JP2010088970A - 処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 - Google Patents

処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 Download PDF

Info

Publication number
JP2010088970A
JP2010088970A JP2008258820A JP2008258820A JP2010088970A JP 2010088970 A JP2010088970 A JP 2010088970A JP 2008258820 A JP2008258820 A JP 2008258820A JP 2008258820 A JP2008258820 A JP 2008258820A JP 2010088970 A JP2010088970 A JP 2010088970A
Authority
JP
Japan
Prior art keywords
exhaust means
substrate
vacuum pump
magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008258820A
Other languages
English (en)
Inventor
Gohei Kurokawa
剛平 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008258820A priority Critical patent/JP2010088970A/ja
Publication of JP2010088970A publication Critical patent/JP2010088970A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】反応容器内を排気するのに要する時間を短縮でき、減圧条件下で行う処理を効率よく行うことができる技術の提供を目的とする。
【解決手段】本発明は、反応容器101の上方に取り付けられた上部真空ポンプ取り付け室134と、反応容器101の下方に取り付けられた下部真空ポンプ取り付け室135とを有する。上部真空ポンプ取り付け室132は、反応容器101の天井部に設けられた一対の上部真空ポンプ取り付け壁134a、134bを有し、真空ポンプ取り付け壁134a、134bの少なくとも一方に真空ポンプ130、131が取り付けられ、下部真空ポンプ取り付け室135は、反応容器101の底部に縦置き状態で設けられた一対の下部真空ポンプ取り付け壁を135a、135b有し、下部真空ポンプ取り付け壁135a、135bの少なくとも一方に真空ポンプ132が取り付けられている。
【選択図】図1

Description

本発明は、処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置に関する。
近年、磁気ディスク装置、可撓性ディスク装置、磁気テープ装置等の磁気記録装置の適用範囲は著しく増大され、その重要性が増すと共に、これらの装置に用いられる磁気記録媒体について、その記録密度の著しい向上が図られつつある。
特に、HDD(ハードディスクドライブ)では、MRヘッド、およびPRML技術の導入以来、面記録密度の上昇はさらに激しさを増し、近年ではさらにGMRヘッド、TuMRヘッドなども導入され1年に約100%ものペースで増加を続けている。
一方、HDDの磁気記録方式として、いわゆる垂直磁気記録方式が従来の面内磁気記録方式(磁化方向が基板面に平行な記録方式)に代わる技術として近年急速に利用が広まっている。
垂直磁気記録方式では、情報を記録する記録層の結晶粒子が基板に対して垂直方向に磁化容易軸をもっている。この磁化容易軸とは、磁化の向きやすい方向を意味し、一般的に用いられているCo合金の場合、Coのhcp構造の(0001)面の法線に平行な軸(c軸)である。垂直磁気記録方式は、このように磁性結晶粒子の磁化容易軸が垂直方向であることにより、高記録密度が進んだ際にも、記録ビット間の反磁界の影響が小さく、静磁気的にも安定という特徴がある。
垂直磁気記録媒体は、非磁性基板上に下地層、中間層(配向制御層)、磁気記録層、保護層の順に成膜されるのが一般的である。また、保護層まで成膜した上で、表面に潤滑層を塗布する場合が多い。また、多くの場合、軟磁性裏打ち層とよばれる磁性膜が下地層の下に設けられる。下地層や中間層は磁気記録層の特性をより高める目的で形成される。具体的には、磁気記録層の結晶配向を整えると同時に磁性結晶の形状を制御する働きがある。
垂直磁気記録媒体の高記録密度化には、熱安定性を保ちながら低ノイズ化を実現する必要がある。ノイズを低減するための方法としては、一般的に2つの方法が用いられる。
1つ目は記録層の磁性結晶粒子を磁気的に分離、孤立化させることで、磁性結晶粒子間の磁気的相互作用を低減する方法、2つ目は磁性結晶粒子の大きさを小さくする方法である。
具体的には、例えば、記録層にSiO等を添加し、磁性結晶粒子がSiO等を多く含む粒界領域に取り囲まれた、いわゆるグラニュラ構造を有する垂直磁気記録層を形成する方法がある(例えば、特許文献1参照。)。
そして、グラニュラ構造を有する垂直磁気記録層を形成する方法として、非特許文献1には、CoCrPt合金とSiOを含有する複合型ターゲットを用い、アルゴン酸素混合ガス雰囲気中でDCマグネトロンスパッタによりグラニュラ構造を有する記録層を形成する方法が開示されている。この文献では、酸素含有雰囲気中で反応性スパッタを行うことにより、保磁力が増加するとともに記録再生特性が向上することが報告されている。
また、SiOの濃度により最適な酸素分圧が決まり、SiO濃度が低いほど最適酸素分圧が高くなること、酸素濃度が最適値を超えて過剰な状態になると磁気特性や記録再生特性が大幅に劣化することが報告されている。
ところで、前述のように磁気記録媒体は複数の薄膜を有して構成されている。このような磁気記録媒体は、例えば、磁気記録媒体を構成する各薄膜を成膜する複数の成膜装置を、ゲートバルブを介して一列に接続したインライン型成膜装置を用いて製造されるのが一般的である。ここで、各成膜装置は、一対の電極を有する反応容器と、反応容器内にガスを供給するガス供給手段と、反応容器内のガスを排気する真空ポンプ等を有して構成される。
このインライン型成膜装置では、成膜用基板が、各成膜装置内に順次搬送され、各成膜装置内で所定の薄膜が成膜される。したがって、インライン式成膜装置を一巡させることにより、成膜用基板に、成膜装置の数と同数の薄膜を成膜することができる。
ここで、各成膜装置間での成膜用基板の移行は、具体的には、次のような工程で行われる。なお、ここでは、第1の成膜装置で成膜用基板上に1層目の薄膜を成膜した後、これに続いて、第2の成膜装置、第3の成膜装置・・・第nの成膜装置で成膜を行う場合を例にする。
まず、(1)第1の成膜装置と第2の成膜装置との間のゲートバルブを開く、(2)第2の成膜装置の反応容器内に成膜用基板を搬入する、(3)ゲートバルブを閉じる、(4)第2の成膜装置の反応容器内を排気する、(5)第2の成膜装置の反応容器内に反応用ガスを導入する、(6)成膜用基板に対して成膜を行う、(7)第2の成膜装置内の反応用ガスを排気する、(8)第2の成膜装置と第3の成膜装置との間のゲートバルブを開く、(9)第3の成膜装置の反応容器内に成膜用基板を搬入する。そして、第2成膜装置の場合と同様に(3)〜(7)の工程を行う。さらに、成膜装置毎に(1)〜(7)の工程を行い、最後の成膜装置(第nの成膜装置)から成膜用基板を搬出する。
ここで、(1)〜(7)の工程に要する時間が例えば10秒程度であり、n台の成膜装置を有するインライン型成膜装置の場合には、これを一巡させるのに要する時間は概ね10秒のn倍となる。このうち、排気能力の高い真空ポンプを用いて排気時間を短縮できれば、成膜工程全体の所要時間も短縮されるものと考えられる。例えば、0.5秒程度でも排気時間を短縮できるならば、(1)〜(7)の工程において5%程度、生産効率を向上できる可能性がある。
しかし、真空ポンプは、排気能力が高くなる程広い取り付けスペースが必要となるが、この種の成膜装置では、真空ポンプが取り付けられるスペースが限られており、排気能力の高い(取り付けスペースの大きい)真空ポンプを取り付けることが難しい。このため、排気工程に要する時間を、現状以下に短縮するのが困難である。
また、このような成膜装置では、通常、反応容器の一対の電極間(プラズマ生成空間)に成膜用基板を移動するための基板搬送装置が、プラズマ生成空間より下方に設けられる。この基板搬送装置は、キャリアなどの複雑な部品を有しており、例えば反応容器の下部に取り付けられた真空ポンプによって反応容器内のガスを下方から排気する際、これが流動抵抗となってしまう。成膜装置では、この流動抵抗が排気工程の時間を長くする原因となっている。
特開2002−342908号公報 IEEE Transactions on Magnetics,Vol.40,No.4,July 2004,pp.2498−2500
本発明は、上記事情を鑑みてなされたものであり、反応容器内を排気するのに要する時間を短縮することができ、減圧条件下で行う処理を効率よく行うことができる処理装置、これを用いた磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置を提供することを目的とする。
上記課題を解決するため、本願発明者は鋭意努力研究した結果、本願発明に到達した。
すなわち本発明は以下に関する。
(1)本発明の処理装置は、被処理基板の表面に、減圧雰囲気下で処理を行う処理装置であって、互いに対向する側壁を少なくとも一対有し、内部に扁平空間を有する反応容器と、前記反応容器に設けられた電極と、基板搬出入口と、前記基板搬出入口から搬入された前記被処理基板を、前記電極側に搬送するとともに、前記電極で処理が行われた前記被処理基板を、前記基板搬出入口に搬送する基板搬送機構と、前記反応容器の上方に設けられ、一対の上部排気手段取り付け壁を有する上部排気手段取り付け室と、前記上部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段と、前記反応容器の下方に設けられ、一対の下部排気手段取り付け壁を有する下部排気手段取り付け室と、前記下部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段とを有することを特徴とする。
(2)本発明の処理装置は、被処理基板の表面に、減圧雰囲気下で処理を行う処理装置であって、互いに対向する側壁を少なくとも一対有し、その内部に縦長の扁平空間を有する反応容器と、前記各側壁にそれぞれ設けられた一対の電極と、基板搬出入口と、前記基板搬出入口から搬入された前記被処理基板を、前記一対の電極間に搬送するとともに、前記一対の電極間で処理が行われた前記被処理基板を、前記基板搬出入口に搬送する基板搬送機構と、その内部が前記反応容器の内部と連通するように前記反応容器の上方に設けられ、その面方向が前記一対の側壁の面方向と略平行となるように配設された一対の上部排気手段取り付け壁を有する上部排気手段取り付け室と、前記上部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段と、前記反応容器の下方に設けられ、一対の下部排気手段取り付け壁を有する下部排気手段取り付け室と、前記下部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段とを有することを特徴とする。
(3)本発明において、前記一対の電極の各対向面側に、それぞれ、ターゲットが設けられ、該ターゲットから弾き出されたスパッタ粒子を被処理基板の表面に被着させることによって薄膜を成膜自在としてなることを特徴とする(1)または(2)に記載の処理装置である。
(4)本発明において、前記反応容器にガス供給手段が付設され、該ガス供給手段が供給するガスは、ハロゲンを含むガスであり、前記ガスがプラズマ化することによって発生した反応性プラズマに前記被処理基板の少なくとも一部を曝すことによって、前記被処理基板を改質自在としてなることを特徴とする(1)または(2)記載の処理装置である。
(5)本発明において、前記一対の上部排気手段取り付け壁の少なくとも一方、および、前記一対の下部排気手段取り付け壁の少なくとも一方に、排気手段が取り付けられており、反応後のガスを排気する際、上部排気手段取り付け壁に取り付けられた排気手段を主体としてガスを排気することを特徴とする(1)〜(4)のいずれかに記載の処理装置である。
(5)本発明において、前記排気手段の少なくともいずれかは、ターボ分子ポンプであることを特徴とする(2)〜(4)のいずれかに記載の処理装置である。
(6)本発明において、前記一対の上部排気手段取り付け壁の少なくとも一方、および、前記一対の下部排気手段取り付け壁の少なくとも一方に、排気手段が取り付けられており、前記上部排気手段取り付け壁に取り付けられた排気手段は、ターボ分子ポンプであり、前記下部排気手段取り付け壁に取り付けられた排気手段は、クライオポンプであることを特徴とする(2)〜(5)のいずれかに記載の処理装置である。
(7)本発明の磁気記録媒体の製造方法は、(1)〜(6)のいずれかに記載の処理装置を用いて磁気記録媒体を製造することを特徴とする。
(8)本発明の磁気記録媒体は、(7)に記載の磁気記録媒体の製造方法によって製造されたことを特徴とする。
(9)本発明の磁気記録再生装置は、(8)に記載の磁気記録媒体と、該磁気記録媒体を記録方向に駆動する媒体駆動部と、記録部と再生部とからなる磁気ヘッドと、前記磁気ヘッドを磁気記録媒体に対して相対運動させるヘッド駆動部と、前記磁気ヘッドへの信号入力と前記磁気ヘッドからの出力信号を再生するための記録再生信号処理手段とを組み合わせて具備してなることを特徴とする。
本発明の処理装置によれば、反応容器の上方に、一対の上部排気手段取り付け壁を有する上部排気手段取り付け室を有し、上部排気手段取り付け壁の少なくとも一方に排気手段が取り付けられているので、排気手段として比較的排気能力の高いもの(フランジ径の大きいもの)を取り付ける場合、各排気手段取り付け壁の面積を拡大して排気手段の取り付けスペースを確保すればよい。この場合、排気手段が排気すべき容積(排気容積)は、上部排気手段取り付け室および下部排気手段取り付け室の容積増加分だけ大きくなるが、反応容器の天井部や底部が排気手段の取り付け部とされており、天井部および底部の横幅を拡大すること、すなわち反応容器の横幅を拡大することによって真空ポンプ(フランジ)の取り付けスペースを確保するのに比べて、排気容積は小さく抑えられる。すなわち、本発明によれば、排気容積を小さく抑えながら排気能力の高い真空ポンプを用いることができる。これにより、反応容器内を効率よく排気することができる。
また、本発明の処理装置は、反応容器の下方に取り付けられ、一対の下部排気手段取り付け壁を有する下部排気手段取り付け室を有し、下部排気手段取り付け壁の少なくとも一方に排気手段が取り付けられているので、この排気手段によって、電極の下側に設けられた基板搬送機構の周囲を効率よく排気することができる。これにより、反応容器内をより効率よく排気することができる。
また、本発明の処理装置は、反応容器内でプラズマ化したガスを排気する際、上部排気手段取り付け壁に取り付けられた排気手段を主体としてガスを排気するので、プラズマ化した後のガスを、上向きに流して反応容器外に排気できる。このため、電極の下側に配設された基板搬送機構の金属部品が、プラズマ中の活性粒子によって腐食するのが防止され、クリーンな環境で排気処理を行うことができる。また、腐食による基板搬送機構の故障を防止することができる。
<<処理装置の構成>>
次に、本発明の処理装置の実施形態について説明する。
図1は、本発明の処理装置の実施形態を示す縦断面図、図2は、図1に示す処理装置を図1中右側から見た側面図、図3は、図1に示す処理装置が備えるガス流入管の一例を示す側面図である。
図1〜図3に示す処理装置100は、縦型かつ薄型の反応容器(反応チャンバ)101と、反応容器101内に、不活性ガスおよび/または反応性ガスを供給するガス供給手段(図3参照)102と、反応容器101内のガスを排気する真空ポンプ130、131、132と、これら真空ポンプ130、131、132が取り付けられる上部真空ポンプ取り付け室134および下部真空ポンプ取り付け室135と、外部から搬入された2枚の被処理基板200を所定の位置に搬送する基板搬送装置105とを有している。
反応容器101の一対の側壁106、107には、一対のカソード(プラズマ発生用の電極)113、115が、その電極面113a、115aを互いに対向させて配設されており、さらに、図1中奥行き側に、一対のカソード(プラズマ発生電極)114が、一対のカソード113、115と横並びで、且つ、その電極面を互いに対向させて配設されている。すなわち、この処理装置100は、一対のカソードを2組有しているタイプとされている。
<反応容器>
反応容器101は、外部と反応空間101aとを仕切る容器であり、気密性を有するとともに、内部が高真空状態とされるため耐圧性を有するものとされる。
なお、以下の説明では、この反応容器101において、図1中、右側の側壁を「第1の側壁106」、左側の側壁を「第2の側壁107」、図1の奥行き側の側壁を「第3の側壁108」、手前側の側壁を「第4の側壁109(図2参照)」と呼称する。
<側壁>
第1の側壁106および第2の側壁107は、図2に示す如く正面視正方形に近い若干縦長の長方形状をなしており、これら側壁同士の間に図1に示す如く扁平の縦長の空間を構成するように、相互の間隔を狭めて垂直に配置されている。そして、第1の側壁106と第2の側壁107の左右両側には、幅狭の第3の側壁108と第4の側壁109とが接続されるとともに、これら各側壁106〜109の上下両側には、天板(天井部)142と底板(底部)143とが接続されている。これら側壁106〜109と、天板142および底板143とによって囲まれた縦長の扁平の空間が、反応容器101の内部空間を構成する。
<窓部>
この反応容器101の第1の側壁106には、後述する第1のカソード(電極)113および第2のカソード(電極)114が取り付けられる第1の窓部127が設けられている。また、第2の側壁107には、後述する第3のカソード(電極)115および第4のカソード(電極)が取り付けられる第2の窓部128が第1の窓部127と対向するように設けられている。
第1の窓部127と第2の窓部128は、図2を参照する如く側面視横長のレーストラック形状とされ、互いの形成位置は互いに対向するように同一高さ位置とされている。
また、第1の側壁106には、第1の窓部127の下方に、後述する基板搬送装置室136を取り付けるための小型の第3の窓部116が設けられている。
一方、天板142には、後述する上部真空ポンプ取り付け室134を取り付けるための第4の窓部144が設けられ、底板143には、後述する下部真空ポンプ取り付け室135を取り付けるための第5の窓部145が設けられている。第4の窓部144は、天板142の奥行き方向の中央部に左端部から右端部に亘って設けられ、図1の上面視において、奥行き方向が幅広とされた長方形状をなしている。また、第5の窓部145は、底部143の奥行き方向の中央部に左端部から右端部に亘って設けられ、図1の下面視において、奥行き方向が第4の窓部144より幅狭とされた略正方形状をなしている。
<カソード>
第1のカソード113〜第4のカソードはいずれも同等の構成とされ、第1の窓部127に左右に並んで2基、第2の窓部128に左右に並んで2基取り付けられている。なお、図1および図2においては一部を略して示している。
具体的には、図2に示すように、第1のカソード113および第2のカソード114は、横方向に並んだ状態で、第1の側壁106に設けられた横長の第1の窓部127に、フレームを介して気密的に接合される。
また、第3のカソード115および第4のカソードは、横方向に並んだ状態で、第2の側壁107に設けられた第2の窓部128に、フレームを介して気密的に接合される。
そして、第1のカソード113〜第4のカソードは、それぞれ、その電極面が水平面に対して略直交するような縦置き状態となっており、第1のカソード113と第3のカソード115とは、その反応空間101a側の表面(電極面)113a、115a同士が対向し、第2のカソード114と第4のカソードとは、その反応空間101a側の表面(電極面)同士が対向した位置関係になっている。すなわち、本実施形態では、第1のカソード113と第3のカソード115とが対をなし、第2のカソード114と第4のカソードとが対をなしている。
第1のカソード113〜第4のカソードには、それぞれ、図示略の電源に接続されており、これら電源によって電力が供給される。
<ターゲット>
ここで、この処理装置100を、例えばスパッタ法によって薄膜を成膜する成膜装置として用いる場合には、第1のカソード113〜第4のカソードの各電極面に、それぞれ、ターゲット117、118が離間して支持される。各ターゲット117、118は、それぞれ、板状をなし、目的とする薄膜の組成に応じた組成とされる。
各ターゲット117、118は、単体であってもよく、複数のターゲット片によって構成されていてもよい。また、各ターゲット117、118の平面形状は、特に限定されない。単体のターゲットの場合には、例えば、円形または円環状であるのが望ましく、各カソードと同軸的位置関係で配置されるのが望ましい。
例えば、処理装置100によってグラニュラ構造を有する磁性層を成膜する場合には、各ターゲット117、118として、それぞれCo、Cr、Ptを含有する半円状のターゲット片と、SiOを含有する半円状の酸化物ターゲット片などを複合して用いることもできる。
なお、各ターゲット117、118は必要に応じて設けられるものであり、例えば後述する反応性プラズマによる処理を行う場合には、省略される。
<ガス流入管>
反応容器101の内部には、図3に示す形状の第1のガス流入管121〜第4のガス流入管124がそれぞれ配設されている。
図3に示すように、第1のガス流入管121〜第4のガス流入管124は、それぞれ、一方向に延在された直管部125と、直管部125の一端に連結された円環状の環状部126とを有し、環状部126の内周壁126cに、複数のガス放出口126aが円周に沿って略等間隔に設けられている。
環状部126に設けられるガス放出口126aの孔径は、該ガス放出口126aの直管部125に対する位置に応じて、各孔からの放出ガス量が一定となるように変えることが好ましい。具体的には、環状部126を流れるガスの上流側においては孔径を小さくし、下流においては孔径を大きくすることが好ましい。
第1のガス流入管121〜第4のガス流入管124は、各直管部125の他端が延出されて、それぞれ反応容器101の外部に設けられているガス供給手段102に接続されている。また、第1のガス流入管121〜第4のガス流入管124の各環状部126は、第1のカソード113〜第4のカソードと各被処理基板200との間の空間(反応空間101a)の外周を囲むように配置されている。
ガス供給手段102と各ガス流入管121〜124とを接続する各配管の途中には、図示しないバルブが設けられている。これらのバルブは、それぞれ、図示しない制御機構によって開閉が制御されるように構成されている。
ガス供給手段102によって送出されるガスは、上述の各バルブによって流量が制御されつつ、第1のガス流入管121〜第4のガス流入管124に、それぞれ、導入される。各ガス流入管121〜124に導入されたガスは、直管部125を通過して環状部126に流入する。そして、このガスは、図3中矢印に示されるように、円環状に配置されている複数のガス放出口126aから放出され、被処理基板200の外周部200bから中央部200aへ向けて流れる。
<上部真空ポンプ取り付け室、下部真空ポンプ取り付け室>
上部真空ポンプ取り付け室(上部排気手段取り付け室)134は、その下端部が、反応容器101の第4の窓部144の周囲に取り付けられ、その内部が、反応容器101内の空間と連通している。
上部真空ポンプ取り付け室134は、一対の上部真空ポンプ取り付け壁(第1の上部真空ポンプ取り付け壁134a、第2の上部真空ポンプ取り付け壁134b)と、一対の上部真空ポンプ取り付け壁134a、134b同士の間隙を第4の窓部144側を除いて囲む枠部134cとを有する。
第1の上部真空ポンプ取り付け壁(上部排気手段取り付け壁)134aおよび第2の上部真空ポンプ取り付け壁(上部排気手段取り付け壁)134bは、それぞれ、第4の窓部144の右端部の外側および左端部の外側(第1の側壁106および第2の側壁107の各上端面)に縦置き状に取り付けられており、その面方向が第1の側壁106および第2の側壁107と略平行となっている。
図2に示すように、各上部真空ポンプ取り付け壁134a、134bは、側面視で、上方において半円状をなし、下端部において第4の窓部144の奥行き方向の長さと略等しい長さの直線状をなしており、下端部が第1の側壁106および第2の側壁107の上端部に取り付けられている。第1の上部真空ポンプ取り付け壁134aには、後述する第1の真空ポンプ130の吸引口と連通する開口が設けられており、第2の上部真空ポンプ取り付け壁134bには、後述する第2の真空ポンプ131の吸引口と連通する開口が設けられている。
下部真空ポンプ取り付け室(下部排気手段取り付け室)135は、その上端部が、反応容器101の第5の窓部145の周囲に固定され、その内部が、反応容器101内の空間と連通している。
下部真空ポンプ取り付け室135は、一対の下部真空ポンプ取り付け壁(第1の下部真空ポンプ取り付け壁135a、第2の下部真空ポンプ取り付け壁135b)と、一対の下部真空ポンプ取り付け壁135a、135b同士の間隙を第5の窓部145側を除いて囲む枠部135cとを有する。
第1の下部真空ポンプ取り付け壁(下部排気手段取り付け壁)135aおよび第2の下部真空ポンプ取り付け壁(下部排気手段取り付け壁)135bは、第5の窓部145の右端部の外側および左端部の外側に縦置き状に取り付けられており、その面方向が第1の側壁106および第2の側壁107と略平行となっている。
図2に示すように、各下部真空ポンプ取り付け壁135a、135bは、側面視で、各辺の長さが第5の窓部の奥行き方向の長さと略等しい略正方形状をなしている。また、このうち第1の下部真空ポンプ取り付け壁135aには、後述する第3の真空ポンプ132の吸引口と連通する開口が設けられている。
<排気手段>
第1の真空ポンプ(排気手段)130〜第3の真空ポンプ(排気手段)132は、それぞれ、吸引機構と、吸引機構のガス通路と連通する吸引口と、吸引口の周囲に設けられたフランジ130a〜132aと、吸引口の内部に設けられた図示しないゲートバルブとを有している。ゲートバルブは、図示しない制御機構によって開閉が制御されるように構成されている。
このうち第1の真空ポンプ130は、そのフランジ130aが第1の上部真空ポンプ取り付け壁134aに設けられた開口の周囲に取り付けられ、上部真空ポンプ取り付け室134に固定されている。また、第2の真空ポンプ131は、そのフランジ131aが第2の上部真空ポンプ取り付け壁134bに設けられた開口の周囲に取り付けられ、上部真空ポンプ取り付け室132に固定されている。また、第3の真空ポンプ132は、そのフランジ132aが第1の下部真空ポンプ取り付け壁135aに設けられた開口の周囲に取り付けられ、下部真空ポンプ取り付け室135に固定されている。
各真空ポンプ130〜132は、反応容器101内を減圧状態にしたり、被処理基板200に処理を行う際および処理を行った後、反応容器101内のガスを所定の流量で排気する。
ここで、従来の処理装置は、上部真空ポンプ取り付け室134および下部真空ポンプ取り付け室135とを有しておらず、真空ポンプは、反応容器の底部のみ、または、天井部と底部に直接取り付けられていた。すなわち、真空ポンプは、そのフランジが、例えば底部に設けられた開口の周囲に取り付けられることによって反応容器に固定されていた。
ここで、この真空ポンプのフランジ径は、真空ポンプの排気能力が高くなる程大きくなる。このため、従来の成膜装置で、排気能力の高い真空ポンプを取り付けるためには、フランジを取り付けるスペースを確保すべく天井部および底部の面積を大きくすること、すなわち、第1の側壁と第2の側壁との離間距離(反応容器の横幅)を大きくすることが必要となっていた。しかし、反応容器の横幅を大きくすると、反応容器の容積も大きくなるため、排気能力の高い真空ポンプをもってしても、反応容器内を排気するのに長時間を要してしまう。つまり、底部や天井部に真空ポンプを取り付ける構成では、真空ポンプの排気能力を高めることと反応容器の容積を小さく抑えることとの両立が難しく、どうしても反応容器内を排気するのに要する時間が長くなってしまう。
これに対して、本発明の処理装置100では、反応容器101の天井部に、上部真空ポンプ取り付け室134が設けられ、該上部真空ポンプ取り付け室134の側壁を構成する各上部真空ポンプ取り付け壁134a、134bに、それぞれ、真空ポンプ130、131が取り付けられている。また、反応容器101の底部に、下部真空ポンプ取り付け室135が設けられ、該下部真空ポンプ取り付け室135の側壁の一方を構成する第1の下部真空ポンプ取り付け壁135aに真空ポンプ132が取り付けられている。
この場合、フランジ径の大きい真空ポンプを取り付けるためには、各上部真空ポンプ取り付け壁134a、134bおよび各下部真空ポンプ取り付け壁135a、135bの面積を大きくすればよく、これによる排気容積の増大は、反応容器101の横幅を大きくする場合に比べて小さく抑えられる。すなわち、本発明の処理装置100では、各上部真空ポンプ取り付け壁134a、134bおよび第1の下部真空ポンプ取り付け壁135aに、それぞれ、真空ポンプ130〜132が取り付けられる構成であることにより、排気容積を小さく抑えながら、排気能力の高い真空ポンプ(フランジ径の大きい真空ポンプ)を用いることができる。また、各上部真空ポンプが取り付け壁134a、134bおよび各下部真空ポンプ取り付け壁135a、135bに、少なくとも1台の真空ポンプを取り付けることができるため、反応容器101の底部や天井部に直接真空ポンプを取り付ける構成に比べて多数の真空ポンプを取り付けることができる。これにより、反応容器101内の排気を短時間で行うことができる。
真空ポンプ130〜132としては、ターボ分子ポンプやクライオポンプを用いるのが望ましく、ターボ分子ポンプを用いることがより望ましい。
ターボ分子ポンプは、油を使用しないため清浄度(クリーン度)が高く、また、排気速度が大きいので高い真空度が得られる。さらにまた、比較的反応性の高いガスをも排気することができる。このため、ターボ分子ポンプを用いることにより、ガスの種類に関わらず、反応容器101内のガスを効率よく排気することができる。
クライオポンプは、排気速度やクリーン度がターボ分子ポンプより優れている。得に、クライオポンプは溜め込み式のポンプであるため、不純物の発生が少なく、反応容器内をクリーンな排気環境に保つことが可能である。その反面、溜め込み式のポンプであるため、可燃ガスやハロゲンガスなどの反応性の高いガスの排気には適さない、定期的にポンプの再生処理を行う必要があるという短所がある。
このため、反応容器101内に供給されるガスが反応性の高いガスである場合には、ターボ分子ポンプを主体として排気を行うことが望ましい。
本実施形態では、第1の真空ポンプ130および第2の真空ポンプ131としてターボ分子ポンプを用い、第3の真空ポンプ132としてクライオポンプを使用する。これにより、反応容器101内を短時間で排気することができ、また、反応容器101内を精度よく所定の減圧状態とすることができる。また、清浄度の高い環境で各種処理を行うことができる。また、さらに、反応容器101内に供給されるガスが反応性の高いものである場合には、ターボ分子ポンプ(第1の真空ポンプ130および第2の真空ポンプ131)を主体として排気を行うことにより、このようなガスの排気を正常に行うことができる。
なお、本実施形態では、上側に2台の真空ポンプ130、131が取り付けられ、下側に1台の真空ポンプ132が取り付けられているが、真空ポンプの台数はこれに限るものではない。例えば、上側の真空ポンプの台数は、1台であってもよく、3台以上であっても構わない。また、下側には、真空ポンプを取り付けなくてもよく、2台以上の真空ポンプを取り付けても構わない。例えば、下側に2台の真空ポンプを取り付ける場合、もう1台の真空ポンプは、第2の下部真空ポンプ取り付け壁135bに第3の真空ポンプ132と対向するように取り付けられる。
反応容器101内を排気するのに要する時間は、真空ポンプの数が多くなる程短縮されるが、真空ポンプの数が余り多くなると、装置の大型化、消費電力の増大を招くおそれがある。このような観点から、上側および下側に取り付けられる真空ポンプの数は、それぞれ、2台を上限とするのが望ましい。
また、特に、本実施形態のように、反応空間101aの下方に複雑な形状の機器(本実施形態ではキャリア搬送装置137)が設けられている場合には、下側に少なくとも1台の真空ポンプが取り付けられているのが望ましい。
反応空間101aの下方にキャリア搬送装置137が設けられた構成で、下側に真空ポンプが取り付けられていないと、上側の真空ポンプ130、131によって反応容器101内を排気する際、キャリア搬送装置137の駆動機構141等が流動抵抗となり易く、反応容器101内を目的の減圧状態とするのに長時間を要してしまう。これに対して、下側に真空ポンプ132が取り付けられていると、この真空ポンプ132とキャリア搬送装置137とが近接していることから、キャリア搬送装置137の周囲の空間を効率よく排気することができる。その結果、反応容器101内を短時間に目的の減圧状態とすることができる。
ここで、本実施形態の処理装置では、上側に2台の真空ポンプ130、131が取り付けられ、下側に1台の真空ポンプ132が取り付けられている。
このため、上側に取り付けられた2台の真空ポンプ130、131が共同して働くとともに、下側に取り付けられた真空ポンプ132によってキャリア搬送装置137の周囲が効率よく排気される。これにより、反応容器101内を短時間に所定の減圧状態とすることができる
<基板搬送装置>
基板搬送装置105は、外部から搬入された被処理基板200を、第1のカソード113と第3のカソード115の間、および、第2のカソード114と第4のカソードとの間に、被処理基板200の両面が電極面113a、115aまたは電極面114aと対向するように、かつ、縦置き状態となるように搬送する。
この基板搬送装置105は、基板搬送装置室136と、キャリア搬送装置137と、キャリア搬送装置137に保持された第1のキャリア138および第2のキャリアとを有する。
なお、第2のキャリアおよび第2のキャリア保持部は、第1のキャリア138および後述する第1のキャリア保持部140と同様の構成とされており、図示は省略する。
基板搬送装置は図1及び図2に示すように、前記のようなキャリア138を搬送させる搬送機構として、キャリア138を非接触状態で駆動する駆動機構141を備えている。
この駆動機構141は、キャリア138の下部にキャリア138の移動方向に沿ってN極とS極とが交互に並ぶように配置された複数の磁石202と、その下方にキャリア138の搬送方向(図1の紙面垂直方向、図2の左右方向)に沿って配置された回転磁石203とを備え、この回転磁石203の外周面には、N極とS極とが二重螺旋状に交互に並んで形成されている。
また、複数の磁石202と回転磁石203との間には、真空隔壁204が介在されている。この真空隔壁204は、複数の磁石202と回転磁石203とが磁気的に結合されるように透磁率の高い材料で形成されている。また、真空隔壁204は、回転磁石203の周囲を囲むことによって、反応容器101の内側と大気側とを隔離している。
また、回転磁石202は、回転モータ205により回転駆動される回転軸206と互いに噛合される複数のギアを介して連結されている。これにより、回転モータ205からの駆動力を回転軸206を介して回転磁石204に伝達しながら、この回転磁石204を軸回りに回転させることが可能となっている。
以上のように構成される基板搬送装置は、キャリア138側の磁石202と回転磁石204とを非接触で磁気的に結合させながら、回転磁石203を軸回りに回転させることにより、キャリア138を回転磁石203の軸方向(図1の紙面垂直方向、図2の左右方向)に沿って直線駆動する。
また、反応容器101内には、搬送されるキャリア138をガイドするガイド機構として、水平軸回りに回転自在に支持された複数の主ベアリング175がキャリア138の搬送方向(図1の紙面垂直方向、図2の左右方向)に並んで設けられている。一方、キャリア138は、支持台226の下部側に複数の主ベアリング175が係合されるガイドレール176を有しており、このガイドレール176には、溝部が支持台226の長手方向に沿って形成されている。
また、反応容器101内には、垂直軸回りに回転自在に支持された一対の副ベアリング177が、その間にキャリア138を挟み込むようにして設けられている。これら一対の副ベアリング177は、複数の主ベアリング175と同様に、キャリア138の搬送方向に複数並んで設けられている。
なお、主ベアリング175及び副ベアリング177は、機械部品の摩擦を減らし、スムーズな機械の回転運動を確保する軸受であって、具体的には転がり軸受からなり、反応容器101内に設けられたフレーム(取付部材)に固定された支軸(図示略)に回転自在に取り付けられている。
キャリア138は、ガイドレール176に複数の主ベアリング175を係合させた状態で、これら複数の主ベアリング175の上を移動すると共に、一対の副ベアリング177の間に挟み込まれることによって、その傾きが防止されていて、被処理基板200を垂直に保持したまま搬送することができるように構成されている。
次に、キャリア138を移動させてカソード115、115間に被処理基板200を位置させた状態で、反応空間101aに、例えばハロゲンを含有するガス(ハロゲン含有ガス)が供給され、また、第1のカソード113〜第4のカソードにそれぞれ電力が供給されると、反応空間に供給されたハロゲン含有ガスがプラズマ化し、ハロゲンイオンを含有する反応性プラズマが生成する。この反応性プラズマによって、各被処理基板200の表面がプラズマ処理される。
また、第1のカソード113〜第4のカソードの各電極面にターゲット117、118が支持されている場合に、反応空間101aに、例えば反応性ガスと不活性ガスとの混合ガスが供給され、第1のカソード113〜第4のカソードにそれぞれ電力が供給されると、反応空間101aに供給された混合ガスが、プラズマ化する。そして、このプラズマ中で生成された不活性ガスのイオンが、各ターゲットに衝突し、各ターゲットからターゲット物質(スパッタ粒子)が弾き出される。弾き出されたスパッタ粒子はその一部が活性化された反応ガスと反応し、各被成膜基板200の各表面に被着する。これにより、2枚の被成膜基板200の両面に、スパッタ膜が成膜される。
<<処理装置の動作>>
次に、この処理装置の動作について、磁気記録媒体(ディスクリート型磁気記録媒体)の磁気記録層を形成する場合を例にして説明する。
「磁気記録媒体」
まず、本発明の処理装置を用いて磁気記録層が形成される磁気記録媒体について説明する。図4に、本発明の処理装置を用いて磁気記録層が形成される磁気記録媒体の縦断面図を示す。
この磁気記録媒体30は、非磁性基板1の表面に、磁性層3および非磁性化層4からなる磁気記録層7および保護膜5が形成されており、さらに最表面に図示省略の潤滑膜が形成された構造を有している。なお、非磁性基板1と磁気記録層7との間に、必要に応じて軟磁性層および中間層2が設けられていてもよい。
磁気記録層7において、非磁性化層4は、磁性層3が所定のパターンで非磁性化されることによって形成されたものであり、磁性層3を磁気的に分離する。以下では、磁気記録層7において、磁性層3が非磁性化されることによって形成された非磁性領域を分離領域と言い、それ以外の領域を磁気記録パターンと言う場合がある。
記録密度を高めるため、磁気記録パターンとなる磁性層3の幅Wは200nm以下、非磁性化層4の幅Lは100nm以下とすることが好ましい。従ってトラックピッチP(=W+L)は300nm以下の範囲とすることが好ましく、記録密度を高めるためにはできるだけ狭くすることが好ましい。
なお、磁気記録層7の磁気記録パターンとは、磁気記録パターンが1ビットごとに一定の規則性をもって配置された、いわゆるパターンドメディアや、磁気記録パターンが、トラック状に配置されたメディアや、その他、サーボ信号パターン等を含んでいる。
また、ディスクリート型磁気記録媒体は、ディスクリートトラック型磁気記録媒体などとも言われ、磁性層にナノメートルオーダーの微細な溝を形成して、記録トラックを物理的に分離することにより、隣接トラックどうしの磁気的干渉を低減した磁気記録媒体であって、磁気的に分離した磁気記録パターンが、磁気記録トラック及びサーボ信号パターンである磁気記録媒体である。
<非磁性基板>
非磁性基板1としては、Alを主成分とした例えばAl−Mg合金等のAl合金基板や、通常のソーダガラス、アルミノシリケート系ガラス、結晶化ガラス類、シリコン、チタン、セラミックス、各種樹脂からなる基板など、非磁性基板であれば任意のものを用いることができる。中でもAl合金基板や結晶化ガラス等のガラス製基板またはシリコン基板を用いることが好ましい。
また、これら基板の平均表面粗さ(Ra)は、1nm以下、さらには0.5nm以下であることが好ましく、中でも0.1nm以下であることが好ましい。
<磁気記録層>
上記のような非磁性基板1の表面に形成される磁気記録層7は、面内磁気記録層でも垂直磁気記録層でもかまわないが、より高い記録密度を実現するためには垂直磁気記録層であることが好ましい。これら磁気記録層7は、Coを主成分とする合金から形成するのが好ましい。
<面内磁気記録層>
例えば、面内磁気記録媒体用の磁気記録層7としては、強磁性のCoCrPtTa磁性層等を用いることができる。この記録磁性層7の下方には、例えば、非磁性のCrMo下地層等が設けられる。
<垂直磁気記録層>
垂直磁気記録媒体用の磁気記録層7としては、例えば、60Co−15Cr−15Pt合金や70Co−5Cr−15Pt−10SiO合金からなる磁性層等を用いることができる。この記録磁性層7の下方には、軟磁性のFeCo合金(FeCoB、FeCoSiB、FeCoZr、FeCoZrB、FeCoZrBCuなど)等からなる軟磁性層、FeTa合金(FeTaN、FeTaCなど)、Co合金(CoTaZr、CoZrNB、CoBなど)等からなる裏打ち層、Pt、Pd、NiCr、NiFeCrなどの配向制御膜、および、必要に応じて設けられるRu等の中間膜等よりなる積層構造が設けられる。
磁気記録層7の厚さは、3nm以上20nm以下、好ましくは5nm以上15nm以下とする。磁気記録層7の厚さは、使用する磁性合金の種類と積層構造を考慮して、十分なヘッド出入力が得られるように選定する。
磁気記録層7の膜厚は、再生の際に一定以上の出力を得るにはある程度以上の厚いことが必要であるが、その一方で、記録再生特性を表す諸パラメーターは出力の上昇とともに劣化するのが通例である。このため、磁気記録層7の膜厚は、この両者の兼ね合いで最適化する必要がある。
なお、通常、磁気記録層7はスパッタ法により薄膜として形成する。
ここでは、磁気記録トラック及びサーボ信号パターン部を磁気的に分離する分離領域を、すでに成膜された磁性層3を反応性プラズマに曝して非晶質化することによって形成する。非晶質化した領域は、磁気特性が改質しており、磁性層を磁気的に分離する非磁性化層(分離領域)4として機能する。
ここで、磁性層3の磁気特性の改質とは、具体的には、磁性層3の保磁力、残留磁化等を変化させることを指し、その変化とは、保磁力を下げ、残留磁化を下げることを指す。
<磁気特性の改質>
本実施形態では、特に、反応性プラズマに曝す処理は、磁性層の反応性プラズマにさらした領域の磁化量が、当初の75%以下、より好ましくは50%以下となる条件で行うのが好ましく、保磁力が、当初の50%以下、より好ましくは20%以下となる条件で行うのが好ましい。
このような条件で反応性プラズマによる処理を行うことにより、磁気記録を行う際の書きにじみが防止され、高い面記録密度の磁気記録媒体を提供することが可能となる。
<磁性層の非晶質化>
本実施形態で、磁性層3を非晶質化するとは、磁性層3の原子配列を、長距離秩序を持たない不規則な原子配列の形態とすることを指し、より具体的には、2nm未満の微結晶粒がランダムに配列した状態とすることを指す。
そして、この原子配列状態を分析手法により確認するには、反応性プラズマに曝した領域についてX線回折または電子線回折の回折パターンを観測する。そして、この回折パターンにおいて、その結晶面を表すピークが認められず、また、ハロー(ブロードなシグナル)が認められるのみの状態である場合に、前述のような不規則な原子配列状態であると評価することができる。
<反応性プラズマ>
反応性プラズマとしては、誘導結合プラズマ(ICP;Inductively Coupled Plasma)や反応性イオンプラズマ(RIE;Reactive Ion Plasma)が例示できる。
<誘導結合プラズマ>
誘導結合プラズマとは、気体に高電圧をかけることによってプラズマ化し、さらに高周波数の変動磁場によってそのプラズマ内部に渦電流によるジュール熱を発生させることによって得られる高温のプラズマである。誘導結合プラズマは電子密度が高く、従来のイオンビームを用いてディスクリートトラックメディアを製造する場合に比べ、広い面積の磁性膜において、高い効率で磁気特性の改質を実現することができる。
<反応性イオンプラズマ>
反応性イオンプラズマとは、プラズマ中にO、SF、CHF、CF、CCl等の反応性ガスを加えた反応性の高いプラズマである。このようなプラズマを本願発明の反応性プラズマとして用いることにより、磁性膜の磁気特性の改質をより高い効率で実現することが可能となる。
<磁性金属と反応性プラズマ中の原子またはイオンとの反応>
本実施形態では、成膜された磁性層3を反応性プラズマにさらすことにより磁性層3を改質するが、この改質は、磁性層3を構成する磁性金属と反応性プラズマ中の原子またはイオンとの反応により実現するのが好ましい。
反応とは、磁性金属に反応性プラズマ中の原子等が侵入し、磁性金属の結晶構造が変化すること、磁性金属の組成が変化すること、磁性金属が酸化すること、磁性金属か窒化すること、磁性金属が珪化すること等が例示できる。
<酸素原子を含有させた反応性プラズマ>
本実施形態では特に、反応性プラズマに酸素原子を含有させ、磁性層3を構成する磁性金属と反応性プラズマ中の酸素原子とを反応させることにより、磁性層3を酸化させるのが好ましい。
磁性層3を部分的に酸化させることにより、酸化部分の残留磁化及び保磁力等を効率よく低減させることが可能となるため、短時間の反応性プラズマ処理により、磁気的に分離した磁気記録パターンを有する磁気記録媒体を製造することが可能となる。また、反応性プラズマ中に酸素原子を含有させることにより磁性層3の非晶質化を促進することが可能となる。
<ハロゲン原子を含有させた反応性プラズマ>
本実施形態では、反応性プラズマに、ハロゲン原子を含有させるのが好ましい。またハロゲン原子としてはF原子を用いるのが特に好ましい。ハロゲン原子は、酸素原子と一緒に反応性プラズマ中に添加して用いても良いし、また酸素原子を用いずに反応性プラズマ中に添加しても良い。
前述のように、反応性プラズマに酸素原子等を加えることにより、磁性層3を構成する磁性金属と酸素原子等が反応して磁性層3の磁気特性を改質させることが可能となる。この際、反応性プラズマにハロゲン原子を含有させることにより、この反応性をさらに高めることが可能となる。
また、反応性プラズマ中に酸素原子を添加していない場合においても、ハロゲン原子が磁性合金と反応して、磁性層3の磁気特性を改質させることが可能となる。
この理由の詳細は明らかではないが、反応性プラズマ中のハロゲン原子が、磁性層3の表面に形成している異物をエッチングし、これにより磁性層3の表面が清浄化し、磁性層3の反応性が高まることが考えられる。
また、清浄化した磁性層表面とハロゲン原子とが高い効率で反応することが考えられる。このような効果を有するハロゲン原子としてF原子を用いるのが特に好ましい。
<保護膜>
保護膜5としては、炭素(C)、水素化炭素(HC)、窒素化炭素(CN)、アモルファスカーボン、炭化珪素(SiC)等の炭素質層やSiO、Zr、TiNなど、通常用いられる保護膜材料を用いることができる。また、保護膜5が2層以上の層から構成されていてもよい。
保護膜5の膜厚は10nm未満とする必要がある。保護膜5の膜厚が10nmを超える場合には、磁気ヘッドと磁性層3との距離が大きくなり、十分な出入力信号の強さが得られなくなるからである。
保護膜5の上には潤滑層を形成することが好ましい。潤滑層に用いる潤滑剤としては、フッ素系潤滑剤、炭化水素系潤滑剤及びこれらの混合物等が挙げられ、通常1〜4nmの厚さで潤滑層を形成する。
「反応性スパッタリングによる磁性層の成膜」
次に、本発明の処理装置の動作について、反応性スパッタリングによって磁性層を成膜する場合を例にして説明する。
まず、第1のカソード113〜第4のカソードの各電極面に、それぞれ、第1のターゲット117〜第4のターゲットを取り付ける。
本実施形態では、磁性結晶粒子が酸化物を多く含む粒界領域に取り囲まれた、いわゆるグラニュラ構造を有する磁性層を成膜するため、ターゲット117、118として、それぞれCo、Cr、Ptを含有する半円状のターゲット片と、SiOを含有する半円状の酸化物ターゲット片を複合して使用する。
また、2枚の基板(被処理基板)200を用意する。
そして、各被処理基板200を、それぞれ、第1のキャリア138および第2のキャリアに装着する。
第1のキャリア138および第2のキャリアに被処理基板200が装着されると、基板搬送装置105は、駆動機構141の動作によって、各キャリア138を第1のターゲット117と第3のターゲット118との間の空間、および、第2のターゲットと第4のターゲットとの間の空間に移動操作する。これにより、第1のキャリア138に装着された被処理基板200が、第1のターゲット117と第3のターゲット118との間に、被処理基板200の両面が各ターゲット117、118の表面と対向するように、かつ、縦置き状態となるように搬送される。また、第2のキャリアに装着された被処理基板200が、第2のターゲットと第4のターゲットとの間に、被処理基板200の両面が各ターゲットの表面と対向するように、かつ、縦置き状態となるように搬送される。
次に、各真空ポンプ130〜132のゲートバルブを開き、各真空ポンプ130〜132の動作により、反応容器101内を減圧状態とする(第1の排気工程)。
ここで、この処理装置100では、第1の上部真空ポンプ取り付け壁134a、第2の上部真空ポンプ取り付け壁134bおよび第1の下部真空ポンプ取り付け壁135aにそれぞれ真空ポンプ130〜132が取り付けられている。このため、上側に取り付けられた2台の真空ポンプ130、131が共同して働くとともに、下側に取り付けられた真空ポンプ132によってキャリア搬送装置137の周囲が効率よく排気される。これにより、反応容器101を短時間に所定の減圧状態とすることができる。
また、このような構成では、真空ポンプ130〜132として比較的排気能力の高いもの(フランジ径の大きいもの)を用いようとする場合、各上部真空ポンプ取り付け壁134a、134bおよび各下部真空ポンプ取り付け壁135a、135bの面積を拡大すればよい。この場合、真空ポンプ130〜132が排気すべき容積(排気容積)は、上部真空ポンプ取り付け室134および下部真空ポンプ取り付け室135の容積増加分だけ増大するが、天井部および底部の横幅(反応容器101の横幅)を拡大することによって真空ポンプ(フランジ)の取り付けスペースを確保するのに比べて容積増加分は小さく、排気容積が小さく抑えられる。すなわち、本発明の処理装置では、排気容積を小さく抑えながら排気能力の高い真空ポンプを用いることができる。これにより、反応容器101内をより効率よく排気することができる。
次に、ガス供給手段102は、第1のガス流入管121〜第4のガス流入管124に、反応性ガスと不活性ガスとの混合ガスを供給する。各ガス流入管121〜124に導入された混合ガスは、直管部125および環状部126を通過して各ガス放出口126aから各ターゲット117、118の外周部付近に放出され、各ターゲットの中央部に向かって流れる。このため、その流れが、それぞれ、対向するガス放出口126aから放出される混合ガスの流れによって打ち消される。
次に、各真空ポンプ130〜132のゲートバルブを制御し、上側から排気されるガスの流量および下側から排気されるガスの流量を所定の流量に調整する。
次に、第1のカソード113〜第4のカソードに電圧を印加する。
これにより、各カソードに対応する空間において、混合ガスがプラズマ化し、このプラズマ中に生成された不活性ガスのイオンが、各ターゲットに衝突し、各ターゲットからターゲット物質(スパッタ粒子)が弾き出される。弾き出されたスパッタ粒子はその一部が活性化された反応性ガスと反応し、他の一部は反応性ガスと未反応の状態で、各被処理基板200の各表面に被着する。
本実施形態の処理装置100では、各ガス流入管121、122、123、124の各ガス放出口126aから放出された混合ガスが、各ターゲット117、118の表面付近で、外周部から中央に向かって流れるため、その流れが、それぞれ、対向するガス放出口126aから放出される混合ガスの流れによって打ち消される。このため、混合ガスの流れによって、各ターゲット117、118と被処理基板200との間の空間に形成されるプラズマがかく乱されることが抑えられ、各ターゲット117、118と被処理基板200との間の空間に形成されるプラズマ(空間)が安定する。
また、反応後のガスは、第1の真空ポンプ130〜第3の真空ポンプ132によって、反応容器101の上方および下方から円滑に排気されるため、排気されるガスの流れにより、プラズマ空間が特定の方向に流されることが少ない。これにより、各被処理基板200とプラズマとの間にガスが流れ込み、その箇所に非プラズマ空間が形成されることが抑えられる。これらのことから、この処理装置100では、反応性スパッタリングによる成膜速度が高まり、また、各被処理基板200の表面に析出する磁性層3の均一性が高まる、すなわち、この処理装置100では、均一性の高い磁性層3を、高速で成膜することができる。
そして、各被処理基板200の両面において、スパッタ粒子の層(磁性層3)が所定の厚さとなったところで成膜終了とする。
以上のようにして2枚の被処理基板200の両面に、並行して磁性層3が形成される。このようにして形成された各磁性層3は、スパッタ粒子が均一に析出ことによって成膜されていることにより、面方向において一様な磁気特性を有し、安定な記録再生特性を得ることができる。
次に、第1の真空ポンプ130〜第3の真空ポンプ132のゲートバルブを開き、各真空ポンプ130〜132の動作により、反応容器101内の反応後のガスを排気する(第2の排気工程)。
ここで、この処理装置100では、前述と同様の理由から反応容器101内を短時間に所定の減圧状態とすることができる。
次に、反応容器101内を大気圧状態とした後、駆動機構141の動作によって、第1のキャリア138および第2のキャリアを、反応空間101aの下方から、基板搬送装置室136の開口139付近に移動操作する。そして、扉を開き、第1のキャリア138および第2のキャリアに装着された各被処理基板200を開口139から外部に搬出する。
以上のように、この処理装置100では、成膜処理の前に行う第1の排気工程および成膜処理の後に行う第2の排気工程を短時間で行うことができる。このため、被処理基板200を処理装置100内に搬入してから搬出するまでにかかる時間を短縮することができる。
「反応性プラズマによる分離領域(非磁性領域)の形成」
次に、処理装置100の動作について、磁性層3の分離領域に対応する領域に対して、ハロゲンイオンを含む反応性プラズマよる処理を行い、この領域を非磁性化する場合を例にして説明する。
<レジストパターンの形成>
まず、反応性プラズマによる処理を行うのに先立って、前記工程で形成した磁性層3の表面に、磁気記録パターンに対応するレジストパターンを形成する。
レジストパターンの形成方法としては、例えば、フォトリソグラフィー技術等を用いることができる。また、磁性層3の表面にレジストを塗布してレジスト膜を形成し、このレジスト膜の上から直接スタンパーを密着させ、高圧でプレスすることにより、レジストパターンを形成してもよい。レジストとしては、熱硬化型樹脂、UV硬化型樹脂、SOG等を用いることができる。
スタンパーとしては、例えば、金属プレートに電子線描画などの方法を用いて微細なトラックパターンを形成したものを使用することができる。また、スタンパーの構成材料としては、プロセスに耐えうる硬度、耐久性を有するものであれば特に制限されないが、具体的にはNi等が使用できる。
なお、スタンパーには、通常のデータを記録するトラックの他に、バーストパターン、グレイコードパターン、プリアンブルパターンといったサーボ信号のパターンも形成することができる。
<改質工程>
次に、図1に示す処理装置100を用い、レジストパターンが形成された磁性層3の表面を、ハロゲンイオンを含む反応性プラズマによって処理する。
まず、前記工程でレジストパターンが形成された2枚の被処理基板200を、それぞれ、第1のキャリア138および第2のキャリアに装着する。
第1のキャリア138および第2のキャリアに被処理基板200が装着されると、基板搬送装置105は、駆動機構141の動作によって、各キャリア138を反応空間101aの下方に移動操作する。これにより、第1のキャリア138に装着された被処理基板200が、第1のカソード113と第3のカソード115との間に、被処理基板200の両面が電極面113a、115aと対向するように、かつ、縦置き状態となるように搬送される。また、第2のキャリアに装着された被処理基板200が、第2のカソード114と第4のカソードとの間に、被処理基板200の両面が電極面と対向するように、かつ、縦置き状態となるように搬送される。
次に、各真空ポンプ130〜132のゲートバルブを開き、各真空ポンプ130〜13の動作により、反応容器101内を減圧状態とする(第1の排気工程)。
ここで、この処理装置100では、第1の上部真空ポンプ取り付け壁134a、第2の上部真空ポンプ取り付け壁134bおよび第1の下部真空ポンプ取り付け壁135aにそれぞれ真空ポンプ130〜132が取り付けられている。このため、上側に取り付けられた2台の真空ポンプ130、131が共同して働くとともに、下側に取り付けられた真空ポンプ132によってキャリア搬送装置137の周囲が効率よく排気される。これにより、反応容器101内を短時間に所定の減圧状態とすることができる。
また、このような構成では、真空ポンプ130〜132として比較的排気能力の高いもの(フランジ径の大きいもの)を用いようとする場合、各上部真空ポンプ取り付け壁134a、134bおよび各下部真空ポンプ取り付け壁135a、135bの面積を拡大すればよい。この場合、真空ポンプ130〜132が排気すべき容積(排気容積)は、上部真空ポンプ取り付け室134および下部真空ポンプ取り付け室135の容積増加分だけ増大するが、天井部および底部の横幅(反応容器101の横幅)を拡大することによって真空ポンプ(フランジ)の取り付けスペースを確保するのに比べて容積増加分は小さく、排気容積が小さく抑えられる。すなわち、本発明の処理装置では、排気容積を小さく抑えながら排気能力の高い真空ポンプを用いることができる。これにより、反応容器101内をより効率よく排気することができる。
次に、ガス供給手段102は、第1のガス流入管121〜第4のガス流入管124に、ハロゲンを含むガス(ハロゲン含有ガス)を供給する。各ガス流入管121〜124に導入されたハロゲン含有ガスは、直管部125および環状部126を通過して各ガス放出口126aから被処理基板200の外周部付近に放出され、被処理基板200の表面に沿って外周部から中央部に向かって流れる。このため、その流れが、それぞれ、対向するガス放出口126aから放出される混合ガスの流れによって打ち消される。
ここで、ハロゲン含有ガスとしては、CF、SF、CHF、CCl、KBrの少なくともいずれかを含有するものであることが好ましい。これにより、後工程で磁性層の表面に反応性プラズマによる処理を行った際、磁性層の磁気特性を効率よく改質することができる。また、ハロゲン含有ガスとしてプラズマ化によってフッ素イオンを生成するものを用いることにより、磁性層の磁気特性をより効率よく改質することができる。
また、ハロゲン含有ガスは酸素を含有しており、プラズマ化によって酸素イオンを生成するものであることが好ましい。これにより、後工程で磁性層の表面に反応性プラズマによる処理を行った際、反応性プラズマ中に含まれる酸素イオンによって磁性層が酸化され、この酸化した部分において、残留磁化及び保磁力等が効率よく低減する。このため、短時間の反応性プラズマ処理により、磁性層を確実に非磁性化することができ、磁気的に分離した磁気記録パターンを容易に得ることができる。また、反応性プラズマ中に酸素原子が含有されていると、磁性層3の非晶質化を促進することが可能となる。
次に、第3の真空ポンプ132のゲートバルブを閉じるとともに、第1の真空ポンプ130および第2の真空ポンプ131の各ゲートバルブを制御し、上側から排出されるガスの流量を所定の流量に調整する。これにより、反応容器101内のガスは、反応容器101の上方から所定の流量で排気される。
次に、第1のカソード113〜第4のカソードに電圧(高周波やマイクロ波)を印加する。
これにより、各カソードに対応する反応空間101aにおいて、ハロゲン含有ガスがプラズマ化し、ハロゲンイオンおよび不活性ガスのイオンを含む反応性プラズマが発生する。この反応性プラズマに、磁性層のレジストパターンに覆われていない領域(露出領域)が曝され、この露出領域が非磁性化する。
本実施形態の処理装置100では、前述のように、各ガス流入管121〜124の各ガス放出口126aから放出されたハロゲン含有ガスが、各被処理基板200の表面に沿って外周部から中央部に向かって流れるため、その流れが、それぞれ、対向するガス放出口126aから放出されるハロゲン含有ガスの流れによって打ち消される。このため、各カソードと被処理基板200との間の反応空間101aに形成される反応性プラズマが、ハロゲン含有ガスの流れによって撹乱されることが抑えられ、反応空間101aに安定な反応性プラズマ(空間)が形成される。このため、この処理装置100では、磁性層3の露出領域を、均一且つ効率よく非磁性化することができる。
ここで、磁性層3を、ハロゲンイオンを含む反応性プラズマに曝した場合、その条件によっては、その曝露領域に磁性合金のイオン化物が生成する。例えば、Co系磁性合金よりなる磁性層の分離領域に対応する領域を、フッ素イオンを含む反応性プラズマに曝した場合、Co系磁性合金がフッ素イオンと反応し、この曝露領域に非磁性のフッ化コバルトが生成される。このような反応によっても、磁性層の分離領域は非磁性化される。しかし、このフッ化コバルトが生成された状態の磁性層を放置すると、フッ化コバルトのフッ素イオンが、磁気記録パターン領域を構成する磁性合金に徐々に拡散し、その磁気特性を経時的に低下させてしまう。
このため、磁性層3の露出領域を反応性プラズマに曝す処理は、磁性層3が非晶質化(非磁性化)するような条件で行い、この後、必要に応じて、この露出領域に生成したイオン化物を除去する処理を行うのがより望ましい。これにより、露出領域に生成したイオン化物が、磁気記録パターン領域を構成する磁性合金に徐々に拡散し、その磁気特性を経時的に低下させることを抑えることができる。ここで、反応性プラズマによる磁性層3の非晶質化は、例えば、反応性プラズマ中のイオンが磁性層3に衝突し、その結晶構造を物理的に破壊することによってなされる。
例えば、Co系磁性合金よりなる磁性層の分離領域に対応する領域を、後述する条件で、フッ素イオンを含む反応性プラズマに曝した場合、この領域に非磁性のフッ化コバルトが生成されるとともに、その結晶構造が壊れて非晶質化する。この後、磁性層を加熱することによって、フッ化コバルトからフッ素イオンを脱離させる(除去する)ことができる。
反応性プラズマによって磁性層3が非晶質化する条件は、磁性層3を構成する磁性合金の組成、反応性プラズマに含まれるイオンの種類、反応圧力、反応時間、温度等によって異なるが、例えば、以下のような点から選定すると、磁性層3の非晶質化をより効率よく誘起することができる。
1)非処理基板200にバイアス電圧を印加すると非晶質化が進行し易くなる。これは、磁性層3において、ハロゲンイオンによるハロゲン化反応に比べ、イオンの衝撃による結晶構造の破壊が進行し易くなるためと考えられる。
2)反応性プラズマ中のハロゲンがラジカル状態の場合には、磁性粒子のハロゲン化が進行し易く、イオン状態の場合には、磁性粒子の非晶質化が進行しやすい。これはラジカル状態のハロゲンとイオン状態のハロゲンとで、その反応性に差が生ずるためと考えられる。
3)ハロゲン含有ガスとしてCFを主成分とするものを用いると、磁性粒子のハロゲン化が進行し易く、SFを主成分とするものを用いると、磁性粒子の非晶質化が進行し易い。これは各ハロゲン含有ガスの特質によるものと考えられる。
4)反応性プラズマが酸素を含んでいると、磁性粒子の非晶質化が進行し易い。これは、磁性合金では、ハロゲン化より酸化の方が進行し易いためと考えられる。
5)磁性層3が、その粒界に酸化物を有するグラニュラ構造をなしている場合には、ハロゲンイオンによる反応が酸化物に対して優先的に進行するため、磁性粒子のハロゲン化が進行し難くなる。
そして、以上のような処理によって、各被処理基板200の両面において磁性層3の露出領域が十分に非磁性化されたところで処理を終了するとする。
以上のようにして磁性層3の分離領域に対応する領域が非磁性化され、非磁性化層4が形成される。このような磁性層3および非磁性化層4を有する磁気記録層7では、分離領域(非磁性化層4)が均一に非磁性化されていることにより、分離領域によって磁気記録パターンが確実に分離され、良好な記録再生特性を得ることができる。
次に、第1の真空ポンプ130および第2の真空ポンプ131の各ゲートバルブを開き、各真空ポンプ130、131の動作により、反応容器101内の反応後のガスを排気する(第2の排気工程)。
ここで、この処理装置100では、前述と同様の理由から反応容器101内を短時間に所定の減圧状態とすることができる。
次に、反応容器101内を大気圧状態とした後、駆動機構141の動作によって、第1のキャリア138および第2のキャリアを、反応空間101aの下方から、基板搬送装置室136の開口139付近に移動操作する。そして、扉を開き、第1のキャリア138および第2のキャリアに装着された各処理基板200を開口139から外部に搬出する。
以上のように、この処理装置100では、反応性プラズマ処理の前に行われる第1の排気工程および反応性プラズマ処理の後に行われる第2の排気工程を短時間で行うことができる。このため、非処理基板200を処理装置100内に搬入してから搬出するまでにかかる時間を短縮することができる。
ここで、反応性プラズマ処理の後に行われる第2の排気工程は、反応後のガスの反応性が高いことから、第1の真空ポンプ130と第2の真空ポンプ131を主体として行うことが好ましく、第1の真空ポンプ130と第2の真空ポンプ131のみを用いて行うことがより好ましい。すなわち、第3の真空ポンプ132による排気は、第1の真空ポンプ130と第2の真空ポンプ131による排気量に比べて低い割合で行うことが好ましく、第3の真空ポンプ132による排気は行わないことがより好ましい。
ここで、第3の真空ポンプ132によって反応後のガスを排気した場合、反応後のガスが反応空間101aの下方に流れ、下部側に配置されたキャリア搬送装置137のベアリングなどの金属部品を腐食してしまう。これに対して、第1の真空ポンプ130と第2の真空ポンプ131を主体として反応後のガスを排気することにより、反応後のガスは主に上方に流れるため、下部側に配置された各種部品の表面が腐食されるのが防止される。その結果、反応空間101a内をクリーンな状態に保持することができ、この処理装置100による成膜処理および反応性プラズマ処理等を均一且つ高精度に行うことができる。
以上のようにして形成された磁気記録層7は、反応性プラズマに曝された領域(非磁性化層4)が、磁性層3を構成する物質のハロゲン化物を実質的に含まないことが好ましい。これにより、非磁性化層4に残留するハロゲンイオンが、磁性層4(磁気記録パターン)を構成する磁性合金に拡散し、その磁気特性を経時的に低下させることを防止することができる。
また、磁性層は、反応性プラズマに曝された領域(非磁性化層4)の磁化量が、反応性プラズマに曝される前の磁化量の75%以下であるのが好ましく、50%以下であるのがより好ましい。これにより、磁気記録媒体に記録磁界を印加した際に、非磁性化層4が磁化すること(書きにじみ)が防止され、高い面記録密度を有する磁気記録媒体30を得ることができる。
ここで、以上のような反応性プラズマによる磁性層3の非磁性化は、下記のような前処理を行うとより促進させることができる。
すなわち、磁性層3の分離領域に対応する領域を、ハロゲンイオンを含有する反応性プラズマによって処理する前に、この領域を、酸素を含有する反応性プラズマによって処理することが好ましい。これにより、磁性層3の分離領域に対応する領域において、磁気特性の改質速度が高まり、残留磁化及び保磁力等の磁気特性を効率よく低減させることが可能となる。これは以下のような理由による。
酸素含有プラズマに磁性層3を曝すと、磁性粒子の粒界部分が優先的に酸化し、その酸化領域を粒界に沿って膜厚方向に進行させることができる。その後、ハロゲン含有プラズマに磁性層3を曝すと、その磁性粒子の粒界における酸化領域が優先的にハロゲンと反応して、その結晶構造が破壊され、その反応領域が粒界から磁性粒子に向けて進行する。これにより、単に磁性層3を酸素含有プラズマやハロゲン含有プラズマにさらした場合に比べて、磁性層3の改質速度が高まり、また、磁性粒子とハロゲンとの反応も効率良く進行する。その結果、磁性層3の分離領域に対応する領域において、その残留磁化及び保磁力等の磁気特性を効率よく低減させることが可能となる。
<イオン注入する工程>
さらにまた、磁性層3の分離領域に対応する領域を、ハロゲンイオンを含有する反応性プラズマによって処理する前に、この領域に、イオンを注入することが好ましい。
これにより、磁性層3の分離領域に対応する領域を反応性プラズマによって処理するに際して、磁性層3の磁気特性の改質速度をさらに高めることができる。その理由は、磁性層3にイオン注入を行うと、磁性層3の表面が活性化され、その後に行う反応性プラズマによる処理において、磁性層3とプラズマとの反応性がより高まることによる。
ここで、磁性層3に注入するイオンとしては、アルゴンまたは窒素等の不活性元素のイオンを用いることが好ましい。このような不活性元素のイオンは、磁性層3を反応性プラズマによって処理する工程において、磁性層3と反応性プラズマとの反応に悪影響することが少ないからである。
<レジスト除去>
そして、磁気記録層7の表面に設けられたレジストパターンを除去する。
レジストパターンの除去は、ドライエッチング、反応性イオンエッチング、イオンミリング、湿式エッチング等の手法を用いることができる。
なお、以上の反応性プラズマによる処理方法では、磁性層3の表面にレジストパターンを形成した後、磁性層3に対して反応性プラズマによる処理を行っているが、未処理の磁性層の上に保護膜5を形成した後、その表面にレジストパターンを形成し、その後、反応性プラズマによって磁性層3の改質処理を行うようにしても構わない。
具体的には、まず、反応性プラズマによる処理が行なわれる前の磁性層3上に、保護膜5を形成する。
保護膜5の形成方法としては、形成すべき保護膜5の構成材料によって適宜選択され、例えば、保護膜5としてDiamond Like Carbonからなる薄膜を設ける場合には、P−CVD法などを用いることができる。
次に、保護膜5の表面に、磁気記録パターンに対応するレジストパターンを形成する。
このレジストパターンは、前述の磁性層3の表面にレジストパターンを形成する場合と同様の方法で形成することができる。
次に、図1に示す処理装置100を用いて、保護膜5のレジストパターンが形成されていない領域を、反応性プラズマによって処理する。この反応性プラズマによる処理は、前述の磁性層3を反応性プラズマによって処理する場合と同様に行うことができる。
レジストパターンおよび保護膜5を介して反応性プラズマ処理を行うと、レジストパターンが形成されていない領域において、イオンが保護膜5を透過して磁性層4に達する。このイオンの作用によって、磁性層4の露出領域の磁気特性を、選択的に低減することができる。
ここで、保護膜5で覆われているはずの磁性層4において、イオン注入等が行われる理由は、保護膜5に空隙等が存在し、その空隙からイオンが侵入する、あるいは、保護膜5中を注入イオンが拡散し、そのイオンが磁性層4まで到達することであると考えられる。
この方法では、保護膜5を形成した後に反応性プラズマ処理を行うので、反応性プラズマ処理の後に保護膜5を形成する必要がない、すなわち、磁気記録層2の成膜工程と保護膜5の成膜工程とを連続して行うことができるので、製造工程が簡便になり、生産性の向上を図ることができる。また、磁気記録媒体の製造工程における汚染の低減の効果が得られる。
以上、本発明の処理装置100の動作について、反応性スパッタリングによって磁性層3を成膜する場合と磁性層3を反応性プラズマによって処理する場合を例にして説明したが、本発明の処理装置の使用形態はこれに限るものではない。
また、本発明の処理装置は、インライン型処理装置を構成する各成膜装置として使用することもできる。本発明の処理装置は、前述のごとく排気工程を短時間に行うことができるため、非処理基板を反応容器内に搬入してから搬出するまでにかかる時間を短縮することができる。このため、例えばn台の成膜装置によって構成されたインライン型成膜装置に適用した場合には、1台の処理装置における短縮時間のn倍の時間を短縮することができる。その結果、インライン型成膜装置によって製造される各製品の生産性を大幅に向上させることができる。
「磁気記録再生装置」
次に、本発明の磁気記録媒体を適用した磁気記録再生装置について説明する。
図5は、本発明の磁気記録再生装置を示す概略構成図である。
図5に示す磁気記録再生装置は、図4に示す磁気記録媒体30と、これを回転駆動(記録方向に走行)する媒体駆動部26と、記録部と再生部からなる磁気ヘッド27と、磁気ヘッド27を磁気記録媒体30に対して相対移動させるヘッド運動手段28と、磁気ヘッド27への信号入力と磁気ヘッド27からの出力信号の再生を行う記録再生信号処理手段とを備える記録再生信号系29とを具備している。
このように構成することにより記録密度の高い磁気記録再生装置を実現することが可能となる。
すなわち、この磁気記録再生装置では、磁気記録媒体の記録トラックが磁気的に不連続に加工されている。このため、従来はトラックエッジ部の磁化遷移領域の影響を排除するために、再生ヘッドの幅を記録ヘッドの幅よりも狭くして対応していたものを、両者をほぼ同じ幅にして動作させることができる。これにより、十分な再生出力と高いSNRを得ることができる。
さらに、上述の磁気ヘッドの再生部をGMRヘッドあるいはTMRヘッドで構成することにより、高記録密度においても十分な信号強度を得ることができ、高密度記録に対応し得る磁気記録再生装置を実現することができる。
また、この磁気ヘッドの浮上量を0.005μm〜0.020μmとし、磁気ヘッドを、従来に比べて低い高さで浮上させると、出力が向上し、高SNRが得られ、大容量で高信頼性の磁気記録再生装置を提供することができる。
以下、実施例を示し、本発明を具体的に説明する。
(実施例1)
図1に示す処理装置と同様の処理装置を用意した。
(実施例2)
第1の下部真空ポンプ取り付け壁に第3のポンプが取り付けられていない以外は、図1に示す処理装置と同様の構成の処理装置を用意した。
(実施例3)
第1の上部真空ポンプ取り付け壁および第1の下部真空ポンプ取り付け壁に、それぞれ、第1の真空ポンプおよび第3の真空ポンプが取り付けられていない以外は、図1に示す処理装置と同様の構成の処理装置を用意した。
(実施例4)
第1の上部真空ポンプ取り付け壁に第1の真空ポンプが取り付けられていない以外は、図1に示す処理装置と同様の構成の処理装置を用意した。
(実施例5)
第1の上部真空ポンプ取り付け壁に第1の真空ポンプが取り付けられておらず、第2の下部真空ポンプ取り付け壁に第4の真空ポンプ(クライオポンプ)が取り付けられている以外は、図1に示す処理装置と同様の構成の処理装置を用意した。
ここで第1の真空ポンプ〜第4の真空ポンプはいずれも、フランジ径が8インチのものである。
(比較例1)
上部真空ポンプ取り付け室および下部真空ポンプ取り付け室を有しておらず、反応容器の底部に直接真空ポンプ(フランジ径:8インチ)が取り付けられている以外は、図1に示す処理装置と同様の処理装置を用意した。
(比較例2)
上部真空ポンプ取り付け室および下部真空ポンプ取り付け室を有しておらず、反応容器の底部に直接真空ポンプ(フランジ径:10インチ)が取り付けられている以外は、図1に示す処理装置と同様の処理装置を用意した。
「排気状態の評価」
各実施例および各比較例の処理装置について、各真空ポンプを動作させ、その排気速度を測定した。
また、各処理装置について、反応容器内に反応ガスを一定流量(100sccm、300sccm、500sccm)で供給するとともに、各真空ポンプを最大排気状態で動作させ、その際の反応容器内の平衡圧力を測定した。
処理装置に取り付けられた真空ポンプの台数および排気状態の評価結果を表1に示す。
Figure 2010088970
表1に示すように、各実施例の処理装置は、各比較例の処理装置に比べて排気速度が速く、また、反応ガスを流した時の平衡圧力が小さい。
ここで、成膜ガス流量を高めた方が、残留ガスやリークガスの影響が少なくなり、成膜が安定する。このため、成膜ガス流量が多くても成膜室内の圧力を低くできる方が、バルブ制御によって圧力を広い範囲で制御でき、優れた処理装置であると言える。このような点から、各実施例の処理装置は、各比較例の処理装置に比べて優れたものであるということがわかる。
本発明の処理装置の実施形態を示す縦断面図である。 図1に示す処理装置の右側面図である。 図1に示す処理装置が備えるガス流入管を示す側面図である。 本発明の処理装置によって磁気記録層が形成される磁気記録媒体の一例を示す縦断面図である。 本発明の磁気記録再生装置の実施形態を示す概略構成図である。
符号の説明
1…非磁性基板、2…軟磁性層および中間層、3…磁性層、4…非磁性化層、5…保護膜、7…磁気記録層、11…媒体駆動部、27…磁気ヘッド、28…ヘッド駆動部、29…記録再生信号系、30…磁気記録媒体、100…成膜装置、101…反応容器、101a…反応空間、102…ガス供給手段、105…基板搬送装置、106〜109…側壁、113…第1のカソード(プラズマ発生用の電極)、113a…電極面、114…第2のカソード(プラズマ発生用の電極)、115…第3のカソード(プラズマ発生用の電極)、115a…電極面、116…窓部、121〜124…第1〜第4のガス流入管、125…直管部、126…環状部、126a…ガス放出口、126c…内周壁、130、131、132…真空ポンプ(排気手段)、130a、131a、132a…フランジ、134…上部真空ポンプ取り付け室(上部排気手段取り付け室)、134a…第1の上部真空ポンプ取り付け壁(上部排気手段取り付け壁)、134b…第2の上部真空ポンプ取り付け壁(上部排気手段取り付け壁)、135…下部真空ポンプ取り付け室(下部排気手段取り付け室)、135a…第1の下部真空ポンプ取り付け壁(下部排気手段取り付け壁)、135b…第2の下部真空ポンプ取り付け壁(下部排気手段取り付け壁)、136…基板搬送装置室、137…キャリア搬送装置(基板搬送機構)、138…第1のキャリア、140…キャリア保持部、141…駆動機構、150…磁石、200…被処理基板(基板)、200a…中央部、200b…外周部、300…磁気記録再生装置

Claims (10)

  1. 被処理基板の表面に、減圧雰囲気下で処理を行う処理装置であって、
    互いに対向する側壁を少なくとも一対有し、内部に扁平空間を有する反応容器と、前記反応容器に設けられた電極と、基板搬出入口と、
    前記基板搬出入口から搬入された前記被処理基板を、前記電極側に搬送するとともに、前記電極で処理が行われた前記被処理基板を、前記基板搬出入口に搬送する基板搬送機構と、
    前記反応容器の上方に設けられ、一対の上部排気手段取り付け壁を有する上部排気手段取り付け室と、前記上部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段と、
    前記反応容器の下方に設けられ、一対の下部排気手段取り付け壁を有する下部排気手段取り付け室と、前記下部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段とを有することを特徴とする処理装置。
  2. 被処理基板の表面に、減圧雰囲気下で処理を行う処理装置であって、
    互いに対向する側壁を少なくとも一対有し、その内部に縦長の扁平空間を有する反応容器と、前記各側壁にそれぞれ設けられた一対の電極と、基板搬出入口と、
    前記基板搬出入口から搬入された前記被処理基板を、前記一対の電極間に搬送するとともに、前記一対の電極間で処理が行われた前記被処理基板を、前記基板搬出入口に搬送する基板搬送機構と、
    その内部が前記反応容器の内部と連通するように前記反応容器の上方に設けられ、その面方向が前記一対の側壁の面方向と略平行となるように配設された一対の上部排気手段取り付け壁を有する上部排気手段取り付け室と、前記上部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段と、
    前記反応容器の下方に設けられ、一対の下部排気手段取り付け壁を有する下部排気手段取り付け室と、前記下部排気手段取り付け壁の少なくとも一方に取り付けられた排気手段とを有することを特徴とする処理装置。
  3. 前記一対の電極の各対向面側に、それぞれ、ターゲットが設けられ、該ターゲットから弾き出されたスパッタ粒子を被処理基板の表面に被着させることによって薄膜を成膜自在としてなることを特徴とする請求項1または請求項2に記載の処理装置。
  4. 前記反応容器にガス供給手段が付設され、該ガス供給手段が供給するガスは、ハロゲンを含むガスであり、前記ガスがプラズマ化することによって発生した反応性プラズマに前記被処理基板の少なくとも一部を曝すことによって、前記被処理基板を改質自在としてなることを特徴とする請求項1または請求項2に記載の処理装置。
  5. 前記一対の上部排気手段取り付け壁の少なくとも一方、および、前記一対の下部排気手段取り付け壁の少なくとも一方に、排気手段が取り付けられており、
    プラズマ化した後のガスを排気する際、上部排気手段取り付け壁に取り付けられた排気手段を主体としてガスを排気することを特徴とする請求項1〜4のいずれかに記載の処理装置。
  6. 前記排気手段の少なくともいずれかは、ターボ分子ポンプであることを特徴とする請求項1〜5のいずれか1項に記載の処理装置。
  7. 前記一対の上部排気手段取り付け壁の少なくとも一方、および、前記一対の下部排気手段取り付け壁の少なくとも一方に、排気手段が取り付けられており、
    前記上部排気手段取り付け壁に取り付けられた排気手段は、ターボ分子ポンプであり、
    前記下部排気手段取り付け壁に取り付けられた排気手段は、クライオポンプであることを特徴とする請求項1〜6のいずれか1項に記載の処理装置。
  8. 請求項1〜7のいずれか1項に記載の処理装置を用いて磁気記録媒体を製造することを特徴とする磁気記録媒体の製造方法。
  9. 請求項8に記載の磁気記録媒体の製造方法によって製造されたことを特徴とする磁気記録媒体。
  10. 請求項9に記載の磁気記録媒体と、該磁気記録媒体を記録方向に駆動する媒体駆動部と、記録部と再生部とからなる磁気ヘッドと、前記磁気ヘッドを磁気記録媒体に対して相対運動させるヘッド駆動部と、前記磁気ヘッドへの信号入力と前記磁気ヘッドからの出力信号を再生するための記録再生信号処理手段とを組み合わせて具備してなることを特徴とする磁気記録再生装置。
JP2008258820A 2008-10-03 2008-10-03 処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 Pending JP2010088970A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258820A JP2010088970A (ja) 2008-10-03 2008-10-03 処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258820A JP2010088970A (ja) 2008-10-03 2008-10-03 処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置

Publications (1)

Publication Number Publication Date
JP2010088970A true JP2010088970A (ja) 2010-04-22

Family

ID=42252221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258820A Pending JP2010088970A (ja) 2008-10-03 2008-10-03 処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置

Country Status (1)

Country Link
JP (1) JP2010088970A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853555B1 (en) 2012-04-18 2019-04-24 LOTTE Fine Chemical Co., Ltd. Film and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853555B1 (en) 2012-04-18 2019-04-24 LOTTE Fine Chemical Co., Ltd. Film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5566669B2 (ja) インライン式成膜装置及び磁気記録媒体の製造方法
JP5192993B2 (ja) 磁性層の形成方法
JP5398163B2 (ja) 磁気記録媒体及びその製造方法、並びに磁気記録再生装置
US20110059235A1 (en) Method for producing magnetic recording medium and producing apparatus thereof
JP4843825B2 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
JP5427572B2 (ja) マグネトロンスパッタ装置、インライン式成膜装置、磁気記録媒体の製造方法
WO2009139381A1 (ja) 磁気記録媒体の製造方法および製造装置
US7354630B2 (en) Use of oxygen-containing gases in fabrication of granular perpendicular magnetic recording media
JP5681624B2 (ja) 炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置
JP5172484B2 (ja) 磁気記録媒体の製造方法及び成膜装置
JP2010106290A (ja) 成膜装置および成膜方法、磁気記録媒体、磁気記録再生装置
JP2010088970A (ja) 処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置
JP2010198659A (ja) 処理装置、インライン式成膜装置、磁気記録媒体の製造方法
JP5328462B2 (ja) マグネトロンスパッタ装置、インライン式成膜装置、磁気記録媒体の製造方法
JP5238333B2 (ja) 磁性層の形成方法及び成膜装置と磁気記録再生装置
JP5364455B2 (ja) マグネトロンスパッタ装置及びインライン式成膜装置
JP2010163639A (ja) スパッタリング装置及びそれを用いた磁気記録媒体の製造方法
JP2010020841A (ja) インライン式成膜装置及び磁気記録媒体の製造方法
JP2011023086A (ja) 磁気記録媒体の製造方法及び製造装置
JP2010244640A (ja) 処理装置及びインライン式成膜装置
JP2011023087A (ja) インライン式成膜装置及び磁気記録媒体の製造方法
JP2010257515A (ja) マグネトロンスパッタ装置、インライン式成膜装置、磁気記録媒体の製造方法、磁気記録再生装置
JP2009110595A (ja) 磁気記録媒体の製造方法
JP2010192056A (ja) インライン式成膜装置及び磁気記録媒体の製造方法
JP2010205323A (ja) 炭素膜の形成方法及び磁気記録媒体の製造方法