing device for converging light at one point.

【0002】[0002]

【従来の技術】グレーティングカプラなどの光結合器を
使って導波層へ光を入射し導波光を励起する条件は入射
光の偏光状態に関係する。図4は従来例における導波層
への光入力の様子を示している。図4において、1は透
明基板、4は導波層、13は導波層上に形成されたピッ
チΛの直線状凹凸構造によるグレーティングカプラ(グ
レーティングのフリンジ方向は紙面に直交する)であ
る。導波層法線Lと角θをなしてグレーティングカプラ
13に入射する光11が導波光12を励起する条件は次
式で与えられる。
2. Description of the Related Art The conditions for injecting light into a waveguide layer and exciting the guided light using an optical coupler such as a grating coupler are related to the polarization state of the incident light. FIG. 4 shows a state of light input to the waveguide layer in the conventional example. In FIG. 4, 1 is a transparent substrate, 4 is a waveguiding layer, and 13 is a grating coupler (the fringe direction of the grating is orthogonal to the plane of the drawing) having a linear concavo-convex structure with a pitch Λ formed on the waveguiding layer. The condition for exciting the guided light 12 by the light 11 that enters the grating coupler 13 at an angle θ with the waveguiding layer normal L is given by the following equation.

【0003】sinθ=N−λ/Λ …(式1) ただし、Nは導波光12の等価屈折率、λはレーザー光
11の波長であり、入射光軸及び導波光軸は紙面に平行
である。
Sin θ = N−λ / Λ (Equation 1) where N is the equivalent refractive index of the guided light 12, λ is the wavelength of the laser light 11, and the incident optical axis and the guided optical axis are parallel to the paper surface. .

【0004】入射光の電気ベクトルが11aの様に紙面
に直交するときには、電気ベクトルが12aの様に導波
層表面に平行なTEモード導波光が励起され、11bの
様に紙面に平行なときには、電気ベクトルが12bの様
に導波層表面に直交するTMモード導波光が励起され
る。等価屈折率Nの大きさは導波光12がTEモードで
あるかTMモードであるかによって異なるので、式1よ
り入射角θもTEモードを励起するかTMモードを励起
するかで異なる。
When the electric vector of the incident light is orthogonal to the paper surface like 11a, TE mode guided light parallel to the surface of the waveguiding layer is excited like the electric vector 12a, and when parallel to the paper surface like 11b. , TM-mode guided light whose electric vector is orthogonal to the surface of the waveguiding layer 12b is excited. Since the magnitude of the equivalent refractive index N differs depending on whether the guided light 12 is the TE mode or the TM mode, the incident angle θ also differs according to Expression 1 depending on whether the TE mode or the TM mode is excited.

【0005】図5は図4において導波層4の屈折率を
1.85、透明基板1の屈折率を1.45、レーザー光
11の波長を0.82μmとして、導波層膜厚と等価屈
折率との関係(分散特性)を、導波モードをパラメータ
ーにして書かせてある。膜厚を固定して見れば、各次数
(0次、1次、2次)ともTEモードの等価屈折率はT
Mモードの等価屈折率より大きい。
FIG. 5 is equivalent to the film thickness of the waveguide layer in FIG. 4 where the refractive index of the waveguide layer 4 is 1.85, the refractive index of the transparent substrate 1 is 1.45, and the wavelength of the laser beam 11 is 0.82 μm. The relationship with the refractive index (dispersion property) is written using the guided mode as a parameter. When the film thickness is fixed, the TE mode equivalent refractive index is T for each order (0th order, 1st order, 2nd order).
It is larger than the equivalent refractive index of M mode.

【0006】図6は上述した従来の導波層を用いた集光
装置の構成図を示す。図6において、1は透明基板、4
は導波層、5、6は導波層上に形成された同心円状凹凸
構造によるグレーティングカプラであり、共に導波層4
に直交する軸Lを中心軸にする。カプラ5は軸Lの周り
の円形領域に、カプラ6はカプラ5を取りまくリング状
の領域に形成されている。軸Lに沿ってグレーティング
カプラ5に入射する光7は導波光8を励起する。ただ
し、グレーティングカプラ5のピッチΛは次式を満たし
ている。
FIG. 6 is a block diagram of a light collecting device using the above-described conventional waveguide layer. In FIG. 6, 1 is a transparent substrate, 4
Is a waveguide layer, and 5 and 6 are grating couplers having a concentric concavo-convex structure formed on the waveguide layer.
A central axis is an axis L orthogonal to. The coupler 5 is formed in a circular region around the axis L, and the coupler 6 is formed in a ring-shaped region surrounding the coupler 5. The light 7 incident on the grating coupler 5 along the axis L excites the guided light 8. However, the pitch Λ of the grating coupler 5 satisfies the following equation.

【0007】λ/Λ=N … (式2) Nは導波光8の等価屈折率、λはレーザー光7の波長で
ある。
Λ / Λ = N (Equation 2) N is the equivalent refractive index of the guided light 8 and λ is the wavelength of the laser light 7.

【0008】導波光8は中心から外周に向かって伝搬
し、グレーティングカプラ6より放射される。グレーテ
ィングカプラ6のピッチΛは、fを焦点距離、rを放射
光9の出射位置半径、θを出射位置での開口角として、
次の連立式を満たしている。
The guided light 8 propagates from the center toward the outer circumference and is emitted from the grating coupler 6. The pitch Λ of the grating coupler 6 is such that f is the focal length, r is the emission position radius of the radiated light 9, and θ is the opening angle at the emission position.
The following simultaneous equations are satisfied.

