JP2010081776A - Rotor of synchronous motor, and method of manufacturing the same rotor - Google Patents

Rotor of synchronous motor, and method of manufacturing the same rotor Download PDF

Info

Publication number
JP2010081776A
JP2010081776A JP2008250619A JP2008250619A JP2010081776A JP 2010081776 A JP2010081776 A JP 2010081776A JP 2008250619 A JP2008250619 A JP 2008250619A JP 2008250619 A JP2008250619 A JP 2008250619A JP 2010081776 A JP2010081776 A JP 2010081776A
Authority
JP
Japan
Prior art keywords
magnetic
rotor
permanent magnet
synchronous motor
magnetic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008250619A
Other languages
Japanese (ja)
Other versions
JP5042184B2 (en
Inventor
Atsushi Matsuoka
篤 松岡
Kazuhiko Baba
和彦 馬場
Hitoshi Kawaguchi
仁 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008250619A priority Critical patent/JP5042184B2/en
Publication of JP2010081776A publication Critical patent/JP2010081776A/en
Application granted granted Critical
Publication of JP5042184B2 publication Critical patent/JP5042184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a synchronous motor that reduces vibration and noise. <P>SOLUTION: The rotor 100 of the synchronous motor has a first magnetic material member 2 which is formed of a material containing a soft magnetic powder and has a function of a back yoke, permanent magnets 1 disposed in the outside of the magnetic material member 2, and a second magnetic material member 3 disposed in the outer periphery of each permanent magnet 1 and consisting of a member containing the soft magnetic powder. The area of the second magnetic material member 3 is made large in the vicinity of the center of each magnetic pole constituted by each permanent magnet 1, and is made small in the vicinity of each space between the magnetic poles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、永久磁石を用いる同期電動機の回転子に関する。また、同期電動機の回転子の製造方法に関する。   The present invention relates to a rotor of a synchronous motor using permanent magnets. The present invention also relates to a method for manufacturing a rotor of a synchronous motor.

鉄心内に永久磁石を配置する回転子を用いた同期電動機は、回転子外周の磁性体部分を用いたリラクタンストルクを用いることで、電動機を高トルク化することが可能である。反面、内部に配置された永久磁石より発生する磁束の向きが外周の磁性体部分で容易に変化する。そのため、運転中に回転子の磁極と固定子のティースとの位置関係によって磁束の向きが急に変化することがある。それにより、同期電動機より発生する騒音・振動が大きくなることがある。   A synchronous motor using a rotor in which a permanent magnet is disposed in an iron core can increase the torque of the motor by using reluctance torque using a magnetic part on the outer periphery of the rotor. On the other hand, the direction of the magnetic flux generated from the permanent magnet disposed inside easily changes in the magnetic body portion on the outer periphery. Therefore, the direction of the magnetic flux may change suddenly during operation depending on the positional relationship between the magnetic poles of the rotor and the teeth of the stator. As a result, noise and vibration generated from the synchronous motor may increase.

この課題に対して、以下に示す技術がの提案がなされている。即ち、積層回転子鉄心内に永久磁石片を有する電動機の永久磁石回転子を、簡易な構成でコギングトルク低減を図ったものにするために、永久磁石片開口部で形成する直方体部に挿入する永久磁石片を2種の永久磁石材とし、中央部主材の軸方向にスキューする中央部主材と、その両側の略直方体部を補充する形状で、かつ中央部主材より磁束密度の低い副材の永久磁石片から構成する永久磁石回転子が提案されている(例えば、特許文献1参照)。   The following technique has been proposed for this problem. That is, in order to reduce the cogging torque with a simple configuration, the permanent magnet rotor of the electric motor having the permanent magnet piece in the laminated rotor core is inserted into a rectangular parallelepiped portion formed by the permanent magnet piece opening. The permanent magnet piece is made of two types of permanent magnet materials, and is shaped to replenish the central main material skewed in the axial direction of the central main material and the substantially rectangular parallelepiped portions on both sides thereof, and has a lower magnetic flux density than the central main material A permanent magnet rotor composed of a secondary permanent magnet piece has been proposed (see, for example, Patent Document 1).

また、永久磁石の体積当たりの電動機効率を高めることを目的として、歯部は固定子に備えられており、回転子と空隙を挟んで対向する。回転子は永久磁石埋設用孔が穿たれた軟磁性体を備えており、回転軸の回りに回転可能である。軟磁性体には回転軸に沿って永久磁石埋設用孔が穿たれている。永久磁石埋設用孔には永久磁石が埋設される。永久磁石の磁極面は回転軸に垂直な法線を有しており、円形を呈する回転子が提案されている(例えば、特許文献2参照)。   Further, for the purpose of increasing the electric motor efficiency per volume of the permanent magnet, the tooth portion is provided in the stator, and is opposed to the rotor with a gap therebetween. The rotor is provided with a soft magnetic body having a permanent magnet embedding hole and is rotatable about a rotation axis. The soft magnetic body has holes for embedding permanent magnets along the rotation axis. Permanent magnets are embedded in the permanent magnet embedding holes. A magnetic pole face of a permanent magnet has a normal line perpendicular to the rotation axis, and a rotor having a circular shape has been proposed (see, for example, Patent Document 2).

また、電機子反作用磁束を軽減すると共に、外周部鉄心の磁束分布を改善することにより、騒音や振動の少ない高効率な永久磁石電動機を提供するために、回転子鉄心中にその軸心を中心とする略正多角形の各辺に対応する部位に形成された永久磁石収容孔と、この磁石収納孔にそれぞれ挿入された永久磁石と、永久磁石収容孔の外周部鉄心に形成され、径方向に細長く、かつ、永久磁石収容孔に沿って離隔配置された4個以上のスリット孔とを備え、スリット孔の径方向外側端のピッチを略等しくし、径方向内側端のピッチを永久磁石の中央部を大きくし、中央部から端部に離れるに従って小さくした永久磁石電動機が提案されている(例えば、特許文献3参照)。   Also, to reduce the armature reaction magnetic flux and improve the magnetic flux distribution of the outer peripheral core, to provide a high-efficiency permanent magnet motor with less noise and vibration, center the axis in the rotor core. The permanent magnet housing holes formed in the portions corresponding to the sides of the substantially regular polygon, the permanent magnets inserted into the magnet housing holes, and the outer peripheral cores of the permanent magnet housing holes are formed in the radial direction. And four or more slit holes spaced apart along the permanent magnet receiving hole, and the pitch of the radially outer end of the slit hole is made substantially equal, and the pitch of the radially inner end is made equal to that of the permanent magnet. A permanent magnet electric motor has been proposed in which the central part is enlarged and the distance from the central part to the end part is reduced (see, for example, Patent Document 3).

さらに、永久磁石を回転子表面に配置した形態の回転子で、電動機の振動・騒音を抑える手段として、永久磁石の形状を略八角形とする回転子が提案されている。(例えば、特許文献4参照)。
特開平10−174324号公報 特開2006−14389号公報 特開2005−94968号公報 特開平4−26338号公報
Further, there has been proposed a rotor in which a permanent magnet is arranged on the rotor surface, and the permanent magnet has a substantially octagonal shape as means for suppressing vibration and noise of an electric motor. (For example, refer to Patent Document 4).
Japanese Patent Laid-Open No. 10-174324 JP 2006-14389 A JP 2005-94968 A JP-A-4-26338

しかしながら、上記特許文献1及び特許文献2のように、永久磁石を回転軸に対して傾斜した形状としたり、円形にするのは、以下に示す課題がある。例えば、永久磁石を回転子の表面に配置して、固定子と直接対向させる場合には、大きな効果が得られるが、磁性体内部に配置する場合には、永久磁石表面の磁性体の内部で磁束の向きが変化しやすいことから、永久磁石の形状を工夫したことによる効果は、永久磁石を回転子表面に配置した場合に比べると小さくなる。   However, as in Patent Document 1 and Patent Document 2 described above, there are the following problems in making the permanent magnet inclined with respect to the rotation axis or making it circular. For example, when a permanent magnet is disposed on the surface of the rotor and directly opposed to the stator, a great effect can be obtained. However, when the permanent magnet is disposed inside the magnetic body, the permanent magnet is disposed inside the magnetic body on the surface of the permanent magnet. Since the direction of the magnetic flux is likely to change, the effect of devising the shape of the permanent magnet is smaller than when the permanent magnet is arranged on the rotor surface.

また、上記特許文献3に記載されている技術の場合、回転子表面の磁性体内の磁束の向きの変化をスリット孔によってある程度制限してしまうことで、同期電動機の振動・騒音を抑える効果を得ることができる。しかし、スリット孔によって、リラクタンストルクが発生しにくくなり、永久磁石を回転子磁性体内部に配置する回転子の特徴を利用できなくなるという課題がある。   Further, in the case of the technique described in Patent Document 3, the effect of suppressing the vibration and noise of the synchronous motor is obtained by restricting the change in the direction of the magnetic flux in the magnetic body on the rotor surface to some extent by the slit hole. be able to. However, the slit hole makes it difficult for reluctance torque to be generated, and there is a problem that the feature of the rotor in which the permanent magnet is arranged inside the rotor magnetic body cannot be used.

また、上記特許文献4に記載されている技術の場合、回転子表面に永久磁石を配置するためには、永久磁石の形状を円弧状とする必要があり、永久磁石の加工にコストがかかる。樹脂に磁粉を混練したボンドマグネットの場合、金型による成形が可能であるため比較的加工が容易となるが、磁粉の密度が下がるため焼結された永久磁石と比較すると特性が劣る。   In the case of the technique described in Patent Document 4, in order to dispose the permanent magnet on the rotor surface, it is necessary to make the shape of the permanent magnet into an arc shape, and the processing of the permanent magnet is costly. In the case of a bond magnet in which magnetic powder is kneaded with resin, it can be molded by a mold and can be processed relatively easily. However, since the density of magnetic powder is lowered, the characteristics are inferior to those of a sintered permanent magnet.

この発明は、上記のような課題を解決するためになされるもので、振動・騒音を低減することができる同期電動機の回転子及び同期電動機の回転子の製造方法を提供することを目的とする。   This invention is made in order to solve the above subjects, and it aims at providing the manufacturing method of the rotor of a synchronous motor which can reduce a vibration and noise, and the rotor of a synchronous motor. .

この発明に係る同期電動機の回転子は、
軟磁性粉末を含む材料で形成され、バックヨークの機能を有する第1の磁性体部材と、
前記第1の磁性体部材の外側に配置される永久磁石と、
前記永久磁石の外周部に配置され、軟磁性粉末を含む材料で構成される第2の磁性体部材とを備え、
前記第2の磁性体部材は、前記永久磁石の構成する磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状としたことを特徴とする。
The rotor of the synchronous motor according to this invention is
A first magnetic member formed of a material containing soft magnetic powder and having a function of a back yoke;
A permanent magnet disposed outside the first magnetic member;
A second magnetic member disposed on the outer periphery of the permanent magnet and made of a material containing soft magnetic powder;
The second magnetic member is characterized in that the area is large near the center of the magnetic poles of the permanent magnet and the area is small near the gap between the magnetic poles.

この発明に係る同期電動機の回転子は、第2の磁性体部材は、永久磁石の構成する磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状としたことにより、固定子に鎖交する磁束の変化が緩やかになり、トルク脈動を抑え、同期電動機の振動・騒音を抑えることができる。   In the rotor of the synchronous motor according to the present invention, the second magnetic member has a shape in which the area is large near the center of the magnetic poles constituting the permanent magnet and the area is small near the magnetic poles. The change of the interlinkage magnetic flux becomes gentle, and the torque pulsation can be suppressed and the vibration and noise of the synchronous motor can be suppressed.

実施の形態1.
図1乃至図7は実施の形態1を示す図で、図1は同期電動機の回転子100の斜視図、図2は図1の非磁性部4を除いた状態を示す斜視図((a)は図1の非磁性部4を取り除いた状態、(b)は磁性体部材(第1の磁性体部材2、第2の磁性体部材3)を成形によって製造する際、あらかじめ金型に非磁性部4に相当する部分を形成しておき、永久磁石1のみをインサートしておくのみで製造が可能な形態)、図3は図1の回転子を構成する部材を分離した状態の斜視図、図4は変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)、図5は変形例の同期電動機の回転子100を構成する永久磁石1(a)と非磁性部4を除いた状態(b)の斜視図、図6及び図7は図1に示す同期電動機の回転子100を用いた同期電動機の誘起電圧波形およびコギングトルク波形を示したものである。
Embodiment 1 FIG.
1 to 7 show the first embodiment, FIG. 1 is a perspective view of a rotor 100 of a synchronous motor, and FIG. 2 is a perspective view showing a state in which the nonmagnetic portion 4 of FIG. 1 is removed ((a)). Is a state in which the non-magnetic portion 4 of FIG. 1 is removed, and (b) is a non-magnetic portion previously formed on the mold when the magnetic members (first magnetic member 2 and second magnetic member 3) are manufactured by molding. 3 is a perspective view of a state in which the members constituting the rotor of FIG. 1 are separated from each other. FIG. 4 is a perspective view showing separately the members constituting the rotor 100 of the synchronous motor according to the modified assembly method ((a) is a state before the permanent magnet 1 and the nonmagnetic part 4 are assembled, and (b) is FIG. 5 shows a rotor 100 of a synchronous motor according to a modified example. FIG. 6 and FIG. 7 show the induced voltage waveform and cogging of the synchronous motor using the synchronous motor rotor 100 shown in FIG. A torque waveform is shown.

図1、図2により、同期電動機の回転子100の構成を説明する。尚、以下の説明において、同期電動機の回転子100を単に「回転子」と呼ぶ場合もある。同期電動機の回転子100は、軟磁性粉末を含む材料で形成され、バックヨークの機能を有する第1の磁性体部材2と、第1の磁性体部材2の外周部に配置される平板状の永久磁石1と、永久磁石1の外周部に配置され、軟磁性粉末を含む材料で構成される第2の磁性体部材3と、永久磁石1の外周部に配置される第2の磁性体部材3の間を埋める非磁性部4とを備える。   The configuration of the rotor 100 of the synchronous motor will be described with reference to FIGS. In the following description, the rotor 100 of the synchronous motor may be simply referred to as “rotor”. The rotor 100 of the synchronous motor is formed of a material containing soft magnetic powder, and has a first magnetic member 2 having a function of a back yoke, and a flat plate-like shape disposed on the outer periphery of the first magnetic member 2. Permanent magnet 1, second magnetic member 3 that is disposed on the outer peripheral portion of permanent magnet 1 and made of a material containing soft magnetic powder, and second magnetic member that is disposed on the outer peripheral portion of permanent magnet 1 3 and a non-magnetic portion 4 that fills the space between the three.

軟磁性粉末を含む材料で形成され、バックヨークの機能を有する第1の磁性体部材2と、永久磁石1の外周部に配置され、軟磁性粉末を含む材料で構成される第2の磁性体部材3とにより、回転子鉄心が構成される。   A first magnetic member 2 made of a material containing soft magnetic powder and having the function of a back yoke, and a second magnetic body arranged on the outer periphery of the permanent magnet 1 and made of a material containing soft magnetic powder The member 3 constitutes a rotor core.

永久磁石1は、回転子鉄心内部の外周部付近に配置されることになる。   The permanent magnet 1 is disposed in the vicinity of the outer peripheral portion inside the rotor core.

バックヨークの機能を有する第1の磁性体部材2の中心部に、中心部に回転軸が嵌合する回転軸嵌合孔5を備える。   A rotation shaft fitting hole 5 into which the rotation shaft is fitted at the center is provided at the center of the first magnetic member 2 having the function of the back yoke.

本実施の形態で使用する永久磁石1は、平板形状の長方形である。ここでは、例えば、4枚の永久磁石1を使用している。永久磁石1は、焼結の永久磁石を用いる。   The permanent magnet 1 used in the present embodiment is a flat rectangular shape. Here, for example, four permanent magnets 1 are used. The permanent magnet 1 uses a sintered permanent magnet.

図2(a)は、図1の非磁性部4を取り除いた状態の同期電動機の回転子100を示している。これからわかるように、外周部の第2の磁性体部材3は、軸方向両端近傍で、各1磁極の永久磁石1の外側部分の四隅(両端)を切り欠いたような形状となっている。第2の磁性体部材3は、1磁極に対して略八角形を形成している。   FIG. 2A shows the rotor 100 of the synchronous motor in a state where the nonmagnetic portion 4 of FIG. 1 is removed. As can be seen, the second magnetic member 3 on the outer peripheral portion has a shape in which the four corners (both ends) of the outer portion of each permanent magnet 1 having one magnetic pole are notched in the vicinity of both ends in the axial direction. The second magnetic member 3 forms a substantially octagon with respect to one magnetic pole.

別の表現をすると、第2の磁性体部材3は、軸方向中央付近で体積が大きく、軸方向両端に向かうにつれて体積が徐々に小さくなっている。   In other words, the volume of the second magnetic member 3 is large near the center in the axial direction, and the volume gradually decreases toward both ends in the axial direction.

このため、永久磁石1の外周部には、四隅に略三角形状の非磁性部4が存在する。   For this reason, substantially triangular nonmagnetic portions 4 exist at the four corners on the outer peripheral portion of the permanent magnet 1.

上記のように第2の磁性体部材3を形成することによって、各1磁極を構成する永久磁石1の外周面に対向する外周の第2の磁性体部材3は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。   By forming the second magnetic member 3 as described above, the second magnetic member 3 on the outer periphery facing the outer peripheral surface of the permanent magnet 1 constituting each one magnetic pole has an area near the center of the magnetic pole. The shape is large and the area decreases between the magnetic poles.

同期電動機の回転子100の外周の非磁性部4は、必ずしも何かの非磁性の材料で満たす必要は無く、回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ、何も存在しない状態であっても良い。   The nonmagnetic portion 4 on the outer periphery of the rotor 100 of the synchronous motor does not necessarily have to be filled with any nonmagnetic material, and it is not necessary to consider the influence of the rotor strength, windage loss, and the like during rotation. , Nothing may exist.

同期電動機の回転子100が回転するとき、固定子のティース(図示せず)に対向する外周部の磁性体の面積は、全体が磁性体である回転子の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor 100 of the synchronous motor rotates, the area of the magnetic body at the outer peripheral portion facing the teeth (not shown) of the stator is the rotation angle of the rotor in the case of a rotor that is entirely a magnetic body. Gradually increases in proportion to

これに対して、非磁性部4を有する同期電動機の回転子100では、回転子の回転角に対して、初めは固定子のティースに対向する第2の磁性体部材3の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor 100 of the synchronous motor having the non-magnetic portion 4, the area of the second magnetic member 3 that initially faces the teeth of the stator is small with respect to the rotation angle of the rotor. The area increases gradually and gradually.

回転子表面の全面に磁性体が存在する場合、永久磁石1より発生する磁束は、外周の磁性体の中で容易に方向を変えてしまう。そのため、回転子の回転中に外周の磁性体の一部が固定子のティースに対向し始めると、固定子のスロット開口部(図示せず)より磁気抵抗の少ない対向部分に磁束が急に集中するため、対向を始めたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが生じて同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When a magnetic body exists on the entire surface of the rotor, the magnetic flux generated from the permanent magnet 1 easily changes its direction in the outer magnetic body. Therefore, when a part of the outer periphery magnetic body starts to face the teeth of the stator during the rotation of the rotor, the magnetic flux suddenly concentrates on the facing portion having a lower magnetic resistance than the slot opening (not shown) of the stator. Therefore, the magnetic flux flowing into the teeth that have started to face each other suddenly increases. This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor, which causes vibration and noise.

本実施の形態による同期電動機の回転子100は、回転子が回転するときに、外周の第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。   In the synchronous motor rotor 100 according to the present embodiment, when the rotor rotates, the area where the outer peripheral second magnetic member 3 is opposed to the teeth of the stator is initially small and rotates toward the center of the magnetic pole. As the distance increases, the amount of area increase gradually increases.

従って、固定子のティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   Accordingly, the sudden flow of magnetic flux into the teeth of the stator is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

通常、永久磁石1を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心を用いることが多く、図1(図a1)に示す回転子のような外周の第2の磁性体部材3を構成するためには電磁鋼板を打ち抜く形状を、積層する電磁鋼板ごとに徐々に変化させることで、図1に示すような同期電動機の回転子100を実現しなくてはいけない。   In general, in the case of a rotor in which the permanent magnet 1 is disposed inside the rotor, a rotor iron core in which electromagnetic steel plates are laminated is often used, and the second magnet on the outer periphery like the rotor shown in FIG. 1 (FIG. A1). In order to configure the body member 3, the rotor 100 of the synchronous motor as shown in FIG. 1 must be realized by gradually changing the shape of punching the electromagnetic steel sheet for each electromagnetic steel sheet to be laminated.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、本実施の形態に示す同期電動機の回転子100は、軟磁性粉末を含む材料を金型を用いて成形することで、第2の磁性体部材3の形状を自由に形成できる。   On the other hand, the rotor 100 of the synchronous motor shown in the present embodiment can freely form the shape of the second magnetic member 3 by molding a material containing soft magnetic powder using a mold. .

この場合、軟磁性粉末を含む材料は、磁性体の密度が低くなるため、電磁鋼板を積層して構成した鉄心に比べると、回転子より生じる磁束量は少なくなる。しかし、磁粉の密度の低い前述の樹脂に磁粉を混練したボンドマグネットを表面に配置する回転子と比較すると、焼結の永久磁石1を利用する分、より高い磁力を得ることができる。   In this case, since the material containing soft magnetic powder has a low density of the magnetic material, the amount of magnetic flux generated by the rotor is smaller than that of an iron core formed by laminating electromagnetic steel sheets. However, as compared with a rotor in which a bonded magnet obtained by kneading magnetic powder in the aforementioned resin having a low magnetic powder density is disposed on the surface, higher magnetic force can be obtained by using the sintered permanent magnet 1.

例えば、本実施の形態の回転子を製造する場合、図3に示すように、回転子を構成する部材として、バックヨークの機能を持つ第1の磁性体部材2、平板の永久磁石1、永久磁石1の外周に配置する第2の磁性体部材3をそれぞれ加工し組み立てることで、回転子を構成することができる。   For example, when the rotor of the present embodiment is manufactured, as shown in FIG. 3, as a member constituting the rotor, a first magnetic member 2 having a back yoke function, a flat permanent magnet 1, a permanent A rotor can be comprised by processing and assembling the 2nd magnetic body member 3 arrange | positioned on the outer periphery of the magnet 1, respectively.

図3の夫々の部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)を組み立てると、図2(a)に示すような形状の回転子が形成される。   When the members shown in FIG. 3 (first magnetic member 2, permanent magnet 1, and second magnetic member 3) are assembled, a rotor having a shape as shown in FIG. 2A is formed.

回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ前述の夫々の部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)を接着によって固定すればよい。   If it is not necessary to consider the influence of the rotor strength, windage loss during rotation, etc., the above-mentioned members (first magnetic member 2, permanent magnet 1, second magnetic member 3) are bonded together. Fix it.

また、非磁性の樹脂材料を用いて、一体に成形することで各部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)の固定と非磁性部4の形成を行うことでも、回転子を製造することができる。   Further, the non-magnetic resin material is integrally formed to fix each member (the first magnetic member 2, the permanent magnet 1, and the second magnetic member 3) and to form the non-magnetic portion 4. By doing so, the rotor can be manufactured.

このとき、回転子に用いる磁性体部材(第1の磁性体部材2、第2の磁性体部材3)は、軟磁性粉を含む樹脂材料を射出成型によって製造しても良いし、各々に分割されていることから、より磁性体の密度が高くなる軟磁性粉を圧縮して、焼結・焼成した鉄心を用いてもよい。   At this time, the magnetic members (first magnetic member 2 and second magnetic member 3) used for the rotor may be manufactured by injection molding of a resin material containing soft magnetic powder, or divided into each. Therefore, an iron core obtained by compressing a soft magnetic powder having a higher magnetic density and sintering and firing may be used.

また、バックヨークの機能を有する第1の磁性体部材2は、比較的形状が単純にすることができるため、この部分のみを電磁鋼板を積層して構成することも可能である。   Further, since the first magnetic body member 2 having the function of the back yoke can be made relatively simple in shape, it is possible to constitute only this portion by laminating electromagnetic steel sheets.

また、図4(a)、図4(b)に示すように、予め平板形状の永久磁石1と回転子外周の非磁性部4とを組み立てておき、軟磁性粉末を含んだ材料で一体に成形することによっても、第1の磁性体部材2及び第2の磁性体部材3が成形されて、図1に示す回転子を製造することも可能である。   Also, as shown in FIGS. 4 (a) and 4 (b), the plate-shaped permanent magnet 1 and the nonmagnetic portion 4 on the outer periphery of the rotor are assembled in advance and integrated with a material containing soft magnetic powder. The rotor shown in FIG. 1 can also be manufactured by molding the first magnetic member 2 and the second magnetic member 3.

また、本実施の形態に示す回転子の形状の場合、非磁性部4が回転軸方向の両端に存在するため、磁性体部材(第1の磁性体部材2、第2の磁性体部材3)を成形によって製造する際、あらかじめ金型に非磁性部4に相当する部分を形成しておけば、永久磁石1のみをインサートしておくのみで、図2(b)に示すような形態の回転子の製造も可能である。   Further, in the case of the rotor shape shown in the present embodiment, since the non-magnetic portions 4 exist at both ends in the rotation axis direction, the magnetic body members (first magnetic body member 2 and second magnetic body member 3). When a part corresponding to the non-magnetic part 4 is formed in advance in the mold, only the permanent magnet 1 is inserted, and the rotation shown in FIG. Child production is also possible.

本実施の形態による同期電動機の回転子100は、永久磁石1の表面に第2の磁性体部材3が存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   In the synchronous motor rotor 100 according to the present embodiment, since the second magnetic member 3 is present on the surface of the permanent magnet 1, reluctance torque can be used, thereby improving the torque of the synchronous motor. It is.

また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and an increase in cost can be suppressed even when a sintered rare earth magnet having high magnetic properties is used. .

回転子外周の非磁性部4においては、永久磁石1の非磁性部4に対向する部分は、磁気抵抗が大きく、表面に第2の磁性体部材3を有する部分に比べると、発生する磁束が少なくなる。このため、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the nonmagnetic portion 4 on the outer periphery of the rotor, the portion facing the nonmagnetic portion 4 of the permanent magnet 1 has a large magnetic resistance, and the generated magnetic flux is larger than that of the portion having the second magnetic member 3 on the surface. Less. For this reason, it may not necessarily be optimal from the viewpoint of cost performance.

この場合、図5(a)に示すように、永久磁石1の形状を第2の磁性体部材3と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石1の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In this case, as shown in FIG. 5A, the shape of the permanent magnet 1 is made the same as that of the second magnetic member 3, and the area with respect to the nonmagnetic portion 4 is reduced. The magnetic flux can be effectively extracted with respect to the usage amount of the permanent magnet 1, and a rotor with good cost performance can be obtained.

図5(b)は、図5(a)に示す永久磁石1を用いる場合の、図2(b)相当図である。磁性体部材(第1の磁性体部材2、第2の磁性体部材3)を成形によって製造する際、あらかじめ金型に非磁性部4に相当する部分を形成しておけば、図5(a)に示す永久磁石1のみをインサートしておくのみで、図5(b)に示すような形態の回転子の製造も可能である。   FIG. 5B is a view corresponding to FIG. 2B when the permanent magnet 1 shown in FIG. 5A is used. When the magnetic member (the first magnetic member 2 and the second magnetic member 3) is manufactured by molding, if a portion corresponding to the non-magnetic portion 4 is formed in the mold in advance, FIG. It is possible to manufacture a rotor having a form as shown in FIG. 5B by inserting only the permanent magnet 1 shown in FIG.

図6は、図1に示す同期電動機の回転子100を用いた同期電動機の誘起電圧波形を示したものである。比較のため、非磁性部4を持たない同期電動機の回転子100を用いた同期電動機の誘起電圧波形も同時に示している。   FIG. 6 shows an induced voltage waveform of the synchronous motor using the rotor 100 of the synchronous motor shown in FIG. For comparison, the induced voltage waveform of the synchronous motor using the rotor 100 of the synchronous motor not having the nonmagnetic portion 4 is also shown.

図6に示すように、回転子外周に非磁性部4を持たない回転子を用いたときの誘起電圧に比べると、回転子外周に非磁性部4を持つ同期電動機の回転子100を用いた同期電動機の誘起電圧は、波形の歪みが少なくなっていることがわかる。   As shown in FIG. 6, the synchronous motor rotor 100 having the nonmagnetic portion 4 on the outer periphery of the rotor was used as compared with the induced voltage when the rotor having no nonmagnetic portion 4 on the outer periphery of the rotor was used. It can be seen that the induced voltage of the synchronous motor has less waveform distortion.

また、図7は、図1に示す同期電動機の回転子100を用いた同期電動機のコギングトルクの波形を示す。比較のため、非磁性部4を持たない同期電動機の回転子100を用いた同期電動機のコギングトルクの波形も同時に示している。これより、図1に示す、非磁性部4を持つ同期電動機の回転子100を用いた同期電動機のコギングトルクの波形は、非磁性部4を持たない同期電動機の回転子100を用いた同期電動機のコギングトルクの波形よりも小さくなっていることがわかる。   FIG. 7 shows a cogging torque waveform of the synchronous motor using the synchronous motor rotor 100 shown in FIG. For comparison, a waveform of the cogging torque of the synchronous motor using the rotor 100 of the synchronous motor not having the nonmagnetic portion 4 is also shown. Accordingly, the waveform of the cogging torque of the synchronous motor using the synchronous motor rotor 100 having the nonmagnetic portion 4 shown in FIG. 1 is the synchronous motor using the synchronous motor rotor 100 not having the nonmagnetic portion 4. It can be seen that this is smaller than the cogging torque waveform.

以上のように、この実施の形態によれば、外周部の第2の磁性体部材3が、軸方向両端近傍で、各1磁極の永久磁石1の外側部分の四隅を切り欠いたような形状で、1磁極に対して略八角形を形成している構成とすることにより、回転子が回転するときに、外周の第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなるので、固定子のティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, according to this embodiment, the shape of the second magnetic body member 3 in the outer peripheral portion is cut out at the four corners of the outer portion of the permanent magnet 1 having one magnetic pole in the vicinity of both ends in the axial direction. Thus, by forming a substantially octagonal shape with respect to one magnetic pole, when the rotor rotates, the area where the second magnetic body member 3 on the outer periphery faces the teeth of the stator at first. As the rotation is smaller toward the center of the magnetic pole, the amount of increase in area gradually increases, so that the sudden flow of magnetic flux into the stator teeth is suppressed, and the induced voltage distortion generated in the windings is reduced. As a result, a synchronous motor with reduced vibration and noise can be obtained by suppressing torque pulsation.

また、永久磁石1の形状を第2の磁性体部材3と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石1の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In addition, by making the shape of the permanent magnet 1 the same as that of the second magnetic member 3 and reducing the area with respect to the non-magnetic portion 4, the total amount of magnetic flux is reduced. The magnetic flux can be extracted effectively, and a rotor with good cost performance can be obtained.

また、また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and the cost can be increased when using a sintered rare earth magnet having high magnetic properties. It can be suppressed.

実施の形態2.
図8乃至図11は実施の形態2を示す図で、図8は同期電動機の回転子100の斜視図、図9は図8の非磁性部4を除いた状態を示す斜視図((a)は図8の非磁性部4を取り除いた状態、(b)は磁性体部材(第1の磁性体部材2、第2の磁性体部材3)を成形によって製造する際、あらかじめ金型に非磁性部4に相当する部分を形成しておき、永久磁石1のみをインサートしておくのみで製造が可能な形態)、図10は図8の同期電動機の回転子100を構成する部材を分離した状態の斜視図、図11は変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)である。
Embodiment 2. FIG.
8 to 11 are diagrams showing the second embodiment, FIG. 8 is a perspective view of the rotor 100 of the synchronous motor, and FIG. 9 is a perspective view showing a state in which the nonmagnetic portion 4 of FIG. 8 is removed ((a)). 8 is a state in which the non-magnetic portion 4 of FIG. 8 is removed, and FIG. 8B is a diagram showing a case where the magnetic member (the first magnetic member 2 and the second magnetic member 3) is manufactured by molding in advance. 10 is a state in which members constituting the rotor 100 of the synchronous motor of FIG. 8 are separated from each other by forming a portion corresponding to the portion 4 and allowing only the permanent magnet 1 to be inserted. FIG. 11 is a perspective view separately showing members constituting the rotor 100 of the synchronous motor according to the modified assembly method ((a) is a state before the permanent magnet 1 and the nonmagnetic portion 4 are assembled; (B) is the state which assembled the permanent magnet 1 and the nonmagnetic part 4).

図8、図9により、同期電動機の回転子100の構成を説明する。同期電動機の回転子100は、軟磁性粉末を含む材料で形成され、バックヨークの機能を有する第1の磁性体部材2と、平板状の永久磁石1と、永久磁石1の外周部に配置され、軟磁性粉末を含む材料で構成される第2の磁性体部材3と、永久磁石1の外周部に配置される第2の磁性体部材3の間を埋める非磁性部4を備える。   The configuration of the rotor 100 of the synchronous motor will be described with reference to FIGS. The rotor 100 of the synchronous motor is formed of a material containing soft magnetic powder, and is disposed on the outer periphery of the first magnetic member 2 having a back yoke function, the flat permanent magnet 1, and the permanent magnet 1. The second magnetic member 3 made of a material containing soft magnetic powder and the nonmagnetic portion 4 filling the space between the second magnetic member 3 disposed on the outer peripheral portion of the permanent magnet 1 are provided.

本実施の形態に示す永久磁石1は、平板形状の長方形である。   The permanent magnet 1 shown in the present embodiment is a flat rectangular shape.

また、第1の磁性体部材2は、中心部に回転軸が嵌合する回転軸嵌合孔5を備える。   Moreover, the 1st magnetic body member 2 is provided with the rotating shaft fitting hole 5 in which a rotating shaft fits in the center part.

図9(a)は、図8の非磁性部4を取り除いた状態を示している。これから見てわかるように、外周部の第2の磁性体部材3は、軸方向両端で、各1磁極の永久磁石1の外側部分の1隅を切り欠いたような形状となっている。このとき、第2の磁性体部材3の切り欠く部分は、軸方向両端で周方向の位置が異なり、第2の磁性体部材3の切り欠く前の二つの対角線のうちの一つの対角線(右上から左下)上にある2隅を切欠いている。但し、他の一つの対角線(左上から右下)上にある2隅を切欠いてもよい。   FIG. 9A shows a state where the nonmagnetic portion 4 of FIG. 8 is removed. As can be seen, the second magnetic body member 3 on the outer peripheral portion has a shape in which one corner of the outer portion of the permanent magnet 1 having one magnetic pole is cut off at both axial ends. At this time, the notched portion of the second magnetic member 3 has different positions in the circumferential direction at both ends in the axial direction, and one of the two diagonal lines before the notch of the second magnetic member 3 (upper right) 2 corners on the upper left are cut out. However, two corners on another diagonal line (from the upper left to the lower right) may be cut out.

従って、第2の磁性体部材3は、1磁極に対して変則的な略六角形を形成しており、軸方向にみると、永久磁石1の外周部の第2の磁性体部材3はスキューがかかったような形状となっている。   Accordingly, the second magnetic body member 3 forms an irregular hexagonal shape with respect to one magnetic pole, and when viewed in the axial direction, the second magnetic body member 3 on the outer peripheral portion of the permanent magnet 1 is skewed. It has a shape like that.

このため、永久磁石1の外周部には、略三角形状の非磁性部4が永久磁石1の一つの対角線(右上から左下)上に存在する。   For this reason, in the outer peripheral part of the permanent magnet 1, the substantially triangular nonmagnetic part 4 exists on one diagonal line (upper right to lower left) of the permanent magnet 1.

上記のように第2の磁性体部材3を形成することによって、各1磁極を構成する永久磁石1の外周面に対向する第2の磁性体部材3は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。   By forming the second magnetic member 3 as described above, the second magnetic member 3 facing the outer peripheral surface of the permanent magnet 1 constituting each one magnetic pole has a large area near the center of the magnetic pole, The area becomes smaller in the vicinity between the magnetic poles.

回転子外周の非磁性部4は、必ずしも何かの非磁性の材料で満たす必要は無く、回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ、何も存在しない状態であっても良い。   The nonmagnetic portion 4 on the outer periphery of the rotor does not necessarily need to be filled with any nonmagnetic material, and there is nothing if it is not necessary to consider the influence of the rotor strength, windage loss, etc. It may be in a state.

同期電動機の回転子100が回転するとき、固定子のティース(図示せず)に対向する外周部の第2の磁性体部材3の面積は、全体が磁性体である回転子の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor 100 of the synchronous motor rotates, the area of the second magnetic member 3 on the outer peripheral portion facing the teeth (not shown) of the stator is as follows. It gradually increases in proportion to the rotation angle of the rotor.

これに対して、非磁性部4を有する同期電動機の回転子100では、回転子の回転角に対して、初めは固定子のティースに対向する外周の第2の磁性体部材3の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor 100 of the synchronous motor having the nonmagnetic portion 4, the area of the second magnetic member 3 on the outer periphery that initially faces the stator teeth is increased with respect to the rotation angle of the rotor. There is little, and the increase in area gradually increases.

回転子表面の全面に外周の磁性体がある場合、永久磁石より発生する磁束は、外周の磁性体の中で容易に方向を変えてしまう。そのため、回転子の回転中に外周の磁性体の一部が固定子のティースに対向し始めると、固定子のスロット開口部(図示せず)のより磁気抵抗の少ない対向部分に磁束が急に集中するため、対向をはじめたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが生じて同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When there is an outer peripheral magnetic body on the entire surface of the rotor, the magnetic flux generated from the permanent magnet easily changes direction in the outer peripheral magnetic body. For this reason, when a part of the outer peripheral magnetic body starts to face the stator teeth during the rotation of the rotor, the magnetic flux suddenly flows to the opposite portion of the stator slot opening (not shown) having a lower magnetic resistance. Because of the concentration, the magnetic flux flowing into the teeth starting to face each other increases rapidly. This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor, which causes vibration and noise.

本実施の形態による同期電動機の回転子100は、回転子が回転するときに、外周の第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the synchronous motor rotor 100 according to the present embodiment, when the rotor rotates, the area where the outer peripheral second magnetic member 3 is opposed to the teeth of the stator is initially small and rotates toward the center of the magnetic pole. As the distance increases, the amount of area increase gradually increases. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

通常、永久磁石1を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心を用いることが多く、図8(図b1)に示す回転子のような外周の第2の磁性体部材3を構成するためには電磁鋼板を打ち抜く形状を、積層する電磁鋼板ごとに徐々に変化させることで、図8(図b1)に示すような同期電動機の回転子100を実現しなくてはいけない。   In general, in the case of a rotor in which the permanent magnet 1 is disposed inside the rotor, a rotor core in which electromagnetic steel plates are laminated is often used, and the second magnet on the outer periphery like the rotor shown in FIG. 8 (FIG. B1). In order to construct the body member 3, the rotor 100 of the synchronous motor as shown in FIG. 8 (FIG. B1) is not realized by gradually changing the shape of punching the electromagnetic steel sheet for each laminated electromagnetic steel sheet. Do not.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、本実施の形態に示す同期電動機の回転子100は、軟磁性粉末を含む材料を金型により成形することで、第2の磁性体部材3の形状を自由に形成できる。   On the other hand, the rotor 100 of the synchronous motor shown in the present embodiment can freely form the shape of the second magnetic member 3 by molding a material containing soft magnetic powder with a mold.

例えば、本実施の形態の同期電動機の回転子100を製造する場合、図10に示すように、回転子を構成する部材として、バックヨークの機能を持つ第1の磁性体部材2、平板形状の永久磁石1、永久磁石1の外周に配置する第2の磁性体部材3をそれぞれ加工し組み立てることで、回転子を構成することができる。図10の部材を組み立てると、図9(a)に示すような形状の回転子が形成される。   For example, when manufacturing the rotor 100 of the synchronous motor according to the present embodiment, as shown in FIG. 10, the first magnetic member 2 having a back yoke function as a member constituting the rotor, A rotor can be formed by processing and assembling the permanent magnet 1 and the second magnetic member 3 disposed on the outer periphery of the permanent magnet 1. When the members of FIG. 10 are assembled, a rotor having a shape as shown in FIG. 9A is formed.

回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ前述の部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)を接着によって固定すればよい。   If it is not necessary to consider the influence of the strength of the rotor and windage loss during rotation, the above-mentioned members (first magnetic member 2, permanent magnet 1, second magnetic member 3) can be fixed by bonding. That's fine.

また、非磁性の樹脂材料を用いて、一体に成形することで各部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)の固定と非磁性部4の形成を行うことでも、回転子を製造することができる。   Further, the non-magnetic resin material is integrally formed to fix each member (the first magnetic member 2, the permanent magnet 1, and the second magnetic member 3) and to form the non-magnetic portion 4. By doing so, the rotor can be manufactured.

また、図11(a)、図11(b)に示すように、予め平板形状の永久磁石1と回転子外周の非磁性部4とを組み立てておき、軟磁性粉末を含んだ材料で一体に成形することによっても、第1の磁性体部材2及び第2の磁性体部材3が成形されて、図8に示す回転子を製造することも可能である。   Further, as shown in FIGS. 11 (a) and 11 (b), a plate-shaped permanent magnet 1 and a nonmagnetic portion 4 on the outer periphery of the rotor are assembled in advance and integrated with a material containing soft magnetic powder. The rotor shown in FIG. 8 can also be manufactured by molding the first magnetic member 2 and the second magnetic member 3.

本実施の形態による同期電動機の回転子100は、永久磁石1の表面に第2の磁性体部材3が存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   In the synchronous motor rotor 100 according to the present embodiment, since the second magnetic member 3 is present on the surface of the permanent magnet 1, reluctance torque can be used, thereby improving the torque of the synchronous motor. It is.

また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and an increase in cost can be suppressed even when a sintered rare earth magnet having high magnetic properties is used. .

回転子外周の非磁性部4においては、永久磁石1の非磁性部4に対向する部分は、磁気抵抗が大きく、表面に磁性体である第2の磁性体部材3を有する部分に比べると、発生する磁束が少なくなる。このため、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the nonmagnetic portion 4 on the outer periphery of the rotor, the portion facing the nonmagnetic portion 4 of the permanent magnet 1 has a large magnetic resistance, and compared with the portion having the second magnetic body member 3 that is a magnetic body on the surface. Less magnetic flux is generated. For this reason, it may not necessarily be optimal from the viewpoint of cost performance.

この場合、実施の形態1の図5と同様に、永久磁石1の形状を第2の磁性体部材と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In this case, as in FIG. 5 of the first embodiment, the shape of the permanent magnet 1 is made the same as that of the second magnetic member, and the area with respect to the nonmagnetic portion 4 is reduced. The magnetic flux can be effectively extracted with respect to the usage amount of the permanent magnet, and a rotor with good cost performance can be obtained.

以上のように、この実施の形態によれば、外周部の第2の磁性体部材3は、軸方向両端で各1磁極の永久磁石1の外側部分の1隅を切り欠いたような形状で、1磁極に対して変則的な略六角形を形成し、永久磁石1の外周部には、略三角形状の非磁性部4が永久磁石1の対角線上に存在する。このように第2の磁性体部材3を形成することによって、各1磁極を構成する永久磁石1の外周面に対向する第2の磁性体部材3は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。回転子が回転するときに、外周の第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, according to this embodiment, the second magnetic member 3 in the outer peripheral portion has a shape in which one corner of the outer portion of the permanent magnet 1 having one magnetic pole is cut out at both axial ends. An irregular hexagonal shape is formed with respect to one magnetic pole, and a substantially triangular nonmagnetic portion 4 exists on the diagonal line of the permanent magnet 1 at the outer peripheral portion of the permanent magnet 1. By forming the second magnetic member 3 in this way, the second magnetic member 3 facing the outer peripheral surface of the permanent magnet 1 constituting each one magnetic pole has a large area near the center of the magnetic pole, and the magnetic pole The shape becomes smaller in the vicinity of the gap. When the rotor rotates, the area where the outer peripheral second magnetic member 3 faces the teeth of the stator is small at first, and the amount of increase in area gradually increases as the rotation proceeds toward the center of the magnetic pole. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

また、本実施の形態による同期電動機の回転子100は、永久磁石1の表面に第2の磁性体部材3が存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   In addition, the rotor 100 of the synchronous motor according to the present embodiment has the second magnetic member 3 on the surface of the permanent magnet 1, so that reluctance torque can be used, thereby improving the torque of the synchronous motor. Is possible.

また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and an increase in cost can be suppressed even when a sintered rare earth magnet having high magnetic properties is used. .

また、永久磁石1の形状を第2の磁性体部材と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In addition, by making the shape of the permanent magnet 1 the same as that of the second magnetic member and reducing the area with respect to the non-magnetic portion 4, the total amount of magnetic flux is reduced. Can be effectively extracted, and a rotor with good cost performance can be obtained.

実施の形態3.
図12乃至図16は実施の形態3を示す図で、図12は同期電動機の回転子100の斜視図、図13は図12の非磁性部4を除いた状態を示す斜視図、図14は図12の同期電動機の回転子100を構成する部材を分離した状態の斜視図、図15は変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)、図16は図12の変形例の同期電動機の回転子100の斜視図((a)は組み立て前、(b)は組み立て後)である。
Embodiment 3 FIG.
12 to 16 show the third embodiment, FIG. 12 is a perspective view of the rotor 100 of the synchronous motor, FIG. 13 is a perspective view showing a state in which the nonmagnetic portion 4 of FIG. 12 is removed, and FIG. 12 is a perspective view showing a state in which members constituting the rotor 100 of the synchronous motor shown in FIG. 12 are separated, and FIG. 15 is a perspective view showing the members constituting the rotor 100 of the synchronous motor separated by an assembling method according to a modified example. ) Is a state before the permanent magnet 1 and the nonmagnetic part 4 are assembled, (b) is a state where the permanent magnet 1 and the nonmagnetic part 4 are assembled), and FIG. 16 is a rotor of the synchronous motor of the modified example of FIG. FIG. 100 is a perspective view of (100) before assembly and (b) after assembly.

図12、図13により、同期電動機の回転子100の構成を説明する。同期電動機の回転子100は、軟磁性粉末を含む材料で形成され、バックヨークの機能を有する第1の磁性体部材2と、平板形状の永久磁石1と、永久磁石1の外周部に配置される軟磁性粉末を含む材料で構成される第2の磁性体部材3と、永久磁石1の外周部に配置される第2の磁性体部材3の間を満たす非磁性部4を備える。   The configuration of the rotor 100 of the synchronous motor will be described with reference to FIGS. The rotor 100 of the synchronous motor is formed of a material containing soft magnetic powder, and is disposed on the outer periphery of the first magnetic member 2 having the function of a back yoke, the flat permanent magnet 1, and the permanent magnet 1. The nonmagnetic part 4 satisfy | fills between the 2nd magnetic body member 3 comprised by the material containing the soft magnetic powder which is comprised, and the 2nd magnetic body member 3 arrange | positioned at the outer peripheral part of the permanent magnet 1.

本実施の形態に示す永久磁石1は、平板形状の長方形である。ここでは、例えば、4枚の永久磁石1を使用している。永久磁石1は、焼結の永久磁石を用いる。   The permanent magnet 1 shown in the present embodiment is a flat rectangular shape. Here, for example, four permanent magnets 1 are used. The permanent magnet 1 uses a sintered permanent magnet.

また、第1の磁性体部材2は、中心部に回転軸が嵌合する回転軸嵌合孔5を備える。   Moreover, the 1st magnetic body member 2 is provided with the rotating shaft fitting hole 5 in which a rotating shaft fits in the center part.

図13は、図12の非磁性部4を取り除いた状態の回転子を示している。これから見てわかるように、外周部の第2の磁性体部材3は、軸方向中央付近で、各1磁極の永久磁石1の外側部分の両側を切り抜いたような形状となっている。   FIG. 13 shows the rotor in a state where the nonmagnetic part 4 of FIG. 12 is removed. As can be seen, the second magnetic member 3 on the outer peripheral portion has a shape in which both sides of the outer portion of the permanent magnet 1 having one magnetic pole are cut out in the vicinity of the center in the axial direction.

第2の磁性体部材は、軸方向両端で体積が大きく、軸方向中央に向かうにつれて体積が徐々に小さくなる構成である。   The second magnetic member has a configuration in which the volume is large at both axial ends, and the volume gradually decreases toward the center in the axial direction.

このため、永久磁石1の外周部には、略三角形状の非磁性部4が永久磁石1の軸方向中央付近の両側付近に存在することなり、磁極間で見ると略菱形の非磁性部4が存在する。   For this reason, the substantially triangular nonmagnetic part 4 exists in the outer peripheral part of the permanent magnet 1 in the vicinity of both sides near the center of the permanent magnet 1 in the axial direction. Exists.

上記のように第2の磁性体部材3を形成することによって、各1磁極を構成する永久磁石1の外周面に対向する第2の磁性体部材3は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。   By forming the second magnetic member 3 as described above, the second magnetic member 3 facing the outer peripheral surface of the permanent magnet 1 constituting each one magnetic pole has a large area near the center of the magnetic pole, The area becomes smaller in the vicinity between the magnetic poles.

回転子外周の非磁性部4は、必ずしも何かの非磁性の材料で満たす必要は無く、回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ、何も存在しない状態であっても良い。   The nonmagnetic portion 4 on the outer periphery of the rotor does not necessarily need to be filled with any nonmagnetic material, and there is nothing if it is not necessary to consider the influence of the rotor strength, windage loss, etc. It may be in a state.

同期電動機の回転子100が回転するとき、固定子のティースに対向する外周部の磁性体の面積は、全体が磁性体である回転子の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor 100 of the synchronous motor rotates, the area of the outer periphery facing the stator teeth is proportional to the rotation angle of the rotor in the case of a rotor that is entirely magnetic. Increase gradually.

これに対して、非磁性部4を有する同期電動機の回転子100では、回転子の回転角に対して、初めは固定子のティースに対向する外周の第2の磁性体部材3の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor 100 of the synchronous motor having the nonmagnetic portion 4, the area of the second magnetic member 3 on the outer periphery that initially faces the stator teeth is increased with respect to the rotation angle of the rotor. There is little, and the increase in area gradually increases.

回転子表面の全面に外周の磁性体がある場合、永久磁石1より発生する磁束は、外周の磁性体の中で容易に方向を変えてしまう。そのため、回転子の回転中に外周の磁性体の一部が固定子のティースに対向し始めると、固定子のスロット開口部のより磁気抵抗の少ない対向部分に磁束が急に集中するため、対向をはじめたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが生じて同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When there is an outer peripheral magnetic body on the entire surface of the rotor, the magnetic flux generated from the permanent magnet 1 easily changes direction in the outer peripheral magnetic body. For this reason, if a part of the outer peripheral magnetic body begins to face the teeth of the stator during rotation of the rotor, the magnetic flux suddenly concentrates on the facing portion of the stator slot opening where there is less magnetic resistance. The magnetic flux flowing into the teeth starting with a sudden increase. This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor, which causes vibration and noise.

本実施の形態による同期電動機の回転子100は、回転子が回転するときに、外周の第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the synchronous motor rotor 100 according to the present embodiment, when the rotor rotates, the area where the outer peripheral second magnetic member 3 is opposed to the teeth of the stator is initially small and rotates toward the center of the magnetic pole. As the distance increases, the amount of area increase gradually increases. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

通常、永久磁石1を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心を用いることが多く、図12(図c1)に示す回転子のような外周の第2の磁性体部材3を構成するためには電磁鋼板を打ち抜く形状を、積層する電磁鋼板ごとに徐々に変化させることで、図12(図c1)に示すような同期電動機の回転子を実現しなくてはいけない。   Usually, in the case of a rotor in which the permanent magnet 1 is disposed inside the rotor, a rotor core in which electromagnetic steel plates are laminated is often used, and the second magnet on the outer periphery like the rotor shown in FIG. 12 (FIG. C1). In order to configure the body member 3, the rotor of the synchronous motor as shown in FIG. 12 (FIG. C1) must be realized by gradually changing the shape of punching the electromagnetic steel sheet for each laminated electromagnetic steel sheet. should not.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、本実施の形態に示す同期電動機の回転子100は、軟磁性粉末を含む材料を金型を用いて成形することで、第2の磁性体部材3の形状を自由に形成できる。   On the other hand, the rotor 100 of the synchronous motor shown in the present embodiment can freely form the shape of the second magnetic member 3 by molding a material containing soft magnetic powder using a mold. .

例えば、本の実施の形態に示す回転子を製造する場合、図14に示すように、回転子を構成する部材として、バックヨークの機能を持つ第1の磁性体部材2、平板形状の永久磁石1、永久磁石1の外周に配置する第2の磁性体部材3をそれぞれ加工し組み立てることで、回転子を構成することができる。図14の部材を組み立てると、図13に示すような形状の回転子が形成される。   For example, when the rotor shown in the present embodiment is manufactured, as shown in FIG. 14, as a member constituting the rotor, the first magnetic member 2 having the function of a back yoke, a plate-shaped permanent magnet 1. A rotor can be constituted by processing and assembling the second magnetic body members 3 arranged on the outer periphery of the permanent magnet 1. When the members shown in FIG. 14 are assembled, a rotor having a shape as shown in FIG. 13 is formed.

回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ前述の部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)を接着によって固定すればよい。   If it is not necessary to consider the influence of the strength of the rotor and windage loss during rotation, the above-mentioned members (first magnetic member 2, permanent magnet 1, second magnetic member 3) can be fixed by bonding. That's fine.

また、非磁性の樹脂材料を用いて、一体に成形することで各部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)の固定と非磁性部4の形成を行うことでも、回転子を製造することができる。   Further, the non-magnetic resin material is integrally formed to fix each member (the first magnetic member 2, the permanent magnet 1, and the second magnetic member 3) and to form the non-magnetic portion 4. By doing so, the rotor can be manufactured.

また、図15(a)、図15(b)に示すように、予め平板形状の永久磁石1と回転子外周の非磁性部4とを組み立てておき、軟磁性粉末を含んだ材料で一体に成形することによっても、第1の磁性体部材2及び第2の磁性体部材3が成形されて、図12に示す回転子を製造することも可能である。   Further, as shown in FIGS. 15A and 15B, the flat plate-shaped permanent magnet 1 and the nonmagnetic portion 4 on the outer periphery of the rotor are assembled in advance and integrated with a material containing soft magnetic powder. The rotor shown in FIG. 12 can also be manufactured by molding the first magnetic member 2 and the second magnetic member 3.

本実施の形態に示す回転子では、非磁性部4が回転子の軸方向中央部に存在するため、あらかじめ樹脂等の非磁性材料で非磁性部4を構成する部材を製造し、永久磁石1とともにインサート成型することで図12に示す回転子の製造が容易になる。   In the rotor shown in the present embodiment, since the nonmagnetic portion 4 is present in the central portion in the axial direction of the rotor, a member constituting the nonmagnetic portion 4 is manufactured in advance with a nonmagnetic material such as a resin, and the permanent magnet 1 In addition, the rotor shown in FIG. 12 can be easily manufactured by insert molding.

本実施の形態による同期電動機の回転子100は、永久磁石1の表面に第2の磁性体部材3が存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   In the synchronous motor rotor 100 according to the present embodiment, since the second magnetic member 3 is present on the surface of the permanent magnet 1, reluctance torque can be used, thereby improving the torque of the synchronous motor. It is.

また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and an increase in cost can be suppressed even when a sintered rare earth magnet having high magnetic properties is used. .

回転子外周の非磁性部4においては、永久磁石1の非磁性部4に対向する部分は、磁気抵抗が大きく、表面に第2の磁性体部材3を有する部分に比べると、発生する磁束が少なくなる。このため、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the nonmagnetic portion 4 on the outer periphery of the rotor, the portion facing the nonmagnetic portion 4 of the permanent magnet 1 has a large magnetic resistance, and the generated magnetic flux is larger than that of the portion having the second magnetic member 3 on the surface. Less. For this reason, it may not necessarily be optimal from the viewpoint of cost performance.

この場合、図16に示すように、永久磁石1の形状を外周の第2の磁性体部材3と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石1の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。この場合、1磁極を構成する永久磁石1は、軸方向の中心付近にくびれを持った形状となるため、上下に2分割した形状のものを用いることで簡単な形状とすることができる。   In this case, as shown in FIG. 16, the shape of the permanent magnet 1 is made the same shape as the second magnetic body member 3 on the outer periphery, and the total magnetic flux amount is reduced by reducing the area with respect to the nonmagnetic portion 4. With respect to the usage amount of the permanent magnet 1, the magnetic flux can be extracted effectively, and a rotor with good cost performance can be obtained. In this case, since the permanent magnet 1 constituting one magnetic pole has a constricted shape near the center in the axial direction, it can be formed into a simple shape by using a shape divided into two vertically.

以上のように、この実施の形態によれば、外周部の第2の磁性体部材3は、外周部の第2の磁性体部材3は、軸方向中央付近で、各1磁極の永久磁石1の外側部分の両側を切り抜いたような形状で、永久磁石1の外周部には、略三角形状の非磁性部4が永久磁石1の軸方向中央付近の両側付近に存在することなり、磁極間で見ると略菱形の非磁性部4が存在する。このように第2の磁性体部材3を形成することによって、各1磁極を構成する永久磁石1の外周面に対向する第2の磁性体部材3は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。回転子が回転するときに、外周の第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, according to this embodiment, the second magnetic member 3 in the outer peripheral portion is the permanent magnet 1 having one magnetic pole in the vicinity of the center in the axial direction. The outer peripheral portion of the permanent magnet 1 is cut out on both sides, and a substantially triangular non-magnetic portion 4 is present near both sides near the axial center of the permanent magnet 1 on the outer periphery of the permanent magnet 1. As shown in FIG. 2, there is a non-magnetic portion 4 having a substantially rhombic shape. By forming the second magnetic member 3 in this way, the second magnetic member 3 facing the outer peripheral surface of the permanent magnet 1 constituting each one magnetic pole has a large area near the center of the magnetic pole, and the magnetic pole The shape becomes smaller in the vicinity of the gap. When the rotor rotates, the area where the outer peripheral second magnetic member 3 faces the teeth of the stator is small at first, and the amount of increase in area gradually increases as the rotation proceeds toward the center of the magnetic pole. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

また、本実施の形態による同期電動機の回転子100は、永久磁石1の表面に第2の磁性体部材3が存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   In addition, the rotor 100 of the synchronous motor according to the present embodiment has the second magnetic member 3 on the surface of the permanent magnet 1, so that reluctance torque can be used, thereby improving the torque of the synchronous motor. Is possible.

また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and an increase in cost can be suppressed even when a sintered rare earth magnet having high magnetic properties is used. .

また、永久磁石1の形状を第2の磁性体部材と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In addition, by making the shape of the permanent magnet 1 the same as that of the second magnetic member and reducing the area with respect to the non-magnetic portion 4, the total amount of magnetic flux is reduced. Can be effectively extracted, and a rotor with good cost performance can be obtained.

実施の形態4.
図17乃至図2122は実施の形態4を示す図で、図17は同期電動機の回転子100の斜視図、図18は図17の非磁性部4を除いた状態を示す斜視図、図19は図17(図d1)の回転子を構成する部材を分離した状態の斜視図、図20は変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)、図21は図19の変形例の同期電動機の回転子100の斜視図、図22は図20の変形例の同期電動機の回転子100の斜視図である。
Embodiment 4 FIG.
FIGS. 17 to 2122 are views showing the fourth embodiment, FIG. 17 is a perspective view of the rotor 100 of the synchronous motor, FIG. 18 is a perspective view showing a state in which the nonmagnetic portion 4 of FIG. 17 is removed, and FIG. FIG. 20 is a perspective view showing a state where the members constituting the rotor of FIG. 17 (FIG. D1) are separated, and FIG. 20 is a perspective view showing the members constituting the rotor 100 of the synchronous motor according to the modified assembly method. ) Is a state before the permanent magnet 1 and the nonmagnetic part 4 are assembled, (b) is a state where the permanent magnet 1 and the nonmagnetic part 4 are assembled), and FIG. 21 is a rotor of the synchronous motor of the modified example of FIG. FIG. 22 is a perspective view of the rotor 100 of the synchronous motor of the modification of FIG.

図17、図18により、同期電動機の回転子100の構成を説明する。同期電動機の回転子100は、軟磁性粉末を含む材料で形成され、バックヨークの機能を有する第1の磁性体部材2と、平板形状の永久磁石1と、永久磁石1の外周部に配置される軟磁性粉末を含む材料で構成される第2の磁性体部材3と、永久磁石1の外周部に配置される第2の磁性体部材3の間を満たす非磁性部4とを備える。   The configuration of the rotor 100 of the synchronous motor will be described with reference to FIGS. The rotor 100 of the synchronous motor is formed of a material containing soft magnetic powder, and is disposed on the outer periphery of the first magnetic member 2 having the function of a back yoke, the flat permanent magnet 1, and the permanent magnet 1. A second magnetic member 3 made of a material containing soft magnetic powder and a nonmagnetic portion 4 filling the space between the second magnetic members 3 arranged on the outer peripheral portion of the permanent magnet 1.

本実施の形態に示す永久磁石1は、平板形状の長方形である。   The permanent magnet 1 shown in the present embodiment is a flat rectangular shape.

また、第1の磁性体部材2は、中心部に回転軸が嵌合する回転軸嵌合孔5を備える。   Moreover, the 1st magnetic body member 2 is provided with the rotating shaft fitting hole 5 in which a rotating shaft fits in the center part.

図18は、図17の非磁性部4を取り除いた状態の回転子を示しており、これから見てわかるように、外周部の第2の磁性体部材3は、軸方向中央付近で、各1磁極の永久磁石1に対向する周方向端部付近の両側を切り抜いたような形状となっている。   FIG. 18 shows the rotor with the nonmagnetic portion 4 of FIG. 17 removed. As can be seen from FIG. 18, the second magnetic body member 3 on the outer peripheral portion is 1 in the vicinity of the center in the axial direction. The shape is such that both sides in the vicinity of the circumferential end facing the permanent magnet 1 of the magnetic pole are cut out.

第2の磁性体部材3の切り抜いた部分は、周方向の両側で軸方向の位置が異なる。図18の正面視で、第2の磁性体部材3の右側の切り抜いた部分は、軸方向中央より下にあり、第2の磁性体部材3の左側の切り抜いた部分は、軸方向中央より上にある。   The cut-out portions of the second magnetic member 3 have different axial positions on both sides in the circumferential direction. In the front view of FIG. 18, the cut-out portion on the right side of the second magnetic member 3 is below the center in the axial direction, and the cut-out portion on the left side of the second magnetic member 3 is above the center in the axial direction. It is in.

そして、夫々の第2の磁性体部材3の切り抜いた部分は、略三角形状(直角三角形)であり、夫々の長辺が、第2の磁性体部材3の略対角線上に位置する関係になっている。   The cut out portions of each second magnetic member 3 have a substantially triangular shape (right triangle), and the long sides of the second magnetic member 3 are positioned on a substantially diagonal line of the second magnetic member 3. ing.

このため、永久磁石1の外周部には、略三角形状の非磁性部4が永久磁石1の周方向両側の軸方向中央の上下に存在することなる。   For this reason, in the outer peripheral part of the permanent magnet 1, the substantially triangular nonmagnetic part 4 exists above and below the axial center of both sides in the circumferential direction of the permanent magnet 1.

上記のように第2の磁性体部材3を形成することによって、各1磁極を構成する永久磁石1の外周面に対向する第2の磁性体部材3は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。   By forming the second magnetic member 3 as described above, the second magnetic member 3 facing the outer peripheral surface of the permanent magnet 1 constituting each one magnetic pole has a large area near the center of the magnetic pole, The area becomes smaller in the vicinity between the magnetic poles.

回転子外周の非磁性部4は、必ずしも何かの非磁性の材料で満たす必要は無く、回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ、何も存在しない状態であっても良い。   The nonmagnetic portion 4 on the outer periphery of the rotor does not necessarily need to be filled with any nonmagnetic material, and there is nothing if it is not necessary to consider the influence of the rotor strength, windage loss, etc. It may be in a state.

同期電動機の回転子100が回転するとき、固定子のティースに対向する外周部の磁性体の面積は、全体が磁性体である回転子の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor 100 of the synchronous motor rotates, the area of the outer periphery facing the stator teeth is proportional to the rotation angle of the rotor in the case of a rotor that is entirely magnetic. Increase gradually.

これに対して、非磁性部4を有する同期電動機の回転子100では、回転子の回転角に対して、初めは固定子のティースに対向する第2の磁性体部材3の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor 100 of the synchronous motor having the non-magnetic portion 4, the area of the second magnetic member 3 that initially faces the teeth of the stator is small with respect to the rotation angle of the rotor. The area increases gradually and gradually.

回転子表面の全面に外周の磁性体がある場合、永久磁石1より発生する磁束は、外周の磁性体の中で容易に方向を変えてしまう。そのため、回転子の回転中に外周の磁性体の一部が固定子のティースに対向し始めると、固定子のスロット開口部のより磁気抵抗の少ない対向部分に磁束が急に集中するため、対向をはじめたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが生じて同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When there is an outer peripheral magnetic body on the entire surface of the rotor, the magnetic flux generated from the permanent magnet 1 easily changes direction in the outer peripheral magnetic body. For this reason, if a part of the outer peripheral magnetic body begins to face the teeth of the stator during rotation of the rotor, the magnetic flux suddenly concentrates on the facing portion of the stator slot opening where there is less magnetic resistance. The magnetic flux flowing into the teeth starting with a sudden increase. This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor, which causes vibration and noise.

本実施の形態による同期電動機の回転子100は、回転子が回転するときに、第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the synchronous motor rotor 100 according to the present embodiment, when the rotor rotates, the area where the second magnetic member 3 is opposed to the teeth of the stator is initially small, and the rotation proceeds toward the center of the magnetic pole. As the area increases, the area increases gradually. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

通常、永久磁石1を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心を用いることが多く、図17に示す回転子のような外周の第2の磁性体部材3を構成するためには電磁鋼板を打ち抜く形状を、積層する電磁鋼板ごとに徐々に変化させることで図17に示すような同期電動機の回転子100を実現しなくてはいけない。   Usually, in the case of a rotor in which the permanent magnet 1 is disposed inside the rotor, a rotor iron core in which electromagnetic steel plates are laminated is often used, and the second magnetic member 3 on the outer periphery like the rotor shown in FIG. In order to configure, it is necessary to realize the rotor 100 of the synchronous motor as shown in FIG. 17 by gradually changing the shape of punching the electromagnetic steel sheet for each laminated electromagnetic steel sheet.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、本実施の形態に示す同期電動機の回転子100は、軟磁性粉末を含む材料を金型を用いて成形することで、第2の磁性体部材3の形状を自由に形成できる。   On the other hand, the rotor 100 of the synchronous motor shown in the present embodiment can freely form the shape of the second magnetic member 3 by molding a material containing soft magnetic powder using a mold. .

本実施の形態に示す回転子では、非磁性部4が回転子の軸方向中央部よりに存在するため、あらかじめ樹脂等の非磁性材料で非磁性部4を構成する部材を製造し、永久磁石1とともにインサート成型することで図17に示す回転子の製造が容易になる。   In the rotor shown in the present embodiment, since the nonmagnetic portion 4 is present from the axial central portion of the rotor, a member that forms the nonmagnetic portion 4 is manufactured in advance with a nonmagnetic material such as a resin, and the permanent magnet 17 is easy to manufacture with the rotor shown in FIG.

例えば、本実施の形態に示す回転子を製造する場合、図19に示すように、回転子を構成する部材として、バックヨークの機能を持つ第1の磁性体部材2、平板形状の永久磁石1、永久磁石1の外周に配置する第2の磁性体部材3をそれぞれ加工し組み立てることで、回転子を構成することができる。図19の部材を組み立てると、図18に示すような形状の回転子が形成される。   For example, when the rotor shown in the present embodiment is manufactured, as shown in FIG. 19, as a member constituting the rotor, a first magnetic member 2 having a function of a back yoke, a plate-shaped permanent magnet 1. The rotor can be configured by processing and assembling the second magnetic members 3 arranged on the outer periphery of the permanent magnet 1. When the members of FIG. 19 are assembled, a rotor having a shape as shown in FIG. 18 is formed.

回転子の強度や、回転時の風損等の影響を考慮する必要が無ければ前述の部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)を接着によって固定すればよい。   If it is not necessary to consider the influence of the strength of the rotor and windage loss during rotation, the above-mentioned members (first magnetic member 2, permanent magnet 1, second magnetic member 3) can be fixed by bonding. That's fine.

また、非磁性の樹脂材料を用いて、一体に成形することで各部材(第1の磁性体部材2、永久磁石1、第2の磁性体部材3)の固定と非磁性部4の形成を行うことでも、回転子を製造することができる。   Further, the non-magnetic resin material is integrally formed to fix each member (the first magnetic member 2, the permanent magnet 1, and the second magnetic member 3) and to form the non-magnetic portion 4. By doing so, the rotor can be manufactured.

また、図20(a)、図20(b)に示すように、予め平板形状の永久磁石1と回転子外周の非磁性部4とを組み立てておき、軟磁性粉末を含んだ材料で一体に成形することによっても、第1の磁性体部材2及び第2の磁性体部材3が成形されて、図17に示す回転子を製造することも可能である。   Further, as shown in FIGS. 20A and 20B, the flat plate-shaped permanent magnet 1 and the nonmagnetic portion 4 on the outer periphery of the rotor are assembled in advance and integrated with a material containing soft magnetic powder. The rotor shown in FIG. 17 can also be manufactured by molding the first magnetic member 2 and the second magnetic member 3.

本実施の形態による同期電動機の回転子100は、永久磁石1の表面に外周の磁性体が存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   Since the rotor 100 of the synchronous motor according to the present embodiment has an outer peripheral magnetic body on the surface of the permanent magnet 1, the reluctance torque can be used, and thus the torque of the synchronous motor can be improved.

また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and an increase in cost can be suppressed even when a sintered rare earth magnet having high magnetic properties is used. .

回転子外周の非磁性部4においては、永久磁石1の非磁性部4に対向する部分は、磁気抵抗が大きく、表面に第2の磁性体部材3を有する部分に比べると、発生する磁束が少なくなる。このため、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the nonmagnetic portion 4 on the outer periphery of the rotor, the portion facing the nonmagnetic portion 4 of the permanent magnet 1 has a large magnetic resistance, and the generated magnetic flux is larger than that of the portion having the second magnetic member 3 on the surface. Less. For this reason, it may not necessarily be optimal from the viewpoint of cost performance.

この場合、図21、図22に示すように、永久磁石1の形状を外周の第2の磁性体部材3と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石1の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In this case, as shown in FIGS. 21 and 22, the permanent magnet 1 has the same shape as that of the second magnetic member 3 on the outer periphery, and the area with respect to the non-magnetic portion 4 is reduced, so that the entire amount of magnetic flux is reduced. However, the magnetic flux can be effectively extracted with respect to the usage amount of the permanent magnet 1, and a rotor with good cost performance can be obtained.

この場合、1磁極を構成する永久磁石は、軸方向の中心付近にくびれを持った形状となるため、上下に2分割した形状のものを用いることで簡単な形状とすることができる。   In this case, the permanent magnet constituting one magnetic pole has a shape with a constriction near the center in the axial direction. Therefore, a simple shape can be obtained by using a shape divided into two vertically.

以上のように、この実施の形態によれば、外周部の第2の磁性体部材3は、外周部の第2の磁性体部材3は、第2の磁性体部材3は、軸方向中央付近で、各1磁極の永久磁石1に対向する周方向端部付近の両側を切り抜いたような形状で、第2の磁性体部材3の切り抜いた部分は、周方向の両側で軸方向の位置が異なる。第2の磁性体部材3の右側の切り抜いた部分は、軸方向中央より下にあり、第2の磁性体部材3の左側の切り抜いた部分は、軸方向中央より上にある。夫々の第2の磁性体部材3の切り抜いた部分は、略三角形状(直角三角形)であり、夫々の長辺が、第2の磁性体部材3の略対角線上に位置する関係になっている。このため、永久磁石1の外周部には、略三角形状の非磁性部4が永久磁石1の周方向両側の軸方向中央の上下に存在する。このように第2の磁性体部材3を形成することによって、各1磁極を構成する永久磁石1の外周面に対向する第2の磁性体部材3は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。回転子が回転するときに、外周の第2の磁性体部材3が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   As described above, according to this embodiment, the second magnetic member 3 at the outer peripheral portion is the second magnetic member 3 at the outer peripheral portion, and the second magnetic member 3 is near the center in the axial direction. Thus, both sides in the vicinity of the end in the circumferential direction facing the permanent magnet 1 with one magnetic pole are cut out, and the cut out portions of the second magnetic member 3 have axial positions on both sides in the circumferential direction. Different. The cut-out portion on the right side of the second magnetic member 3 is below the axial center, and the cut-out portion on the left side of the second magnetic member 3 is above the axial center. The cut-out portions of the respective second magnetic members 3 have a substantially triangular shape (right-angled triangle), and the respective long sides are positioned on the substantially diagonal line of the second magnetic member 3. . For this reason, in the outer peripheral part of the permanent magnet 1, substantially triangular nonmagnetic parts 4 exist above and below the axial center of both sides of the permanent magnet 1 in the circumferential direction. By forming the second magnetic member 3 in this way, the second magnetic member 3 facing the outer peripheral surface of the permanent magnet 1 constituting each one magnetic pole has a large area near the center of the magnetic pole, and the magnetic pole The shape becomes smaller in the vicinity of the gap. When the rotor rotates, the area where the outer peripheral second magnetic member 3 faces the teeth of the stator is small at first, and the amount of increase in area gradually increases as the rotation proceeds toward the center of the magnetic pole. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

また、本実施の形態による同期電動機の回転子100は、永久磁石1の表面に第2の磁性体部材3が存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   In addition, the rotor 100 of the synchronous motor according to the present embodiment has the second magnetic member 3 on the surface of the permanent magnet 1, so that reluctance torque can be used, thereby improving the torque of the synchronous motor. Is possible.

また、永久磁石1の形状を単純な平板形状とすることができるため、永久磁石1の加工コストが抑えられ、磁気特性の高い焼結の希土類磁石を利用する際にもコストの上昇を抑えられる。   Further, since the shape of the permanent magnet 1 can be a simple flat plate shape, the processing cost of the permanent magnet 1 can be suppressed, and an increase in cost can be suppressed even when a sintered rare earth magnet having high magnetic properties is used. .

また、永久磁石1の形状を第2の磁性体部材と同様の形状として、非磁性部4に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In addition, by making the shape of the permanent magnet 1 the same as that of the second magnetic member and reducing the area with respect to the non-magnetic portion 4, the total amount of magnetic flux is reduced. Can be effectively extracted, and a rotor with good cost performance can be obtained.

本発明の活用例として、送風機に用いられる同期電動機への適用が可能である。   As an application example of the present invention, application to a synchronous motor used in a blower is possible.

実施の形態1を示す図で、同期電動機の回転子100の斜視図。FIG. 3 is a diagram showing the first embodiment, and is a perspective view of a rotor 100 of the synchronous motor. 実施の形態1を示す図で、図1の非磁性部4を除いた状態を示す斜視図((a)は図1の非磁性部4を取り除いた状態、(b)は磁性体部材(第1の磁性体部材2、第2の磁性体部材3)を成形によって製造する際、あらかじめ金型に非磁性部4に相当する部分を形成しておき、永久磁石1のみをインサートしておくのみで製造が可能な形態)。1A and 1B are perspective views showing a state in which a nonmagnetic part 4 in FIG. 1 is removed (a) shows a state in which the nonmagnetic part 4 in FIG. 1 is removed, and FIG. When the first magnetic member 2 and the second magnetic member 3) are manufactured by molding, a portion corresponding to the nonmagnetic portion 4 is formed in advance in the mold, and only the permanent magnet 1 is inserted. Can be manufactured in 実施の形態1を示す図で、図1の回転子を構成する部材を分離した状態の斜視図。FIG. 2 is a diagram showing the first embodiment, and is a perspective view in a state where members constituting the rotor of FIG. 1 are separated. 実施の形態1を示す図で、変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)。The figure which shows Embodiment 1 and is the perspective view which isolate | separates and shows the member which comprises the rotor 100 of the synchronous motor by the assembly method of a modification ((a) is before assembling the permanent magnet 1 and the nonmagnetic part 4) State, (b) is a state in which the permanent magnet 1 and the nonmagnetic part 4 are assembled). 実施の形態1を示す図で、変形例の同期電動機の回転子100を構成する永久磁石1(a)と非磁性部4を除いた状態(b)の斜視図。The figure which shows Embodiment 1 and is the perspective view of the state (b) except the permanent magnet 1 (a) and the nonmagnetic part 4 which comprise the rotor 100 of the synchronous motor of a modification. 実施の形態1を示す図で、図1に示す同期電動機の回転子100を用いた同期電動機の誘起電圧波形を示す図。FIG. 2 is a diagram illustrating the first embodiment and is a diagram illustrating an induced voltage waveform of the synchronous motor using the rotor 100 of the synchronous motor illustrated in FIG. 1. 実施の形態1を示す図で、図1に示す同期電動機の回転子100を用いた同期電動機のコギングトルク波形を示す図。FIG. 3 is a diagram illustrating the first embodiment and is a diagram illustrating a cogging torque waveform of the synchronous motor using the rotor 100 of the synchronous motor illustrated in FIG. 1. 実施の形態2を示す図で、同期電動機の回転子100の斜視図。FIG. 5 shows the second embodiment and is a perspective view of the rotor 100 of the synchronous motor. 実施の形態2を示す図で、図8の非磁性部4を除いた状態を示す斜視図((a)は図8の非磁性部4を取り除いた状態、(b)は磁性体部材(第1の磁性体部材2、第2の磁性体部材3)を成形によって製造する際、あらかじめ金型に非磁性部4に相当する部分を形成しておき、永久磁石1のみをインサートしておくのみで製造が可能な形態)。8A and 8B are perspective views showing a state in which the nonmagnetic part 4 in FIG. 8 is removed (a) shows a state in which the nonmagnetic part 4 in FIG. 8 is removed, and FIG. 8b shows a magnetic member (first member). When the first magnetic member 2 and the second magnetic member 3) are manufactured by molding, a portion corresponding to the nonmagnetic portion 4 is formed in advance in the mold, and only the permanent magnet 1 is inserted. Can be manufactured in 実施の形態2を示す図で、図8の同期電動機の回転子100を構成する部材を分離した状態の斜視図。FIG. 9 shows the second embodiment, and is a perspective view in a state where members constituting the rotor 100 of the synchronous motor of FIG. 8 are separated. 実施の形態2を示す図で、変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)。The figure which shows Embodiment 2 and is the perspective view which isolate | separates and shows the member which comprises the rotor 100 of the synchronous motor by the assembly method of a modification ((a) is before assembling the permanent magnet 1 and the nonmagnetic part 4) State, (b) is a state in which the permanent magnet 1 and the nonmagnetic part 4 are assembled). 実施の形態3を示す図で、同期電動機の回転子100の斜視図。FIG. 10 shows the third embodiment and is a perspective view of the rotor 100 of the synchronous motor. 実施の形態3を示す図で、図12の非磁性部4を除いた状態を示す斜視図。FIG. 13 shows the third embodiment, and is a perspective view showing a state in which the nonmagnetic part 4 of FIG. 12 is removed. 実施の形態3を示す図で、図12の同期電動機の回転子100を構成する部材を分離した状態の斜視図。FIG. 13 is a diagram showing the third embodiment, and is a perspective view showing a state in which members constituting the rotor 100 of the synchronous motor of FIG. 12 are separated. 実施の形態3を示す図で、変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)。The figure which shows Embodiment 3, and is a perspective view which isolate | separates and shows the member which comprises the rotor 100 of the synchronous motor by the assembly method of a modification ((a) is before assembling the permanent magnet 1 and the nonmagnetic part 4) State, (b) is a state in which the permanent magnet 1 and the nonmagnetic part 4 are assembled). 実施の形態3を示す図で、図12の変形例の同期電動機の回転子100の斜視図((a)は組み立て前、(b)は組み立て後)。It is a figure which shows Embodiment 3, and is a perspective view of the rotor 100 of the synchronous motor of the modification of FIG. 12 ((a) is before an assembly, (b) is after an assembly). 実施の形態4を示す図で、同期電動機の回転子100の斜視図。FIG. 10 shows the fourth embodiment and is a perspective view of the rotor 100 of the synchronous motor. 実施の形態4を示す図で、図17の非磁性部4を除いた状態を示す斜視図。FIG. 18 is a diagram illustrating the fourth embodiment, and is a perspective view illustrating a state in which the nonmagnetic portion 4 of FIG. 17 is removed. 実施の形態4を示す図で、図17の回転子を構成する部材を分離した状態の斜視図。FIG. 18 is a diagram showing the fourth embodiment, and is a perspective view in a state where members constituting the rotor of FIG. 17 are separated. 実施の形態4を示す図で、変形例の組み立て方法による同期電動機の回転子100を構成する部材を分離して示す斜視図((a)は永久磁石1と非磁性部4とを組み立てる前の状態、(b)は永久磁石1と非磁性部4とを組み立てた状態)。The figure which shows Embodiment 4 and is the perspective view which isolate | separates and shows the member which comprises the rotor 100 of the synchronous motor by the assembly method of a modification ((a) is before assembling the permanent magnet 1 and the nonmagnetic part 4) State, (b) is a state in which the permanent magnet 1 and the nonmagnetic part 4 are assembled). 実施の形態4を示す図で、図19の変形例の同期電動機の回転子100の斜視図。FIG. 20 shows the fourth embodiment and is a perspective view of the rotor 100 of the synchronous motor of the modification of FIG. 19. 実施の形態4を示す図で、図20の変形例の同期電動機の回転子100の斜視図。FIG. 21 shows the fourth embodiment and is a perspective view of the rotor 100 of the synchronous motor of the modification of FIG. 20.

符号の説明Explanation of symbols

1 永久磁石、2 第1の磁性体部材、3 第2の磁性体部材、4 非磁性部、100 同期電動機の回転子。   DESCRIPTION OF SYMBOLS 1 Permanent magnet, 2 1st magnetic body member, 2nd magnetic body member, 4 Nonmagnetic part, 100 Rotor of synchronous motor.

Claims (11)

軟磁性粉末を含む材料で形成され、バックヨークの機能を有する第1の磁性体部材と、
前記第1の磁性体部材の外側に配置される永久磁石と、
前記永久磁石の外周部に配置され、軟磁性粉末を含む材料で構成される第2の磁性体部材とを備え、
前記第2の磁性体部材は、前記永久磁石の構成する磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状としたことを特徴とする同期電動機の回転子。
A first magnetic member formed of a material containing soft magnetic powder and having a back yoke function;
A permanent magnet disposed outside the first magnetic member;
A second magnetic member disposed on the outer periphery of the permanent magnet and made of a material containing soft magnetic powder;
The rotor of a synchronous motor, wherein the second magnetic member has a shape in which an area is large near a center of a magnetic pole constituting the permanent magnet, and an area is small near a magnetic pole.
前記第2の磁性体部材は、軸方向中央付近で体積が大きく、軸方向両端に向かうにつれて体積が徐々に小さくなることを特徴とする請求項1記載の同期電動機の回転子。   The synchronous motor rotor according to claim 1, wherein the second magnetic member has a large volume in the vicinity of the center in the axial direction and gradually decreases in volume toward both ends in the axial direction. 前記第2の磁性体部材は、軸方向両端において前記磁極の中心付近に集中することを特徴とする請求項2記載の同期電動機の回転子。   The synchronous motor rotor according to claim 2, wherein the second magnetic member is concentrated near the center of the magnetic pole at both axial ends. 前記第2の磁性体部材は、軸方向両端において前記磁極の中心から前記磁極間に集中して存在し、且つ集中する周方向位置が軸方向両端において異なることを特徴とする請求項2記載の同期電動機の回転子。   The said 2nd magnetic body member is concentrated and exists between the said magnetic poles from the center of the said magnetic pole in axial direction both ends, and the circumferential direction position where it concentrates differs in axial direction both ends. Synchronous motor rotor. 前記第2の磁性体部材は、軸方向両端で体積が大きく、軸方向中央に向かうにつれて体積が徐々に小さくなることを特徴とする請求項1記載の同期電動機の回転子。   The synchronous motor rotor according to claim 1, wherein the second magnetic body member has a large volume at both axial ends, and the volume gradually decreases toward the center in the axial direction. 前記第2の磁性体部材は、軸方向中央付近において前記磁極の中心付近に集中することを特徴とする請求項5記載の同期電動機の回転子。   6. The synchronous motor rotor according to claim 5, wherein the second magnetic member is concentrated near the center of the magnetic pole in the vicinity of the center in the axial direction. 前記第2の磁性体部材は、軸方向中央付近において前記磁極の中心から前記磁極間に集中して存在し、且つ集中する周方向位置が軸方向中央において異なることを特徴とする請求項5記載の同期電動機の回転子。   The said 2nd magnetic body member concentrates and exists between the said magnetic poles from the center of the said magnetic pole in the axial direction vicinity, and the circumferential direction position where it concentrates differs in the axial direction center. Synchronous motor rotor. 前記永久磁石の形状を、前記第2の磁性体部材の形状に合わせることを特徴とする請求項1乃至7のいずれかに記載の同期電動機の回転子。   The synchronous motor rotor according to claim 1, wherein a shape of the permanent magnet is matched with a shape of the second magnetic member. 前記永久磁石の外周部に配置される前記第2の磁性体部材の間を埋める非磁性部を備えたことを特徴とする請求項1乃至8のいずれかに記載の同期電動機の回転子。   The synchronous motor rotor according to any one of claims 1 to 8, further comprising a nonmagnetic portion that fills a space between the second magnetic body members disposed on an outer peripheral portion of the permanent magnet. 前記請求項1乃至9のいずれかに記載の同期電動機の回転子の製造方法であって、
前記第1の磁性体部材と、前記永久磁石と、前記第2の磁性体部材とを接着によって固着して回転子を構成することを特徴とする同期電動機の回転子の製造方法。
A method for manufacturing a rotor of a synchronous motor according to any one of claims 1 to 9,
A method of manufacturing a rotor of a synchronous motor, wherein the rotor is formed by adhering the first magnetic member, the permanent magnet, and the second magnetic member by adhesion.
前記請求項1乃至9のいずれかに記載の同期電動機の回転子の製造方法であって、
前記第1の磁性体部材と、前記永久磁石と、前記第2の磁性体部材とを非磁性材料によって一体に成形して回転子を構成することを特徴とする同期電動機の回転子の製造方法。
A method for manufacturing a rotor of a synchronous motor according to any one of claims 1 to 9,
A method of manufacturing a rotor of a synchronous motor, wherein the rotor is formed by integrally forming the first magnetic member, the permanent magnet, and the second magnetic member with a nonmagnetic material. .
JP2008250619A 2008-09-29 2008-09-29 Synchronous motor rotor and method of manufacturing synchronous motor rotor Active JP5042184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008250619A JP5042184B2 (en) 2008-09-29 2008-09-29 Synchronous motor rotor and method of manufacturing synchronous motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250619A JP5042184B2 (en) 2008-09-29 2008-09-29 Synchronous motor rotor and method of manufacturing synchronous motor rotor

Publications (2)

Publication Number Publication Date
JP2010081776A true JP2010081776A (en) 2010-04-08
JP5042184B2 JP5042184B2 (en) 2012-10-03

Family

ID=42211560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250619A Active JP5042184B2 (en) 2008-09-29 2008-09-29 Synchronous motor rotor and method of manufacturing synchronous motor rotor

Country Status (1)

Country Link
JP (1) JP5042184B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105410A (en) * 2010-11-09 2012-05-31 Mitsubishi Electric Corp Electric motor and compressor
WO2015004745A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Rotating electrical machine and elevator hoist
WO2015040666A1 (en) * 2013-09-17 2015-03-26 三菱電機株式会社 Rotating electric machine and elevator hoisting machine
US10483815B2 (en) 2015-07-15 2019-11-19 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and refrigeration air conditioner
CN113783329A (en) * 2015-10-29 2021-12-10 富士通将军股份有限公司 Rotor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118886U (en) * 1982-02-06 1983-08-13 澤藤電機株式会社 Permanent magnet field electric motor
JP2000278895A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2001119869A (en) * 1999-10-20 2001-04-27 Seiko Instruments Inc Coil yoke for motor, the motor, and rotating device
JP2003111320A (en) * 2001-09-28 2003-04-11 Toshiba Tec Corp Rotor and brushless motor
JP2003134703A (en) * 2001-10-23 2003-05-09 Mitsubishi Electric Corp Permanent magnet rotor and manufacturing method therefor
JP2005080432A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Motor and its manufacturing method
JP2005094968A (en) * 2003-09-19 2005-04-07 Toshiba Kyaria Kk Permanent-magnet electric motor
JP2005160131A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Rotating motor
JP2006014389A (en) * 2004-06-22 2006-01-12 Daikin Ind Ltd Rotor, motor, compressor, fan, and air conditioner
JP2008131853A (en) * 2006-11-27 2008-06-05 Mitsubishi Electric Corp Magnet-embedded rotor and manufacturing method therefor
JP2008131742A (en) * 2006-11-21 2008-06-05 Daikin Ind Ltd Motor
JP2009219291A (en) * 2008-03-12 2009-09-24 Mitsubishi Electric Corp Rotor for synchronous electric motor, and compressor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118886U (en) * 1982-02-06 1983-08-13 澤藤電機株式会社 Permanent magnet field electric motor
JP2000278895A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2001119869A (en) * 1999-10-20 2001-04-27 Seiko Instruments Inc Coil yoke for motor, the motor, and rotating device
JP2003111320A (en) * 2001-09-28 2003-04-11 Toshiba Tec Corp Rotor and brushless motor
JP2003134703A (en) * 2001-10-23 2003-05-09 Mitsubishi Electric Corp Permanent magnet rotor and manufacturing method therefor
JP2005080432A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Motor and its manufacturing method
JP2005094968A (en) * 2003-09-19 2005-04-07 Toshiba Kyaria Kk Permanent-magnet electric motor
JP2005160131A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Rotating motor
JP2006014389A (en) * 2004-06-22 2006-01-12 Daikin Ind Ltd Rotor, motor, compressor, fan, and air conditioner
JP2008131742A (en) * 2006-11-21 2008-06-05 Daikin Ind Ltd Motor
JP2008131853A (en) * 2006-11-27 2008-06-05 Mitsubishi Electric Corp Magnet-embedded rotor and manufacturing method therefor
JP2009219291A (en) * 2008-03-12 2009-09-24 Mitsubishi Electric Corp Rotor for synchronous electric motor, and compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105410A (en) * 2010-11-09 2012-05-31 Mitsubishi Electric Corp Electric motor and compressor
WO2015004745A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Rotating electrical machine and elevator hoist
CN105409096A (en) * 2013-07-10 2016-03-16 三菱电机株式会社 Rotating electrical machine and elevator hoist
JPWO2015004745A1 (en) * 2013-07-10 2017-02-23 三菱電機株式会社 Rotating electric machine and elevator hoisting machine
CN105409096B (en) * 2013-07-10 2018-01-16 三菱电机株式会社 Electric rotating machine and elevator hoist
WO2015040666A1 (en) * 2013-09-17 2015-03-26 三菱電機株式会社 Rotating electric machine and elevator hoisting machine
JP5985067B2 (en) * 2013-09-17 2016-09-06 三菱電機株式会社 Rotating electric machine and elevator hoisting machine
US10483815B2 (en) 2015-07-15 2019-11-19 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and refrigeration air conditioner
CN113783329A (en) * 2015-10-29 2021-12-10 富士通将军股份有限公司 Rotor

Also Published As

Publication number Publication date
JP5042184B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5663936B2 (en) Permanent magnet rotating electric machine
JP6667084B2 (en) Surface magnet type motor
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP5350342B2 (en) Synchronous motor rotor
CN103907267B (en) Rotor, motor, compressor and the air conditioner of permanent magnet embedded type motor
EP2378632A1 (en) Permanent magnet type rotary electric machine
JP5546413B2 (en) Synchronous motor rotor
JP3602392B2 (en) Permanent magnet embedded motor
JP5656719B2 (en) Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine
JP2010220324A (en) Electric motor, compressor, and air conditioner
JP4753011B2 (en) Armature core and motor
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP6280761B2 (en) Stator core and permanent magnet motor
CN108462268B (en) Rotor of rotating electric machine
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP5269032B2 (en) Synchronous motor rotor
JP2006121870A (en) Motor device
JP2012115089A (en) Rotor for ipm motor and ipm motor
JP2008301666A (en) Axial motor
JP4694253B2 (en) Permanent magnet rotating electric machine
JP5279780B2 (en) Synchronous motor rotor
JP5852418B2 (en) Rotor and motor
JP2005039909A (en) Permanent magnet embedded type motor
JP2011055584A (en) Rotor for ipm motor
JP4680875B2 (en) Stator core manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5042184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250