JP2009219291A - Rotor for synchronous electric motor, and compressor - Google Patents

Rotor for synchronous electric motor, and compressor Download PDF

Info

Publication number
JP2009219291A
JP2009219291A JP2008061945A JP2008061945A JP2009219291A JP 2009219291 A JP2009219291 A JP 2009219291A JP 2008061945 A JP2008061945 A JP 2008061945A JP 2008061945 A JP2008061945 A JP 2008061945A JP 2009219291 A JP2009219291 A JP 2009219291A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
synchronous motor
region
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061945A
Other languages
Japanese (ja)
Other versions
JP4712059B2 (en
Inventor
Atsushi Matsuoka
篤 松岡
Kazuhiko Baba
和彦 馬場
Hitoshi Kawaguchi
仁 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008061945A priority Critical patent/JP4712059B2/en
Publication of JP2009219291A publication Critical patent/JP2009219291A/en
Application granted granted Critical
Publication of JP4712059B2 publication Critical patent/JP4712059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor for a synchronous electric motor that reduces vibration and noise. <P>SOLUTION: The rotor 20 for the synchronous electric motor includes a rotor iron core 1, which is formed by stacking electromagnetic steel plates and formed with each magnet insertion hole 2 along the outer peripheral edge, each permanent magnet 4 inserted into each magnet insertion hole 2 so as to compose the magnetic pole, and each outer-peripheral magnetic material region 6 formed between the outer peripheral edge of the rotor iron core 1 and each permanent magnet 4. Each nonmagnetic material region 5 is formed between the outer peripheral edge of the rotor iron core 1 and each permanent magnet 4 such that an area of each outer-peripheral magnetic material region 6 is small in the vicinity between the magnetic poles and the area is gradually increased toward the center of the magnetic pole. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、永久磁石を用いる同期電動機の回転子に関する。さらに、その同期電動機の回転子を用いる同期電動機を搭載する圧縮機に関する。   The present invention relates to a rotor of a synchronous motor using permanent magnets. Furthermore, it is related with the compressor carrying the synchronous motor using the rotor of the synchronous motor.

積層鉄心内に永久磁石を配置する回転子を用いた同期電動機は、回転子外周の磁性体部分を用いたリラクタンストルクを用いることで、電動機を高トルク化することが可能である。反面、内部に配置された永久磁石より発生する磁束の向きが外周の磁性体部分で容易に変化する。そのため、運転中に回転子の磁極と固定子のティースとの位置関係によって磁束の向きが急に変化することがある。それにより、同期電動機より発生する騒音・振動が大きくなることがある。   A synchronous motor using a rotor in which a permanent magnet is arranged in a laminated iron core can increase the torque of the motor by using reluctance torque using a magnetic part on the outer periphery of the rotor. On the other hand, the direction of the magnetic flux generated from the permanent magnet disposed inside easily changes in the magnetic body portion on the outer periphery. Therefore, the direction of the magnetic flux may change suddenly during operation depending on the positional relationship between the magnetic poles of the rotor and the teeth of the stator. As a result, noise and vibration generated from the synchronous motor may increase.

この課題に対して、以下に示す技術が提案がなされている。即ち、積層回転子鉄心内に永久磁石片を有する電動機の永久磁石回転子を、簡易な構成でコギングトルク低減をはかったものにするために、永久磁石片開口部で形成する直方体部に挿入する永久磁石片を、2種の永久磁石材とし、中央部主材の軸方向にスキューする中央部主材と、その両側の略直方体部を補充する形状で、かつ中央部主材より磁束密度の低い副材の永久磁石片から構成する永久磁石回転子が提案されている(例えば、特許文献1参照)。   In order to solve this problem, the following techniques have been proposed. That is, the permanent magnet rotor of an electric motor having a permanent magnet piece in a laminated rotor core is inserted into a rectangular parallelepiped portion formed by a permanent magnet piece opening in order to reduce cogging torque with a simple configuration. The permanent magnet piece is made up of two types of permanent magnet materials, and has a shape that replenishes the central main material that is skewed in the axial direction of the central main material and the substantially rectangular parallelepiped portions on both sides thereof, and has a magnetic flux density higher than that of the central main material. A permanent magnet rotor composed of a low-magnitude permanent magnet piece has been proposed (see, for example, Patent Document 1).

また、永久磁石の体積当たりの電動機効率を高めることを目的として、歯部は固定子に備えられており、回転子と空隙を挟んで対向する。回転子は永久磁石埋設用孔が穿たれた軟磁性体を備えており、回転軸の回りに回転可能である。軟磁性体には回転軸に沿って永久磁石埋設用孔が穿たれている。永久磁石埋設用孔には永久磁石が埋設される。永久磁石の磁極面は回転軸に垂直な法線を有しており、円形を呈する回転子が提案されている(例えば、特許文献2参照)。   Further, for the purpose of increasing the electric motor efficiency per volume of the permanent magnet, the tooth portion is provided in the stator, and is opposed to the rotor with a gap therebetween. The rotor is provided with a soft magnetic body having a permanent magnet embedding hole and is rotatable about a rotation axis. The soft magnetic body has holes for embedding permanent magnets along the rotation axis. Permanent magnets are embedded in the permanent magnet embedding holes. A magnetic pole face of a permanent magnet has a normal line perpendicular to the rotation axis, and a rotor having a circular shape has been proposed (see, for example, Patent Document 2).

さらに、電機子反作用磁束を軽減すると共に、外周部鉄心の磁束分布を改善することにより、騒音や振動の少ない高効率な永久磁石電動機を提供するために、回転子鉄心中にその軸心を中心とする略正多角形の各辺に対応する部位に形成された永久磁石収容孔と、この磁石収納孔にそれぞれ挿入された永久磁石と、永久磁石収容孔の外周部鉄心に形成され、径方向に細長く、かつ、永久磁石収容孔に沿って離隔配置された4個以上のスリット孔とを備え、スリット孔の径方向外側端のピッチを略等しくし、径方向内側端のピッチを永久磁石の中央部を大きくし、中央部から端部に離れるに従って小さくした永久磁石電動機が提案されている(例えば、特許文献3参照)。
特開平10−174324号公報 特開2006−14389号公報 特開2005−94968号公報
Furthermore, to reduce the armature reaction magnetic flux and improve the magnetic flux distribution of the outer peripheral core, to provide a high-efficiency permanent magnet motor with less noise and vibration, center the axis in the rotor core. The permanent magnet housing holes formed in the portions corresponding to the sides of the substantially regular polygon, the permanent magnets inserted into the magnet housing holes, and the outer peripheral cores of the permanent magnet housing holes are formed in the radial direction. And four or more slit holes spaced apart along the permanent magnet receiving hole, and the pitch of the radially outer end of the slit hole is made substantially equal, and the pitch of the radially inner end is made equal to that of the permanent magnet. A permanent magnet electric motor has been proposed in which the central part is enlarged and the distance from the central part to the end part is reduced (see, for example, Patent Document 3).
Japanese Patent Laid-Open No. 10-174324 JP 2006-14389 A JP 2005-94968 A

しかしながら、上記特許文献1および特許文献2のように、永久磁石を回転軸に対して傾斜した形状としたり、円形にするのは、以下に示す課題がある。例えば、永久磁石を回転子の表面に配置して、固定子と直接対向させる場合には、大きな効果が得られるが、磁性体内部に配置する場合には、永久磁石表面の磁性体の内部で磁束の向きが変化しやすいことから、永久磁石の形状を工夫したことによる効果は、永久磁石を回転子表面に配置した場合に比べると小さくなる。   However, as in Patent Document 1 and Patent Document 2, it is problematic to make the permanent magnet inclined with respect to the rotation axis or to have a circular shape. For example, when a permanent magnet is disposed on the surface of the rotor and directly opposed to the stator, a great effect can be obtained. However, when the permanent magnet is disposed inside the magnetic body, the permanent magnet is disposed inside the magnetic body on the surface of the permanent magnet. Since the direction of the magnetic flux is likely to change, the effect of devising the shape of the permanent magnet is smaller than when the permanent magnet is arranged on the rotor surface.

また、上記特許文献3に記載されている技術の場合、回転子表面の磁性体内の磁束の向きの変化をスリット孔によってある程度制限してしまうことで、同期電動機の振動・騒音を抑える効果を得ることができる。しかし、スリット孔によって、リラクタンストルクが発生しにくくなり、永久磁石を回転子磁性体内部に配置する回転子の特徴を利用できなくなるという課題がある。   Further, in the case of the technique described in Patent Document 3, the effect of suppressing the vibration and noise of the synchronous motor is obtained by restricting the change in the direction of the magnetic flux in the magnetic body on the rotor surface to some extent by the slit hole. be able to. However, the slit hole makes it difficult for reluctance torque to be generated, and there is a problem that the feature of the rotor in which the permanent magnet is arranged inside the rotor magnetic body cannot be used.

この発明は、上記のような課題を解決するためになされるもので、振動・騒音を低減することができる同期電動機の回転子及びその同期電動機の回転子を用いた圧縮機を提供することを目的とする。   The present invention is made to solve the above-described problems, and provides a rotor of a synchronous motor that can reduce vibration and noise, and a compressor using the rotor of the synchronous motor. Objective.

この発明に係る同期電動機の回転子は、電磁鋼板を積層して形成され、外周縁に沿って磁石挿入孔が形成される回転子鉄心と、磁石挿入孔に挿入され、磁極を構成する永久磁石と、回転子鉄心の外周縁と永久磁石との間に形成される外周磁性体領域とを備え、外周磁性体領域の面積が磁極間近傍では小さく、磁極の中心に向かって徐々に面積が大きくなるように、回転子鉄心の外周縁と永久磁石との間に非磁性体領域を形成したことを特徴とする。   A rotor of a synchronous motor according to the present invention is formed by laminating electromagnetic steel sheets, a rotor core in which a magnet insertion hole is formed along an outer peripheral edge, and a permanent magnet that is inserted into the magnet insertion hole and constitutes a magnetic pole And an outer peripheral magnetic region formed between the outer peripheral edge of the rotor core and the permanent magnet, and the area of the outer peripheral magnetic region is small near the magnetic poles and gradually increases toward the center of the magnetic poles As described above, a non-magnetic region is formed between the outer peripheral edge of the rotor core and the permanent magnet.

この発明に係る同期電動機の回転子は、外周磁性体領域の面積が磁極間近傍では小さく、磁極の中心に向かって徐々に面積が大きくなるように、回転子鉄心の外周縁と永久磁石との間に非磁性体領域を形成したことにより、固定子に鎖交する磁束の変化が緩やかになり、トルク脈動を抑え、同期電動機の振動・騒音を抑えることができる。   In the rotor of the synchronous motor according to the present invention, the outer peripheral edge of the rotor core and the permanent magnet are arranged so that the area of the outer peripheral magnetic region is small in the vicinity of the magnetic poles and gradually increases toward the center of the magnetic poles. By forming the non-magnetic region between them, the change of the magnetic flux linked to the stator becomes gentle, the torque pulsation can be suppressed, and the vibration and noise of the synchronous motor can be suppressed.

実施の形態1.
図1乃至図11は実施の形態1を示す図で、図1は同期電動機の回転子20の斜視図、図2は図1のA部断面図、図3は図1のB部断面図、図4は図1のC部断面図、図5は同期電動機の回転子20の正面図、図6は変形例1の同期電動機の回転子20の斜視図、図7は変形例2の同期電動機の回転子20の斜視図(a)及びA〜E部断面図(b)、図8は変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)、図9は変形例4の同期電動機の回転子20の斜視図(a)及び正面図(b)、図10は図6に示す同期電動機の回転子20を用いた同期電動機の誘起電圧波形9を、非磁性体領域5を持たない同期電動機の回転子20を用いた同期電動機の誘起電圧波形10と比較した図、図11は図6に示す同期電動機の回転子20を用いた同期電動機のコギングトルクの波形29を、非磁性体領域5を持たない同期電動機の回転子20を用いた同期電動機のコギングトルクの波形30と比較した図である。
Embodiment 1 FIG.
FIG. 1 to FIG. 11 are diagrams showing Embodiment 1, FIG. 1 is a perspective view of a rotor 20 of a synchronous motor, FIG. 2 is a cross-sectional view of part A in FIG. 1, and FIG. 4 is a cross-sectional view of part C of FIG. 1, FIG. 5 is a front view of the rotor 20 of the synchronous motor, FIG. 6 is a perspective view of the rotor 20 of the synchronous motor of Modification 1, and FIG. FIG. 8 is a perspective view of the rotor 20 of the synchronous motor according to the third modification, a front sectional view (b), and FIG. FIG. 10 is a perspective view (a) and a front view (b) of the rotor 20 of the synchronous motor of the modified example 4, and FIG. 10 shows the induced voltage waveform 9 of the synchronous motor using the rotor 20 of the synchronous motor shown in FIG. FIG. 11 shows a comparison with the induced voltage waveform 10 of the synchronous motor using the rotor 20 of the synchronous motor that does not have the magnetic region 5, and FIG. 11 shows the rotation of the synchronous motor shown in FIG. The waveform 29 of the cogging torque of the synchronous motor using 20 shows a comparison with the waveform 30 of the cogging torque of the synchronous motor using the rotor 20 of the synchronous motor without a non-magnetic region 5.

