JP2009085887A - Measuring device and method - Google Patents

Measuring device and method Download PDF

Info

Publication number
JP2009085887A
JP2009085887A JP2007259157A JP2007259157A JP2009085887A JP 2009085887 A JP2009085887 A JP 2009085887A JP 2007259157 A JP2007259157 A JP 2007259157A JP 2007259157 A JP2007259157 A JP 2007259157A JP 2009085887 A JP2009085887 A JP 2009085887A
Authority
JP
Japan
Prior art keywords
light
measurement
reflected
birefringent film
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007259157A
Other languages
Japanese (ja)
Inventor
Takashi Kurokawa
隆志 黒川
Yasufumi Iimura
靖文 飯村
Yukitoshi Otani
幸利 大谷
Hisashi Kuwata
恒 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOLOGY RES ASS FOR ADVANCE
TECHNOLOGY RESEARCH ASSOCIATION FOR ADVANCED DISPLAY MATERIALS
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
TECHNOLOGY RES ASS FOR ADVANCE
TECHNOLOGY RESEARCH ASSOCIATION FOR ADVANCED DISPLAY MATERIALS
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOLOGY RES ASS FOR ADVANCE, TECHNOLOGY RESEARCH ASSOCIATION FOR ADVANCED DISPLAY MATERIALS, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical TECHNOLOGY RES ASS FOR ADVANCE
Priority to JP2007259157A priority Critical patent/JP2009085887A/en
Publication of JP2009085887A publication Critical patent/JP2009085887A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device and method for rapidly and accurately measuring a birefringence state, for example, the orientation state, of a birefringence film, such as orientation film. <P>SOLUTION: This measuring device measures the orientation state of the orientation film 100. The device comprises a photoelastic modulator 30 that transmits measuring light coming via a polarizer 20, is driven at a predetermined elastic frequency, and varies the birefringence phase modulation amount, in association with the elastic frequency; and a light-receiving means 50 for transmitting the photoelastic modulator, receiving the measuring light reflected by the orientation film 100 via an analyzer 40, and converting it into light intensity information indicating the light intensity. A reference component extracting means 60 performs processing of extracting the amplitude component, of at least the elastic frequency and a frequency twice as much as it as a reference component from the light intensity information. An orientation state arithmetic means 70 determines a physical quantity, showing the orientation state of the orientation film based on the extracted reference component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複屈折性膜の複屈折状態を測定する測定装置及び方法に関する。   The present invention relates to a measuring apparatus and method for measuring the birefringence state of a birefringent film.

液晶ディスプレイの製造工程において、液晶を配向させるためにラビングは最も重要な処理である。   In the manufacturing process of a liquid crystal display, rubbing is the most important process for aligning liquid crystals.

近年、高速で、任意の配向方向が可能かつクリーンな手法として、光配向が注目を集めている。   In recent years, photo-alignment has been attracting attention as a clean method capable of high-speed, arbitrary alignment directions.

この光配向量の評価に、複屈折計測が着目されている。   Birefringence measurement has attracted attention for the evaluation of this photo-alignment amount.

従来このような測定を行うために、非特許文献1に記載のような、エリプソメータを用いる手法がある。この手法では位相板または偏光板を回転して偏光変調を与え、そのとき得られる光強度の変化から、楕円率と楕円率方位角を求めている。   Conventionally, in order to perform such a measurement, there is a technique using an ellipsometer as described in Non-Patent Document 1. In this method, a phase plate or a polarizing plate is rotated to apply polarization modulation, and an ellipticity and an ellipticity azimuth are obtained from a change in light intensity obtained at that time.

また、他の手法としては、非特許文献2に記載のように、液晶配向膜の検査装置が知られている。この装置は、回転検光子型として形成され、配向サンプルを回転テーブル上に設置し、偏光解析を行っている。   As another technique, a liquid crystal alignment film inspection apparatus is known as described in Non-Patent Document 2. This apparatus is formed as a rotary analyzer type, and an orientation sample is placed on a rotary table to perform polarization analysis.

また、他の手法として、光弾性変調器を用いた複屈折計測計等も知られている。
Azzam, Bashara:Ellipometry and Polarized(Elsevier,1986). モリテクックス,月間ディスプレイ(2006,12)pp.55-59.
As another technique, a birefringence meter using a photoelastic modulator is also known.
Azzam, Bashara: Ellipometry and Polarized (Elsevier, 1986). Moritex, Monthly Display (2006,12) pp.55-59.

しかし、従来の測定手法では、以下の問題がある。   However, the conventional measurement method has the following problems.

まず、光配向によって配向の強度に対して発生する複屈性位相差は、従来のメカニカルなラビング法に比べて非常に小さな値となる。このため従来の手法では配向膜の配向状態を正確に計測することが困難であった。   First, the birefringence phase difference generated with respect to the orientation strength by the photo-alignment becomes a very small value as compared with the conventional mechanical rubbing method. For this reason, it has been difficult to accurately measure the alignment state of the alignment film by the conventional method.

また液晶ディスプレイは、表面に透明電極及び配向膜を積層したガラス基板上に、カラーフィルタ、透明電極、配向膜等を順次積層する積層構造となっている。従って、測定光を配向膜に反射させて、その反射光を解析する従来の手法では、配向膜に入射した測定光は、配向膜表面で透過光と反射光に別れ、透過光は積層構造の境界面において順次反射され、裏面反射光として、配向膜表面からの反射光に重畳され、この裏面反射光が配向膜の配向状態の測定誤差を引き起こすという問題があった。   The liquid crystal display has a stacked structure in which a color filter, a transparent electrode, an alignment film, and the like are sequentially stacked on a glass substrate having a transparent electrode and an alignment film stacked on the surface. Therefore, in the conventional method of reflecting the measurement light on the alignment film and analyzing the reflected light, the measurement light incident on the alignment film is separated into transmitted light and reflected light on the alignment film surface, and the transmitted light has a laminated structure. There is a problem in that the light is sequentially reflected at the boundary surface and is superimposed on the light reflected from the alignment film surface as back surface reflected light, and this back surface reflected light causes measurement errors in the alignment state of the alignment film.

また、測定光をサンプルである配向膜を透過させる手法では、透過光に前記配向膜以外の積層情報がすべて含まれてしまうという問題があった。   Further, in the method of transmitting the measurement light through the alignment film that is a sample, there is a problem that all the laminated information other than the alignment film is included in the transmitted light.

本発明は、このような配向膜などの複屈折性膜の複屈折状態、例えば配向状態などを高速かつ正確に測定する測定装置及び方法を提供することをその目的とする。   An object of the present invention is to provide a measuring apparatus and method for measuring a birefringence state of a birefringent film such as an alignment film, for example, an alignment state at high speed and accurately.

(1)本発明は、
複屈折性膜の複屈折状態を測定する装置において、
偏光子を介して入射する測定光を透過するとともに、所与の弾性周波数で駆動され、複屈折位相変調量が前記弾性周波数に関連付けて変化する光弾性変調手段と、
前記光弾性変調手段を透過し、前記複屈折性膜で反射された測定光を検光子を介して受光し、光強度を表す光強度情報に変換する受光手段と、
前記光強度情報から、少なくとも前記弾性周波数及びその2倍の周波数の振幅成分を基準成分として抽出する処理を行う基準成分抽出手段と、
抽出された基準成分に基づき、前記複屈折性膜の複屈折状態を表す物理量を求める複屈折状態演算手段と、
を含む。
(1) The present invention
In an apparatus for measuring the birefringence state of a birefringent film,
Photoelastic modulation means that transmits measurement light incident through a polarizer, is driven at a given elastic frequency, and a birefringence phase modulation amount changes in association with the elastic frequency;
A light receiving means for transmitting the measurement light reflected through the photoelastic modulation means and reflected by the birefringent film through an analyzer, and converting the light into light intensity information representing the light intensity;
A reference component extraction means for performing a process of extracting at least the elastic frequency and an amplitude component of twice the frequency as a reference component from the light intensity information;
Birefringence state calculation means for obtaining a physical quantity representing the birefringence state of the birefringent film based on the extracted reference component;
including.

ここにおいて、光弾性変調器は、ピエゾ素子領域と光透過領域とを含んで構成される。そして、光弾性変調器は、所与の弾性周波数、所与の振幅を発生するための電気信号を外部からピエゾ素子領域に与られると伸縮し、光透過領域に光弾性効果によって複屈折を発生する。   Here, the photoelastic modulator includes a piezo element region and a light transmission region. The photoelastic modulator expands and contracts when an electrical signal for generating a given elastic frequency and a given amplitude is applied to the piezo element region from the outside, and birefringence is generated in the light transmission region by the photoelastic effect. To do.

そして、この光弾性変調手段を透過し複屈折性膜表面で反射された測定光は、検光子を介して受光手段で受光され、光強度を表す光強度情報に変化される。   Then, the measurement light transmitted through the photoelastic modulation means and reflected by the birefringent film surface is received by the light receiving means via the analyzer, and is changed to light intensity information representing the light intensity.