【0009】sinθ=λ/Λ−N … (式3) tanθ=r/f … (式4) 上2式を満たすこと(すなわちピッチΛがrの関数とし
て変化すること)で放射光9は一点に集光し、焦点位置
に置かれた反射面10を反射する光11はグレーティン
グカプラ6によって再び導波光12を励起することがで
きる。
Sin θ = λ / Λ−N (Equation 3) tan θ = r / f (Equation 4) When the above two expressions are satisfied (that is, the pitch Λ changes as a function of r), the radiated light 9 is one point. The light 11 that is focused on the laser light and reflected by the reflecting surface 10 placed at the focal position can excite the guided light 12 again by the grating coupler 6.

【0010】図7は図6で示した集光装置における、偏
光状態と光入力、光導波、光出力の関係を示す。グレー
ティングカプラ5に入射する光は直線偏光であり、電気
ベクトルは7A、7B、7C、7Dのようにy軸に平行
である。
FIG. 7 shows the relationship between the polarization state and the light input, light guide, and light output in the light collecting device shown in FIG. The light incident on the grating coupler 5 is linearly polarized light, and the electric vector is parallel to the y-axis like 7A, 7B, 7C and 7D.

【0011】カプラ5が大きい場合、式2において、N
がTEモードに対する等価屈折率に等しければ(NがT
Mモードに対する等価屈折率に等しくても、TEとTM
が入れ替わり電気ベクトルの方向が変わるだけで、以下
の事情は同様である)、カプラ5によりx軸方向に伝搬
するTEモードの導波光8a、8bやx軸とφの偏角を
なす方位に伝搬する導波光8eが励起される。
If the coupler 5 is large, then in equation 2, N
Is equal to the equivalent refractive index for the TE mode (N is T
Even if the equivalent refractive index for M mode is equal, TE and TM
Except that the electric vector direction is changed and the following circumstances are the same), and the TE mode guided light 8a, 8b propagating in the x-axis direction by the coupler 5 and propagating in the azimuth forming a deviation angle of φ with the x-axis. The guided light 8e is excited.

【0012】導波光8a、8b、8eの電気ベクトルは
カプラ5に同心した円の接線方向にあり、導波光8eの
光振幅は導波光8aの振幅で標準化してcosφの大きさ
である。
The electric vectors of the guided lights 8a, 8b and 8e are in the tangential direction of the circle concentric with the coupler 5, and the optical amplitude of the guided light 8e is the magnitude of cosφ standardized by the amplitude of the guided light 8a.

【0013】従って、グレーティングカプラ6から放射
される光9eの振幅は放射位置の偏角φに依存し、cos
φの大きさに比例する。また、放射光の偏光方向はその
電気ベクトルがカプラ5に同心した円の接線方向にあ
る。
Therefore, the amplitude of the light 9e emitted from the grating coupler 6 depends on the deviation angle φ of the emission position, and
proportional to the size of φ. The polarization direction of the emitted light is in the tangential direction of the circle whose electric vector is concentric with the coupler 5.

【0014】例えば、x軸上の放射光9A、9Bの電気
ベクトルはy軸に平行であり、放射光9eの電気ベクト
ルはy軸に角φだけ傾いた方向にある。
For example, the electric vectors of the radiated lights 9A and 9B on the x-axis are parallel to the y-axis, and the electric vector of the radiated light 9e is in the direction inclined by the angle φ with respect to the y-axis.

【0015】従って、カプラ6から放射する光9eの
内、集光点F1において互いに干渉する成分(すなわち
電気ベクトルがy軸方向にある成分)の光振幅は、cos2
φの大きさに比例する。よって、放射光は等価的にy軸
との偏角が小さい領域で遮光されたような開口制限を受
けるので、点F1における集光スポットはy軸方向に広
がった楕円スポットになる。
Therefore, of the light 9e emitted from the coupler 6, the light amplitude of the component that interferes with each other at the focal point F1 (that is, the component whose electric vector is in the y-axis direction) is cos 2
proportional to the size of φ. Therefore, the emitted light is equivalently subjected to aperture restriction such that it is shielded in a region having a small deviation from the y-axis, and the focused spot at the point F1 is an elliptical spot spread in the y-axis direction.

【0016】カプラ5が十分小さいときには、式2で示
した導波光励起の条件は緩くなり、上述したTEモード
光の励起に加えて、等価屈折率が式2のNに比べやや小
さいTMモードの導波光8c'、8d'(ともにy軸方向
に伝搬する導波光)、8e'(x軸とφの偏角をなす方
位に伝搬する導波光)も励起される。
When the coupler 5 is sufficiently small, the conditions for pumping guided light shown in formula 2 are relaxed, and in addition to the above-described pumping of TE mode light, the equivalent refractive index of TM mode is slightly smaller than N of formula 2. Guided lights 8c 'and 8d' (both guided lights propagating in the y-axis direction) and 8e '(guided light propagating in an azimuth forming an angle of φ with the x-axis) are also excited.

【0017】導波光8c'、8d'、8e'の電気ベクト
ルはともに導波層表面に対する法線方向にあり、導波光
8e'の光振幅は導波光8c'の光振幅のsinφの大きさ
である。
The electric vectors of the guided lights 8c ', 8d', and 8e 'are all in the normal direction to the surface of the waveguide layer, and the optical amplitude of the guided light 8e' is the magnitude of sin φ of the optical amplitude of the guided light 8c '. is there.

【0018】グレーティングカプラ6から放射する光の
放射角は式3のNがTEモードに比べ小さくなるので、
放射角(放射光と導波層法線のなす角、すなわち開口角
θ)は大きくなり、TMモード放射光による集光点F2
はTEモード放射光による点F1よりもカプラ6側に近
づく。
The emission angle of the light emitted from the grating coupler 6 is smaller in N of the equation 3 than in the TE mode.
The radiation angle (angle formed by the radiation and the normal to the waveguide layer, that is, the opening angle θ) becomes large, and the focal point F2 of the TM mode radiation is obtained.
Is closer to the coupler 6 side than the point F1 due to the TE mode radiation.

【0019】TMモード放射光9e'の振幅はsinφの大
きさに比例し、その電気ベクトルはカプラ5に同心した
円の動径方向(すなわちx軸と角φをなす方向)にある
(厳密には、放射光の偏光方向はその電気ベクトルが放
射方向と導波方向(カプラ5に同心した円の動径方向)
を含む面内にあって放射方向に直交する方向にあるが、
ここでは近似した表現をする)。
The amplitude of the TM mode radiated light 9e 'is proportional to the magnitude of sin φ, and its electric vector is in the radial direction of the circle concentric with the coupler 5 (that is, the direction forming an angle φ with the x axis) (strictly speaking). Is the polarization direction of the emitted light, whose electric vector is the emission direction and the guiding direction (the radial direction of the circle concentric with the coupler 5).
Is in the plane including and is in the direction orthogonal to the radial direction,
Here we use an approximate expression).

【0020】従って、互いに干渉する成分(すなわち電
気ベクトルがy軸方向にある成分)の光振幅分布は、si
n2φ(厳密にはsin2φcosθ)の大きさに比例する。よ
って、放射光は等価的にx軸との偏角が小さい領域で遮
光されたような開口制限を受けるので、点F2における
集光スポットはx軸方向に延びた楕円スポットになる。
Therefore, the optical amplitude distribution of the components that interfere with each other (that is, the component whose electric vector is in the y-axis direction) is si
It is proportional to the size of n 2 φ (strictly speaking, sin 2 φcos θ). Therefore, the emitted light is equivalently subjected to aperture restriction such that it is shielded in a region having a small deviation angle from the x-axis, and the focused spot at the point F2 is an elliptical spot extending in the x-axis direction.

【0021】すなわち、カプラ5が十分小さいときに
は、点F1でy軸方向に広がった楕円スポット、点F2
でx軸方向に広がった楕円スポットが得られる。
That is, when the coupler 5 is sufficiently small, the elliptical spot spread in the y-axis direction at the point F1, the point F2.
Gives an elliptical spot spread in the x-axis direction.

【0022】[0022]

【発明が解決しようとする課題】このような従来の光導
波路及び集光装置に於て以下の問題点があった。カプラ
5が大きいときには、カプラ5によりx軸との偏角が小
さい領域に入射する光は導波光を強く励起するが、y軸
との偏角が小さい領域では励起が弱く、入射光は有効に
利用されていない。
The above-mentioned conventional optical waveguide and light condensing device have the following problems. When the coupler 5 is large, the light incident on the region having a small deviation angle with the x-axis by the coupler 5 excites the guided light strongly, but the excitation is weak in the region having a small deviation angle with the y-axis, and the incident light is effective. Not used.

【0023】さらに、この導波光量の偏角依存性に加
え、放射光の偏光方向が円接線方向にあることにより、
放射光は等価的にy軸との偏角が小さい領域で遮光され
た開口制限を受けることになり、集光スポットはy軸方
向に広がった楕円スポットになる。
Further, in addition to the declination dependence of the guided light amount, the polarization direction of the radiated light is in the circular tangential direction,
The radiated light is equivalently blocked by an aperture that is shielded in a region having a small deviation from the y-axis, and the focused spot is an elliptical spot spread in the y-axis direction.

【0024】カプラ5が十分小さいときには、上述した
TEモード光の励起に加えて、y軸との偏角が小さい領
域でTMモード光の励起がなされるので、入射光の有効
利用に関する課題はなくなるが、放射光の集光性には課
題が残る。
When the coupler 5 is sufficiently small, the TM mode light is excited in the region where the deviation angle from the y axis is small in addition to the above-described excitation of the TE mode light, so that there is no problem regarding effective use of the incident light. However, there remains a problem with the ability to collect emitted light.

【0025】すなわち、TEモードとTMモードの等価
屈折率が異なるので、TEモード放射光とTMモード放
射光の放射角が異なり、集光スポットはTEモード放射
光によるy軸方向に広がった楕円スポットとTMモード
放射光によるx軸方向に広がった楕円スポットが光軸上
で分離して得られる。
That is, since the TE mode and the TM mode have different equivalent refractive indices, the emission angles of the TE mode radiation and the TM mode radiation are different, and the focused spot is an elliptical spot spread in the y-axis direction by the TE mode radiation. And an elliptical spot spread in the x-axis direction by the TM mode radiation light are obtained separately on the optical axis.

【0026】いずれにしても、集光素子としては等価的
に開口制限が加わるので、円形で絞れた集光スポットは
得られない。
In any case, since the aperture is equivalently applied as a light-collecting element, a circularly condensed light-collecting spot cannot be obtained.

【0027】本発明はかかる問題点に鑑み、カプラ5の
大きさにかかわらず導波光が効率的に全方位に励起さ
れ、放射光の振幅や偏光方向が方位に依らず均一で、集
光スポットを円形に絞ることの可能な光導波路及び集光
装置を提供することを目的する。
In view of the above problems, the present invention efficiently guides guided light in all directions regardless of the size of the coupler 5, and makes the amplitude and polarization direction of the emitted light uniform regardless of the direction and provides a focused spot. It is an object of the present invention to provide an optical waveguide and a light condensing device capable of narrowing a circular shape.

【0028】[0028]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の光導波路は、レーザー光源と、透明層で形
成された導波層と、レーザー光源から出射するレーザー
光を導波層内に導き導波層内を伝搬する導波光を励起す
る入力手段とからなり、導波層はこれよりも低屈折率の
第1の透明層を挟んで導波層よりも高屈折率の第2の透
明層の上に積層されることを特徴とする。
In order to solve the above-mentioned problems, an optical waveguide of the present invention comprises a laser light source, a waveguide layer formed of a transparent layer, and a laser beam emitted from the laser light source. And an input means for exciting guided light propagating in the waveguide layer, the waveguide layer sandwiching a first transparent layer having a lower refractive index than the waveguide layer and having a higher refractive index than the waveguide layer. It is characterized by being laminated on two transparent layers.

【0029】さらに、第2の透明層は導波層よりも低屈
折率の第3の透明層を挟んで導波層よりも高屈折率の第
4の透明層の上に積層され、以上の積層を1回以上繰り
返してもよい。
Further, the second transparent layer is laminated on the fourth transparent layer having a refractive index higher than that of the waveguide layer with the third transparent layer having a refractive index lower than that of the waveguide layer being sandwiched therebetween. The lamination may be repeated once or more.

【0030】特に、入力手段が導波層上に形成された凹
凸の周期構造により構成され、その周期構造が同心円を
なし、レーザー光が前記同心円の中心軸Aに沿って入射
することを特徴とする光導波路であり、さらには導波光
を導波層外に放射する出力手段を備え、その出力手段が
導波層上に形成された凹凸の周期構造により構成され、
その周期構造が中心軸Aを軸する同心円をなし、周期構
造の周期が外周に向かって密になることで、導波層外に
放射される光が1点に集光することを特徴とする集光装
置である。
In particular, the input means is composed of an uneven periodic structure formed on the waveguide layer, the periodic structure forms a concentric circle, and the laser light is incident along the central axis A of the concentric circle. Which further comprises an output means for radiating the guided light to the outside of the waveguide layer, the output means being constituted by a concave-convex periodic structure formed on the waveguide layer,
The periodic structure forms a concentric circle about the central axis A, and the period of the periodic structure becomes denser toward the outer circumference, so that the light emitted to the outside of the waveguide layer is condensed at one point. It is a light collector.

【0031】[0031]

【作用】本発明は上記した構成によって、導波層内を伝
搬するTMモード導波光の等価屈折率をTEモード導波
光の等価屈折率と等しくすることができ、導波層外に放
射される光の放射方向と位相、及び偏光方向を揃えるこ
とができる。
According to the present invention, with the above structure, the equivalent refractive index of the TM mode guided light propagating in the waveguide layer can be made equal to the equivalent refractive index of the TE mode guided light, and the light is radiated to the outside of the waveguide layer. The emission direction and phase of light and the polarization direction can be aligned.

【0032】[0032]

【実施例】以下本発明の実施例の光導波路及び集光装置
について、図面を参照しながら説明する。なお従来例と
同一の部材には同一番号を付し、詳しい説明は省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical waveguide and a light collecting device according to embodiments of the present invention will be described below with reference to the drawings. The same members as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0033】図1は本発明の実施例における光導波路及
び集光装置の構成を示している。図1において、1は透
明基板、2は位相補正層、3はバッファー層、4は導波
層、5、6は導波層上に形成された同心円状凹凸構造に
よるグレーティングカプラであり、共に導波層4に直交
する軸Lを中心軸にする。
FIG. 1 shows the construction of an optical waveguide and a light collecting device in an embodiment of the present invention. In FIG. 1, 1 is a transparent substrate, 2 is a phase correction layer, 3 is a buffer layer, 4 is a waveguiding layer, and 5 and 6 are grating couplers having a concentric concavo-convex structure formed on the waveguiding layer. The axis L orthogonal to the wave layer 4 is the central axis.

【0034】カプラ5は軸Lの周りの円形領域に、カプ
ラ6はカプラ5を取りまくリング状の領域に形成されて
いる。軸Lに沿ってグレーティングカプラ5に入射する
光7は導波光8を励起する。ただし、グレーティングカ
プラ5のピッチΛは、Nを導波光8の等価屈折率、λを
レーザー光7の波長として式2を満たしている。
The coupler 5 is formed in a circular area around the axis L, and the coupler 6 is formed in a ring-shaped area surrounding the coupler 5. The light 7 incident on the grating coupler 5 along the axis L excites the guided light 8. However, the pitch Λ of the grating coupler 5 satisfies Expression 2 where N is the equivalent refractive index of the guided light 8 and λ is the wavelength of the laser light 7.

