JP2010082503A - パターン形成装置 - Google Patents

パターン形成装置 Download PDF

Info

Publication number
JP2010082503A
JP2010082503A JP2008251578A JP2008251578A JP2010082503A JP 2010082503 A JP2010082503 A JP 2010082503A JP 2008251578 A JP2008251578 A JP 2008251578A JP 2008251578 A JP2008251578 A JP 2008251578A JP 2010082503 A JP2010082503 A JP 2010082503A
Authority
JP
Japan
Prior art keywords
droplet
laser
laser beam
pattern forming
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008251578A
Other languages
English (en)
Inventor
Hirotsuna Miura
弘綱 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008251578A priority Critical patent/JP2010082503A/ja
Publication of JP2010082503A publication Critical patent/JP2010082503A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Lasers (AREA)

Abstract

【課題】飛行中の液滴にレーザ光を照射して飛行中の液滴を乾燥させるパターン形成装置において、飛行中の液滴の乾燥効率を向上させるパターン形成装置を提供する。
【解決手段】レーザ光源32から出射された基本レーザ光Leを第1レーザ光Le1と第2レーザ光Le2とに分割するハーフミラー34を設ける。第1及び第2レーザ光Le1,Le2の各光路上に、ノズルから吐出される液滴の目標経路上における強度分布をガウシアン分布からトップハット型分布の昇温領域及び蒸発領域を有する強度分布へ変換するDOE42a,42bを配置する。DOE42a,42bは、昇温領域におけるレーザ強度が蒸発領域におけるレーザ強度よりも高くなるようにレーザ光の強度分布を変換する。そして、強度分布が変換された第1レーザ光Le1と第2レーザ光Le2とを飛行中の液滴を挟んで相対向するように照射する。
【選択図】図5

Description

本発明は、飛行中の液滴に対してレーザ光を照射するパターン形成装置に関する。
低温焼成セラミックス(LTCC:Low Temperature Co−fired Ceramics)からなる多層基板は、優れた高周波特性と高い耐熱性を有するため、高周波モジュールの基板やICパッケージの基板等に広く利用される。このようなLTCC多層基板においては、一般に、金属インクを用いて回路パターンが描画されたグリーンシートを積層して一括焼成することにより製造される。
上記回路パターンを描画する工程においては、回路パターンの高密度化を図るため、金属インクを微小な液滴にして吐出する、いわゆるインクジェット法が提案されている(例えば、特許文献1)。インクジェット法では、多数のノズルが列設された吐出ヘッドから1滴の容量が数〜数十ピコリットルの液滴を吐出することにより回路パターンを描画する。インクジェット法は、この液滴の吐出位置を変更することによって、回路パターンのさらなる微細化や狭ピッチ化を可能にしている。
特開2005−57139号公報
ところで、上記インクジェット法を利用して高精細なパターンを形成するためには、吐出した液滴を速やかに乾燥させて基板上における濡れ広がりを抑制することにより着弾径を小さくすることが好ましく、その一つの方法として、吐出ヘッドから吐出された飛行中の液滴にレーザ光を照射して該液滴の乾燥を飛行中に促進させる方法が検討されている。こうした方法を用いて所望量の蒸発成分を蒸発させる場合、レーザ光に必要とされる最小のエネルギーが前記所望量に応じて概ね規定できることから、レーザ光の利用効率の向上を図る上では、飛行中の液滴に対して上記最小のエネルギーを与える態様が好ましい。
一方、上述するレーザ光の断面強度分布としては、該レーザ光の中心付近の強度が最も高くなる円形の正規分布(ガウシアン分布)が一般に利用されている。飛行中の液滴に対してこうした断面強度分布のレーザ光を照射すると、吐出された液滴は、まずガウシアン分布の裾野において昇温された後に同ガウシアン分布のピーク領域を通過するようになる。それゆえ昇温された液滴がピーク領域を通過する際には、その気化熱を大きく超えるような過剰なエネルギーが単位時間あたりに供給されてしまい、該液滴の溶媒や分散媒などの相転移が液滴の全体で瞬時に生じる、所謂突沸が発生するようになり、液滴そのものを飛散させてしまう。一方、こうした突沸を防ぐためには、ガウシアン分布のピーク領域において気化熱を超えないように、さらにレーザ光の強度を抑える方法が考えられるが、こうした場合にあってはピーク領域における突沸は防止できるものの、レーザ光全体の強度そのものを低下させてしまうために、上記ガウシアン分布の裾野においても液滴が昇温し難くなり、ひいては液滴の乾燥不足を招いてしまう。
本発明は上記課題を解決するためになされたものであり、その目的は、飛行中の液滴にレーザ光を照射して飛行中の液滴を乾燥させるパターン形成装置において、飛行中の液滴の乾燥効率を向上させるパターン形成装置を提供することにある。
本発明のパターン形成装置は、蒸発成分及びパターン形成材料を含む液状体の液滴をノ
ズルから描画対象物に向けて吐出し飛行させる吐出ヘッドと、飛行中の前記液滴にレーザ光を照射して所定量の前記蒸発成分を蒸発させるレーザ照射部とを備え、前記描画対象物上に前記液滴を着弾させることによってパターンを形成するパターン形成装置であって、前記レーザ照射部は、レーザ出射部と、前記レーザ光の強度分布が前記ノズルと前記液滴の着弾する位置との経路上において、当該経路上の基準点より前記ノズルに近い側で、前記ノズルに遠い側よりも高くように、前記レーザ出射部からの前記レーザ光の強度分布を成形するレーザ成形部とを備えていることを要旨とする。
飛行中の液滴に向けてレーザを照射して飛行中の液滴から蒸発成分を蒸発させることにより液滴を乾燥させるパターン形成装置では、液滴の蒸発成分の温度が沸点近くになる場合において最も効率よく液滴が乾燥する。本発明のパターン形成装置によれば、飛行中の液滴に照射されるレーザ光の強度分布は、目標経路上におけるノズルに近い側に位置するほど高くなることから、蒸発成分がより多く含まれる吐出直後の液滴ほど、より高い強度のレーザ光が照射されることになる。こうした構成によれば、飛行中に与える熱量を所望する蒸発量に応じた量に制約する上において、吐出した液滴に含まれる蒸発成分をその吐出時から短時間で沸点近くまで上昇させることができる。それゆえ液滴が吐出されてから着弾するまでの飛行期間を蒸発成分の蒸発過程に多くを割くことができる。その結果、飛行中の液滴の乾燥効率を向上させることができる。
このパターン形成装置は、前記基準点は、前記レーザ光によって加熱された液滴が前記基準点において沸騰しない最高温度に到達するように設定されていることを要旨とする。
このパターン形成装置によれば、レーザ成形部が成形するレーザ光の強度分布により、吐出直後の液滴は、その液状体が沸騰しない最高温度に到達するまで、相対的に高い強度のレーザ光を受けるようになる。こうした構成により、吐出直後における液滴の温度が、例えば蒸発成分の沸点へとすばやく昇温されることになり、液滴が吐出されてから着弾するまでの飛行期間のうち、蒸発成分の蒸発により多くの時間を割くことができる。その結果、飛行中の液滴の乾燥効率を向上させることができる。
このパターン形成装置は、前記基準点は、前記レーザ光によって加熱された液滴の前記蒸発成分が前記基準点において沸点に到達するように設定されていることを要旨とする。
このパターン形成装置によれば、レーザ成形部が成形するレーザ光の強度分布により、吐出直後の液滴は、その温度が蒸発成分の沸点に到達するまで、相対的に高い強度のレーザ光を受けるようになる。こうした構成により、吐出直後における液滴の温度が蒸発成分の沸点へとすばやく昇温されることになり、液滴が吐出されてから着弾するまでの飛行期間のうち、蒸発成分の蒸発により多くの時間を割くことができる。その結果、飛行中の液滴の乾燥効率をより向上させることができる。
このパターン形成装置は、前記レーザ成形部は、前記レーザ光の強度分布を前記基準点より前記ノズルに近い側または前記基準点より前記ノズルに遠い側で単調減少するように成形することを要旨とする。
このパターン形成装置によれば、強度分布が単調減少するように成形された領域では経時的に単調減少する強度のレーザ光が照射されることになり、一時的に過剰なエネルギーが液滴に供給される状態を確実に回避することができる。
このパターン形成装置は、前記レーザ成形部は、前記レーザ光の強度分布を前記基準点より前記ノズルに近い側または前記基準点より前記ノズルに遠い側で平坦となるように成形することを要旨とする。
このパターン形成装置によれば、強度分布が平坦に形成された領域では経時的に同じ強
度のレーザ光が照射されることになり、一時的に過剰なエネルギーが液滴に供給される状態を確実に回避することができる。
このパターン形成装置は、前記レーザ出射部は、一対のレーザ光を出射し、前記レーザ成形部は、前記一対のレーザ光のいずれか一方の強度分布を成形し、前記レーザ照射部は、前記一対のレーザ光を前記経路を挟んで相対向する態様で前記液滴に照射することを要旨とする。
飛行中の液滴が蒸発成分を蒸発する際には、その蒸発成分の運動力に抗した反力が該液滴に対して作用する。そのため、蒸発率の高い方から低い方へ向かう上記反力が液滴に対して作用し、こうした反力が液滴の吐出方向を軸にして非対称であって、かつ液滴に対して過剰に作用する場合にあっては、その運動力に抗した反力による液滴の飛行曲がりが発生してしまい着弾位置の位置ずれが発生してしまう。
このパターン形成装置によれば、一つの液滴に対して相対向する方向からのレーザ光を照射することから、一方からレーザ光を照射する場合に比べて、液滴の乾燥効率を向上できるだけでなく、一対のレーザ光の強度分布を等しくすることにより、液滴の飛行曲がりを抑制することもできる。
このパターン形成装置は、前記レーザ出射部は、1つのレーザ光源からの基本レーザ光を前記一対のレーザ光に分岐する分岐部を有することを要旨とする。
このパターン形成装置によれば、分岐部を設けることにより一対のレーザ光を生成する際のレーザ光源が1つで済むことからレーザ照射部を簡素な構成とすることができる。また例えば、1つのレーザ光源からの基本レーザ光を分岐させて一対のレーザ光を生成した上でレーザ成形部による強度分布の変換が実行させることもできる。すなわち、レーザ光の強度分布を変換するレーザ成形部が分岐部よりも目標経路側に配設することもできる。これにより、レーザ成形部を目標経路に近い位置に配置することが可能となり、レーザ成形部と目標経路との間におけるレーザ光の回折を抑制することができる。すなわち、強度分布が変換されたレーザ光を液滴に対して確実に照射させることができる。
(第1実施形態)
以下、本発明のパターン形成装置を液滴吐出装置に具体化した第1実施形態について図1〜図8を参照して説明する。図1は液滴吐出装置の斜視構造を模式的に示した図である。図2は、本実施形態の吐出ヘッドの斜視構造を示す斜視図であり、図3は同吐出ヘッドの内部断面構造を示す部分断面図である。また図4は描画対象物であるグリーンシートと吐出ヘッドとの配置の関係を示す平面図である。
図1に示すように、パターン形成装置としての液滴吐出装置10の基台11には、該基台11の長手方向に沿って往復移動可能なステージ12が搭載されている。本実施形態では、基台11の長手方向であって、図1における右上方向を+X方向とし、+X方向の反対方向を−X方向と言う。また、+X方向と直交する水平方向であって、図2における左上方向を+Y方向とし、+Y方向の反対方向を−Y方向と言う。また、鉛直方向上方を+Z方向とし、+Z方向の反対方向を−Z方向と言う。
基台11に搭載されるステージ12の上面には、描画対象物としてのグリーンシートGSが描画面GSaを上側にした状態でステージ12に位置決め固定されている。ステージ12は、基台11に設けられたステージモータ(図示せず)が正転又は逆転するとき、位置決めしたグリーンシートGSを所定の速度で+Y方向又は−Y方向へ走査する。
基台11の上側には、門型に形成されたガイド部材13が+X方向に沿って架設されており、該ガイド部材13の上側には、液状体としての導電性インクIkを供給するインクタンク14が配設されている。インクタンク14は、導電性微粒子の分散系からなる導電性インクIkを貯留し、貯留する導電性インクIkを所定の圧力の下で所定の温度調整しつつ吐出ヘッド15へ供給する。パターン形成材料である導電性微粒子は、数nm〜数十nmの粒径を有する微粒子であり、例えば銀、金、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム等の金属、あるいはこれらの合金を用いることができる。蒸発成分としての分散媒は、上記導電性微粒子を均一に分散させるものであればよく、例えば水や水を主成分とする水溶液系、あるいはテトラデカン等の有機溶剤を主成分とする有機系を用いることができる。なお、本実施形態の導電性インクIkにおいては、導電性粒子として銀を用い、分散媒として水を用いている。
ガイド部材13には、+X方向及び−X方向に移動可能なキャリッジ16が搭載されており、該キャリッジ16には吐出ヘッド15が搭載されている。キャリッジ16は、ガイド部材13に設けられたキャリッジモータ(図示せず)が正転又は逆転するとき、吐出ヘッド15を+X方向又は−X方向へ走査する。
図2に示されるように、吐出ヘッド15は、キャリッジ16に位置決め固定されて+X方向に延びるヘッド基板17と、ヘッド基板17に支持されるヘッド本体20とを有する。ヘッド基板17は、−X方向の端部に接続端子17aを有しており、外部からの各種制御信号がこの接続端子17aからヘッド本体20へ入力されて、またヘッド本体20からの各種検出信号がこの接続端子17aから外部へ出力される。
ヘッド本体20の底部には、グリーンシートGSと対向するように配置されるノズルプレート21が貼り付けられている。ノズルプレート21は、ヘッド本体20がグリーンシートGSの直上に配置されるとき、その底面(以下単に、ノズル形成面21aと言う)と描画面GSaとが略平行になる態様で構成されており、これらノズル形成面21aと描画面GSaとによって挟まれた空間である液滴Dの飛行空間を形成する。またノズルプレート21は、ヘッド本体20がグリーンシートGSの直上に配置されるとき、ノズル形成面21aと描画面GSaとの間の距離であるプラテンギャップPGを所定の距離(図3参照、本実施形態では1000μm)に維持する。ノズルプレート21のノズル形成面21aには、ノズルプレート21をZ方向に貫通する複数個のノズルNがX方向に沿ってノズルピッチDxにて等間隔に配列されている。
図3に示されるように、ヘッド本体20は、各ノズルNの上側にそれぞれキャビティ22と、振動板23と、圧力発生素子としての圧電素子PZを有する。各キャビティ22は、供給チューブ20Tを介して共通するインクタンク14に接続されており、これによりインクタンク14からの導電性インクIkを収容して、該導電性インクIkを各ノズルNに供給する。振動板23は、各キャビティ22に対向する領域がZ方向に振動することにより、該キャビティ22の容積を拡大及び縮小させて圧力変動を発生させ、これに伴ってノズルNのメニスカスを振動させる。各圧電素子PZには、その収縮量や収縮速度、伸張量や伸張速度を規定した電圧波形である駆動電圧が入力されるようになっており、こうした駆動電圧が圧電素子PZに入力されるたびに、該圧電素子PZがZ方向に収縮して伸張し、これにより振動板23がZ方向に振動する。
こうした構成からなる吐出ヘッド15では、各圧電素子PZがZ方向に収縮及び伸張するときに、各キャビティ22に収容される導電性インクIkの一部が上記駆動電圧に応じたサイズや速度を有する液滴DとしてノズルNから吐出される。ノズルNから吐出される液滴Dは、上述する飛行空間を飛行してグリーンシートGSの描画面GSaに着弾する。
この際、ノズルNから吐出された液滴Dは、該液滴Dに加わる外力の合力がZ方向にのみ作用することによってノズルNからZ方向に沿って飛行することが確実に可能となり、前記ノズルNを含んでZ方向に延びる仮想線である目標経路TLの上を飛行するようになる。一方、ノズルNから吐出された液滴Dは、該液滴Dに加わる外力の合力がZ方向と交差する方向に大きく作用する場合にあっては、該合力の作用に従って上記目標経路TLから外れた経路を飛行して、着弾位置の精度を損なう要因である所謂飛行曲がりを来たしてしまう。
図4の一点鎖線で示されるように、グリーンシートGSの描画面GSaは二次元の矩形格子であるドットパターン格子DLによって仮想分割されている。ドットパターン格子DLは、+X方向の格子間隔と+Y方向の格子間隔とが、それぞれ所定の間隔で設定される仮想格子である。例えば、ドットパターン格子DLの+X方向の格子間隔は、ノズルピッチDxで規定されており、ドットパターン格子DLの+Y方向の格子間隔は、液滴Dの吐出周期とステージ12の走査速度との積から算出される吐出ピッチDyで規定されている。こうしたドットパターン格子DLが上記ステージ12により走査されるとき、上述する吐出ヘッド15は、ドットパターン格子DLの各格子点Tが目標経路TLを横切るかたちで配置されて、各ノズルNから描画面GSaに向けて液滴Dを吐出するか否かの選択が上記格子点Tごとに設定されるようになる。なお、図4ではドットパターン格子DLの各格子点Tを説明する便宜上、ドットパターン格子DLの格子間隔及び吐出ヘッド15のノズルピッチDxを十分拡大して示している。
ノズルNから吐出された液滴Dから所望量の分散媒を効果的に蒸発させるためには、まずは室温下にある液滴Dの温度を、その液状体が沸騰しない範囲のなかで最も高い温度である目標温度付近まで昇温せしめるための熱量、例えば室温下にある液滴Dを分散媒の沸点まで昇温せしめるための熱量である第1熱量qが必要となる。次いで上記第1熱量qにより昇温された液滴Dの沸騰しない状態を保ちながら該液滴Dの分散媒を円滑に気体へ相転移させるための潜熱(気化熱)である第2熱量qが必要となる。こうした熱量は、導電性インクIkの性状と、圧電素子PZに印加される駆動電圧と、液滴Dの容積とを用いた演算により推定することができ、また各種実験等に基づく直接測定よって決定することもできる。
例えば上述する演算により上記第1熱量q及び第2熱量qを推定する場合には、導電性インクIkの性状から得られる分散媒及び導電性微粒子のモル分率と、分散媒及び導電性微粒子の比熱容量と、駆動電圧に基づいて得られる液滴Dの重量Wと、吐出時における液滴Dの温度とに基づいて行うことができる。
また上述するような微小な液滴Dから蒸発した蒸発成分のなかには、液滴Dの表面から十分に離間した遠方へと拡散するものと、目標経路TLに残留して該経路上における蒸発成分の分圧を高くするものとがある。そのため、各温度における液滴の蒸発量は、目標経路TLに残留する蒸発成分の濃度が低くなるほど高くなり、逆に目標経路TLにおける蒸発成分の濃度が高くなるほど低くなる。そこで、液滴表面における蒸発成分の密度やその拡散などに基づく蒸発成分の物質移動流束を用いた液滴の物質収支に関わる微分方程式や、液滴の気化熱を考慮した液滴の熱収支に関わる微分方程式、さらには液滴に対する空気抵抗を考慮した液滴の運動方程式などを解くことにより上記第1熱量q及び第2熱量qを推定することもできる。また上述する実験により上記第1熱量q及び第2熱量q決定する場合には、飛行中の液滴Dをハイスピードカメラで撮像しながら該液滴Dに対して異なる熱量の光を照射して、該液滴Dが沸騰しない状態を維持できる最も高い熱量を直接測定することにより第1熱量q及び第2熱量qを得ることもできる。
次に、上記飛行中の液滴Dにレーザ光を照射して該液滴Dを乾燥させる光学系について図5を参照して説明する。図5は、上記液滴吐出装置10に搭載されるレーザ照射部31の光学的構成を模式的に示した図であり、図6は各液滴Dに対するレーザ光の照射角度を模式的に示した図である。図7は、目標経路TLにおけるレーザ光の強度分布を模式的に示す図である。
図5に示されるように、レーザ照射部31は、レーザ出射部としてのレーザ光源32、コリメートレンズ33、分岐部としてのハーフミラー34、及び反射ミラー35,36,37,38,39と、第1レーザ成形部40aと第2レーザ成形部40bとを備えている。レーザ光源32は、断面強度分布がガウシアン分布である基本レーザ光Leを出射する装置である。
レーザ光源32は、所謂固体レーザであって、YAG(Yttrium Aluminium Garnet)レーザ発振器32aと高調波ユニット32bとを備えている。YAGレーザ発振器32aは、ネオジムイオン(Nd3+)が添加されたイットリウムアルミニウムガーネット(YAl12)結晶を備え、近赤外線の不可視光であるYAGレーザ光の基本波(波長:1064nm)を生成する。高調波ユニット32bには、非線形光学結晶が配設され、上記YAGレーザ発振器32aにて生成されたYAGレーザ光の基本波を上記非線形光学結晶に通過させることで可視光であるYAGレーザ光の第2高調波(SHG:Second harmonic generation、波長:532nm)に変換する。レーザ光源32は、このYAGレーザ光の第2高調波を基本レーザ光Leとしてコリメートレンズ33に入射させる。
コリメートレンズ33は、その出射面側に所定の曲率を有する平凸レンズであって、レーザ光源32から出射された基本レーザ光Leの光束を光軸に対して平行な平行光に変換してハーフミラー34に入射させる。ハーフミラー34は、コリメートレンズ33から出射された基本レーザ光Leをエネルギーが等しい一対のレーザ光である第1レーザ光Le1と第2レーザ光Le2とに分割する。各反射ミラー35,36は、ハーフミラー34の透過光である第1レーザ光Le1を反射する反射面を有した平面ミラーであり、その反射光である第1レーザ光Le1を第1レーザ成形部40aに入射させる。各反射ミラー37〜39は、ハーフミラー34の反射光である第2レーザ光Le2を反射する反射面を有した平面ミラーであり、その反射光である第2レーザ光Le2を第2レーザ成形部40bに入射させる。
第1レーザ成形部40aは、第1レーザ光Le1の光路上にシリンドリカルレンズ41aと、回折光学素子(DOE:Diffractive Optical Elemennt、以後、DOEという)42aとを備えている。第2レーザ成形部40bは、第2レーザ光Le2の光路上にシリンドリカルレンズ41bとDOE42bとを備えている。
シリンドリカルレンズ41a、42bは、それぞれ短手方向にのみ曲率を有する出射面を備えたレンズであって、コリメートレンズ33によって平行光に変換された第1レーザ光Le1と第2レーザ光Le2の断面を上記ノズル形成面21aに沿って延びる矩形状に変換する。なお、シリンドリカルレンズ41a、41bに入射する第1レーザ光Le1や第2レーザ光Le2は、Z方向に所定幅を有している。そのため、該レーザ光がシリンドリカルレンズ41a、41bにより成形されることなく飛行空間に照射される場合にあっては、該レーザ光におけるZ方向の端部が吐出ヘッド15やグリーンシートGS、ステージ12などに遮られてしまい、第1レーザ光Le1や第2レーザ光Le2のエネルギーの一部が損なわれてしまう。シリンドリカルレンズ41a、41bは、それぞれ対応する反射ミラーからの第1レーザ光Le1と第2レーザ光Le2のZ方向成分を変換して、第1レーザ光Le1及び第2レーザ光Le2のZ方向におけるビーム長を上記プラテンギャッ
プPG(本実施形態では、1000μm)と等しくなるように断面形状を成形する。これにより、第1レーザ光Le1及び第2レーザ光Le2のエネルギー損失を抑えつつ、液滴Dの目標経路TLに第1レーザ光Le1及び第2レーザ光Le2を導くことができる。
DOE42a、42bは、それぞれシリンドリカルレンズ41a、42aにより成形された第1レーザ光Le1及び第2レーザ光Le2の断面強度分布を所定の分布に変換して上記飛行空間へ照射する。DOE42a、42bの光軸は、それぞれ目標経路TLの中間位置に位置するように配置されており、全てのノズルNから吐出される液滴Dに対して第1レーザ光Le1及び第2レーザ光Le2を照射すべく、ノズルNの配列方向(図5に示す一点鎖線方向)に対して所定の傾斜角θ(θ:0°<θ≦90°)だけ水平方向に傾斜している。この傾斜角θは、図6に示されるように、例えば液滴Dの直径を2rとしたときにsinθ≧2r/Dxを満足する範囲で選択される。こうした条件を満足する傾斜角θであれば、同じタイミングで吐出された各ノズルNからの液滴Dに対して第1レーザ光Le1及び第2レーザ光Le2を照射する場合であれ、相対的にDOEに近い側の液滴Dが相対的にDOEから遠い側の液滴Dに対して第1レーザ光Le1及び第2レーザ光Le2を遮ることがない。それゆえ吐出ヘッド15から同時に吐出された全ての液滴Dに対して第1レーザ光Le1と第2レーザ光Le2とを均等に照射することができる。しかも、sinθ=2r/Dxを満足する傾斜角θであった場合には、隣接するノズルNから吐出された液滴Dとのレーザ光の照射方向における隙間がなくなることから、液滴Dに照射されることなく飛行空間を通過してしまうレーザ光を最小限に抑えることができ、レーザ光の利用効率を向上させることもできる。また、sinθ>2r/Dxを満足するレーザ光であっても、DOE42a、42bによって各ノズルNから吐出された液滴Dの飛行経路のそれぞれに対応するようにレーザ光を分割することにより、飛行空間を通過してしまうレーザ光を最小限に抑えることができ、レーザ光の利用効率を向上させることもできる。
図7に示されるように、DOE42a、42bは、それぞれ第1レーザ光Le1及び第2レーザ光Le2の強度分布を変更する光学的構成要素であり、各液滴Dの目標経路TLにおける第1レーザ光Le1及び第2レーザ光Le2の強度分布がノズルNに近い側で高くなるようにして、かつ該目標経路TLにおける強度をそれぞれ昇温領域A1と蒸発領域A2とに区画する。
上記昇温領域A1とは、目標経路TLにおける強度が平坦であるトップハット型の断面強度分布(以後、トップハット型分布という。)からなる領域であり、蒸発領域A2よりもノズルNに近い側に設けられて、その目標経路TLにおける単位時間あたりの強度である昇温強度Pが蒸発領域A2に比べて高くされた領域である。こうした領域を通過する液滴Dに対しては、上記傾斜角θによる照射態様に従って、第1レーザ光Le1から受けるエネルギーと第2レーザ光Le2から受けるエネルギーとの総和に相当するエネルギー(昇温エネルギーE)が与えられる。本実施形態におけるレーザ照射部31では、上述するDOE42a、42bが協働することにより、この昇温エネルギーEと上述する第1熱量qとが等しくなる態様で構成されている。こうした構成からなる昇温領域A1によれば、ノズルNから吐出された液滴Dがその吐出直後に昇温領域A1を通過して目標温度まですばやく昇温されるようになる。図8(a)は、本実施形態の強度分布とガウシアン分布のレーザ光とを液滴Dに対して同じエネルギーを供給した場合における液滴Dの温度推移を模式的に示したグラフである。同図においては、本実施形態と同様の強度分布における温度推移を実線で示し、ガウシアン分布における温度推移を2点鎖線で示している。同図に示すように、本実施形態では昇温領域A1においてガウシアン分布の裾野よりも強度の高いレーザ光が照射されることから、ガウシアン分布のレーザ光を照射した場合よりも液滴Dを目標温度まですばやく昇温させることができる。
一方、蒸発領域A2とは、目標経路TLにおける強度がトップハット型分布となる領域
であり、前記昇温領域A1に対して描画面GSa側に設けられており、その目標経路TLにおける単位時間あたりの強度である蒸発強度Pが昇温領域A1に比べて低くされた領域である。こうした領域を通過する液滴Dに対しては、上記昇温領域A1と同じく、上記傾斜角θによる照射態様に従って、第1レーザ光Le1から受けるエネルギーと、第2レーザ光Le2から受けるエネルギーとの総和に相当するエネルギー(蒸発エネルギーE)が与えられる。本実施形態におけるレーザ照射部31では、上述するDOE42a、42bが協働することにより、この第2熱量qと上述する蒸発エネルギーEとが等しくなる態様で構成されている。こうした構成からなる蒸発領域A2によれば、昇温領域A1を通過して昇温された液滴Dが気化熱に相当する熱量により沸騰しない状態を保ちながら円滑に蒸発し続けるようになる。図8(b)は、図8(a)と同様の条件における液滴Dの容積推移のシミュレーションを行った結果を示したグラフである。同図においては、本実施形態における容積推移を実線で示し、ガウシアン分布のレーザ光を照射したときの容積推移を2点鎖線で示している。同図に示すように、本実施形態では液滴Dが目標温度まですばやく昇温されることから、ガウシアン分布のレーザ光を照射した場合と比較して、液滴Dの飛行時間のうち多くの時間を分散媒の蒸発に割り当てることができ、該分散媒を効率よく蒸発させることができる。
なお、こうしたレーザ光の強度分布を所望の強度分布に厳密に変換することは困難である。そのため、上述するトップハット型分布である平坦な強度分布とは、昇温領域A1及び蒸発領域A2において、その最大強度と平均強度との差分、ならびに最小強度と平均強度との差分がそれぞれ平均強度に対して±5%以内である分布である。こうした平坦性は描画パターンの設計ルールである液滴Dの着弾位置の精度や着弾径の精度などに応じて適宜選択することもできる。また、本実施形態における単調減少の強度分布とは、上記平坦である場合あるいは経時的に強度が小さくなるような状態をいう(広義単調減少)。
こうした第1レーザ光Le1及び第2レーザ光Le2の断面強度分布は、例えば以下のようにして設定することができる。まず、昇温領域A1の目標経路TL上における昇温強度P及び範囲を設定するために、プラテンギャップPGと液滴Dの初速vとに基づいて、液滴Dが吐出されてから着弾するまでの総飛行期間t(=PG/v)が得られる。次いで予め定められた描画パターンの設計ルールの要請に従う上記目標温度が分散媒の沸点であるとすると、目標経路TL上における昇温領域A1の範囲が、初速vと第1飛行期間tとに基づいて、ノズル形成面21aから昇温距離L(=v×t)までの範囲に設定される。またこの昇温距離Lと液滴の直径2rとを用いることにより、昇温領域A1における液滴Dの受光断面積がL×2rとして得られる。そして昇温領域A1における昇温強度Pは、上述する第1熱量qに相当する昇温エネルギーEを上記受光断面積で受けるべく、上記第1飛行期間tと、上記昇温距離Lと、液滴Dの直径2rとから式(1)に基づいて設定される。
=E/((L×2r)×t)…(1)
なお、この昇温強度Pが過剰に高くなる場合にあっては、レーザ光の光圧が液滴Dに対して過剰に作用して、液滴Dが目標経路TLから外れる現象、所謂飛行曲がりを発生する場合がある。また第1飛行期間tが過剰に短い場合や液滴Dのサイズが過剰に大きくなる場合にあっては、液滴Dの表面付近で吸収したレーザ光のエネルギーが液滴Dの中心部へと十分拡散し得ない場合がある。そこで、予め実施する各種実験や計算機シミュレーション等により、上述する飛行曲がりや不十分な熱拡散を来たす強度範囲に関わるデータを適正強度データとして取得し、上記算出結果である昇温強度Pが前記適正強度データの範囲内である否かを判断する態様であってもよい。そして昇温強度Pが上記データの範囲外である場合には、設計ルールの見直しを図り、第1飛行期間tを変更することにより、昇温強度Pが適正な範囲内に収まるようにする態様であってもよい。
このようにして昇温領域A1の昇温強度P及びその範囲が設定されると、次いで蒸発領域A2の目標経路TL上における範囲及び蒸発強度Pが設定される。詳述すると、蒸発領域A2の目標経路TL上における範囲は、上記昇温領域A1の範囲が設定されることにより、描画面GSaから蒸発距離L(=PG−L)の範囲に設定される。また、蒸発領域A2における液滴Dの飛行期間である第2飛行期間t(t=t−t)は、総飛行期間tと上記第1飛行期間tと基づいて設定される。蒸発領域A2における昇温強度Pは、上述する第2熱量qに相当するエネルギーQと上記蒸発距離Lと液滴Dの直径2rとから式(2)に基づいて設定される。
=Q/((L×2r)×t)…(2)
ここで、飛行中の液滴Dから分散媒が蒸発する際には、蒸発にともなう運動力に抗した反力が該液滴Dに対して作用する。そのため、蒸発率の高い方から低い方に沿った方向に上記反力が作用し、液滴Dの吐出方向を軸にして蒸発率が対称でない場合にあっては、その運動力に抗した反力によって液滴Dの飛行曲がりが誘発されて着弾位置の位置ずれが発生する。そこで、上述のように設定される昇温強度P及び蒸発強度Pをそれぞれ相対向する第1レーザ光Le1と第2レーザ光Le2とに等分させることにより、液滴Dの蒸発率が吐出方向を軸にして対称となり、分散媒の蒸発にともなう運動力に抗した反力が打ち消しあうことから、液滴Dの飛行曲がりが生じ難くなり、着弾位置の位置ずれを抑制することもできる。
このようにして昇温領域A1では相対的に高い強度のレーザ光が照射されることにより、吐出直後の液滴Dに対して、その温度を例えば分散媒の沸点まですばやく昇温させることができ、それゆえ液滴Dの飛行期間においては、液滴Dが同沸点近傍にある期間を長くすることができる。上述のような微小な液滴Dにレーザ光が照射されると、昇温領域A1においてレーザ光のエネルギーが液滴Dの表面付近で吸収される場合であれ、その吸収したエネルギーにより液滴表面が昇温し、該表面付近の熱が液滴Dの中心部へと拡散することにより、結果的には液滴D全体の温度が上昇するようになる。
そして蒸発領域A2の液滴Dにおいては、液滴Dの温度がその沸騰しない状態を維持できる程度の高い温度、例えば分散媒の沸点であることから、表面付近で吸収されたレーザ光のエネルギーが分散媒を気化させるためのエネルギーに逐次変換されて、該レーザ光によって供給されるエネルギーに応じた蒸発量の分散媒が液滴Dの表面から蒸発するようになる。この結果、液滴Dの突沸を抑えつつ安定した蒸発状態を維持することができ、こうした沸点近傍にある期間が長くできる分だけ、液滴Dの乾燥効率を向上させることができる。
こうした液滴Dにおける単位時間あたりの最大の蒸発量は、当然ながら液滴Dの温度が高温であるほど高くなる。また上述するように、目標経路TLに残留する分散媒の濃度が低くなるほど高くなり、逆に目標経路TLにおける分散媒の濃度が高くなるほど低くなる。そのため先行する液滴Dから蒸発した分散媒が十分に拡散せずに目標経路TLに多く残留している場合にあっては、後続する液滴Dが先行する液滴Dと同じエネルギーのレーザ光を受けたとしてもその蒸発量が減少してしまい、この減少分の気化熱に変換されるべきエネルギーが後続する液滴Dに蓄積されることにより該液滴Dの突沸が誘発される場合がある。
本実施形態においては、分散媒の拡散に関わる種々の計算機シミュレーションや実験を行うことにより、液滴Dから蒸発した分散媒が目標経路TLから十分に拡散する期間を取得し、該期間(例えば、1ミリ秒)を吐出間隔として採用する、すなわち吐出周期を1kHzに設定している。こうした構成によれば、目標経路TLにおける分散媒の濃度が液滴Dの吐出ごとに同じ状態になるために、先行する液滴Dから蒸発した分散媒による後続す
る液滴Dの乾燥効率の低下を回避することもできる。
上記のように構成した液滴吐出装置10の作用について以下に説明する。
まず、液滴吐出装置10に対してパターンを形成するための駆動信号が入力されると、液滴吐出装置10はキャリッジモータを駆動することにより、グリーンシートGSの走査時に上記ドットパターン格子DLの各格子点TがノズルNの直上を通過するかたちで吐出ヘッド15をセットする。また液滴吐出装置10は、レーザ照射部31を駆動することによりレーザ光源32にレーザ光を出射させるとともに、第1レーザ成形部40aと第2レーザ成形部40bとを駆動することにより、目標経路TLに第1レーザ光Le1及び第2レーザ光Le2を照射する。上述するDOE42a、42bがレーザ光の強度分布を変更することにより、目標経路TLには、上記第1熱量qに相当するエネルギーQを液滴Dに与える昇温領域A1と、前記第2熱量qに相当するエネルギーQを該液滴Dに与える蒸発領域A2とが区画形成される。そして昇温領域A1では、相対的に高い強度である昇温強度Pのレーザ光が照射されて、蒸発領域A2では、相対的に低い強度である蒸発強度Pのレーザ光が照射されるようになる。
このようにして吐出ヘッド15とレーザ照射部31とがセットされると、液滴吐出装置10はステージモータを駆動することによりステージ12の走査を開始し、吐出ヘッド15を駆動することにより、ドットパターン格子DLの各格子点Tが目標経路TLに位置するタイミングで液滴Dを吐出させる。ノズルNから吐出された液滴Dは、昇温領域A1において相対的に高い強度のレーザ光を受けて、その吐出直後に上記目標温度、例えば分散媒の沸点まですばやく昇温するようになる。こうした昇温領域A1による液滴Dの昇温により、液滴Dの残りの飛行期間においては、液滴Dが上記目標温度の付近で飛行し続けることできる。そして蒸発領域A2を飛行する液滴Dは、液滴Dの温度がその沸騰しない状態を維持できる程度の高い温度、例えば分散媒の沸点であることから、表面付近で吸収したレーザ光のエネルギーを蒸発成分を気化させるためのエネルギーに逐次変換させることができる。この結果、液滴Dの突沸を抑えつつ安定した蒸発状態を維持することができ、こうした液滴Dの温度が目標温度にすばやく到達できる分だけ、液滴Dの乾燥効率を向上させることができる。
以上説明したように、第1実施形態の液滴吐出装置10によれば以下のような効果を得ることができる。
(1)上記実施形態の昇温領域A1においては、ノズルNから吐出された液滴Dがその吐出直後において高い昇温強度Pを受けることから、目標温度まで効率よく昇温することができる。それゆえ液滴Dの飛行期間のうち液滴Dの蒸発成分を蒸発させるための蒸発領域A2に、より多くの飛行期間を割り当てられることから、液滴Dの乾燥効率を向上させることができる。
(2)上記実施形態の蒸発領域A2においては、目標温度となる液滴Dが気化熱を越えるエネルギーを受けないように上記蒸発強度Pが設定されることから、液滴Dの突沸を効果的に防止することができる。
(3)上記実施形態の目標経路TLでは、第1レーザ光Le1と第2レーザ光Le2との総エネルギーが、所望量の蒸発成分を蒸発させるために必要とされる総熱量に相当するように調整されることから、吐出した液滴Dを所望の乾燥状態で着弾させることができる。
(4)上記実施形態によれば、飛行中の液滴Dにおける蒸発率は吐出方向を軸として対称となることから、液滴Dの分散媒の蒸発によって該液滴Dに作用する運動力に抗する反力が打ち消される。すなわち、液滴Dには分散媒の蒸発による飛行曲がりが生じ難くなり
、液滴Dの着弾位置の位置ずれを抑制することもできる。
(5)上記実施形態によれば、第1レーザ光Le1と第2レーザ光Le2の光軸をノズルNの配列方向に対して傾斜角θだけ傾斜させた。これにより吐出ヘッド15の全てのノズルNから同時に吐出された液滴Dに対して第1及び第2レーザ光Le1,Le2を照射することができる。それゆえ、同じタイミングで吐出した全ての液滴Dに対して乾燥効率を向上させることもできる。しかも、sinθ=2r/Dxを満足する傾斜角θであった場合には、レーザ光の照射方向に対して隣接するノズルNから吐出された液滴Dとの隙間がなくなることから、全ての液滴Dに対してレーザ光を照射するに際して水平方向の照射範囲を小さくすることができ、レーザ光の利用効率を向上させることもできる。
(6)上記実施形態のレーザ照射部31では、ハーフミラー34を配設することによりレーザ光源32から出射された基本レーザ光を第1レーザ光Le1、第2レーザ光Le2に分岐させた。これにより液滴Dに照射される一対のレーザ光を1つのレーザ光源32で生成することができ、レーザ照射部31の簡素な構成とすることができる。
(7)上記実施形態によれば、第1レーザ成形部40a及び第2レーザ成形部40bをハーフミラー34に比べて目標経路TLに近くなるように配設したことにより、強度分布及び形状を変換してから液滴Dに照射されるまでにおける第1レーザ光Le1及び第2レーザ光Le2の回折を抑制することができる。すなわち、目標経路TLにおける強度分布を精度よく実現させることができる。
(8)上記実施形態によれば、第1レーザ成形部40a及び第2レーザ成形部40bによって第1及び第2レーザ光Le1,Le2のZ方向における断面形状を液滴Dの飛行空間と整合させた。これにより、各レーザ光のエネルギーの全体が確実に飛行空間へと投入される。それゆえ各レーザ光をエネルギー損失を抑制した上で目標経路TL上に導くことができ、レーザ光の利用効率を向上させることができる。
(第2実施形態)
以下、本発明のパターン形成装置を液滴吐出装置に具体化した第2実施形態について図9を参照して説明する。なお、第2実施形態では、第1レーザ成形部40a及び第2レーザ成形部40bによって成形するレーザ光の断面強度分布を第1実施形態の強度分布から変更したものである。そのため以下では、こうした強度分布の変更点について詳しく説明する。図9では、第1レーザ成形部40a及び第2レーザ成形部40bによって成形された第1レーザ光Le1及び第2レーザ光Le2の目標経路TLにおける強度分布を、同強度分布のレーザ光を受けた液滴Dのサイズに関わる経時的な変化とともに模式的に示す。
図9に示すように、第1レーザ光Le1及び第2レーザ光Le2は、それぞれ第1実施形態と同じく、ノズルNに近い側で強度が高くなる強度分布を有している。また蒸発領域A2における強度分布は、描画面GSaに近づくほど強度が減少するかたちで形成されている。
ここで、蒸発成分の含有量が多い液滴Dを吐出する場合にあっては、飛行中に蒸発成分が蒸発することによって該液滴Dの重量及び表面積が減少するとともに、空気抵抗などによって飛行速度も減少する場合がある。このような場合にあっては、描画面GSaに近づくに連れて蒸発成分の蒸発による飛行曲がりを起こし易くなるばかりか、表面積が小さくなることより単位時間当たりに液滴Dの表面から蒸発可能な分散媒の量も徐々に少なくなる。
上述するように、蒸発領域A2におけるレーザ光の強度分布が描画面GSaに近づくほど低くなる態様であれば、すなわち蒸発成分の蒸発によって液滴Dの重量及び表面積、さ
らには飛行速度が減少するほど、液滴Dに照射されるレーザ光の強度が低くなる態様であれば、液滴Dの重量及び表面積に応じた強度のレーザ光を照射させられるようになる。それゆえ、液滴Dの突沸を確実に防止することができ、蒸発成分の蒸発による飛行曲がりがさらに生じ難くなり、着弾位置の位置ずれをより抑制することもできる。
(第3実施形態)
以下、本発明のパターン形成装置を液滴吐出装置に具体化した第3実施形態について図10を参照して説明する。なお、第3実施形態では、レーザ光が照射された液滴Dにおいて、液滴Dの表面付近で吸収したレーザ光のエネルギーが液滴の中心部へと十分拡散されず、液滴Dの表面付近から中心部にかけて温度勾配が発生している場合について説明する。
レーザ光を受けた液滴Dがその径方向において温度勾配を来たす場合にあっては、液滴Dの表面付近の温度が目標温度まで上昇した後に、同表面付近の蒸発成分が気化熱に相当するエネルギーを受けることにより、同表面付近において蒸発成分の蒸発が促進される。一方、上述するように目標温度に到達した後の液滴表面にあっては、蒸発成分の蒸発によりエネルギーが消費されて、さらに表面付近から中心部への熱拡散も生じている。それゆえ、液滴表面が目標温度に到達した後に蒸発効率を維持する上では、上記表面付近の蒸発成分を蒸発させるための気化熱に相当するエネルギーに加えて、上記熱拡散による熱損失を補填して表面付近を目標温度に維持するためのエネルギーがさらに必要とされる。
本実施形態では、目標経路TLに沿って飛行する液滴Dからの蒸発速度が定常的になる位置を基準位置として用い、該基準位置よりも吐出ヘッド15側に昇温領域A1を設け、さらに同基準よりもグリーンシートGS側に蒸発領域A2を設ける態様でレーザ光の強度分布を設定する。
上述する基準位置の設定に際しては、例えば強度分布が目標経路TLの全体にわたり平坦であるレーザ光を飛行中の液滴Dに対して照射し、同液滴Dの飛行過程を観測することにより決定することができる。こうした液滴Dの飛行過程の観測は、液滴Dの飛行空間を撮影するハイスピードカメラと、同飛行空間に向かって一定の発光間隔tsで発光するストロボとを同飛行空間を挟んだかたちで相対向するように配設して、液滴Dの吐出時から上記ストロボを発光させて実際に飛行する液滴Dを撮影することにより行うことができる。このようにして液滴Dの飛行過程を観測し、液滴Dの周辺に蒸発した蒸発成分の変化量を観測することにより、蒸発速度が定常的であるか否か、すなわち上記熱拡散による損失が補填されて表面付近が目標温度に到達しているか否かを確認することが可能となる。
例えば、図10に示されるように、ストロボの発光回数がn回目と(n+1)回目とにおいて蒸発成分の変化量が初めて同じになる場合にあっては、n回目の撮像時において蒸発速度が定常的になったものと判断できる。そしてストロボの発光回数n及び発光間隔tsに基づいて、液滴Dの飛行期間tをt=ts×(n−1)により得ることができる。また、吐出直後の液滴Dにあっては、その飛行速度の変化が微小であることから、上記飛行期間tと液滴Dの初速vとに基づいて、蒸発速度が定常的になる位置をノズル形成面21aからの拡散昇温距離L(L=v×t)として求めることができる。
そして、描画パターンの設計ルールである液滴Dの着弾位置の精度や着弾径の精度などに応じて拡散昇温距離Lを短くすべく、観測時におけるレーザ光の強度である観測強度を増大させて上記観測を繰り返し、飛行曲がりなどを来たさない強度範囲の中から最大となる観測強度を選択することにより、上記昇温強度Pを設定することができる。
上述する構成からなる昇温領域A1では、液滴Dの表面から中心部にかけて温度勾配が発生している場合であれ、液滴Dの蒸発速度が定常的になる温度まで液滴Dをすばやく昇
温させることができ、第1実施形態と同様の効果を得ることができる。また、レーザ光の強度分布を第2実施形態と同様とすることで同第2実施形態と同様の効果を得ることができる。
尚、上記実施形態は以下のように変更して実施することもできる。
・上記実施形態の第1レーザ成形部40a及び第2レーザ成形部40bには、レーザ光の断面形状に飛行空間に整合させるシリンドリカルレンズ41a,41bをそれぞれ配置したが、DOE42a及びDOE42bによって同断面形状を飛行空間に整合可能であれば、シリンドリカルレンズ41a,41bを割愛してもよい。
・上記実施形態におけるレーザ照射部31の光学系では、第1レーザ成形40a部及び第2レーザ成形部40bをハーフミラー34よりも目標経路側に配置した。これに限らず、液滴Dに照射されるレーザ光の強度分布をガウシアン分布から上述の強度分布に変換する上では、レーザ成形部をハーフミラー34に対してレーザ光源32の側に配置するようにしてもよい。
・上記実施形態におけるレーザ照射部31の光学系では、第1レーザ光Le1と第2レーザ光Le2の光軸をノズルNの配列方向に対して傾斜角θだけ傾斜させた。これに限らず、第1レーザ光Le1と第2レーザ光Le2の光軸をノズルNの配列方向に対して傾斜させずに、同配列方向と一致するようにしてもよい。このとき、吐出ヘッド15の各ノズルNからはそれぞれ異なる吐出タイミングで液滴Dを順次吐出することで、全ての液滴Dに対してレーザ光を照射することができる。
・上記実施形態におけるレーザ照射部31の光学系では、飛行中の液滴Dに対して両側からレーザ光を照射した。これに限らず、例えば、液滴Dの重量が大きく飛行速度が速い場合など、飛行曲がりが微小である場合や飛行曲がりが発生しても着弾位置の位置ずれが許容できるような描画パターンにおいては、液滴Dに対して片側からのみ所望の強度分布に変換されたレーザ光を照射するようにしてもよい。このような場合であっても強度分布を所望の強度分布に変換した分だけ乾燥効率の向上及び着弾位置の位置ずれの抑制を図ることができる。
・上記実施形態におけるレーザ照射部31の光学系では、1つのレーザ光源32から出射された基本レーザ光Leをハーフミラー34にて第1レーザ光Le1と第2レーザ光Le2とに分割することで、飛行中の液滴Dの両側から照射される一対のレーザ光を生成した。これに限らず、飛行中の液滴Dの両側からレーザ光を照射する上では、一対のレーザ光のそれぞれに同じ強度のレーザ光を出射させるレーザ光源を用いてもよい。この構成によれば、ハーフミラー34を割愛することができる。
・上記実施形態では、強度分布が変換されたレーザ光を飛行中の液滴Dに対して両側から照射した。これに限らず、液滴Dの着弾位置の位置ずれを抑制する上では、液滴Dに対して照射されるレーザ光のうち、一方のみの強度分布を変換するようにしてもよい。これによれば、一方のレーザ光の強度分布を変換した分だけ乾燥効率の向上と着弾位置の位置ずれの抑制を図ることができる。
・上記実施形態では、昇温領域A1又は蒸発領域A2の強度分布をトップハット型分布に具体化した。これに限らず、昇温領域A1において蒸発領域A2よりも相対的に強度の高いレーザ光を照射させる上では、図11に示すように、吐出直後から常に強度が小さくなるような強度分布であってもよい。また、蒸発領域A2におけるレーザ光の強度が昇温領域A1におけるレーザ光よりも小さいのであれば、例えば図12に示すように昇温領域A1及び蒸発領域A2の各々においてレーザ光の強度に高低を持たせるようにしてもよい
・上記実施形態では、吐出ヘッド15にはノズルNからなるノズル列を1列とした。これに限らず、吐出ヘッド15に複数のノズル列を形成してもよい。このとき、第1レーザ光Le1及び第2レーザ光Le2がノズルNから吐出される全ての液滴Dに照射されるように該レーザ光の光軸の傾斜角θを適宜変更するとよい。
・上記実施形態では、グリーンシートGSに導電性微粒子を含んだ導電性インクIkを吐出して金属配線を描画する液滴吐出装置10に具体化した。これに限らず、飛行中の液滴にレーザ光を照射して乾燥させるのであれば、例えば絶縁パターンを描画するパターン形成装置など、他の用途のパターン形成装置に適用することもできる。
・上記実施形態では、圧電素子駆動方式の液滴吐出装置10に具体化した。これに限らず、吐出ヘッドから液滴を吐出するという観点からは、抵抗加熱方式や静電駆動方式の吐出ヘッドを搭載した液滴吐出装置に具体化してもよい。
本発明にかかるパターン形成装置の一例を示す斜視図。 吐出ヘッドを示す斜視図。 吐出ヘッドの内部を示す要部断面図。 グリーンシートのドットパターン格子を示す模式図。 液滴吐出装置の光学系を示す模式図。 レーザ光と液滴との関係を説明するための模式図。 第1実施形態におけるレーザ光の強度分布を示す模式図。 (a)液滴の温度推移を模式的に示した図、(b)液滴の容積推移を模式的に示した図。 第2実施形態におけるレーザ光の強度分布を示す模式図。 第3実施形態における液滴の分散媒が蒸発する基準を説明するための模式図。 変更例におけるレーザ光の強度分布を示す模式図。 変更例におけるレーザ光の強度分布を示す模式図。
符号の説明
θ…傾斜角、D…液滴、N…ノズル、t…総飛行期間、T…格子点、W…重量、A1…昇温領域、A2…蒸発領域、DL…ドットパターン格子、Dx…ノズルピッチ、Dy…吐出ピッチ、E…昇温エネルギー、E…蒸発エネルギー、GS…グリーンシート、Ik…導電性インク、L…昇温距離、L…蒸発距離、L…拡散昇温距離、Le…基本レーザ光、P…昇温強度、P…蒸発強度、PG…プラテンギャップ、PZ…圧電素子、q…第1熱量、Q…エネルギー、Q…エネルギー、q…第2熱量、t…第1飛行期間、t…第2飛行期間、t…飛行期間、TL…目標経路、ts…発光間隔、v…初速、GSa…描画面、Le1…第1レーザ光、Le2…第2レーザ光、2r…直径、10…液滴吐出装置、11…基台、12…ステージ、13…ガイド部材、14…インクタンク、15…吐出ヘッド、16…キャリッジ、17…ヘッド基板、17a…接続端子、20…ヘッド本体、20T…供給チューブ、21…ノズルプレート、21a…ノズル形成面、22…キャビティ、23…振動板、31…レーザ照射部、32…レーザ光源、32a…YAG、レーザ発振器、32b…高調波ユニット、33…コリメートレンズ、34…ハーフミラー、35…反射ミラー、36…反射ミラー、37…反射ミラー、38…反射ミラー、39…反射ミラー、40a…第1レーザ成形部、40b…第2レーザ成形部、41a…シリンドリカルレンズ、41b…シリンドリカルレンズ、42a…DOE、42b…DOE。

Claims (7)

  1. 蒸発成分及びパターン形成材料を含む液状体の液滴をノズルから描画対象物に向けて吐出し飛行させる吐出ヘッドと、
    飛行中の前記液滴にレーザ光を照射して所定量の前記蒸発成分を蒸発させるレーザ照射部と
    を備え、
    前記描画対象物上に前記液滴を着弾させることによってパターンを形成するパターン形成装置であって、
    前記レーザ照射部は、
    レーザ出射部と、
    前記レーザ光の強度が前記ノズルと前記液滴の着弾する位置との経路上において、当該経路上の基準点より前記ノズルに近い側で、前記ノズルに遠い側よりも高くように、前記レーザ出射部からの前記レーザ光の強度分布を成形するレーザ成形部と
    を備えていることを特徴とするパターン形成装置。
  2. 前記基準点は、前記レーザ光によって加熱された液滴が前記基準点において沸騰しない最高温度に到達するように設定されている
    請求項1に記載のパターン形成装置。
  3. 前記基準点は、前記レーザ光によって加熱された液滴の前記蒸発成分が前記基準点において沸点に到達するように設定されている
    請求項1に記載のパターン形成装置。
  4. 前記レーザ成形部は、前記レーザ光の強度分布を前記基準点より前記ノズルに近い側または前記基準点より前記ノズルに遠い側で単調減少するように成形する
    請求項1〜3のいずれか1項に記載のパターン形成装置。
  5. 前記レーザ成形部は、前記レーザ光の強度分布を前記基準点より前記ノズルに近い側または前記基準点より前記ノズルに遠い側で平坦となるように成形する
    請求項1〜4のいずれか1項に記載のパターン形成装置。
  6. 前記レーザ出射部は、一対のレーザ光を出射し、
    前記レーザ成形部は、前記一対のレーザ光のいずれか一方の強度分布を成形し、
    前記レーザ照射部は、前記一対のレーザ光を前記経路を挟んで相対向する態様で前記液滴に照射する
    請求項1〜5のいずれか1項に記載のパターン形成装置。
  7. 前記レーザ出射部は、1つのレーザ光源からの基本レーザ光を前記一対のレーザ光に分岐する分岐部を有する
    請求項6に記載のパターン形成装置。
JP2008251578A 2008-09-29 2008-09-29 パターン形成装置 Pending JP2010082503A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251578A JP2010082503A (ja) 2008-09-29 2008-09-29 パターン形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251578A JP2010082503A (ja) 2008-09-29 2008-09-29 パターン形成装置

Publications (1)

Publication Number Publication Date
JP2010082503A true JP2010082503A (ja) 2010-04-15

Family

ID=42246995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251578A Pending JP2010082503A (ja) 2008-09-29 2008-09-29 パターン形成装置

Country Status (1)

Country Link
JP (1) JP2010082503A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150747A1 (ja) * 2012-04-04 2013-10-10 日本特殊陶業株式会社 パターン形成方法及びデバイス、デバイスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150747A1 (ja) * 2012-04-04 2013-10-10 日本特殊陶業株式会社 パターン形成方法及びデバイス、デバイスの製造方法
US9455074B2 (en) 2012-04-04 2016-09-27 Ngk Spark Plug Co., Ltd. Pattern forming method, device, and device manufacturing method

Similar Documents

Publication Publication Date Title
US6474783B1 (en) Ink-jet printing apparatus and method using laser initiated acoustic waves
JP2018515380A (ja) 付加製造装置と方法
JP4337746B2 (ja) フォトマスクおよびその製造方法、電子機器の製造方法
JP2007289837A (ja) 液滴吐出装置及び識別コード
JP4297066B2 (ja) 液滴吐出装置及び液滴吐出ヘッド
US20070120932A1 (en) Droplet ejection apparatus
KR100759307B1 (ko) 액적 토출 장치
JP4420075B2 (ja) 液滴吐出ヘッド
JP2007125876A (ja) パターン形成方法及び液滴吐出装置
JP2010082503A (ja) パターン形成装置
JP2010082502A (ja) パターン形成装置
JP2010094621A (ja) パターン形成方法、パターン形成装置
JP2010110664A (ja) パターン形成装置
JP2010082504A (ja) パターン形成装置
JP2010118617A (ja) パターン形成装置
KR100876348B1 (ko) 패턴 형성 방법, 액적 토출 장치 및 회로 모듈
JP4591129B2 (ja) 液滴吐出装置及びパターン形成方法
JP2010099598A (ja) パターン形成装置
JP2013125773A (ja) パターン形成方法及びパターン形成装置
JP2009022832A (ja) 液滴吐出方法、及び液滴吐出装置
TW200843963A (en) Method and apparatus for forming pattern, and liquid dryer
JP2010082505A (ja) パターン形成方法、及びパターン形成装置
JP4400542B2 (ja) パターン形成方法及び液滴吐出装置
JP2008066526A (ja) パターン形成方法、回路モジュールの製造方法、液滴吐出装置、回路モジュール、及び回路モジュール製造装置
JP2010099563A (ja) パターン形成装置