この光強度を表す光強度情報には、前記光弾性変調手段を駆動する周波数、すなわち弾性周波数の振幅成分と、その2倍の周波数の振幅成分が含まれる。   The light intensity information representing the light intensity includes a frequency for driving the photoelastic modulation means, that is, an amplitude component of the elastic frequency and an amplitude component of twice the frequency.

本発明では、基準成分抽出回路が、光強度情報から、前記弾性周波数及びその2倍の周波数の振幅成分を、光強度情報の基準成分として抽出し、配向状態演算手段は、抽出されたピエゾ成分に基づき、前記複屈折性膜の複屈折状態を表す物理量を求める。   In the present invention, the reference component extraction circuit extracts from the light intensity information the amplitude component of the elastic frequency and twice the frequency as a reference component of the light intensity information, and the orientation state calculation means is the extracted piezo component Based on the above, a physical quantity representing the birefringence state of the birefringent film is obtained.

このような一連の演算処理は、ほぼリアルタイムで実行することができるため、複屈折性膜の複屈折状態を、その複屈折状態(例えば配向状態)を表す物理量としてほぼリアルタイムに測定することができる。このため、例えば液晶ディスプレイ等の製造ラインにおいて、複屈折性膜の複屈折状態のリアルタイムかつ連続的な測定を行うことが可能となる。   Since such a series of arithmetic processing can be executed in almost real time, the birefringence state of the birefringent film can be measured in almost real time as a physical quantity representing the birefringence state (for example, orientation state). . Therefore, for example, in a production line such as a liquid crystal display, real-time and continuous measurement of the birefringence state of the birefringent film can be performed.

加えて、本発明によれば、前記光強度情報から抽出される弾性波周波数及びその2倍の周波数の振幅成分は、複屈折性膜の複屈折状態を表す物理量を求めるための情報を含んでおり、たとえば光配向による配向の強度に対して複屈折性膜に発生する配向状態の変化を、物理量として正確に求めることが可能となる。   In addition, according to the present invention, the elastic wave frequency extracted from the light intensity information and the amplitude component of twice the frequency include information for obtaining a physical quantity representing the birefringence state of the birefringent film. For example, the change in the alignment state generated in the birefringent film with respect to the alignment strength by photo-alignment can be accurately obtained as a physical quantity.

(2)また本発明において、
前記基準成分抽出手段は、
前記光強度情報からその直流成分を基準成分のひとつとして抽出する処理をさらに行ない、
前記複屈折状態演算手段は、
抽出された基準成分に基づき、前記物理量として複屈折性膜の位相差及び複素反射振幅比の少なくとも一方を求める。
(2) In the present invention,
The reference component extraction means includes
Further processing to extract the direct current component as one of the reference components from the light intensity information,
The birefringence state calculating means includes:
Based on the extracted reference component, at least one of the phase difference of the birefringent film and the complex reflection amplitude ratio is obtained as the physical quantity.

本発明の光強度情報に含まれる直流成分は、複屈折性膜の複屈折状態を表す物理量、特に位相差を求めるための情報を含む。   The direct current component included in the light intensity information of the present invention includes a physical quantity representing the birefringent state of the birefringent film, particularly information for obtaining a phase difference.

従って、本発明によれば、複屈折性膜の複屈折状態を表す物理量として、複屈折性膜(たとえば配向膜)の位相差及び複素反射振幅比の少なくとも一方をリアルタイムでかつ正確に求めることが可能となり、複屈折性膜の領域の良否判定を迅速に行うことが可能な測定装置を実現することができる。   Therefore, according to the present invention, as a physical quantity representing the birefringence state of the birefringent film, at least one of the phase difference and the complex reflection amplitude ratio of the birefringent film (for example, the alignment film) can be accurately obtained in real time. Therefore, it is possible to realize a measuring apparatus capable of quickly determining the quality of the birefringent film region.

(3)また本発明において、
前記偏光子及び検光子の主軸方位は前記光弾性変調手段の主軸方位に対し所与の関係に設定された。
(3) In the present invention,
The principal axis directions of the polarizer and the analyzer were set to have a given relationship with respect to the principal axis direction of the photoelastic modulation means.

ここにおいて、偏光子の主軸方位は、前記光強度変調手段の主軸方位に対して45゜、またはこれに90°の逓倍の角度を加えた角度に設定することが好ましい。   Here, the main axis direction of the polarizer is preferably set to 45 ° with respect to the main axis direction of the light intensity modulating means, or an angle obtained by adding an angle multiplied by 90 ° thereto.

また検光子の主軸方位は、偏光子の主軸方位と同じ角度、またはそれに90゜の逓倍の角度を加算した角度に設定することが好ましい。   Further, the main axis direction of the analyzer is preferably set to the same angle as the main axis direction of the polarizer or an angle obtained by adding a multiplication angle of 90 ° thereto.

これにより、測定に使用する測定光を効率よく使用し、受光手段にて受光させ、より精度の高い複屈折性膜の複屈折状態の測定が可能となる。   Thereby, the measurement light used for the measurement can be efficiently used and received by the light receiving means, and the birefringence state of the birefringent film can be measured with higher accuracy.

(4)また本発明において、
前記測定光として、UV帯域のレーザ光を用いる。
(4) In the present invention,
Laser light in the UV band is used as the measurement light.

測定光としてUV帯域のレーザ光を用いることにより、多層膜構造の表面に複屈折性膜が形成されている場合であっても、複屈折性膜表面からの反射光に重畳する裏面側からの反射光、特に基板表面からの反射光を減衰させることかでき、これにより裏面反射の影響を低減させ、より精度の高い測定を実現することが可能となる。   Even when a birefringent film is formed on the surface of the multilayer structure by using laser light in the UV band as measurement light, the laser beam from the back side that is superimposed on the reflected light from the surface of the birefringent film is used. The reflected light, particularly the reflected light from the substrate surface can be attenuated, thereby reducing the influence of the back surface reflection and realizing more accurate measurement.

(5)また本発明において、
前記複屈折性膜で反射された測定光が受光手段に到達するまでの反射光路上に、前記複屈折性膜の表面側からの反射光を通過させ裏面側からの反射光を除去する開口部を設けた。
(5) In the present invention,
An opening through which the reflected light from the front surface side of the birefringent film is passed and the reflected light from the back surface side is removed on the reflected light path until the measurement light reflected by the birefringent film reaches the light receiving means. Was provided.

本発明によれば、複屈折性膜表面からの反射光に重畳する裏面側からの反射光の影響を、前記開口部で除去し、その影響を低減することが可能となる。   According to the present invention, it is possible to remove the influence of the reflected light from the back surface side superimposed on the reflected light from the surface of the birefringent film at the opening, and reduce the influence.

(6)また本発明において、
前記測定光の前記複屈折性膜への入射方向を、複屈折性膜の反射光強度が顕著に現れる代表的な基準測定方位に設定する。
(6) In the present invention,
The incident direction of the measurement light to the birefringent film is set to a representative reference measurement direction in which the reflected light intensity of the birefringent film appears remarkably.

基板上に形成された複屈折性膜の複屈折状態を測定する場合に、液晶分子の向いている方向に対してどの方向から測定光を入射させるかによって、得られる光強度の大きさが異なったものとなる。   When measuring the birefringence state of the birefringent film formed on the substrate, the magnitude of the light intensity obtained depends on the direction from which the measurement light is incident with respect to the direction of the liquid crystal molecules. It will be.

本発明では、測定光を複屈折性膜表面に入射させる場合に、一番複屈折性膜の特性が表れる代表的な測定方向から測定光を入射させることにより、より精度の高い複屈折状態(たとえば配向状態)を測定することが可能となる。   In the present invention, when the measurement light is incident on the surface of the birefringent film, the measurement light is incident from a representative measurement direction in which the characteristic of the birefringent film appears most, so that a more accurate birefringence state ( For example, the orientation state) can be measured.

(7)また本発明は、
前記複屈折性膜の同一測定ポイントに、
異なる少なくとも2方向から測定光を入射し、反射された各測定光を個別に受光し、前記物理量を個別に演算する。
(7) The present invention also provides:
At the same measurement point of the birefringent film,
Measurement light is incident from at least two different directions, each reflected measurement light is individually received, and the physical quantities are individually calculated.

このように2方向から測定光を入射し、反射された各測定光を個別に受光し前記物理量の演算を実行することにより、測定光の入射方向による影響を低減し、複屈折性膜の複屈折状態をより的確に測定することができる。   In this way, the measurement light is incident from two directions, each reflected measurement light is individually received, and the calculation of the physical quantity is performed, thereby reducing the influence of the measurement light incident direction and reducing the birefringent film. The refraction state can be measured more accurately.

(8)また本発明は、
複屈折性膜の表面に透明弾性樹脂からなる半球状レンズを密着させ、これを介して測定光を複屈折性膜に導入させる。これにより、複屈折性膜表面の凸凹による散乱を防止することができ、測定における雑音を低下することができる。
(8) The present invention also provides:
A hemispherical lens made of a transparent elastic resin is brought into close contact with the surface of the birefringent film, and measurement light is introduced into the birefringent film through the lens. Thereby, scattering due to unevenness on the surface of the birefringent film can be prevented, and noise in measurement can be reduced.

(9)また本発明は、
前記光弾性変調手段から透過した測定光を複数の入射光側ビームスプリッタにより複数の入射光路に分岐し、前記複屈折性膜表面の複数の測定スポットに入射し、
前記複数の測定スポットから反射された測定光を、複数の反射光側ビームスプリッタにより一の光路の測定光に合成し前記受光手段に入射し、
前記複数の入射光路にはそれぞれ測定光を選択的に遮光するシャッタ手段が設けられ、前記複数の測定スポットからの測定光を選択的に前記受光手段に入射する。
(9) The present invention also provides:
The measurement light transmitted from the photoelastic modulation means is branched into a plurality of incident optical paths by a plurality of incident light side beam splitters, and incident on a plurality of measurement spots on the surface of the birefringent film,
The measurement light reflected from the plurality of measurement spots is combined into measurement light of one optical path by a plurality of reflected light side beam splitters and incident on the light receiving means,
Each of the plurality of incident light paths is provided with shutter means for selectively blocking measurement light, and selectively receives measurement light from the plurality of measurement spots on the light receiving means.

本発明によれば、複屈折性膜表面の複数の測定スポットを、順次かつほぼ同時に測定することが可能となる。   According to the present invention, a plurality of measurement spots on the birefringent film surface can be measured sequentially and almost simultaneously.

(10)また本発明は、
前記光弾性変調手段は複数設けられ、各光弾性変調手段は異なる弾性周波数で駆動され、各光弾性変調手段を透過した測定光を前記複屈折性膜表面の複数の測定スポットに入射し、
前記複数の測定スポットから反射された測定光を、反射光側ビームスプリッタにより一の光路の測定光に合成し前記受光手段に入射する。
(10) The present invention also provides:
A plurality of the photoelastic modulation means are provided, each photoelastic modulation means is driven at a different elastic frequency, and the measurement light transmitted through each photoelastic modulation means is incident on a plurality of measurement spots on the surface of the birefringent film,
The measurement light reflected from the plurality of measurement spots is combined with the measurement light of one optical path by the reflected light side beam splitter and is incident on the light receiving means.

本発によれば、複屈折性膜表面の複数の測定スポットの同時測定が可能となる。   According to the present invention, it is possible to simultaneously measure a plurality of measurement spots on the surface of the birefringent film.

(11)また本発明は、
偏光子を介して入射する測定光を透過するとともに、所与の弾性周波数で駆動され、複屈折位相変調量が前記弾性周波数に関連付けて変化する光弾性変調手段と、
前記光弾性変調手段を透過し、前記複屈折性膜で反射された測定光を検光子を介して受光し、光強度を表す光強度情報に変換する受光手段と、
を用い、複屈折性膜の複屈折状態を測定する方法において、
前記光強度情報から、少なくとも前記弾性周波数及びその2倍の周波数の振幅成分を基準成分として抽出する処理を行う基準成分抽出手順と、
抽出された基準成分に基づき、前記複屈折性膜の複屈折状態を表す物理量を求める複屈折状態演算手段と、
を含む。
(11) The present invention also provides:
Photoelastic modulation means that transmits measurement light incident through a polarizer, is driven at a given elastic frequency, and a birefringence phase modulation amount changes in association with the elastic frequency;
A light receiving means for transmitting the measurement light reflected through the photoelastic modulation means and reflected by the birefringent film through an analyzer, and converting the light into light intensity information representing the light intensity;
In the method of measuring the birefringence state of the birefringent film using
A reference component extraction procedure for performing a process of extracting, from the light intensity information, an amplitude component of at least the elastic frequency and twice the frequency as a reference component;
Birefringence state calculation means for obtaining a physical quantity representing the birefringence state of the birefringent film based on the extracted reference component;
including.

以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下に説明する実施の形態は、本発明の一例であり、本発明はこれに限定されるものではない。又本発明は、以下の内容を自由に組み合わせたものをも含むものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment described below is an example of the present invention, and the present invention is not limited to this. Moreover, this invention shall also include what combined the following content freely.

(1)装置構成
図1には、本実施の形態の計測装置の模式的な構成が示されている。
(1) Device Configuration FIG. 1 shows a schematic configuration of the measurement device of the present embodiment.

計測装置は、光学系2と、基準成分抽出手段60と、配向状態演算手段として機能するコンピュータ70とを含み、測定対象として複屈折性膜の複屈折状態を測定する。本実施の形態では、例えば基板あるいは基板フィルム上の配向膜100の配向状態を表す物理量を測定する。   The measuring device includes an optical system 2, a reference component extracting unit 60, and a computer 70 functioning as an orientation state calculating unit, and measures the birefringence state of the birefringent film as a measurement target. In the present embodiment, for example, a physical quantity representing the alignment state of the alignment film 100 on the substrate or the substrate film is measured.

具体的には、光配向特性を計測する配向膜100の配向方位角,配向傾斜角,配向の度合を表す屈折率異方性を、反射光の複素反射振幅比Ψ,位相差Δとして検出する。   Specifically, the refractive index anisotropy representing the orientation azimuth angle, orientation tilt angle, and orientation degree of the alignment film 100 for measuring the photo-alignment characteristics is detected as a complex reflection amplitude ratio Ψ and a phase difference Δ of the reflected light. .

なお、本実施の形態では、複屈折性膜の一例として、配向膜の配向状態を表す物理量を測定する場合を例にとり説明するが、本発明はこれ以外の複屈折膜、例えば1/4波長膜の複屈折性を表す物理量の測定にも適用することができる。   In this embodiment, as an example of the birefringent film, a case where a physical quantity representing the alignment state of the alignment film is measured will be described as an example. The present invention can also be applied to measurement of a physical quantity representing the birefringence of a film.

1−1:光学系2
光学系2は、光源10と、偏光子20と、光弾性変調器30(「PEM」ともいう)と、検光子40と、検出器50とを含む。
1-1: Optical system 2
The optical system 2 includes a light source 10, a polarizer 20, a photoelastic modulator 30 (also referred to as “PEM”), an analyzer 40, and a detector 50.

光源10、偏光子P、光弾性変調器30は、測定光Lを測定対象としての配向膜100に入射する入射光路側に設けられている。   The light source 10, the polarizer P, and the photoelastic modulator 30 are provided on the incident optical path side where the measurement light L is incident on the alignment film 100 as a measurement target.

検光子40及び検出器50は、測定対象として配向膜100の表面で反射された測定光の、反射光路側に設けられている。   The analyzer 40 and the detector 50 are provided on the reflected light path side of the measurement light reflected from the surface of the alignment film 100 as a measurement target.

前記光源10は、測定光Lを供給するものであり、本実施の形態ではUV帯域の光を測定光Lとして出射するように構成されている。   The light source 10 supplies the measurement light L, and is configured to emit UV band light as the measurement light L in the present embodiment.

測定光として、UV帯域のレーザ光を使用することにより、配向膜100の裏面反射の影響を低減し、より正確に配向膜100の配向状態を測定することができる。すなわち、UV帯域の測定光を用いることにより、配向膜の裏面側から発射される発射光を低減することができ、特に配向膜100が設けられている基板からの裏面反射を大幅に低減し、測定精度を高めることが可能となる。ここでは、光源100として、He−Cdレーザーが用いられ、325nmのレーザー光が測定光Lとして用いられている。   By using laser light in the UV band as measurement light, the influence of back surface reflection of the alignment film 100 can be reduced, and the alignment state of the alignment film 100 can be measured more accurately. That is, by using measurement light in the UV band, it is possible to reduce the emitted light emitted from the back surface side of the alignment film, particularly significantly reduce back surface reflection from the substrate on which the alignment film 100 is provided, Measurement accuracy can be increased. Here, a He—Cd laser is used as the light source 100, and a laser beam of 325 nm is used as the measurement light L.

偏光子20は、検光子40と対になり、光源10から出射した測定光を直線偏光とする入射側の偏光子である。   The polarizer 20 is an incident-side polarizer that is paired with the analyzer 40 and uses the measurement light emitted from the light source 10 as linearly polarized light.

検光子40は、偏光子20と対になり、配向膜100の表面で反射された測定光を直線偏光とする出射側の偏光子である。   The analyzer 40 is an output-side polarizer that is paired with the polarizer 20 and uses the measurement light reflected by the surface of the alignment film 100 as linearly polarized light.

偏光子20及び検光子40は、互いにその主軸方位が光弾性変調器30の主軸方位を基準として45°になるように配置されている。偏光子20及び検光子40の主軸方位の角度は、必要に応じて適宜変更してもよく、また偏光子20に対する検光子の主軸方位の角度も、例えば90°の位相差を有するように設定してもよい。   The polarizer 20 and the analyzer 40 are arranged such that their principal axis directions are 45 ° with respect to the main axis direction of the photoelastic modulator 30. The angles of the principal axis directions of the polarizer 20 and the analyzer 40 may be appropriately changed as necessary, and the angle of the principal axis direction of the analyzer with respect to the polarizer 20 is also set to have a phase difference of 90 °, for example. May be.

1−2:光弾性変調器30
光弾性変調器30は、偏光子20を介して入射する測定光を透過すると共に、所与の弾性周波数で駆動され、複屈折位相変調量が前記弾性周波数に関連づけて変化する変調器である。
1-2: Photoelastic modulator 30
The photoelastic modulator 30 is a modulator that transmits measurement light incident through the polarizer 20 and is driven at a given elastic frequency, and the amount of birefringence phase modulation changes in association with the elastic frequency.

図2には、光弾性変調器30の具体的な構成が示されている。   FIG. 2 shows a specific configuration of the photoelastic modulator 30.

この光弾性変調器30は、等方性の透明物質(石英、CaF2等)の一方の領域に相対向するように水晶の圧電振動子32a、32bを貼り付けることによりピエゾ素子領域30Aを形成し、他方の領域には測定光を透過する透過領域30Bを形成する。 This photoelastic modulator 30 forms a piezoelectric element region 30A by attaching quartz piezoelectric vibrators 32a and 32b so as to face one region of an isotropic transparent substance (quartz, CaF 2, etc.). In the other region, a transmission region 30B that transmits the measurement light is formed.

本実施の形態では、PEMコントローラ36が、弾性周波数として角周波数ω(ω=2πf、fは周波数)、振幅δとする変調量を電気信号として前記光弾性変調器30のピエゾ素子領域30Aに印加し、ピエゾ素子領域30A及び透過領域30Bを構成する等方性の透明物質に光弾性効果によって複屈折を発生させる。 In the present embodiment, the PEM controller 36 uses the modulation amount with an angular frequency ω (ω = 2πf, f is a frequency) as an elastic frequency and an amplitude δ 0 as an electric signal in the piezoelectric element region 30A of the photoelastic modulator 30. When applied, birefringence is generated by the photoelastic effect in the isotropic transparent material constituting the piezoelectric element region 30A and the transmission region 30B.

すなわち、ピエゾ抵抗領域30Aの圧電振動子32a、32bに所与の弾性周波数及び振幅を持つ駆動電圧を印加すると、前記弾性周波数に応じた圧電振動が図3(A)〜(D)に示すように発生し、透過領域30Bにも前記弾性周波数で振動する1軸異方性が生じ、この結果、透過領域30Bの複屈折位相変調量δが変化する。   That is, when a drive voltage having a given elastic frequency and amplitude is applied to the piezoelectric vibrators 32a and 32b in the piezoresistive region 30A, the piezoelectric vibration corresponding to the elastic frequency is as shown in FIGS. And uniaxial anisotropy that vibrates at the elastic frequency also occurs in the transmission region 30B. As a result, the birefringence phase modulation amount δ of the transmission region 30B changes.

図4は、透過領域30Bにおける位置と振幅の関係の一例を示す。   FIG. 4 shows an example of the relationship between the position and amplitude in the transmission region 30B.

従って、図5に示すように、この透過領域30Bを透過する測定光Lは、前記複屈折位相変調量δに関連づけて変調され出力されることになる。   Therefore, as shown in FIG. 5, the measurement light L transmitted through the transmission region 30B is modulated and output in association with the birefringence phase modulation amount δ.

そして、光弾性変調器30で上述するように変調された測定光Lは、測定対象である配向膜100表面の所定の測定スポットに向け入射される。   Then, the measurement light L modulated as described above by the photoelastic modulator 30 is incident on a predetermined measurement spot on the surface of the alignment film 100 as a measurement target.

1−3:配向膜100の配向状態
図6には、配向膜100の表面に入射し反射される測定光と、配向膜100の配向状態の模式図が示されている。
1-3: Alignment State of Alignment Film 100 FIG. 6 shows a measurement light incident on the surface of the alignment film 100 and reflected, and a schematic diagram of the alignment state of the alignment film 100.

図6(A)に示すように、この配向膜100内にはポリマ110が所定の方向に向けて配向されている。ここでは、測定光Lの入射及び反射光を含む面を垂直面とし、この垂直面の垂直方向をy、水平方向をz、この垂直面と直交する方向をxと仮定する。   As shown in FIG. 6A, a polymer 110 is oriented in a predetermined direction in the orientation film 100. Here, it is assumed that the plane including the incident and reflected light of the measurement light L is a vertical plane, the vertical direction of this vertical plane is y, the horizontal direction is z, and the direction orthogonal to the vertical plane is x.

図6(B)には、前記x、y、z座標軸内におけるポリマ110の配向状態の一例が示されている。図中n1、n2、n3は、各軸方向への主屈折率を表す。   FIG. 6B shows an example of the orientation state of the polymer 110 in the x, y, and z coordinate axes. In the figure, n1, n2, and n3 represent main refractive indexes in the respective axial directions.

図7には、図6(A)に示す測定光Lの入反射面であるy、z面と直交する、y、x面における、ポリマ110の配向方向が模式図として示されている。   FIG. 7 schematically shows the orientation direction of the polymer 110 in the y and x planes orthogonal to the y and z planes that are the incident and reflection surfaces of the measurement light L shown in FIG.

ここにおいて、Ψは、反射された測定光の複素反射振幅比を表す。   Here, Ψ represents the complex reflection amplitude ratio of the reflected measurement light.

そして、a、bは楕円の長軸、短軸を表し、その比であるb/aが楕円率を表す。χは、楕円率角を表す。   And a and b represent the major axis and minor axis of the ellipse, and the ratio b / a represents the ellipticity. χ represents the ellipticity angle.

本実施の形態では、位相差はΔとして検出される。   In the present embodiment, the phase difference is detected as Δ.

そして、配向膜100の表面で反射された測定光Lは検光子40を透過し受光手段として機能する検出器50に入射される。   Then, the measurement light L reflected by the surface of the alignment film 100 passes through the analyzer 40 and enters the detector 50 that functions as a light receiving means.

検出器50で検出される測定光Lの光強度は、a+bと比例する。 The light intensity of the measurement light L detected by the detector 50 is proportional to a 2 + b 2 .

そして、検出器50は、入射された測定光の光強度を検出し、光強度を表す光強度情報としての電機信号に変換して出力する。   The detector 50 detects the light intensity of the incident measurement light, converts it into an electrical signal as light intensity information indicating the light intensity, and outputs the electrical signal.

1−4:基準成分抽出手段60及びコンピュータ70
基準成分抽出手段60は、検出器50から出力される光強度情報から、少なくとも前記弾性周波数及びその2倍の周波数の振幅成分を基準成分として抽出する処理を行う。
1-4: Reference component extraction means 60 and computer 70
The reference component extraction unit 60 performs a process of extracting, from the light intensity information output from the detector 50, at least the elastic frequency and an amplitude component having a frequency twice that of the elastic frequency as a reference component.

本実施の形態では、基準成分抽出手段60は、ローパスフィルタ62、第1及び第2のロックインアンプ64、66とを含んで構成される。   In the present embodiment, the reference component extraction unit 60 includes a low-pass filter 62 and first and second lock-in amplifiers 64 and 66.

ローパスフィルタ62は、検出器50から出力される光強度情報Iから直流成分を基準成分の一つとして抽出する処理を行い、その出力をADコンバータ68へ向け出力する。   The low-pass filter 62 performs a process of extracting the direct current component as one of the reference components from the light intensity information I output from the detector 50, and outputs the output to the AD converter 68.

第1のロックインアンプ64は、検出器50から出力される光強度情報Iから、前記基準弾性周波数の振幅成分を基準成分の一つとして抽出し、ADコンバータ68へ向け出力する。   The first lock-in amplifier 64 extracts the amplitude component of the reference elastic frequency as one of the reference components from the light intensity information I output from the detector 50, and outputs it to the AD converter 68.

第2のロックインアンプ66は、検出器50から出力される光強度情報Iから、前記弾性周波数の2倍の周波数の振幅成分を基準成分として抽出し、ADコンバータ68へ向け出力する。   The second lock-in amplifier 66 extracts, from the light intensity information I output from the detector 50, an amplitude component having a frequency twice the elastic frequency as a reference component, and outputs the reference component to the AD converter 68.

ADコンバータ68は、このようにして入力される光強度情報の直流成分、前記弾性周波数の振幅成分、弾性周波数の2倍の周波数の振幅成分からなる各基準成分をデジタル信号に変換しコンピュータ70へ向け出力する。   The AD converter 68 converts each reference component including the direct current component of the light intensity information input in this way, the amplitude component of the elastic frequency, and the amplitude component of the frequency twice the elastic frequency into a digital signal, and sends it to the computer 70. Output.

コンピュータ70は、抽出された前記基準成分に基づき、前記配向膜100の複屈折状態(本実施の形態では、「配向状態」)を表す物理量を求める複屈折状態演算処理を実行する。その詳細は後述する。   Based on the extracted reference component, the computer 70 executes birefringence state calculation processing for obtaining a physical quantity representing the birefringence state (“alignment state” in the present embodiment) of the alignment film 100. Details thereof will be described later.

(2)配向膜の測定原理
次に、本実施の形態の測定装置の測定原理を説明する。
(2) Measurement Principle of Alignment Film Next, the measurement principle of the measurement apparatus of the present embodiment will be described.

2−1:光学系2の偏光マトリクス
本実施の形態の光学系2において、偏光子20、光弾性変調器30、配向膜100、検光子40の各ミュラー行列をP、PEM、X、Aとし、偏光子20の入射前の測定光の偏光状態sin、検光子40から検出器50に入射される測定光の偏光状態をsoutとすると、検光子50に入射される測定光Lの偏光状態sout(ストークスパラメータ)は、(10a)式で与えられる。(10a)式は、(10b)式として表される。
2-1: Polarization Matrix of Optical System 2 In the optical system 2 of the present embodiment, the Mueller matrices of the polarizer 20, the photoelastic modulator 30, the alignment film 100, and the analyzer 40 are P, PEM, X, and A, respectively. If the polarization state s in of the measurement light before the polarizer 20 is incident and the polarization state of the measurement light incident on the detector 50 from the analyzer 40 is s out , the polarization of the measurement light L incident on the analyzer 50 The state s out (Stokes parameter) is given by equation (10a). The expression (10a) is expressed as the expression (10b).

そして、この(10b)式を演算することにより、当該(10b)式は(10c)式となる。
これより検出される光強度I(t)は、上記のストークスパラメータのS0成分であるから、その値は、(1a)式で与えられることになる。
Then, by calculating the expression (10b), the expression (10b) becomes the expression (10c).
Since the detected light intensity I (t) is the S 0 component of the Stokes parameter, the value is given by equation (1a).

2−2:光弾性変調器30による変調と光強度I(t)との関係
前述したように、光弾性変調器30のピエゾ素子領域30Aには、角周波数ω(ω=2πf,fは周波数),振幅δとする変調量が電気信号として印加される。
2-2: Relationship between Modulation by Photoelastic Modulator 30 and Light Intensity I (t) As described above, the piezo element region 30A of the photoelastic modulator 30 has an angular frequency ω (ω = 2πf, f is a frequency) ), A modulation amount having an amplitude δ 0 is applied as an electric signal.

これにより、光弾性変調器30は、図3に示すように伸縮し、光の透過領域30Bである石英などに光弾性効果によって複屈折を発生する。
このときの複屈折位相変調量δは、
と表せるので、
となり,(1a)式は
となる。
As a result, the photoelastic modulator 30 expands and contracts as shown in FIG. 3, and birefringence is generated in the light transmission region 30B such as quartz by the photoelastic effect.
The birefringence phase modulation amount δ at this time is
It can be expressed as
And (1a) is
It becomes.

式(4)の第1項はバイアスであり、第3項,第4項はそれぞれ周波数1f,2fに変調された光強度の振幅である。   The first term of equation (4) is a bias, and the third and fourth terms are the amplitudes of the light intensity modulated at frequencies 1f and 2f, respectively.

ここで,d0=2.405radと置くと,J0(d0)=0となり,式(4)の第2項が消える。 Here, if d 0 = 2.405 rad, J 0 (d 0 ) = 0, and the second term in Eq. (4) disappears.

また本実施の形態では、式(4)の第2項が消えるように、PEMコントローラ36から光弾性変調器30へ印加される電圧により振幅δが設定される。 In this embodiment, the amplitude δ 0 is set by the voltage applied from the PEM controller 36 to the photoelastic modulator 30 so that the second term of the equation (4) disappears.

J1(d0)=0.519,J2(d0)=0.432となるので式(4)を書き換えると、
となる。
J 1 (d 0 ) = 0.519, J 2 (d 0 ) = 0.432, so rewriting equation (4),
It becomes.

実際の測定では、光弾性変調器30により変調された測定光Lは、検出器50により光電変換され電圧信号として検出され、ローパスフィルタ62と、第1及び第2のロックインアンプ62、66に入力される。   In actual measurement, the measurement light L modulated by the photoelastic modulator 30 is photoelectrically converted by the detector 50 and detected as a voltage signal, and is sent to the low-pass filter 62 and the first and second lock-in amplifiers 62 and 66. Entered.

ローパスフィルタ62では光強度のバイアスIdcを検出する。式(4b)の直流成分が検出できるので、
となる。
The low pass filter 62 detects the bias I dc of the light intensity. Since the DC component of equation (4b) can be detected,
It becomes.

つぎに、2台のロックインアンプ64、66では、それぞれ周波数1f、2fの振幅I1f、I2fを測定する。 Next, the two lock-in amplifiers 64 and 66 measure the amplitudes I 1f and I 2f of the frequencies 1f and 2f, respectively.

ロックインアンプI1f64は、光弾性変調器30の変調周波数であるfを参照信号として、式(4b)の計測電気信号の中の周波数fの成分の振幅と位相を検出する(ここでは振幅のみ)。 The lock-in amplifier I 1f 64 detects the amplitude and phase of the component of the frequency f in the measurement electric signal of the equation (4b) using f as the modulation frequency of the photoelastic modulator 30 as a reference signal (here, amplitude) only).

検出されるI1fは、
となる。
The detected I 1f is
It becomes.

同様に、ロックインアンプI2f66は、PEMの周波数fの2倍の周波数2fに同期させて(ロックインアンプがこのような機能を持っている)、式(4b)の計測電気信号の中の周波数2fの成分の振幅と位相を検出する(ここでは振幅のみ)。 Similarly, the lock-in amplifier I 2f 66 is synchronized with a frequency 2f that is twice the frequency f of the PEM (the lock-in amplifier has such a function), and the lock-in amplifier I 2f 66 includes The amplitude and phase of the component of frequency 2f are detected (only amplitude here).

検出されるI2fは、
となる。
The detected I 2f is
It becomes.

このようにして、ローパスフィルタ62、ロックインアンプ64、66より検出され出力される信号はADコンバータ68によりデジタル信号に変換され、コンピュータ70に入力される。   In this way, the signals detected and output by the low-pass filter 62 and the lock-in amplifiers 64 and 66 are converted into digital signals by the AD converter 68 and input to the computer 70.

コンピュータ70は、複屈折状態演算手段として機能し、前記式(5)〜(7)として検出出力された光強度I(t)の基本成分から、配向膜100の複素反射振幅比Ψ、位相差Δを次式に基づき求める。   The computer 70 functions as birefringence state calculation means, and from the basic component of the light intensity I (t) detected and output as the above formulas (5) to (7), the complex reflection amplitude ratio Ψ, phase difference of the alignment film 100 is calculated. Δ is obtained based on the following equation.

このようにして、本実施の形態では、配向膜100の配向状態を示す物理量として、位相差Δ及び複素反射振幅比Ψをリアルタイムで求めることができる。 Thus, in this embodiment, the phase difference Δ and the complex reflection amplitude ratio Ψ can be obtained in real time as physical quantities indicating the alignment state of the alignment film 100.

なお、本実施の形態では物理量として、位相差及び複素反射振幅比の双方を求める場合を例にとり説明したが、位相差Δのみを求める場合には、ローパスフィルタ62を省略することができる。   In the present embodiment, the case where both the phase difference and the complex reflection amplitude ratio are obtained as physical quantities has been described as an example. However, when only the phase difference Δ is obtained, the low-pass filter 62 can be omitted.

(3)裏面反射対策及び表面乱反射対策
図8には、配向膜100に入射される測定光及び反射される測定光の模式図が示されている。
(3) Countermeasures for Back Surface Reflection and Surface Rough Reflection FIG. 8 is a schematic diagram of measurement light incident on the alignment film 100 and reflected measurement light.

図8(A)に示すように、配向膜100に測定光Lが入射されると、この測定光Lは配向膜100の表面100aで反射されるだけではなく、その一部が配向膜100中を透過し、その裏面100b側で反射され、その結果、図8(C)に示すように表面反射光I1と、裏面反射光I2が重畳された状態で検出器50に入射されることになる。   As shown in FIG. 8A, when the measurement light L is incident on the alignment film 100, the measurement light L is not only reflected by the surface 100a of the alignment film 100, but a part of the measurement light L is in the alignment film 100. And reflected on the back surface 100b side, and as a result, as shown in FIG. 8C, the front surface reflected light I1 and the back surface reflected light I2 enter the detector 50 in a superimposed state. .

本実施の形態では、このような裏面反射の影響を低減するために、測定光の入射光路側に入射光を細い光ビームに絞る第1のピンポール80a(開口部)を設けた第1の遮光板80を設置し、さらに測定光の反射光路側、検出器50の手前に配向膜100の表面からの反射測定光I1のみを透過させ、裏面反射光I2を遮光する第2のピンホール82a(開口部)が設けられた第2の遮光版82を設置する。   In the present embodiment, in order to reduce the influence of such back surface reflection, a first light blocking device provided with a first pin pole 80a (opening) for narrowing incident light into a thin light beam on the incident light path side of measurement light. A second pinhole 82a (which is provided with a plate 80, further transmits only the reflected measurement light I1 from the surface of the alignment film 100 in front of the detector 50 on the reflection light path side of the measurement light, and shields the back surface reflected light I2). A second shading plate 82 provided with an opening) is installed.

これにより、配向膜100の裏面反射の影響を低減し、より高い精度で配向膜100の物理量を測定することができる。   Thereby, the influence of the back surface reflection of the alignment film 100 can be reduced, and the physical quantity of the alignment film 100 can be measured with higher accuracy.

又、図8(B)に示すように、配向膜100の裏面側に、配向膜100と屈折率が近い材料104を貼り付けることにより、配向膜100の裏面100b側における裏面反射をより低減し、配向膜100の物理量の測定精度を更に向上させることもできる。   Further, as shown in FIG. 8B, by attaching a material 104 having a refractive index close to that of the alignment film 100 to the back surface side of the alignment film 100, back surface reflection on the back surface 100b side of the alignment film 100 is further reduced. Further, the measurement accuracy of the physical quantity of the alignment film 100 can be further improved.

また、本実施の形態では、表面乱反射対策として、複屈折性膜の表面に透明弾性樹脂からなる半球状レンズを密着させ、これを介して測定光を複屈折性膜に導入させる構成を採用してもよい。これにより、複屈折性膜表面の凸凹による散乱を防止することができ、測定における雑音を低下することができる。   In the present embodiment, as a countermeasure against surface irregular reflection, a configuration is adopted in which a hemispherical lens made of a transparent elastic resin is brought into close contact with the surface of the birefringent film, and the measurement light is introduced into the birefringent film through the lens. May be. Thereby, scattering due to unevenness on the surface of the birefringent film can be prevented, and noise in measurement can be reduced.

具体的には、図14に示すように、基板102上に積層された光配向膜100の表面に透明弾性樹脂からなる半球状レンズ150を設置することで,光配向膜100の反射成分をより効率よく検出することができる。   Specifically, as shown in FIG. 14, by installing a hemispherical lens 150 made of a transparent elastic resin on the surface of the photo-alignment film 100 laminated on the substrate 102, the reflection component of the photo-alignment film 100 is further increased. It can be detected efficiently.

例えば、半球状レンズ150の屈折率を光配向膜100より異なるようにしておけば、レンズ150との界面での反射が効率よく発生する。逆に、屈折率を同じにしておけば表面部分での反射を低減することができる。これにより基板層102と光配向膜100の界面での反射情報を捉えることができ、光配向膜100の偏光情報を捉えることができる。   For example, if the refractive index of the hemispherical lens 150 is different from that of the photo-alignment film 100, reflection at the interface with the lens 150 is efficiently generated. Conversely, if the refractive index is the same, reflection at the surface portion can be reduced. Thereby, reflection information at the interface between the substrate layer 102 and the photo-alignment film 100 can be captured, and polarization information of the photo-alignment film 100 can be captured.

(4)配向膜100の表面への測定光の入射方向
配向膜100の表面100aへの測定光Lの入射方向が変化すると、検出される配向膜100の配向状態を表す物理量も変化する。
(4) Incident direction of measurement light on the surface of the alignment film 100 When the incident direction of the measurement light L on the surface 100a of the alignment film 100 changes, the physical quantity representing the detected alignment state of the alignment film 100 also changes.

図9〜図12にはその実験結果が示されている。   The experimental results are shown in FIGS.

この実験では、図9に示すように、光学系2を固定し配向膜100をxz面上において水平方向に0〜360°の範囲で回転させ、得られる配向膜100の位相差Δがどのように変化するか検証した。   In this experiment, as shown in FIG. 9, the optical system 2 is fixed, and the alignment film 100 is rotated in the horizontal direction in the range of 0 to 360 ° on the xz plane. It verified whether it changed to.

図10は、配向膜100に代えて、測定サンプルとしてガラス基板の位相差Δを求めた場合のデータである。ガラス基板を360°回転させたときに得られる位相差Δはほぼ0であることが確認された。   FIG. 10 shows data when the phase difference Δ of the glass substrate is obtained as a measurement sample instead of the alignment film 100. It was confirmed that the phase difference Δ obtained when the glass substrate was rotated 360 ° was almost zero.

図11は、配向膜100として光配向膜を用い、これを0〜360°の範囲で回転させた時に得られる位相差Δのデータである。光配向膜を0〜360°の範囲で回転させた場合でも位相差Δを精度良く測定可能であることが確認された。   FIG. 11 shows phase difference Δ data obtained when a photo-alignment film is used as the alignment film 100 and rotated in the range of 0 to 360 °. It was confirmed that the phase difference Δ can be accurately measured even when the photo-alignment film is rotated in the range of 0 to 360 °.

図12は、配向膜100として機械ラビング膜を測定対象とした場合の測定結果が示されている。光ラビング膜を0〜360°回転した場合でも、光楕円膜の配向状態を示す位相差Δを精度良く測定可能であることが確認された。   FIG. 12 shows a measurement result when a mechanical rubbing film is used as the measurement object as the alignment film 100. It was confirmed that even when the optical rubbing film was rotated by 0 to 360 °, the phase difference Δ indicating the alignment state of the optical elliptical film could be measured with high accuracy.

以上のように、本実施の形態の測定装置では、配向膜100の配向状態を示す物理量、特にその位相差Δを精度良く測定することが確認された。   As described above, it was confirmed that the measurement apparatus of the present embodiment accurately measures the physical quantity indicating the alignment state of the alignment film 100, particularly the phase difference Δ.

図11、図12からも明らかなように、配向膜100を0〜360°回転すると、配向膜100の偏光状態が顕著に現れる代表的な基準測定方位があることがわかる。例えば、図12に示すように、配向膜100として機械ラビング膜を測定対象とした場合、この機械ラビング膜は、0度と120度付近で、光楕円膜の配向状態を示す位相差Δが大きな値をとる。   As is clear from FIGS. 11 and 12, when the alignment film 100 is rotated by 0 to 360 °, it can be seen that there is a typical reference measurement orientation in which the polarization state of the alignment film 100 appears remarkably. For example, as shown in FIG. 12, when a mechanical rubbing film is used as the alignment film 100 as a measurement object, the mechanical rubbing film has a large phase difference Δ indicating the alignment state of the photoelliptic film at around 0 ° and 120 °. Takes a value.

このように、基板上に形成された配向膜の配向状態を測定する場合に、液晶分子の向いている方向に対してどの方向から測定光を入射させるかによって、得られる配向状態を示す物理量の大きさが異なったものとなる。   As described above, when measuring the alignment state of the alignment film formed on the substrate, the physical quantity indicating the alignment state obtained depends on which direction the measurement light is incident on the direction in which the liquid crystal molecules are directed. The size will be different.

このため、測定光を配向膜表面に入射させる場合に、一番配向膜の特性が表れる代表的な測定方向が予め判明している場合には、代表的な測定方向から測定光を入射させることにより、より精度の高い配向状態を測定することが可能となる。   For this reason, when the measurement light is incident on the alignment film surface, if the typical measurement direction in which the characteristic of the alignment film appears most is known in advance, the measurement light is incident from the representative measurement direction. Thus, it becomes possible to measure the alignment state with higher accuracy.

また前記配向膜100の同一測定ポイントに、異なる少なくとも2方向から測定光を入射し、反射された各測定光を個別に受光し、前記物理量を個別に演算してもよい。   In addition, measurement light may be incident on the same measurement point of the alignment film 100 from at least two different directions, and each reflected measurement light may be individually received, and the physical quantities may be individually calculated.

このように2方向から測定光を入射し、反射された各測定光を個別に受光し前記物理量の演算を実行することにより、測定光の入射方向による影響を低減し、配向膜の配向状態をより的確に測定することができる。   In this way, the measurement light is incident from two directions, each reflected measurement light is individually received, and the calculation of the physical quantity is performed, thereby reducing the influence of the incident direction of the measurement light and changing the alignment state of the alignment film. It can be measured more accurately.

(5)多点測定
図13には、本実施の形態の測定装置を、光配向膜100の多点測定用に形成した場合の一例が示されている。
(5) Multipoint Measurement FIG. 13 shows an example of the case where the measuring apparatus according to the present embodiment is formed for multipoint measurement of the photo-alignment film 100.

光入射光路側において、弾性変調器30を通過した測定光から、2台のビームスプリッタ90−1、90−2と、ミラー92により3つの入射光路を形成し、配向膜100表面の3カ所の測定スポットに各入射光を入射させる。そして、3つの測定スポットで反射された測定光は、反射光路上に設けられた2台のビームスプリッタ94−1、94−2及びミラー96により、1本の反射光路に合成され、検光子40を介して検出器50に入射されるように構成されている。   On the light incident optical path side, three incident optical paths are formed by two beam splitters 90-1 and 90-2 and a mirror 92 from the measurement light that has passed through the elastic modulator 30. Each incident light is made incident on the measurement spot. Then, the measurement light reflected by the three measurement spots is synthesized into one reflected light path by two beam splitters 94-1 and 94-2 and a mirror 96 provided on the reflected light path. It is comprised so that it may inject into the detector 50 via.

そして、検出器50側において、どの測定スポットから光を入射しているかを選択できるように、3つの入射光路上にはそれぞれシャッター91−1、91−2、91−3が設けられ、これらシャッター91−1〜91−3はそのいずれか1つのみが光を透過するオン状態となり、他の2つは光を透過しないオフ状態となるように制御される。   On the detector 50 side, shutters 91-1, 91-2, and 91-3 are provided on the three incident light paths so that it can be selected from which measurement spot the light is incident. Only one of 91-1 to 91-3 is controlled to be in an on state that transmits light, and the other two are controlled to be in an off state that does not transmit light.

ここではシャッター91−1、91−2、91−3の順で各シャッターは順次オン状態となるようにサイクリックに制御される。これにより、検出器50で検出された測定光は、配向膜100のどの測定スポットからの光であるかを判別でき、配向膜100の複数の測定スポットにおける配向状態を個別にほぼリアルタイムで検出することができる。   Here, the shutters are controlled cyclically so that the shutters are sequentially turned on in the order of the shutters 91-1, 91-2, and 91-3. As a result, the measurement light detected by the detector 50 can be determined from which measurement spot of the alignment film 100, and the alignment states at the plurality of measurement spots of the alignment film 100 are individually detected substantially in real time. be able to.

また図13に示す実施例では、第1のロール120に巻かれたシート状の配向膜100を第2のロール130で巻き取る際に、配向膜100の幅方向に設けられた3つの測定スポットで、配向膜100の配向状態をリアルタイムに測定し、その良否判定を行うように構成されている。   In the embodiment shown in FIG. 13, when the sheet-like alignment film 100 wound around the first roll 120 is wound up by the second roll 130, three measurement spots provided in the width direction of the alignment film 100. Thus, the alignment state of the alignment film 100 is measured in real time and the quality is determined.

本実施の形態の装置は、配向膜100を図中矢印で示すロール方向に移動しながら、配向膜100の配向状態をその移動方向に向けてリアルタイムに検査することができ、液晶ディスプレイの製造分野、特に今後実用化が期待される光配向膜の製造ラインにおける品質検査装置として極めて有効なものとなる。   The apparatus according to the present embodiment can inspect the alignment state of the alignment film 100 in real time in the moving direction while moving the alignment film 100 in the roll direction indicated by the arrow in the drawing, and can be used in the manufacturing field of liquid crystal displays. In particular, it is extremely effective as a quality inspection apparatus in a photoalignment film production line that is expected to be put to practical use in the future.

なお、配向膜100を多点測定する他の実施例としては、例えば配向膜100の複数の測定スポットに対する複数の入射光路上にそれぞれ個別に光弾性変調器30を設け、各光弾性変調器30をそれぞれ異なる弾性周波数で駆動する構成を採用してもよい。   As another example of measuring the alignment film 100 at multiple points, for example, the photoelastic modulators 30 are individually provided on a plurality of incident optical paths with respect to a plurality of measurement spots of the alignment film 100, and each photoelastic modulator 30 is provided. A configuration may be adopted in which each is driven at a different elastic frequency.

この場合には、各測定スポットから反射された測定光を、反射光側ビームスプリッタより1つの光路の測定光に合成し受光手段に受光した場合でも、各測定スポットからの測定光は異なる弾性周波数の振幅成分を持つことになる。   In this case, even when the measurement light reflected from each measurement spot is combined with the measurement light of one optical path from the reflected light side beam splitter and received by the light receiving means, the measurement light from each measurement spot has a different elastic frequency. Have an amplitude component of.

すなわち、検出器50から出力される光強度信号には、各測定スポットに対応した光弾性変調器30の弾性周波数成分が含まれることとなる。   That is, the light intensity signal output from the detector 50 includes the elastic frequency component of the photoelastic modulator 30 corresponding to each measurement spot.

従って、これらの各測定光における弾性周波数の振幅成分及びその2倍の周波数の振幅成分を抽出することにより、各測定スポットの配向状態を示す物理量、特に位相差Δを求めることができる。   Therefore, by extracting the amplitude component of the elastic frequency and the amplitude component of twice the frequency in each measurement light, the physical quantity indicating the orientation state of each measurement spot, in particular, the phase difference Δ can be obtained.

本発明が適用された測定装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the measuring apparatus to which this invention was applied. 本実施の形態の計測装置に用いられる光弾性変調器の説明図。Explanatory drawing of the photoelastic modulator used for the measuring apparatus of this Embodiment. 光弾性変調器の動作の説明図。Explanatory drawing of operation | movement of a photoelastic modulator. 光弾性変調器の圧電動作の説明図。Explanatory drawing of the piezoelectric operation of a photoelastic modulator. 光弾性変調器を透過する測定光の説明図。Explanatory drawing of the measurement light which permeate | transmits a photoelastic modulator. 配向膜の配向状態を示す説明図。Explanatory drawing which shows the orientation state of an alignment film. 配向膜の配向状態の説明図。Explanatory drawing of the alignment state of alignment film. 配向膜の裏面反射を除去するための構成の説明図。Explanatory drawing of the structure for removing the back surface reflection of alignment film. 光学系において配向膜の入射方向を0〜360°変化させる場合の説明図。Explanatory drawing in the case of changing the incident direction of an alignment film 0-360 degrees in an optical system. ガラス基板を測定対象とした測定結果を示す図。The figure which shows the measurement result which used the glass substrate as the measuring object. 光配向膜の測定結果を示す図。The figure which shows the measurement result of a photo-alignment film. 光ラビング膜の測定結果を示す図。The figure which shows the measurement result of an optical rubbing film | membrane. 本実施の形態のシステムを用いて、多点測定する場合の説明図。Explanatory drawing in the case of performing multipoint measurement using the system of this Embodiment. 表面乱反射対策として複屈折性膜の表面に半球状レンズを設けた光学系の説明図。Explanatory drawing of the optical system which provided the hemispherical lens on the surface of the birefringent film as a countermeasure against surface irregular reflection.

符号の説明Explanation of symbols

10…光源
20…偏光子
30…光弾性変調器
40…検光子
50…検出器
60…基準成分抽出手段
62…ローパスフィルタ
64、66…第1及び第2のロックインアンプ
68…ADコンバータ
70…配向状態演算手段として機能するコンピュータ
100…配向膜
DESCRIPTION OF SYMBOLS 10 ... Light source 20 ... Polarizer 30 ... Photoelastic modulator 40 ... Analyzer 50 ... Detector 60 ... Reference | standard component extraction means 62 ... Low pass filter 64, 66 ... 1st and 2nd lock-in amplifier 68 ... AD converter 70 ... Computer 100 that functions as alignment state calculation means 100 ... alignment film

Claims (11)

複屈折性膜の複屈折状態を測定する装置において、
偏光子を介して入射する測定光を透過するとともに、所与の弾性周波数で駆動され、複屈折位相変調量が前記弾性周波数に関連付けて変化する光弾性変調手段と、
前記光弾性変調手段を透過し、前記複屈折性膜で反射された測定光を検光子を介して受光し、光強度を表す光強度情報に変換する受光手段と、
前記光強度情報から、少なくとも前記弾性周波数及びその2倍の周波数の振幅成分を基準成分として抽出する処理を行う基準成分抽出手段と、
抽出された基準成分に基づき、前記複屈折性膜の複屈折状態を表す物理量を求める複屈折状態演算手段と、
を含む測定装置。
In an apparatus for measuring the birefringence state of a birefringent film,
Photoelastic modulation means that transmits measurement light incident through a polarizer, is driven at a given elastic frequency, and a birefringence phase modulation amount changes in association with the elastic frequency;
A light receiving means for transmitting the measurement light reflected through the photoelastic modulation means and reflected by the birefringent film through an analyzer, and converting the light into light intensity information representing the light intensity;
A reference component extraction means for performing a process of extracting at least the elastic frequency and an amplitude component of twice the frequency as a reference component from the light intensity information;
Birefringence state calculation means for obtaining a physical quantity representing the birefringence state of the birefringent film based on the extracted reference component;
Including measuring device.
請求項1において、
前記基準成分抽出手段は、
前記光強度情報からその直流成分を基準成分のひとつとして抽出する処理をさらに行ない、
前記複屈折状態演算手段は、
抽出された基準成分に基づき、前記物理量として複屈折性膜の位相差及び複素反射振幅比の少なくとも一方を求める測定装置。
In claim 1,
The reference component extraction means includes
Further processing to extract the direct current component as one of the reference components from the light intensity information,
The birefringence state calculating means includes:
A measuring apparatus for obtaining at least one of a phase difference and a complex reflection amplitude ratio of a birefringent film as the physical quantity based on an extracted reference component.
請求項1、2のいずれかにおいて、
前記偏光子及び検光子の主軸方位は前記光弾性変調手段の主軸方位に対し所与の関係に設定された測定装置。
In any one of Claims 1, 2.
A measuring apparatus in which the principal axis directions of the polarizer and the analyzer are set to have a given relationship with respect to the principal axis direction of the photoelastic modulation means.
請求項1〜3のいずれかにおいて、
前記測定光として、UV帯域のレーザ光を用いる測定装置。
In any one of Claims 1-3,
A measuring apparatus using laser light in the UV band as the measuring light.
請求項1〜4のいずれかにおいて、
前記複屈折性膜で反射された測定光が受光手段に到達するまでの反射光路上に、前記複屈折性膜の表面側からの反射光を通過させ裏面側からの反射光を除去する開口部を設けた測定装置。
In any one of Claims 1-4,
An opening through which the reflected light from the front surface side of the birefringent film is passed and the reflected light from the back surface side is removed on the reflected light path until the measurement light reflected by the birefringent film reaches the light receiving means. Measuring device.
請求項1〜5のいずれかにおいて、
前記測定光の前記複屈折性膜への入射方向を、複屈折性膜の反射光強度が顕著に現れる代表的な基準測定方位に設定する測定装置。
In any one of Claims 1-5,
A measuring apparatus that sets the incident direction of the measurement light to the birefringent film to a representative reference measurement direction in which the reflected light intensity of the birefringent film is notable.
請求項1〜6のいずれかにおいて、
前記複屈折性膜の同一測定ポイントに、
異なる少なくとも2方向から測定光を入射し、反射された各測定光を個別に受光し、前記物理量を個別に演算する測定装置。
In any one of Claims 1-6,
At the same measurement point of the birefringent film,
A measuring apparatus that receives measurement light from at least two different directions, individually receives each reflected measurement light, and individually calculates the physical quantity.
請求項1〜7のいずれかにおいて、
複屈折性膜の表面に透明弾性樹脂からなる半球状レンズを密着させ、これを介して測定光を複屈折性膜に導入させる測定装置。
In any one of Claims 1-7,
A measuring apparatus in which a hemispherical lens made of a transparent elastic resin is brought into close contact with the surface of a birefringent film, and measurement light is introduced into the birefringent film through the lens.
請求項1〜8のいずれかにおいて、
前記光弾性変調手段から透過した測定光を複数の入射光側ビームスプリッタにより複数の入射光路に分岐し、前記複屈折性膜表面の複数の測定スポットに入射し、
前記複数の測定スポットから反射された測定光を、複数の反射光側ビームスプリッタにより一の光路の測定光に合成し前記受光手段に入射し、
前記複数の入射光路にはそれぞれ測定光を選択的に遮光するシャッタ手段が設けられ、前記複数の測定スポットからの測定光を選択的に前記受光手段に入射する測定装置。
In any one of Claims 1-8,
The measurement light transmitted from the photoelastic modulation means is branched into a plurality of incident optical paths by a plurality of incident light side beam splitters, and incident on a plurality of measurement spots on the surface of the birefringent film,
The measurement light reflected from the plurality of measurement spots is combined into measurement light of one optical path by a plurality of reflected light side beam splitters and incident on the light receiving means,
A measuring device that includes shutter means for selectively blocking measurement light in each of the plurality of incident light paths, and selectively enters measurement light from the plurality of measurement spots into the light receiving means.
請求項1〜8のいずれかにおいて、
前記光弾性変調手段は複数設けられ、各光弾性変調手段は異なる弾性周波数で駆動され、各光弾性変調手段を透過した測定光を前記複屈折性膜表面の複数の測定スポットに入射し、
前記複数の測定スポットから反射された測定光を、反射光側ビームスプリッタにより一の光路の測定光に合成し前記受光手段に入射する測定装置。
In any one of Claims 1-8,
A plurality of the photoelastic modulation means are provided, each photoelastic modulation means is driven at a different elastic frequency, and the measurement light transmitted through each photoelastic modulation means is incident on a plurality of measurement spots on the surface of the birefringent film,
A measuring apparatus that combines measurement light reflected from the plurality of measurement spots into measurement light on one optical path by a reflected light side beam splitter and enters the measurement light.
偏光子を介して入射する測定光を透過するとともに、所与の弾性周波数で駆動され、複屈折位相変調量が前記弾性周波数に関連付けて変化する光弾性変調手段と、
前記光弾性変調手段を透過し、前記複屈折性膜で反射された測定光を検光子を介して受光し、光強度を表す光強度情報に変換する受光手段と、
を用い、複屈折性膜の複屈折状態を測定する方法において、
前記光強度情報から、少なくとも前記弾性周波数及びその2倍の周波数の振幅成分を基準成分として抽出する処理を行う基準成分抽出手順と、
抽出された基準成分に基づき、前記複屈折性膜の複屈折状態を表す物理量を求める複屈折状態演算手段と、
を含む測定方法。
Photoelastic modulation means that transmits measurement light incident through a polarizer, is driven at a given elastic frequency, and a birefringence phase modulation amount changes in association with the elastic frequency;
A light receiving means for transmitting the measurement light reflected through the photoelastic modulation means and reflected by the birefringent film through an analyzer, and converting the light into light intensity information representing the light intensity;
In the method of measuring the birefringence state of the birefringent film using
A reference component extraction procedure for performing a process of extracting, from the light intensity information, an amplitude component of at least the elastic frequency and twice the frequency as a reference component;
Birefringence state calculation means for obtaining a physical quantity representing the birefringence state of the birefringent film based on the extracted reference component;
Measuring method including
JP2007259157A 2007-10-02 2007-10-02 Measuring device and method Pending JP2009085887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259157A JP2009085887A (en) 2007-10-02 2007-10-02 Measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259157A JP2009085887A (en) 2007-10-02 2007-10-02 Measuring device and method

Publications (1)

Publication Number Publication Date
JP2009085887A true JP2009085887A (en) 2009-04-23

Family

ID=40659481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259157A Pending JP2009085887A (en) 2007-10-02 2007-10-02 Measuring device and method

Country Status (1)

Country Link
JP (1) JP2009085887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019240A (en) * 2017-08-01 2020-02-21 조에티스 서비시즈 엘엘씨 Apparatus and associated egg identification apparatus and method for identifying badges
US11946809B2 (en) 2021-08-25 2024-04-02 Samsung Electronics Co., Ltd. Polarization measuring device and method of fabricating semiconductor device using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281129A (en) * 1989-03-30 1990-11-16 Measurex Corp Optical system for detecting characteristics of progressing sheet material
JPH05249031A (en) * 1992-03-10 1993-09-28 Matsushita Electric Ind Co Ltd Birefringence measuring apparatus
JPH07208937A (en) * 1994-01-25 1995-08-11 Fujitsu Ltd Equipment and method for measuring film thickness and permittivity
JP2004184225A (en) * 2002-12-03 2004-07-02 Jasco Corp Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
JP2007212330A (en) * 2006-02-10 2007-08-23 Moritex Corp Optical anisotropic parameter measuring method and measuring instrument
JP2007232550A (en) * 2006-02-28 2007-09-13 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument and optical characteristic measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281129A (en) * 1989-03-30 1990-11-16 Measurex Corp Optical system for detecting characteristics of progressing sheet material
JPH05249031A (en) * 1992-03-10 1993-09-28 Matsushita Electric Ind Co Ltd Birefringence measuring apparatus
JPH07208937A (en) * 1994-01-25 1995-08-11 Fujitsu Ltd Equipment and method for measuring film thickness and permittivity
JP2004184225A (en) * 2002-12-03 2004-07-02 Jasco Corp Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
JP2007212330A (en) * 2006-02-10 2007-08-23 Moritex Corp Optical anisotropic parameter measuring method and measuring instrument
JP2007232550A (en) * 2006-02-28 2007-09-13 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument and optical characteristic measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019240A (en) * 2017-08-01 2020-02-21 조에티스 서비시즈 엘엘씨 Apparatus and associated egg identification apparatus and method for identifying badges
KR102457640B1 (en) * 2017-08-01 2022-10-21 조에티스 서비시즈 엘엘씨 Apparatus and related egg identification apparatus and method for identifying badges
US11946809B2 (en) 2021-08-25 2024-04-02 Samsung Electronics Co., Ltd. Polarization measuring device and method of fabricating semiconductor device using the same

Similar Documents

Publication Publication Date Title
CN100468044C (en) Tester and method for residual stress of seniconductor material
JP2005274380A (en) Double refraction measuring instrument
CN105136681B (en) A kind of device for playing light modulation and the Electro-optical Modulation cascade small linear birefrigence of micrometer
JP2008076324A (en) Optical anisotropy parameter measuring apparatus
JP2001356072A (en) Pretilt angle detection method and apparatus
US20130021609A1 (en) Modulated ellipsometer for the determination of the properties of optical materials
KR20160052592A (en) Method and apparatus for measuring parameters of optical anisotropy
CN107976299A (en) Consider the bullet optical modulator retardation calibration analysis method and device of spectral dispersion
TW200813411A (en) Combination ellipsometry and optical stress generation and detection
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP2009085887A (en) Measuring device and method
CN104502281A (en) Photoelastic modulation measurement system
CN105241820A (en) Photoelastic modulation and electro-optic modulation cascaded phase modulation-type ellipsometer
TWI405959B (en) Method and apparatus for measuring physical parameters of an anisotropic material by phase-sensitive heterodyne interferometry
JP3936712B2 (en) Parameter detection method and detection apparatus for detection object
CN106154593B (en) Anisotropy measurement system, anisotropy measurement method and calibration method thereof
TWI464387B (en) Heterodyne interferometer based on the subtraction between optical interference signals designed for measuring the ellipsometric parameters of thin films
JP2004279380A (en) Angle of rotation measuring instrument
Liu et al. Simultaneous measurement of small birefringence magnitude and direction in real time
JP2009058464A (en) Method and apparatus for measuring optical axis
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
JP2014066615A (en) Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus
JP2005265649A (en) Optical rotation measuring device and concentration measuring device
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP3855080B2 (en) Optical characteristic measuring method for liquid crystal element and optical characteristic measuring system for liquid crystal element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101001

A521 Written amendment

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120509

A02 Decision of refusal

Effective date: 20120912

Free format text: JAPANESE INTERMEDIATE CODE: A02