図1により、同期電動機の回転子20の構成を説明する。以下、同期電動機の回転子20を単に回転子と呼ぶ場合もある。同期電動機の回転子20は、電磁鋼板を積層して形成される回転子鉄心1と、永久磁石4とを備える。回転子鉄心1は、該回転子鉄心1の外周縁に沿って四角形状に形成される四箇所の永久磁石4が挿入される磁石挿入孔2を備える。夫々の磁石挿入孔2は、断面形状が周方向に長い長方形である。また、回転子鉄心1は、中心部に回転軸が嵌合する回転軸嵌合孔3を備える。さらに、回転子鉄心1は、該回転子鉄心1の両端付近の永久磁石4の外側鉄心部に、非磁性体領域5を備える。回転子鉄心1の磁石挿入孔2、回転軸嵌合孔3、非磁性体領域5以外は、磁性体領域(鉄心部)である。磁性体領域の中の磁石挿入孔2よりも外側の部分を外周磁性体領域6と呼ぶ。   The configuration of the rotor 20 of the synchronous motor will be described with reference to FIG. Hereinafter, the rotor 20 of the synchronous motor may be simply referred to as a rotor. A rotor 20 of a synchronous motor includes a rotor core 1 formed by laminating electromagnetic steel plates and a permanent magnet 4. The rotor core 1 includes magnet insertion holes 2 into which four permanent magnets 4 formed in a quadrangular shape along the outer peripheral edge of the rotor core 1 are inserted. Each magnet insertion hole 2 is a rectangle whose cross-sectional shape is long in the circumferential direction. Further, the rotor core 1 includes a rotation shaft fitting hole 3 in which a rotation shaft is fitted at the center. Further, the rotor core 1 includes a non-magnetic region 5 in the outer core portion of the permanent magnet 4 near both ends of the rotor core 1. Except for the magnet insertion hole 2, the rotation shaft fitting hole 3, and the nonmagnetic material region 5 of the rotor iron core 1, the magnetic material region (iron core part). A portion outside the magnet insertion hole 2 in the magnetic region is referred to as an outer peripheral magnetic region 6.

非磁性体領域5は、軸方向両端近傍で、各1磁極の永久磁石4の外側部分の両端に設けられている。1磁極につき、計四箇所に三角形状(略直角三角形)の非磁性体領域5が形成されている。略直角三角形の非磁性体領域5は、その直角三角形の直角をなす二辺の一辺が磁極間の近辺で磁極間に平行に配置され、且つ他の一辺が回転子鉄心1の軸方向端面に一致する。   The non-magnetic regions 5 are provided at both ends of the outer portion of each one-pole permanent magnet 4 in the vicinity of both ends in the axial direction. Triangular (substantially right-angled triangular) nonmagnetic regions 5 are formed at a total of four locations for each magnetic pole. The non-magnetic region 5 having a substantially right triangle has two sides forming a right angle of the right triangle arranged in parallel between the magnetic poles in the vicinity of the magnetic poles, and the other side on the axial end surface of the rotor core 1. Match.

従って、非磁性体領域5の断面積は、図2〜図3に示すように、回転子鉄心1の軸方向端部から中心付近に向かうにつれ、小さくなる。図4に示すように、回転子鉄心1の軸方向の中心付近には、非磁性体領域5は存在しない。   Therefore, as shown in FIGS. 2 to 3, the cross-sectional area of the non-magnetic region 5 becomes smaller from the axial end of the rotor core 1 toward the center. As shown in FIG. 4, the nonmagnetic region 5 does not exist near the center of the rotor core 1 in the axial direction.

上記のように非磁性体領域5を形成することによって、各1磁極を構成する永久磁石4の外周面に対向する外周磁性体領域6は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。   By forming the nonmagnetic region 5 as described above, the outer peripheral magnetic region 6 facing the outer peripheral surface of the permanent magnet 4 constituting each one magnetic pole has a large area near the center of the magnetic pole, and between the magnetic poles. The shape is reduced in area.

同期電動機の回転子20が回転するとき、固定子のティースに対向する外周磁性体領域6の面積は、非磁性体領域5が無い回転子の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor 20 of the synchronous motor rotates, the area of the outer peripheral magnetic region 6 facing the stator teeth is proportional to the rotation angle of the rotor in the case of the rotor without the non-magnetic region 5. Increase gradually.

これに対して、非磁性体領域5を有する同期電動機の回転子20では、回転子の回転角に対して、初めは固定子のティースに対向する外周磁性体領域6の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor 20 of the synchronous motor having the nonmagnetic material region 5, the area of the outer peripheral magnetic material region 6 facing the stator teeth is small with respect to the rotation angle of the rotor. The area increases gradually.

回転子表面の全面に外周磁性体領域6がある場合、永久磁石4より発生する磁束は、外周磁性体領域6の中で容易に方向を変えてしまう。そのため、回転子の回転中に外周磁性体領域6の一部が固定子のティースに対向し始めると、固定子のスロット開口部のより磁気抵抗の少ない対向部分に磁束が急に集中するため、対向をはじめたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが生じて同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When the outer peripheral magnetic region 6 is on the entire surface of the rotor, the magnetic flux generated from the permanent magnet 4 easily changes direction in the outer peripheral magnetic region 6. Therefore, if a part of the outer peripheral magnetic body region 6 starts to face the teeth of the stator during the rotation of the rotor, the magnetic flux suddenly concentrates on the facing portion with less magnetic resistance of the slot opening of the stator. The magnetic flux flowing into the teeth that have started facing each other suddenly increases. This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor, which causes vibration and noise.

本実施の形態による同期電動機の回転子20は、回転子が回転するときに、外周磁性体領域6が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the synchronous motor rotor 20 according to the present embodiment, when the rotor rotates, the area where the outer peripheral magnetic region 6 is opposed to the teeth of the stator is small at first, and gradually as the rotation proceeds toward the magnetic pole center. In addition, the amount of increase in area increases. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

通常、永久磁石4を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心1を用いることが多く、図1に示す回転子鉄心1は、非磁性体領域5を構成するための電磁鋼板を打ち抜く穴の形状を、積層する電磁鋼板ごとに徐々に変化させることで図1に示すような同期電動機の回転子20を実現できる。   Usually, in the case of a rotor in which the permanent magnet 4 is disposed inside the rotor, the rotor core 1 in which electromagnetic steel plates are laminated is often used, and the rotor core 1 shown in FIG. The rotor 20 of a synchronous motor as shown in FIG. 1 is realizable by changing gradually the shape of the hole which punches out the electromagnetic steel plate for every electromagnetic steel plate to laminate | stack.

しかし、この場合は、打ち抜く電磁鋼板の種類が多くなるため、大規模な金型、プレス設備が必要となる。   However, in this case, since there are many types of electromagnetic steel sheets to be punched, a large-scale mold and press equipment are required.

これに対して、図6に示す変形例1の同期電動機の回転子20は、同一形状の電磁鋼板を複数枚連続して積層し、非磁性体領域5の周方向長さを回転軸方向に対して階段状に変化させている。   On the other hand, the rotor 20 of the synchronous motor of Modification 1 shown in FIG. 6 is formed by successively laminating a plurality of electromagnetic steel plates having the same shape, and the circumferential length of the nonmagnetic material region 5 is set in the direction of the rotation axis. On the other hand, it is changed in steps.

このようにすることで、非磁性体領域5を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   By doing in this way, the kind of electromagnetic steel plate for comprising the nonmagnetic material area | region 5 can be reduced, and the scale of a metal mold | die and a press installation can be reduced.

また、図7(a)に示す変形例2の同期電動機の回転子20のように、非磁性体領域5を、軸方向に開けられる複数のスリット孔7a,7b,7c,7dを備えるスリット孔7で構成してもよい。スリット孔7の深さを磁極間に近いほど深く、磁極中心に近くなるに従って浅くする。即ち、スリット孔7a,7b,7c,7dの軸方向の深さをd7a、d7b、d7c、d7dとすると、
d7a>d7b>d7c>d7d
である。
Moreover, like the rotor 20 of the synchronous motor of the modification 2 shown to Fig.7 (a), the slit hole provided with several slit hole 7a, 7b, 7c, 7d which can open the nonmagnetic material area | region 5 to an axial direction. 7 may be used. The depth of the slit hole 7 is deeper as it is closer to the magnetic pole, and is made shallower as it gets closer to the center of the magnetic pole. That is, if the axial depths of the slit holes 7a, 7b, 7c, 7d are d7a, d7b, d7c, d7d,
d7a>d7b>d7c> d7d
It is.

このように構成することで、図1に示す非磁性体領域5に近い効果が得られる。また、非磁性体領域5を構成するために電磁鋼板を打ち抜く穴も、図7(b)に示すようにその数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   By comprising in this way, the effect close | similar to the nonmagnetic material area | region 5 shown in FIG. 1 is acquired. Moreover, since holes for punching out electromagnetic steel sheets to form the non-magnetic region 5 can be realized by changing the number thereof as shown in FIG. 7 (b), manufacturing with a small-scale mold and press equipment is possible. Is possible.

図7(b)のA部断面は、図7(a)のA部の断面を示す。以下、B部断面〜E部断面も同様である。   A section A section of FIG. 7B shows a section of section A of FIG. The same applies to the B section to the E section.

また、図8(a)に示す変形例3の同期電動機の回転子20のように、非磁性体領域5を軸方向の長さの異なる複数の非磁性空間8a,8b,8c,8dを備える非磁性空間8で構成することでも実現は可能である。   Moreover, like the rotor 20 of the synchronous motor of the modification 3 shown to Fig.8 (a), the nonmagnetic material area | region 5 is provided with several nonmagnetic space 8a, 8b, 8c, 8d from which the length of an axial direction differs. Realization is also possible by configuring the non-magnetic space 8.

図8(a)の場合、非磁性空間8は回転子の軸方向の両端に体積の大きい空間が配置され、中心付近に向かうに従って、体積の小さい(軸方向寸法の小さい)空間が配置される。即ち、非磁性空間8a,8b,8c,8dの軸方向長さを、L8a,L8b,L8c,L8dとすると、
L8a>L8b>L8c>L8d
である。
In the case of FIG. 8A, in the nonmagnetic space 8, spaces having large volumes are arranged at both ends in the axial direction of the rotor, and spaces having a small volume (small dimensions in the axial direction) are arranged toward the vicinity of the center. . That is, when the axial lengths of the nonmagnetic spaces 8a, 8b, 8c, and 8d are L8a, L8b, L8c, and L8d,
L8a>L8b>L8c> L8d
It is.

また、非磁性空間8a,8b,8c,8d同志の間隔は、軸方向中心に向かって徐々に広くなっている。このように非磁性空間8を配置することで、その部分の軸方向の磁性体の密度が変化して、軸方向中心付近の磁性体の密度が高くなり、図1に示す同期電動機の回転子20と同様の外周磁性体領域6の形状を模擬できる。このため、図1に示す同期電動機の回転子20と同様の効果が得られる。   Further, the intervals between the nonmagnetic spaces 8a, 8b, 8c, and 8d are gradually increased toward the center in the axial direction. By disposing the nonmagnetic space 8 in this way, the density of the magnetic material in the axial direction of the portion changes, and the density of the magnetic material near the center in the axial direction increases, and the rotor of the synchronous motor shown in FIG. The shape of the outer peripheral magnetic body region 6 similar to 20 can be simulated. For this reason, the effect similar to the rotor 20 of the synchronous motor shown in FIG. 1 is acquired.

図8(a)の同期電動機の回転子20の場合、積層する電磁鋼板の形状は、非磁性空間8を構成するための穴の有無で2種類の形状で構成が可能であるため、さらに製造設備の小型化、低コスト化が可能である。   In the case of the rotor 20 of the synchronous motor of FIG. 8A, the shape of the electromagnetic steel plates to be laminated can be configured in two types with or without holes for forming the nonmagnetic space 8, and thus further manufactured. The equipment can be downsized and the cost can be reduced.

本実施の形態による同期電動機の回転子20は、永久磁石4の表面の外周磁性体領域6にスリットの無い部分が多く存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   Since the rotor 20 of the synchronous motor according to the present embodiment has many slit-free portions in the outer peripheral magnetic body region 6 on the surface of the permanent magnet 4, reluctance torque can be used. Torque can be improved.

また、回転子端面付近の磁極間に非磁性体領域5を設けると、永久磁石4のこの非磁性体領域5に対向する部分から、軸方向へ磁束が漏れやすくなるため、ホールIC(ホールICとは、ホールエレメント、アンプ、Schmitt trigger回路と出力トランジスタを1チップのシリコン上に組み込んだもの)等のセンサを用いて回転子の磁極を検出しようとする場合には、回転子端面の磁束を拾いやすくなる。   Further, if the non-magnetic region 5 is provided between the magnetic poles near the rotor end face, the magnetic flux easily leaks from the portion of the permanent magnet 4 facing the non-magnetic region 5 in the axial direction. Means to detect the magnetic pole of the rotor using a sensor such as a Hall element, an amplifier, a Schmitt trigger circuit and an output transistor on a single chip of silicon). It becomes easy to pick up.

回転子端面付近の磁極間に非磁性体領域5を設ける回転子の場合、永久磁石4の非磁性体領域5に対向する部分は、非磁性体領域5の磁気抵抗が大きく、表面に外周磁性体領域6を有する部分に比べると、発生する磁束が少なくなる。回転子鉄心1の内部に埋め込む永久磁石4には、希土類の高価な永久磁石4を用いることが多く、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the case of the rotor in which the nonmagnetic material region 5 is provided between the magnetic poles near the rotor end face, the portion of the permanent magnet 4 facing the nonmagnetic material region 5 has a large magnetic resistance in the nonmagnetic material region 5 and has a peripheral magnetic property on the surface. Compared with the portion having the body region 6, the generated magnetic flux is reduced. As the permanent magnet 4 embedded in the rotor core 1, rare earth expensive permanent magnets 4 are often used, which is not always optimal from the viewpoint of cost performance.

この場合、図9(a)に示すように、永久磁石4の形状を外周磁性体領域6と同様の形状として、非磁性体領域5に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石4の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In this case, as shown in FIG. 9 (a), the shape of the permanent magnet 4 is made the same as that of the outer peripheral magnetic region 6, and the area with respect to the non-magnetic region 5 is reduced. With respect to the amount of permanent magnet 4 used, magnetic flux can be extracted effectively, and a rotor with good cost performance can be obtained.

図8(a)に示す非磁性空間8を非磁性体領域5として用いる場合、図9(b)のような形状の永久磁石4を挿入することで、外周磁性体領域6と同形状の永久磁石4を挿入した回転子と同様の効果が得られる回転子が実現可能である。   When the nonmagnetic space 8 shown in FIG. 8A is used as the nonmagnetic material region 5, the permanent magnet 4 having the shape as shown in FIG. A rotor capable of obtaining the same effect as the rotor with the magnet 4 inserted can be realized.

以下に、シミュレーションにて求めた、図6に示す同期電動機の回転子20を用いた同期電動機の誘起電圧波形9及びコギングトルクの波形29を、図10及び図11に示す。同期電動機には、以下に示す仕様のものを使用した。
(1)固定子:外径φ100、内径φ52、高さ(コア幅)40mm、6スロット。
(2)回転子:外径φ50、高さ(コア幅)40mm、4極。
(3)非磁性体領域5:直角三角形のもので、直角三角形の二辺の長さが永久磁石4の縦、横のそれぞれの寸法の略1/3になるようにした。
図10は、図6に示す同期電動機の回転子20を用いた同期電動機の誘起電圧波形9を示したものである。比較のため、非磁性体領域5を持たない同期電動機の回転子20を用いた同期電動機の誘起電圧波形10も同時に示している。
FIG. 10 and FIG. 11 show the induced voltage waveform 9 and the cogging torque waveform 29 of the synchronous motor using the synchronous motor rotor 20 shown in FIG. A synchronous motor having the following specifications was used.
(1) Stator: outer diameter φ100, inner diameter φ52, height (core width) 40 mm, 6 slots.
(2) Rotor: outer diameter φ50, height (core width) 40 mm, 4 poles.
(3) Non-magnetic region 5: a right-angled triangle, and the length of two sides of the right-angled triangle is set to be approximately 1/3 of the vertical and horizontal dimensions of the permanent magnet 4.
FIG. 10 shows an induced voltage waveform 9 of the synchronous motor using the rotor 20 of the synchronous motor shown in FIG. For comparison, an induced voltage waveform 10 of the synchronous motor using the rotor 20 of the synchronous motor that does not have the nonmagnetic region 5 is also shown.

回転子外周に非磁性体領域5を持たない回転子を用いたときの誘起電圧波形10に比べると、図6の同期電動機の回転子20を用いた同期電動機の誘起電圧波形9は、波形の歪みが少なくなっていることがわかる。   Compared to the induced voltage waveform 10 when using a rotor that does not have the nonmagnetic region 5 on the outer periphery of the rotor, the induced voltage waveform 9 of the synchronous motor using the rotor 20 of the synchronous motor of FIG. It can be seen that the distortion is reduced.

また、図11は、図6に示す同期電動機の回転子20を用いた同期電動機のコギングトルクの波形29を示す。比較のため、非磁性体領域5を持たない同期電動機の回転子20を用いた同期電動機のコギングトルクの波形30も同時に示している。これより、図6に示す同期電動機の回転子20を用い同期電動機のコギングトルクの波形29が、非磁性体領域5を持たない同期電動機の回転子20を用いた同期電動機のコギングトルクの波形30よりも小さくなっていることがわかる。   FIG. 11 shows a cogging torque waveform 29 of the synchronous motor using the synchronous motor rotor 20 shown in FIG. For comparison, a waveform 30 of the cogging torque of the synchronous motor using the rotor 20 of the synchronous motor not having the nonmagnetic material region 5 is also shown. Accordingly, the cogging torque waveform 29 of the synchronous motor using the synchronous motor rotor 20 shown in FIG. 6 is the same as the cogging torque waveform 30 of the synchronous motor using the synchronous motor rotor 20 having no non-magnetic region 5. You can see that it is smaller.

実施の形態2.
図12乃至図16は実施の形態2を示す図で、図12は同期電動機の回転子20の斜視図、図13は変形例1の同期電動機の回転子20の斜視図、図14は変形例2の同期電動機の回転子20の斜視図、図15は変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)、図16は変形例4の同期電動機の回転子20の斜視図(a)及び正面図(b)である。
Embodiment 2. FIG.
FIGS. 12 to 16 are diagrams showing the second embodiment, FIG. 12 is a perspective view of the rotor 20 of the synchronous motor, FIG. 13 is a perspective view of the rotor 20 of the synchronous motor of the first modification, and FIG. 14 is a modification. 15 is a perspective view of the rotor 20 of the synchronous motor of FIG. 2, FIG. 15 is a perspective view (a) and a front sectional view (b) of the rotor 20 of the synchronous motor of Modification 3, and FIG. It is the perspective view (a) and front view (b) of the child 20.

図12により、同期電動機の回転子20の構成を説明する。以下、同期電動機の回転子20を単に回転子と呼ぶ場合もある。同期電動機の回転子20は、電磁鋼板を積層して形成される回転子鉄心1と、永久磁石4とを備える。回転子鉄心1は、該回転子鉄心1の外周縁に沿って四角形状に形成される四箇所の永久磁石4が挿入される磁石挿入孔2を備える。夫々の磁石挿入孔2は、断面形状が周方向に長い長方形である。また、回転子鉄心1は、中心部に回転軸が嵌合する回転軸嵌合孔3を備える。さらに、回転子鉄心1は、該回転子鉄心1の軸方向中心付近の永久磁石4の外側に、非磁性体領域5を備える。回転子鉄心1の磁石挿入孔2、回転軸嵌合孔3、非磁性体領域5以外は、磁性体領域(鉄心部)である。磁性体領域の中の磁石挿入孔2よりも外側の部分を外周磁性体領域6と呼ぶ。   The configuration of the rotor 20 of the synchronous motor will be described with reference to FIG. Hereinafter, the rotor 20 of the synchronous motor may be simply referred to as a rotor. A rotor 20 of a synchronous motor includes a rotor core 1 formed by laminating electromagnetic steel plates and a permanent magnet 4. The rotor core 1 includes magnet insertion holes 2 into which four permanent magnets 4 formed in a quadrangular shape along the outer peripheral edge of the rotor core 1 are inserted. Each magnet insertion hole 2 is a rectangle whose cross-sectional shape is long in the circumferential direction. Further, the rotor core 1 includes a rotation shaft fitting hole 3 in which a rotation shaft is fitted at the center. Further, the rotor core 1 includes a non-magnetic region 5 outside the permanent magnet 4 near the axial center of the rotor core 1. Except for the magnet insertion hole 2, the rotation shaft fitting hole 3, and the nonmagnetic material region 5 of the rotor iron core 1, the magnetic material region (iron core part). A portion outside the magnet insertion hole 2 in the magnetic region is referred to as an outer peripheral magnetic region 6.

非磁性体領域5は、回転子鉄心1の軸方向中心付近で、1磁極の両端に設けられている。1磁極当たり二箇所の非磁性体領域5が存在する。   The non-magnetic region 5 is provided at both ends of one magnetic pole in the vicinity of the axial center of the rotor core 1. There are two non-magnetic regions 5 per magnetic pole.

非磁性体領域5の形状は、正面から見て略二等辺三角形である。そして、二等辺三角形の底辺が磁極間近傍に、且つ磁極間に平行に位置する。   The shape of the nonmagnetic material region 5 is a substantially isosceles triangle as viewed from the front. And the base of an isosceles triangle is located in the vicinity of between the magnetic poles and in parallel between the magnetic poles.

従って、非磁性体領域5の断面積は、回転子鉄心1の軸方向中心付近から軸方向両端に向かうに従って、徐々に隣り合う磁極間の近辺に配置されながら小さくなっている。   Accordingly, the cross-sectional area of the non-magnetic region 5 is gradually reduced in the vicinity of the adjacent magnetic poles from the vicinity of the axial center of the rotor core 1 toward both ends in the axial direction.

これにより、1磁極を構成する永久磁石4の外周面に対向する外周磁性体領域6は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。   As a result, the outer peripheral magnetic body region 6 facing the outer peripheral surface of the permanent magnet 4 constituting one magnetic pole has a shape in which the area is large near the center of the magnetic pole and the area is small near the magnetic pole.

回転子が回転するとき、固定子のティースに対向する外周磁性体領域6の面積は、非磁性体領域5が無い回転子の場合は、回転子の回転角に比例して、徐々に増加する。   When the rotor rotates, the area of the outer peripheral magnetic region 6 facing the stator teeth gradually increases in proportion to the rotation angle of the rotor in the case of the rotor without the nonmagnetic region 5. .

これに対して、非磁性体領域5を有する回転子では、回転子の回転角に対して、はじめは対向する面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor having the non-magnetic region 5, the increase in the facing area is small at first with respect to the rotation angle of the rotor, and the increase in the area gradually increases.

回転子表面に非磁性体領域5がある場合、永久磁石4より発生する磁束は、外周磁性体領域6の中で容易に方向を変えてしまうため、回転子の回転中に外周磁性体領域6の一部が固定子のティースに対向し始めると、固定子のスロット開口部より磁気抵抗の少ない対向部分に磁束が急に集中するため、対向をはじめたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが発生して、同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When the nonmagnetic material region 5 is present on the rotor surface, the magnetic flux generated from the permanent magnet 4 easily changes direction in the outer magnetic material region 6, so that the outer magnetic material region 6 is rotated during rotation of the rotor. When a part of the wire begins to face the teeth of the stator, the magnetic flux suddenly concentrates on the facing portion having a lower magnetic resistance than the slot opening of the stator, so that the magnetic flux flowing into the teeth starting to face suddenly increases. . This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor and causing vibration and noise.

本実施の形態による同期電動機の回転子20は、回転子が回転するときに、外周磁性体領域6が固定子のティースに対向する面積がはじめ小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   When the rotor rotates, the rotor 20 of the synchronous motor according to the present embodiment has a small area where the outer peripheral magnetic region 6 faces the teeth of the stator, and gradually increases as the rotation proceeds toward the center of the magnetic pole. Increase in area increases. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

通常、永久磁石4を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心1を用いることが多く、図12に示す回転子鉄心1は、非磁性体領域5を構成するための電磁鋼板を打ち抜く穴の形状を、積層する電磁鋼板ごとに徐々に変化させることで図12に示すような同期電動機の回転子20を実現できる。   Usually, in the case of a rotor in which the permanent magnet 4 is disposed inside the rotor, the rotor core 1 in which electromagnetic steel plates are laminated is often used, and the rotor core 1 shown in FIG. The rotor 20 of a synchronous motor as shown in FIG. 12 is realizable by changing gradually the shape of the hole which punches out the electromagnetic steel plate for every electromagnetic steel plate to laminate | stack.

また、図13に示す変形例1の同期電動機の回転子20のように、非磁性体領域5を回転軸方向に対して、階段状に変化させるようにしてもよい。   Moreover, you may make it change the non-magnetic-material area | region 5 to step shape with respect to the rotating shaft direction like the rotor 20 of the synchronous motor of the modification 1 shown in FIG.

このようにすることで、非磁性体領域5を構成するための電磁鋼板の種類を削減でき、金型、プレス設備の規模を縮小できる。   By doing in this way, the kind of electromagnetic steel plate for comprising the nonmagnetic material area | region 5 can be reduced, and the scale of a metal mold | die and a press installation can be reduced.

また、図14に示す変形例2の同期電動機の回転子20のように、非磁性体領域5を、軸方向に開けられる複数のスリット孔7a,7b,7c,7dを備えるスリット孔7で構成してもよい。スリット孔7の軸方向の長さを磁極間に近いほど長く、磁極中心に近くなるに従って短くする。即ち、スリット孔7a,7b,7c,7dの軸方向の長さをd7a、d7b、d7c、d7d、d7eとすると、
d7a>d7b>d7c>d7d
である。
Moreover, like the rotor 20 of the synchronous motor of the modification 2 shown in FIG. 14, the nonmagnetic material region 5 is configured by the slit hole 7 having a plurality of slit holes 7a, 7b, 7c, 7d that can be opened in the axial direction. May be. The length of the slit hole 7 in the axial direction is longer as it is closer to the magnetic pole, and shorter as it is closer to the magnetic pole center. That is, if the axial lengths of the slit holes 7a, 7b, 7c, 7d are d7a, d7b, d7c, d7d, d7e,
d7a>d7b>d7c> d7d
It is.

このように構成することで、図12に示す非磁性体領域5に近い効果が得られる。また、磁束の変化を緩やかにできるため、コギングトルクも小さくすることができる。また、非磁性体領域5を構成するために電磁鋼板を打ち抜く穴も、その数を変更することで実現できることから、規模の小さい金型、プレス設備での製造が可能である。   By comprising in this way, the effect close | similar to the nonmagnetic material area | region 5 shown in FIG. 12 is acquired. In addition, since the change in magnetic flux can be moderated, the cogging torque can be reduced. Further, since holes for punching out electromagnetic steel sheets to form the non-magnetic region 5 can be realized by changing the number thereof, it is possible to manufacture with a small-scale mold and press equipment.

また、図15(a)に示す変形例3の同期電動機の回転子20のように、非磁性体領域5を軸方向の長さの異なる複数の非磁性空間8a,8b,8c,8dを備える非磁性空間8で構成することでも実現は可能である。   Moreover, like the rotor 20 of the synchronous motor of the modification 3 shown to Fig.15 (a), the nonmagnetic body area | region 5 is provided with several nonmagnetic space 8a, 8b, 8c, 8d from which the length of an axial direction differs. Realization is also possible by configuring the non-magnetic space 8.

図15(a)の場合、非磁性空間8は軸方向の中央付近に体積の大きい空間が配置され、両端に向かうに従って体積の小さい(軸方向寸法の小さい)空間が配置される。即ち、非磁性空間8a,8b,8c,8dの軸方向長さを、L8a,L8b,L8c,L8dとすると、
L8a>L8b>L8c>L8d
である。
In the case of FIG. 15A, the nonmagnetic space 8 has a space with a large volume in the vicinity of the center in the axial direction, and a space with a smaller volume (a smaller size in the axial direction) is disposed toward both ends. That is, when the axial lengths of the nonmagnetic spaces 8a, 8b, 8c, and 8d are L8a, L8b, L8c, and L8d,
L8a>L8b>L8c> L8d
It is.

また、図15(b)に示すように、非磁性空間8a,8b,8c,8d同志の間隔は、軸方向中心に向かって徐々に狭くなっている。このように非磁性空間8を配置することで、軸方向の磁性体の密度が変化して、軸方向両端の磁性体の密度が高くなり、図12に示す同期電動機の回転子20と同様の外周磁性体領域6の形状を模擬できる。このため、図15(a)に示す変形例3の同期電動機の回転子20は、図12に示す同期電動機の回転子20と同様の効果が得られる。   Further, as shown in FIG. 15B, the intervals between the nonmagnetic spaces 8a, 8b, 8c, and 8d are gradually narrowed toward the axial center. By disposing the nonmagnetic space 8 in this manner, the density of the magnetic body in the axial direction changes, and the density of the magnetic body at both ends in the axial direction increases, which is the same as the rotor 20 of the synchronous motor shown in FIG. The shape of the outer peripheral magnetic body region 6 can be simulated. For this reason, the rotor 20 of the synchronous motor of the modification 3 shown to Fig.15 (a) can acquire the effect similar to the rotor 20 of the synchronous motor shown in FIG.

本実施の形態による同期電動機の回転子20は、永久磁石4の表面の外周磁性体領域6にスリットの無い部分が多く存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   Since the rotor 20 of the synchronous motor according to the present embodiment has many slit-free portions in the outer peripheral magnetic body region 6 on the surface of the permanent magnet 4, reluctance torque can be used. Torque can be improved.

図12乃至図15に示す同期電動機の回転子20の場合、永久磁石4の非磁性体領域5に対向する部分は、非磁性体領域5の磁気抵抗が大きく、表面に外周磁性体領域6を有する部分に比べると、発生する磁束が少なくなる。永久磁石4を回転子鉄心1の内部に埋め込む回転子に用いる永久磁石4には、希土類の高価な永久磁石4を用いることが多く、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the case of the rotor 20 of the synchronous motor shown in FIGS. 12 to 15, the portion of the permanent magnet 4 that faces the nonmagnetic material region 5 has a large magnetic resistance in the nonmagnetic material region 5, and the outer peripheral magnetic material region 6 is formed on the surface. Compared with the part which has, the generated magnetic flux decreases. The permanent magnet 4 used for the rotor in which the permanent magnet 4 is embedded in the rotor core 1 is often a rare earth expensive permanent magnet 4 and is not necessarily optimal from the viewpoint of cost performance.

この場合、図16(a)に示すように、永久磁石4の形状を外周磁性体領域6と同様の形状となるように、複数(図16(a)の場合は2枚(1磁極当たり))の永久磁石4で構成する。   In this case, as shown in FIG. 16 (a), a plurality of pieces (per magnetic pole in the case of FIG. 16 (a)) are formed so that the shape of the permanent magnet 4 is the same as that of the outer peripheral magnetic body region 6. ) Permanent magnet 4.

そのようにすることで、永久磁石4の磁束量全体は減少する。しかし、非磁性体領域5に対する面積を減らして、永久磁石4の使用量に対して磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   By doing so, the entire magnetic flux amount of the permanent magnet 4 is reduced. However, the area with respect to the non-magnetic material region 5 can be reduced, and the magnetic flux can be effectively extracted with respect to the amount of use of the permanent magnet 4, and a rotor with good cost performance can be obtained.

図15に示す非磁性体領域5を用いた場合、図16(b)のような永久磁石4を挿入することで、外周磁性体領域6と同形状の永久磁石4を挿入した回転子と同様の効果が得られる。   When the nonmagnetic region 5 shown in FIG. 15 is used, by inserting the permanent magnet 4 as shown in FIG. 16B, the same as the rotor in which the permanent magnet 4 having the same shape as the outer peripheral magnetic region 6 is inserted. The effect is obtained.

図12乃至図15において、非磁性体領域5の回転子外周鉄心部及び非磁性体領域5と磁石挿入孔2との間の鉄心部は、薄肉の磁性体で構成されている。特に、回転子外周鉄心部の薄肉部は、剛性が低くなる。反面外周磁性体領域6は、全体が電磁鋼板等の磁性材料で構成されるため剛性は高い。外周磁性体領域6を軸方向端面近くに配置する図12乃至図15に示す同期電動機の回転子20は、外部からの応力による変形がおこりにくい。このため、製造の際の組立や運搬での破損が生じにくい。   12 to 15, the rotor outer peripheral core portion of the nonmagnetic body region 5 and the core portion between the nonmagnetic body region 5 and the magnet insertion hole 2 are made of a thin magnetic body. In particular, the rigidity of the thin portion of the outer peripheral iron core portion is low. On the other hand, since the entire outer peripheral magnetic region 6 is made of a magnetic material such as an electromagnetic steel plate, the rigidity is high. The rotor 20 of the synchronous motor shown in FIGS. 12 to 15 in which the outer peripheral magnetic body region 6 is arranged near the end surface in the axial direction is not easily deformed by external stress. For this reason, it is hard to produce the damage by the assembly at the time of manufacture, and conveyance.

実施の形態3.
図17乃至図21は実施の形態3を示す図で、図17は同期電動機の回転子20の斜視図、図18は変形例1の同期電動機の回転子20の斜視図、図19は変形例2の同期電動機の回転子20の斜視図、図20は変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)、図21は変形例4の同期電動機の回転子20の斜視図(a)及び正面図(b)である。
Embodiment 3 FIG.
FIGS. 17 to 21 are diagrams showing the third embodiment. FIG. 17 is a perspective view of the rotor 20 of the synchronous motor, FIG. 18 is a perspective view of the rotor 20 of the synchronous motor of the first modification, and FIG. 2 is a perspective view of the rotor 20 of the synchronous motor of FIG. 2, FIG. 20 is a perspective view (a) and a front sectional view (b) of the rotor 20 of the synchronous motor of Modification 3, and FIG. 21 is the rotation of the synchronous motor of Modification 4. It is the perspective view (a) and front view (b) of the child 20.

図17により、同期電動機の回転子20の構成を説明する。以下、同期電動機の回転子20を単に回転子と呼ぶ場合もある。同期電動機の回転子20は、電磁鋼板を積層して形成される回転子鉄心1と、永久磁石4とを備える。回転子鉄心1は、該回転子鉄心1の外周縁に沿って四角形状に形成される四箇所の永久磁石4が挿入される磁石挿入孔2を備える。夫々の磁石挿入孔2は、断面形状が周方向に長い長方形である。また、回転子鉄心1は、中心部に回転軸が嵌合する回転軸嵌合孔3を備える。さらに、回転子鉄心1は、該回転子鉄心1の両端付近の永久磁石4の外側に、非磁性体領域5を備える。回転子鉄心1の磁石挿入孔2、回転軸嵌合孔3、非磁性体領域5以外は、磁性体領域(鉄心部)である。磁性体領域の中の磁石挿入孔2よりも外側の部分を外周磁性体領域6と呼ぶ。   The configuration of the rotor 20 of the synchronous motor will be described with reference to FIG. Hereinafter, the rotor 20 of the synchronous motor may be simply referred to as a rotor. A rotor 20 of a synchronous motor includes a rotor core 1 formed by laminating electromagnetic steel plates and a permanent magnet 4. The rotor core 1 includes magnet insertion holes 2 into which four permanent magnets 4 formed in a quadrangular shape along the outer peripheral edge of the rotor core 1 are inserted. Each magnet insertion hole 2 is a rectangle whose cross-sectional shape is long in the circumferential direction. Further, the rotor core 1 includes a rotation shaft fitting hole 3 in which a rotation shaft is fitted at the center. Furthermore, the rotor core 1 includes a non-magnetic region 5 outside the permanent magnet 4 near both ends of the rotor core 1. Except for the magnet insertion hole 2, the rotation shaft fitting hole 3, and the nonmagnetic material region 5 of the rotor iron core 1, the magnetic material region (iron core part). A portion outside the magnet insertion hole 2 in the magnetic region is referred to as an outer peripheral magnetic region 6.

非磁性体領域5は、1磁極当たり2箇所に設けられる。夫々の非磁性体領域5は、回転子鉄心1の軸方向両端に分かれて、1磁極を構成する永久磁石4の対角線上に配置される。即ち、一の非磁性体領域5は、隣接する一方の磁極間近傍に設けられる。他の非磁性体領域5は、隣接する他方の磁極間近傍に設けられる。   The nonmagnetic material regions 5 are provided at two locations per magnetic pole. Each non-magnetic region 5 is divided at both ends in the axial direction of the rotor core 1 and is arranged on a diagonal line of the permanent magnet 4 constituting one magnetic pole. That is, one nonmagnetic region 5 is provided in the vicinity of one adjacent magnetic pole. The other nonmagnetic region 5 is provided in the vicinity of the other adjacent magnetic pole.

その断面積は、回転子の軸方向から見て中心付近に向かうに従って、徐々に隣り合う磁極間の近辺に配置されながら小さくなっている。これによって、1磁極を構成する永久磁石4の外周面に対向する外周磁性体領域6は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状をとる。   The cross-sectional area gradually decreases in the vicinity of the adjacent magnetic poles as it approaches the center as viewed from the axial direction of the rotor. As a result, the outer peripheral magnetic body region 6 facing the outer peripheral surface of the permanent magnet 4 constituting one magnetic pole has a shape in which the area is large near the center of the magnetic pole and the area is small near the magnetic pole.

1磁極につき、計二箇所に三角形状(略直角三角形)の非磁性体領域5が形成されている。略直角三角形の非磁性体領域5は、その直角三角形の直角をなす二辺の一辺が磁極間の近辺で磁極間に平行に配置され、且つ他の一辺が回転子鉄心1の軸方向端面に一致する。   Triangular (substantially right-angled triangular) non-magnetic regions 5 are formed in two places per magnetic pole. The non-magnetic region 5 having a substantially right triangle has two sides forming a right angle of the right triangle arranged in parallel between the magnetic poles in the vicinity of the magnetic poles, and the other side on the axial end surface of the rotor core 1. Match.

従って、非磁性体領域5の断面積は、回転子鉄心1の軸方向端部から中心付近に向かうにつれ、小さくなる。回転子鉄心1の軸方向の中心付近には、非磁性体領域5は存在しない。   Therefore, the cross-sectional area of the non-magnetic region 5 becomes smaller from the axial end of the rotor core 1 toward the center. Near the center of the rotor core 1 in the axial direction, the non-magnetic region 5 does not exist.

上記のように非磁性体領域5を形成することによって、各1磁極を構成する永久磁石4の外周面に対向する外周磁性体領域6は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状となる。   By forming the nonmagnetic region 5 as described above, the outer peripheral magnetic region 6 facing the outer peripheral surface of the permanent magnet 4 constituting each one magnetic pole has a large area near the center of the magnetic pole, and between the magnetic poles. The shape is reduced in area.

同期電動機の回転子20が回転するとき、固定子のティースに対向する外周磁性体領域6の面積は、非磁性体領域5が無い回転子の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor 20 of the synchronous motor rotates, the area of the outer peripheral magnetic region 6 facing the stator teeth is proportional to the rotation angle of the rotor in the case of the rotor without the non-magnetic region 5. Increase gradually.

これに対して、非磁性体領域5を有する同期電動機の回転子20では、回転子の回転角に対して、初めは固定子のティースに対向する外周磁性体領域6の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor 20 of the synchronous motor having the nonmagnetic material region 5, the area of the outer peripheral magnetic material region 6 facing the stator teeth is small with respect to the rotation angle of the rotor. The area increases gradually.

回転子表面の全面に外周磁性体領域6がある場合、永久磁石4より発生する磁束は、外周磁性体領域6の中で容易に方向を変えてしまう。そのため、回転子の回転中に外周磁性体領域6の一部が固定子のティースに対向し始めると、固定子のスロット開口部より磁気抵抗の少ない対向部分に磁束が急に集中するため、対向をはじめたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが生じて同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When the outer peripheral magnetic region 6 is on the entire surface of the rotor, the magnetic flux generated from the permanent magnet 4 easily changes direction in the outer peripheral magnetic region 6. Therefore, if a part of the outer peripheral magnetic body region 6 starts to face the teeth of the stator during the rotation of the rotor, the magnetic flux suddenly concentrates on the facing portion having a lower magnetic resistance than the slot opening of the stator. The magnetic flux flowing into the teeth starting with a sudden increase. This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor, which causes vibration and noise.

本実施の形態による同期電動機の回転子20は、回転子が回転するときに、外周磁性体領域6が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the synchronous motor rotor 20 according to the present embodiment, when the rotor rotates, the area where the outer peripheral magnetic region 6 is opposed to the teeth of the stator is small at first, and gradually as the rotation proceeds toward the magnetic pole center. In addition, the amount of increase in area increases. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

これは、表面に永久磁石4を配置した回転子において、磁極にスキューをかけた回転子と同様の効果である。また、磁束の変化を緩やかにできるため、コギングトルクも小さくすることができる。   This is the same effect as the rotor in which the permanent magnet 4 is arranged on the surface and the magnetic pole is skewed. In addition, since the change in magnetic flux can be moderated, the cogging torque can be reduced.

通常、永久磁石4を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心1を用いることが多く、図17に示す同期電動機の回転子20は、実施の形態1,2と同様、非磁性体領域5を構成するために電磁鋼板を打ち抜く穴の形状を、積層する電磁鋼板ごとに徐々に変化させることで実現できる。   Usually, in the case of a rotor in which the permanent magnet 4 is arranged inside the rotor, the rotor core 1 in which electromagnetic steel plates are laminated is often used, and the rotor 20 of the synchronous motor shown in FIG. Similarly to the above, it can be realized by gradually changing the shape of the hole through which the electromagnetic steel sheet is punched in order to constitute the non-magnetic region 5 for each electromagnetic steel sheet to be laminated.

また、図18に示す変形例1の同期電動機の回転子20のように、非磁性体領域5を回転軸方向に対して、階段状に変化させることで、非磁性体領域5を構成する電磁鋼板の種類を削減できる。   Further, like the rotor 20 of the synchronous motor according to the first modification shown in FIG. 18, the nonmagnetic material region 5 is changed stepwise with respect to the rotation axis direction, thereby forming the nonmagnetic material region 5. The type of steel sheet can be reduced.

あるいは、図19に示す変形例2の同期電動機の回転子20のように、非磁性体領域5を複数のスリット孔7a,7b,7c,7dで構成してもよい。スリット孔7の軸方向の長さを磁極間に近いほど長く、磁極中心に近くなるに従って短くする。即ち、スリット孔7a,7b,7c,7dの軸方向の長さをd7a、d7b、d7c、d7d、d7eとすると、
d7a>d7b>d7c>d7d
である。
Or you may comprise the non-magnetic-material area | region 5 by several slit hole 7a, 7b, 7c, 7d like the rotor 20 of the synchronous motor of the modification 2 shown in FIG. The length of the slit hole 7 in the axial direction is longer as it is closer to the magnetic pole, and shorter as it is closer to the magnetic pole center. That is, if the axial lengths of the slit holes 7a, 7b, 7c, 7d are d7a, d7b, d7c, d7d, d7e,
d7a>d7b>d7c> d7d
It is.

このように構成することで、図17の非磁性体領域5に近い効果が得られ、非磁性体領域5を構成するための電磁鋼板を打ち抜く穴もその数を変更することで実現できることから、規模の小さい金型、プレス設備での製造ができる。   By configuring in this way, an effect close to the non-magnetic region 5 of FIG. 17 is obtained, and the holes for punching the electromagnetic steel plate for configuring the non-magnetic region 5 can be realized by changing the number of the holes, Small-scale molds and press facilities can be manufactured.

図20(a)に示す変形例3の同期電動機の回転子20のように、非磁性体領域5を軸方向の長さの異なる複数の非磁性空間8a,8b,8c,8d,8eを備える非磁性空間8で構成することでも実現は可能である。   Like the rotor 20 of the synchronous motor of the modification 3 shown to Fig.20 (a), the nonmagnetic material area | region 5 is provided with several nonmagnetic space 8a, 8b, 8c, 8d, 8e from which the length of an axial direction differs. Realization is also possible by configuring the non-magnetic space 8.

図20(a)の場合、非磁性空間8は軸方向の中央付近に体積の小さい空間が配置され、両端に向かうに従って体積の大きい(軸方向寸法の大きい)空間が配置される。即ち、非磁性空間8a,8b,8c,8d,8eの軸方向長さを、L8a,L8b,L8c,L8d,L8eとすると、
L8a>L8b>L8c>L8d>L8e
である。
In the case of FIG. 20A, in the nonmagnetic space 8, a space with a small volume is disposed near the center in the axial direction, and a space with a larger volume (a larger dimension in the axial direction) is disposed toward both ends. That is, when the axial lengths of the nonmagnetic spaces 8a, 8b, 8c, 8d, and 8e are L8a, L8b, L8c, L8d, and L8e,
L8a>L8b>L8c>L8d> L8e
It is.

また、図20(b)に示すように、非磁性空間8a,8b,8c,8d,8e同志の間隔は、軸方向中心に向かって徐々に広くなっている。このように非磁性空間8を配置することで、軸方向の磁性体の密度が変化して、軸方向両端の磁性体の密度が高くなり、図17に示す同期電動機の回転子20と同様の外周磁性体領域6の形状を模擬できる。このため、図20(a)に示す変形例3の同期電動機の回転子20は、図17に示す同期電動機の回転子20と同様の効果が得られる。   As shown in FIG. 20B, the intervals between the nonmagnetic spaces 8a, 8b, 8c, 8d, and 8e are gradually increased toward the center in the axial direction. By disposing the nonmagnetic space 8 in this way, the density of the magnetic body in the axial direction changes, and the density of the magnetic body at both ends in the axial direction increases, which is the same as the rotor 20 of the synchronous motor shown in FIG. The shape of the outer peripheral magnetic body region 6 can be simulated. For this reason, the rotor 20 of the synchronous motor of the modification 3 shown to Fig.20 (a) can acquire the effect similar to the rotor 20 of the synchronous motor shown in FIG.

図20(a)の同期電動機の回転子20の場合、積層する電磁鋼板は、非磁性空間8を構成するための穴の位置の違う2種類と、非磁性空間8を構成するための穴の無い1種類との計3種類であるため、製造設備の小型化、低コスト化が可能である。   In the case of the rotor 20 of the synchronous motor shown in FIG. 20A, the electromagnetic steel plates to be laminated include two types of holes having different positions for forming the nonmagnetic space 8 and holes for forming the nonmagnetic space 8. Since there are a total of three types, one with no, manufacturing equipment can be reduced in size and cost.

本実施の形態による同期電動機の回転子20は、永久磁石4の表面の外周磁性体領域6にスリットの無い部分が多く存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   Since the rotor 20 of the synchronous motor according to the present embodiment has many slit-free portions in the outer peripheral magnetic body region 6 on the surface of the permanent magnet 4, reluctance torque can be used. Torque can be improved.

また、本実施の形態の同期電動機の回転子20の場合、隣り合う磁極の間を非磁性体領域5で大きく隔離できるため、磁極間の磁束の短絡を少なくでき、より多くの磁束を回転子表面に出すことができる。   Further, in the case of the rotor 20 of the synchronous motor according to the present embodiment, since the adjacent magnetic poles can be largely separated by the nonmagnetic material region 5, the short circuit of the magnetic flux between the magnetic poles can be reduced, and more magnetic flux can be transferred to the rotor. Can be put on the surface.

図17乃至図20に示す同期電動機の回転子20の場合、永久磁石4の非磁性体領域5に対向する部分は、非磁性体領域5の磁気抵抗が大きく、表面に外周磁性体領域6を有する部分に比べると、発生する磁束が少なくなる。永久磁石4を回転子鉄心1の内部に埋め込む回転子に用いる永久磁石4には、希土類の高価な永久磁石4を用いることが多く、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the case of the rotor 20 of the synchronous motor shown in FIGS. 17 to 20, the portion of the permanent magnet 4 facing the nonmagnetic material region 5 has a large magnetic resistance of the nonmagnetic material region 5, and the outer peripheral magnetic material region 6 is formed on the surface. Compared with the part which has, the generated magnetic flux decreases. The permanent magnet 4 used for the rotor in which the permanent magnet 4 is embedded in the rotor core 1 is often a rare earth expensive permanent magnet 4 and is not necessarily optimal from the viewpoint of cost performance.

この場合、図21(a)に示すように、永久磁石4の形状を外周磁性体領域6と同様の形状として、非磁性体領域5に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石4の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In this case, as shown in FIG. 21A, the shape of the permanent magnet 4 is the same as that of the outer peripheral magnetic body region 6, and the area with respect to the non-magnetic body region 5 is reduced. With respect to the amount of permanent magnet 4 used, magnetic flux can be extracted effectively, and a rotor with good cost performance can be obtained.

図20(a)に示す非磁性空間8を非磁性体領域5として用いる場合、図21(b)のような形状の永久磁石4を挿入することで、外周磁性体領域6と同形状の永久磁石4を挿入した回転子と同様の効果が得られる回転子が実現可能である。   When the nonmagnetic space 8 shown in FIG. 20A is used as the nonmagnetic material region 5, the permanent magnet 4 having the shape as shown in FIG. A rotor capable of obtaining the same effect as the rotor with the magnet 4 inserted can be realized.

実施の形態4.
図22乃至図26は実施の形態4を示す図で、図22は同期電動機の回転子20の斜視図、図23は変形例1の同期電動機の回転子20の斜視図、図24は変形例2の同期電動機の回転子20の斜視図、図25は変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)、図26は変形例4の同期電動機の回転子20の斜視図(a)及び正面図(b)である。
Embodiment 4 FIG.
FIGS. 22 to 26 are diagrams showing the fourth embodiment. FIG. 22 is a perspective view of the rotor 20 of the synchronous motor, FIG. 23 is a perspective view of the rotor 20 of the synchronous motor of the first modification, and FIG. 25 is a perspective view of the rotor 20 of the synchronous motor of FIG. 2, FIG. 25 is a perspective view (a) and a front sectional view (b) of the rotor 20 of the synchronous motor of Modification 3, and FIG. 26 is the rotation of the synchronous motor of Modification 4. It is the perspective view (a) and front view (b) of the child 20.

図22により、同期電動機の回転子20の構成を説明する。以下、同期電動機の回転子20を単に回転子と呼ぶ場合もある。同期電動機の回転子20は、電磁鋼板を積層して形成される回転子鉄心1と、永久磁石4とを備える。回転子鉄心1は、該回転子鉄心1の外周縁に沿って四角形状に形成される四箇所の永久磁石4が挿入される磁石挿入孔2を備える。夫々の磁石挿入孔2は、断面形状が周方向に長い長方形である。また、回転子鉄心1は、中心部に回転軸が嵌合する回転軸嵌合孔3を備える。さらに、回転子鉄心1は、該回転子鉄心1の両端付近の磁極部(永久磁石4)の外側に、非磁性体領域5を備える。回転子鉄心1の磁石挿入孔2、回転軸嵌合孔3、非磁性体領域5以外は、磁性体領域(鉄心部)である。磁性体領域の中の磁石挿入孔2よりも外側の部分を外周磁性体領域6と呼ぶ。   The configuration of the rotor 20 of the synchronous motor will be described with reference to FIG. Hereinafter, the rotor 20 of the synchronous motor may be simply referred to as a rotor. A rotor 20 of a synchronous motor includes a rotor core 1 formed by laminating electromagnetic steel plates and a permanent magnet 4. The rotor core 1 includes magnet insertion holes 2 into which four permanent magnets 4 formed in a quadrangular shape along the outer peripheral edge of the rotor core 1 are inserted. Each magnet insertion hole 2 is a rectangle whose cross-sectional shape is long in the circumferential direction. Further, the rotor core 1 includes a rotation shaft fitting hole 3 in which a rotation shaft is fitted at the center. Further, the rotor core 1 includes a non-magnetic region 5 outside the magnetic pole portions (permanent magnets 4) near both ends of the rotor core 1. Except for the magnet insertion hole 2, the rotation shaft fitting hole 3, and the nonmagnetic material region 5 of the rotor iron core 1, the magnetic material region (iron core part). A portion outside the magnet insertion hole 2 in the magnetic region is referred to as an outer peripheral magnetic region 6.

非磁性体領域5は、1磁極当たり2箇所に設けられる。夫々の非磁性体領域5は、回転子鉄心1の軸方向両端に分かれて、1磁極を構成する永久磁石4の対角線上に配置される。即ち、一の非磁性体領域5は、隣接する一方の磁極間近傍に設けられる。他の非磁性体領域5は、隣接する他方の磁極間近傍に設けられる。   The nonmagnetic material regions 5 are provided at two locations per magnetic pole. Each non-magnetic region 5 is divided at both ends in the axial direction of the rotor core 1 and is arranged on a diagonal line of the permanent magnet 4 constituting one magnetic pole. That is, one nonmagnetic region 5 is provided in the vicinity of one adjacent magnetic pole. The other nonmagnetic region 5 is provided in the vicinity of the other adjacent magnetic pole.

その断面積は、回転子の軸方向から見て中心付近に向かうに従って、徐々に隣り合う磁極間の近辺に配置されながら大きくなっている。これによって、1磁極を構成する永久磁石4の外周面に対向する外周磁性体領域6は、磁極の中心付近で面積が大きく、磁極間付近で面積が小さくなる形状をとる。   The cross-sectional area increases gradually toward the center as seen from the axial direction of the rotor while being gradually arranged in the vicinity of adjacent magnetic poles. As a result, the outer peripheral magnetic body region 6 facing the outer peripheral surface of the permanent magnet 4 constituting one magnetic pole has a shape in which the area is large near the center of the magnetic pole and the area is small near the magnetic pole.

1磁極につき、計二箇所に三角形状(略直角三角形)の非磁性体領域5が形成されている。略直角三角形の非磁性体領域5は、その直角三角形の直角をなす二辺の一辺が磁極間の近辺で磁極間に平行に配置され、且つ他の一辺が回転子鉄心1の軸方向略中心部において周方向に配置される。   Triangular (substantially right-angled triangular) non-magnetic regions 5 are formed in two places per magnetic pole. The non-magnetic region 5 having a substantially right-angled triangle has two sides forming a right angle of the right-angled triangle arranged in parallel between the magnetic poles in the vicinity of the magnetic poles, and the other side is substantially the center in the axial direction of the rotor core 1. It arrange | positions in the circumferential direction in a part.

従って、非磁性体領域5の断面積は、回転子鉄心1の軸方向端部から中心付近に向かうにつれ、大きくなる。   Therefore, the cross-sectional area of the non-magnetic region 5 increases as it goes from the axial end of the rotor core 1 to the vicinity of the center.

同期電動機の回転子20が回転するとき、固定子のティースに対向する外周磁性体領域6の面積は、非磁性体領域5が無い回転子の場合には、回転子の回転角に比例して、徐々に増加する。   When the rotor 20 of the synchronous motor rotates, the area of the outer peripheral magnetic region 6 facing the stator teeth is proportional to the rotation angle of the rotor in the case of the rotor without the non-magnetic region 5. Increase gradually.

これに対して、非磁性体領域5を有する同期電動機の回転子20では、回転子の回転角に対して、初めは固定子のティースに対向する外周磁性体領域6の面積の増加が少なく、徐々に面積の増加が大きくなっていく。   On the other hand, in the rotor 20 of the synchronous motor having the nonmagnetic material region 5, the area of the outer peripheral magnetic material region 6 facing the stator teeth is small with respect to the rotation angle of the rotor. The area increases gradually.

回転子表面の全面に外周磁性体領域6がある場合、永久磁石4より発生する磁束は、外周磁性体領域6の中で容易に方向を変えてしまう。そのため、回転子の回転中に外周磁性体領域6の一部が固定子のティースに対向し始めると、固定子のスロット開口部より磁気抵抗の少ない対向部分に磁束が急に集中するため、対向をはじめたティースに流入する磁束が急に増加する。この磁束の急な変化が固定子の巻線に生じる誘起電圧に歪みが生じて同期電動機のトルク脈動が大きくなり、振動・騒音の要因となる。   When the outer peripheral magnetic region 6 is on the entire surface of the rotor, the magnetic flux generated from the permanent magnet 4 easily changes direction in the outer peripheral magnetic region 6. Therefore, if a part of the outer peripheral magnetic body region 6 starts to face the teeth of the stator during the rotation of the rotor, the magnetic flux suddenly concentrates on the facing portion having a lower magnetic resistance than the slot opening of the stator. The magnetic flux flowing into the teeth starting with a sudden increase. This sudden change in magnetic flux distorts the induced voltage generated in the stator windings, increasing the torque pulsation of the synchronous motor, which causes vibration and noise.

本実施の形態による同期電動機の回転子20は、回転子が回転するときに、外周磁性体領域6が固定子のティースに対向する面積がはじめは小さく、磁極中心に向かって回転が進むに従って徐々に面積の増加量が大きくなる。従って、ティースに急に磁束が流入することが抑制されて、巻線に生じる誘起電圧の歪みが少なくなり、トルク脈動を抑えて、振動・騒音の少ない同期電動機が得られる。   In the synchronous motor rotor 20 according to the present embodiment, when the rotor rotates, the area where the outer peripheral magnetic region 6 is opposed to the teeth of the stator is small at first, and gradually as the rotation proceeds toward the magnetic pole center. In addition, the amount of increase in area increases. Therefore, the sudden flow of magnetic flux into the teeth is suppressed, distortion of the induced voltage generated in the winding is reduced, torque pulsation is suppressed, and a synchronous motor with less vibration and noise can be obtained.

これは、表面に永久磁石4を配置した回転子において、磁極にスキューをかけた回転子と同様の効果である。また、磁束の変化を緩やかにできるため、コギングトルクも小さくすることができる。   This is the same effect as the rotor in which the permanent magnet 4 is arranged on the surface and the magnetic pole is skewed. In addition, since the change in magnetic flux can be moderated, the cogging torque can be reduced.

通常、永久磁石4を回転子内部に配置する回転子の場合、電磁鋼板を積層した回転子鉄心1を用いることが多く、図22に示す回転子鉄心1は、非磁性体領域5を構成するための電磁鋼板を打ち抜く穴の形状を、積層する電磁鋼板ごとに徐々に変化させることで図22に示すような同期電動機の回転子20を実現できる。   Usually, in the case of a rotor in which the permanent magnet 4 is disposed inside the rotor, the rotor core 1 in which electromagnetic steel plates are laminated is often used, and the rotor core 1 shown in FIG. The rotor 20 of a synchronous motor as shown in FIG. 22 is realizable by changing gradually the shape of the hole which punches out the electromagnetic steel plate for every electromagnetic steel plate to laminate | stack.

また、図23に示す変形例1の同期電動機の回転子20のように、非磁性体領域5を回転軸方向に対して、階段状に変化させることで、非磁性体領域5を構成する電磁鋼板の種類を削減できる。   Moreover, like the rotor 20 of the synchronous motor of the modification 1 shown in FIG. 23, the nonmagnetic material region 5 is changed stepwise with respect to the rotation axis direction, thereby forming the electromagnetic material constituting the nonmagnetic material region 5. The type of steel sheet can be reduced.

あるいは、図24に示す変形例2の同期電動機の回転子20のように、非磁性体領域5を複数のスリット孔7a,7b,7c,7dで構成してもよい。スリット孔7の軸方向の長さを磁極間に近いほど長く、磁極中心に近くなるに従って短くする。即ち、スリット孔7a,7b,7c,7dの軸方向の長さをd7a、d7b、d7c、d7d、d7eとすると、
d7a>d7b>d7c>d7d
である。
Or you may comprise the nonmagnetic material area | region 5 by several slit hole 7a, 7b, 7c, 7d like the rotor 20 of the synchronous motor of the modification 2 shown in FIG. The length of the slit hole 7 in the axial direction is longer as it is closer to the magnetic pole, and shorter as it is closer to the magnetic pole center. That is, if the axial lengths of the slit holes 7a, 7b, 7c, 7d are d7a, d7b, d7c, d7d, d7e,
d7a>d7b>d7c> d7d
It is.

このように構成することで、図22の非磁性体領域5に近い効果が得られ、非磁性体領域5を構成するための電磁鋼板を打ち抜く穴もその数を変更することで実現できることから、規模の小さい金型、プレス設備での製造ができる。   By configuring in this way, an effect close to the nonmagnetic region 5 of FIG. 22 is obtained, and holes for punching the electromagnetic steel sheet for configuring the nonmagnetic region 5 can be realized by changing the number of the holes, Small-scale molds and press facilities can be manufactured.

図25(a)に示す変形例3の同期電動機の回転子20のように、非磁性体領域5を軸方向の長さの異なる複数の非磁性空間8a,8b,8c,8d,8eを備える非磁性空間8で構成することでも実現は可能である。   Like the rotor 20 of the synchronous motor of the modification 3 shown to Fig.25 (a), the nonmagnetic material area | region 5 is provided with several nonmagnetic space 8a, 8b, 8c, 8d, 8e from which the length of an axial direction differs. Realization is also possible by configuring the non-magnetic space 8.

図25(a)の場合、非磁性空間8は軸方向の中央付近に体積の大きい空間が配置され、両端に向かうに従って体積の小さい(軸方向寸法の小さい)空間が配置される。即ち、非磁性空間8a,8b,8c,8d,8eの軸方向長さを、L8a,L8b,L8c,L8d,L8eとすると、
L8a>L8b>L8c>L8d>L8e
である。
In the case of FIG. 25A, the nonmagnetic space 8 has a space with a large volume in the vicinity of the center in the axial direction, and a space with a small volume (small size in the axial direction) is disposed toward both ends. That is, when the axial lengths of the nonmagnetic spaces 8a, 8b, 8c, 8d, and 8e are L8a, L8b, L8c, L8d, and L8e,
L8a>L8b>L8c>L8d> L8e
It is.

また、図25(b)に示すように、非磁性空間8a,8b,8c,8d,8e同志の間隔は、軸方向中心に向かって徐々に狭くなっている。このように非磁性空間8を配置することで、軸方向の磁性体の密度が変化して、軸方向両端の磁性体の密度が高くなり、図22に示す同期電動機の回転子20と同様の外周磁性体領域6の形状を模擬できる。このため、図25(a)に示す変形例3の同期電動機の回転子20は、図22に示す同期電動機の回転子20と同様の効果が得られる。   Further, as shown in FIG. 25B, the intervals between the nonmagnetic spaces 8a, 8b, 8c, 8d, and 8e are gradually narrowed toward the axial center. By arranging the nonmagnetic space 8 in this way, the density of the magnetic body in the axial direction changes, and the density of the magnetic body at both ends in the axial direction increases, which is similar to the rotor 20 of the synchronous motor shown in FIG. The shape of the outer peripheral magnetic body region 6 can be simulated. For this reason, the rotor 20 of the synchronous motor of the modification 3 shown to Fig.25 (a) can acquire the effect similar to the rotor 20 of the synchronous motor shown in FIG.

図25(a)の同期電動機の回転子20の場合、積層する電磁鋼板は、非磁性空間8を構成するための穴の位置の違う2種類と、非磁性空間8を構成するための穴の無い1種類との計3種類であるため、製造設備の小型化、低コスト化が可能である。   In the case of the rotor 20 of the synchronous motor shown in FIG. 25A, the electromagnetic steel sheets to be stacked are divided into two types having different hole positions for forming the nonmagnetic space 8 and holes for forming the nonmagnetic space 8. Since there are a total of three types, one with no, manufacturing equipment can be reduced in size and cost.

本実施の形態による同期電動機の回転子20は、永久磁石4の表面の外周磁性体領域6にスリットの無い部分が多く存在するため、リラクタンストルクの利用が可能であり、これによって、同期電動機のトルク向上が可能である。   Since the rotor 20 of the synchronous motor according to the present embodiment has many slit-free portions in the outer peripheral magnetic body region 6 on the surface of the permanent magnet 4, reluctance torque can be used. Torque can be improved.

また、本実施の形態の同期電動機の回転子20の場合、隣り合う磁極の間を非磁性体領域5で大きく隔離できるため、磁極間の磁束の短絡を少なくでき、より多くの磁束を回転子表面に出すことができる。   Further, in the case of the rotor 20 of the synchronous motor according to the present embodiment, since the adjacent magnetic poles can be largely separated by the nonmagnetic material region 5, the short circuit of the magnetic flux between the magnetic poles can be reduced, and more magnetic flux can be transferred to the rotor. Can be put on the surface.

図22乃至図24に示す同期電動機の回転子20の場合、永久磁石4の非磁性体領域5に対向する部分は、非磁性体領域5の磁気抵抗が大きく、表面に外周磁性体領域6を有する部分に比べると、発生する磁束が少なくなる。永久磁石4を回転子鉄心1の内部に埋め込む回転子に用いる永久磁石4には、希土類の高価な永久磁石4を用いることが多く、コストパフォーマンスの観点からは、必ずしも最適では無い場合がある。   In the case of the rotor 20 of the synchronous motor shown in FIGS. 22 to 24, the portion of the permanent magnet 4 facing the nonmagnetic material region 5 has a large magnetic resistance in the nonmagnetic material region 5, and the outer peripheral magnetic material region 6 is formed on the surface. Compared with the part which has, the generated magnetic flux decreases. The permanent magnet 4 used for the rotor in which the permanent magnet 4 is embedded in the rotor core 1 is often a rare earth expensive permanent magnet 4 and is not necessarily optimal from the viewpoint of cost performance.

この場合、図26(a)に示すように、永久磁石4の形状を外周磁性体領域6と同様の形状として、非磁性体領域5に対する面積を減らすことにより、磁束量全体は減少するが、永久磁石4の使用量に対しては、磁束を有効に引き出すことができ、コストパフォーマンスの良い回転子を得ることができる。   In this case, as shown in FIG. 26 (a), the shape of the permanent magnet 4 is made the same as that of the outer peripheral magnetic body region 6 and the area for the non-magnetic body region 5 is reduced. With respect to the amount of permanent magnet 4 used, magnetic flux can be extracted effectively, and a rotor with good cost performance can be obtained.

図25(a)に示す非磁性空間8を非磁性体領域5として用いる場合、図26(b)のような形状の永久磁石4を挿入することで、外周磁性体領域6と同形状の永久磁石4を挿入した回転子と同様の効果が得られる回転子が実現可能である。   When the nonmagnetic space 8 shown in FIG. 25A is used as the nonmagnetic material region 5, the permanent magnet 4 having the shape as shown in FIG. A rotor capable of obtaining the same effect as the rotor with the magnet 4 inserted can be realized.

図22乃至図25において、非磁性体領域5の回転子外周鉄心部及び非磁性体領域5と磁石挿入孔2との間の鉄心部は、薄肉の磁性体で構成されている。特に、回転子外周鉄心部の薄肉部は、剛性が低くなる。反面外周磁性体領域6は、全体が電磁鋼板等の磁性材料で構成されるため剛性は高い。外周磁性体領域6を軸方向端面近くに配置する図22乃至図25に示す同期電動機の回転子20は、外部からの応力による変形がおこりにくい。このため、製造の際の組立や運搬での破損が生じにくい。   22 to 25, the rotor outer peripheral core part of the nonmagnetic material region 5 and the iron core part between the nonmagnetic material region 5 and the magnet insertion hole 2 are made of a thin magnetic material. In particular, the rigidity of the thin portion of the outer peripheral iron core portion is low. On the other hand, since the entire outer peripheral magnetic region 6 is made of a magnetic material such as an electromagnetic steel plate, the rigidity is high. The rotor 20 of the synchronous motor shown in FIGS. 22 to 25 in which the outer peripheral magnetic body region 6 is arranged near the end surface in the axial direction is not easily deformed by external stress. For this reason, it is hard to produce the damage by the assembly at the time of manufacture, and conveyance.

実施の形態5.
図27は実施の形態5を示す図で、圧縮機11を示す図である。この圧縮機11には、実施の形態1乃至4のいずれかの同期電動機の回転子20を用いた同期電動機12が搭載されている。
Embodiment 5 FIG.
FIG. 27 is a diagram showing the fifth embodiment and shows the compressor 11. A synchronous motor 12 using the rotor 20 of the synchronous motor according to any one of the first to fourth embodiments is mounted on the compressor 11.

圧縮機11は、内部の圧縮機構部13で冷媒を圧縮し、冷媒配管14を通して圧縮した冷媒を冷凍サイクル(凝縮器、減圧装置、蒸発器等)へ送り、再び冷媒配管14を通して流入される冷媒の圧縮を行う。   The compressor 11 compresses the refrigerant with the internal compression mechanism 13, sends the refrigerant compressed through the refrigerant pipe 14 to the refrigeration cycle (condenser, decompressor, evaporator, etc.), and flows again through the refrigerant pipe 14. Perform compression.

実施の形態1乃至4のいずれかの同期電動機の回転子20を用いた同期電動機12により圧縮機構部13を駆動することにより、圧縮機11の振動が抑えられる。冷媒が通る冷媒配管14は、圧縮機11を加振源として振動するため、圧縮機11の振動を抑えることで冷媒配管14の振動も抑えられ、振動による冷媒配管14の金属疲労等の劣化を防止できる。   By driving the compression mechanism unit 13 with the synchronous motor 12 using the rotor 20 of the synchronous motor according to any one of the first to fourth embodiments, the vibration of the compressor 11 is suppressed. Since the refrigerant piping 14 through which the refrigerant passes vibrates using the compressor 11 as an excitation source, the vibration of the refrigerant piping 14 can be suppressed by suppressing the vibration of the compressor 11, and the deterioration of the metal such as metal fatigue of the refrigerant piping 14 due to the vibration. Can be prevented.

本発明の活用例として、圧縮機11に用いられる同期電動機12への適用、空気調和機に用いられる圧縮機11への適用が可能である。   As an application example of the present invention, application to the synchronous motor 12 used for the compressor 11 and application to the compressor 11 used for the air conditioner are possible.

実施の形態1を示す図で、同期電動機の回転子20の斜視図。FIG. 3 is a diagram showing the first embodiment, and is a perspective view of a rotor 20 of the synchronous motor. 実施の形態1を示す図で、図1のA部断面図。FIG. 2 shows the first embodiment, and is a cross-sectional view of a portion A in FIG. 1. 実施の形態1を示す図で、図1のB部断面図。FIG. 3 is a diagram showing the first embodiment, and is a cross-sectional view of a B portion in FIG. 1. 実施の形態1を示す図で、図1のC部断面図。FIG. 2 is a diagram showing the first embodiment, and is a cross-sectional view of a C portion in FIG. 1. 実施の形態1を示す図で、同期電動機の回転子20の正面図。FIG. 3 shows the first embodiment and is a front view of a rotor 20 of the synchronous motor. 実施の形態1を示す図で、変形例1の同期電動機の回転子20の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 20 of a synchronous motor according to a first modification. 実施の形態1を示す図で、変形例2の同期電動機の回転子20の斜視図(a)及びA〜E部断面図(b)。FIG. 5 shows the first embodiment, and is a perspective view (a) and a cross-sectional view (b) of A to E parts of a rotor 20 of a synchronous motor according to a second modification. 実施の形態1を示す図で、変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)。FIG. 5 shows the first embodiment, and is a perspective view (a) and a front sectional view (b) of a rotor 20 of a synchronous motor according to a third modification. 実施の形態1を示す図で、変形例4の同期電動機の回転子20の斜視図(a)及び正面図(b)。It is a figure which shows Embodiment 1, and is the perspective view (a) and front view (b) of the rotor 20 of the synchronous motor of the modification 4. FIG. 実施の形態1を示す図で、図6に示す同期電動機の回転子20を用いた同期電動機の誘起電圧波形9を、非磁性体領域5を持たない同期電動機の回転子20を用いた同期電動機の誘起電圧波形10と比較した図。6 is a diagram showing the first embodiment, in which the induced voltage waveform 9 of the synchronous motor using the synchronous motor rotor 20 shown in FIG. 6 is represented by the synchronous motor using the synchronous motor rotor 20 that does not have the non-magnetic material region 5. FIG. The figure compared with the induced voltage waveform 10 of. 実施の形態1を示す図で、図6に示す同期電動機の回転子20を用いた同期電動機のコギングトルクの波形29を、非磁性体領域5を持たない同期電動機の回転子20を用いた同期電動機のコギングトルクの波形30と比較した図。6 is a diagram illustrating the first embodiment, and shows a waveform 29 of a cogging torque of the synchronous motor using the rotor 20 of the synchronous motor shown in FIG. 6 and a synchronization using the rotor 20 of the synchronous motor not having the nonmagnetic region 5. FIG. The figure compared with the waveform 30 of the cogging torque of an electric motor. 実施の形態2を示す図で、同期電動機の回転子20の斜視図。FIG. 5 shows the second embodiment and is a perspective view of the rotor 20 of the synchronous motor. 実施の形態2を示す図で、変形例1の同期電動機の回転子20の斜視図。FIG. 9 is a diagram illustrating the second embodiment, and is a perspective view of a rotor 20 of the synchronous motor according to the first modification. 実施の形態2を示す図で、変形例2の同期電動機の回転子20の斜視図。FIG. 9 is a diagram illustrating the second embodiment, and is a perspective view of a rotor 20 of a synchronous motor according to a second modification. 実施の形態2を示す図で、変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)。It is a figure which shows Embodiment 2, and is a perspective view (a) and front sectional drawing (b) of the rotor 20 of the synchronous motor of the modification 3. FIG. 実施の形態2を示す図で、変形例4の同期電動機の回転子20の斜視図(a)及び正面図(b)。It is a figure which shows Embodiment 2, and is a perspective view (a) and front view (b) of the rotor 20 of the synchronous motor of the modification 4. FIG. 実施の形態3を示す図で、同期電動機の回転子20の斜視図。FIG. 9 shows the third embodiment and is a perspective view of the rotor 20 of the synchronous motor. 実施の形態3を示す図で、変形例1の同期電動機の回転子20の斜視図。FIG. 12 is a diagram showing the third embodiment, and is a perspective view of the rotor 20 of the synchronous motor of the first modification. 実施の形態3を示す図で、変形例2の同期電動機の回転子20の斜視図。FIG. 10 is a diagram illustrating the third embodiment, and is a perspective view of a rotor 20 of a synchronous motor according to a second modification. 実施の形態3を示す図で、変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)。It is a figure which shows Embodiment 3, and is a perspective view (a) and front sectional drawing (b) of the rotor 20 of the synchronous motor of the modification 3. FIG. 実施の形態3を示す図で、変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)。It is a figure which shows Embodiment 3, and is a perspective view (a) and front sectional drawing (b) of the rotor 20 of the synchronous motor of the modification 3. FIG. 実施の形態4を示す図で、同期電動機の回転子20の斜視図。FIG. 10 shows the fourth embodiment and is a perspective view of the rotor 20 of the synchronous motor. 実施の形態4を示す図で、変形例1の同期電動機の回転子20の斜視図。FIG. 10 is a diagram showing the fourth embodiment, and is a perspective view of a rotor 20 of the synchronous motor according to the first modification. 実施の形態4を示す図で、変形例2の同期電動機の回転子20の斜視図。FIG. 10 is a diagram showing the fourth embodiment, and is a perspective view of a rotor 20 of a synchronous motor according to a second modification. 実施の形態4を示す図で、変形例3の同期電動機の回転子20の斜視図(a)及び正面断面図(b)。It is a figure which shows Embodiment 4, and is a perspective view (a) and front sectional drawing (b) of the rotor 20 of the synchronous motor of the modification 3. FIG. 実施の形態4を示す図で、変形例4の同期電動機の回転子20の斜視図(a)及び正面図(b)。It is a figure which shows Embodiment 4, and is the perspective view (a) and front view (b) of the rotor 20 of the synchronous motor of the modification 4. FIG. 実施の形態5を示す図で、圧縮機11を示す図。FIG. 10 is a diagram illustrating the fifth embodiment and illustrating the compressor 11;

符号の説明Explanation of symbols

1 回転子鉄心、2 磁石挿入孔、3 回転軸嵌合孔、4 永久磁石、5 非磁性体領域、6 外周磁性体領域、7 スリット孔、7a スリット孔、7b スリット孔、7c スリット孔、7d スリット孔、8 非磁性空間、8a 非磁性空間、8b 非磁性空間、8c 非磁性空間、8d 非磁性空間、9 誘起電圧波形、10 誘起電圧波形、11 圧縮機、12 同期電動機、13 圧縮機構部、14 冷媒配管、20 同期電動機の回転子、29 コギングトルクの波形、30 コギングトルクの波形。   DESCRIPTION OF SYMBOLS 1 Rotor core, 2 Magnet insertion hole, 3 Rotary shaft fitting hole, 4 Permanent magnet, 5 Non-magnetic material area | region, 6 Outer magnetic body area | region, 7 Slit hole, 7a Slit hole, 7b Slit hole, 7c Slit hole, 7d Slit hole, 8 nonmagnetic space, 8a nonmagnetic space, 8b nonmagnetic space, 8c nonmagnetic space, 8d nonmagnetic space, 9 induced voltage waveform, 10 induced voltage waveform, 11 compressor, 12 synchronous motor, 13 compression mechanism section , 14 Refrigerant piping, 20 Synchronous motor rotor, 29 Cogging torque waveform, 30 Cogging torque waveform.

Claims (11)

電磁鋼板を積層して形成され、外周縁に沿って磁石挿入孔が形成される回転子鉄心と、
前記磁石挿入孔に挿入され、磁極を構成する永久磁石と、
前記回転子鉄心の外周縁と前記永久磁石との間に形成される外周磁性体領域とを備え、
前記外周磁性体領域の面積が前記磁極間近傍では小さく、前記磁極の中心に向かって徐々に面積が大きくなるように、前記回転子鉄心の外周縁と前記永久磁石との間に非磁性体領域を形成したことを特徴とする同期電動機の回転子。
A rotor core that is formed by laminating electromagnetic steel plates and has a magnet insertion hole along the outer periphery,
A permanent magnet inserted into the magnet insertion hole and constituting a magnetic pole;
An outer peripheral magnetic body region formed between an outer peripheral edge of the rotor core and the permanent magnet;
A non-magnetic region between the outer peripheral edge of the rotor core and the permanent magnet so that the area of the outer peripheral magnetic region is small near the magnetic pole and gradually increases toward the center of the magnetic pole. The rotor of the synchronous motor characterized by forming.
電磁鋼板を積層して形成され、外周縁に沿って磁石挿入孔が形成される回転子鉄心と、
前記磁石挿入孔に挿入され、磁極を構成する永久磁石と、
前記回転子鉄心の外周縁と前記永久磁石との間に形成される外周磁性体領域とを備え、
前記外周磁性体領域の面積が前記磁極間近傍では小さく、前記磁極の中心に向かって徐々に面積が大きくなるように、前記回転子鉄心の外周縁と前記永久磁石との間の前記回転子鉄心の軸方向端部に非磁性体領域を形成したことを特徴とする同期電動機の回転子。
A rotor core that is formed by laminating electromagnetic steel plates and has a magnet insertion hole along the outer periphery,
A permanent magnet inserted into the magnet insertion hole and constituting a magnetic pole;
An outer peripheral magnetic body region formed between an outer peripheral edge of the rotor core and the permanent magnet;
The rotor core between the outer peripheral edge of the rotor core and the permanent magnet so that the area of the outer peripheral magnetic region is small near the magnetic pole and gradually increases toward the center of the magnetic pole. A rotor of a synchronous motor, wherein a non-magnetic region is formed at an axial end of the synchronous motor.
電磁鋼板を積層して形成され、外周縁に沿って磁石挿入孔が形成される回転子鉄心と、
前記磁石挿入孔に挿入され、磁極を構成する永久磁石と、
前記回転子鉄心の外周縁と前記永久磁石との間に形成される外周磁性体領域とを備え、
前記外周磁性体領域の面積が前記磁極間近傍では小さく、前記磁極の中心に向かって徐々に面積が大きくなるように、前記回転子鉄心の外周縁と前記永久磁石との間の前記回転子鉄心の軸方向略中心部に非磁性体領域を形成したことを特徴とする同期電動機の回転子。
A rotor core that is formed by laminating electromagnetic steel plates and has a magnet insertion hole along the outer periphery,
A permanent magnet inserted into the magnet insertion hole and constituting a magnetic pole;
An outer peripheral magnetic body region formed between an outer peripheral edge of the rotor core and the permanent magnet;
The rotor core between the outer peripheral edge of the rotor core and the permanent magnet so that the area of the outer peripheral magnetic region is small near the magnetic pole and gradually increases toward the center of the magnetic pole. A rotor of a synchronous motor, wherein a non-magnetic region is formed at a substantially central portion in the axial direction of the motor.
前記非磁性体領域は、前記回転子鉄心の軸方向両端に分かれて、前記永久磁石の対角線上に配置されることを特徴とする請求項2記載の同期電動機の回転子。   3. The synchronous motor rotor according to claim 2, wherein the non-magnetic region is divided at both ends in the axial direction of the rotor core and is disposed on a diagonal line of the permanent magnet. 前記非磁性体領域は、略三角形状に形成され、前記三角形状の一辺が前記磁極間の近辺で前記磁極間に略平行に配置され、且つ他の一辺が前記回転子鉄心の軸方向端面に略一致することを特徴とする請求項4記載の同期電動機の回転子。   The non-magnetic region is formed in a substantially triangular shape, one side of the triangular shape is arranged in the vicinity between the magnetic poles and substantially parallel to the magnetic poles, and the other side is on an end surface in the axial direction of the rotor core. 5. The synchronous motor rotor according to claim 4, wherein the rotors substantially coincide with each other. 前記非磁性体領域は、略三角形状に形成され、前記三角形状の一辺が前記磁極間の近辺で前記磁極間に略平行に配置され、且つ他の一辺が前記回転子鉄心の軸方向略中心部において周方向に配置されることを特徴とする請求項4記載の同期電動機の回転子。   The non-magnetic region is formed in a substantially triangular shape, one side of the triangular shape is arranged in the vicinity between the magnetic poles and substantially parallel between the magnetic poles, and the other side is a substantially axial center of the rotor core. The synchronous motor rotor according to claim 4, wherein the synchronous motor rotor is arranged in a circumferential direction at the portion. 前記非磁性体領域の周方向長さを、軸方向に階段状に変化させることを特徴とする請求項1乃至6のいずれかに記載の同期電動機の回転子。   The synchronous motor rotor according to claim 1, wherein the circumferential length of the non-magnetic region is changed stepwise in the axial direction. 前記非磁性体領域を、軸方向に開けられる、軸方向長さの異なる複数のスリット孔で構成することを特徴とする請求項1乃至6のいずれかに記載の同期電動機の回転子。   The synchronous motor rotor according to any one of claims 1 to 6, wherein the non-magnetic region is configured by a plurality of slit holes that are opened in an axial direction and have different axial lengths. 前記非磁性体領域を、軸方向の長さの異なる複数の非磁性空間で構成すること特徴とする請求項1乃至6のいずれかに記載の同期電動機の回転子。   The synchronous motor rotor according to any one of claims 1 to 6, wherein the non-magnetic region is configured by a plurality of non-magnetic spaces having different axial lengths. 前記永久磁石の形状を、前記外周磁性体領域の形状に合わせることを特徴とする請求項1乃至9のいずれかに記載の同期電動機の回転子。   The synchronous motor rotor according to claim 1, wherein the shape of the permanent magnet is matched with the shape of the outer peripheral magnetic body region. 請求項1乃至10のいずれかに記載の同期電動機の回転子を用いた同期電動機を搭載したことを特徴とする圧縮機。   A compressor equipped with a synchronous motor using the rotor of the synchronous motor according to claim 1.
JP2008061945A 2008-03-12 2008-03-12 Synchronous motor rotor and compressor Active JP4712059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061945A JP4712059B2 (en) 2008-03-12 2008-03-12 Synchronous motor rotor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061945A JP4712059B2 (en) 2008-03-12 2008-03-12 Synchronous motor rotor and compressor

Publications (2)

Publication Number Publication Date
JP2009219291A true JP2009219291A (en) 2009-09-24
JP4712059B2 JP4712059B2 (en) 2011-06-29

Family

ID=41190604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061945A Active JP4712059B2 (en) 2008-03-12 2008-03-12 Synchronous motor rotor and compressor

Country Status (1)

Country Link
JP (1) JP4712059B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081776A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Rotor of synchronous motor, and method of manufacturing the same rotor
JP2012105410A (en) * 2010-11-09 2012-05-31 Mitsubishi Electric Corp Electric motor and compressor
JP2014093802A (en) * 2012-11-01 2014-05-19 Jtekt Corp Rotor for rotary machine
JP2015089277A (en) * 2013-10-31 2015-05-07 株式会社ジェイテクト Rotor for rotary machine
WO2016203530A1 (en) * 2015-06-15 2016-12-22 三菱電機株式会社 Permanent magnet-embedded motor and compressor
WO2017009969A1 (en) * 2015-07-15 2017-01-19 三菱電機株式会社 Rotor, electric motor, compressor, and refrigerator/air conditioning equipment
WO2017033239A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Dynamo-electric machine and air conditioning device
CN112075011A (en) * 2018-05-10 2020-12-11 三菱电机株式会社 Rotor, motor, compressor, and air conditioner
JPWO2020170418A1 (en) * 2019-02-22 2021-09-13 三菱電機株式会社 Motors, compressors and air conditioners
CN113783329A (en) * 2015-10-29 2021-12-10 富士通将军股份有限公司 Rotor
WO2022244113A1 (en) * 2021-05-18 2022-11-24 三菱電機株式会社 Electric motor, compressor, and refrigeration circuit device
US11894725B2 (en) 2018-07-25 2024-02-06 Mitsubishi Electric Corporation Rotating electric machine
US11929648B2 (en) 2018-07-27 2024-03-12 Mitsubishi Electric Corporation Electric motor, compressor, and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304737A (en) * 1992-02-26 1993-11-16 Toshiba Corp Permanent magnet type motor
JPH11103543A (en) * 1997-09-29 1999-04-13 Yaskawa Electric Corp Rotor structure of internal magnet motor
JP2000134841A (en) * 1998-10-20 2000-05-12 Hitachi Ltd Electrical rotating machine
JP2005094968A (en) * 2003-09-19 2005-04-07 Toshiba Kyaria Kk Permanent-magnet electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304737A (en) * 1992-02-26 1993-11-16 Toshiba Corp Permanent magnet type motor
JPH11103543A (en) * 1997-09-29 1999-04-13 Yaskawa Electric Corp Rotor structure of internal magnet motor
JP2000134841A (en) * 1998-10-20 2000-05-12 Hitachi Ltd Electrical rotating machine
JP2005094968A (en) * 2003-09-19 2005-04-07 Toshiba Kyaria Kk Permanent-magnet electric motor

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081776A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Rotor of synchronous motor, and method of manufacturing the same rotor
JP2012105410A (en) * 2010-11-09 2012-05-31 Mitsubishi Electric Corp Electric motor and compressor
JP2014093802A (en) * 2012-11-01 2014-05-19 Jtekt Corp Rotor for rotary machine
JP2015089277A (en) * 2013-10-31 2015-05-07 株式会社ジェイテクト Rotor for rotary machine
EP3309931A4 (en) * 2015-06-15 2019-01-09 Mitsubishi Electric Corporation Permanent magnet-embedded motor and compressor
WO2016203530A1 (en) * 2015-06-15 2016-12-22 三菱電機株式会社 Permanent magnet-embedded motor and compressor
US10581286B2 (en) 2015-06-15 2020-03-03 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor and compressor
CN107534335B (en) * 2015-06-15 2020-02-28 三菱电机株式会社 Rotor, permanent magnet embedded motor, compressor, and air conditioner
JPWO2016203530A1 (en) * 2015-06-15 2017-09-07 三菱電機株式会社 Rotor, permanent magnet embedded motor, compressor, and air conditioner
CN107534335A (en) * 2015-06-15 2018-01-02 三菱电机株式会社 Permanent magnetic baried type motor and compressor
JPWO2017009969A1 (en) * 2015-07-15 2017-08-31 三菱電機株式会社 Rotor, electric motor, compressor and refrigeration air conditioner
EP3324515A4 (en) * 2015-07-15 2019-03-13 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and refrigerator/air conditioning equipment
WO2017009969A1 (en) * 2015-07-15 2017-01-19 三菱電機株式会社 Rotor, electric motor, compressor, and refrigerator/air conditioning equipment
US10483815B2 (en) 2015-07-15 2019-11-19 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and refrigeration air conditioner
CN107534334A (en) * 2015-07-15 2018-01-02 三菱电机株式会社 Rotor, motor, compressor and refrigerating and air-conditioning
CN107925284B (en) * 2015-08-21 2020-03-31 三菱电机株式会社 Rotating electric machine and air conditioner
GB2556245B (en) * 2015-08-21 2021-07-28 Mitsubishi Electric Corp Rotary electric machine and air conditioning apparatus
WO2017033239A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Dynamo-electric machine and air conditioning device
CN107925284A (en) * 2015-08-21 2018-04-17 三菱电机株式会社 Electric rotating machine and conditioner
JPWO2017033239A1 (en) * 2015-08-21 2018-03-22 三菱電機株式会社 Rotating electric machine and air conditioner
US10630123B2 (en) 2015-08-21 2020-04-21 Mitsubishi Electric Corporation Rotary electric machine and air conditioning apparatus
GB2556245A (en) * 2015-08-21 2018-05-23 Mitsubishi Electric Corp Dynamo-electric machine and air conditioning device
CN113783329A (en) * 2015-10-29 2021-12-10 富士通将军股份有限公司 Rotor
CN112075011A (en) * 2018-05-10 2020-12-11 三菱电机株式会社 Rotor, motor, compressor, and air conditioner
US11831204B2 (en) 2018-05-10 2023-11-28 Mitsubishi Electric Corporation Rotor, motor, compressor, and air conditioner
US11894725B2 (en) 2018-07-25 2024-02-06 Mitsubishi Electric Corporation Rotating electric machine
US11929648B2 (en) 2018-07-27 2024-03-12 Mitsubishi Electric Corporation Electric motor, compressor, and air conditioner
JPWO2020170418A1 (en) * 2019-02-22 2021-09-13 三菱電機株式会社 Motors, compressors and air conditioners
JP7038891B2 (en) 2019-02-22 2022-03-18 三菱電機株式会社 Motors, compressors and air conditioners
WO2022244113A1 (en) * 2021-05-18 2022-11-24 三菱電機株式会社 Electric motor, compressor, and refrigeration circuit device

Also Published As

Publication number Publication date
JP4712059B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4712059B2 (en) Synchronous motor rotor and compressor
JP4720982B2 (en) Axial air gap type electric motor
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP4913241B2 (en) Permanent magnet embedded rotor, electric motor and electric device using the same
JP5084770B2 (en) Electric motor, compressor and air conditioner
JP5239200B2 (en) Permanent magnet rotating electric machine
JP5208084B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
KR100624381B1 (en) Rotor for interior permanent magnet synchronous motor and method for manufacturing the rotor
JPWO2018158930A1 (en) Rotor, electric motor, compressor and blower
JP2008167583A (en) Rotor of permanent magnet embedded motor, electric motor for blower and electric motor for compressor
JP5755338B2 (en) Permanent magnet embedded electric motor and compressor
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP3769943B2 (en) Permanent magnet rotor
JP2010183800A (en) Rotor of electric motor, electric motor, air blower and compressor
JP2014147254A (en) Rotor of permanent magnet dynamo-electric machine, and permanent magnet dynamo-electric machine
JP2008048481A (en) Permanent magnet motor
JP5242720B2 (en) Rotor of permanent magnet embedded motor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP5954279B2 (en) Rotating electric machine
JP6625216B2 (en) Rotor, electric motor, blower, compressor and air conditioner
JP5621372B2 (en) Permanent magnet embedded rotor and rotating electric machine
JP2003274590A (en) Rotor of permanent-magnet synchronous motor
JP2004350345A (en) Permanent magnetic motor
JP2002238190A (en) Rotor of permanent-magnet motor, manufacturing method for the rotor of permanent-magnet motor, the permanent-magnet motor, compressor, and refrigeration cycle
CN113541423A (en) Axial gap motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Ref document number: 4712059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250