JP2014066615A - Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus - Google Patents

Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus Download PDF

Info

Publication number
JP2014066615A
JP2014066615A JP2012212284A JP2012212284A JP2014066615A JP 2014066615 A JP2014066615 A JP 2014066615A JP 2012212284 A JP2012212284 A JP 2012212284A JP 2012212284 A JP2012212284 A JP 2012212284A JP 2014066615 A JP2014066615 A JP 2014066615A
Authority
JP
Japan
Prior art keywords
crystal
electro
light
optic coefficient
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012212284A
Other languages
Japanese (ja)
Inventor
Kuniharu Takizawa
國治 滝沢
Yasushi Haraguchi
康史 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIGMAKOKI Co Ltd
Original Assignee
SIGMAKOKI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIGMAKOKI Co Ltd filed Critical SIGMAKOKI Co Ltd
Priority to JP2012212284A priority Critical patent/JP2014066615A/en
Publication of JP2014066615A publication Critical patent/JP2014066615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrooptical coefficient measuring method and an electrooptical coefficient measuring apparatus being capable of highly accurate measurement of a large number of electrooptical coefficients with a simple configuration without coordinate conversion.SOLUTION: A crystal S to which an AC electric field is applied is arranged between a polarizer 20 and an analyser 22 arranged so that transmission axes are parallel or orthogonal to one another. Light with a narrow light emission wavelength band from a light source 10 is made incident into the crystal S through the polarizer 20 to detect and photoelectrically convert the light passing through the crystal S and the analyser 22. On the basis of a light detection signal thus detected, an electrooptical coefficient r(ris any one of r, r, r, r, r, r, rand r) is acquired. The crystal S is a rectangular parallelepiped crystal being composed of a uniaxial crystal or a biaxial crystal. Each normal line of six surfaces of the rectangular parallelepiped coincides with any one of main axes X, Xand Xof the crystal S. The direction of the AC electric field applied to the crystal S coincides with any one of the main axes.

Description

本発明は、結晶の電気光学係数を測定する電気光学係数測定方法及び電気光学係数測定装置に関する。   The present invention relates to an electro-optic coefficient measuring method and an electro-optic coefficient measuring apparatus for measuring an electro-optic coefficient of a crystal.

従来、結晶の電気光学係数r41、r42、r43、r51、r52、r61、r62、r63を測定するためには、適当な座標変換を行う必要があった。例えば、1軸性結晶の主軸X、Xを両座標軸が存在する面内でそれぞれ45°回転させ、新たな座標軸X’、X’を定めて、電気光学係数r41を計測する方法が知られている(非特許文献1参照)。 Conventionally, in order to measure the electro-optic coefficients r 41 , r 42 , r 43 , r 51 , r 52 , r 61 , r 62 , r 63 of the crystal, it is necessary to perform appropriate coordinate transformation. For example, the principal axes X 1 and X 2 of the uniaxial crystal are rotated by 45 ° in the plane where both coordinate axes exist, new coordinate axes X 1 ′ and X 2 ′ are determined, and the electro-optic coefficient r 41 is measured. A method is known (see Non-Patent Document 1).

また、印加電界方向と入射光方向が45°の角度をなす複雑な構成を用いて、点群3mの電気光学係数r51を測定する方法が知られている(非特許文献2参照)。この方法では、LiNbO結晶に電界を加えて、歪一定の状態でr51=28pm/Vが測定されている。この値は、逆圧電効果による動的位相変化が生じない周波数領域で計測されたため、応力一定状態の値よりも10%程度小さかった。この値は、高周波におけるLiNbO結晶のr51のスタンダードとしてよく知られている。また、LiNbO結晶の電気光学係数r51を測定するもう1つの方法として、非特許文献3、4に示す方法が知られている。 Further, a method is known in which the electro-optic coefficient r 51 of the point group 3m is measured using a complicated configuration in which the applied electric field direction and the incident light direction form an angle of 45 ° (see Non-Patent Document 2). In this method, an electric field is applied to the LiNbO 3 crystal, and r 51 = 28 pm / V is measured in a constant strain state. Since this value was measured in a frequency region where no dynamic phase change due to the inverse piezoelectric effect occurred, it was about 10% smaller than the value in the constant stress state. This value is well known as the r 51 standard for LiNbO 3 crystals at high frequencies. As another method for measuring the electro-optic coefficient r 51 of the LiNbO 3 crystal, methods shown in Non-Patent Documents 3 and 4 are known.

I. P. Kaminow and E. H. Turner, “Electro-optic light modulators” Appl. Opt. Vol.5, pp.1612-1628 (1966).I. P. Kaminow and E. H. Turner, “Electro-optic light modulators” Appl. Opt. Vol.5, pp.1612-1628 (1966). E. H. Turner, “High-frequency electro-optic coefficients of lithium niobate”, Appl. Phys. Lett. Vol. 8, pp.303-304 (1966).E. H. Turner, “High-frequency electro-optic coefficients of lithium niobate”, Appl. Phys. Lett. Vol. 8, pp. 303-304 (1966). 滝沢國治, 伊林亜希子:「LiNbO3結晶の電気光学係数r51と圧電定数d15の符号および絶対値の測定」, Optics,& Photonics Japan 2009, 24aE5.Kuniharu Takizawa, Akiko Ibayashi: "Measurement of sign and absolute value of electro-optic coefficient r51 and piezoelectric constant d15 of LiNbO3 crystal", Optics, & Photonics Japan 2009, 24aE5. 滝沢國治, 伊林亜希子:「LiNbO3結晶の電気光学係数r51の波長依存性」, Optics,& Photonics Japan 2009, 24aE6.Kuniharu Takizawa, Akiko Ibayashi: “The wavelength dependence of the electro-optic coefficient r51 of LiNbO3 crystals”, Optics, & Photonics Japan 2009, 24aE6.

従来の方法は、特定の結晶に特化されたもので汎用性に乏しいという共通の問題点があった。例えば、非特許文献1に示す方法は、KHPOやNHPOなどの属する点群

Figure 2014066615
の1軸性結晶には適しているが、2軸性結晶には不向きである。また、非特許文献3、4に示す方法は、LiNbO結晶のようにr51以外の電気光学係数が符号も含めて精度よく測定されている場合に限り有効になる方法であり、殆どの結晶には不適である。 The conventional method has a common problem that it is specialized for a specific crystal and lacks versatility. For example, the method shown in Non-Patent Document 1 uses a point group to which KH 2 PO 4 and NH 4 H 2 PO 4 belong.
Figure 2014066615
It is suitable for the uniaxial crystal, but is not suitable for the biaxial crystal. The methods shown in Non-Patent Documents 3 and 4 are effective only when electro-optic coefficients other than r 51 are accurately measured including the sign, such as LiNbO 3 crystal. Not suitable for.

また、非特許文献2〜4に示す方法では、電界のフリンジ効果による影響や目的の電気光学係数以外の種々の電気光学係数の影響により大きな誤差を含んだ値が測定されるため、高精度の測定には不向きである。   Further, in the methods shown in Non-Patent Documents 2 to 4, since a value including a large error is measured due to the influence of the fringe effect of the electric field and the influence of various electro-optic coefficients other than the target electro-optic coefficient, high accuracy Not suitable for measurement.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、簡単な構成で多数の電気光学係数を座標変換せずに精度よく測定することが可能な電気光学係数測定方法及び電気光学係数測定装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an electro-optic that can measure a large number of electro-optic coefficients with a simple configuration without converting coordinates. A coefficient measuring method and an electro-optic coefficient measuring apparatus are provided.

(1)本発明は、結晶の電気光学係数を測定する電気光学係数測定方法において、
透過軸が平行或いは直交するように配置された第1及び第2の偏光子の間に、交流電界が印加された結晶を配置し、発光波長帯域の狭い光源からの光を前記第1の偏光子を介して前記結晶に入射させ、前記結晶及び前記第2の偏光子を透過した光を検出して光電変換し、検出した光検出信号に基づき前記結晶の電気光学係数rmn(rmnは、r41、r42、r43、r51、r52、r61、r62、r63のいずれか1つ)を求め、
前記結晶は、1軸性結晶或いは2軸性結晶からなる直方体の結晶であり、前記直方体の6面の法線が、それぞれ前記結晶の主軸X、X、Xのいずれか1つと一致する、或いは前記法線と前記主軸との内角が0.1°以下であり、
前記結晶に印加される交流電界の方向が、前記主軸のいずれか1つと一致する、或いは、前記交流電界の方向と前記主軸との内角が0.1°以下であることを特徴とする。
(1) The present invention provides an electro-optic coefficient measuring method for measuring an electro-optic coefficient of a crystal,
A crystal to which an alternating electric field is applied is arranged between first and second polarizers arranged so that their transmission axes are parallel or orthogonal to each other, and light from a light source having a narrow emission wavelength band is converted into the first polarized light. The light is incident on the crystal through a child, the light transmitted through the crystal and the second polarizer is detected and photoelectrically converted, and the electro-optic coefficient r mn (r mn of the crystal is based on the detected light detection signal) , R 41 , r 42 , r 43 , r 51 , r 52 , r 61 , r 62 , r 63 )
The crystal is a cuboid crystal composed of a uniaxial crystal or a biaxial crystal, and the normals of the six faces of the cuboid coincide with any one of the principal axes X 1 , X 2 , and X 3 of the crystal, respectively. Or an internal angle between the normal and the main axis is 0.1 ° or less,
The direction of the alternating electric field applied to the crystal coincides with any one of the main axes, or the internal angle between the direction of the alternating electric field and the main axis is 0.1 ° or less.

本発明によれば、簡単な構成で多数の電気光学係数(r41、r42、r43、r51、r52、r61、r62、r63)を座標変換せずに精度よく測定することができる。測定に用いる結晶サンプルは単純な直方体であるため、加工が容易であり精度の高い測定が可能になる。また、平行ニコル或いは直交ニコル光学系を構成するため、安定した測定が可能であり、再現性に優れている。 According to the present invention, a large number of electro-optic coefficients (r 41 , r 42 , r 43 , r 51 , r 52 , r 61 , r 62 , r 63 ) are accurately measured with a simple configuration without coordinate conversion. be able to. Since the crystal sample used for the measurement is a simple rectangular parallelepiped, it can be easily processed and can be measured with high accuracy. In addition, since a parallel Nicol or orthogonal Nicol optical system is configured, stable measurement is possible and excellent reproducibility is achieved.

(2)また本発明において、
前記交流電界が印加された前記結晶の屈折率楕円体の式が、次式で表される固有値方程式に変換されるように、前記主軸のいずれか1つと一致する方向に前記光源からの光を伝搬させてもよい。
(2) In the present invention,
The light from the light source is directed in a direction coinciding with any one of the principal axes so that the formula of the refractive index ellipsoid of the crystal to which the alternating electric field is applied is converted into an eigenvalue equation represented by the following formula: It may be propagated.

Figure 2014066615
ただし、係数A、Bは前記結晶の屈折率で表され、且つA≠Bであり、係数Cは前記電気光学係数rmn及び前記結晶に印加される電界で表され、i及びjは1〜3のいずれか1つの整数であり、且つ、i≠jである。
Figure 2014066615
Where the coefficients A and B are expressed by the refractive index of the crystal, and A ≠ B, the coefficient C is expressed by the electro-optic coefficient r mn and the electric field applied to the crystal, and i and j are 1 to Any one of 3 and i ≠ j.

(3)また本発明において、
前記主軸のいずれか1つが、前記光源からの光の伝搬方向と平行であり、前記主軸の残りの2つが、前記第1の偏光子の透過軸と45°或いは−45°の角度をなしてもよい。
(3) In the present invention,
One of the main axes is parallel to the propagation direction of light from the light source, and the other two of the main axes form an angle of 45 ° or −45 ° with the transmission axis of the first polarizer. Also good.

(4)また本発明において、
前記光検出信号から、前記結晶の主軸X方向に振動する直線偏光と前記結晶の主軸X方向に振動する直線偏光との間の時間tとともに変化する動的位相差θ(t)を測定することにより、前記結晶の電気光学係数rmnを求めてもよい。
(4) In the present invention,
From the light detection signal, measuring a dynamic phase difference theta (t) that varies with time t between the linearly polarized light that oscillates in the spindle X j direction of the linearly polarized light and the crystal oscillating the main axis X i direction of the crystal By doing so, the electro-optic coefficient r mn of the crystal may be obtained.

ただし、i及びjは1〜3のいずれか1つの整数であり、且つ、i≠jである。   However, i and j are any one integer of 1 to 3, and i ≠ j.

本発明によれば、動的位相差を測定して電気光学係数を求めることで、逆圧電効果による結晶長の伸縮による位相変化の影響を無視することができ、精度の高い測定が可能になる。   According to the present invention, by measuring the dynamic phase difference and obtaining the electro-optic coefficient, the influence of the phase change due to the expansion and contraction of the crystal length due to the inverse piezoelectric effect can be ignored, and a highly accurate measurement is possible. .

(5)また本発明において、
前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、中心波長λの前記光源からの光が伝搬する結晶の長さをL、前記結晶に印加される周波数fの交流電界をEsin(2πft)とするとき、前記動的位相差θ(t)の絶対値が、次式で表されてもよい。
(5) In the present invention,
The refractive index n i of crystals linearly polarized light oscillating the main axis X i direction of the crystal feel the crystals of the main axis X j direction linearly polarized light vibrating in feel refractive index n j of the crystal, said light source having a center wavelength λ When the length of the crystal through which the light from the light propagates is L and the alternating electric field of the frequency f applied to the crystal is Esin (2πft), the absolute value of the dynamic phase difference θ (t) is given by May be represented.

Figure 2014066615
(6)また本発明において、
前記光検出信号から直流成分Iと2f(fは、前記交流電界の周波数)の周波数成分の実効値Irmsを抽出し、抽出した前記直流成分Iと前記実効値Irmsとに基づいて、前記結晶の電気光学係数rmnを求めてもよい。
Figure 2014066615
(6) In the present invention,
An effective value I rms of a frequency component of DC components I 0 and 2f (f is the frequency of the AC electric field) is extracted from the photodetection signal, and based on the extracted DC component I 0 and the effective value I rms. The electro-optic coefficient r mn of the crystal may be obtained.

本発明によれば、結晶に印加する交流電界の周波数の2倍の周波数成分を用いて電気光学係数を測定することで、2倍周波数以外の周波数の振幅に含まれる他の不要な電気光学係数の影響を排除することができ、精度の高い測定が可能になる。   According to the present invention, by measuring the electro-optic coefficient using a frequency component that is twice the frequency of the AC electric field applied to the crystal, other unnecessary electro-optic coefficients included in the amplitudes of frequencies other than the double frequency. Can be eliminated, and highly accurate measurement is possible.

(7)また本発明において、
前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、中心波長λの前記光源からの光が伝搬する結晶の長さをLとするとき、次式に基づいて、前記結晶の電気光学係数rmnを求めてもよい。
(7) In the present invention,
The refractive index n i of crystals linearly polarized light oscillating the main axis X i direction of the crystal feel the crystals of the main axis X j direction linearly polarized light vibrating in feel refractive index n j of the crystal, said light source having a center wavelength λ When the length of the crystal through which the light from the light propagates is L, the electro-optic coefficient r mn of the crystal may be obtained based on the following equation.

Figure 2014066615
ただし、φは前記結晶の主軸X方向に振動する直線偏光と前記結晶の主軸X方向に振動する直線偏光との間の時間tに依存しない静的位相差であり、i及びjは1〜3のいずれか1つの整数であり、且つ、i≠jである。
Figure 2014066615
However, phi is a static phase difference is not dependent on the time t between the linearly polarized light oscillating the main axis X j direction of the crystal and linearly polarized light that vibrates the main axis X i direction of the crystal, i and j are 1 Any one of ˜3 and i ≠ j.

(8)また本発明において、
前記2fの周波数成分の実効値Irmsが最大となるように前記静的位相差φを調整してもよい。
(8) In the present invention,
The static phase difference φ may be adjusted so that the effective value I rms of the 2f frequency component is maximized.

(9)本発明は、結晶の電気光学係数を測定する電気光学係数測定装置において、
透過軸が平行或いは直交するように配置された第1及び第2の偏光子と、
発光波長帯域の狭い光源からの光を、前記第1の偏光子を介して、交流電界が印加された結晶に入射させる光照射部と、
前記結晶及び前記第2の偏光子を透過した光を検出して光電変換する光検出部と、
前記光検出部からの光検出信号に基づき前記結晶の電気光学係数rmn(mは、4〜6のいずれか1つの整数、nは、1〜3のいずれか1つの整数)を算出する演算処理を行う演算処理部とを含み、
前記結晶は、1軸性結晶或いは2軸性結晶からなる直方体の結晶であり、前記直方体の6面の法線が、それぞれ前記結晶の主軸X、X、Xのいずれか1つと一致する、或いは前記法線と前記主軸との内角が0.1°以下であり、
前記結晶に印加される交流電界の方向が、前記主軸のいずれか1つと一致する、或いは、前記交流電界の方向と前記主軸との内角が0.1°以下であることを特徴とする。
(9) The present invention provides an electro-optic coefficient measuring apparatus for measuring an electro-optic coefficient of a crystal,
First and second polarizers arranged such that their transmission axes are parallel or orthogonal;
A light irradiator that causes light from a light source having a narrow emission wavelength band to be incident on a crystal to which an alternating electric field has been applied via the first polarizer;
A light detection unit that detects and photoelectrically converts light transmitted through the crystal and the second polarizer;
An operation for calculating an electro-optic coefficient r mn of the crystal based on a light detection signal from the light detection unit (m is an integer of any one of 4 to 6, and n is an integer of any of 1 to 3). An arithmetic processing unit that performs processing,
The crystal is a cuboid crystal composed of a uniaxial crystal or a biaxial crystal, and the normals of the six faces of the cuboid coincide with any one of the principal axes X 1 , X 2 , and X 3 of the crystal, respectively. Or an internal angle between the normal and the main axis is 0.1 ° or less,
The direction of the alternating electric field applied to the crystal coincides with any one of the main axes, or the internal angle between the direction of the alternating electric field and the main axis is 0.1 ° or less.

本発明によれば、簡単な構成で多数の電気光学係数(r41、r42、r43、r51、r52、r61、r62、r63)を座標変換せずに精度よく測定することができる。 According to the present invention, a large number of electro-optic coefficients (r 41 , r 42 , r 43 , r 51 , r 52 , r 61 , r 62 , r 63 ) are accurately measured with a simple configuration without coordinate conversion. be able to.

本実施形態の電気光学係数測定装置の構成の一例を示す図。The figure which shows an example of a structure of the electro-optic coefficient measuring apparatus of this embodiment. 本実施形態の電気光学係数測定方法が適用される結晶点群とその電気光学係数を示す図。The figure which shows the crystal point group to which the electro-optic coefficient measuring method of this embodiment is applied, and its electro-optic coefficient. 測定対象となる結晶Sの構成、印加電界方向、光伝搬方向を示す図。The figure which shows the structure of the crystal | crystallization S used as a measuring object, an applied electric field direction, and a light propagation direction. 測定に使用したLiNbO結晶の外観を示す図。It shows the appearance of the LiNbO 3 crystal used in the measurement. 静的位相差φの測定方法について説明するための図。The figure for demonstrating the measuring method of static phase difference (phi). 動的位相差の振幅χと、LiNbO結晶に加えた交流電圧の振幅Vの関係を示す測定結果。And amplitude χ dynamic phase difference, the measurement results indicating the relationship between the amplitude V a of the AC voltage applied to the LiNbO 3 crystal.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。   Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.

1.測定原理、構成
本実施形態の電気光学係数測定方法及び電気光学係数測定装置が採用する測定原理を説明する。図1(A)は、本実施形態の電気光学係数測定装置の構成の一例を示す図である。
1. Measurement Principle and Configuration A measurement principle employed by the electro-optic coefficient measurement method and the electro-optic coefficient measurement apparatus according to this embodiment will be described. FIG. 1A is a diagram illustrating an example of the configuration of the electro-optic coefficient measuring apparatus according to the present embodiment.

図1(A)に示す電気光学係数測定装置は、発光波長帯域の狭い光源10(例えば、レーザー光源)と、偏光子20(第1の偏光子)及び検光子22(第2の偏光子)と、光電センサ(フォトディテクタ)からなる光検出器30と、ローパスフィルタ40と、ロックインアンプ42と、信号発生器44と、増幅器46と、演算装置50(演算処理部)とを含む。   The electro-optic coefficient measuring apparatus shown in FIG. 1A includes a light source 10 (for example, a laser light source) having a narrow emission wavelength band, a polarizer 20 (first polarizer), and an analyzer 22 (second polarizer). And a photodetector 30 including a photoelectric sensor (photodetector), a low-pass filter 40, a lock-in amplifier 42, a signal generator 44, an amplifier 46, and an arithmetic device 50 (arithmetic processing unit).

図1(A)に示す例では、偏光子20と検光子22は、その透過軸の方向P、Pが互いに平行となるように配置されて平行ニコル光学系を構成し、偏光子20と検光子22の間には、測定対象となる結晶Sが配置されている。また、結晶Sの主軸X、Xが、偏光子20及び検光子22の透過軸P、Pと45°の角度をなし(図1(B)を参照)、結晶Sの主軸Xが、光源10からの光の伝搬方向と平行となるように配置されている。なお、偏光子20と検光子22の透過軸P、Pが互いに直交するように配置して直交ニコル光学系を構成してもよい。 In the example shown in FIG. 1A, the polarizer 20 and the analyzer 22 are arranged so that their transmission axis directions P 1 and P 2 are parallel to each other to constitute a parallel Nicol optical system. The crystal S to be measured is arranged between the analyzer 22 and the analyzer 22. Further, the main axes X 1 and X 3 of the crystal S form an angle of 45 ° with the transmission axes P 1 and P 2 of the polarizer 20 and the analyzer 22 (see FIG. 1B), and the main axis X of the crystal S 2 are arranged in parallel with the propagation direction of the light from the light source 10. The orthogonal Nicol optical system may be configured by arranging the transmission axes P 1 and P 2 of the polarizer 20 and the analyzer 22 so as to be orthogonal to each other.

光源10からの光は、偏光子20を透過して直線偏光となり結晶Sに入射する。結晶Sを透過した光は、検光子22を介して光検出器30に入射する。光検出器30は、検光子22を透過した光を受光し、受光した光の強度を電流もしくは電圧に変換(光電変換)し、光検出信号Iとしてローパスフィルタ40及びロックインアンプ42に出力する。   The light from the light source 10 passes through the polarizer 20 to become linearly polarized light and enters the crystal S. The light transmitted through the crystal S enters the photodetector 30 through the analyzer 22. The photodetector 30 receives the light transmitted through the analyzer 22, converts the intensity of the received light into a current or a voltage (photoelectric conversion), and outputs the light detection signal I to the low-pass filter 40 and the lock-in amplifier 42. .

信号発生器44は、増幅器46に制御信号(駆動信号)を出力して、増幅器46の駆動を制御するとともに、当該制御信号を参照信号としてロックインアンプ42に出力する。増幅器46は、信号発生器44から出力された制御信号を増幅して交流電界を結晶Sに印加する。ロックインアンプ42は、光検出器30から出力された光検出信号Iのうち、信号発生器44から出力された参照信号の周波数の2倍の周波数成分Iを抽出して演算装
置50に出力する。ローパスフィルタ40は、光検出器30から出力された光検出信号Iから直流成分Iを抽出して演算装置50に出力する。
The signal generator 44 outputs a control signal (drive signal) to the amplifier 46 to control the drive of the amplifier 46 and outputs the control signal to the lock-in amplifier 42 as a reference signal. The amplifier 46 amplifies the control signal output from the signal generator 44 and applies an alternating electric field to the crystal S. The lock-in amplifier 42 extracts a frequency component I 1 that is twice the frequency of the reference signal output from the signal generator 44 from the light detection signal I output from the light detector 30 and outputs it to the arithmetic device 50. To do. The low-pass filter 40 extracts the DC component I 0 from the light detection signal I output from the light detector 30 and outputs it to the arithmetic device 50.

演算装置50(コンピュータ)は、ローパスフィルタ40から出力された直流成分Iと、ロックインアンプ42から出力された周波数成分I(周波数成分Iの実効値)に基づいて、結晶Sの電気光学係数を算出する演算処理を行う。 The computing device 50 (computer) calculates the electrical power of the crystal S based on the DC component I 0 output from the low-pass filter 40 and the frequency component I 1 (effective value of the frequency component I 1 ) output from the lock-in amplifier 42. An arithmetic process for calculating an optical coefficient is performed.

図2は、本実施形態の電気光学係数測定方法が適用される結晶点群とその電気光学係数を示す図である。本実施形態の測定方法では、図2に示す結晶点群において丸印で示した電気光学係数r41、r42、r43、r51、r52、r61、r62、r63を単独で選択し、その絶対値を測定することができる。 FIG. 2 is a diagram showing a crystal point group to which the electro-optic coefficient measurement method of the present embodiment is applied and its electro-optic coefficient. In the measurement method of the present embodiment, electro-optic coefficients r 41 , r 42 , r 43 , r 51 , r 52 , r 61 , r 62 , r 63 indicated by circles in the crystal point group shown in FIG. You can select and measure its absolute value.

以下、結晶点群3mに属する1軸性結晶の電気光学係数r51を測定する場合を例にとり、本実施形態の測定原理について説明する。 Hereinafter, the measurement principle of this embodiment will be described by taking as an example the case of measuring the electro-optic coefficient r 51 of a uniaxial crystal belonging to the crystal point group 3m.

図3は、測定対象となる結晶Sの構成を示す図である。図3に示すように、結晶Sは、直方体の結晶であり、直方体の6面の法線が、それぞれ結晶Sの主軸X、X、X(結晶Sの屈折率楕円体の主軸X、X、X)のいずれか1つと一致している。また、結晶Sに印加される交流電界の方向は、結晶Sの主軸Xと一致しており、結晶Sに入射する光(光源10から出射し、偏光子20を透過した直線偏光)の伝搬方向は、結晶Sの主軸Xと一致している。 FIG. 3 is a diagram showing a configuration of the crystal S to be measured. As shown in FIG. 3, the crystal S is a cuboid crystal, and the normals of the six faces of the cuboid are the principal axes X 1 , X 2 , X 3 of the crystal S (the principal axis X of the refractive index ellipsoid of the crystal S). 1 , X 2 , X 3 ). The direction of the alternating electric field applied to the crystal S is consistent with the main axis X 1 of the crystal S, the propagation of light incident on the crystal S (emitted from the light source 10, the linearly polarized light transmitted through the polarizer 20) direction coincides with the main axis X 2 of the crystal S.

電界Eを点群3mに属する結晶SのX軸方向に加えた場合、電界Eによる電気光学効果(EO効果)によって誘起される、結晶Sの屈折率楕円体の式の屈折率変化成分(動的位相)は、次式で表される。 When added to X 1 axis direction of the crystal S belonging to the electric field E to the point cloud 3m, induced by electro-optical effect (EO effect) by the electric field E, the refractive index change component of the formula of the refractive index ellipsoid of the crystal S ( (Dynamic phase) is expressed by the following equation.

Figure 2014066615
式(1)より、結晶Sの屈折率回転楕円体は次式で与えられる。
Figure 2014066615
From the formula (1), the refractive index spheroid of the crystal S is given by the following formula.

Figure 2014066615
ただし、nは、結晶Sの常光線屈折率であり、nは、結晶Sの異常光線屈折率である。
Figure 2014066615
However, n o is the ordinary refractive index of the crystal S, n e is the extraordinary ray refraction index of the crystal S.

ここで、図3に示すように、結晶SのX軸に沿って光を伝搬させると、式(2)は、次式に書き改められる。 Here, as shown in FIG. 3, when the propagating light along the X 2 axis of the crystal S, the formula (2) is rewritten into the following equation.

Figure 2014066615
ここで、
Figure 2014066615
とおくと、式(3)の固有値方程式の解k、kは、
Figure 2014066615
となる。電気光学係数は100pm/V以下であるから、式(4)より、
Figure 2014066615
となり、この結晶方位では電気光学効果は無視されるため、光デバイスや光計測への応用はあり得なかった。ここが盲点となって、これまでこの方位による電気光学係数の測定は行われていなかった。しかし、電気光学係数を測定することを目的とする場合には、電気光学係数が係数Cにだけ含まれるという条件のもとでは、電気光学効果による微弱な位相変化を検出することにより電気光学係数を求めることができる。式(3)は、この条件を満たしているため、電気光学係数r51を求めることができる。
Figure 2014066615
here,
Figure 2014066615
Then, the solutions k 1 and k 2 of the eigenvalue equation of Equation (3) are
Figure 2014066615
It becomes. Since the electro-optic coefficient is 100 pm / V or less, from equation (4),
Figure 2014066615
Thus, since the electro-optic effect is ignored in this crystal orientation, it could not be applied to an optical device or optical measurement. This is a blind spot, and the electro-optic coefficient has not been measured in this direction so far. However, when the purpose is to measure the electro-optic coefficient, the electro-optic coefficient is detected by detecting a weak phase change due to the electro-optic effect under the condition that the electro-optic coefficient is included only in the coefficient C. Can be requested. Since Equation (3) satisfies this condition, the electro-optic coefficient r 51 can be obtained.

式(4)〜(7)を用いると、結晶のX軸方向の屈折率nX1と、結晶のX3軸方向の屈折率nX3は、次式で与えられる。 Using equation (4) to (7), the refractive index n X1 of the X 1 axis direction of the crystal, the refractive index n X3 of X 3 axis direction of the crystal is given by the following equation.

Figure 2014066615
この結晶Sを図1の偏光子20と検光子22の間に配置したとき、結晶Sの主軸X(主軸X)方向に振動する直線偏光と主軸X(主軸X)方向に振動する直線偏光の間の時間tとともに変化する動的位相差をθ(t)とし、時間tに依存しない静的位相差をφとすると、光検出器30から出力される光検出信号Iは、次の式で与えられる。
Figure 2014066615
When this crystal S is disposed between the polarizer 20 and the analyzer 22 in FIG. 1, the linearly polarized light that vibrates in the direction of the principal axis X i (principal axis X 1 ) of the crystal S and the vibration in the direction of the principal axis X j (principal axis X 3 ). Assuming that the dynamic phase difference between the linearly polarized light changing with time t is θ (t) and the static phase difference independent of time t is φ, the photodetection signal I output from the photodetector 30 is It is given by the following formula.

Figure 2014066615
ただし、Iは、入射光の強度に対応する光検出信号である。動的位相差θ(t)と静的位相差φは、それぞれ次式で与えられる。
Figure 2014066615
Here, I i is a light detection signal corresponding to the intensity of incident light. The dynamic phase difference θ (t) and the static phase difference φ are given by the following equations, respectively.

Figure 2014066615
ただし、Lは、光伝搬方向の結晶長(光源10からの光が伝搬する結晶の長さ)であり、λは、光源10の中心波長であり、Esin(2πft)は、結晶Sに印加される周波数fの交流電界である。
Figure 2014066615
Where L is the crystal length in the light propagation direction (the length of the crystal through which light from the light source 10 propagates), λ is the center wavelength of the light source 10, and Esin (2πft) is applied to the crystal S. AC electric field of frequency f.

ここで、動的位相差θ(t)の振幅χを、

Figure 2014066615
とすると、式(10)は、次式に書き改められる。 Here, the amplitude χ of the dynamic phase difference θ (t) is
Figure 2014066615
Then, the expression (10) is rewritten into the following expression.

Figure 2014066615
χ<<1であるから、
Figure 2014066615
とおけるため、式(14)は、次式となる。
Figure 2014066615
Since χ << 1,
Figure 2014066615
Therefore, the equation (14) becomes the following equation.

Figure 2014066615
ただし、J(χ)は、hを次数としχを変数とする第1種ベッセル関数である。
Figure 2014066615
However, J h (χ) is a first type Bessel function in which h is an order and χ is a variable.

ここで、光検出信号Iをロックインアンプ42に導き、h=0成分、すなわちcos(4πft)成分Iを抽出すると、Iは、次式で与えられる。 Here, when the light detection signal I is guided to the lock-in amplifier 42 and the h = 0 component, that is, the cos (4πft) component I 1 is extracted, I 1 is given by the following equation.

Figure 2014066615
(χ/2)成分が、変調周波数2πfの2倍の周波数成分Iから抽出されることは、本測定方法の特徴の1つであり、高感度測定の鍵となる技術である。
Figure 2014066615
The extraction of the J 1 (χ / 2) component from the frequency component I 1 that is twice the modulation frequency 2πf is one of the features of this measurement method and is a key technique for high-sensitivity measurement.

ここで、X軸カットX軸伝播のLiNbO結晶では、χ/2<<1であるから、式(17)の実効値Irmsは、次式となる。 Here, in the LiNbO 3 crystal of X 1 axis cut X 2 axis propagation, χ / 2 << 1, so the effective value I rms of the equation (17) is expressed by the following equation.

Figure 2014066615
次に、式(16)の直流成分I(ローパスフィルタ40で抽出される直流成分)は、次式で与えられる。
Figure 2014066615
Next, the direct current component I 0 (the direct current component extracted by the low-pass filter 40) of Expression (16) is given by the following expression.

Figure 2014066615
式(18)、(19)より、
Figure 2014066615
となる。式(13)と式(20)から、次式を得る。
Figure 2014066615
From equations (18) and (19),
Figure 2014066615
It becomes. From the equations (13) and (20), the following equation is obtained.

Figure 2014066615
式(21)を整理すると、次式となる。
Figure 2014066615
When formula (21) is arranged, the following formula is obtained.

Figure 2014066615
式(22)は、光検出信号の直流成分Iと、印加電界の周波数の2倍の周波数成分Irms及び静的位相差φを測定すれば、点群3m結晶の電気光学係数r51を、他の電気光学係数や圧電定数を含むことなく、単独で測定できることを表している。
Figure 2014066615
Equation (22) is obtained by measuring the DC component I 0 of the photodetection signal, the frequency component I rms twice the frequency of the applied electric field, and the static phase difference φ to obtain the electro-optic coefficient r 51 of the point group 3m crystal. This means that it can be measured independently without including other electro-optic coefficients and piezoelectric constants.

上述した解析方法は、点群3m結晶の電気光学係数r51のみならず、図2に示した結晶点群の電気光学係数r41、r42、r43、r51、r52、r61、r62、r63の絶対値の測定に拡張することができる。 The analysis method described above is not limited to the electro-optic coefficient r 51 of the point group 3m crystal, but also the electro-optic coefficients r 41 , r 42 , r 43 , r 51 , r 52 , r 61 , of the crystal point group shown in FIG. It can be extended to the measurement of absolute values of r 62 and r 63 .

図2に示す結晶点群において丸印で示した各電気光学係数を、点群3mの結晶の電気光
学係数r51と同様の方法で測定するには、次の3条件が成立しなければならない。
In order to measure each electro-optic coefficient indicated by a circle in the crystal point group shown in FIG. 2 in the same manner as the electro-optic coefficient r 51 of the crystal of the point group 3m, the following three conditions must be satisfied: .

まず、直方体に加工された、1軸性結晶あるいは2軸性結晶の6面の法線が、結晶の屈折率楕円体の主軸X、X、Xのいずれか1つと一致し、かつ、結晶に加える交流電界の方向が前記主軸のいずれか1つと一致する、という極めて単純な構成において、印加交流電界が存在する場合の結晶の屈折率楕円体の式が、次式(23)で表される固有値方程式に変換されるように、屈折率楕円体の主軸X、X、Xのどれか1つと一致する方向に波長帯域の狭い光を伝搬させることが第1の条件である。 First, the 6-plane normal of the uniaxial crystal or biaxial crystal processed into a rectangular parallelepiped coincides with any one of the principal axes X 1 , X 2 , X 3 of the refractive index ellipsoid of the crystal, and In the extremely simple configuration in which the direction of the AC electric field applied to the crystal coincides with any one of the main axes, the formula of the refractive index ellipsoid of the crystal in the presence of the applied AC electric field is given by the following formula (23): The first condition is that light having a narrow wavelength band is propagated in a direction coinciding with any one of the principal axes X 1 , X 2 , and X 3 of the refractive index ellipsoid so as to be converted into the eigenvalue equation represented. is there.

Figure 2014066615
ただし、結晶の主軸の添え字であるi及びjは1〜3のいずれか1つの整数であり、且つ、i≠jである。
Figure 2014066615
However, i and j which are subscripts of the main axis of the crystal are integers of any one of 1 to 3, and i ≠ j.

なお、前記6面の法線が前記主軸と完全に一致しなくても、両者のなす角度が0.1°以下であれば、測定対象以外の1或いは複数の電気光学係数が位相差に混じっても、これらを無視して高精度に測定対象の電気光学係数を測定することが可能である。同様に、交流電界の方向が前記主軸と完全に一致にしなくても、両者のなす角度が0.1°以下であれば、高精度に測定対象の電気光学係数を測定することが可能である。   Even if the normals of the six surfaces do not completely coincide with the main axis, one or a plurality of electro-optic coefficients other than the object to be measured are mixed in the phase difference if the angle between them is 0.1 ° or less. However, it is possible to ignore the above and measure the electro-optic coefficient of the measurement object with high accuracy. Similarly, even if the direction of the AC electric field is not completely coincident with the main axis, it is possible to measure the electro-optic coefficient of the measurement object with high accuracy if the angle formed by the two is 0.1 ° or less. .

次に、式(23)の固有値方程式の係数A、Bは、測定対象である結晶の屈折率で表され、且つA≠Bであることが第2の条件である。   Next, the second condition is that the coefficients A and B of the eigenvalue equation of Expression (23) are expressed by the refractive index of the crystal to be measured, and A ≠ B.

更に、測定対象である電気光学係数と印加電界が、式(23)の固有値方程式の係数Cに含まれることが第3の条件である。   Furthermore, the third condition is that the electro-optic coefficient to be measured and the applied electric field are included in the coefficient C of the eigenvalue equation of Expression (23).

2.測定結果
図1(A)の測定系を用いて、LiNbO結晶の電気光学係数r51を測定した。本測定では、光源10として、He−Neレーザ(波長λ=632.8nm、出力=7mW)を用いた。
2. Measurement Result The electro-optic coefficient r 51 of the LiNbO 3 crystal was measured using the measurement system of FIG. In this measurement, a He—Ne laser (wavelength λ = 632.8 nm, output = 7 mW) was used as the light source 10.

本測定に使用したノンドープコングルエントLiNbO結晶を図4に示す。結晶は直方体に加工され、レーザ光の入出力面及び電極が蒸着された2つの面は、それぞれ光学研磨されている。入出力面の法線はX軸と、電極が蒸着された2面の法線はX軸と、更に残りの2面の法線はX軸と、それぞれ平行になるように加工した。その結果、各法線とそれに対応する結晶主軸とのなす内角は、1/1000ラジアン以下であった。 The non-doped congruent LiNbO 3 crystal used in this measurement is shown in FIG. The crystal is processed into a rectangular parallelepiped, and the laser light input / output surface and the two surfaces on which the electrodes are deposited are optically polished. Normal input and output surfaces and the X 2 axis, and the normal is X 1 axis of two planes which electrodes are deposited, further normal of the remaining two faces are an X 3 axis and processed in parallel respectively . As a result, the internal angle between each normal line and the corresponding crystal principal axis was 1/1000 radians or less.

図4のPは偏光子20の光透過軸の方向であり、検光子22の光透過軸の方向PはPと平行である。すなわち、平行ニコル光学系を構成している。また、結晶の主軸X軸及びX軸が偏光子20の透過軸と45°の角度をなすように配置した。 P 1 in FIG. 4 is the direction of light transmission axis of the polarizer 20, the direction P 2 of the light transmission axis of the analyzer 22 is parallel to the P 1. That is, a parallel Nicol optical system is configured. Further, the main shaft X 1 axis and X 3 axis of the crystal is arranged at an angle of transmission axis 45 ° polarizer 20.

この測定に先立って、静的位相差φを求めた。図5を用いて静的位相差φの測定方法について説明する。まず、図5(A)に示すように、光源10からのレーザ光を光検出器30に直接入射させて、ローパスフィルタ40の出力I=Iを測定する。ただし、レーザ光は直線偏光しており、その電界の振動方向は、偏光子20及び検光子22の透過軸(図4のP、P方向)と一致させておく。 Prior to this measurement, a static phase difference φ was obtained. A method for measuring the static phase difference φ will be described with reference to FIG. First, as shown in FIG. 5A, the laser light from the light source 10 is directly incident on the photodetector 30, and the output I a = I i of the low-pass filter 40 is measured. However, the laser beam is linearly polarized, and the vibration direction of the electric field is made to coincide with the transmission axes (P 1 and P 2 directions in FIG. 4) of the polarizer 20 and the analyzer 22.

次に、図5(B)に示すように、図4のLiNbO結晶(結晶S)を挿入し、ローパ
スフィルタ40の出力Iを測定する。I、Iの測定結果より、LiNbO結晶の透過率αは、次式で与えられる。
Next, as shown in FIG. 5B, the LiNbO 3 crystal (crystal S) of FIG. 4 is inserted, and the output I b of the low-pass filter 40 is measured. From the measurement results of I a and I b , the transmittance α of the LiNbO 3 crystal is given by the following equation.

Figure 2014066615
次に、図5(C)に示すように、LiNbO結晶を取り除き、偏光子20と検光子22を挿入して、ローパスフィルタ40の出力Iを測定する。偏光子20及び検光子22の透過軸P、Pは、図4に示すようにLiNbO結晶の主軸X、Xと同一平面にあり、主軸Xと45°の角度をなす。また、上述したように、偏光子20及び検光子22の透過軸P、Pとレーザ光の電界の振動方向は完全に一致している。図5(C)に示す構成におけるローパスフィルタ40の出力Iは、I=βIで表される。従って、偏光子20と検光子22の透過率βは、次式で与えられる。
Figure 2014066615
Next, as shown in FIG. 5C, the LiNbO 3 crystal is removed, the polarizer 20 and the analyzer 22 are inserted, and the output I c of the low-pass filter 40 is measured. The transmission axes P 1 and P 2 of the polarizer 20 and the analyzer 22 are in the same plane as the main axes X 1 and X 3 of the LiNbO 3 crystal as shown in FIG. 4, and form an angle of 45 ° with the main axis X 3 . Further, as described above, the transmission axes P 1 and P 2 of the polarizer 20 and the analyzer 22 and the vibration direction of the electric field of the laser light are completely coincident. The output I c of the low-pass filter 40 in the configuration shown in FIG. 5C is represented by I c = βI i . Accordingly, the transmittance β of the polarizer 20 and the analyzer 22 is given by the following equation.

Figure 2014066615
最後に、図5(D)に示すように、LiNbO結晶を挿入し、LiNbO結晶に電界Eを加えた状態で、ローパスフィルタ40の出力Iと、ロックインアンプ42の出力Irmsを測定する。I、Irmsは、それぞれ次式で与えられる。
Figure 2014066615
Finally, as shown in FIG. 5D, with the LiNbO 3 crystal inserted and the electric field E applied to the LiNbO 3 crystal, the output I d of the low-pass filter 40 and the output I rms of the lock-in amplifier 42 are taking measurement. I d and I rms are given by the following equations, respectively.

Figure 2014066615
式(24)〜(26)より、次式を得る。
Figure 2014066615
From the equations (24) to (26), the following equation is obtained.

Figure 2014066615
式(28)は、図4に示す構成のローパスフィルタ40の出力I、I、I、I
測定すれば、静的位相差φを定めることができることを示している。ただし、目的の電気光学係数r51は、式(27)の動的位相差χに含まれているため、図5(D)に示す構成のローパスフィルタ40の出力Irmsはできるだけ大きいことが望ましい。そこで、LiNbO結晶をX軸に移動させて、Irmsが最大になるように調整したあとで、ローパスフィルタ40の出力I、I、I、Iを測定することが望ましい。
Figure 2014066615
Equation (28) indicates that the static phase difference φ can be determined by measuring the outputs I a , I b , I c , and I d of the low-pass filter 40 configured as shown in FIG. However, since the target electro-optic coefficient r 51 is included in the dynamic phase difference χ in Expression (27), it is desirable that the output I rms of the low-pass filter 40 configured as shown in FIG. . Therefore, it is desirable to measure the outputs I a , I b , I c , and I d of the low-pass filter 40 after moving the LiNbO 3 crystal to the X 3 axis and adjusting it so that I rms becomes maximum.

LiNbO結晶に1kHzの交流電圧(振幅V=150〜895V)を加え、ロックインアンプ42で2kHzの成分Irms(変調周波数の2倍の周波数成分の実効値)を抽出し、ローパスフィルタ40で直流成分I(I)を抽出した。測定結果の一例を表1に示す。また、これらの値から求めた静的位相差φ及び動的位相差の振幅χを表2に示す。 A 1 kHz AC voltage (amplitude V a = 150 to 895 V) is applied to the LiNbO 3 crystal, a 2 kHz component I rms (effective value of a frequency component twice the modulation frequency) is extracted by the lock-in amplifier 42, and the low-pass filter 40 The DC component I d (I 0 ) was extracted with An example of the measurement result is shown in Table 1. Table 2 shows the static phase difference φ and the dynamic phase difference amplitude χ obtained from these values.

Figure 2014066615
Figure 2014066615
図6は、動的位相差の振幅χと、LiNbO結晶に加えた交流電圧の振幅Vの関係を示す測定結果である。図6の黒塗り点は測定値を示す。また図6の測定値を結ぶ実線は最小二乗法から求めた実験式であり、次式で与えられる。
Figure 2014066615
Figure 2014066615
FIG. 6 is a measurement result showing a relationship between the amplitude χ of the dynamic phase difference and the amplitude Va of the AC voltage applied to the LiNbO 3 crystal. Black dots in FIG. 6 indicate measured values. The solid line connecting the measured values in FIG. 6 is an empirical formula obtained from the least square method and is given by the following formula.

Figure 2014066615
図6及び式(29)は、式(21)を裏付けている。
Figure 2014066615
FIG. 6 and equation (29) support equation (21).

式(21)より、電気光学係数r51は、

Figure 2014066615
と表される。以上の実験を10回繰り返し、式(29)を含む10個の実験式を求めた。各実験式にV=600Vを代入して式(30)により求めた電気光学係数r51の実測値は、32.05±0.01pm/Vであった。標準偏差値は十分小さく、精度の高い測定が行われたことを示している。 From equation (21), the electro-optic coefficient r 51 is
Figure 2014066615
It is expressed. The above experiment was repeated 10 times, and 10 empirical formulas including the formula (29) were obtained. The actual measurement value of the electro-optic coefficient r 51 calculated by the equation (30) by substituting V a = 600 V into each empirical equation was 32.05 ± 0.01 pm / V. The standard deviation value is sufficiently small, indicating that a highly accurate measurement was performed.

このように、本実施形態の測定方法によれば、図2に示す多数の電気光学係数を座標変換せずに測定できる。また、非常に高感度な計測が可能である。本発明を実証する実験では、10−3ラジアンの動的位相差を180μVの変化として計測した。ロックインアン
プはナノボルトのレベルでも検出可能であり、少なく見積もっても、さらに2〜3桁小さい動的位相差も検出可能である。
As described above, according to the measurement method of the present embodiment, a large number of electro-optic coefficients shown in FIG. 2 can be measured without coordinate conversion. In addition, very sensitive measurement is possible. In experiments demonstrating the present invention, a dynamic phase difference of 10 −3 radians was measured as a change of 180 μV. The lock-in amplifier can detect even a nanovolt level, and even a small estimate can detect a dynamic phase difference that is two to three orders of magnitude smaller.

測定に用いられる結晶サンプルは、極めて単純な直方体であるため、加工が容易であり、精度の高い計測が可能になる。この直方体の法線と結晶の主軸の1つがほぼ平行な場合、法線と主軸のなす角度が0.1°以下であれば、他の電気光学係数の影響を排除して、目的とする電気光学係数を精度よく測定することができる。また、平行ニコル光学系(或いは直交ニコル光学系)を構成するため、非常に安定した測定が可能であり、再現性に優れている。   Since the crystal sample used for measurement is a very simple rectangular parallelepiped, it can be easily processed and can be measured with high accuracy. When the normal line of the rectangular parallelepiped and one of the main axes of the crystal are substantially parallel, if the angle formed by the normal line and the main axis is 0.1 ° or less, the influence of other electro-optic coefficients is eliminated and the target electric The optical coefficient can be measured with high accuracy. In addition, since a parallel Nicol optical system (or a crossed Nicol optical system) is configured, very stable measurement is possible and excellent reproducibility is achieved.

また、結晶に印加する交流電界の周波数の2倍の周波数成分を抽出して目的とする電気光学係数を測定するため、2倍周波数以外の周波数の振幅に含まれる他の不要な電気光学係数の影響を避けることができる。また、動的位相差を測定するため、逆圧電効果による結晶長の伸縮による位相変化の影響を無視することができる。   In addition, in order to measure the target electro-optic coefficient by extracting a frequency component twice the frequency of the alternating electric field applied to the crystal, other unnecessary electro-optic coefficients included in the amplitude of the frequency other than the double frequency The impact can be avoided. Further, since the dynamic phase difference is measured, the influence of the phase change due to the expansion and contraction of the crystal length due to the inverse piezoelectric effect can be ignored.

本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。   The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.

10 光源、20 偏光子(第1の偏光子)、22 検光子(第2の偏光子)、30 光検出器、40 ローパスフィルタ、42 ロックインアンプ、44 信号発生器、46 増幅器、50 演算処理(演算処理部)、S 結晶 10 light source, 20 polarizer (first polarizer), 22 analyzer (second polarizer), 30 photodetector, 40 low-pass filter, 42 lock-in amplifier, 44 signal generator, 46 amplifier, 50 arithmetic processing (Arithmetic processing unit), S crystal

Claims (9)

結晶の電気光学係数を測定する電気光学係数測定方法において、
透過軸が平行或いは直交するように配置された第1及び第2の偏光子の間に、交流電界が印加された結晶を配置し、発光波長帯域の狭い光源からの光を前記第1の偏光子を介して前記結晶に入射させ、前記結晶及び前記第2の偏光子を透過した光を検出して光電変換し、検出した光検出信号に基づき前記結晶の電気光学係数rmn(rmnは、r41、r42、r43、r51、r52、r61、r62、r63のいずれか1つ)を求め、
前記結晶は、1軸性結晶或いは2軸性結晶からなる直方体の結晶であり、前記直方体の6面の法線が、それぞれ前記結晶の主軸X、X、Xのいずれか1つと一致する、或いは前記法線と前記主軸との内角が0.1°以下であり、
前記結晶に印加される交流電界の方向が、前記主軸のいずれか1つと一致する、或いは、前記交流電界の方向と前記主軸との内角が0.1°以下であることを特徴とする電気光学係数測定方法。
In an electro-optic coefficient measuring method for measuring an electro-optic coefficient of a crystal,
A crystal to which an alternating electric field is applied is arranged between first and second polarizers arranged so that their transmission axes are parallel or orthogonal to each other, and light from a light source having a narrow emission wavelength band is converted into the first polarized light. The light is incident on the crystal through a child, the light transmitted through the crystal and the second polarizer is detected and photoelectrically converted, and the electro-optic coefficient r mn (r mn of the crystal is based on the detected light detection signal) , R 41 , r 42 , r 43 , r 51 , r 52 , r 61 , r 62 , r 63 )
The crystal is a cuboid crystal composed of a uniaxial crystal or a biaxial crystal, and the normals of the six faces of the cuboid coincide with any one of the principal axes X 1 , X 2 , and X 3 of the crystal, respectively. Or an internal angle between the normal and the main axis is 0.1 ° or less,
An electro-optic characterized in that a direction of an alternating electric field applied to the crystal coincides with any one of the main axes, or an internal angle between the direction of the alternating electric field and the main axes is 0.1 ° or less. Coefficient measurement method.
請求項1において、
前記交流電界が印加された前記結晶の屈折率楕円体の式が、次式で表される固有値方程式に変換されるように、前記主軸のいずれか1つと一致する方向に前記光源からの光を伝搬させることを特徴とする電気光学係数測定方法。
Figure 2014066615
ただし、係数A、Bは前記結晶の屈折率で表され、且つA≠Bであり、係数Cは前記電気光学係数rmn及び前記結晶に印加される電界で表され、i及びjは1〜3のいずれか1つの整数であり、且つ、i≠jである。
In claim 1,
The light from the light source is directed in a direction coinciding with any one of the principal axes so that the formula of the refractive index ellipsoid of the crystal to which the alternating electric field is applied is converted into an eigenvalue equation represented by the following formula: An electro-optic coefficient measuring method characterized by propagating.
Figure 2014066615
Where the coefficients A and B are expressed by the refractive index of the crystal, and A ≠ B, the coefficient C is expressed by the electro-optic coefficient r mn and the electric field applied to the crystal, and i and j are 1 to Any one of 3 and i ≠ j.
請求項1又は2において、
前記主軸のいずれか1つが、前記光源からの光の伝搬方向と平行であり、前記主軸の残りの2つが、前記第1の偏光子の透過軸と45°或いは−45°の角度をなすことを特徴とする電気光学係数測定方法。
In claim 1 or 2,
Any one of the principal axes is parallel to the propagation direction of light from the light source, and the remaining two of the principal axes form an angle of 45 ° or −45 ° with the transmission axis of the first polarizer. An electro-optic coefficient measuring method.
請求項1乃至3のいずれかにおいて、
前記光検出信号から、前記結晶の主軸X方向に振動する直線偏光と前記結晶の主軸X方向に振動する直線偏光との間の時間tとともに変化する動的位相差θ(t)を測定することにより、前記結晶の電気光学係数rmnを求めることを特徴とする電気光学係数測定方法。
ただし、i及びjは1〜3のいずれか1つの整数であり、且つ、i≠jである。
In any one of Claims 1 thru | or 3,
From the light detection signal, measuring a dynamic phase difference theta (t) that varies with time t between the linearly polarized light that oscillates in the spindle X j direction of the linearly polarized light and the crystal oscillating the main axis X i direction of the crystal To obtain an electro-optic coefficient r mn of the crystal.
However, i and j are any one integer of 1 to 3, and i ≠ j.
請求項4において、
前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、中心波長λの前記光源からの光が伝搬する結晶の長さをL、前記結晶に印加される周波数fの交流電界をEsin(2πft)とするとき、前記動的位相差θ(t)の絶対値が、次式で表されることを特徴とする電気光学係数測定方法。
Figure 2014066615
In claim 4,
The refractive index n i of crystals linearly polarized light oscillating the main axis X i direction of the crystal feel the crystals of the main axis X j direction linearly polarized light vibrating in feel refractive index n j of the crystal, said light source having a center wavelength λ When the length of the crystal through which the light from the light propagates is L and the alternating electric field of the frequency f applied to the crystal is Esin (2πft), the absolute value of the dynamic phase difference θ (t) is given by An electro-optic coefficient measuring method, characterized in that:
Figure 2014066615
請求項1乃至5のいずれかにおいて、
前記光検出信号から直流成分Iと2f(fは、前記交流電界の周波数)の周波数成分の実効値Irmsを抽出し、抽出した前記直流成分Iと前記実効値Irmsとに基づいて、前記結晶の電気光学係数rmnを求めることを特徴とする電気光学係数測定方法。
In any one of Claims 1 thru | or 5,
An effective value I rms of a frequency component of DC components I 0 and 2f (f is the frequency of the AC electric field) is extracted from the photodetection signal, and based on the extracted DC component I 0 and the effective value I rms. An electro-optic coefficient measurement method characterized by obtaining an electro-optic coefficient r mn of the crystal.
請求項6において、
前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、前記結晶の主軸X方向に振動する直線偏光が感じる結晶の屈折率をn、中心波長λの前記光源からの光が伝搬する結晶の長さをLとするとき、次式に基づいて、前記結晶の電気光学係数rmnを求めることを特徴とする電気光学係数測定方法。
Figure 2014066615
ただし、φは前記結晶の主軸X方向に振動する直線偏光と前記結晶の主軸X方向に振動する直線偏光との間の時間tに依存しない静的位相差であり、i及びjは1〜3のいずれか1つの整数であり、且つ、i≠jである。
In claim 6,
The refractive index n i of crystals linearly polarized light oscillating the main axis X i direction of the crystal feel the crystals of the main axis X j direction linearly polarized light vibrating in feel refractive index n j of the crystal, said light source having a center wavelength λ A method of measuring an electro-optic coefficient, wherein the length of a crystal through which light from the light propagates is L, and the electro-optic coefficient r mn of the crystal is obtained based on the following equation.
Figure 2014066615
However, phi is a static phase difference is not dependent on the time t between the linearly polarized light oscillating the main axis X j direction of the crystal and linearly polarized light that vibrates the main axis X i direction of the crystal, i and j are 1 Any one of ˜3 and i ≠ j.
請求項7において、
前記2fの周波数成分の実効値Irmsが最大となるように前記静的位相差φを調整することを特徴とする電気光学係数測定方法。
In claim 7,
The electro-optic coefficient measuring method, wherein the static phase difference φ is adjusted so that the effective value I rms of the frequency component of 2f is maximized.
結晶の電気光学係数を測定する電気光学係数測定装置において、
透過軸が平行或いは直交するように配置された第1及び第2の偏光子と、
発光波長帯域の狭い光源からの光を、前記第1の偏光子を介して、交流電界が印加された結晶に入射させる光照射部と、
前記結晶及び前記第2の偏光子を透過した光を検出して光電変換する光検出部と、
前記光検出部からの光検出信号に基づき前記結晶の電気光学係数rmn(mは、4〜6のいずれか1つの整数、nは、1〜3のいずれか1つの整数)を算出する演算処理を行う演算処理部とを含み、
前記結晶は、1軸性結晶或いは2軸性結晶からなる直方体の結晶であり、前記直方体の6面の法線が、それぞれ前記結晶の主軸X、X、Xのいずれか1つと一致する、或いは前記法線と前記主軸との内角が0.1°以下であり、
前記結晶に印加される交流電界の方向が、前記主軸のいずれか1つと一致する、或いは、前記交流電界の方向と前記主軸との内角が0.1°以下であることを特徴とする電気光学係数測定装置。
In an electro-optic coefficient measuring device for measuring the electro-optic coefficient of a crystal,
First and second polarizers arranged such that their transmission axes are parallel or orthogonal;
A light irradiator that causes light from a light source having a narrow emission wavelength band to be incident on a crystal to which an alternating electric field has been applied via the first polarizer;
A light detection unit that detects and photoelectrically converts light transmitted through the crystal and the second polarizer;
An operation for calculating an electro-optic coefficient r mn of the crystal based on a light detection signal from the light detection unit (m is an integer of any one of 4 to 6, and n is an integer of any of 1 to 3). An arithmetic processing unit that performs processing,
The crystal is a cuboid crystal composed of a uniaxial crystal or a biaxial crystal, and the normals of the six faces of the cuboid coincide with any one of the principal axes X 1 , X 2 , and X 3 of the crystal, respectively. Or an internal angle between the normal and the main axis is 0.1 ° or less,
An electro-optic characterized in that a direction of an alternating electric field applied to the crystal coincides with any one of the main axes, or an internal angle between the direction of the alternating electric field and the main axes is 0.1 ° or less. Coefficient measurement device.
JP2012212284A 2012-09-26 2012-09-26 Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus Pending JP2014066615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212284A JP2014066615A (en) 2012-09-26 2012-09-26 Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212284A JP2014066615A (en) 2012-09-26 2012-09-26 Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus

Publications (1)

Publication Number Publication Date
JP2014066615A true JP2014066615A (en) 2014-04-17

Family

ID=50743167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212284A Pending JP2014066615A (en) 2012-09-26 2012-09-26 Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus

Country Status (1)

Country Link
JP (1) JP2014066615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604117C1 (en) * 2015-06-01 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Method of determining optical crystals with high electric conductivity electrooptical coefficient
CN110908147A (en) * 2019-11-04 2020-03-24 中国人民解放军战略支援部队航天工程大学 Phase delay analysis method for electro-optic crystal under any incident condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604117C1 (en) * 2015-06-01 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Method of determining optical crystals with high electric conductivity electrooptical coefficient
CN110908147A (en) * 2019-11-04 2020-03-24 中国人民解放军战略支援部队航天工程大学 Phase delay analysis method for electro-optic crystal under any incident condition

Similar Documents

Publication Publication Date Title
Carpenter The Electro-Optic Effect in Uniaxial Crystals of the Dihydrogen Phosphate Type.*,† III. Measurement of Coefficients
JPS5918923A (en) Birefringence measuring device
CN107976299B (en) Consider the bullet optical modulator retardation calibration analysis method and device of spectral dispersion
CN103162836A (en) Device and method for detecting optical interference of light polarization tiny corner
CN105137147B (en) Optical voltage measuring device
CN104406544A (en) Detection device and method for eliminating photoelastic modulator and environment influence based on double beam difference
JP2014066615A (en) Electrooptical coefficient measuring method and electrooptical coefficient measuring apparatus
CN107632180A (en) A kind of optical-fibre voltage sensing probe and optical-fibre voltage sensing demodulating system
US10712180B2 (en) Segmented poled optical fiber for fiber optic sensor and phased array
Gao et al. Electro-optic properties of BaTeMo2O9 single crystal
CN108362412A (en) A kind of optical-fiber laser pressure sensor and its pressure measurement method
Zhi et al. Compensation of scale factor nonlinearity in resonator fiber optic gyro
CN117030660A (en) Device for measuring electro-optic coefficient of ferroelectric film
CN208171487U (en) A kind of optical-fiber laser pressure sensor
Norgard et al. An electrooptic probe to determine internal electric fields in a piezoelectric transformer
Li et al. Linear birefringence-free optical voltage sensor based on dual-crystal structure
Liokumovich et al. Fiber-optic polarization interferometer with an additional phase modulation for electric field measurements
CN104502281A (en) Photoelastic modulation measurement system
Gibson et al. Enhanced bunch monitoring by interferometric electro-optic methods
CN105241820A (en) Photoelastic modulation and electro-optic modulation cascaded phase modulation-type ellipsometer
CN112067907B (en) Electric field direction measuring method and system based on linear electro-optic effect coupling wave theory
JP6531598B2 (en) Polarization velocity vector measuring apparatus and polarization velocity vector measuring method
Yu Fully variable elliptical phase retarder composed of two linear phase retarders
CN103344199B (en) Square-wave frequency modulation realizes the method for space angle measurement
JP2009085887A (en) Measuring device and method