【0035】導波光8は中心から外周に向かって伝搬
し、グレーティングカプラ6より放射される。グレーテ
ィングカプラ6のピッチΛは、fを焦点距離、rを放射
光9の出射位置半径、θを出射位置での開口角として、
式3、式4の連立式を満たしている。式3、式4を満た
すこと(すなわちピッチΛがrの関数として変化するこ
と)で放射光9は一点に集光し、焦点位置に置かれた反
射面10を反射する光11はグレーティングカプラ6に
よって再び導波光12を励起することができる。
The guided light 8 propagates from the center toward the outer circumference and is emitted from the grating coupler 6. The pitch Λ of the grating coupler 6 is such that f is the focal length, r is the emission position radius of the radiated light 9, and θ is the opening angle at the emission position.
The simultaneous equations of Equations 3 and 4 are satisfied. By satisfying the expressions 3 and 4 (that is, the pitch Λ changes as a function of r), the emitted light 9 is condensed at one point, and the light 11 reflected by the reflecting surface 10 placed at the focal position is the grating coupler 6. The guided light 12 can be excited again by.

【0036】図2は図1において導波層4の屈折率を
1.85、透明基板1の屈折率を1.45、位相補正層
2の屈折率を2.4、膜厚を0.11μm、バッファー
層3の屈折率を1.45、膜厚を0.15μm、レーザ
ー光7の波長を0.82μmとして、導波層膜厚と等価
屈折率との関係(分散特性)を、導波モードをパラメー
ターにして書かせてある。
In FIG. 2, the refractive index of the waveguiding layer 4 in FIG. 1 is 1.85, the refractive index of the transparent substrate 1 is 1.45, the refractive index of the phase correction layer 2 is 2.4, and the film thickness is 0.11 μm. , The buffer layer 3 has a refractive index of 1.45, the film thickness is 0.15 μm, and the wavelength of the laser light 7 is 0.82 μm. It is written using the mode as a parameter.

【0037】なお、位相補正層2の膜厚を連続的に0か
ら0.11μmに増加させて分散特性図を観察すると分
かることだが、図2のTE0、TE1は図5のTE1、T
2が変化したものであり、図5のTE0が退縮して分散
特性図には現われない(位相補正層2では導波モードが
存在するが、導波層4では存在しない)ので、次数を繰
下げている。
[0037] Although thing seen when increasing the thickness of the phase correction layer 2 continuously from 0 to 0.11μm by observing the dispersion characteristic diagram, TE 0, TE 1 of 2 TE 1 in FIG. 5, T
Since E 2 is changed and TE 0 in FIG. 5 is degenerated and does not appear in the dispersion characteristic diagram (a waveguide mode exists in the phase correction layer 2 but does not exist in the waveguide layer 4), the order is Has been postponed.

【0038】また、図2でTM0が膜厚ゼロでも存在す
るのは、位相補正層を導波するTMモードが存在するこ
とによる。図5との比較から分かるように、位相補正層
の存在により分散特性は大きく変化し、導波層膜厚0.
9μm(破線で表示)では0次、1次ともTEモードの
等価屈折率とTMモードの等価屈折率が等しくなり、各
曲線(TE0とTM0、TE1とTM1)が互いに漸近して
交わるので、導波層膜厚に誤差があっても発生する等価
屈折率差は小さい。
The fact that TM 0 exists even when the film thickness is zero in FIG. 2 is due to the existence of the TM mode that guides the phase correction layer. As can be seen from the comparison with FIG. 5, the dispersion characteristics greatly change due to the presence of the phase correction layer, and the waveguide layer film thickness of 0.
At 9 μm (indicated by a broken line), the TE mode equivalent refractive index and the TM mode equivalent refractive index are equal in both 0th and 1st orders, and the respective curves (TE 0 and TM 0 , TE 1 and TM 1 ) are asymptotic to each other. Since they intersect, the equivalent refractive index difference that occurs even if there is an error in the thickness of the waveguide layer is small.

【0039】図2のようにTEモードの等価屈折率とT
Mモードの等価屈折率とを等しくする条件は、位相補正
層の屈折率を導波層の屈折率よりも高く、バッファー層
の屈折率を導波層の屈折率よりも低くしたときに得られ
る。
As shown in FIG. 2, the equivalent refractive index of TE mode and T
The condition for making the equivalent refractive index of the M mode equal is obtained when the refractive index of the phase correction layer is higher than that of the waveguide layer and the refractive index of the buffer layer is lower than that of the waveguide layer. .

【0040】図3は図1で示した本発明の集光装置にお
ける、偏光状態と光入力、光導波、光出力の関係を示
す。グレーティングカプラ5に入射する光は直線偏光で
あり、電気ベクトルは7A、7B、7C、7Dのように
y軸に平行である。
FIG. 3 shows the relationship between the polarization state and the light input, light guide, and light output in the light collecting device of the present invention shown in FIG. The light incident on the grating coupler 5 is linearly polarized light, and the electric vector is parallel to the y-axis like 7A, 7B, 7C and 7D.

【0041】図2で示したように、位相補正層の存在に
よりTEモードの等価屈折率とTMモードの等価屈折率
が等しいので、式2において、NがTEモードに対する
等価屈折率(すなわちTEモードに対する等価屈折率)
に等しければ、カプラ5ではx軸方向に伝搬するTEモ
ード導波光8a、8bやx軸とφの偏角をなす方位に伝
搬するTEモード導波光8eが励起され、同時にy軸方
向に伝搬するTMモード導波光8c'、8d'やx軸とφ
の偏角をなす方位に伝搬するTMモード導波光8e'が
励起される。
As shown in FIG. 2, since the equivalent refractive index of the TE mode is equal to the equivalent refractive index of the TM mode due to the existence of the phase correction layer, N in the formula 2 is equivalent to the TE mode (that is, the TE mode). Equivalent refractive index for
If they are equal to each other, the coupler 5 excites the TE mode guided lights 8a and 8b propagating in the x-axis direction and the TE mode guided light 8e propagating in an azimuth forming a deviation angle of φ with the x-axis, and at the same time propagates in the y-axis direction. TM mode guided light 8c ', 8d' and x-axis and φ
The TM mode guided light 8e 'propagating in the azimuth forming the declination angle is excited.

【0042】導波光8a、8b、8eの電気ベクトルは
カプラ5に同心した円の接線方向にあり、導波光8
c'、8d'、8e'の電気ベクトルはともに導波層に対
する法線方向にある。
The electric vectors of the guided lights 8a, 8b and 8e are in the tangential direction of the circle concentric with the coupler 5, and
The electric vectors of c ', 8d', and 8e 'are all in the direction normal to the waveguiding layer.

【0043】また、導波光8eの光振幅は導波光8aの
振幅で標準化してcosφの大きさであり、導波光8e'の
光振幅も導波光8c'の振幅で標準化してsinφの大きさ
である。
The optical amplitude of the guided light 8e is standardized by the amplitude of the guided light 8a and has a magnitude of cosφ, and the optical amplitude of the guided light 8e ′ is also standardized by the amplitude of guided light 8c ′ and has a magnitude of sinφ. Is.

【0044】従って、グレーティングカプラ6から放射
される光9e、9e'の振幅は放射位置の偏角φに依存
し、TEモードの場合(9e)はcosφの大きさに比例
し、TMモードの場合(9e')はsinφの大きさに比例
する。
Therefore, the amplitudes of the lights 9e and 9e 'emitted from the grating coupler 6 depend on the deviation angle φ of the emission position. In the TE mode (9e), the amplitude is proportional to the magnitude of cosφ, and in the TM mode. (9e ′) is proportional to the size of sin φ.

【0045】放射光の偏光方向はTEモード放射光(9
A、9B、9eなど)の場合は電気ベクトルがカプラ5
に同心した円の接線方向にあり、TMモード放射光(9
C、9D、9e'など)の場合はカプラ5に同心した円
の動径方向にある(厳密には、電気ベクトルが放射方向
と導波方向(カプラ5に同心した円の動径方向)を含む
面内にあって放射方向に直交する方向にあるが、ここで
は近似した表現をする)。
The polarization direction of the emitted light is TE mode emitted light (9
(A, 9B, 9e, etc.), the electric vector is the coupler 5.
Is in the tangential direction of the circle concentric with the
In the case of C, 9D, 9e ′, etc.), the radial direction of the circle concentric with the coupler 5 (strictly speaking, the electric vector is in the radial direction and the waveguide direction (the radial direction of the circle concentric with the coupler 5)). It is in the plane that includes and is in the direction orthogonal to the radial direction, but here we use an approximate representation).

【0046】TEモード導波光の等価屈折率とTMモー
ド導波光の等価屈折率が等しいので、TEモード放射光
の位相とTMモード放射光の位相とは揃い、かつ式3よ
りTEモード放射光の放射角とTMモード放射光の放射
角とは一致する。
Since the equivalent refractive index of the TE-mode guided light and the equivalent refractive index of the TM-mode guided light are equal, the phase of the TE-mode radiated light and the phase of the TM-mode radiated light are the same, and from the formula 3, the TE-mode radiated light The emission angle and the emission angle of the TM mode emission light match.

【0047】従って、TEモード放射光とTMモード放
射光とは合成できて、直線偏光の光となる。9eと9
e'の放射光を例にとれば、振動方位は直交し、伝搬方
位と位相は一致するので、合成波である9Eは直線偏光
であり、その偏光方向は9eと9e'の振幅比がcosφ:
sinφ(すなわち9Aと9Dの振幅が等しい場合)であ
れば完全にy軸の方向に揃い、振幅比が若干ずれてもy
軸方向からのずれは小さい。
Therefore, the TE mode radiation light and the TM mode radiation light can be combined into a linearly polarized light. 9e and 9
Taking the radiated light of e ′ as an example, the vibration azimuths are orthogonal, and the propagation azimuth is in phase with each other. Therefore, 9E, which is a composite wave, is linearly polarized light, and the polarization direction is 9e and 9e ′ has an amplitude ratio of cos φ. :
If sin φ (that is, if the amplitudes of 9A and 9D are equal), it will be perfectly aligned in the y-axis direction, and y will be present even if the amplitude ratio is slightly shifted
The deviation from the axial direction is small.

【0048】従って、カプラ6から放射する合成光の振
幅は、放射位置(偏角位置)に依らずほぼ一様な分布と
なり、しかもTEモード放射光の放射角とTMモード放
射光の放射角が一致するので、従来例の様な2重焦点は
発生せず、焦点Fにはよく絞れた円形スポットが得られ
る。
Therefore, the amplitude of the combined light emitted from the coupler 6 has a substantially uniform distribution regardless of the emission position (declination position), and the emission angles of the TE mode emission light and the TM mode emission light are the same. Since they coincide with each other, a double focus unlike the conventional example does not occur, and a well-focused circular spot is obtained at the focus F.

【0049】なお、上記実施例では、導波層の成膜の前
に、位相補正層、バッファー層の積層を1回だけ考えた
が、TEモードの等価屈折率とTMモードの等価屈折率
が等しくなるなら、複数回行なってもよい。
In the above embodiment, the phase correction layer and the buffer layer were considered to be laminated only once before forming the waveguide layer. However, the TE mode equivalent refractive index and the TM mode equivalent refractive index are If they are equal, it may be repeated multiple times.

【0050】当然、位相補正層、バッファー層、導波層
の積層順が反転してもよい。また、上記実施例では位相
補正層、バッファー層の積層のあと導波層を成膜した例
で示したが、この上にさらにバッファー層、位相補正層
の積層を1回以上加えてもよい。
Of course, the stacking order of the phase correction layer, the buffer layer and the waveguide layer may be reversed. Further, in the above embodiment, the example in which the waveguiding layer is formed after the lamination of the phase correction layer and the buffer layer is shown, but the lamination of the buffer layer and the phase correction layer may be further added thereto once or more.

【0051】さらに、上記実施例の図2では複数の次数
(0次、1次)で同時にTEモードの等価屈折率とTM
モードの等価屈折率が等しくなる例を示したが、図2の
点AにおけるTE0とTM0のように、単一の次数での一
致だけであっても、本実施例の効果は同じである。
Further, in FIG. 2 of the above embodiment, the TE mode equivalent refractive index and TM are simultaneously obtained for a plurality of orders (0th order and 1st order).
An example in which the equivalent refractive indices of the modes are equal has been shown, but the effect of the present embodiment is the same even if only a single order is matched, such as TE 0 and TM 0 at point A in FIG. is there.

【0052】[0052]

【発明の効果】以上本発明の光導波路及び集光装置によ
り、TEモードの等価屈折率とTMモードの等価屈折率
が等しくなるので、効率よく入射光を導波光に変換で
き、一つの焦点によく絞れた円形スポットを得ることが
できる。
As described above, the optical waveguide and the light concentrating device of the present invention make the equivalent refractive index of the TE mode and the equivalent refractive index of the TM mode equal to each other, so that the incident light can be efficiently converted into the guided light and one focal point can be obtained. A well-focused circular spot can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における光導波路及び集光装置
の構成図
FIG. 1 is a configuration diagram of an optical waveguide and a light collecting device according to an embodiment of the present invention.

【図2】本発明の実施例における光導波路の導波層膜厚
と等価屈折率との関係図
FIG. 2 is a diagram showing a relationship between a waveguide layer film thickness and an equivalent refractive index of an optical waveguide in an example of the present invention.

【図3】本発明の実施例における集光装置の偏光状態と
光入力、光導波、光出力の関係を示す説明図
FIG. 3 is an explanatory diagram showing the relationship between the polarization state of the light collecting device and the light input, light guide, and light output in the embodiment of the present invention.

【図4】従来例における光導波層への光入力を示す断面
説明図
FIG. 4 is an explanatory cross-sectional view showing light input to an optical waveguide layer in a conventional example.

【図5】従来例における光導波路の導波層膜厚と等価屈
折率との関係図
FIG. 5 is a diagram showing a relationship between a waveguide layer film thickness and an equivalent refractive index of an optical waveguide in a conventional example.

【図6】従来例における光導波路及びこれを用いた集光
装置の構成図
FIG. 6 is a configuration diagram of an optical waveguide and a condensing device using the same in a conventional example.

【図7】従来例における集光装置の偏光状態と光入力、
光導波、光出力の関係を示す説明図
FIG. 7: Polarization state and light input of the light collector in the conventional example,
Explanatory diagram showing the relationship between optical waveguide and optical output

【符号の説明】[Explanation of symbols]

1 透明基板 2 位相補正層 3 バッファー層 4 導波層 5 入力用グレーティングカプラ 6 出力用グレーティングカプラ 7 入射光 8 導波光 9 放射光 10 反射面 11 反射光 12 戻り導波光 1 Transparent Substrate 2 Phase Correction Layer 3 Buffer Layer 4 Waveguide Layer 5 Input Grating Coupler 6 Output Grating Coupler 7 Incident Light 8 Guided Light 9 Emitted Light 10 Reflected Surface 11 Reflected Light 12 Returned Guided Light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大嶋 希代子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kiyoko Oshima 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】レーザー光源と、透明層で形成された導波
層と、前記レーザー光源から出射するレーザー光を前記
導波層内に導き導波層内を伝搬する導波光を励起する入
力手段とからなり、前記導波層はこれよりも低屈折率の
第1の透明層を挟んで前記導波層よりも高屈折率の第2
の透明層の上に積層され、前記導波層内を伝搬するTM
モード導波光の等価屈折率をTEモード導波光の等価屈
折率と等しくすることを特徴とする光導波路。
1. A laser light source, a waveguide layer formed of a transparent layer, and input means for guiding laser light emitted from the laser light source into the waveguide layer and exciting guided light propagating in the waveguide layer. The waveguide layer has a second transparent layer having a higher refractive index than the waveguide layer with a first transparent layer having a lower refractive index interposed therebetween.
Which is laminated on the transparent layer of the TM and propagates in the waveguide layer
An optical waveguide, characterized in that the equivalent refractive index of mode-guided light is made equal to the equivalent refractive index of TE-mode guided light.
【請求項2】第2の透明層は導波層よりも低屈折率の第
3の透明層を挟んで前記導波層よりも高屈折率の第4の
透明層の上に積層され、以上の積層を1回以上繰り返す
ことを特徴とする請求項1記載の光導波路。
2. The second transparent layer is laminated on a fourth transparent layer having a higher refractive index than the waveguide layer with a third transparent layer having a lower refractive index than the waveguide layer sandwiched therebetween, 2. The optical waveguide according to claim 1, wherein the lamination is repeated one or more times.
【請求項3】導波層にこれよりも低屈折率の第5の透明
層を挟んで前記導波層よりも高屈折率の第6の透明層を
積層し、以上の積層を1回以上繰り返すことを特徴とす
る請求項1または2記載の光導波路。
3. A sixth transparent layer having a higher refractive index than the waveguide layer is laminated on the waveguide layer with a fifth transparent layer having a lower refractive index interposed therebetween, and the above lamination is performed once or more. The optical waveguide according to claim 1, which is repeated.
【請求項4】入力手段が導波層上に形成された凹凸の周
期構造により構成され、該周期構造が同心円をなし、レ
ーザー光が前記同心円の中心軸Aに沿って入射すること
を特徴とする請求項1〜3の何れかに記載の光導波路。
4. The input means is composed of a concave-convex periodic structure formed on a waveguide layer, the periodic structure forms concentric circles, and laser light is incident along a central axis A of the concentric circles. The optical waveguide according to claim 1.
【請求項5】導波光を導波層外に放射する出力手段を備
え、該出力手段が前記導波層上に形成された凹凸の周期
構造により構成され、該周期構造が前記中心軸Aを軸す
る同心円をなし、前記周期構造の周期が外周に向かって
密になることで、前記導波層外に放射される光が1点に
集光することを特徴とする請求項4記載の集光装置。
5. An output means for radiating guided light to the outside of the waveguide layer is provided, and the output means is constituted by an uneven periodic structure formed on the waveguide layer, and the periodic structure defines the central axis A. 5. The collection according to claim 4, wherein the light radiated to the outside of the waveguide layer is condensed at one point by forming concentric concentric circles and making the period of the periodic structure denser toward the outer periphery. Light equipment.
JP29051993A 1993-11-19 1993-11-19 Optical waveguide device Expired - Fee Related JP3250346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29051993A JP3250346B2 (en) 1993-11-19 1993-11-19 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29051993A JP3250346B2 (en) 1993-11-19 1993-11-19 Optical waveguide device

Publications (2)

Publication Number Publication Date
JPH07141688A true JPH07141688A (en) 1995-06-02
JP3250346B2 JP3250346B2 (en) 2002-01-28

Family

ID=17757081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29051993A Expired - Fee Related JP3250346B2 (en) 1993-11-19 1993-11-19 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP3250346B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044862B1 (en) * 2015-06-09 2016-12-14 パナソニックIpマネジメント株式会社 Photodetection device and photodetection system
JP2017181256A (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Light detection device and light detection system
WO2019131029A1 (en) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 Optical device
WO2020036014A1 (en) * 2018-08-13 2020-02-20 パナソニックIpマネジメント株式会社 Light detection device and light detection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044862B1 (en) * 2015-06-09 2016-12-14 パナソニックIpマネジメント株式会社 Photodetection device and photodetection system
JP2017003580A (en) * 2015-06-09 2017-01-05 パナソニックIpマネジメント株式会社 Light detection device and light detection system
JP2017053866A (en) * 2015-06-09 2017-03-16 パナソニックIpマネジメント株式会社 Optical detection device and optical detection system
JP2018066744A (en) * 2015-06-09 2018-04-26 パナソニックIpマネジメント株式会社 Optical detection device and optical detection system
JP2017181256A (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Light detection device and light detection system
WO2019131029A1 (en) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 Optical device
WO2020036014A1 (en) * 2018-08-13 2020-02-20 パナソニックIpマネジメント株式会社 Light detection device and light detection system

Also Published As

Publication number Publication date
JP3250346B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
US20040184156A1 (en) Polarization splitting grating couplers
Lin et al. Polarization-independent metasurface lens employing the Pancharatnam-Berry phase
JP3767927B2 (en) Wavelength conversion method and wavelength conversion apparatus using the same
JPH01315704A (en) Dielectric laminate analyzer
US5058981A (en) Light source device
US5377291A (en) Wavelength converting optical device
JPS62248284A (en) System of locking frequency and phase for arrangement of lasers
EP0387354B1 (en) Light deflecting element
CN109154700A (en) Light coupling devices and method
JPH07141688A (en) Optical waveguide and converging device
US20120050449A1 (en) Optical device, surface-emitting laser having such an optical device, electrophotographic apparatus having the surface-emitting laser as exposure light source
CN115755360A (en) Light converging structure and detection system
JP3465834B2 (en) Optical waveguide and light concentrator
Wang et al. Imaging properties of Fresnel zone plate-like surface plasmon polariton launching lenses
Liu et al. Polarization-controlled efficient and unidirectional surface plasmon polariton excitation enabled by metagratings in a generalized Kretschmann configuration
Pesarakloo et al. Planar metal-only omnidirectional retroreflector using transmitarray and blazed grating for TE and TM polarizations
US7305155B2 (en) Optical element and wavelength separator using the same
JP4024260B2 (en) Wavelength converter
JP2005331992A (en) Wavelength conversion device
Khoo et al. Light focusing via Rowland concave surface of photonic crystal
JPH04125602A (en) Optical waveguide type polarizer
JPH02287411A (en) Optical coupling device
JP2835087B2 (en) Wavelength conversion optical element
Li et al. Polarization properties of planar dielectric waveguide gratings
JP2002139703A (en) Wavelength plate and semiconductor laser using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees