WO2020036014A1 - Light detection device and light detection system - Google Patents

Light detection device and light detection system Download PDF

Info

Publication number
WO2020036014A1
WO2020036014A1 PCT/JP2019/026871 JP2019026871W WO2020036014A1 WO 2020036014 A1 WO2020036014 A1 WO 2020036014A1 JP 2019026871 W JP2019026871 W JP 2019026871W WO 2020036014 A1 WO2020036014 A1 WO 2020036014A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dielectric layer
light detection
cells
refractive index
Prior art date
Application number
PCT/JP2019/026871
Other languages
French (fr)
Japanese (ja)
Inventor
青児 西脇
鳴海 建治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020036014A1 publication Critical patent/WO2020036014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Definitions

  • the present disclosure relates to a light detection device and a light detection system.
  • Light is an electromagnetic wave and is characterized by optical properties such as polarization or coherence in addition to wavelength or intensity.
  • Patent Literature 1 discloses a light detection device that utilizes light coherence among optical characteristics.
  • the present disclosure provides a photodetector capable of measuring the degree or phase of coherence of transmitted light, reflected light, and / or scattered light from an object without using a complicated optical system.
  • the light detection device includes a light-shielding device including a plurality of light-transmitting regions and a plurality of light-shielding regions alternately arranged in a first direction and a second direction intersecting the first direction.
  • a photodetector having a film, an imaging surface, and a plurality of first light detection cells and a plurality of second light detection cells arranged on the imaging surface; A grating that propagates a part of the light in the first direction and the second direction when incident; and a light coupling layer located between the light shielding film and the photodetector.
  • the light detection device it is possible to measure the degree of coherence or phase of transmitted light, reflected light, and / or scattered light from an object without a complicated optical system. it can.
  • FIG. 1 is a diagram schematically illustrating an example of a light detection system according to the present embodiment.
  • FIG. 2A is a diagram schematically illustrating an object and propagation of scattered light incident on one translucent region in the example of the photodetector according to the present embodiment.
  • FIG. 2B is a perspective view schematically showing propagation of light incident on one light-transmitting region in the example of the photodetector in the present embodiment.
  • FIG. 2C is a plan view schematically illustrating an example of the photodetector according to the present embodiment when viewed from the light incident side.
  • FIG. 3A is a diagram schematically illustrating an arrangement of detection signals corresponding to each of the plurality of light-transmitting regions and the plurality of light-shielding regions.
  • FIG. 3A is a diagram schematically illustrating an arrangement of detection signals corresponding to each of the plurality of light-transmitting regions and the plurality of light-shielding regions.
  • FIG. 3B is a diagram illustrating a flow up to generation of a modulation degree signal in a region surrounded by a thick line illustrated in FIG. 3A.
  • FIG. 4A is a perspective view schematically showing propagation of light incident on one translucent region in a modification of the photodetector in the present embodiment.
  • FIG. 4B is a plan view schematically showing a first modified example of the photodetector according to the present embodiment when viewed from the light incident side.
  • FIG. 4C is a plan view schematically illustrating a second modified example of the photodetector according to the present embodiment when viewed from the light incident side.
  • FIG. 5A is a diagram schematically illustrating a conventional light detection system.
  • FIG. 5B is a diagram schematically showing an object, a condensing lens, and propagation of scattered light incident on one light-transmitting region in a conventional light detection device.
  • FIG. 6A is a cross-sectional view schematically illustrating a conventional photodetector.
  • FIG. 6B is a plan view schematically showing a conventional photodetector.
  • FIG. 7A is a cross-sectional view schematically illustrating an optical configuration when a target is a phase step plate.
  • FIG. 7B is a diagram illustrating an observation image of the TE mode when light having a long coherence length of 1 m or more is incident.
  • FIG. 7C is a diagram illustrating an observation image of the TM mode when light having a long coherence length of 1 m or more is incident.
  • FIG. 7D is a diagram illustrating an observation image of the TE mode when light having a short coherence length of about 30 ⁇ m is incident.
  • FIG. 7E is a diagram showing a TM mode observation image when light having a short coherence length of about 30 ⁇ m is incident.
  • FIG. 8 shows a phase difference d obtained by measuring phase steps having various depths and a modulation degree signal P 1 / (P 1 + P 0 ) when light having a long coherence length of 1 m or more is incident.
  • FIG. 8 shows a phase difference d obtained by measuring phase steps having various depths and a modulation degree signal P 1 / (P 1 + P 0 ) when light having a long coherence length of 1 m or more is incident.
  • FIG. 5A is a diagram schematically showing a conventional photodetection system 200.
  • the light detection system 200 includes the light source 2, the condenser lens 7, the light detection device 13, the control circuit 1, and the arithmetic circuit 14.
  • the light source 2 irradiates the object 4 with light 3 having a constant coherence length.
  • the light source 2 is, for example, a laser device that emits light having a relatively long coherence length or an LED device that emits light having a short coherence length.
  • the light source 2 may continuously emit light having a constant intensity, or may emit pulsed light.
  • the wavelength of the light 3 emitted from the light source 2 is arbitrary. When the object 4 is a living body, the wavelength of the light source 2 can be set to, for example, about 650 nm or more and about 950 nm or less. This wavelength range is included in the wavelength range from red to near infrared rays. In this specification, the term “light” is used not only for visible light but also for infrared light.
  • the condensing lens 7 condenses the scattered light 5a and the scattered light 5A generated on the surface of the object 4 or in the object 4 by the light 3 emitted from the light source 2.
  • scattered light is used in a broad sense including transmitted light or reflected light.
  • the condensed light is formed as an image 8b on the image plane position of the condenser lens 7.
  • a substantial object 8a exists on the object 4 side of the condenser lens 7 corresponding to the image 8b.
  • the object 8a is a collection of object points.
  • the photodetector 13 is disposed at the image plane position of the condenser lens 7.
  • the light detecting device 13 detects the scattered light 5a and the scattered light 5A collected by the collecting lens 7. Details of the structure of the light detection device 13 will be described later.
  • the arithmetic circuit 14 performs arithmetic processing on the signal detected by the light detection device 13.
  • the arithmetic circuit 14 may be an image processing circuit such as a digital signal processor (DSP).
  • DSP digital signal processor
  • the control circuit 1 executes, for example, a program recorded in a memory to detect light by the photodetector 13, perform arithmetic processing by the arithmetic circuit 14, the amount of light emitted from the light source 2, the lighting timing, the continuous lighting time, or the emission wavelength. Alternatively, the coherence length is controlled.
  • the control circuit 1 can be an integrated circuit such as a central processing unit (CPU) or a microcomputer, for example.
  • the control circuit 1 and the arithmetic circuit 14 may be realized by one integrated circuit.
  • the light detection system 200 may include a display (not shown) that displays the result of the arithmetic processing performed by the arithmetic circuit 14.
  • FIG. 5B is a diagram schematically showing the object 4, the condenser lens 7, and the propagation of the light 5 incident on one translucent area 9a in the conventional photodetector 13.
  • the light transmitting region 9a corresponds to an opening.
  • an example of propagation of light 3 light 5, light 5s, light 6a, guided light 6b, transmitted light 6d, and emitted light 6D, which will be described later, is indicated by arrows.
  • the distribution of the light 3 spreads in a direction perpendicular to the propagation direction. In the example illustrated in FIG.
  • the region hatched by the horizontal line passes through the stop 7 c among the light scattered within the target object 4 and emitted from the positions L and R when the target object 4 is irradiated with the light 3.
  • light that exits from a position other than the position L and the position R of the object 4 and passes through the aperture 7c and enters the photodetector 13 is also omitted, but is omitted.
  • an example of light propagation is indicated by an arrow.
  • the object 4 is a scatterer. Light rays propagating inside the object 4 repeat scattering inside.
  • the condenser lens 7 includes a front lens 7a, a stop 7c, and a rear lens 7b.
  • the condenser lens 7 forms a double telecentric lens or an image telecentric lens. In the case of both telecentric lenses, only the light along the optical axis of the lens out of the light scattered on the object 4 becomes the light 5 that passes through the aperture 7c and enters the photodetector 13.
  • the light 5s which is stray light shifted from the optical axis, is blocked by the stop 7c.
  • the light 5 is perpendicularly incident on one light-transmitting region 9 a of the light detection device 13.
  • FIG. 6A and 6B are a cross-sectional view and a plan view, respectively, schematically showing the conventional photodetector 13.
  • 6A and 6B show three orthogonal X, Y, and Z axes for convenience of description. The same applies to other figures.
  • "X direction” means both the same direction as the X direction and the opposite direction. The same applies to the Y direction and the Z direction.
  • FIG. 6A is a cross-sectional view of the photodetector 13 in the XZ plane along the direction in which light is incident. The cross-sectional view includes a region surrounded by a broken line shown in FIG. 6B.
  • FIG. 6B is a plan view in the XY plane of the light detection device 13 when viewed from the light incident side. The plan view includes a light-shielding film described later.
  • the unit structures are periodically arranged in the XY plane.
  • the photodetector 13 includes the photodetector 10, the optical coupling layer 12, and the light shielding film 9 in this order. In the example shown in FIG. 6A, these are stacked in the Z direction. In the example shown in FIG. 6A, a transparent substrate 9b and a bandpass filter 9p are arranged on the light shielding film 9 in this order.
  • the photodetector 10 includes a plurality of first photodetection cells 10a and a plurality of second photodetection cells 10A arranged on an imaging plane parallel to the XY plane.
  • the photodetector 10 includes a plurality of first microlenses 11a and a plurality of second microlenses 11A arranged in an XY plane, a transparent film 10c, a metal film 10d such as a wiring, and the like. , Si or an organic film.
  • Each of the plurality of photosensitive units is arranged between two adjacent metal films 10d in the X direction or the Y direction.
  • the plurality of photosensitive units correspond to the plurality of first light detection cells 10a and the plurality of second light detection cells 10A.
  • Each of the plurality of first microlenses 11a is arranged so as to face one of the plurality of first photodetection cells 10a.
  • Each of the plurality of second microlenses 11A is disposed so as to face one of the plurality of second photodetection cells 10A.
  • Light collected by each of the plurality of first microlenses 11a and incident on the gap between two adjacent metal films 10d is detected by one of the plurality of first light detection cells 10a.
  • Light condensed by each of the plurality of second microlenses 11A and incident on a gap between two adjacent metal films 10d is detected by one of the plurality of second photodetection cells 10A.
  • the optical coupling layer 12 is located between the light shielding film 9 and the photodetector 10.
  • the optical coupling layer 12 is disposed on the photodetector 10.
  • the optical coupling layer 12 includes a low-refractive-index transparent layer 12c, a high-refractive-index transparent layer 12b, and a low-refractive-index transparent layer 12a in this order in a direction perpendicular to the surface of the photodetector 10.
  • the high refractive index transparent layer 12b is on the low refractive index transparent layer 12c.
  • the low refractive index transparent layer 12a is on the high refractive index transparent layer 12b.
  • the low-refractive-index transparent layer 12c and the low-refractive-index transparent layer 12a are formed of, for example, SiO 2 .
  • the high refractive index transparent layer 12b is formed of, for example, Ta 2 O 5 .
  • the high refractive index transparent layer 12b has a higher refractive index than the low refractive index transparent layer 12c and the low refractive index transparent layer 12a.
  • the optical coupling layer 12 may have a structure in which the high refractive index transparent layer 12b and the low refractive index transparent layer 12c are further repeated in this order. In the example shown in FIG. 6A, a structure repeated six times in total is shown.
  • the high refractive index transparent layer 12b is sandwiched between the low refractive index transparent layer 12c and the low refractive index transparent layer 12a. Therefore, the high refractive index transparent layer 12b functions as a waveguide layer.
  • a grating 12d having a pitch ⁇ is formed over the entire surface between the high refractive index transparent layer 12b and the low refractive index transparent layer 12c and / or between the high refractive index transparent layer 12b and the low refractive index transparent layer 12a. You.
  • the grating vector of the grating 12d is parallel to the X direction in the XY plane of the optical coupling layer 12.
  • the shape of the cross section of the grating 12d in the XZ plane is sequentially transferred to the laminated high-refractive-index transparent layer 12b and low-refractive-index transparent layer 12c.
  • the high refractive index transparent layer 12b and the low refractive index transparent layer 12c may have high directivity in the stacking direction.
  • the grating 12d is formed on at least a part of the high-refractive-index transparent layer 12b.
  • the incident light can be coupled to the guided light propagating through the high refractive index transparent layer 12b by the grating 12d.
  • the incident light is guided in the optical coupling layer 12 by the grating 12d along the direction of the lattice vector having the pitch ⁇ .
  • the gap between the optical coupling layer 12 and the photodetector 10 may be, for example, as narrow as possible or may be in close contact.
  • the gap and the space between the first micro lens 11a and the second micro lens 11A may be filled with a transparent medium such as an adhesive.
  • a transparent medium such as an adhesive.
  • the first microlenses 11a and the second microlenses 11A have a refractive index sufficiently larger than that of the filled transparent medium in order to obtain a lens effect.
  • the light shielding film 9 includes a plurality of light shielding regions 9A and a plurality of light transmitting regions 9a in the XY plane.
  • the plurality of light-shielding regions 9A and the plurality of light-transmitting regions 9a are alternately arranged in the X direction and the Y direction.
  • the plurality of light shielding regions 9A and the plurality of light transmitting regions 9a are formed by patterning a metal reflection film formed on a transparent substrate 9b described later.
  • the metal reflection film is formed of, for example, Al.
  • the light transmitting area 9a shown in FIG. 6A corresponds to, for example, the light transmitting areas 9a1, 9a2, 9a3, and 9a4 shown in FIG. 6B.
  • the light shielding area 9A shown in FIG. 6A corresponds to, for example, the light shielding areas 9A1, 9A2, 9A3, and 9A4 shown in FIG. 6B.
  • Each of the plurality of light shielding regions 9A faces one of the plurality of second light detection cells 10A.
  • Each of the plurality of light transmitting regions 9a faces one of the plurality of first light detection cells 10a.
  • the plurality of light shielding regions 9A form a checker pattern.
  • the plurality of light-shielding regions 9A may be formed in a pattern other than the checker pattern, for example, may be formed in a stripe pattern.
  • each of the plurality of light-shielding regions 9A faces one of the plurality of second photodetection cells 10A, and each of the plurality of light-transmitting regions 9a corresponds to one of the plurality of first photodetection cells 10a.
  • the present invention is not limited to such a configuration.
  • each of the light shielding regions 9A faces one of the plurality of second light detection cells 10A.
  • the invention is not limited thereto, and each of the plurality of light transmitting regions 9a does not necessarily face one of the plurality of first light detection cells 10a.
  • Light emitted from immediately below each of the light shielding regions 9A is detected by one of the plurality of second light detection cells 10A, and light emitted from immediately below each of the plurality of light transmitting regions 9a is detected by a plurality of first light detection cells.
  • a plurality of light-transmitting regions, a plurality of light-shielding regions, a plurality of first light-detecting cells, a plurality of second light-detecting cells, and optical systems around these are arranged so as to be detected by one of the cells 10a. It may be.
  • the transparent substrate 9b is disposed on the light incident side of the light shielding film 9.
  • Transparent substrate 9b is formed of a material such as SiO 2.
  • the bandpass filter 9p is arranged on the light incident side of the transparent substrate 9b. The bandpass filter 9p selectively transmits only light near the wavelength ⁇ of the light 5.
  • the light 5 passes through the band-pass filter 9p and the transparent substrate 9b to reach the light-shielding region 9A where the reflective film is formed and the light-transmitting region 9a where the reflective film is removed, as light 6A and light 6a, respectively.
  • the light 6A is blocked by the light blocking region 9A.
  • the light 6a transmits through the light transmitting region 9a and enters the optical coupling layer 12.
  • Light 6a incident on the optical coupling layer 12 is incident on the high refractive index transparent layer 12b via the low refractive index transparent layer 12a.
  • a grating 12d is formed on the upper and lower interfaces of the high refractive index transparent layer 12b. If the following expression (1) is satisfied, the guided light 6b is generated.
  • N is the effective refractive index of the guided light 6b.
  • is the incident angle of the guided light 6b with reference to the normal to the XY plane that is the incident surface.
  • is the wavelength of the guided light 6b.
  • the component that passes through the high refractive index transparent layer 12b and enters the lower layer also enters all the lower layer high refractive index transparent layers 12b.
  • the guided light 6c is generated under the same conditions as in the equation (1).
  • guided light is generated in all the high refractive index transparent layers 12b.
  • guided light generated in the two layers is representatively shown.
  • the guided light 6c propagates in the XY plane in the X direction.
  • the component toward the upper reflective film side is reflected by the reflective film of the light-shielding region 9A immediately below the light-shielding region 9A, and is lowered along the normal line of the XY plane as the reflective surface. It becomes light 6B2 toward.
  • the emitted light 6B1, the emitted light 6C1, and the light 6B2 satisfy Expression (1) in the high refractive index transparent layer 12b. Therefore, part of the emitted light 6B1, the emitted light 6C1, and the light 6B2 becomes the guided light 6b and the guided light 6c again.
  • the guided light 6b and the guided light 6c newly generate radiation light 6B1 and radiation light 6C1, respectively.
  • the incident light is branched into the light detection cell immediately below and the right and left light detection cells through the light transmitting region 9a.
  • the amount of light detected in a region including the light-shielding region 9A or the light-transmitting region 9a is defined as an average value of the amount of light detected at a detection position immediately below a region adjacent to the region in the X direction and / or the Y direction. Is done.
  • the arithmetic circuit 14 performs, for example, the following first to third arithmetic processing.
  • the first arithmetic processing the detected light amounts of the light that did not become the guided light and the detected light amounts of the light that became the guided light in all the light detection cells included in the photodetector 10 are defined as described above. You.
  • the second arithmetic processing the value of these ratios or the value of the ratio of each light amount based on the sum of these light amounts is calculated for each photodetection cell.
  • an image is generated by assigning the calculated value of the ratio to a pixel corresponding to each light detection cell.
  • the average value, the standard deviation value of the detection values within a certain area, or the calculated value obtained by combining them, reflects the distribution of optical constants such as the refractive index, absorption coefficient, or scattering coefficient inside the object 4. . Therefore, information inside the object 4 can be detected using the coherence length of light emitted from the light source 2 as a parameter.
  • FIG. 7A is a cross-sectional view schematically illustrating an optical configuration when the object 4 is the phase step plate 16.
  • the optical configuration is a step image detection system.
  • the linearly polarized light emitted from the light source 2 is converted into parallel light by the collimator lens 18.
  • the polarization direction of the parallel light is adjusted by the half-wave plate 15.
  • the parallel light whose polarization direction has been adjusted passes through the phase plate 16 having a step-like step.
  • the transmitted light becomes light 5 enlarged or reduced by the telecentric lens 7.
  • the light 5 is vertically incident on the photodetector 13 formed on the transparent substrate 9b.
  • an image immediately after passing through the light coupling layer 12 in the light detection device 13 is observed by the microscope 17 instead of the light detector 10.
  • FIGS. 7B and 7C are views showing observation images of the TE mode and the TM mode when light having a long coherence length of 1 m or more is incident, respectively.
  • FIGS. 7D and 7E are views showing observation images of the TE mode and the TM mode when light having a short coherence length of about 30 ⁇ m is incident, respectively.
  • the excitation condition of the guided light in the TE mode is satisfied.
  • the polarization direction of the light 5 is parallel to the Y direction.
  • the condition for exciting the guided light in the TM mode is satisfied.
  • the polarization direction of the light 5 is parallel to the X direction.
  • the grating vector of the grating 12d is parallel to the X direction.
  • the positions corresponding to the phase steps are indicated by broken lines.
  • the observation image becomes dark due to a decrease in the detected light amount, and a dark line is formed.
  • the Y direction is a direction orthogonal to the grating vector of the grating 12d.
  • the dark line of the observed image spreads in the X direction, and the relationship between the dark line and the step position becomes unclear.
  • the reason why the width of the dark line is increased as shown in FIG. 7C is as follows.
  • the radiation loss coefficient of the guided light in the TM mode is smaller than the radiation loss coefficient of the guided light in the TE mode, and is about 1/3 to 1/4. Therefore, the guided light of the TM mode can propagate a long distance without being radiated. Thus, the guided light propagates across a plurality of pixels. As a result, crosstalk of the detection signal between pixels increases.
  • FIG. 8 shows a phase difference d and a modulation degree signal P 1 / (P 1 + P) obtained by measuring phase steps 16 having various depths when light having a long coherence length of 1 m or more is incident.
  • 0 is a diagram showing the relationship between.
  • a stepped quartz glass plate was used for the phase difference plate 16.
  • a solid line and a broken line represent theoretical values of the TE mode and the TM mode, respectively. Circles and triangles represent experimental values in the TE mode and the TM mode, respectively.
  • the modulation degree signal P 1 / (P 1 + P 0 ) changes sinusoidally according to the phase step amount d. Therefore, by measuring the modulation degree signal P 1 / (P 1 + P 0 ), information on the phase difference of the object 4 can be obtained.
  • the reason why the radiation loss coefficient of the guided light in the TM mode is smaller than the radiation loss coefficient of the guided light in the TE mode will be described.
  • the TM mode guided light is a P-wave.
  • TE-mode guided light is an S-wave.
  • the high refractive index transparent layer 12b corresponds to a core
  • the low refractive index transparent layer 12a and the low refractive index transparent layer 12c correspond to a clad.
  • the guided light of the TM mode as the P wave is more easily transmitted through the waveguide interface than the guided light of the TE mode as the S wave, and the evanescent component, which is the amount of penetration into the clad side, is increased.
  • the evanescent component which is the amount of penetration into the clad side.
  • the light and dark patterns of the observed image are clearer in the TE mode than in the TM mode.
  • the coherence that is, the influence on the detection signal
  • the coherence due to the guided light that enters and propagates to the detection pixel position is not affected by the adjacent pixels. It becomes smaller than the coherence due to the guided light that enters and propagates to the detection pixel position. As a result, crosstalk of the detection signal between pixels is reduced. Therefore, the bright and dark pattern of the observed image is clearer in the TE mode than in the TM mode.
  • the conventional photodetector when the coherence length of the guided light is long, the bright and dark pattern of the observed image in the TM mode becomes unclear as shown in FIG. 7C. Further, in the conventional photodetector, as shown in FIGS. 7B to 7E, a phase step along the X direction parallel to the grating vector of the grating is not detected. In these respects, the conventional photodetector has room for improvement.
  • the light detection device is a light shielding film including a plurality of light transmitting regions and a plurality of light shielding regions alternately arranged in a first direction and a second direction intersecting the first direction.
  • a photodetector having an imaging surface and including a plurality of first photodetection cells and a plurality of second photodetection cells arranged on the imaging surface; and light incident on the plurality of translucent regions.
  • a light coupling layer located between the light shielding film and the photodetector, the grating including a grating for transmitting a part of the light in the first direction and the second direction.
  • each of the plurality of first photodetection cells corresponds to one of the plurality of translucent regions
  • each of the plurality of second photodetection cells is It may correspond to one of the plurality of light shielding regions.
  • the optical coupling layer includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a second dielectric layer on the second dielectric layer.
  • the refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer. It may be arranged between a first dielectric layer and the second dielectric layer, and between the second dielectric layer and the third dielectric layer.
  • the light detection system includes the light detection device according to any one of Items 1 to 6, a plurality of first signals obtained from the plurality of first light detection cells, Based on the plurality of second signals obtained from the second light detection cells, the coherence of light incident on each of the positions of the plurality of first light detection cells and the plurality of second light detection cells is determined. And an arithmetic circuit for generating and outputting the signal shown.
  • the signals obtained from each of the plurality of first light detection cell is P 0
  • the signals obtained from each of the plurality of second light detection cell is P 1
  • a first light detection cell obtained from a second light detection cell adjacent in the same direction as the first direction around each of the plurality of first light detection cells is obtained.
  • the average value of a fourth signal obtained from a second light detection cell adjacent in the direction opposite to the second direction is P 1 ′, and among the plurality of first light detection cells, Around the plurality of second light detection cells, in the same direction as the first direction.
  • the average value of the seventh signal obtained from the adjacent first light detection cell and the average value of the eighth signal obtained from the first light detection cell adjacent in the direction opposite to the second direction is P 0 ′.
  • the arithmetic circuit converts the signal obtained by the operation of P 1 ′ / (P 0 + P 1 ′) or P 1 ′ / P 0 into the light incident on each of the plurality of first light detection cells.
  • a signal that is generated as a signal indicating coherence, and a signal obtained by an operation of P 1 / (P 0 ′ + P 1 ) or P 1 / P 0 ′ is converted into a coherence of light incident on each of the plurality of second photodetection cells. May be generated as a signal indicating
  • the light propagates so as to diffuse around the light input position in the waveguide plane.
  • the amount of guided light decreases in inverse proportion to the propagation distance.
  • the coherence (that is, the influence on the detection signal) of the guided light that is incident at a position separated by two or more pixels and propagates to the detection pixel position also decreases in inverse proportion to the propagation distance.
  • the crosstalk of the detection signal between pixels is reduced. Therefore, even in the case of TM mode guided light having a long guided distance, crosstalk of a detection signal between pixels is reduced. From the above, it is considered that the phase difference image can be sharpened regardless of the shape of the phase step, such as the interval between the step positions, using any light source.
  • all or a part of a circuit, a unit, a device, a member, or a part, or all or a part of a functional block in a block diagram is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (large scale integration). It may be performed by one or more electronic circuits, including: The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, functional blocks other than the storage element may be integrated on one chip.
  • LSI LSI
  • IC integrated circuit
  • FPGA Field Programmable Gate Array
  • the software is recorded on one or more non-transitory recording media such as a ROM, an optical disk, a hard disk drive, etc., and is specified by the software when the software is executed by a processor.
  • the functions performed are performed by a processor and peripheral devices.
  • the system or apparatus may include one or more non-transitory storage media on which the software is recorded, a processor, and any required hardware devices, such as an interface.
  • the configuration is the same as that of the above-described conventional photodetector except that the shape of the grating 12d is different. Therefore, elements common to the examples shown in FIGS. 5A to 6B are assigned the same numbers, and detailed descriptions thereof are omitted.
  • FIG. 1 is a diagram schematically illustrating an example of a light detection system 100 according to the present embodiment.
  • the light detection system 100 includes a light source 2, a light detection device 13, a control circuit 1, and an arithmetic circuit 14.
  • the light source 2 irradiates the object 4 with light having a constant coherence length. At this time, scattered light 5a and scattered light 5A are generated on the surface of the object 4 or within the object 4. Of the scattered light 5a and the scattered light 5A, a component perpendicular to the incident surface of the light detection device 13 becomes the light 5 incident on the light detection device 13. A substantial object 8a exists on the object 4 side corresponding to the image 8b formed by the light 5.
  • the object 8a is a collection of object points.
  • the configuration of the photodetector 13 is the same as the configuration of the above-described conventional photodetector. That is, the light detection device 13 includes the light detector 10, the light coupling layer 12, and the light shielding film 9 in this order. As described in FIG. 6A, the optical coupling layer 12 is disposed on the photodetector 10.
  • the optical coupling layer 12 includes a low-refractive-index transparent layer 12c, a high-refractive-index transparent layer 12b, and a low-refractive-index transparent layer 12a in this order in a direction perpendicular to the surface of the photodetector 10. All other configurations are the same as the example shown in FIG. 6A. Therefore, detailed description is omitted.
  • FIG. 2A is a diagram schematically showing the object 4 and the propagation of light 6a incident on one translucent area 9a in the example of the photodetector 13 in the present embodiment.
  • FIG. 2B is a perspective view schematically showing propagation of light incident on one light transmitting region 9a in the example of the photodetecting device 13 in the present embodiment.
  • FIG. 2C is a plan view schematically illustrating an example of the light detection device 13 in the present embodiment when viewed from the light incident side.
  • a part of the light scattered in the object 4 becomes the light 5 that is incident perpendicularly to the light detection device 13.
  • the light 5 is incident as light 6A in the light-shielding region 9A on which the reflective film is formed, and is incident as light 6a in the light-transmitting region 9a from which the reflective film is removed.
  • the light 6A is blocked by the light blocking region 9A.
  • the light 6a transmits through the light transmitting region 9a and enters the optical coupling layer 12.
  • Light 6a incident on the optical coupling layer 12 is incident on the high refractive index transparent layer 12b via the low refractive index transparent layer 12a.
  • a grating 12d is formed on the upper and lower interfaces of the high refractive index transparent layer 12b.
  • the grating 12d in the present embodiment has a concentric shape centered on the center of each of the plurality of light-transmitting regions 9a and each of the plurality of light-shielding regions 9A. If the pitch ⁇ of the grating 12d satisfies the formula (1), a part of the incident light 6a generates the guided light 6b, and the rest is transmitted as the transmitted light 6d. In other words, when light having a predetermined wavelength is incident on the plurality of light transmitting regions 9a, the grating 12d propagates a part of the light in the X direction and the Y direction. In the present embodiment, the light 6a is perpendicularly incident on the incident surface.
  • the guided light 6b propagates in all directions from the center of the light transmitting region 9a toward the outer periphery.
  • the propagation length is short because the propagation is spread in the plane. Therefore, regardless of the coherence length of the light emitted from the light source 2, the crosstalk of the detection signal between pixels is small. Further, since the propagation is in all directions, the phase difference in the X direction and the Y direction can be simultaneously detected regardless of the shape of the phase step.
  • a part of the guided light 6b is emitted.
  • the part of the guided light 6b overlaps with the reflection of the light-shielding region 9A on the reflection film to become the emitted light 6D. All other operations are the same as in the example shown in FIGS. 6A and 6B. Therefore, detailed description is omitted.
  • the arithmetic circuit 14 outputs a signal indicating the coherence or phase coherence of the light incident on each of the positions of the plurality of first photodetecting cells 10a and the plurality of second photodetecting cells 10A by the arithmetic processing.
  • a plurality of signals obtained from the plurality of first light detection cells 10a and a plurality of signals obtained from the plurality of second light detection cells 10A are used.
  • FIG. 3A is a diagram schematically illustrating an arrangement of detection signals corresponding to each of the plurality of light-transmitting regions 9a and the plurality of light-shielding regions 9A.
  • P 0 denotes the amount of light detected by the first light detecting cell 10a immediately below the light-transmitting region 9a.
  • P 1 represents the amount of light detected by the second light detecting cell 10A immediately below the light-shielding region 9A.
  • P 0 is a raw signal obtained from each of the plurality of first light detection cells 10a
  • P 1 is a raw signal obtained from each of the plurality of second light detection cells 10A.
  • Raw signal means a signal as detected.
  • P 0 and P 1 are arranged in the order of indices i and j on the XY plane. Based on the following equation (2), from the four raw signal P 1 adjacent to the X and Y directions shown in FIG. 3A, the interpolation signal P '1 corresponding to right under the light-transmitting region 9a in their center Generated.
  • P ′ 1 is from four second light detection cells 10A adjacent in the X and Y directions around each of the plurality of first light detection cells 10a among the plurality of second light detection cells 10A. It is the average value of the four raw signals obtained.
  • P 0 ′ is from four first light detection cells 10 a adjacent in the X direction and the Y direction around each of the plurality of second light detection cells 10 A among the plurality of first light detection cells 10 a. It is the average value of the four raw signals obtained.
  • FIG. 3B is a diagram illustrating a flow up to generation of a modulation factor signal in a region surrounded by the thick line shown in FIG. 3A.
  • the raw signal P 0 and the interpolation signal P ′ 1 are generated immediately below all the translucent regions 9 a.
  • the arithmetic circuit 14 uses the modulation degree signal obtained by the arithmetic operation of P ′ 1 / (P 0 + P ′ 1 ) to indicate the coherence or phase coherence of the light incident on each of the plurality of first photodetection cells 10 a. Generate as a signal.
  • the modulation degree signal may be obtained by calculating P ′ 1 / P 0 .
  • the raw signal P 1 and the interpolation signal P '0 directly below all of the light shielding region 9A is generated.
  • the arithmetic circuit 14 converts the modulation degree signal obtained by the calculation of P 1 / (P 0 ′ + P 1 ) into a signal indicating the coherence or phase coherence of the light incident on each of the plurality of second photodetection cells 10A. Generate as The modulation signal may be obtained by calculation of P 1 / P '0.
  • the guided light 6b propagates in the X direction and the Y direction and interferes in the structures in the respective directions.
  • the phase difference images of the object 4 in two directions can be detected. This makes it possible to detect a phase difference image of the object 4 having a phase step having an arbitrary shape.
  • the guided light 6b propagates in a plane, the crosstalk of the detection signal between pixels can be reduced regardless of the coherence length of the light emitted from the light source 2. Therefore, a clear phase difference image can be detected regardless of the shape of the phase step.
  • FIG. 4A is a perspective view schematically showing propagation of light 6a incident on one translucent region 9a in a first modification of the photodetector 13 in the present embodiment.
  • FIG. 4B is a plan view schematically showing a first modified example of the light detection device 13 in the present embodiment when viewed from the light incident side.
  • the crosstalk of the detection signal between pixels is small.
  • a part of the guided light 6b is emitted.
  • the part of the guided light 6b overlaps with the reflection of the light-shielding region 9A on the reflection film to become the emitted light 6D. All other operations are the same as in the example shown in FIGS. 6A and 6B. Therefore, detailed description is omitted.
  • the guided light 6b propagates in the X direction and the Y direction and interferes in the structures in the respective directions. Therefore, a phase difference image of the object 4 can be detected in two directions. This makes it possible to detect a phase difference image of the object 4 having a phase step having an arbitrary shape. Furthermore, since the guided light 6b propagates in a plane, the crosstalk of a detection signal between pixels can be reduced regardless of the coherence length of the light source 2. Therefore, a clear phase difference image can be detected regardless of the shape of the phase step.
  • the grating 12d has a concentric square shape, but may have another concentric shape, for example, a hexagonal or octagonal shape.
  • FIG. 4C is a plan view schematically showing a second modified example of the photodetector 13 according to the present embodiment when viewed from the light incident side.
  • the grating 12d in the present embodiment has a concentric octagonal shape centered on the center of each of the plurality of light-transmitting regions 9a and each of the plurality of light-shielding regions 9A.
  • a clear phase difference image can be detected regardless of the shape of the phase step.
  • the light detection device can detect the state of coherence or phase of transmitted light, reflected light, and / or scattered light from an object as distribution information in a plane.
  • the light detection device can be used, for example, for measuring biological information such as cerebral blood flow.
  • information inside the object can be analyzed with high accuracy and high resolution.
  • a new evaluation axis of the state or phase of coherence is added to the imaging technique which has been limited to the analysis of the light intensity distribution, and multifunctionality can be provided to the imaging technique.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A light detection device according to one embodiment of the present disclosure is provided with: a light blocking film that comprises a plurality of light transmitting regions and a plurality of light blocking regions, which are alternately arranged in a first direction and in a second direction that intersects with the first direction; a light detector that has an imaging surface and comprises a plurality of first light detection cells and a plurality of second light detection cells, which are arranged on the imaging surface; and a light coupling layer which is positioned between the light blocking film and the light detector, and which comprises a grating that causes some of light to propagate in the first direction and in the second direction when light is incident on the plurality of light transmitting regions.

Description

光検出装置、および光検出システムPhotodetector and photodetection system
 本開示は、光検出装置、および光検出システムに関する。 The present disclosure relates to a light detection device and a light detection system.
 光は電磁波であり、波長または強度以外に、偏光または干渉性などの光学特性によって特徴づけられる。例えば、特許文献1は、光学特性のうち、光の干渉性を利用する光検出装置を開示している。 Light is an electromagnetic wave and is characterized by optical properties such as polarization or coherence in addition to wavelength or intensity. For example, Patent Literature 1 discloses a light detection device that utilizes light coherence among optical characteristics.
特許第6044862号Patent No. 6044862
 本開示は、対象物からの透過光、反射光、および/または散乱光のコヒーレンスの度合い、または位相を、複雑な光学系を利用することなく測定することができる光検出装置を提供する。 The present disclosure provides a photodetector capable of measuring the degree or phase of coherence of transmitted light, reflected light, and / or scattered light from an object without using a complicated optical system.
 本実施形態の一態様に係る光検出装置は、第1の方向、および前記第1の方向に交差する第2の方向に交互に配置された複数の透光領域および複数の遮光領域を含む遮光膜と、撮像面を有し、前記撮像面上に配列された複数の第1の光検出セルおよび複数の第2の光検出セルを含む光検出器と、前記複数の透光領域に光が入射したときに、前記光の一部を前記第1の方向および前記第2の方向に伝搬させるグレーティングを含み、前記遮光膜と前記光検出器との間に位置する光結合層と、を備える。 The light detection device according to one aspect of the present embodiment includes a light-shielding device including a plurality of light-transmitting regions and a plurality of light-shielding regions alternately arranged in a first direction and a second direction intersecting the first direction. A photodetector having a film, an imaging surface, and a plurality of first light detection cells and a plurality of second light detection cells arranged on the imaging surface; A grating that propagates a part of the light in the first direction and the second direction when incident; and a light coupling layer located between the light shielding film and the photodetector. .
 本開示の一態様にかかる光検出装置によれば、対象物からの透過光、反射光、および/または散乱光のコヒーレンスの度合い、または位相の状態を、複雑な光学系なしに測定することができる。 According to the light detection device according to an aspect of the present disclosure, it is possible to measure the degree of coherence or phase of transmitted light, reflected light, and / or scattered light from an object without a complicated optical system. it can.
図1は、本実施形態における光検出システムの例を模式的に示す図である。FIG. 1 is a diagram schematically illustrating an example of a light detection system according to the present embodiment. 図2Aは、本実施形態における光検出装置の例での、対象物と、1つの透光領域に入射する散乱光の伝搬とを模式的に示す図である。FIG. 2A is a diagram schematically illustrating an object and propagation of scattered light incident on one translucent region in the example of the photodetector according to the present embodiment. 図2Bは、本実施形態における光検出装置の例での、1つの透光領域に入射する光の伝搬を模式的に示す斜視図である。FIG. 2B is a perspective view schematically showing propagation of light incident on one light-transmitting region in the example of the photodetector in the present embodiment. 図2Cは、光の入射側から見たときの、本実施形態における光検出装置の例を模式的に示す平面図である。FIG. 2C is a plan view schematically illustrating an example of the photodetector according to the present embodiment when viewed from the light incident side. 図3Aは、複数の透光領域および複数の遮光領域の各々に対応する検出信号の配置を模式的に示す図である。FIG. 3A is a diagram schematically illustrating an arrangement of detection signals corresponding to each of the plurality of light-transmitting regions and the plurality of light-shielding regions. 図3Bは、図3Aに示す太線によって囲まれた領域での変調度信号の生成までの流れを説明する図である。FIG. 3B is a diagram illustrating a flow up to generation of a modulation degree signal in a region surrounded by a thick line illustrated in FIG. 3A. 図4Aは、本実施形態における光検出装置の変形例での、1つの透光領域に入射する光の伝搬を模式的に示す斜視図である。FIG. 4A is a perspective view schematically showing propagation of light incident on one translucent region in a modification of the photodetector in the present embodiment. 図4Bは、光の入射側から見たときの、本実施形態における光検出装置の第1の変形例を模式的に示す平面図である。FIG. 4B is a plan view schematically showing a first modified example of the photodetector according to the present embodiment when viewed from the light incident side. 図4Cは、光の入射側から見たときの、本実施形態における光検出装置の第2の変形例を模式的に示す平面図である。FIG. 4C is a plan view schematically illustrating a second modified example of the photodetector according to the present embodiment when viewed from the light incident side. 図5Aは、従来の光検出システムを模式的に示す図である。FIG. 5A is a diagram schematically illustrating a conventional light detection system. 図5Bは、対象物と、集光レンズと、従来の光検出装置での1つの透光領域に入射する散乱光の伝搬とを模式的に示す図である。FIG. 5B is a diagram schematically showing an object, a condensing lens, and propagation of scattered light incident on one light-transmitting region in a conventional light detection device. 図6Aは、従来の光検出装置を模式的に示す断面図である。FIG. 6A is a cross-sectional view schematically illustrating a conventional photodetector. 図6Bは、従来の光検出装置を模式的に示す平面図である。FIG. 6B is a plan view schematically showing a conventional photodetector. 図7Aは、対象物を位相段差板としたときの、光学構成を模式的に示す断面図である。FIG. 7A is a cross-sectional view schematically illustrating an optical configuration when a target is a phase step plate. 図7Bは、1m以上の長いコヒーレンス長の光が入射したときの、TEモードの観察像を示す図である。FIG. 7B is a diagram illustrating an observation image of the TE mode when light having a long coherence length of 1 m or more is incident. 図7Cは、1m以上の長いコヒーレンス長の光が入射したときの、TMモードの観察像を示す図である。FIG. 7C is a diagram illustrating an observation image of the TM mode when light having a long coherence length of 1 m or more is incident. 図7Dは、30μm程度の短いコヒーレンス長の光が入射したときの、TEモードの観察像を示す図である。FIG. 7D is a diagram illustrating an observation image of the TE mode when light having a short coherence length of about 30 μm is incident. 図7Eは、30μm程度の短いコヒーレンス長の光が入射したときの、TMモードの観察像を示す図である。FIG. 7E is a diagram showing a TM mode observation image when light having a short coherence length of about 30 μm is incident. 図8は、1m以上の長いコヒーレンス長の光が入射したときの、様々な深さの位相段差板を測定して得られた位相段差量dと変調度信号P/(P+P)との関係を示す図である。FIG. 8 shows a phase difference d obtained by measuring phase steps having various depths and a modulation degree signal P 1 / (P 1 + P 0 ) when light having a long coherence length of 1 m or more is incident. FIG.
 (本開示の一態様に至った経緯)
 以下に、従来の光検出装置の原理を説明する。
(History leading to one embodiment of the present disclosure)
Hereinafter, the principle of the conventional photodetector will be described.
 図5Aは、従来の光検出システム200を模式的に示す図である。光検出システム200は、光源2と、集光レンズ7と、光検出装置13と、制御回路1と、演算回路14と、を備える。 FIG. 5A is a diagram schematically showing a conventional photodetection system 200. The light detection system 200 includes the light source 2, the condenser lens 7, the light detection device 13, the control circuit 1, and the arithmetic circuit 14.
 光源2は、一定のコヒーレンス長の光3で対象物4を照射する。光源2は、例えば、コヒーレンス長が比較的長い光を出射するレーザー装置、あるいはコヒーレンス長の短い光を出射するLED装置である。光源2は、一定の強度の光を連続的に出射してもよいし、パルス光を出射してもよい。光源2から出射される光3の波長は、任意である。対象物4が生体の場合、光源2の波長は、例えば略650nm以上略950nm以下に設定され得る。この波長範囲は、赤色から近赤外線の波長範囲に含まれる。本明細書では、可視光のみならず赤外線についても「光」の用語を使用する。 (4) The light source 2 irradiates the object 4 with light 3 having a constant coherence length. The light source 2 is, for example, a laser device that emits light having a relatively long coherence length or an LED device that emits light having a short coherence length. The light source 2 may continuously emit light having a constant intensity, or may emit pulsed light. The wavelength of the light 3 emitted from the light source 2 is arbitrary. When the object 4 is a living body, the wavelength of the light source 2 can be set to, for example, about 650 nm or more and about 950 nm or less. This wavelength range is included in the wavelength range from red to near infrared rays. In this specification, the term “light” is used not only for visible light but also for infrared light.
 集光レンズ7は、光源2から出射された光3によって対象物4の表面または対象物4内で発生した散乱光5aおよび散乱光5Aを集光する。なお、ここでは、散乱光は、透過光または反射光なども含めた広い意味で用いられる。集光された光は、集光レンズ7の像面位置に像8bとして結像される。像8bに対応して、集光レンズ7の対象物4側には実質的な物体8aが存在する。物体8aは、物点の集まりである。 The condensing lens 7 condenses the scattered light 5a and the scattered light 5A generated on the surface of the object 4 or in the object 4 by the light 3 emitted from the light source 2. Here, scattered light is used in a broad sense including transmitted light or reflected light. The condensed light is formed as an image 8b on the image plane position of the condenser lens 7. A substantial object 8a exists on the object 4 side of the condenser lens 7 corresponding to the image 8b. The object 8a is a collection of object points.
 光検出装置13は、集光レンズ7の像面位置に配置される。光検出装置13は、集光レンズ7によって集光された散乱光5aおよび散乱光5Aを検出する。光検出装置13の構造の詳細については、後述する。 The photodetector 13 is disposed at the image plane position of the condenser lens 7. The light detecting device 13 detects the scattered light 5a and the scattered light 5A collected by the collecting lens 7. Details of the structure of the light detection device 13 will be described later.
 演算回路14は、光検出装置13によって検出された信号の演算処理を行う。演算回路14は、例えばデジタルシグナルプロセッサ(DSP)などの画像処理回路であり得る。 The arithmetic circuit 14 performs arithmetic processing on the signal detected by the light detection device 13. The arithmetic circuit 14 may be an image processing circuit such as a digital signal processor (DSP).
 制御回路1は、例えばメモリに記録されたプログラムを実行することにより、光検出装置13による光の検出、演算回路14による演算処理、光源2の発光光量、点灯タイミング、連続点灯時間、または発光波長もしくはコヒーレンス長を制御する。制御回路1は、例えば中央演算処理装置(CPU)またはマイクロコンピュータなどの集積回路であり得る。制御回路1および演算回路14は、統合された1つの回路によって実現されていてもよい。 The control circuit 1 executes, for example, a program recorded in a memory to detect light by the photodetector 13, perform arithmetic processing by the arithmetic circuit 14, the amount of light emitted from the light source 2, the lighting timing, the continuous lighting time, or the emission wavelength. Alternatively, the coherence length is controlled. The control circuit 1 can be an integrated circuit such as a central processing unit (CPU) or a microcomputer, for example. The control circuit 1 and the arithmetic circuit 14 may be realized by one integrated circuit.
 なお、光検出システム200は、演算回路14によって演算処理された結果を表示する不図示のディスプレイを備えていてもよい。 The light detection system 200 may include a display (not shown) that displays the result of the arithmetic processing performed by the arithmetic circuit 14.
 図5Bは、対象物4と、集光レンズ7と、従来の光検出装置13での1つの透光領域9aに入射する光5の伝搬とを模式的に示す図である。図5Bにおいて、透光領域9aは開口に相当する。図5Bに示す例では、後述する光3、光5、光5s、光6a、導波光6b、透過光6d、放射光6Dの伝搬の一例が、矢印で表されている。実際には、光3の分布は、伝搬方向に垂直な方向に広がっている。図5Bに示す例では、横線でハッチングされた領域は、光3で対象物4を照射したときに、対象物4内で散乱され位置Lおよび位置Rから出た光のうち、絞り7cを通過して光検出装置13に入射する光を表す。実際には、対象物4の位置Lおよび位置R以外の位置から出て、絞り7cを通過して光検出装置13に入射する光も存在するが、省略している。また、上記以外の透光領域9aから光検出装置13に入射する光も存在するが、省略している。以下の図でも、光伝搬の一例を矢印で表す。 FIG. 5B is a diagram schematically showing the object 4, the condenser lens 7, and the propagation of the light 5 incident on one translucent area 9a in the conventional photodetector 13. In FIG. 5B, the light transmitting region 9a corresponds to an opening. In the example shown in FIG. 5B, an example of propagation of light 3, light 5, light 5s, light 6a, guided light 6b, transmitted light 6d, and emitted light 6D, which will be described later, is indicated by arrows. In practice, the distribution of the light 3 spreads in a direction perpendicular to the propagation direction. In the example illustrated in FIG. 5B, the region hatched by the horizontal line passes through the stop 7 c among the light scattered within the target object 4 and emitted from the positions L and R when the target object 4 is irradiated with the light 3. Represents light incident on the photodetector 13. Actually, light that exits from a position other than the position L and the position R of the object 4 and passes through the aperture 7c and enters the photodetector 13 is also omitted, but is omitted. In addition, there is light incident on the photodetector 13 from the translucent region 9a other than the above, but is omitted. In the following figures, an example of light propagation is indicated by an arrow.
 対象物4は散乱体である。対象物4の内部を伝搬する光線は、内部で散乱を繰り返す。集光レンズ7は、前レンズ7aと、絞り7cと、後レンズ7bとを備える。集光レンズ7は、両テレセントリックレンズまたは像テレセントリックレンズを構成する。両テレセントリックレンズの場合には、対象物4を散乱する光のうち、レンズの光軸に沿った光のみが、絞り7cを通過して光検出装置13に入射する光5になる。光軸からずれた迷光である光5sは、絞り7cによって遮られる。光5は、光検出装置13の1つの透光領域9aに垂直に入射する。 The object 4 is a scatterer. Light rays propagating inside the object 4 repeat scattering inside. The condenser lens 7 includes a front lens 7a, a stop 7c, and a rear lens 7b. The condenser lens 7 forms a double telecentric lens or an image telecentric lens. In the case of both telecentric lenses, only the light along the optical axis of the lens out of the light scattered on the object 4 becomes the light 5 that passes through the aperture 7c and enters the photodetector 13. The light 5s, which is stray light shifted from the optical axis, is blocked by the stop 7c. The light 5 is perpendicularly incident on one light-transmitting region 9 a of the light detection device 13.
 図6Aおよび図6Bは、それぞれ、従来の光検出装置13を模式的に示す断面図および平面図である。なお、図6Aおよび図6Bには、説明の便宜上、直交する3つのX軸、Y軸、およびZ軸が示されている。他の図についても同様である。本明細書では、「X方向」とは、X方向と同じ方向および反対の方向の両方を意味する。Y方向およびZ方向についても同様である。図6Aは、光が入射する方向に沿ったXZ平面における光検出装置13の断面図である。当該断面図は、図6Bに示す破線によって囲まれた領域を含む。図6Bは、光の入射側から見たときの、光検出装置13のXY平面における平面図である。当該平面図は、後述する遮光膜を含む。図6Aに示す断面構造を1つの単位構造として、当該単位構造が、XY平面内に周期的に並んでいる。 6A and 6B are a cross-sectional view and a plan view, respectively, schematically showing the conventional photodetector 13. 6A and 6B show three orthogonal X, Y, and Z axes for convenience of description. The same applies to other figures. As used herein, "X direction" means both the same direction as the X direction and the opposite direction. The same applies to the Y direction and the Z direction. FIG. 6A is a cross-sectional view of the photodetector 13 in the XZ plane along the direction in which light is incident. The cross-sectional view includes a region surrounded by a broken line shown in FIG. 6B. FIG. 6B is a plan view in the XY plane of the light detection device 13 when viewed from the light incident side. The plan view includes a light-shielding film described later. With the cross-sectional structure shown in FIG. 6A as one unit structure, the unit structures are periodically arranged in the XY plane.
 光検出装置13は、光検出器10と、光結合層12と、遮光膜9と、をこの順に備える。図6Aに示す例では、これらがZ方向に積層されている。また、図6Aに示す例では、遮光膜9上に、透明基板9bとバンドパスフィルター9pとがこの順に配置されている。 The photodetector 13 includes the photodetector 10, the optical coupling layer 12, and the light shielding film 9 in this order. In the example shown in FIG. 6A, these are stacked in the Z direction. In the example shown in FIG. 6A, a transparent substrate 9b and a bandpass filter 9p are arranged on the light shielding film 9 in this order.
 光検出器10は、XY平面に平行な撮像面に配列された複数の第1の光検出セル10aおよび複数の第2の光検出セル10Aを含む。光検出器10は、光の入射側から、XY平面内に配置された複数の第1のマイクロレンズ11aおよび複数の第2のマイクロレンズ11Aと、透明膜10cと、配線などの金属膜10dと、Siまたは有機膜などから形成される複数の感光部とを備える。複数の感光部の各々は、X方向またはY方向において隣接する2つの金属膜10dの間に配置されている。複数の感光部は、複数の第1の光検出セル10aおよび複数の第2の光検出セル10Aに相当する。複数の第1のマイクロレンズ11aの各々は、複数の第1の光検出セル10aの1つに対向するように配置されている。複数の第2のマイクロレンズ11Aの各々は、複数の第2の光検出セル10Aの1つに対向するように配置されている。複数の第1のマイクロレンズ11aの各々によって集光され、隣接する2つの金属膜10dの隙間に入射する光は、複数の第1の光検出セル10aの1つによって検出される。複数の第2のマイクロレンズ11Aの各々によって集光され、隣接する2つの金属膜10dの隙間に入射する光は、複数の第2の光検出セル10Aの1つによって検出される。 The photodetector 10 includes a plurality of first photodetection cells 10a and a plurality of second photodetection cells 10A arranged on an imaging plane parallel to the XY plane. The photodetector 10 includes a plurality of first microlenses 11a and a plurality of second microlenses 11A arranged in an XY plane, a transparent film 10c, a metal film 10d such as a wiring, and the like. , Si or an organic film. Each of the plurality of photosensitive units is arranged between two adjacent metal films 10d in the X direction or the Y direction. The plurality of photosensitive units correspond to the plurality of first light detection cells 10a and the plurality of second light detection cells 10A. Each of the plurality of first microlenses 11a is arranged so as to face one of the plurality of first photodetection cells 10a. Each of the plurality of second microlenses 11A is disposed so as to face one of the plurality of second photodetection cells 10A. Light collected by each of the plurality of first microlenses 11a and incident on the gap between two adjacent metal films 10d is detected by one of the plurality of first light detection cells 10a. Light condensed by each of the plurality of second microlenses 11A and incident on a gap between two adjacent metal films 10d is detected by one of the plurality of second photodetection cells 10A.
 光結合層12は、遮光膜9と光検出器10との間に位置する。光結合層12は、光検出器10上に配置されている。光結合層12は、光検出器10の面直方向において、低屈折率透明層12c、高屈折率透明層12b、および低屈折率透明層12aをこの順に備える。高屈折率透明層12bは、低屈折率透明層12c上にある。低屈折率透明層12aは、高屈折率透明層12b上にある。低屈折率透明層12c、および低屈折率透明層12aは、例えば、SiOから形成される。高屈折率透明層12bは、例えば、Taから形成される。高屈折率透明層12bの屈折率は、低屈折率透明層12cおよび低屈折率透明層12aの屈折率よりも高い。光結合層12は、高屈折率透明層12bと低屈折率透明層12cとをこの順にさらに繰り返した構造を備えてもよい。図6Aに示す例では、合計6回繰り返した構造が示されている。高屈折率透明層12bは、低屈折率透明層12cおよび低屈折率透明層12aによって挟まれている。したがって、高屈折率透明層12bは、導波層として機能する。高屈折率透明層12bと低屈折率透明層12cとの間、および/または高屈折率透明層12bと低屈折率透明層12aとの間に、全面に渡ってピッチΛのグレーティング12dが形成される。グレーティング12dの格子ベクトルは、光結合層12のXY平面内のX方向に平行である。グレーティング12dのXZ平面における断面の形状は、積層される高屈折率透明層12bおよび低屈折率透明層12cにも順次転写される。高屈折率透明層12bおよび低屈折率透明層12cの成膜は、積層方向において高い指向性を有してもよい。このとき、グレーティング12dのXZ平面における断面の形状をS字またはV字状にすることにより、形状の転写性が維持されやすくなる。 The optical coupling layer 12 is located between the light shielding film 9 and the photodetector 10. The optical coupling layer 12 is disposed on the photodetector 10. The optical coupling layer 12 includes a low-refractive-index transparent layer 12c, a high-refractive-index transparent layer 12b, and a low-refractive-index transparent layer 12a in this order in a direction perpendicular to the surface of the photodetector 10. The high refractive index transparent layer 12b is on the low refractive index transparent layer 12c. The low refractive index transparent layer 12a is on the high refractive index transparent layer 12b. The low-refractive-index transparent layer 12c and the low-refractive-index transparent layer 12a are formed of, for example, SiO 2 . The high refractive index transparent layer 12b is formed of, for example, Ta 2 O 5 . The high refractive index transparent layer 12b has a higher refractive index than the low refractive index transparent layer 12c and the low refractive index transparent layer 12a. The optical coupling layer 12 may have a structure in which the high refractive index transparent layer 12b and the low refractive index transparent layer 12c are further repeated in this order. In the example shown in FIG. 6A, a structure repeated six times in total is shown. The high refractive index transparent layer 12b is sandwiched between the low refractive index transparent layer 12c and the low refractive index transparent layer 12a. Therefore, the high refractive index transparent layer 12b functions as a waveguide layer. A grating 12d having a pitch Λ is formed over the entire surface between the high refractive index transparent layer 12b and the low refractive index transparent layer 12c and / or between the high refractive index transparent layer 12b and the low refractive index transparent layer 12a. You. The grating vector of the grating 12d is parallel to the X direction in the XY plane of the optical coupling layer 12. The shape of the cross section of the grating 12d in the XZ plane is sequentially transferred to the laminated high-refractive-index transparent layer 12b and low-refractive-index transparent layer 12c. The high refractive index transparent layer 12b and the low refractive index transparent layer 12c may have high directivity in the stacking direction. At this time, by making the shape of the cross section of the grating 12d in the XZ plane into an S-shape or a V-shape, the transferability of the shape is easily maintained.
 なお、グレーティング12dは、高屈折率透明層12bの少なくとも一部に形成される。グレーティング12dにより、入射光は、高屈折率透明層12bを伝搬する導波光に結合することができる。入射光は、光結合層12内をグレーティング12dがピッチΛの格子ベクトルの方向に沿って導波する。 The grating 12d is formed on at least a part of the high-refractive-index transparent layer 12b. The incident light can be coupled to the guided light propagating through the high refractive index transparent layer 12b by the grating 12d. The incident light is guided in the optical coupling layer 12 by the grating 12d along the direction of the lattice vector having the pitch Λ.
 光結合層12と光検出器10との隙間は、例えば、可能な限り狭くてもよく、密着していてもよい。当該隙間、および第1のマイクロレンズ11aと第2のマイクロレンズ11Aとの空間に、接着剤などの透明媒質を充填してもよい。透明媒質を充填する場合、第1のマイクロレンズ11aおよび第2のマイクロレンズ11Aは、レンズ効果を得るために、充填される透明媒質よりも十分大きな屈折率を有する。 隙間 The gap between the optical coupling layer 12 and the photodetector 10 may be, for example, as narrow as possible or may be in close contact. The gap and the space between the first micro lens 11a and the second micro lens 11A may be filled with a transparent medium such as an adhesive. When a transparent medium is filled, the first microlenses 11a and the second microlenses 11A have a refractive index sufficiently larger than that of the filled transparent medium in order to obtain a lens effect.
 遮光膜9は、XY平面内に複数の遮光領域9Aおよび複数の透光領域9aを含む。複数の遮光領域9Aおよび複数の透光領域9aは、X方向およびY方向に交互に配置されている。図6Aに示す例では、複数の遮光領域9Aおよび複数の透光領域9aは、後述する透明基板9b上に成膜された金属反射膜をパターニングすることによって形成される。金属反射膜は、例えばAlから形成される。図6Aに示す透光領域9aは、例えば図6Bに示す透光領域9a1、9a2、9a3、9a4に対応する。図6Aに示す遮光領域9Aは、例えば図6Bに示す遮光領域9A1、9A2、9A3、9A4に対応する。複数の遮光領域9Aの各々は、複数の第2の光検出セル10Aの1つに対向する。複数の透光領域9aの各々は、複数の第1の光検出セル10aの1つに対向する。図6Bに示す例では、複数の遮光領域9Aは、チェッカーパターンを形成する。複数の遮光領域9Aは、チェッカーパターン以外を形成してもよく、例えばストライプパターンを形成してもよい。 (4) The light shielding film 9 includes a plurality of light shielding regions 9A and a plurality of light transmitting regions 9a in the XY plane. The plurality of light-shielding regions 9A and the plurality of light-transmitting regions 9a are alternately arranged in the X direction and the Y direction. In the example shown in FIG. 6A, the plurality of light shielding regions 9A and the plurality of light transmitting regions 9a are formed by patterning a metal reflection film formed on a transparent substrate 9b described later. The metal reflection film is formed of, for example, Al. The light transmitting area 9a shown in FIG. 6A corresponds to, for example, the light transmitting areas 9a1, 9a2, 9a3, and 9a4 shown in FIG. 6B. The light shielding area 9A shown in FIG. 6A corresponds to, for example, the light shielding areas 9A1, 9A2, 9A3, and 9A4 shown in FIG. 6B. Each of the plurality of light shielding regions 9A faces one of the plurality of second light detection cells 10A. Each of the plurality of light transmitting regions 9a faces one of the plurality of first light detection cells 10a. In the example shown in FIG. 6B, the plurality of light shielding regions 9A form a checker pattern. The plurality of light-shielding regions 9A may be formed in a pattern other than the checker pattern, for example, may be formed in a stripe pattern.
 なお、本実施形態では複数の遮光領域9Aの各々が複数の第2の光検出セル10Aの1つに対向し、複数の透光領域9aの各々が複数の第1の光検出セル10aの1つに対向するように構成したが、このような構成には限られない。例えば、遮光膜9および光結合層12を透過した光をレンズによって光検出器10上に集光する場合、遮光領域9Aの各々が複数の第2の光検出セル10Aの1つに対向するとは限らず、また複数の透光領域9aの各々が複数の第1の光検出セル10aの1つに対向するとは限らない。遮光領域9Aの各々の直下から出射した光が複数の第2の光検出セル10Aの1つによって検出され、複数の透光領域9aの各々の直下から出射した光が複数の第1の光検出セル10aの1つによって検出されるように、複数の透光領域、複数の遮光領域、複数の第1の光検出セル、複数の第2の光検出セル、およびこれらの周辺の光学系が配置されていてもよい。 In the present embodiment, each of the plurality of light-shielding regions 9A faces one of the plurality of second photodetection cells 10A, and each of the plurality of light-transmitting regions 9a corresponds to one of the plurality of first photodetection cells 10a. However, the present invention is not limited to such a configuration. For example, when light transmitted through the light shielding film 9 and the light coupling layer 12 is condensed on the photodetector 10 by a lens, each of the light shielding regions 9A faces one of the plurality of second light detection cells 10A. The invention is not limited thereto, and each of the plurality of light transmitting regions 9a does not necessarily face one of the plurality of first light detection cells 10a. Light emitted from immediately below each of the light shielding regions 9A is detected by one of the plurality of second light detection cells 10A, and light emitted from immediately below each of the plurality of light transmitting regions 9a is detected by a plurality of first light detection cells. A plurality of light-transmitting regions, a plurality of light-shielding regions, a plurality of first light-detecting cells, a plurality of second light-detecting cells, and optical systems around these are arranged so as to be detected by one of the cells 10a. It may be.
 透明基板9bは、遮光膜9の光入射側に配置されている。透明基板9bは、SiOなどの材料から形成される。バンドパスフィルター9pは、透明基板9bの光入射側に配置されている。バンドパスフィルター9pは、光5のうち、波長λ近傍の光のみを選択的に透過させる。 The transparent substrate 9b is disposed on the light incident side of the light shielding film 9. Transparent substrate 9b is formed of a material such as SiO 2. The bandpass filter 9p is arranged on the light incident side of the transparent substrate 9b. The bandpass filter 9p selectively transmits only light near the wavelength λ of the light 5.
 光5は、バンドパスフィルター9pおよび透明基板9bを経て、光6Aおよび光6aとして、それぞれ、反射膜が形成された遮光領域9A、および反射膜が除去された透光領域9aに至る。光6Aは、遮光領域9Aによって遮光される。光6aは、透光領域9aを透過し、光結合層12に入射する。光結合層12に入射した光6aは、低屈折率透明層12aを経て、高屈折率透明層12bに入射する。高屈折率透明層12bの上下の界面には、グレーティング12dが形成される。以下の式(1)を満たせば、導波光6bが発生する。 The light 5 passes through the band-pass filter 9p and the transparent substrate 9b to reach the light-shielding region 9A where the reflective film is formed and the light-transmitting region 9a where the reflective film is removed, as light 6A and light 6a, respectively. The light 6A is blocked by the light blocking region 9A. The light 6a transmits through the light transmitting region 9a and enters the optical coupling layer 12. Light 6a incident on the optical coupling layer 12 is incident on the high refractive index transparent layer 12b via the low refractive index transparent layer 12a. A grating 12d is formed on the upper and lower interfaces of the high refractive index transparent layer 12b. If the following expression (1) is satisfied, the guided light 6b is generated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Nは、導波光6bの実効屈折率である。θは、入射面であるXY平面の法線を基準とした導波光6bの入射角度である。λは、導波光6bの波長である。Λは、グレーティング12dのグレーティングピッチである。図6Aに示す例では、光が入射面に垂直に入射する。したがって、θ=0である。この場合、導波光6bは、XY平面内をX方向に伝搬する。 Here, N is the effective refractive index of the guided light 6b. θ is the incident angle of the guided light 6b with reference to the normal to the XY plane that is the incident surface. λ is the wavelength of the guided light 6b. Λ is the grating pitch of the grating 12d. In the example shown in FIG. 6A, light is incident perpendicular to the incident surface. Therefore, θ = 0. In this case, the guided light 6b propagates in the XY plane in the X direction.
 高屈折率透明層12bを透過して下層に入射する成分は、下層側にあるすべての高屈折率透明層12bにも入射する。これにより、式(1)と同じ条件で、導波光6cが発生する。このようにして、すべての高屈折率透明層12b内で導波光が発生する。図6Aでは、2つの層内で発生する導波光が、代表して示されている。導波光6cも、導波光6bと同様に、XY平面内をX方向に伝搬する。導波光6bおよび導波光6cは、導波面であるXY平面の法線を基準として、角度θで上下方向に光を放射しながら伝搬する。図6Aに示す例では、θ=0である。放射光6B1および放射光6C1のうち、上方の反射膜側に向かう成分は、遮光領域9Aの直下では、遮光領域9Aの反射膜で反射され、反射面であるXY平面の法線に沿って下方に向かう光6B2になる。放射光6B1、放射光6C1、および光6B2は、高屈折率透明層12b内で式(1)を満たす。したがって、放射光6B1、放射光6C1、および光6B2の一部が、再び導波光6bおよび導波光6cになる。導波光6bおよび導波光6cは、それぞれ放射光6B1および放射光6C1を新たに生成する。このようにして、同様の過程が繰り返される。全体として、透光領域9aの直下では、導波光にならなかった成分が、光結合層12を透過し、透過光6dとして第1のマイクロレンズ11aに入射し、第1の光検出セル10aによって検出される。実際には、導波の後、最終的に放射される成分もあるが、ここでは導波光にならなかった成分として分類することにする。遮光領域9Aの直下では、導波光になった成分が、放射され、放射光6Dとして第2のマイクロレンズ11Aに入射し、第2の光検出セル10Aによって検出される。 (4) The component that passes through the high refractive index transparent layer 12b and enters the lower layer also enters all the lower layer high refractive index transparent layers 12b. As a result, the guided light 6c is generated under the same conditions as in the equation (1). Thus, guided light is generated in all the high refractive index transparent layers 12b. In FIG. 6A, guided light generated in the two layers is representatively shown. Similarly to the guided light 6b, the guided light 6c propagates in the XY plane in the X direction. The guided light 6b and the guided light 6c propagate while emitting light in the vertical direction at an angle θ with reference to the normal to the XY plane that is the waveguide surface. In the example shown in FIG. 6A, θ = 0. Of the emitted light 6B1 and the emitted light 6C1, the component toward the upper reflective film side is reflected by the reflective film of the light-shielding region 9A immediately below the light-shielding region 9A, and is lowered along the normal line of the XY plane as the reflective surface. It becomes light 6B2 toward. The emitted light 6B1, the emitted light 6C1, and the light 6B2 satisfy Expression (1) in the high refractive index transparent layer 12b. Therefore, part of the emitted light 6B1, the emitted light 6C1, and the light 6B2 becomes the guided light 6b and the guided light 6c again. The guided light 6b and the guided light 6c newly generate radiation light 6B1 and radiation light 6C1, respectively. In this way, a similar process is repeated. As a whole, immediately below the light-transmitting region 9a, a component that did not become guided light is transmitted through the optical coupling layer 12, enters the first microlens 11a as transmitted light 6d, and is transmitted by the first light detection cell 10a. Is detected. Actually, some components are finally radiated after guided, but here, they are classified as components that did not become guided light. Immediately below the light-shielding region 9A, the component that has become the guided light is emitted, enters the second microlens 11A as emitted light 6D, and is detected by the second light detection cell 10A.
 入射光は、透光領域9aを通じて、直下の光検出セルと左右の光検出セルとに分岐する。直下の光検出セルと左右の光検出セルとに分岐した光は、図5Bに示すように、それぞれ信号Pおよび信号Pとして検出される。 The incident light is branched into the light detection cell immediately below and the right and left light detection cells through the light transmitting region 9a. Light branched to the optical detection cell and the left and right optical detecting cell immediately below, as shown in Figure 5B, are detected as a signal P 0 and the signal P 1.
 透光領域9a1から透光領域9a4にそれぞれ対向する4つの光検出セルが、それぞれq1からq4の光量を検出するとする。同様に、遮光領域9A1から遮光領域9A4にそれぞれ対向する4つの光検出セルが、それぞれQ1からQ4の光量を検出するとする。q1からq4は、導波光にならなかった光の検出光量である。Q1からQ4は、導波光になった光の検出光量である。透光領域9a1の直下の光検出セルでは、導波光になった光の光量が検出されない。遮光領域9A2の直下の光検出セルでは、導波光にならなかった光の光量が検出されない。ここで、透光領域9a1の直下の検出位置での導波光になった光の検出光量が、Q0=(Q1+Q2+Q3+Q4)/4またはQ0=(Q1+Q2)/2として定義される。同様に、遮光領域9A2の直下の検出位置での導波光にならなかった光の検出光量が、q0=(q1+q2+q3+q4)/4またはq0=(q1+q2)/2として定義される。すなわち、遮光領域9Aまたは透光領域9aのある領域での検出光量は、当該領域を中心としたX方向および/またはY方向に隣接する領域の直下の検出位置での検出光量の平均値として定義される。この定義をすべての領域に適用することにより、光検出器10に含まれるすべての第1の光検出セル10aおよび第2の光検出セル10Aにおいて、導波光にならなかった光の検出光量と、導波光になった光の検出光量とを定義することができる。 4Suppose that four light detection cells respectively facing the light transmitting regions 9a1 to 9a4 detect the light amounts of q1 to q4, respectively. Similarly, it is assumed that four light detection cells respectively opposing the light shielding area 9A1 to the light shielding area 9A4 detect the light amounts of Q1 to Q4, respectively. q1 to q4 are detected light amounts of light that did not become guided light. Q1 to Q4 are the detected light amounts of the light that has become the guided light. In the light detection cell immediately below the light transmitting region 9a1, the light amount of the light that has become the guided light is not detected. In the light detection cell immediately below the light-shielding region 9A2, the amount of light that did not become guided light is not detected. Here, the detected light amount of the light that has become the guided light at the detection position immediately below the light transmitting region 9a1 is defined as Q0 = (Q1 + Q2 + Q3 + Q4) / 4 or Q0 = (Q1 + Q2) / 2. Similarly, the detected light amount of the light that did not become the guided light at the detection position immediately below the light shielding region 9A2 is defined as q0 = (q1 + q2 + q3 + q4) / 4 or q0 = (q1 + q2) / 2. That is, the amount of light detected in a region including the light-shielding region 9A or the light-transmitting region 9a is defined as an average value of the amount of light detected at a detection position immediately below a region adjacent to the region in the X direction and / or the Y direction. Is done. By applying this definition to all the regions, in all the first photodetection cells 10a and the second photodetection cells 10A included in the photodetector 10, the detected light amount of the light that did not become the guided light, The detected light amount of the light that has become the guided light can be defined.
 演算回路14は、例えば、以下の第1から第3の演算処理を行う。第1の演算処理では、光検出器10に含まれるすべての光検出セルにおいて、導波光にならなかった光の検出光量と、導波光になった光の検出光量とが上記のように定義される。第2の演算処理では、これらの比の値、またはこれらの光量和を基準とする各光量の比の値が、光検出セルごとに算出される。第3の演算処理では、算出された当該比の値を各光検出セルに相当する画素に割り当てることにより、画像が生成される。ある領域内での検出値の平均値、標準偏差値、またはそれらを組み合わせた演算値は、対象物4内部の屈折率、吸収係数、または散乱係数などの光学定数の分布状況を反映している。したがって、光源2から出射される光のコヒーレンス長などをパラメータとして、対象物4の内部の情報を検出することができる。 The arithmetic circuit 14 performs, for example, the following first to third arithmetic processing. In the first arithmetic processing, the detected light amounts of the light that did not become the guided light and the detected light amounts of the light that became the guided light in all the light detection cells included in the photodetector 10 are defined as described above. You. In the second arithmetic processing, the value of these ratios or the value of the ratio of each light amount based on the sum of these light amounts is calculated for each photodetection cell. In the third arithmetic processing, an image is generated by assigning the calculated value of the ratio to a pixel corresponding to each light detection cell. The average value, the standard deviation value of the detection values within a certain area, or the calculated value obtained by combining them, reflects the distribution of optical constants such as the refractive index, absorption coefficient, or scattering coefficient inside the object 4. . Therefore, information inside the object 4 can be detected using the coherence length of light emitted from the light source 2 as a parameter.
 図7Aは、対象物4を位相段差板16としたときの、光学構成を模式的に示す断面図である。当該光学構成は、段差像の検出システムである。図7Aに示す例では、光源2から出射される直線偏光の光は、コリメートレンズ18によって平行光になる。当該平行光の偏光方向は、1/2波長板15によって調整される。偏光方向が調整された当該平行光は、ステップ状の段差が形成された位相段差板16を透過する。当該透過光は、テレセントリックレンズ7によって拡大または縮小された光5になる。光5は、透明基板9b上に形成された光検出装置13に垂直に入射する。図7Aに示す例では、光検出装置13内の光結合層12を透過した直後の像が、光検出器10ではなく顕微鏡17によって観察される。 FIG. 7A is a cross-sectional view schematically illustrating an optical configuration when the object 4 is the phase step plate 16. The optical configuration is a step image detection system. In the example shown in FIG. 7A, the linearly polarized light emitted from the light source 2 is converted into parallel light by the collimator lens 18. The polarization direction of the parallel light is adjusted by the half-wave plate 15. The parallel light whose polarization direction has been adjusted passes through the phase plate 16 having a step-like step. The transmitted light becomes light 5 enlarged or reduced by the telecentric lens 7. The light 5 is vertically incident on the photodetector 13 formed on the transparent substrate 9b. In the example shown in FIG. 7A, an image immediately after passing through the light coupling layer 12 in the light detection device 13 is observed by the microscope 17 instead of the light detector 10.
 図7Bおよび図7Cは、それぞれ、1m以上の長いコヒーレンス長の光が入射したときの、TEモードおよびTMモードの観察像を示す図である。図7Dおよび図7Eは、それぞれ、30μm程度の短いコヒーレンス長の光が入射したときの、TEモードおよびTMモードの観察像を示す図である。図7Bおよび図7Dに示す例では、TEモードの導波光の励起条件が満たされている。TEモードでは、光5の偏光方向は、Y方向に平行である。図7Cおよび図7Eに示す例では、TMモードの導波光の励起条件が満たされている。TMモードでは、光5の偏光方向は、X方向に平行である。 FIGS. 7B and 7C are views showing observation images of the TE mode and the TM mode when light having a long coherence length of 1 m or more is incident, respectively. FIGS. 7D and 7E are views showing observation images of the TE mode and the TM mode when light having a short coherence length of about 30 μm is incident, respectively. In the examples shown in FIGS. 7B and 7D, the excitation condition of the guided light in the TE mode is satisfied. In the TE mode, the polarization direction of the light 5 is parallel to the Y direction. In the example shown in FIGS. 7C and 7E, the condition for exciting the guided light in the TM mode is satisfied. In the TM mode, the polarization direction of the light 5 is parallel to the X direction.
 図7Bから図7Eに示す例では、観察像は、検出光量q0=(q1+q2)/2の関係式によって処理されている。図7Bから図7Eに示す例では、グレーティング12dの格子ベクトルは、X方向に平行である。図7Bから図7Eに示す例では、位相段差に相当する位置が破線で示されている。Y方向に沿って位相段差が存在する位置では、検出光量の減少により、観察像が暗くなり、暗線が形成される。Y方向は、グレーティング12dの格子ベクトルに直交する方向である。 In the examples shown in FIGS. 7B to 7E, the observed image is processed by the relational expression of the detected light quantity q0 = (q1 + q2) / 2. In the example shown in FIGS. 7B to 7E, the grating vector of the grating 12d is parallel to the X direction. In the examples shown in FIGS. 7B to 7E, the positions corresponding to the phase steps are indicated by broken lines. At a position where a phase difference exists along the Y direction, the observation image becomes dark due to a decrease in the detected light amount, and a dark line is formed. The Y direction is a direction orthogonal to the grating vector of the grating 12d.
 図7Cに示す例では、図7Bに示す例と異なり、観察像の暗線はX方向に広がり、暗線と段差位置との関係が不鮮明になる。図7Cに示すように暗線の幅が広がる理由は、以下の通りである。TMモードの導波光の放射損失係数は、TEモードの導波光の放射損失係数よりも小さく、1/3から1/4程度になる。そのため、TMモードの導波光は、放射されずに長い距離を伝搬することができる。これにより、導波光は、複数の画素をまたいで伝搬する。その結果、画素間の検出信号のクロストークが増大する。光源2から出射される光のコヒーレンス長を短くすると、遠い位置で入射し伝搬する導波光は、検出位置の近傍で入射する導波光と干渉しにくくなる。これにより、光の干渉が、検出位置の近傍で入射する導波光だけに絞られる。その結果、画素間の検出信号のクロストークは低減する。したがって、図7Dおよび図7Eに示すように、暗線は細くなり、観察像が鮮明になる。以上から、従来の光検出装置13では、位相段差板16の位相差像を鮮明に検出することができる。 In the example shown in FIG. 7C, unlike the example shown in FIG. 7B, the dark line of the observed image spreads in the X direction, and the relationship between the dark line and the step position becomes unclear. The reason why the width of the dark line is increased as shown in FIG. 7C is as follows. The radiation loss coefficient of the guided light in the TM mode is smaller than the radiation loss coefficient of the guided light in the TE mode, and is about 1/3 to 1/4. Therefore, the guided light of the TM mode can propagate a long distance without being radiated. Thus, the guided light propagates across a plurality of pixels. As a result, crosstalk of the detection signal between pixels increases. When the coherence length of the light emitted from the light source 2 is reduced, guided light that enters and propagates at a distant position is less likely to interfere with guided light that enters near the detection position. Thereby, light interference is limited to only guided light incident near the detection position. As a result, crosstalk of the detection signal between pixels is reduced. Therefore, as shown in FIGS. 7D and 7E, the dark line becomes thinner, and the observed image becomes clearer. As described above, the conventional photodetector 13 can clearly detect the phase difference image of the phase difference plate 16.
 図8は、1m以上の長いコヒーレンス長の光が入射したときの、様々な深さの位相段差板16を測定して得られた、位相段差量dと変調度信号P/(P+P)との関係を示す図である。位相段差板16には、段差加工された石英ガラス板が用いられた。実線および破線は、それぞれTEモードおよびTMモードの理論値を表す。丸印および三角印は、それぞれTEモードおよびTMモードの実験値を表す。図8に示すように、位相段差量dに応じて、変調度信号P/(P+P)が正弦波状に変化することが分かる。したがって、変調度信号P/(P+P)を計測することにより、対象物4の位相差の情報を取得することができる。 FIG. 8 shows a phase difference d and a modulation degree signal P 1 / (P 1 + P) obtained by measuring phase steps 16 having various depths when light having a long coherence length of 1 m or more is incident. 0) is a diagram showing the relationship between. A stepped quartz glass plate was used for the phase difference plate 16. A solid line and a broken line represent theoretical values of the TE mode and the TM mode, respectively. Circles and triangles represent experimental values in the TE mode and the TM mode, respectively. As shown in FIG. 8, it can be seen that the modulation degree signal P 1 / (P 1 + P 0 ) changes sinusoidally according to the phase step amount d. Therefore, by measuring the modulation degree signal P 1 / (P 1 + P 0 ), information on the phase difference of the object 4 can be obtained.
 次に、TMモードの導波光の放射損失係数がTEモードの導波光の放射損失係数よりも小さい理由を説明する。図6Aに示す高屈折率透明層12bと低屈折率透明層12aとの界面、および高屈折率透明層12bと低屈折率透明層12cとの界面では、TMモードの導波光はP波であり、TEモードの導波光はS波である。高屈折率透明層12bはコアに相当し、低屈折率透明層12aおよび低屈折率透明層12cは、クラッドに相当する。P波であるTMモードの導波光は、S波であるTEモードの導波光よりも導波路界面を透過しやすく、クラッド側へのしみ込み量であるエバネッセント成分が大きくなる。これにより、TMモードではエバネッセント光と、グレーティング12dによって屈折率が変調された領域とのオーバーラップが小さくなり、その結果、TMモードの導波光の放射損失係数は小さくなる。したがって、TMモードの導波光の導波距離は、TEモードの導波光の導波距離よりも長い。 Next, the reason why the radiation loss coefficient of the guided light in the TM mode is smaller than the radiation loss coefficient of the guided light in the TE mode will be described. At the interface between the high-refractive-index transparent layer 12b and the low-refractive-index transparent layer 12a and the interface between the high-refractive-index transparent layer 12b and the low-refractive-index transparent layer 12c shown in FIG. 6A, the TM mode guided light is a P-wave. , TE-mode guided light is an S-wave. The high refractive index transparent layer 12b corresponds to a core, and the low refractive index transparent layer 12a and the low refractive index transparent layer 12c correspond to a clad. The guided light of the TM mode as the P wave is more easily transmitted through the waveguide interface than the guided light of the TE mode as the S wave, and the evanescent component, which is the amount of penetration into the clad side, is increased. Thus, in the TM mode, the overlap between the evanescent light and the region where the refractive index is modulated by the grating 12d is reduced, and as a result, the radiation loss coefficient of the guided light in the TM mode is reduced. Therefore, the guided distance of the guided light in the TM mode is longer than the guided distance of the guided light in the TE mode.
 図7Bおよび図7Cに示すように、TEモードでは、TMモードよりも、観察像の明暗パターンが鮮明である。TEモードでは、導波光の導波距離が短いことから、2画素以上離れた位置で入射して検出画素位置まで伝搬する導波光の干渉性(すなわち、検出信号に与える影響)が、隣接画素で入射して検出画素位置まで伝播する導波光による干渉性より小さくなる。その結果、画素間の検出信号のクロストークが小さくなる。したがって、TEモードでは、TMモードよりも、観察像の明暗パターンが鮮明である。 BAs shown in FIGS. 7B and 7C, the light and dark patterns of the observed image are clearer in the TE mode than in the TM mode. In the TE mode, since the guided distance of the guided light is short, the coherence (that is, the influence on the detection signal) of the guided light that enters at a position separated by two or more pixels and propagates to the position of the detection pixel is not affected by the adjacent pixels. It becomes smaller than the coherence due to the guided light that enters and propagates to the detection pixel position. As a result, crosstalk of the detection signal between pixels is reduced. Therefore, the bright and dark pattern of the observed image is clearer in the TE mode than in the TM mode.
 光源2から出射される光のコヒーレンス長を短くすると、光の干渉性が小さくなる。これにより、2画素以上離れた位置で入射して検出画素位置まで伝搬する導波光の干渉性(すなわち、検出信号に与える影響)が、隣接画素で入射して検出画素位置まで伝搬する導波光の干渉性よりも小さくなる。その結果、画素間の検出信号のクロストークが小さくなる。したがって、図7Eに示すように、TMモードであっても、観察像の明暗パターンが鮮明になる。 (4) When the coherence length of the light emitted from the light source 2 is reduced, the coherence of the light decreases. Accordingly, the coherence (that is, the effect on the detection signal) of the guided light that is incident at two or more pixels apart and propagates to the detection pixel position is changed by the guided light that is incident on the adjacent pixel and propagates to the detection pixel position. It becomes smaller than coherence. As a result, crosstalk of the detection signal between pixels is reduced. Therefore, as shown in FIG. 7E, even in the TM mode, the bright and dark pattern of the observed image becomes clear.
 上記のように、従来の光検出装置では、導波光のコヒーレンス長が長い場合、図7Cに示すように、TMモードでの観察像の明暗パターンが不鮮明になる。また、従来の光検出装置では、図7Bから図7Eに示すように、グレーティングの格子ベクトルに平行なX方向に沿った位相段差は検出されない。これらの点において、従来の光検出装置には改善の余地があった。 As described above, in the conventional photodetector, when the coherence length of the guided light is long, the bright and dark pattern of the observed image in the TM mode becomes unclear as shown in FIG. 7C. Further, in the conventional photodetector, as shown in FIGS. 7B to 7E, a phase step along the X direction parallel to the grating vector of the grating is not detected. In these respects, the conventional photodetector has room for improvement.
 本発明者らは、以上の検討に基づき、以下の項目に記載の光検出装置に想到した。 Based on the above study, the present inventors have conceived of a photodetector described in the following items.
 [項目1]
 本開示の項目1に係る光検出装置は、第1の方向、および前記第1の方向に交差する第2の方向に交互に配置された複数の透光領域および複数の遮光領域を含む遮光膜と、撮像面を有し、前記撮像面上に配列された複数の第1の光検出セルおよび複数の第2の光検出セルを含む光検出器と、前記複数の透光領域に光が入射したときに、前記光の一部を前記第1の方向および前記第2の方向に伝搬させるグレーティングを含み、前記遮光膜と前記光検出器との間に位置する光結合層と、を備える。
[Item 1]
The light detection device according to item 1 of the present disclosure is a light shielding film including a plurality of light transmitting regions and a plurality of light shielding regions alternately arranged in a first direction and a second direction intersecting the first direction. A photodetector having an imaging surface and including a plurality of first photodetection cells and a plurality of second photodetection cells arranged on the imaging surface; and light incident on the plurality of translucent regions. And a light coupling layer located between the light shielding film and the photodetector, the grating including a grating for transmitting a part of the light in the first direction and the second direction.
 [項目2]
 項目1に記載の光検出装置において、前記複数の第1の光検出セルの各々は、前記複数の透光領域の1つに対応し、前記複数の第2の光検出セルの各々は、前記複数の遮光領域の1つに対応してもよい。
[Item 2]
In the photodetection device according to item 1, each of the plurality of first photodetection cells corresponds to one of the plurality of translucent regions, and each of the plurality of second photodetection cells is It may correspond to one of the plurality of light shielding regions.
 [項目3]
 項目1に記載の光検出装置において、前記光結合層は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、前記グレーティングは、前記第1の誘電体層と前記第2の誘電体層との間に配置されていてもよい。
[Item 3]
2. The photodetector according to item 1, wherein the optical coupling layer includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a second dielectric layer on the second dielectric layer. 3, wherein the refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer. It may be arranged between the first dielectric layer and the second dielectric layer.
 [項目4]
 項目1に記載の光検出装置において、前記光結合層は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、前記グレーティングは、前記第2の誘電体層と前記第3の誘電体層との間に配置されていてもよい。
[Item 4]
2. The photodetector according to item 1, wherein the optical coupling layer includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a second dielectric layer on the second dielectric layer. 3, wherein the refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer. It may be arranged between the second dielectric layer and the third dielectric layer.
 [項目5]
 項目1に記載の光検出装置において、前記光結合層は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、前記グレーティングは、前記第1の誘電体層と前記第2の誘電体層との間、および前記第2の誘電体層と前記第3の誘電体層との間に配置されていてもよい。
[Item 5]
2. The photodetector according to item 1, wherein the optical coupling layer includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a second dielectric layer on the second dielectric layer. 3, wherein the refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer. It may be arranged between a first dielectric layer and the second dielectric layer, and between the second dielectric layer and the third dielectric layer.
 [項目6]
 項目1から5のいずれかに記載の光検出装置において、平面視において、前記グレーティングは、同心円または同心多角形の形状を有してもよい。
[Item 6]
6. The photodetector according to any one of items 1 to 5, wherein the grating has a concentric circle or a concentric polygonal shape in a plan view.
 [項目7]
 本開示の項目7に係る光検出システムは、項目1から6のいずれかに記載の光検出装置と、前記複数の第1の光検出セルから得られる複数の第1の信号と、前記複数の第2の光検出セルから得られる複数の第2の信号とに基づいて、前記複数の第1の光検出セルおよび前記複数の第2の光検出セルの各々の位置に入射した光のコヒーレンスを示す信号を生成し出力する演算回路と、を備える。
[Item 7]
The light detection system according to Item 7 of the present disclosure includes the light detection device according to any one of Items 1 to 6, a plurality of first signals obtained from the plurality of first light detection cells, Based on the plurality of second signals obtained from the second light detection cells, the coherence of light incident on each of the positions of the plurality of first light detection cells and the plurality of second light detection cells is determined. And an arithmetic circuit for generating and outputting the signal shown.
 [項目8]
 項目7に記載の光検出システムにおいて、前記複数の第1の光検出セルの各々から得られる信号をPとし、前記複数の第2の光検出セルの各々から得られる信号をPとし、前記複数の第2の光検出セルのうち、前記複数の第1の光検出セルの各々を中心として、前記第1の方向と同じ方向に隣接する第2の光検出セルから得られる第1の信号、前記第1の方向と反対の方向に隣接する第2の光検出セルから得られる第2の信号、前記第2の方向と同じ方向に隣接する第2の光検出セルから得られる第3の信号、および前記第2の方向と反対の方向に隣接する第2の光検出セルから得られる第4の信号の平均値をP’とし、前記複数の第1の光検出セルのうち、前記複数の第2の光検出セルを中心として、前記第1の方向と同じ方向に隣接する第1の光検出セルから得られる第5の信号、前記第1の方向と反対の方向に隣接する第1の光検出セルから得られる第6の信号、前記第2の方向と同じ方向に隣接する第1の光検出セルから得られる第7の信号、および前記第2の方向と反対の方向に隣接する第1の光検出セルから得られる第8の信号の平均値をP’とするとき、前記演算回路は、P’/(P+P’)またはP’/Pの演算によって得られる信号を、前記複数の第1の光検出セルの各々に入射した光のコヒーレンスを示す信号として生成し、P/(P’+P)またはP/P’の演算によって得られる信号を、前記複数の第2の光検出セルの各々に入射した光のコヒーレンスを示す信号として生成してもよい。
[Item 8]
In the optical detection system of claim 7, the signals obtained from each of the plurality of first light detection cell is P 0, the signals obtained from each of the plurality of second light detection cell is P 1, Of the plurality of second light detection cells, a first light detection cell obtained from a second light detection cell adjacent in the same direction as the first direction around each of the plurality of first light detection cells. A signal, a second signal obtained from a second light detection cell adjacent in a direction opposite to the first direction, and a third signal obtained from a second light detection cell adjacent in the same direction as the second direction. And the average value of a fourth signal obtained from a second light detection cell adjacent in the direction opposite to the second direction is P 1 ′, and among the plurality of first light detection cells, Around the plurality of second light detection cells, in the same direction as the first direction. A fifth signal obtained from the contacting first light detection cell, a sixth signal obtained from the first light detection cell adjacent in the direction opposite to the first direction, in the same direction as the second direction; The average value of the seventh signal obtained from the adjacent first light detection cell and the average value of the eighth signal obtained from the first light detection cell adjacent in the direction opposite to the second direction is P 0 ′. When performing the above, the arithmetic circuit converts the signal obtained by the operation of P 1 ′ / (P 0 + P 1 ′) or P 1 ′ / P 0 into the light incident on each of the plurality of first light detection cells. A signal that is generated as a signal indicating coherence, and a signal obtained by an operation of P 1 / (P 0 ′ + P 1 ) or P 1 / P 0 ′ is converted into a coherence of light incident on each of the plurality of second photodetection cells. May be generated as a signal indicating
 上記の項目に記載の光検出装置では、光は、導波面内で光の入力位置を中心に拡散するように伝搬する。このような伝搬により、導波光の光量が、伝搬距離に反比例して小さくなる。これにより、2画素以上離れた位置で入射して検出画素位置まで伝搬する導波光の干渉性(すなわち、検出信号に与える影響)も、伝搬距離に反比例して小さくなる。さらに、画素間の検出信号のクロストークも、小さくなる。したがって、導波距離の長いTMモードの導波光であっても、画素間の検出信号のクロストークは小さくなる。以上から、どのような光源を用いても、例えば段差位置の間隔などの位相段差の形状に関係なく、位相差像を鮮明にすることができると考えられる。 (4) In the photodetector described in the above item, the light propagates so as to diffuse around the light input position in the waveguide plane. With such propagation, the amount of guided light decreases in inverse proportion to the propagation distance. Accordingly, the coherence (that is, the influence on the detection signal) of the guided light that is incident at a position separated by two or more pixels and propagates to the detection pixel position also decreases in inverse proportion to the propagation distance. Further, the crosstalk of the detection signal between pixels is reduced. Therefore, even in the case of TM mode guided light having a long guided distance, crosstalk of a detection signal between pixels is reduced. From the above, it is considered that the phase difference image can be sharpened regardless of the shape of the phase step, such as the interval between the step positions, using any light source.
 以下において説明する実施形態は、いずれも包括的又は具体的な例を示すものである。以下の実施形態において示される数値、形状、材料、構成要素、構成要素の配置位置などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 実 施 Each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions of constituent elements, and the like shown in the following embodiments are merely examples, and do not limit the present disclosure. In addition, among the components in the following embodiments, components not described in the independent claims indicating the highest concept are described as arbitrary components.
 本開示において、回路、ユニット、装置、部材又は部の全部又は一部、又はブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(large scale integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、1つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、1つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、若しくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In this disclosure, all or a part of a circuit, a unit, a device, a member, or a part, or all or a part of a functional block in a block diagram is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (large scale integration). It may be performed by one or more electronic circuits, including: The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, functional blocks other than the storage element may be integrated on one chip. Here, the term is referred to as an LSI or an IC, but the term is changed depending on the degree of integration, and may be referred to as a system LSI, a VLSI (very large scale integration), or a ULSI (ultra large scale integration). A Field Programmable Gate Array (FPGA), which is programmed after the manufacture of the LSI, or a reconfigurable logic device capable of reconfiguring a bonding relationship inside the LSI or setting up a circuit section inside the LSI can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウエア処理によって実行することが可能である。この場合、ソフトウエアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウエアが処理装置(processor)によって実行されたときに、そのソフトウエアで特定された機能が処理装置(processor)および周辺装置によって実行される。システム又は装置は、ソフトウエアが記録されている一つ又は複数の非一時的記録媒体、処理装置(processor)、及び必要とされるハードウエアデバイス、例えばインタフェース、を備えていても良い。 Furthermore, all or some of the functions or operations of the circuits, units, devices, members or units can be executed by software processing. In this case, the software is recorded on one or more non-transitory recording media such as a ROM, an optical disk, a hard disk drive, etc., and is specified by the software when the software is executed by a processor. The functions performed are performed by a processor and peripheral devices. The system or apparatus may include one or more non-transitory storage media on which the software is recorded, a processor, and any required hardware devices, such as an interface.
 以下、図面を参照しながら、本実施形態を具体的に説明する。 Hereinafter, the present embodiment will be specifically described with reference to the drawings.
 (実施形態)
 本実施形態では、グレーティング12dの形状が異なる以外は、すべて前述した従来の光検出装置の構成と同じである。したがって、図5Aから図6Bに示す例と共通する要素には同じ番号を振り、詳しい説明は省略する。
(Embodiment)
In the present embodiment, the configuration is the same as that of the above-described conventional photodetector except that the shape of the grating 12d is different. Therefore, elements common to the examples shown in FIGS. 5A to 6B are assigned the same numbers, and detailed descriptions thereof are omitted.
 図1は、本実施形態における光検出システム100の例を模式的に示す図である。光検出システム100は、光源2と、光検出装置13と、制御回路1と、演算回路14と、を備える。 FIG. 1 is a diagram schematically illustrating an example of a light detection system 100 according to the present embodiment. The light detection system 100 includes a light source 2, a light detection device 13, a control circuit 1, and an arithmetic circuit 14.
 光源2は、一定のコヒーレンス長の光で対象物4を照射する。その際、対象物4の表面または対象物4内で、散乱光5aおよび散乱光5Aが発生する。散乱光5aおよび散乱光5Aのうち、光検出装置13の入射面に垂直な成分が、光検出装置13に入射する光5になる。当該光5が形成する像8bに対応して、対象物4側には実質的な物体8aが存在する。物体8aは、物点の集まりである。 (4) The light source 2 irradiates the object 4 with light having a constant coherence length. At this time, scattered light 5a and scattered light 5A are generated on the surface of the object 4 or within the object 4. Of the scattered light 5a and the scattered light 5A, a component perpendicular to the incident surface of the light detection device 13 becomes the light 5 incident on the light detection device 13. A substantial object 8a exists on the object 4 side corresponding to the image 8b formed by the light 5. The object 8a is a collection of object points.
 光検出装置13の構成は、前述した従来の光検出装置の構成と同じである。すなわち、光検出装置13は、光検出器10と、光結合層12と、遮光膜9と、をこの順に備える。図6Aに説明したように、光結合層12は、光検出器10上に配置されている。光結合層12は、光検出器10の面直方向において、低屈折率透明層12c、高屈折率透明層12b、および低屈折率透明層12aをこの順に備える。その他の構成は、すべて図6Aに示す例と同じである。したがって、詳しい説明は省略する。 構成 The configuration of the photodetector 13 is the same as the configuration of the above-described conventional photodetector. That is, the light detection device 13 includes the light detector 10, the light coupling layer 12, and the light shielding film 9 in this order. As described in FIG. 6A, the optical coupling layer 12 is disposed on the photodetector 10. The optical coupling layer 12 includes a low-refractive-index transparent layer 12c, a high-refractive-index transparent layer 12b, and a low-refractive-index transparent layer 12a in this order in a direction perpendicular to the surface of the photodetector 10. All other configurations are the same as the example shown in FIG. 6A. Therefore, detailed description is omitted.
 図2Aは、本実施形態における光検出装置13の例での、対象物4と、1つの透光領域9aに入射する光6aの伝搬とを模式的に示す図である。図2Bは、本実施形態における光検出装置13の例での、1つの透光領域9aに入射する光の伝搬を模式的に示す斜視図である。図2Cは、光の入射側から見たときの、本実施形態における光検出装置13の例を模式的に示す平面図である。 FIG. 2A is a diagram schematically showing the object 4 and the propagation of light 6a incident on one translucent area 9a in the example of the photodetector 13 in the present embodiment. FIG. 2B is a perspective view schematically showing propagation of light incident on one light transmitting region 9a in the example of the photodetecting device 13 in the present embodiment. FIG. 2C is a plan view schematically illustrating an example of the light detection device 13 in the present embodiment when viewed from the light incident side.
 図2Aに示す例では、対象物4内で散乱した光の一部は、光検出装置13に垂直に入射する光5になる。当該光5は、反射膜が形成された遮光領域9Aでは、光6Aとして入射し、反射膜の除去された透光領域9aでは、光6aとして入射する。光6Aは、遮光領域9Aによって遮光される。光6aは、透光領域9aを透過し、光結合層12に入射する。光結合層12に入射した光6aは、低屈折率透明層12aを経て、高屈折率透明層12bに入射する。高屈折率透明層12bの上下の界面にはグレーティング12dが形成される。本実施形態におけるグレーティング12dは、図2Bおよび図2Cに示すように、複数の透光領域9aの各々、および複数の遮光領域9Aの各々の真中の点を中心とする同心円の形状を有する。グレーティング12dのピッチΛが式(1)を満たせば、入射した光6aのうち、一部は導波光6bを発生し、残りは透過光6dとして透過する。言い換えれば、グレーティング12dは、複数の透光領域9aに所定の波長の光が入射したときに、当該光の一部をX方向およびY方向に伝搬させる。本実施形態では、光6aは、入射面に垂直に入射する。したがって、θ=0である。導波光6bは、透光領域9aの中心から外周側に向かって全方向に伝搬する。面内で拡散する伝搬であることから、伝搬長は短い。したがって、光源2から出射される光のコヒーレンス長に関係なく、画素間の検出信号のクロストークは小さい。さらに、全方向の伝搬であることから、位相段差の形状に関係なく、X方向、およびY方向の位相差を同時に検出することができる。遮光領域9Aの直下では、導波光6bの一部が放出される。導波光6bの当該一部は、遮光領域9Aの反射膜での反射と重なって放射光6Dになる。その他の動作はすべて図6A及び図6Bに示す例と同じである。したがって、詳しい説明は省略する。 In the example shown in FIG. 2A, a part of the light scattered in the object 4 becomes the light 5 that is incident perpendicularly to the light detection device 13. The light 5 is incident as light 6A in the light-shielding region 9A on which the reflective film is formed, and is incident as light 6a in the light-transmitting region 9a from which the reflective film is removed. The light 6A is blocked by the light blocking region 9A. The light 6a transmits through the light transmitting region 9a and enters the optical coupling layer 12. Light 6a incident on the optical coupling layer 12 is incident on the high refractive index transparent layer 12b via the low refractive index transparent layer 12a. A grating 12d is formed on the upper and lower interfaces of the high refractive index transparent layer 12b. As shown in FIGS. 2B and 2C, the grating 12d in the present embodiment has a concentric shape centered on the center of each of the plurality of light-transmitting regions 9a and each of the plurality of light-shielding regions 9A. If the pitch の of the grating 12d satisfies the formula (1), a part of the incident light 6a generates the guided light 6b, and the rest is transmitted as the transmitted light 6d. In other words, when light having a predetermined wavelength is incident on the plurality of light transmitting regions 9a, the grating 12d propagates a part of the light in the X direction and the Y direction. In the present embodiment, the light 6a is perpendicularly incident on the incident surface. Therefore, θ = 0. The guided light 6b propagates in all directions from the center of the light transmitting region 9a toward the outer periphery. The propagation length is short because the propagation is spread in the plane. Therefore, regardless of the coherence length of the light emitted from the light source 2, the crosstalk of the detection signal between pixels is small. Further, since the propagation is in all directions, the phase difference in the X direction and the Y direction can be simultaneously detected regardless of the shape of the phase step. Immediately below the light shielding region 9A, a part of the guided light 6b is emitted. The part of the guided light 6b overlaps with the reflection of the light-shielding region 9A on the reflection film to become the emitted light 6D. All other operations are the same as in the example shown in FIGS. 6A and 6B. Therefore, detailed description is omitted.
 次に、演算回路14の演算処理を説明する。 Next, the arithmetic processing of the arithmetic circuit 14 will be described.
 演算回路14は、演算処理により、複数の第1の光検出セル10aおよび複数の第2の光検出セル10Aの各々の位置に入射した光のコヒーレンスあるいは位相の干渉性を示す信号を出力する。当該演算処理には、複数の第1の光検出セル10aから得られる複数の信号と、複数の第2の光検出セル10Aから得られる複数の信号とが用いられる。 The arithmetic circuit 14 outputs a signal indicating the coherence or phase coherence of the light incident on each of the positions of the plurality of first photodetecting cells 10a and the plurality of second photodetecting cells 10A by the arithmetic processing. In the arithmetic processing, a plurality of signals obtained from the plurality of first light detection cells 10a and a plurality of signals obtained from the plurality of second light detection cells 10A are used.
 図3Aは、複数の透光領域9aおよび複数の遮光領域9Aの各々に対応する検出信号の配置を模式的に示す図である。Pは、透光領域9aの直下の第1の光検出セル10aによって検出される光量を表す。Pは、遮光領域9Aの直下の第2の光検出セル10Aによって検出される光量を表す。言い換えれば、Pは、複数の第1の光検出セル10aの各々から得られた生信号であり、Pは、複数の第2の光検出セル10Aの各々から得られた生信号である。生信号とは、検出されたままの信号を意味する。PおよびPは、XY平面上でiおよびjの添数順に並んでいる。以下の式(2)に基づいて、図3Aに示すX方向およびY方向に隣接する4つの生信号Pから、それらの中心にある透光領域9aの直下に対応する補間信号P’が生成される。 FIG. 3A is a diagram schematically illustrating an arrangement of detection signals corresponding to each of the plurality of light-transmitting regions 9a and the plurality of light-shielding regions 9A. P 0 denotes the amount of light detected by the first light detecting cell 10a immediately below the light-transmitting region 9a. P 1 represents the amount of light detected by the second light detecting cell 10A immediately below the light-shielding region 9A. In other words, P 0 is a raw signal obtained from each of the plurality of first light detection cells 10a, and P 1 is a raw signal obtained from each of the plurality of second light detection cells 10A. . Raw signal means a signal as detected. P 0 and P 1 are arranged in the order of indices i and j on the XY plane. Based on the following equation (2), from the four raw signal P 1 adjacent to the X and Y directions shown in FIG. 3A, the interpolation signal P '1 corresponding to right under the light-transmitting region 9a in their center Generated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 P’は、複数の第2の光検出セル10Aのうち、複数の第1の光検出セル10aの各々を中心として、X方向およびY方向において隣接する4つの第2の光検出セル10Aから得られる4つの生信号の平均値である。 P ′ 1 is from four second light detection cells 10A adjacent in the X and Y directions around each of the plurality of first light detection cells 10a among the plurality of second light detection cells 10A. It is the average value of the four raw signals obtained.
 同様に、以下の式(3)に基づいて、図3Aに示すように、X方向およびY方向に隣接する4つの生信号Pから、それらの中心にある遮光領域9Aの直下に対応する補間信号P’が生成される。 Similarly, based on the following equation (3), as shown in FIG. 3A, four raw signal P 0 adjacent to X and Y directions, the interpolation corresponding to the right under the light-shielding region 9A in their center signal P '0 is generated.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 P’は、複数の第1の光検出セル10aのうち、複数の第2の光検出セル10Aの各々を中心として、X方向およびY方向において隣接する4つの第1の光検出セル10aから得られる4つの生信号の平均値である。 P 0 ′ is from four first light detection cells 10 a adjacent in the X direction and the Y direction around each of the plurality of second light detection cells 10 A among the plurality of first light detection cells 10 a. It is the average value of the four raw signals obtained.
 図3Bは、図3Aに示す太線によって囲まれた領域での変調度信号の生成までの流れを説明する図である。 FIG. 3B is a diagram illustrating a flow up to generation of a modulation factor signal in a region surrounded by the thick line shown in FIG. 3A.
 式(2)の補間により、すべての透光領域9aの直下で生信号Pおよび補間信号P’が生成される。演算回路14は、P’/(P+P’)の演算によって得られる変調度信号を、複数の第1の光検出セル10aの各々に入射した光のコヒーレンスあるいは位相の干渉性を示す信号として生成する。変調度信号を、P’/Pの演算によって得てもよい。 By the interpolation of the expression (2), the raw signal P 0 and the interpolation signal P ′ 1 are generated immediately below all the translucent regions 9 a. The arithmetic circuit 14 uses the modulation degree signal obtained by the arithmetic operation of P ′ 1 / (P 0 + P ′ 1 ) to indicate the coherence or phase coherence of the light incident on each of the plurality of first photodetection cells 10 a. Generate as a signal. The modulation degree signal may be obtained by calculating P ′ 1 / P 0 .
 同様に、式(3)の補間により、すべての遮光領域9Aの直下で生信号Pおよび補間信号P’が生成される。演算回路14は、P/(P’+P)の演算によって得られる変調度信号を、複数の第2の光検出セル10Aの各々に入射した光のコヒーレンスあるいは位相の干渉性を示す信号として生成する。変調度信号を、P/P’の演算によって得てもよい。 Similarly, by interpolation of Equation (3), the raw signal P 1 and the interpolation signal P '0 directly below all of the light shielding region 9A is generated. The arithmetic circuit 14 converts the modulation degree signal obtained by the calculation of P 1 / (P 0 ′ + P 1 ) into a signal indicating the coherence or phase coherence of the light incident on each of the plurality of second photodetection cells 10A. Generate as The modulation signal may be obtained by calculation of P 1 / P '0.
 本実施形態におけるグレーティング12dの形状を用いることにより、導波光6bは、X方向およびY方向に伝搬し、それぞれの方向にある構造内で干渉する。図3Bに示す演算法を用いることにより、2方向における対象物4の位相差像を検出することができる。これにより、任意の形状の位相段差を有する対象物4の位相差像を検出することができる。さらに、導波光6bは面内で拡散する伝搬であることから、光源2から出射される光のコヒーレンス長に関係なく、画素間の検出信号のクロストークを小さくすることができる。したがって、位相段差の形状に関係なく、鮮明な位相差像を検出することができる。 こ と By using the shape of the grating 12d in the present embodiment, the guided light 6b propagates in the X direction and the Y direction and interferes in the structures in the respective directions. By using the calculation method shown in FIG. 3B, the phase difference images of the object 4 in two directions can be detected. This makes it possible to detect a phase difference image of the object 4 having a phase step having an arbitrary shape. Furthermore, since the guided light 6b propagates in a plane, the crosstalk of the detection signal between pixels can be reduced regardless of the coherence length of the light emitted from the light source 2. Therefore, a clear phase difference image can be detected regardless of the shape of the phase step.
 次に、本実施形態における光検出装置13の変形例を説明する。 Next, a modified example of the photodetector 13 according to the present embodiment will be described.
 図4Aは、本実施形態における光検出装置13の第1の変形例での、1つの透光領域9aに入射する光6aの伝搬を模式的に示す斜視図である。図4Bは、光の入射側から見たときの、本実施形態における光検出装置13の第1の変形例を模式的に示す平面図である。 FIG. 4A is a perspective view schematically showing propagation of light 6a incident on one translucent region 9a in a first modification of the photodetector 13 in the present embodiment. FIG. 4B is a plan view schematically showing a first modified example of the light detection device 13 in the present embodiment when viewed from the light incident side.
 図4Aおよび図4Bに示す例では、本実施形態におけるグレーティング12dは、複数の透光領域9aの各々、および複数の遮光領域9Aの各々の真中の点を中心とする同心四角形の形状を有する。グレーティング12dのピッチΛが式(1)を満たせば、光6aのうち、一部は導波光6bを発生する。本実施形態における光検出装置13では、光は入射面に垂直に入射する。したがって、θ=0である。導波光6bは、透光領域9aの中心から外周側に向かって全方向に伝搬する。面内で拡散する伝搬であることから、伝搬長は短い。したがって、光源2から出射される光のコヒーレンス長に関係なく、画素間の検出信号のクロストークは小さい。遮光領域9Aの直下では、導波光6bの一部が放射される。導波光6bの当該一部は、遮光領域9Aの反射膜での反射と重なって放射光6Dになる。その他の動作は、すべて図6A及び図6Bに示す例と同じである。したがって、詳しい説明は省略する。 4A and 4B, the grating 12d in the present embodiment has a concentric square shape centered on the center of each of the plurality of light-transmitting regions 9a and each of the plurality of light-shielding regions 9A. If the pitch の of the grating 12d satisfies the expression (1), a part of the light 6a generates a guided light 6b. In the photodetector 13 according to the present embodiment, light is incident perpendicularly to the incident surface. Therefore, θ = 0. The guided light 6b propagates in all directions from the center of the light transmitting region 9a toward the outer periphery. The propagation length is short because the propagation is spread in the plane. Therefore, regardless of the coherence length of the light emitted from the light source 2, the crosstalk of the detection signal between pixels is small. Immediately below the light shielding region 9A, a part of the guided light 6b is emitted. The part of the guided light 6b overlaps with the reflection of the light-shielding region 9A on the reflection film to become the emitted light 6D. All other operations are the same as in the example shown in FIGS. 6A and 6B. Therefore, detailed description is omitted.
 図4Aおよび図4Bに示す例でも、図2Bおよび図2Cに示す例と同様に、導波光6bは、X方向およびY方向に伝搬し、それぞれの方向にある構造内で干渉する。したがって、2方向において対象物4の位相差像を検出することができる。これにより、任意の形状の位相段差を有する対象物4の位相差像を検出することができる。さらに、導波光6bは、面内で拡散する伝搬であることから、光源2のコヒーレンス長に関係なく、画素間の検出信号のクロストークを小さくすることができる。したがって、位相段差の形状に関係なく、鮮明な位相差像を検出することができる。 4A and 4B, similarly to the examples shown in FIGS. 2B and 2C, the guided light 6b propagates in the X direction and the Y direction and interferes in the structures in the respective directions. Therefore, a phase difference image of the object 4 can be detected in two directions. This makes it possible to detect a phase difference image of the object 4 having a phase step having an arbitrary shape. Furthermore, since the guided light 6b propagates in a plane, the crosstalk of a detection signal between pixels can be reduced regardless of the coherence length of the light source 2. Therefore, a clear phase difference image can be detected regardless of the shape of the phase step.
 なお、図4Aおよび図4Bに示す例では、グレーティング12dは同心四角形の形状を有するが、同心形状であれば、例えば、六角形または八角形の他の多角形の形状でもよい。 In the example shown in FIGS. 4A and 4B, the grating 12d has a concentric square shape, but may have another concentric shape, for example, a hexagonal or octagonal shape.
 図4Cは、光の入射側から見たときの、本実施形態における光検出装置13の第2の変形例を模式的に示す平面図である。図4Cに示す例では、本実施形態におけるグレーティング12dは、複数の透光領域9aの各々、および複数の遮光領域9Aの各々の真中の点を中心とする同心八角形の形状を有する。図4Cに示す例でも、位相段差の形状に関係なく、鮮明な位相差像を検出することができる。 FIG. 4C is a plan view schematically showing a second modified example of the photodetector 13 according to the present embodiment when viewed from the light incident side. In the example shown in FIG. 4C, the grating 12d in the present embodiment has a concentric octagonal shape centered on the center of each of the plurality of light-transmitting regions 9a and each of the plurality of light-shielding regions 9A. Also in the example shown in FIG. 4C, a clear phase difference image can be detected regardless of the shape of the phase step.
 本開示の一態様に係る光検出装置は、対象物からの透過光、反射光、および/または散乱光のコヒーレンスまたは位相の状態を、面内の分布情報として検出することができる。当該光検出装置は、例えば、脳血流量などの生体情報の測定に利用することができる。また、例えば、光強度分布の情報、時間分割検出法、およびコヒーレンス長が可変の光源と組み合わせることにより、対象物の内部の情報が、高精度および高解像に分析され得る。特に、これまで光強度分布の分析しかなかった撮像技術に、コヒーレンスの状態または位相という新しい評価軸が加わり、イメージング技術に多機能性を提供し得る。 The light detection device according to an aspect of the present disclosure can detect the state of coherence or phase of transmitted light, reflected light, and / or scattered light from an object as distribution information in a plane. The light detection device can be used, for example, for measuring biological information such as cerebral blood flow. In addition, for example, by combining light intensity distribution information, a time division detection method, and a light source with a variable coherence length, information inside the object can be analyzed with high accuracy and high resolution. In particular, a new evaluation axis of the state or phase of coherence is added to the imaging technique which has been limited to the analysis of the light intensity distribution, and multifunctionality can be provided to the imaging technique.
  100    光検出システム
  1    制御回路
  2    光源
  3、5、5s、6a、6A    光
  4    対象物
  5a、5A  散乱光
  6b、6c  導波光
  6d  透過光
  6D  放射光
  7   集光レンズ
  8a  物体
  8b  像
  9   遮光膜
  9a  透光領域
  9A  遮光領域
  10  光検出器
  12  光結合層
  12d  グレーティング
  13  光検出装置
  14  演算回路
Reference Signs List 100 light detection system 1 control circuit 2 light source 3, 5, 5s, 6a, 6A light 4 object 5a, 5A scattered light 6b, 6c guided light 6d transmitted light 6D radiation light 7 condenser lens 8a object 8b image 9 light-shielding film 9a Light transmitting area 9A Light shielding area 10 Photodetector 12 Optical coupling layer 12d Grating 13 Photodetector 14 Operation circuit

Claims (8)

  1.  第1の方向、および前記第1の方向に交差する第2の方向に交互に配置された複数の透光領域および複数の遮光領域を含む遮光膜と、
     撮像面を有し、前記撮像面上に配列された複数の第1の光検出セルおよび複数の第2の光検出セルを含む光検出器と、
     前記複数の透光領域に光が入射したときに、前記光の一部を前記第1の方向および前記第2の方向に伝搬させるグレーティングを含み、前記遮光膜と前記光検出器との間に位置する光結合層と、
    を備える、
    光検出装置。
    A light-shielding film including a plurality of light-transmitting regions and a plurality of light-shielding regions alternately arranged in a first direction and a second direction intersecting the first direction;
    A photodetector having an imaging surface and including a plurality of first photodetection cells and a plurality of second photodetection cells arranged on the imaging surface;
    A grating that propagates part of the light in the first direction and the second direction when light enters the plurality of light-transmitting regions, between the light-shielding film and the photodetector; An optical coupling layer located thereon;
    Comprising,
    Photodetector.
  2.  前記複数の第1の光検出セルの各々は、前記複数の透光領域の1つに対応し、
     前記複数の第2の光検出セルの各々は、前記複数の遮光領域の1つに対応する、
    請求項1に記載の光検出装置。
    Each of the plurality of first light detection cells corresponds to one of the plurality of light transmitting regions,
    Each of the plurality of second light detection cells corresponds to one of the plurality of light-shielding regions,
    The light detection device according to claim 1.
  3.  前記光結合層は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、
     前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、
     前記グレーティングは、前記第1の誘電体層と前記第2の誘電体層との間に配置されている、
    請求項1に記載の光検出装置。
    The optical coupling layer includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a third dielectric layer on the second dielectric layer;
    The refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer,
    The grating is disposed between the first dielectric layer and the second dielectric layer;
    The light detection device according to claim 1.
  4.  前記光結合層は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、
     前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、
     前記グレーティングは、前記第2の誘電体層と前記第3の誘電体層との間に配置されている、
    請求項1に記載の光検出装置。
    The optical coupling layer includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a third dielectric layer on the second dielectric layer;
    The refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer,
    The grating is disposed between the second dielectric layer and the third dielectric layer;
    The light detection device according to claim 1.
  5.  前記光結合層は、第1の誘電体層、前記第1の誘電体層上の第2の誘電体層、および前記第2の誘電体層上の第3の誘電体層を含み、
     前記第2の誘電体層の屈折率は、前記第1の誘電体層の屈折率および前記第3の誘電体層の屈折率よりも高く、
     前記グレーティングは、前記第1の誘電体層と前記第2の誘電体層との間、および前記第2の誘電体層と前記第3の誘電体層との間に配置されている、
    請求項1に記載の光検出装置。
    The optical coupling layer includes a first dielectric layer, a second dielectric layer on the first dielectric layer, and a third dielectric layer on the second dielectric layer;
    The refractive index of the second dielectric layer is higher than the refractive index of the first dielectric layer and the refractive index of the third dielectric layer,
    The grating is disposed between the first dielectric layer and the second dielectric layer and between the second dielectric layer and the third dielectric layer.
    The light detection device according to claim 1.
  6.  平面視において、前記グレーティングは、同心円または同心多角形の形状を有する、
    請求項1から5のいずれかに記載の光検出装置。
    In a plan view, the grating has a concentric circle or concentric polygonal shape,
    The photodetector according to claim 1.
  7.  請求項1から6のいずれかに記載の光検出装置と、
     前記複数の第1の光検出セルから得られる複数の第1の信号と、前記複数の第2の光検出セルから得られる複数の第2の信号とに基づいて、前記複数の第1の光検出セルおよび前記複数の第2の光検出セルの各々の位置に入射した光のコヒーレンスを示す信号を生成し出力する演算回路と、
    を備える、
    光検出システム。
    A light detection device according to any one of claims 1 to 6,
    The plurality of first lights are detected based on a plurality of first signals obtained from the plurality of first light detection cells and a plurality of second signals obtained from the plurality of second light detection cells. An arithmetic circuit that generates and outputs a signal indicating coherence of light incident on the detection cell and the position of each of the plurality of second light detection cells;
    Comprising,
    Light detection system.
  8.  前記複数の第1の光検出セルの各々から得られる信号をPとし、
     前記複数の第2の光検出セルの各々から得られる信号をPとし、
     前記複数の第2の光検出セルのうち、前記複数の第1の光検出セルの各々を中心として、
       前記第1の方向と同じ方向に隣接する第2の光検出セルから得られる第1の信号、
      前記第1の方向と反対の方向に隣接する第2の光検出セルから得られる第2の信号、
      前記第2の方向と同じ方向に隣接する第2の光検出セルから得られる第3の信号、および
      前記第2の方向と反対の方向に隣接する第2の光検出セルから得られる第4の信号の平均値をP’とし、
     前記複数の第1の光検出セルのうち、前記複数の第2の光検出セルを中心として、
       前記第1の方向と同じ方向に隣接する第1の光検出セルから得られる第5の信号、
      前記第1の方向と反対の方向に隣接する第1の光検出セルから得られる第6の信号、
      前記第2の方向と同じ方向に隣接する第1の光検出セルから得られる第7の信号、および
      前記第2の方向と反対の方向に隣接する第1の光検出セルから得られる第8の信号の平均値をP’とするとき、
     前記演算回路は、
     P’/(P+P’)またはP’/Pの演算によって得られる信号を、前記複数の第1の光検出セルの各々に入射した光のコヒーレンスを示す信号として生成し、
     P/(P’+P)またはP/P’の演算によって得られる信号を、前記複数の第2の光検出セルの各々に入射した光のコヒーレンスを示す信号として生成する、
     請求項7に記載の光検出システム。
    A signal obtained from each of the plurality of first light detection cells is P 0 ,
    The signals obtained from each of the plurality of second light detection cell is P 1,
    Of the plurality of second light detection cells, with each of the plurality of first light detection cells as a center,
    A first signal obtained from a second light detection cell adjacent in the same direction as the first direction;
    A second signal obtained from a second light detection cell adjacent in a direction opposite to the first direction;
    A third signal obtained from a second light detection cell adjacent in the same direction as the second direction, and a fourth signal obtained from a second light detection cell adjacent in a direction opposite to the second direction. Let the average value of the signal be P 1 ′,
    Of the plurality of first light detection cells, with the plurality of second light detection cells as the center,
    A fifth signal obtained from a first light detection cell adjacent in the same direction as the first direction;
    A sixth signal obtained from a first light detection cell adjacent in a direction opposite to the first direction;
    A seventh signal obtained from a first light detection cell adjacent in the same direction as the second direction, and an eighth signal obtained from a first light detection cell adjacent in a direction opposite to the second direction. When the average value of the signal is P 0 ′,
    The arithmetic circuit,
    A signal obtained by calculating P 1 ′ / (P 0 + P 1 ′) or P 1 ′ / P 0 is generated as a signal indicating coherence of light incident on each of the plurality of first light detection cells,
    Generating a signal obtained by calculating P 1 / (P 0 ′ + P 1 ) or P 1 / P 0 ′ as a signal indicating coherence of light incident on each of the plurality of second photodetection cells;
    The light detection system according to claim 7.
PCT/JP2019/026871 2018-08-13 2019-07-05 Light detection device and light detection system WO2020036014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-152183 2018-08-13
JP2018152183A JP2021179310A (en) 2018-08-13 2018-08-13 Photodetection device and photodetection system

Publications (1)

Publication Number Publication Date
WO2020036014A1 true WO2020036014A1 (en) 2020-02-20

Family

ID=69525454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026871 WO2020036014A1 (en) 2018-08-13 2019-07-05 Light detection device and light detection system

Country Status (2)

Country Link
JP (1) JP2021179310A (en)
WO (1) WO2020036014A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186382B2 (en) * 2017-10-31 2022-12-09 パナソニックIpマネジメント株式会社 Structural body and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319602A (en) * 1986-07-14 1988-01-27 Toshiba Corp Light beam expander
JPH07141688A (en) * 1993-11-19 1995-06-02 Matsushita Electric Ind Co Ltd Optical waveguide and converging device
US20050111309A1 (en) * 2003-11-20 2005-05-26 Seagate Technology Llc Apparatus and method for coupling light to a thin film optical waveguide
US20100053763A1 (en) * 2008-08-27 2010-03-04 Aref Chowdhury Chirped Metamaterials
JP2011180426A (en) * 2010-03-02 2011-09-15 Canon Inc Spectral device
JP2014138142A (en) * 2013-01-18 2014-07-28 Panasonic Corp Solid-state image sensor and imaging apparatus
JP6044862B1 (en) * 2015-06-09 2016-12-14 パナソニックIpマネジメント株式会社 Photodetection device and photodetection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319602A (en) * 1986-07-14 1988-01-27 Toshiba Corp Light beam expander
JPH07141688A (en) * 1993-11-19 1995-06-02 Matsushita Electric Ind Co Ltd Optical waveguide and converging device
US20050111309A1 (en) * 2003-11-20 2005-05-26 Seagate Technology Llc Apparatus and method for coupling light to a thin film optical waveguide
US20100053763A1 (en) * 2008-08-27 2010-03-04 Aref Chowdhury Chirped Metamaterials
JP2011180426A (en) * 2010-03-02 2011-09-15 Canon Inc Spectral device
JP2014138142A (en) * 2013-01-18 2014-07-28 Panasonic Corp Solid-state image sensor and imaging apparatus
JP6044862B1 (en) * 2015-06-09 2016-12-14 パナソニックIpマネジメント株式会社 Photodetection device and photodetection system

Also Published As

Publication number Publication date
JP2021179310A (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6473942B2 (en) Photodetection device and photodetection system
JP6706814B2 (en) Photodetector and photodetection system
JP7012235B2 (en) Light detection system
US8836946B2 (en) Optical device and detection device
US10739575B2 (en) Light detection device including light detector, light-transmissive first layer, first optical coupler, and second optical coupler, and light detection system including the same
CN107271057B (en) Light detection device and light detection system
US10190872B2 (en) Photodetection device including interference element
JP2013510301A (en) Nanohole array biosensor
CN110062952A (en) Multiple angles spectrum simultaneously
US9976904B2 (en) Photodetection apparatus including optical filter and optical detector
JP6964254B2 (en) Photodetector
JP2018098785A (en) Imaging apparatus
WO2020036014A1 (en) Light detection device and light detection system
KR102492176B1 (en) optical particle detector
JP2021152450A (en) Imaging device, and imaging system
US9880100B2 (en) Electronic field enhancement element, analysis device, and electronic apparatus
JP6761974B2 (en) Photodetector and photodetector
WO2019244587A1 (en) Image capturing device and image capturing system
JP2018093085A (en) Solid image pick-up device
JP2019090771A (en) Light detector light detection system, and light detection method
JP6722867B2 (en) Photodetector and photodetection system
US11512943B2 (en) Optical system and method for measuring parameters of patterned structures in micro-electronic devices
JP2018096717A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP