JP2007212330A - Optical anisotropic parameter measuring method and measuring instrument - Google Patents

Optical anisotropic parameter measuring method and measuring instrument Download PDF

Info

Publication number
JP2007212330A
JP2007212330A JP2006033501A JP2006033501A JP2007212330A JP 2007212330 A JP2007212330 A JP 2007212330A JP 2006033501 A JP2006033501 A JP 2006033501A JP 2006033501 A JP2006033501 A JP 2006033501A JP 2007212330 A JP2007212330 A JP 2007212330A
Authority
JP
Japan
Prior art keywords
light
incident
maximum
reflected light
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006033501A
Other languages
Japanese (ja)
Other versions
JP4728830B2 (en
Inventor
Daisuke Tanooka
大 輔 田ノ岡
Masatoshi Kawada
田 正 敏 川
Yukihiro Horiguchi
口 幸 弘 堀
Takeshi Kikuchi
地 剛 菊
Atsushi Takai
井 敦 史 高
Koshiro Kaneko
子 浩司郎 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2006033501A priority Critical patent/JP4728830B2/en
Publication of JP2007212330A publication Critical patent/JP2007212330A/en
Application granted granted Critical
Publication of JP4728830B2 publication Critical patent/JP4728830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and instrument for measuring the direction of an optical axis of an optical anisotropic thin film, and its size and film thickness at a high speed with high accuracy, and further, performing distribution measurement by means of a two-dimensional light receiving element. <P>SOLUTION: While a turn table 6 mounted with light emitting and light receiving optical systems 4 and 5 is turned centering on a normal line R set up at a measurement point M, monochromatic light of P polarization is applied thereto at prescribed incident angles in a plurality of incident directions set at prescribed angular intervals to detect the intensity of reflected light of S polarization included in reflected light of the monochromatic light. An azimuthal angle direction Φ<SB>A</SB>of an optical axis OX at the measurement point M is determined based on an incident direction ν<SB>1</SB>in which a local minimum value V<SB>1</SB>is measured, with the minimum value V<SB>1</SB>interposed between two local maximum values Λ<SB>1</SB>and Λ<SB>2</SB>being maximum peaks among incident directions in which the reflected light intensity shows local minimum values. A polar angle direction θ can be determined, based on an incident direction in which a local minimum value V<SB>3</SB>is measured, with the minimum value V<SB>3</SB>interposed between the local maximum value Λ<SB>1</SB>being a maximum peak and a local maximum value Λ<SB>3</SB>being an intermediate peak adjoining thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、薄膜試料の光学軸の異方性を測定する光学的異方性パラメータ測定方法及び測定装置に関し、特に、液晶配向膜の検査等に用いて好適である。   The present invention relates to an optical anisotropy parameter measuring method and measuring apparatus for measuring the anisotropy of the optical axis of a thin film sample, and is particularly suitable for use in inspection of a liquid crystal alignment film.

液晶ディスプレイは、表面に透明電極及び配向膜を積層した裏側ガラス基板と、表面にカラーフィルタ、透明電極及び配向膜を積層形成した表側ガラス基板が、スペーサを介して配向膜同士を向かい合わせ、その配向膜の隙間に液晶を封入した状態で封止されると共に、その表裏両側に偏光フィルタが積層された構造と成っている。   The liquid crystal display has a back glass substrate with a transparent electrode and alignment film laminated on the surface, and a front glass substrate with a color filter, transparent electrode and alignment film laminated on the surface, with the alignment films facing each other through a spacer, The liquid crystal is sealed in a gap between the alignment films, and a polarizing filter is laminated on both the front and back sides.

ここで、液晶ディスプレイが正常に動作するためには液晶分子が均一に同一方向に配列されている必要があり、配向膜が液晶分子の方向性を決定する。
この配向膜が液晶分子を整列させることができるのは、一軸性光学的異方性を有しているからであり、配向膜がその全面にわたって均一な一軸性光学的異方性を有していれば液晶ディスプレイに欠陥を生じにくく、光学的異方性の不均一な部分が存在すれば液晶分子の方向が乱れるため液晶ディスプレイが不良品となる。
すなわち、配向膜の品質はそのまま液晶ディスプレイの品質に影響し、配向膜に欠陥があれば液晶分子の方向性が乱れるため、液晶ディスプレイにも欠陥を生ずることになる。
Here, in order for the liquid crystal display to operate normally, the liquid crystal molecules must be uniformly arranged in the same direction, and the alignment film determines the directionality of the liquid crystal molecules.
This alignment film can align the liquid crystal molecules because it has uniaxial optical anisotropy, and the alignment film has uniform uniaxial optical anisotropy over the entire surface. If this is the case, defects in the liquid crystal display are unlikely to occur, and if there are non-uniform portions of optical anisotropy, the direction of the liquid crystal molecules is disturbed, resulting in a defective liquid crystal display.
That is, the quality of the alignment film directly affects the quality of the liquid crystal display, and if there is a defect in the alignment film, the directionality of the liquid crystal molecules is disturbed, resulting in a defect in the liquid crystal display.

したがって、液晶ディスプレイを組み立てる際に、予め配向膜の欠陥の有無を検査して品質の安定した配向膜のみを使用するようにすれば、液晶ディスプレイの歩留りが向上し、生産効率が向上する。
このため従来より、配向膜について、異方性パラメータとなる光学軸の方位角方向、極角方向、膜厚等を測定し、その配向膜の光学的異方性を評価することにより、欠陥の有無を検査する方法が提案されている。
Therefore, when assembling the liquid crystal display, if the alignment film is inspected for defects in advance and only the alignment film having a stable quality is used, the yield of the liquid crystal display is improved and the production efficiency is improved.
For this reason, by measuring the azimuth angle direction, polar angle direction, film thickness, etc. of the optical axis as an anisotropy parameter for the alignment film, and evaluating the optical anisotropy of the alignment film, A method for inspecting the presence or absence has been proposed.

最も一般的な手法は、エリプソメータを使用する方法であり、かなり正確に測定することが可能であるが、1測定点あたりの測定時間が2分程度と長く、一枚の配向膜の異方性を評価する際に、100×100の合計1万点を測定しようとすると、単純計算で約2週間もかかるため、生産ラインに乗せて全数検査を行うことは到底不可能である。   The most common method is to use an ellipsometer, which can be measured fairly accurately, but the measurement time per measurement point is as long as 2 minutes, and the anisotropy of one alignment film When evaluating a total of 10,000 points of 100 × 100, it takes about two weeks by simple calculation, so it is impossible to put 100% inspection on the production line.

これは、薄膜試料の測定点に立てられた法線を中心として所定角度間隔で設定された複数の入射方向から前記測定点に対してP偏光又はS偏光の単色光を所定の入射角度で照射させ、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度を測定することにより入射方向に応じた反射光強度変化を検出することにより、光学的異方性薄膜のパラメータとなる方位角方向、極角方向及び膜厚を算出しようとするものである。
特開2001−272308
This is because the measurement point is irradiated with P-polarized light or S-polarized monochromatic light at a predetermined incident angle from a plurality of incident directions set at predetermined angular intervals with the normal line set at the measurement point of the thin film sample as the center. By measuring the reflected light intensity of the polarized light component included in the reflected light and orthogonal to the polarization direction of the irradiated light, the change in the reflected light intensity according to the incident direction is detected, thereby detecting an optical difference. The azimuth angle direction, polar angle direction, and film thickness, which are parameters of the isotropic thin film, are to be calculated.
JP 2001-272308 A

しかしながら、これによれば、光学的異方性薄膜のパラメータを求めるには、この方法は全ての方位で測定を行う必要があるため、時間がかかるという問題がある。
また、測定は反射光強度の絶対量を必要とするため、受光素子の感度の線形性、ダイナミックレンジなどの外的要因による影響により測定精度が左右され、誤差が大きくなる可能性が高く、測定精度の向上が難しいという問題がある。
さらに、非線形最小二乗法により主誘電率の軸の方向と大きさ、膜の厚さ、および規格化定数の6つ以上のパラメータを同時に算出する必要があるため、ローカルミニマムで収束した解を算出してしまう可能性があるだけでなく、計算に膨大な時間を必要とするといった問題がある。
However, according to this, in order to obtain the parameters of the optically anisotropic thin film, this method has a problem that it takes time because it is necessary to measure in all directions.
In addition, since the measurement requires an absolute amount of reflected light intensity, the measurement accuracy is affected by the influence of external factors such as the linearity of the sensitivity of the light receiving element and the dynamic range, and the error is likely to increase. There is a problem that it is difficult to improve accuracy.
Furthermore, since it is necessary to calculate more than six parameters of the direction and size of the principal dielectric constant axis, the film thickness, and the normalization constant at the same time by the nonlinear least square method, the solution converged by the local minimum is calculated. There is a problem that not only there is a possibility that the calculation will occur, but a huge amount of time is required for the calculation.

そこで本発明は、光学的異方性薄膜の光学軸の方向と傾きを高速、高精度に測定し、さらに二次元受光素子による分布測定を可能とする方法と装置を提供することを技術的課題としている。   Therefore, the present invention provides a method and apparatus for measuring the direction and inclination of the optical axis of an optically anisotropic thin film at high speed and with high accuracy, and further enabling distribution measurement by a two-dimensional light receiving element. It is said.

この課題を解決するために、本発明は、薄膜試料の異方性パラメータとなる光学軸の方位角方向と極角方向を測定する光学的異方性パラメータ測定装置であって、ステージに定置された薄膜試料上の測定点に対してP偏光又はS偏光の単色光を所定の入射角度で照射させる発光光学系と、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度を入射方向に応じて検出する受光光学系と、前記発光光学系及び前記受光光学系を測定点に立てられた法線の回りに回転させ、所定角度間隔で設定された複数の入射方向から測定点に光を照射させる回転テーブルと、前記反射光強度が極小値を示す入射方向のうち、最大ピークとなる二つの極大値に挟まれた極小値または中間ピークとなる二つの極大値に挟まれた極小値が測定された入射方向に基づいてその測定点における光学軸の方位角方向を決定すると共に、前記反射光強度が最大ピークとなる極大値とこれに隣接する中間ピークとなる極大値に挟まれた極小値が測定された入射方向、もしくは、最大ピークとなる極大値が測定された入射方向に基づいてその測定点における光学軸の極角方向を決定する演算処理装置とを備えたことを特徴としている。   In order to solve this problem, the present invention is an optical anisotropy parameter measuring apparatus for measuring an azimuth direction and a polar angle direction of an optical axis that is an anisotropy parameter of a thin film sample, and is placed on a stage. A light-emitting optical system that irradiates a measurement point on a thin film sample with P-polarized light or S-polarized monochromatic light at a predetermined incident angle, and a polarization component included in the reflected light that is orthogonal to the polarization direction of the irradiated light. A light receiving optical system that detects the reflected light intensity of the polarized light component according to the incident direction, and the light emitting optical system and the light receiving optical system are rotated around a normal line set at a measurement point and set at predetermined angular intervals. A rotary table that irradiates the measurement point with light from a plurality of incident directions, and a minimum value or an intermediate peak that is sandwiched between two maximum values that are the maximum peak among the incident directions in which the reflected light intensity has a minimum value. Pole between two maxima The azimuth direction of the optical axis at the measurement point is determined based on the incident direction in which the value is measured, and the reflected light intensity is sandwiched between the maximum value at which the reflected light intensity reaches the maximum peak and the maximum value at the intermediate peak adjacent thereto. And an arithmetic processing unit that determines the polar angle direction of the optical axis at the measurement point based on the incident direction in which the minimum value is measured or the incident direction in which the maximum value that is the maximum peak is measured. It is said.

本発明によれば、まず、薄膜試料をステージに定置し、その測定点に立てられた法線の回りに回転する回転テーブルで発光光学系及び受光光学系を回転させながら、所定角度間隔で設定された複数の入射方向から前記測定点に対してP偏光又はS偏光の単色光を所定の入射角度で照射させ、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度を測定することにより入射方向に応じた反射光強度変化を検出する。
入射方向を0〜360°の間で変化させたときに、光学異方性を有する薄膜試料の反射光強度の測定値は、最大ピークとなる二つの極大値が隣接すると共に、中間ピークとなる二つの極大値が隣接し、夫々の極大値の間に四つの極小値を有する波形となる。
According to the present invention, first, a thin film sample is placed on a stage, and is set at predetermined angular intervals while rotating the light-emitting optical system and the light-receiving optical system with a rotary table that rotates around the normal line set at the measurement point. The P-polarized light or S-polarized light is irradiated to the measurement point from a plurality of incident directions at a predetermined incident angle, and the polarization component included in the reflected light is orthogonal to the polarization direction of the irradiated light. By measuring the reflected light intensity of the component, a change in the reflected light intensity corresponding to the incident direction is detected.
When the incident direction is changed between 0 ° and 360 °, the measured value of the reflected light intensity of the thin film sample having optical anisotropy becomes an intermediate peak while the two maximum values that are the maximum peaks are adjacent to each other. Two maximum values are adjacent to each other, and a waveform having four minimum values between the maximum values is obtained.

ここで、薄膜試料の光学軸の方位角方向の角度、即ち、測定面内における光学軸の向きは最大ピークとなる二つの極大値に挟まれた極小値が測定された方向に等しいので、その方向を方位角方向と決定し、その角度をその測定点における方位角方向Φ=0と置く。
なお、この方向は、中間ピークとなる二つの極大値に挟まれた極小値が測定される方向から180°ずれているので、中間ピークとなる二つの極大値に挟まれた極小値が測定される方向からも特定できる。
Here, the angle in the azimuth direction of the optical axis of the thin film sample, that is, the direction of the optical axis in the measurement plane is the same as the direction in which the minimum value sandwiched between the two maximum values having the maximum peak is measured. The direction is determined as the azimuth angle direction, and the angle is set as the azimuth angle direction Φ A = 0 at the measurement point.
Note that this direction is 180 ° away from the direction in which the minimum value sandwiched between the two maximum values serving as the intermediate peak is measured, so the minimum value sandwiched between the two maximum values serving as the intermediate peak is measured. Can also be identified from the direction.

次に、薄膜試料の光学軸の極角方向の角度、即ち、基板平面に対する光学軸の傾斜角は、式(2)もしくは式(3)により算出できる。
ここで、式(2)(3)中、極角方向の角度θ以外の変数は、すべて既知もしくは測定値であるから、式(2)によるときは、最大ピークとなる極大値と中間ピークとなる極大値に挟まれた極小値が測定される角度を検出することにより、また、式(3)によるときは、最大ピークとなる極大値が測定される角度を検出することにより算定できる。

Figure 2007212330
Φ:最大ピークとなる二つの極大値に挟まれた極小値が測定された入射方向(=方位角方向=0)
Φ:最大ピークとなる極大値と中間ピークとなる極大値に挟まれた極小値が測定された入射方向
Φ:最大ピークとなる極大値が測定された入射方向
Φ:最大ピークとなる極大値が測定された入射方向
θ :基板平面からの光学軸の極角方向の角度(傾斜角)
μ :+/−(S偏光入射に対するP偏光の反射強度のとき「+」、P偏光入射に対するS偏光の反射強度のとき「−」)
φ:薄膜への入射角度
φ:基板へ抜けた時の光の角度
:基板の屈折率
ε:薄膜試料の常光誘電率 Next, the angle of the optical axis of the thin film sample in the polar angle direction, that is, the inclination angle of the optical axis with respect to the substrate plane can be calculated by the formula (2) or the formula (3).
Here, in Equations (2) and (3), variables other than the angle θ in the polar angle direction are all known or measured values. Therefore, according to Equation (2), the maximum value and the intermediate peak that are the maximum peaks It can be calculated by detecting the angle at which the minimum value sandwiched between the maximum values is measured, and by detecting the angle at which the maximum value at which the maximum peak is measured is detected according to Equation (3).
Figure 2007212330
Φ A : Incident direction (= azimuth direction = 0) in which a minimum value sandwiched between two maximum values having a maximum peak is measured
Φ B : Incident direction in which a minimum value sandwiched between a maximum value serving as a maximum peak and a maximum value serving as an intermediate peak is measured Φ C : Incident direction in which a maximum value serving as a maximum peak is measured Φ D : Maximum peak Incident direction θ in which the maximum value was measured: Angle of the optical axis from the substrate plane in the polar angle direction (tilt angle)
μ: +/− (“+” when the reflection intensity of P-polarized light is incident on S-polarized light, “−” when the reflection intensity of S-polarized light is incident on P-polarized light)
φ 0 : incident angle to thin film φ 2 : angle of light when it passes through the substrate N 2 : refractive index of substrate ε 0 : ordinary light dielectric constant of thin film sample

さらに、薄膜試料上の任意の測定エリアに対して、P偏光又はS偏光の単色光を所定の入射角度で照射させ、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度分布を二次元的に検出することにより、測定エリア内に存する各測定点について反射光強度を入射方向に応じて検出することにより、複数の測定点について個別に方位角方向、極角方向を算出できる。   Further, P-polarized light or S-polarized monochromatic light is irradiated at a predetermined incident angle to an arbitrary measurement area on the thin film sample, and the polarization component included in the reflected light is orthogonal to the polarization direction of the irradiated light. By detecting the reflected light intensity distribution of the polarization component two-dimensionally, by detecting the reflected light intensity according to the incident direction at each measurement point in the measurement area, the azimuth angle direction is individually measured for a plurality of measurement points. The polar angle direction can be calculated.

なお、薄膜試料として例えば液晶配向膜を用いた場合は、ラビングにより光学軸が揃い、そのラビング方向近傍とこれに直交する方向近傍から入射させたときに、反射光強度が最小となる極値が存在する。
また、反射光強度が最大ピーク又は中間ピークとなる極大値が存在する角度(方向)は、極角方向に依存し、液晶配向膜を製造する場合、ラビング強度(圧力)によって経験的におおよその極角方向をコントロールしているので、その極角方向に基づき式(3)より特定可能である。
したがって、ラビング方向とこれに直交する方向を中心に例えば所定の角度範囲において光を入射させたり、ラビング方向と反射光強度が最大ピークとなる極大値が存在すると予想される角度(方向)を中心に所定の角度範囲において光を入射させることにより、測定範囲を絞ることができる。
なお、この角度範囲は、液晶配向膜の製造ラインなどにおいては、経験的に測定された方位角方向等の統計上のバラツキに基づき、バラツキが少なければ±20°程度の限定された範囲で足り、ばらつきが多い場合は±45°程度と範囲を広げればよい。
When a liquid crystal alignment film is used as a thin film sample, for example, the optical axis is aligned by rubbing, and the extreme value that minimizes the reflected light intensity when incident from the vicinity of the rubbing direction and the direction orthogonal thereto is obtained. Exists.
In addition, the angle (direction) where the maximum value at which the reflected light intensity becomes the maximum peak or the intermediate peak exists depends on the polar angle direction, and when manufacturing a liquid crystal alignment film, it is empirically approximated by the rubbing intensity (pressure). Since the polar angle direction is controlled, it can be specified from the formula (3) based on the polar angle direction.
Therefore, centering on the angle (direction) where light is incident in a predetermined angle range centering on the rubbing direction and the direction orthogonal to the rubbing direction, or the maximum value where the rubbing direction and reflected light intensity has the maximum peak exists. The measurement range can be narrowed by making light incident on the lens within a predetermined angle range.
Note that this angle range is limited to about ± 20 ° if there is little variation based on empirically measured statistical variation in the azimuthal direction, etc., in the liquid crystal alignment film production line and the like. If the variation is large, the range may be expanded to about ± 45 °.

このように、反射光の極小値・極大値の入射方向さえわかれば光学軸の方位角方向と極角方向を決定することができ、さらに、これらの値が既知となった測定点について薄膜試料の異方性層の膜厚t、常光誘電率ε、異常光誘電率εを測定する場合は、2ないし3方向からエリプソメータあるいはリフレクトメータで測定を行なえば足り、極めて短時間且つ正確にこれらの光学異方性パラメータを測定できる。 Thus, the azimuth angle direction and the polar angle direction of the optical axis can be determined as long as the incident direction of the minimum value and maximum value of the reflected light is known, and the thin film sample is measured at the measurement points at which these values are known. When measuring the thickness t of the anisotropic layer, the ordinary light dielectric constant ε 0 , and the extraordinary light dielectric constant ε e , it is only necessary to measure in two or three directions with an ellipsometer or a reflectometer. These optical anisotropy parameters can be measured.

本発明は、光学的異方性薄膜の光学軸の方向と傾きを高速、高精度に測定するという目的を達成するため、ステージに薄膜試料を定置し、その測定点に立てられた法線の回りに回転する回転テーブルで発光光学系と受光光学系を回転させながら、P偏光又はS偏光の単色光を所定の入射角度で測定点に照射させ、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度を入射方向に応じて検出し、前記反射光強度の極小値を示す入射方向のうち、最大ピークとなる二つの極大値に挟まれた極小値又は中間ピークとなる二つの極大値に挟まれた極小値が測定された入射方向に基づいて測定点における光学軸の方位角方向を決定し、前記反射光強度が最大ピークとなる極大値とこれに隣接する中間ピークとなる極大値に挟まれた極小値が測定された入射方向、もしくは、最大ピークとなる極大値が測定された入射方向に基づいてその測定点における光学軸の極角方向を決定するようにした。   In order to achieve the object of measuring the direction and inclination of the optical axis of an optically anisotropic thin film at high speed and with high accuracy, the present invention places a thin film sample on a stage and sets the normal line set at the measurement point. While rotating the light-emitting optical system and the light-receiving optical system with a rotating table that rotates around, a monochromatic light of P-polarized light or S-polarized light is irradiated to a measurement point at a predetermined incident angle, and among the polarization components included in the reflected light, The reflected light intensity of the polarization component orthogonal to the polarization direction of the irradiated light is detected according to the incident direction, and the minimum value sandwiched between the two maximum values of the maximum peak among the incident directions indicating the minimum value of the reflected light intensity. Determine the azimuth direction of the optical axis at the measurement point based on the incident direction in which the minimum value sandwiched between the two maximum values or the intermediate peak is measured, and the maximum value at which the reflected light intensity becomes the maximum peak The pole that becomes the intermediate peak adjacent to this Incident direction minimum value sandwiched value was measured, or were to determine the polar angle direction of the optical axis at the measurement points based on the direction of incidence maximum value with the maximum peak was determined.

図1は本発明に係る光学的異方性パラメータ測定装置の一例を示す説明図、図2は反射光強度の最小値を示す入射方向と光学軸の方位角方向及び極角方向の関係を示す概念図、図3は反射光強度の測定結果を示すグラフ、図4は他の光学的異方性パラメータ測定装置を示す説明図、図5は薄膜試料の回転に伴う各測定点の位置の推移を示す説明図、図6は傾斜角分布の測定結果を示す説明図である。   FIG. 1 is an explanatory view showing an example of an optical anisotropy parameter measuring apparatus according to the present invention, and FIG. 2 shows a relationship between an incident direction showing a minimum value of reflected light intensity, an azimuth angle direction and a polar angle direction of an optical axis. 3 is a conceptual diagram, FIG. 3 is a graph showing the measurement result of reflected light intensity, FIG. 4 is an explanatory diagram showing another optical anisotropy parameter measuring device, and FIG. 5 is a transition of the position of each measurement point with the rotation of the thin film sample. FIG. 6 is an explanatory diagram showing the measurement result of the inclination angle distribution.

本例の光学的異方性パラメータ測定装置1は、ステージ2に定置された基板表面に配向膜(薄膜試料)3を形成するラビング装置10に一体的に設けられており、ラビング処理終了直後に、配向膜3の光学異方性パラメータとなる光学軸OXの方位角方向Φと極角方向θを測定できるようになっている。
ラビング装置10は、測定装置1及びラビングローラ9を備えた移動フレームF、Fを備えており、測定装置1を備えた移動フレームFを退避させた状態で、ラビングローラ9を備えた移動フレームFを移動させながらラビングを行い、ラビング終了後、ラビングローラ9を備えた移動フレームFを退避させた状態で、測定装置1を備えた移動フレームFを所定の位置まで進出させて異方性パラメータの測定を行う。
The optical anisotropy parameter measuring apparatus 1 of this example is provided integrally with a rubbing apparatus 10 that forms an alignment film (thin film sample) 3 on the surface of a substrate placed on a stage 2, and immediately after the rubbing process is completed. , and to be able to measure the azimuthal direction [Phi a and polar angle direction θ of the optical axis OX of the optical anisotropy parameter of the alignment film 3.
The rubbing device 10 includes moving frames F 1 and F 2 including the measuring device 1 and the rubbing roller 9, and includes the rubbing roller 9 in a state where the moving frame F 1 including the measuring device 1 is retracted. while moving the moving frame F 2 performs rubbing, after rubbing ends, in a state of being retracted to move the frame F 2 with a rubbing roller 9, is advanced to move frames F 1 provided with a measuring device 1 to a predetermined position To measure the anisotropic parameter.

測定装置1は、配向膜3上の測定点Mに対してP偏光又はS偏光の単色光を所定の入射角度で照射させる発光光学系4と、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度を入射方向に応じて検出する受光光学系5と、発光光学系4及び受光光学系5を測定点Mに立てられた法線Rの回りに回転させ、所定角度間隔で設定された複数の入射方向から測定点Mに光を照射させる回転テーブル6と、その測定結果に基づいて測定点Mにおける光学軸の極角方向を決定する演算処理装置7とを備えている。   The measuring apparatus 1 includes a light-emitting optical system 4 that irradiates a measurement point M on the alignment film 3 with P-polarized light or S-polarized monochromatic light at a predetermined incident angle, and irradiation of polarization components included in the reflected light. The light-receiving optical system 5 that detects the reflected light intensity of the polarization component orthogonal to the polarization direction of the light according to the incident direction, and the light-emitting optical system 4 and the light-receiving optical system 5 around the normal line R set at the measurement point M A rotating table 6 that rotates and irradiates the measurement point M with light from a plurality of incident directions set at predetermined angular intervals, and an arithmetic processing unit that determines the polar angle direction of the optical axis at the measurement point M based on the measurement result 7.

発光光学系4の光軸4x及び受光光学系5の光軸5xは測定点Mで等角的に交差するように設計されてモータ11により回転される回転テーブル6に取り付けられている。
回転テーブル6は、その回転軸6xが測定点Mに立てられた法線Rに一致するように配され、法線Rに対する回転軸6xの傾きを調整するあおり調整機構12、発光光学系4及び受光光学系5の光軸4x及び5xの交点の高さを配向膜3に一致させるZテーブル(高さ調整機構)13、発光光学系4及び受光光学系5の光軸4x及び5xの交点の位置を任意の測定点Mに一致させるXYテーブル(XY移動機構)14を備えている。
The optical axis 4x of the light emitting optical system 4 and the optical axis 5x of the light receiving optical system 5 are designed to be equiangularly crossed at the measurement point M and are attached to the rotary table 6 rotated by the motor 11.
The rotary table 6 is arranged so that the rotation axis 6x thereof coincides with the normal line R set at the measurement point M, and the tilt adjustment mechanism 12, the light emitting optical system 4 and the tilt adjustment mechanism 12 for adjusting the inclination of the rotation axis 6x with respect to the normal line R The Z table (height adjustment mechanism) 13 for matching the height of the intersection of the optical axes 4x and 5x of the light receiving optical system 5 with the alignment film 3, the intersection of the optical axes 4x and 5x of the light emitting optical system 4 and the light receiving optical system 5 An XY table (XY moving mechanism) 14 that matches the position with an arbitrary measurement point M is provided.

発光光学系4は、波長632.8nm、光強度25mWのHe−Neレーザ21が、測定精度の高いブリュースター角付近の入射角(本例では60°)となるように配置され、その照射光軸4xに沿って、P偏光を透過させるグラントムソンプリズム(消光比10―6)からなる偏光子22が配されている。 The light emitting optical system 4 is arranged such that a He—Ne laser 21 having a wavelength of 632.8 nm and a light intensity of 25 mW has an incident angle (60 ° in this example) near the Brewster angle with high measurement accuracy. A polarizer 22 composed of a Glan-Thompson prism (extinction ratio 10 −6 ) that transmits P-polarized light is disposed along the axis 4x.

受光光学系5は、前記レーザ21から照射されて配向膜3で反射された光の光軸5xに沿って、配向膜3からの裏面反射による光を消去するピンホールスリット23と、S偏光を透過させるグラントムソンプリズム(消光比10―6)からなる検光子24と、波長選択フィルタ25と、光電子増倍管26が配されており、光電子倍増管26の検出信号が演算処理装置7に出力されるようになっている。 The light receiving optical system 5 includes a pinhole slit 23 for erasing light due to back surface reflection from the alignment film 3 along the optical axis 5x of light irradiated from the laser 21 and reflected by the alignment film 3, and S-polarized light. An analyzer 24 composed of a Glan-Thompson prism (extinction ratio 10 −6 ) to be transmitted, a wavelength selection filter 25, and a photomultiplier tube 26 are arranged, and a detection signal of the photomultiplier tube 26 is output to the arithmetic processing unit 7. It has come to be.

また、回転テーブル6の中心には、回転軸6xと同軸的に光軸が配されたあおり検出用撮像装置15が配されている。
この撮像装置15には、ステージ2に向ってレーザ光を同軸落射させる光源装置(図示せず)が内蔵され、配向膜3で反射されたレーザ光を撮像できるようになっている。
これにより、回転テーブル6の回転軸6xが法線Rに対して傾斜していない場合は、回転テーブル6を回転させても反射光の受光点が移動しないので、あおりがないと判断できる。また、回転テーブル6の回転軸6xが法線Rに対して傾斜している場合は、回転テーブル6を回転させたときにあおりを生じ、反射光の受光点が一定せず閉曲線の軌跡を描くので、この軌跡からあおり量を検出することができる。
Further, at the center of the rotary table 6, a tilt detection imaging device 15 having an optical axis arranged coaxially with the rotary shaft 6x is arranged.
The imaging device 15 includes a light source device (not shown) that coaxially reflects the laser light toward the stage 2 so that the laser light reflected by the alignment film 3 can be imaged.
Thereby, when the rotating shaft 6x of the rotary table 6 is not inclined with respect to the normal line R, the light receiving point of the reflected light does not move even if the rotary table 6 is rotated, so that it can be determined that there is no tilt. Further, when the rotary shaft 6x of the rotary table 6 is inclined with respect to the normal line R, a tilt is generated when the rotary table 6 is rotated, and the light receiving point of the reflected light is not constant and a locus of a closed curve is drawn. Therefore, the tilt amount can be detected from this locus.

演算処理装置7では、回転テーブル6を所定角度回転するたびごとに、光電子倍増管26から出力される検出信号を入力し、その回転角度(入射方向)と反射光強度の関係を記憶する。
光学異方性を有する配向膜3について入射方向を0〜360°まで変化させたときに検出される反射光強度変化は、一般に、図3のグラフGに示すように、最大ピークとなる二つの極大値Λ、Λと、中間ピークとなる二つの極大値Λ、Λと、夫々の間に、四つの極小値V〜Vを有する波形となる。
すなわち、図2に示すように、平面図でみて光学軸OXの長手方向から入射されたときに最小値V、Vが測定され、光学軸OXを含む縦断面において光学軸に対して直交する方向から入射されたときに極小値V、Vが測定される。
The arithmetic processing unit 7 inputs a detection signal output from the photomultiplier tube 26 every time the turntable 6 is rotated by a predetermined angle, and stores the relationship between the rotation angle (incident direction) and the reflected light intensity.
It reflected light intensity is detected when changing the direction of incidence up to 0 to 360 ° for the alignment film 3 having optical anisotropy changes are generally, as shown in the graph G 1 of FIG. 3, the maximum peak two The waveform has four local maximum values Λ 1 and Λ 2 and two local maximum values Λ 3 and Λ 4 that are intermediate peaks, and four local minimum values V 1 to V 4 .
That is, as shown in FIG. 2, the minimum values V 1 and V 2 are measured when entering from the longitudinal direction of the optical axis OX in a plan view, and are orthogonal to the optical axis in the longitudinal section including the optical axis OX. The minimum values V 3 and V 4 are measured when the light enters from the direction in which the light enters.

そして、反射光強度の極小値を示す入射方向ν〜νのうち、最大ピークとなる二つの極大値Λ、Λに挟まれた極小値Vが測定された入射方向νに基づいて測定点における光学軸の方位角方向Φが決定される。すなわち、入射方向νを方位角方向Φ=0とする。
次いで、反射光強度が最大ピークとなる極大値Λとこれに隣接する中間ピークとなる極大値Λに挟まれた極小値Vが測定された入射方向ν、反射光強度が最大ピークとなる極大値Λとこれに隣接する中間ピークとなる極大値Λに挟まれた極小値Vが測定された入射方向ν、もしくは、最大ピークとなる極大値Λ又はΛが測定された入射方向λ又はλに基づいてその測定点における光学軸の極角方向θが決定される。
この場合、式(2)に基づいて算出する場合は、
Φ=ν−ν=ν−ν
とし、式(3)に基づいて算出する場合は、
|Φ|=|Φ|=|λ−λ|/2=|λ−λ|/2
とすればよい。
Of the incident directions ν 1 to ν 4 indicating the minimum value of the reflected light intensity, the minimum value V 1 sandwiched between the two maximum values Λ 1 and Λ 2 , which is the maximum peak, is measured in the incident direction ν 1 . azimuthal direction [Phi a of the optical axis are determined at the measurement point based. That is, the incident direction ν 1 is set to the azimuth direction Φ A = 0.
Next, an incident direction ν 3 in which a minimum value V 3 sandwiched between a maximum value Λ 1 at which the reflected light intensity becomes a maximum peak and a maximum value Λ 3 at an intermediate peak adjacent thereto is measured, and the reflected light intensity has a maximum peak. The incident direction ν 4 in which the minimum value V 4 sandwiched between the maximum value Λ 2 and the maximum value Λ 4 adjacent to the maximum value Λ 2 is measured, or the maximum value Λ 1 or Λ 2 that is the maximum peak is Based on the measured incident direction λ 1 or λ 2 , the polar angle direction θ of the optical axis at the measurement point is determined.
In this case, when calculating based on Equation (2),
Φ B = ν 3 −ν 1 = ν 4 −ν 1
And when calculating based on equation (3):
| Φ C | = | Φ D | = | λ 1 −λ 2 | / 2 = | λ 3 −λ 4 | / 2
And it is sufficient.

その後、配向膜3の光学軸OXの方位角方向Φ、極角方向θが既知となるので、任意の2方向からエリプソメータ、あるいはリフレクトメータで測定を行なえば、薄膜試料の主誘電率の大きさ及び厚さを求めることができる。 Thereafter, since the azimuth direction Φ A and the polar angle direction θ of the optical axis OX of the alignment film 3 are known, if measurement is performed from any two directions using an ellipsometer or a reflectometer, the main dielectric constant of the thin film sample is increased. Thickness and thickness can be determined.

以上が本発明装置の一構成例であって、次に本発明方法に付いて説明する。
薄膜試料として、ガラス基板8上に可溶性ポリイミドを塗布し、200℃で加熱した。
このガラス基板8をステージ2の上に定置し、測定装置1をステージ2から退避させた状態で、ラビング装置10をステージ2上に進出させ、ラビングローラ9でラビングを行った。
The above is an example of the configuration of the device of the present invention. Next, the method of the present invention will be described.
As a thin film sample, soluble polyimide was applied on the glass substrate 8 and heated at 200 ° C.
The glass substrate 8 was placed on the stage 2, and the rubbing device 10 was advanced onto the stage 2 with the measuring device 1 retracted from the stage 2, and rubbing was performed with the rubbing roller 9.

ラビング終了後、ラビング装置10を退避させ、測定装置1を進出させ、Zテーブル13及びXYテーブル14にて、光軸4x及び5xの交点位置が予め設定された測定点に一致するように、高さ調整及びXY位置調整を行う。
その後、回転テーブル6を回転させ、撮像装置15であおり量を検出し、あおり調整テーブル11であおり調整を行った後、反射光強度が最大となるようにZテーブル13で、再度高さ調整を行った。
After the rubbing is completed, the rubbing device 10 is retracted, the measuring device 1 is advanced, and the Z table 13 and the XY table 14 are set so that the intersection position of the optical axes 4x and 5x coincides with the preset measurement point. Adjustment and XY position adjustment.
Thereafter, the rotary table 6 is rotated, the amount of movement is detected by the imaging device 15, the height adjustment is performed by the tilt adjustment table 11, and then the height is adjusted again by the Z table 13 so that the reflected light intensity becomes maximum. went.

その後、回転テーブル6を回転させさせながら、入射方向に対するS偏光の反射光強度を測定した。
ラビングされた配向膜3は、方位角方向Φがそのラビング方向(X方向)と略平行であると予想でき、極角方向θがこれと略直交する位置にあると予想できるので、本例では、ラビング方向を中心に±20°、これと直交する方向(Y方向)を中心に±20°の範囲で2°間隔で反射光強度を測定した。
なお、この測定範囲は、光学軸の予想し得る方位角方向と、経験的に測定されている実際の方位角方向のずれを勘案して、例えば、±45°、±30°など任意の角度範囲に設定すればよい。
Thereafter, the intensity of reflected light of S-polarized light with respect to the incident direction was measured while rotating the rotary table 6.
Alignment film 3 rubbing, the azimuth angle direction [Phi A can be expected that the rubbing direction (X direction) and are substantially parallel, it is possible to expect to be in a position where the polar angle direction θ is substantially perpendicular to this, the present embodiment Then, the reflected light intensity was measured at intervals of 2 ° in a range of ± 20 ° centered on the rubbing direction and ± 20 ° centered on the direction orthogonal to the rubbing direction (Y direction).
Note that this measurement range is an arbitrary angle such as ± 45 ° or ± 30 °, taking into account the deviation between the azimuth direction where the optical axis can be predicted and the actual azimuth direction measured empirically. The range may be set.

図3の拡大グラフG、Gは、X方向及びY方向を中心とした夫々の測定範囲における反射光強度変化である。
この測定データから、光学軸OXの方位角方向Φ、極角方向θを求めた。
極角方向θを求める際、式(2)の常光誘電率はラビング前のポリイミド膜の誘電率ε=3.00と設定した。
グラフGの測定結果に対してフィッティング計算を行い、受光強度が極小となる方位νを算出したところ、ν=0.4°であった。したがって、光学軸OXの方位角方向ΦはY軸から04°傾いていることがわかる。
また、グラフGの測定結果に対してフィッティング計算を行い、受光強度が極小となる方位νを算出し、Φ=ν−ν、常光誘電率ε=3.00(ラビング前のポリイミド膜の誘電率)として式(2)に基づいて極角方向θを算出したところθ=22.5°であった。
なお、このときの一測定点の測定時間は約2秒であった。
Enlarged graphs G 2 and G 3 in FIG. 3 are changes in reflected light intensity in respective measurement ranges centered on the X direction and the Y direction.
From this measurement data, the azimuth angle direction Φ A and the polar angle direction θ of the optical axis OX were obtained.
When obtaining the polar angle direction θ, the ordinary light dielectric constant of the formula (2) was set as the dielectric constant ε 0 = 3.00 of the polyimide film before rubbing.
Performs fitting calculation with respect to the measurement results of the graph G 2, was calculated azimuth [nu 1 which received light intensity becomes minimum was ν 1 = 0.4 °. Therefore, the azimuth angle direction Φ A of the optical axis OX is 0 . It can be seen that it is tilted 4 °.
Further, fitting calculation is performed on the measurement result of the graph G 3 to calculate the direction ν 3 at which the received light intensity becomes the minimum, Φ B = ν 3 −ν 1 , ordinary light dielectric constant ε 0 = 3.00 (before rubbing) When the polar angle direction θ was calculated based on the formula (2) as the dielectric constant of the polyimide film, θ = 22.5 °.
At this time, the measurement time at one measurement point was about 2 seconds.

この結果をもとに、配向膜3の光学軸の方位角方向とそれに直交する方向の2方向で、エリプソメータで測定をおこなったところ、常光誘電率ε=2.79、異常光誘電率ε=3.44、異方層の膜厚t=11nmであった。この常光誘電率εの値から極角方向θを再計算すると24.5°であった。
このとき、エリプソメータで測定する時間を入れても、測定時間は一測定点あたり約4秒であり、従来手法と同等の結果を高速に測定することができた。
Based on this result, an ellipsometer was used to measure in two directions, the azimuth direction of the optical axis of the alignment film 3 and the direction orthogonal thereto, and it was found that the ordinary optical dielectric constant ε 0 = 2.79 and the extraordinary optical dielectric constant ε. e = 3.44 and the thickness t of the anisotropic layer was 11 nm. When the polar angle direction θ was recalculated from the value of the ordinary light permittivity ε 0 , it was 24.5 °.
At this time, even if the time to measure with an ellipsometer was included, the measurement time was about 4 seconds per measurement point, and a result equivalent to the conventional method could be measured at high speed.

図4は光学的異方性パラメータ測定装置の他の実施形態を示し、図1と共通する部分は同一符号を付して詳細説明は省略する。
本例の光学的異方性パラメータ測定装置31において、発光光学系4は、キセノンランプ32が配され、その光軸4xに沿って、反射鏡33の集光点にピンホールスリット34、その透過光を平行化するコリメートレンズ35、干渉フィルタ36、P偏光を透過させる偏光子22が配されている。
このとき、干渉フィルタ35は中心波長450nm、半値全幅2nmに選定され、配向膜3に照射されるビーム径は10mm、入射角度はブリュースター角付近である60°となるように設定した。
FIG. 4 shows another embodiment of the optical anisotropy parameter measuring apparatus, and the parts common to FIG.
In the optical anisotropy parameter measuring device 31 of this example, the light-emitting optical system 4 is provided with a xenon lamp 32, and along the optical axis 4x, a pinhole slit 34 at the condensing point of the reflecting mirror 33, and its transmission. A collimating lens 35 that collimates light, an interference filter 36, and a polarizer 22 that transmits P-polarized light are disposed.
At this time, the interference filter 35 was selected to have a center wavelength of 450 nm and a full width at half maximum of 2 nm, the beam diameter irradiated to the alignment film 3 was set to 10 mm 2 , and the incident angle was set to 60 ° near the Brewster angle.

また、受光光学系5は、その光軸5xに沿って、S偏光を透過させる検光子24、波長選択フィルタ37、2次元CCDカメラ38が配されている。
これにより、配向膜3に照射された10mmの測定エリアAに含まれる複数の測定点Mijからの反射光強度を同時に測定することができる。
The light receiving optical system 5 includes an analyzer 24 that transmits S-polarized light, a wavelength selection filter 37, and a two-dimensional CCD camera 38 along the optical axis 5x.
Thereby, the reflected light intensity from the plurality of measurement points Mij included in the measurement area A of 10 mm 2 irradiated on the alignment film 3 can be measured simultaneously.

実施例1と同様、ラビング装置10でラビングした。なお、本例では、ラビングの際、配向膜3の左側より右側の方がラビング強度が大きくなるようにラビングを行なった。
ラビング装置10を退避させ、測定装置1を進出させ、Zテーブル13及びXYテーブル14にて高さ調整及びXY位置調整を行い、あおりを調整した後、回転テーブル6を回転させ、入射方向に対する反射光強度の2次元分布測定を行なった。
In the same manner as in Example 1, rubbing was performed with the rubbing apparatus 10. In this example, the rubbing was performed so that the rubbing strength was higher on the right side than on the left side of the alignment film 3 during rubbing.
The rubbing device 10 is retracted, the measuring device 1 is advanced, the height adjustment and the XY position adjustment are performed with the Z table 13 and the XY table 14, the tilt is adjusted, the rotation table 6 is rotated, and the reflection with respect to the incident direction is performed. Two-dimensional distribution measurement of light intensity was performed.

図5(a)は回転前の測定エリアA内の測定点Mij(i,j=1〜10)を示す。
図5(b)は回転テーブル6の回転に伴い回転した画像を示すもので,各測定点Mijを極座標Mij=(r,α)で表わせば、回転テーブル6が角度γだけ回転したときのMijの位置はMij=(r,α+γ)で表わされる。
したがって、Mij=(r,α+γ)に対応するCCDカメラ39の画素領域で反射光強度を測定すればよい。
FIG. 5A shows measurement points Mij (i, j = 1 to 10) in the measurement area A before rotation.
FIG. 5B shows an image rotated with the rotation of the turntable 6. If each measurement point Mij is represented by polar coordinates Mij = (r n , α m ), the turntable 6 is rotated by an angle γ. The position of Mij is represented by Mij = (r n , α m + γ).
Therefore, the reflected light intensity may be measured in the pixel region of the CCD camera 39 corresponding to Mij = (r n , α m + γ).

このようにして、合計100ポイントの各測定点Mijについて、実施例1と同様、ラビング方向(X方向)を中心に±20°、これと直交する方向(Y方向)を中心に±20°の範囲で2°間隔で反射光強度を測定し、式(7)を用いて極角方向θの分布を求めた。このときの100ポイントの測定点の測定時間は2秒であった。   In this way, with respect to a total of 100 measurement points Mij, as in Example 1, ± 20 ° centered on the rubbing direction (X direction) and ± 20 ° centered on the direction orthogonal to this (Y direction). The reflected light intensity was measured at intervals of 2 ° in the range, and the distribution in the polar angle direction θ was obtained using the equation (7). At this time, the measurement time of 100 measurement points was 2 seconds.

この結果をもとに、試料の各測定点Mijについて、光学軸OXの方位角方向Φと、それに直交する方向の2方向で、エリプソメータで測定をおこない、常光誘電率ε、異常光誘電率ε、異方層の膜厚tを測定した。
図6は、測定された常光誘電率εの値から再計算された極角方向θの分布を示す。
これによれば、右側が30〜34°、左側が27〜29°の分布であった。
なお、同じ配向膜3極角方向θを従来方法で10×10=100ポイントを測定したところ、右側が30〜34°、左側が27〜29°の分布であり、測定時間は100ポイントで約100分であり、本発明では、エリプソメータで測定する時間を入れても100ポイントの測定点についての測定時間は約6秒であった。
したがって、従来手法と同等の結果を極めて高速に測定することができた。
Based on this result, for each measurement point Mij of the sample, the azimuthal direction [Phi A of the optical axis OX, in two directions in the direction perpendicular thereto, was measured by an ellipsometer, ordinary dielectric constant epsilon 0, abnormal light dielectric The rate ε e and the thickness t of the anisotropic layer were measured.
Figure 6 shows a recalculated distribution of polar angle direction θ from the measured ordinary value of the dielectric constant epsilon 0.
According to this, the distribution was 30 to 34 ° on the right side and 27 to 29 ° on the left side.
In addition, when 10 × 10 = 100 points were measured by the conventional method in the same alignment film 3 polar angle direction θ, the distribution on the right side was 30 to 34 ° and the left side was 27 to 29 °, and the measurement time was about 100 points. 100 minutes, and in the present invention, the measurement time for 100 measurement points was about 6 seconds even when the time for measurement with an ellipsometer was included.
Therefore, the result equivalent to the conventional method could be measured at a very high speed.

なお、上述の説明では、光学的異方性パラメータ測定装置1を、ステージ2に定置された基板表面に配向膜(薄膜試料)3を形成するラビング装置10に一体的に設けた場合について説明したが、本例はこれに限らず、薄膜試料に光学的異方性を付与する装置であれば、光配向処理装置その他の光学異方性付与装置に一体に設けてもよい。
この場合、ラビング装置10と同様に、測定装置1のステージ2を光学異方性付与装置のステージと兼用すればよい。
In the above description, the case where the optical anisotropy parameter measuring apparatus 1 is provided integrally with the rubbing apparatus 10 that forms the alignment film (thin film sample) 3 on the substrate surface placed on the stage 2 has been described. However, the present example is not limited to this, and any device that imparts optical anisotropy to a thin film sample may be provided integrally with a photo-alignment processing device or other optical anisotropy imparting device.
In this case, similarly to the rubbing apparatus 10, the stage 2 of the measuring apparatus 1 may be used also as the stage of the optical anisotropy imparting apparatus.

本発明は、光学異方性を有する薄膜製品、特に、液晶配向膜の品質検査などに適用することができる。   The present invention can be applied to a thin film product having optical anisotropy, in particular, a quality inspection of a liquid crystal alignment film.

本発明に係る光学的異方性パラメータ測定装置の一例を示す説明図。Explanatory drawing which shows an example of the optical anisotropy parameter measuring apparatus which concerns on this invention. 光学軸の方位角方向及び極角方向の関係を示す概念図。The conceptual diagram which shows the relationship between the azimuth | direction angle direction and polar angle direction of an optical axis. その測定結果を示すグラフ。The graph which shows the measurement result. 他の光学的異方性パラメータ測定装置を示す説明図。Explanatory drawing which shows another optical anisotropy parameter measuring apparatus. 薄膜試料の回転に伴う各測定点の位置の推移を示す説明図。Explanatory drawing which shows transition of the position of each measurement point accompanying rotation of a thin film sample. 極角方向分布を示す説明図。Explanatory drawing which shows polar angle direction distribution.

符号の説明Explanation of symbols

1、31 光学的異方性パラメータ測定装置
2 ステージ
3 配向膜(薄膜試料)
OX 光学軸
Φ 方位角方向
θ 極角方向
M 測定点
R 法線
4 発光光学系
5 受光光学系
6 回転テーブル
7 演算処理装置


1, 31 Optical anisotropy parameter measuring device 2 Stage 3 Alignment film (thin film sample)
OX optical axis
Φ A Azimuth angle direction θ Polar angle direction M Measuring point R Normal 4 Light emitting optical system 5 Light receiving optical system 6 Rotary table 7 Arithmetic processing device


Claims (12)

薄膜試料の異方性パラメータとなる光学軸の方位角方向と極角方向を測定する光学的異方性パラメータ測定方法であって、
ステージに定置された薄膜試料上の測定点に対してP偏光又はS偏光の単色光を所定の入射角度で照射させる発光光学系と、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度を入射方向に応じて検出する受光光学系を、測定点に立てられた法線の回りに回転する回転テーブルで回転させながら、所定角度間隔で設定された複数の入射方向に対する反射光強度を検出し、
前記反射光強度の極小値を示す入射方向のうち、最大ピークとなる二つの極大値に挟まれた極小値又は中間ピークとなる二つの極大値に挟まれた極小値が測定された入射方向に基づいて測定点における光学軸の方位角方向を決定し、
前記反射光強度が最大ピークとなる極大値とこれに隣接する中間ピークとなる極大値に挟まれた極小値が測定された入射方向、もしくは、最大ピークとなる極大値が測定された入射方向に基づいてその測定点における光学軸の極角方向を決定することを特徴とする光学的異方性パラメータ測定方法。
An optical anisotropy parameter measurement method for measuring an azimuth angle direction and a polar angle direction of an optical axis as an anisotropy parameter of a thin film sample,
A light emitting optical system that irradiates a measurement point on a thin film sample placed on a stage with P-polarized light or S-polarized monochromatic light at a predetermined incident angle, and polarization of irradiated light among polarized components included in the reflected light. The light receiving optical system that detects the reflected light intensity of the polarization component orthogonal to the direction according to the incident direction is set at predetermined angular intervals while rotating on a rotary table that rotates around the normal line set at the measurement point. Detect reflected light intensity for multiple incident directions,
Among the incident directions indicating the minimum value of the reflected light intensity, the minimum value sandwiched between the two maximum values serving as the maximum peak or the minimum value sandwiched between the two maximum values serving as the intermediate peak is measured in the incident direction. Based on the azimuth direction of the optical axis at the measurement point based on,
In the incident direction in which the minimum value sandwiched between the maximum value where the reflected light intensity is the maximum peak and the maximum value which is adjacent to the maximum value is measured, or in the incident direction where the maximum value which is the maximum peak is measured A method for measuring an optical anisotropy parameter, comprising: determining a polar angle direction of an optical axis at the measurement point based on the measurement result.
前記回転テーブルをXY方向に移動させることにより、発光光学系の照射光を複数の測定点に順次照射させて、各測定点の光学軸の異方性を測定する請求項1記載の光学的異方性パラメータ測定方法。   The optical difference according to claim 1, wherein the rotating table is moved in the X and Y directions so that the irradiation light of the light emitting optical system is sequentially irradiated to a plurality of measurement points, and the anisotropy of the optical axis at each measurement point is measured. Method for measuring isotropic parameters. 前記各入射方向に対する反射光強度を検出する前に、前記回転テーブルを昇降させることにより、発光光学系及び受光光学系の光軸の交点を薄膜試料の高さに一致させる請求項1記載の光学的異方性パラメータ測定方法。   2. The optical device according to claim 1, wherein the intersection of the optical axes of the light-emitting optical system and the light-receiving optical system is made to coincide with the height of the thin film sample by raising and lowering the rotary table before detecting the reflected light intensity with respect to each incident direction. Anisotropy parameter measurement method. 前記各入射方向に対する反射光強度を検出する前に、前記回転テーブルのあおり調整を行う請求項1記載の光学的異方性パラメータ測定方法。   The optical anisotropy parameter measurement method according to claim 1, wherein the tilt adjustment of the rotary table is performed before detecting the reflected light intensity with respect to each incident direction. 前記法線を中心として所定角度間隔で入射されるP偏光又はS偏光の単色光の入射方向が、最大ピークとなる二つの極大値に挟まれた極小値が存在すると予想される第一の角度と、最大ピークとなる極大値と中間ピークとなる極大値に挟まれた極小値、最大ピークとなる極大値、あるいは中間ピークとなる極大値が存在すると予想される第二の角度を中心として、それぞれ所定の角度範囲で、所定角度間隔で複数設定されてなる請求項1記載の光学的異方性パラメータ測定方法。   The first angle at which the incident direction of monochromatic light of P-polarized light or S-polarized light that is incident at a predetermined angular interval centered on the normal line is expected to have a minimum value sandwiched between two maximum values that have the maximum peak. Then, centering on the second angle where there is a local minimum value between the local maximum value that is the maximum peak and the local maximum value that is the intermediate peak, the local maximum value that is the maximum peak, or the local maximum value that is the intermediate peak, The method for measuring an optical anisotropy parameter according to claim 1, wherein a plurality of the predetermined angle ranges are set at predetermined angular intervals. 薄膜試料の異方性パラメータとなる光学軸の方位角方向と極角方向を測定する光学的異方性パラメータ測定方法であって、
ステージに定置された薄膜試料上の測定エリアに対してP偏光又はS偏光の単色光を所定の入射角度で照射させる発光光学系と、その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度分布を検出する受光光学系とを、測定エリアの中心に立てられた法線の回りに回転する回転テーブルで回転させながら、測定エリア内に存する各測定点についてそれぞれの反射光強度を所定角度間隔で設定された複数の入射方向に応じて二次元的に検出し、
各測定点について前記反射光強度が極小値を示す入射方向のうち、最大ピークとなる二つの極大値に挟まれた極小値または中間ピークとなる二つの極大値に挟まれた極小値が測定された入射方向に基づいてその測定点における光学軸の方位角方向を決定し、
前記反射光強度が最大ピークとなる極大値とこれに隣接する中間ピークとなる極大値に挟まれた極小値が測定された入射方向、もしくは、最大ピークとなる極大値が測定された入射方向に基づいてその測定点における光学軸の極角方向を決定することを特徴とする光学的異方性パラメータ測定方法。
An optical anisotropy parameter measurement method for measuring an azimuth angle direction and a polar angle direction of an optical axis as an anisotropy parameter of a thin film sample,
A light-emitting optical system that irradiates a measurement area on a thin-film sample placed on a stage with P-polarized light or S-polarized monochromatic light at a predetermined incident angle, and polarization of irradiated light among polarized components included in the reflected light Each measurement point existing in the measurement area while rotating the light receiving optical system that detects the reflected light intensity distribution of the polarized light component orthogonal to the direction on the rotating table that rotates around the normal line set at the center of the measurement area Two-dimensionally detecting each reflected light intensity according to a plurality of incident directions set at predetermined angular intervals,
Among the incident directions in which the reflected light intensity shows a minimum value for each measurement point, the minimum value sandwiched between the two maximum values that are the maximum peak or the minimum value sandwiched between the two maximum values that are the intermediate peak is measured. Determine the azimuth direction of the optical axis at the measurement point based on the incident direction,
In the incident direction in which the minimum value sandwiched between the maximum value where the reflected light intensity is the maximum peak and the maximum value which is adjacent to the maximum value is measured, or in the incident direction where the maximum value which is the maximum peak is measured A method for measuring an optical anisotropy parameter, comprising: determining a polar angle direction of an optical axis at the measurement point based on the measurement result.
決定された方位角方向に基づき、少なくとも任意の2方向からエリプソメータあるいはリフレクトメータで測定を行ない、光学的異方性パラメータとなる異方性薄膜の主誘電率、膜の厚さを求める請求項1記載の光学的異方性パラメータ測定方法。   2. A main dielectric constant and a film thickness of an anisotropic thin film, which are optical anisotropy parameters, are measured by measuring with an ellipsometer or a reflectometer from at least two arbitrary directions based on the determined azimuth angle direction. The optical anisotropy parameter measuring method as described. 薄膜試料の異方性パラメータとなる光学軸の方位角方向と極角方向を測定する光学的異方性パラメータ測定装置であって、
ステージに定置された薄膜試料上の測定点に対してP偏光又はS偏光の単色光を所定の入射角度で照射させる発光光学系と、
その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度を入射方向に応じて検出する受光光学系と、
前記発光光学系及び前記受光光学系を測定点に立てられた法線の回りに回転させ、所定角度間隔で設定された複数の入射方向から測定点に光を照射させる回転テーブルと、
前記反射光強度が極小値を示す入射方向のうち、最大ピークとなる二つの極大値に挟まれた極小値または中間ピークとなる二つの極大値に挟まれた極小値が測定された入射方向に基づいてその測定点における光学軸の方位角方向を決定すると共に、前記反射光強度が最大ピークとなる極大値とこれに隣接する中間ピークとなる極大値に挟まれた極小値が測定された入射方向、もしくは、最大ピークとなる極大値が測定された入射方向に基づいてその測定点における光学軸の極角方向を決定する演算処理装置とを備えたことを特徴とする光学的異方性パラメータ測定装置。
An optical anisotropy parameter measuring device that measures the azimuth and polar angle directions of an optical axis that is an anisotropy parameter of a thin film sample,
A light-emitting optical system that irradiates P-polarized light or S-polarized monochromatic light at a predetermined incident angle to a measurement point on a thin film sample placed on a stage;
A light receiving optical system for detecting the reflected light intensity of the polarized light component orthogonal to the polarization direction of the irradiated light in the reflected light according to the incident direction;
A rotary table that rotates the light emitting optical system and the light receiving optical system around a normal line set at a measurement point, and irradiates the measurement point with light from a plurality of incident directions set at predetermined angular intervals;
In the incident direction in which the reflected light intensity exhibits a minimum value, the minimum value sandwiched between the two maximum values that are the maximum peak or the minimum value sandwiched between the two maximum values that are the intermediate peak is measured in the incident direction. And determining the azimuthal direction of the optical axis at the measurement point, and measuring the minimum value sandwiched between the maximum value at which the reflected light intensity becomes the maximum peak and the maximum value at the adjacent intermediate peak. An optical anisotropy parameter comprising: an arithmetic processing unit for determining a polar angle direction of an optical axis at a measurement point based on an incident direction in which a maximum value that is a direction or a maximum peak is measured measuring device.
前記回転テーブルに、前記法線に対する回転軸の傾きを調整するあおり調整機構、発光光学系及び受光光学系の光軸の交点高さを薄膜試料に一致させる高さ調整機構、発光光学系及び受光光学系の光軸の交点位置を任意の測定点に一致させるXY移動機構の少なくともいずれか一を備えた請求項8記載の光学異方性パラメータ測定装置。   A tilt adjustment mechanism that adjusts the tilt of the rotation axis with respect to the normal line, a height adjustment mechanism that matches the height of the intersection of the optical axes of the light emitting optical system and the light receiving optical system with the thin film sample, a light emitting optical system, and light receiving 9. The optical anisotropy parameter measuring apparatus according to claim 8, further comprising at least one of an XY moving mechanism for matching an intersection position of optical axes of the optical system with an arbitrary measurement point. 前記法線を中心として所定角度間隔で入射されるP偏光又はS偏光の単色光の入射方向が、最大ピークとなる二つの極大値に挟まれた極小値が存在すると予想される第一の角度と、最大ピークとなる極大値と中間ピークとなる極大値に挟まれた極小値、最大ピークとなる極大値、あるいは中間ピークとなる極大値のいずれかが存在すると予想される第二の角度を中心として、それぞれ所定の角度範囲で、所定角度間隔で複数設定されてなる請求項8記載の光学的異方性パラメータ測定装置。   The first angle at which the incident direction of monochromatic light of P-polarized light or S-polarized light that is incident at a predetermined angular interval centered on the normal line is expected to have a minimum value sandwiched between two maximum values that have the maximum peak. And the second angle at which there is a local minimum value between the local maximum value that is the maximum peak and the local maximum value that is the intermediate peak, the local maximum value that is the maximum peak, or the local maximum value that is the intermediate peak. 9. The optical anisotropy parameter measuring apparatus according to claim 8, wherein a plurality of centers are set at predetermined angular intervals and at predetermined angular intervals. 薄膜試料の異方性パラメータとなる光学軸の方位角方向と極角方向を測定する光学的異方性パラメータ測定装置であって、
ステージに定置された薄膜試料上の測定エリアに対してP偏光又はS偏光の単色光を所定の入射角度で照射させる発光光学系と、
その反射光に含まれる偏光成分の内、照射光の偏光方向に直交する偏光成分の反射光強度分布を測定することにより、測定エリア内に存する各測定点についてそれぞれの反射光強度を入射方向に応じて検出する二次元受光素子を有する受光光学系と、
前記発光光学系及び前記受光光学系を測定エリアに立てられた法線の回りに回転させ、所定角度間隔で設定された複数の入射方向から測定エリアに光を照射させる回転テーブルと、
各測定点について前記反射光強度が極小値を示す入射方向のうち、最大ピークとなる二つの極大値に挟まれた極小値または中間ピークとなる二つの極大値に挟まれた極小値が測定された入射方向に基づいてその測定点における光学軸の方位角方向を決定すると共に、前記反射光強度が最大ピークとなる極大値とこれに隣接する中間ピークとなる極大値に挟まれた極小値が測定された入射方向、もしくは、最大ピークとなる極大値が測定された入射方向に基づいてその測定点における光学軸の極角方向を決定する演算処理装置を備えたことを特徴とする光学的異方性パラメータ測定装置。
An optical anisotropy parameter measuring device that measures the azimuth and polar angle directions of an optical axis that is an anisotropy parameter of a thin film sample,
A light-emitting optical system for irradiating P-polarized light or S-polarized monochromatic light at a predetermined incident angle to a measurement area on a thin film sample placed on a stage;
By measuring the reflected light intensity distribution of the polarized light component included in the reflected light and orthogonal to the polarization direction of the irradiated light, the reflected light intensity at each measurement point in the measurement area is changed to the incident direction. A light-receiving optical system having a two-dimensional light-receiving element to detect according to
A rotating table that rotates the light emitting optical system and the light receiving optical system around a normal line set in the measurement area, and irradiates the measurement area with light from a plurality of incident directions set at predetermined angular intervals;
Among the incident directions in which the reflected light intensity shows a minimum value for each measurement point, the minimum value sandwiched between the two maximum values that are the maximum peak or the minimum value sandwiched between the two maximum values that are the intermediate peak is measured. The azimuth angle direction of the optical axis at the measurement point is determined based on the incident direction, and the minimum value sandwiched between the maximum value at which the reflected light intensity becomes the maximum peak and the maximum value at the adjacent intermediate peak is obtained. An optical processing apparatus comprising an arithmetic processing unit for determining a polar angle direction of the optical axis at the measurement point based on the measured incident direction or the incident direction in which the maximum value that is the maximum peak is measured. Isotropic parameter measuring device.
前記ステージが、薄膜試料に光学的異方性を付与するラビング装置、光配向処理装置その他の光学異方性付与装置のステージである請求項8又は11記載の光学的異方性パラメータ測定装置。

The optical anisotropy parameter measurement apparatus according to claim 8 or 11, wherein the stage is a stage of a rubbing apparatus, an optical alignment processing apparatus or other optical anisotropy imparting apparatus that imparts optical anisotropy to a thin film sample.

JP2006033501A 2006-02-10 2006-02-10 Optical anisotropy parameter measuring method and measuring apparatus Expired - Fee Related JP4728830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033501A JP4728830B2 (en) 2006-02-10 2006-02-10 Optical anisotropy parameter measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033501A JP4728830B2 (en) 2006-02-10 2006-02-10 Optical anisotropy parameter measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2007212330A true JP2007212330A (en) 2007-08-23
JP4728830B2 JP4728830B2 (en) 2011-07-20

Family

ID=38490908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033501A Expired - Fee Related JP4728830B2 (en) 2006-02-10 2006-02-10 Optical anisotropy parameter measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP4728830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085887A (en) * 2007-10-02 2009-04-23 Tokyo Univ Of Agriculture & Technology Measuring device and method
CN109282969A (en) * 2018-10-08 2019-01-29 惠州市华星光电技术有限公司 The measurement method of degree of polarization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272308A (en) * 2000-03-27 2001-10-05 Nec Corp Anisotropy multilayer thin film structure evaluation method and evaluation device thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272308A (en) * 2000-03-27 2001-10-05 Nec Corp Anisotropy multilayer thin film structure evaluation method and evaluation device thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085887A (en) * 2007-10-02 2009-04-23 Tokyo Univ Of Agriculture & Technology Measuring device and method
CN109282969A (en) * 2018-10-08 2019-01-29 惠州市华星光电技术有限公司 The measurement method of degree of polarization
WO2020073475A1 (en) * 2018-10-08 2020-04-16 惠州市华星光电技术有限公司 Method for measuring degree of polarization

Also Published As

Publication number Publication date
JP4728830B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
TWI384213B (en) Method and device for measuring optical anisotropy parameter
JP4960026B2 (en) Film defect inspection apparatus and film manufacturing method
US8009292B2 (en) Single polarizer focused-beam ellipsometer
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
KR101594982B1 (en) Optical anisotropic parameter measurement device, measurement method and measurement program
JP5024935B2 (en) Device and method for detecting defect of light transmitting member
JP2007327915A5 (en)
JP2008298566A (en) Apparatus and method for inspecting defect of film
JP2016535281A (en) Method and apparatus for measuring parameters of optical anisotropy
KR0171637B1 (en) Apparatus for evaluating orientation film
KR20010090592A (en) Evaluation of optically anisotropic structure
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP3520379B2 (en) Optical constant measuring method and device
JP2006329715A (en) Deterioration tester and deterioration testing method
JP5446644B2 (en) Bonding angle measuring device for elliptical polarizing plate
KR20140088789A (en) Inspection device for optical film
JP2008020231A (en) Method and device for measuring optical main axis distribution
JP2008046075A (en) Optical system, and thin film evaluation device and evaluating method
JP3338157B2 (en) Alignment film evaluation system
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JP2001083042A (en) Apparatus and method for measurement of optical anisotropy as well as recording medium with recorded measuring method
JP2006322831A (en) Deterioration testing device and deterioration test method
TWI232294B (en) Image type polarized light measurement that can measure the thickness and optic axis of the optical crystal simultaneously
JP2000121496A (en) Method and apparatus for evaluating orientation film and recording medium recording orientation film- evaluating program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4728830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees