JPH02287411A - Optical coupling device - Google Patents

Optical coupling device

Info

Publication number
JPH02287411A
JPH02287411A JP10934489A JP10934489A JPH02287411A JP H02287411 A JPH02287411 A JP H02287411A JP 10934489 A JP10934489 A JP 10934489A JP 10934489 A JP10934489 A JP 10934489A JP H02287411 A JPH02287411 A JP H02287411A
Authority
JP
Japan
Prior art keywords
waveguide
dielectric layer
refractive index
light
reflecting prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10934489A
Other languages
Japanese (ja)
Other versions
JPH0816728B2 (en
Inventor
Yoshinao Taketomi
義尚 武富
Seiji Nishiwaki
青児 西脇
Shinji Uchida
真司 内田
Junichi Asada
潤一 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10934489A priority Critical patent/JPH0816728B2/en
Publication of JPH02287411A publication Critical patent/JPH02287411A/en
Publication of JPH0816728B2 publication Critical patent/JPH0816728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain high coupling efficiency by having a conical type reflecting prism via a dielectric layer on a waveguide and specifying a coupling length to <=0.4mm, the thickness of the waveguide to >=0.5mum and the difference in the refractive index between the waveguide and the dielectric layer to <=0.3. CONSTITUTION:This coupling device is constituted of the waveguide 2 provided on a transparent substrate 1 and the conical type reflecting prism 4 disposed via the dielectric layer 3 on the waveguide 2. The coupling length thereof is specified to <=0.4mm, the thickness of the waveguide to >=0.5mum and the difference in the refractive index between the waveguide 2 and the dielectric layer 3 to <=0.3. The light emitting distribution of a laser is, therefore, inverted by the conical type reflecting prism 4 and the input coupling is executed with the light distribution approximate to the radiation characteristic distribution of the waveguide 2. The high input efficiency is obtd. and further, the tolerance to a fluctuation in the wavelength of the incident light and a change in incident angle is widened and the stable coupling efficiency is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光集積回路等の導波路内に光を導き、これを
放射状に伝搬する導波光に変換するための光結合装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical coupling device for guiding light into a waveguide of an optical integrated circuit or the like and converting it into guided light that propagates radially.

従来の技術 従来、導波光を放射状に伝搬させるための光結合器とし
ては、同心円グレーティングを導波路上に形成したもの
、あるいは円錐状導波路を形成したものなどがある。
2. Description of the Related Art Conventionally, optical couplers for radially propagating guided light include those in which a concentric grating is formed on a waveguide, and those in which a conical waveguide is formed.

発明が解決しようとする課題 従来のグレーティングによる光結合器ではグレーティン
グの回折特性により、最大で50%の効率しか得られな
い。また入射光がガウシアン分布のため、さらに効率は
低くなる。同様に、第11図に示したような円錐状導波
路111による光結合器でもガウシアン分布による低効
率性と同時に、その外周部における導波路112の曲が
りによって導波損失が生じる等の課題があり、また入射
光の波長変動や入射角変化による結合効率の低下に対す
る対策はなされていなかった。ここに、113は入射光
、114は薄い誘電体層、115は誘電体層、116は
導波光である。
Problems to be Solved by the Invention In a conventional optical coupler using a grating, an efficiency of only 50% at maximum can be obtained due to the diffraction characteristics of the grating. Furthermore, since the incident light has a Gaussian distribution, the efficiency becomes even lower. Similarly, an optical coupler using a conical waveguide 111 as shown in FIG. 11 has problems such as low efficiency due to Gaussian distribution and waveguide loss due to bending of the waveguide 112 at its outer periphery. Furthermore, no countermeasures have been taken to prevent a decrease in coupling efficiency due to wavelength fluctuations of incident light or changes in incidence angle. Here, 113 is incident light, 114 is a thin dielectric layer, 115 is a dielectric layer, and 116 is guided light.

本発明は、このような従来技術の課題を解決することを
目的とする。
The present invention aims to solve the problems of the prior art.

課題を解決するための手段 本発明は、透明基板上に設けられた導波路と、前記導波
路の上に誘電体層を介して配置される円錐型反射プリズ
ムとによって構成され、結合長を0.4mm以下、導波
路厚みを0. 5μm以上とし、導波路と誘電体層の屈
折率差異を0. 3以下とすることを特徴とする光結合
装置である。また、円錐型反射プリズムの屈折率nPを
次式により決定することを特徴とする光結合装置である
Means for Solving the Problems The present invention consists of a waveguide provided on a transparent substrate and a conical reflecting prism disposed on the waveguide via a dielectric layer, and the coupling length is reduced to 0. .4mm or less, waveguide thickness 0.4mm or less. 5 μm or more, and the refractive index difference between the waveguide and the dielectric layer is 0. This is an optical coupling device characterized in that the number of optical fibers is 3 or less. The optical coupling device is also characterized in that the refractive index nP of the conical reflecting prism is determined by the following equation.

nP   :   (2N”−no”)盲”     
         (1)但し、Nは等価屈折率、fl
aは前記誘電体層の屈折率である。またさらに、ガウシ
アン分布をもつ入射光の強度が1/e2となる半径rg
と開口半径rAの比を0. 3から0.6の範囲にとる
ことを特徴とする光結合装置である。
nP: (2N”-no”) blind”
(1) However, N is the equivalent refractive index, fl
a is the refractive index of the dielectric layer. Furthermore, the radius rg at which the intensity of the incident light having a Gaussian distribution is 1/e2
The ratio of the aperture radius rA to 0. This is an optical coupling device characterized in that the ratio is within the range of 3 to 0.6.

作用 本発明は、円錐型反射プリズムによって半導体レーザの
発光分布が反転され、導波路の放射特性分布に近い光分
布で入力結合が行なわれるため、高い入力効率を得るこ
とができる。
Effect of the Invention In the present invention, the emission distribution of the semiconductor laser is inverted by the conical reflecting prism, and input coupling is performed with a light distribution close to the radiation characteristic distribution of the waveguide, so that high input efficiency can be obtained.

さらに、結合長を0.4mm以下、導波路厚みを085
μm以上とし、導波路とギャップの屈折率差異を0. 
5以下とすることにより、入射光の波長変動、入射角変
化に対する許容幅が拡大し、安定した結合効率が得られ
る。円錐型反射プリズムの屈折率nPを式(1)により
決定することにより、誤差の正負に対し対象的な誤差感
度特性が得られるため、結合効率が安定化される。また
、ガウシアン分布をもつ入射光の強度が1/e2となる
半径rEと開口半径r^の比を0.3から0.6の範囲
にとることにより、高い結合効率が実現される。
Furthermore, the coupling length was set to 0.4 mm or less, and the waveguide thickness was set to 0.85 mm.
μm or more, and the refractive index difference between the waveguide and the gap is 0.
By setting it to 5 or less, the allowable range for wavelength fluctuations and incidence angle changes of incident light is expanded, and stable coupling efficiency can be obtained. By determining the refractive index nP of the conical reflecting prism according to equation (1), error sensitivity characteristics that are symmetrical with respect to positive and negative errors are obtained, so that the coupling efficiency is stabilized. Further, by setting the ratio of the radius rE and the aperture radius r^ at which the intensity of the incident light having a Gaussian distribution is 1/e2 to be in the range of 0.3 to 0.6, high coupling efficiency can be achieved.

実施例 以下に、本発明の実施例を第1図から第10図に基づい
て説明する。第1図は本発明の実施例における光結合装
置の構成を示し、第2図はその外観図である。第1図に
示すように、本発明の光結合装置は透明基板1上に設け
られた導波路2と、誘電体層3を介して配置される円錐
型反射プリズム4によって構成される。透明基板!側か
ら開口絞り5を通って入射する入射光6は円錐型反射プ
リズム4の円錐面で反射し、誘電体層3を通じて導波路
2内に導波光7となって入射する。導波光7は導波路2
内を放射状に伝搬し、同一基板上に形成された光集積回
路に光エネルギが供給される。
Embodiments Below, embodiments of the present invention will be explained based on FIGS. 1 to 10. FIG. 1 shows the configuration of an optical coupling device according to an embodiment of the present invention, and FIG. 2 is an external view thereof. As shown in FIG. 1, the optical coupling device of the present invention is composed of a waveguide 2 provided on a transparent substrate 1 and a conical reflecting prism 4 disposed with a dielectric layer 3 interposed therebetween. Transparent substrate! Incident light 6 that enters from the side through the aperture stop 5 is reflected by the conical surface of the conical reflecting prism 4 and enters the waveguide 2 through the dielectric layer 3 as guided light 7 . Guided light 7 is guided through waveguide 2
The optical energy propagates radially within the same substrate and is supplied to an optical integrated circuit formed on the same substrate.

本実施例では同一基板上に形成されたリング状グレーテ
ィング8によって導波光7を放射光9に変換する光学ヘ
ッド装置を示した。尚、この光学ヘッド装置は特開昭8
3−198588号公報で述べられているように、優れ
た集光特性を有するものである。さて、入射光6は、導
波路2、誘電体層3を一旦透過した後、円錐型反射プリ
ズム4の円錐面で反射する。この反射角θ1と円錐型反
射プリズム4の頂角θ−は第3図に示すように次のよう
な関係にある。
This embodiment shows an optical head device that converts guided light 7 into radiation light 9 using a ring-shaped grating 8 formed on the same substrate. Furthermore, this optical head device was developed in Japanese Patent Application Laid-Open No. 8
As described in Japanese Patent No. 3-198588, it has excellent light condensing properties. Now, the incident light 6 once passes through the waveguide 2 and the dielectric layer 3, and then is reflected by the conical surface of the conical reflecting prism 4. The reflection angle .theta.1 and the apex angle .theta.- of the conical reflecting prism 4 have the following relationship as shown in FIG.

θ1 = π/2− θ@/2 反射後、入射光6はθ2=201なる角度で進み、誘電
体層3の厚みが適切であればこれを介して導波路2内に
位相整合条件を満足するモードの光を励振し、これが導
波光7となる。尚、このときの位相整合条件は、円錐型
反射プリズム4の屈折率をn、とすれば次式で表わされ
る。
θ1 = π/2− θ@/2 After reflection, the incident light 6 travels at an angle of θ2 = 201, and if the thickness of the dielectric layer 3 is appropriate, it passes through the dielectric layer 3 and satisfies the phase matching condition in the waveguide 2. The light in the mode is excited, and this becomes the guided light 7. Note that the phase matching condition at this time is expressed by the following equation, assuming that the refractive index of the conical reflecting prism 4 is n.

n、s i no2=N 但し、Nは導波路2の等価屈折率である。n, si no2=N However, N is the equivalent refractive index of the waveguide 2.

本来、角度θ2は誘電体層3の屈折率n6とn、で決ま
る全反射条件を滴たしており、円錐型反射プリズム4か
ら誘電体層3、さらには導波路2への光エネルギの伝達
はない。しかし、誘電体層3の厚みが薄くなると、全反
射の際にゎずかにプリズム外部に漏れ出すエバネッセン
ト波によって導波路2への光エネルギの伝達が生じ、導
波光7となる(以下これを、結合光と呼ぶ)。同様に、
導波路2から円錐型反射プリズム4への光の伝達も生じ
、これは導波光7からみれば損失となる(以下、これを
損失光と呼ぶ)。
Originally, the angle θ2 satisfies the total reflection condition determined by the refractive indexes n6 and n of the dielectric layer 3, and the transmission of optical energy from the conical reflecting prism 4 to the dielectric layer 3 and further to the waveguide 2. There isn't. However, when the thickness of the dielectric layer 3 becomes thinner, the evanescent wave that slightly leaks out of the prism during total reflection causes light energy to be transmitted to the waveguide 2 and becomes guided light 7 (hereinafter referred to as this). , called combined light). Similarly,
Transmission of light from the waveguide 2 to the conical reflecting prism 4 also occurs, which results in a loss from the perspective of the guided light 7 (hereinafter referred to as loss light).

一方、円錐型反射プリズム4の外側、つまり誘電体層3
が自由表面をもつ領域では、導波光7は完全に導波層内
に閉じこめられる。即ち、大気中(n=1、真空中も同
様)では前記の位相整合条件は満足できないからである
。従って、効率良く導波光7を励振するためには、誘電
体層3が円錐型反射プリズム4と接している領域におい
て、結合光と損失光のバランスを適切に保たなければな
らない。これには、誘電体層3の厚みの最適化が必要な
のはもちろんであるが、同時に入射する光の強度分布を
最適化する必要がある。
On the other hand, the outside of the conical reflecting prism 4, that is, the dielectric layer 3
In regions where the waveguide has a free surface, the guided light 7 is completely confined within the waveguide layer. That is, the above phase matching condition cannot be satisfied in the atmosphere (n=1, the same applies in vacuum). Therefore, in order to efficiently excite the guided light 7, it is necessary to maintain an appropriate balance between coupled light and lost light in the region where the dielectric layer 3 is in contact with the conical reflecting prism 4. For this purpose, it is of course necessary to optimize the thickness of the dielectric layer 3, but it is also necessary to optimize the intensity distribution of the incident light.

この目的に対して円錐型反射プリズム4を用いた構成は
好適である。つまり、第4図に示すように、円錐型反射
プリズム4を用いたことによって、入射時にガウシアン
分布を有していた入射光6の入射光分布10Aが反転さ
れ、反射光分布10Bとなる。この反射光分布10Bは
導波路の放射特性10Cに極めて良く似た特性を有して
おり、入射結合効率を最大にする上で最適な特性である
For this purpose, a configuration using a conical reflecting prism 4 is suitable. That is, as shown in FIG. 4, by using the conical reflecting prism 4, the incident light distribution 10A of the incident light 6, which had a Gaussian distribution at the time of incidence, is inverted and becomes a reflected light distribution 10B. This reflected light distribution 10B has characteristics very similar to the radiation characteristics 10C of the waveguide, and is the optimum characteristic for maximizing the incident coupling efficiency.

尚、第4図に示した反射光分布領域を結合長りとして定
義する。
Note that the reflected light distribution area shown in FIG. 4 is defined as the coupling length.

また、入射光6の光分布と開口絞りの関係も入つまり、
第5図に示す開口絞り5の半径rAと、入力光ガウシア
ン分布10Aの光強度が1/e2となる半径rEの比を
適切に選ぶことによって入射結合効率を最適化できる。
In addition, the relationship between the light distribution of the incident light 6 and the aperture stop is also included,
The incident coupling efficiency can be optimized by appropriately selecting the ratio of the radius rA of the aperture stop 5 shown in FIG. 5 to the radius rE at which the light intensity of the input light Gaussian distribution 10A becomes 1/e2.

第6図は、rE/raについて入射結合効率を計算した
結果の一例で、これより、rE/r11が0. 3から
0.6の範囲で80%を超える高い効率が得らることか
解る。
FIG. 6 shows an example of the results of calculating the incident coupling efficiency for rE/ra, and from this it can be seen that rE/r11 is 0. It can be seen that high efficiency exceeding 80% can be obtained in the range of 3 to 0.6.

一方、入射光の波長変動や入射角変化等の誤差要因発生
に対する入射結合効率の安定化対策として、結合長を0
.4 mm以下、導波路厚みを0.5μm以上とし、導
波路と誘電体層の屈折率差異を0.3以下とすることが
を用である。
On the other hand, as a measure to stabilize the incident coupling efficiency against the occurrence of error factors such as wavelength fluctuations and incidence angle changes of the incident light, the coupling length is reduced to 0.
.. 4 mm or less, the waveguide thickness is 0.5 μm or more, and the refractive index difference between the waveguide and the dielectric layer is 0.3 or less.

入射結合効率は導波路の構造で決まるパラメータDと発
生した誤差の大きさΔeによって定義されるパラメータ
Fによって一意に決定され、第7図のような特性を有す
る。
The incident coupling efficiency is uniquely determined by the parameter D determined by the structure of the waveguide and the parameter F defined by the magnitude of error Δe, and has characteristics as shown in FIG.

F=DΔe          (2)尚、これは従来
の1次元光結合器での解析結果であるが、定性的に本発
明の光結合器にも適用可能である。誤差が発生しない場
合(Δe=o)はF=0となり、理論最大効率81.4
%が得られる。誤差が発生し、Fが大きくなるに連れて
効率が単調減少しているのがわかる。
F=DΔe (2) Although this is an analysis result for a conventional one-dimensional optical coupler, it is qualitatively applicable to the optical coupler of the present invention. If no error occurs (Δe=o), F=0, and the theoretical maximum efficiency is 81.4.
% is obtained. It can be seen that an error occurs and the efficiency monotonically decreases as F increases.

さて、パラメータDは波長誤差、入射角誤差それぞれに
ついて次式のように定義され、D(Δλ)、D(八〇)
の値の小さな導波路構成が誤差に対する安定化条件とな
る。
Now, the parameter D is defined as the following formula for each wavelength error and incident angle error, D(Δλ), D(80)
A waveguide configuration with a small value of is a stabilizing condition for errors.

ここで、λは光の波長、Wは導波路の厚み、C+1定数
(1,25)、他のパラメータは以下の通りである。
Here, λ is the wavelength of light, W is the thickness of the waveguide, C+1 constant (1, 25), and other parameters are as follows.

W−rr ” W+ 1 /γs+1/γOkp =k
 (nP”−N”−nG2)1−”β =  kN γs =  k(N2−ns”−nG2)1−”7a 
 ”  k(N”−no2)1/2但し、kは波数2π
/λ、nsは透明基板1の屈折率である。
W-rr ” W+ 1 /γs+1/γOkp =k
(nP"-N"-nG2)1-"β = kN γs = k(N2-ns"-nG2)1-"7a
"k(N"-no2)1/2, where k is the wave number 2π
/λ, ns is the refractive index of the transparent substrate 1.

D(Δλ)、D(Δθ)の値をグラフで表わしたのが第
8図、第9図である。これより、結合長L=0.4mm
では、D(Δλ)、D(Δθ)ともに著しく大きな値を
とることが解り、結合長しは0.4mm以下であること
が望ましいと言える。
FIGS. 8 and 9 are graphical representations of the values of D(Δλ) and D(Δθ). From this, the bond length L = 0.4mm
It can be seen that both D(Δλ) and D(Δθ) take extremely large values, and it can be said that it is desirable that the bond length is 0.4 mm or less.

また、導波路の膜厚Wについては、波長誤差に関しては
厚い目、入射角誤差については薄い目の方が望ましい。
Further, regarding the film thickness W of the waveguide, it is desirable that it be thicker for wavelength error and thinner for incident angle error.

ただ、波長誤差に対する厚い導波路の効果が大きいため
、膜厚の最適設計条件は0.5μm以上が望ましい。ま
た、導波路の屈折率については、D(Δλ)、D(Δθ
)いずれも低い屈折率が望ましいことが解る。これは、
導波路の屈折率の絶対値ではなく、誘電体層3の屈折率
nl11との差が小さい方がよいことが計算により解っ
ている。本実施例の計算ではno=1.5としており、
従って、導波路と誘電体層の屈折率差異を0.3以下と
することが有用であることが解る。
However, since a thick waveguide has a large effect on wavelength error, it is desirable that the optimum design condition for the film thickness be 0.5 μm or more. In addition, regarding the refractive index of the waveguide, D(Δλ), D(Δθ
) It can be seen that a low refractive index is desirable in both cases. this is,
It has been found through calculations that it is better to have a smaller difference from the refractive index nl11 of the dielectric layer 3, rather than the absolute value of the refractive index of the waveguide. In the calculation of this example, no=1.5,
Therefore, it can be seen that it is useful to set the refractive index difference between the waveguide and the dielectric layer to 0.3 or less.

また、通常のプリズムを用いた光結合器においては第1
0図の破線で示したように発生する誤差の正負によって
その感度が異なっている。これは、導波路の位相整合条
件が、プリズムの近接によって乱されることによる。こ
の乱れは円錐型反射プリズムの屈折率nPを次式により
決定することによってキャンセルされる。
In addition, in an optical coupler using a normal prism, the first
As shown by the broken line in Figure 0, the sensitivity differs depending on the sign of the error that occurs. This is because the phase matching condition of the waveguide is disturbed by the proximity of the prism. This disturbance is canceled by determining the refractive index nP of the conical reflecting prism according to the following equation.

nP =  (2N”−no2−nG2)1−2(5)
但し、Nは等偏屈折率、noは前記誘電体層の廊折率で
ある。この条件によって、第10図の実線で示したよう
な誤差感度特性を実現することができ、入射結合効率の
安定化が図れる。
nP = (2N”-no2-nG2)1-2(5)
However, N is a uniform refractive index, and no is a refractive index of the dielectric layer. Under these conditions, it is possible to realize the error sensitivity characteristics as shown by the solid line in FIG. 10, and the incident coupling efficiency can be stabilized.

発明の詳細 な説明したように、本発明により、円錐型反射プリズム
による入力光強度分布の最適化が図れるため高効率な入
力結合が可能となり、さらに波長誤差、入射角誤差の発
生に伴う入射結合効率の低下を防ぎ、誤差に強い安定な
光結合器を得ることができる。
As described in detail, the present invention enables highly efficient input coupling by optimizing the input light intensity distribution by the conical reflecting prism, and further reduces the incidence coupling due to wavelength error and incident angle error. A stable optical coupler that is resistant to errors and prevents a decrease in efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光結合装置の構成を
示す略示構造図、第2図はその斜視図、第3図は同実施
例における光結合装置の断面図、第4図は同実施例にお
ける円錐型反射プリズムによって、光分布が変換される
様子を示した原理図、第5図は同実施例における入射光
分布と開口絞りの関係を示すグラフ、第6図は同実施例
における入射光分布と開口絞りの半径比に対する入射結
合効率の特性図、第7図は同実施例における誤差パラメ
ータFに対する入射結合効率の特性図、第8図は同実施
例における波長誤差に対するパラメータD(Δλ)の特
性図、第9図は同実施例における入射角誤差に対するパ
ラメータD(Δθ)の特性図、第10図は同実施例にお
ける誤差要因に対する安定化の原理図、第11図は、従
来の光結合装置の構成を示す略示構造図である。 1・・・透明基板、2・・・導波路、3・・・誘電体層
、4・・・円錐型反射プリズム、5・・・開口絞り、6
・・・入射光、7・・・導波光、8・・・リング状グレ
ーティング、9・・・放射光、IOA・・・入射光分布
、10B・・・反射光分布、10C・・・導波路の放射
特性。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 4円像i−反打7)ス゛ム ロ開工攻9 第2図 纂 図 第 図 ρ5 /ど− 石 図 第 図 to5 θり O 4り 6ρ 8、θ 10.0 !、5 1.7 t、8 2Δ Z、/ IF7 導液発氾折牟 第 図 塚浚洛屈膨酢キ 第1 図 人前光 #羨
FIG. 1 is a schematic structural diagram showing the configuration of an optical coupling device according to an embodiment of the present invention, FIG. 2 is a perspective view thereof, FIG. 3 is a sectional view of the optical coupling device according to the same embodiment, and FIG. A principle diagram showing how the light distribution is converted by the conical reflecting prism in the same example. Figure 5 is a graph showing the relationship between the incident light distribution and the aperture stop in the same example. Figure 6 is the same example. FIG. 7 is a characteristic diagram of the incident coupling efficiency with respect to the incident light distribution and the radius ratio of the aperture stop in the same example. FIG. 8 is a characteristic diagram of the incident coupling efficiency with respect to the error parameter F in the same example. FIG. (Δλ) characteristic diagram, FIG. 9 is a characteristic diagram of parameter D (Δθ) with respect to the incident angle error in the same embodiment, FIG. 10 is a principle diagram of stabilization against error factors in the same embodiment, and FIG. 11 is FIG. 2 is a schematic structural diagram showing the configuration of a conventional optical coupling device. DESCRIPTION OF SYMBOLS 1... Transparent substrate, 2... Waveguide, 3... Dielectric layer, 4... Conical reflective prism, 5... Aperture stop, 6
... Incident light, 7 ... Guided light, 8 ... Ring-shaped grating, 9 ... Synchrotron radiation, IOA ... Incident light distribution, 10B ... Reflected light distribution, 10C ... Waveguide radiation properties. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1 4 circle image i- counterattack 7) Sumuro construction attack 9 Figure 2 compiled diagram figure ρ5 /d- stone figure figure to5 θriO 4ri6ρ 8 , θ 10.0! , 5 1.7 t, 8 2Δ Z, / IF7 Liquid conduction flow and flow folding diagram Tsuka dredging Raku expansion vinegar 1st diagram Public light # envy

Claims (3)

【特許請求の範囲】[Claims] (1)透明基板上に設けられた導波路と、前記導波路の
上に誘電体層を介して配置される円錐型反射プリズムを
備え、結合長が0.4mm以下、前記導波路の厚みが0
.5μm以上であり、前記導波路と前記誘電体層の屈折
率差異が0.3以下であることを特徴とする光結合装置
(1) A waveguide provided on a transparent substrate and a conical reflecting prism disposed on the waveguide via a dielectric layer, the coupling length is 0.4 mm or less, and the thickness of the waveguide is 0
.. 5 μm or more, and a difference in refractive index between the waveguide and the dielectric layer is 0.3 or less.
(2)円錐型反射プリズムの屈折率n_Pが次式にn_
P=(2N^2−n_G^2)^1^−^2より決定さ
れる(但し、Nは等価屈折率、n_Gは前記誘電体層の
屈折率である。)ことを特徴とする請求項1記載の光結
合装置。
(2) The refractive index n_P of the conical reflecting prism is expressed as n_
A claim characterized in that P=(2N^2-n_G^2)^1^-^2 (where N is an equivalent refractive index and n_G is a refractive index of the dielectric layer). 1. The optical coupling device according to 1.
(3)ガウシアン分布をもつ入射光の強度がe^2分の
1となる半径r_Eと開口半径r^Aの比が、0.3か
ら0.6の範囲にあることを特徴とする請求項1記載の
光結合装置。
(3) A claim characterized in that the ratio of the radius r_E and the aperture radius r^A at which the intensity of the incident light having a Gaussian distribution becomes 1/2 is in the range of 0.3 to 0.6. 1. The optical coupling device according to 1.
JP10934489A 1989-04-28 1989-04-28 Optical coupling device Expired - Lifetime JPH0816728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10934489A JPH0816728B2 (en) 1989-04-28 1989-04-28 Optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10934489A JPH0816728B2 (en) 1989-04-28 1989-04-28 Optical coupling device

Publications (2)

Publication Number Publication Date
JPH02287411A true JPH02287411A (en) 1990-11-27
JPH0816728B2 JPH0816728B2 (en) 1996-02-21

Family

ID=14507846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10934489A Expired - Lifetime JPH0816728B2 (en) 1989-04-28 1989-04-28 Optical coupling device

Country Status (1)

Country Link
JP (1) JPH0816728B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522532A (en) * 2004-02-11 2007-08-09 シオプティカル インコーポレーテッド Silicon nanotaper coupler and mode matching device
JP2013068692A (en) * 2011-09-21 2013-04-18 Oki Electric Ind Co Ltd Optical coupler and optical device
JP2015516598A (en) * 2012-05-17 2015-06-11 日東電工株式会社 Optical coupling device and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546442A4 (en) 2016-11-25 2020-07-29 Dalian Institute Of Chemical Physics, Chinese Academy of Sciences Method for preparing low-grade unsaturated fatty acid ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522532A (en) * 2004-02-11 2007-08-09 シオプティカル インコーポレーテッド Silicon nanotaper coupler and mode matching device
JP2013068692A (en) * 2011-09-21 2013-04-18 Oki Electric Ind Co Ltd Optical coupler and optical device
JP2015516598A (en) * 2012-05-17 2015-06-11 日東電工株式会社 Optical coupling device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0816728B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US7079732B2 (en) Optical device
US10830951B2 (en) Optical circuit and optical device
US6680799B1 (en) Optical polarizing device and laser polarization device
US20030044117A1 (en) Diffraction grating device
US20040071179A1 (en) Optical resonant frequency converter
US4831631A (en) Laser transmitter comprising a semiconductor laser and an external resonator
US5377291A (en) Wavelength converting optical device
JP2001004869A (en) Optically coupled device by using photonic crystal and optical coupling method
US5410560A (en) Wavelength conversion apparatus
JPH02287411A (en) Optical coupling device
JPH11271823A (en) Wavelength converter
JPH09218317A (en) Tapered waveguide and optical waveguide element using the same
JP2007206127A (en) Light reflector, optical resonator using the light reflector and laser using the light reflector
JP4789541B2 (en) Polarization separation element
US7305155B2 (en) Optical element and wavelength separator using the same
JPH09179155A (en) Optical wavelength converting device
JP2009025091A (en) Sensor device
JPH10246841A (en) Semiconductor laser module
JPH11281833A (en) Grating coupler
US6965627B2 (en) Semiconductor laser module
US20230384524A1 (en) Optical structure
JPH11132772A (en) Optical medium absorbing cover body preventing reflection, transmission and scattering
JP2934535B2 (en) Waveguide type tunable ring laser
JP3100499B2 (en) Grating coupler and optical waveguide device having the same
JPH04125602A (en) Optical waveguide type polarizer