JP2012105410A - Electric motor and compressor - Google Patents

Electric motor and compressor Download PDF

Info

Publication number
JP2012105410A
JP2012105410A JP2010250518A JP2010250518A JP2012105410A JP 2012105410 A JP2012105410 A JP 2012105410A JP 2010250518 A JP2010250518 A JP 2010250518A JP 2010250518 A JP2010250518 A JP 2010250518A JP 2012105410 A JP2012105410 A JP 2012105410A
Authority
JP
Japan
Prior art keywords
magnetic flux
rotor
flux control
electric motor
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010250518A
Other languages
Japanese (ja)
Other versions
JP5478461B2 (en
Inventor
Masahiro Nigo
昌弘 仁吾
Kazuhiko Baba
和彦 馬場
Kazunori Tsuchida
和慶 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010250518A priority Critical patent/JP5478461B2/en
Publication of JP2012105410A publication Critical patent/JP2012105410A/en
Application granted granted Critical
Publication of JP5478461B2 publication Critical patent/JP5478461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric motor in which a magnetic flux distribution of a rotor surface is made a sine wave, a torque vibration causing vibration is restricted and mechanical strength against centrifugal force and electromagnetic vibration force is improved compared to conventional punching slits.SOLUTION: The electric motor of the present invention comprises a stator and a permanent magnet buried rotor. The rotor comprises a rotor core having multiple magnet insertion holes formed along its outer peripheral edge and multiple permanent magnets inserted into the magnet insertion holes. The rotor core is formed at an outer peripheral core outside the magnet insertion holes and between electrodes by laminating a predetermined number of electromagnetic steel sheets having a magnetic flux control section configured of thinned sheets formed.

Description

この発明は、電動機に関する。詳しくは、特に回転子の構造に関する。また、その電動機を搭載した圧縮機に関する。   The present invention relates to an electric motor. Specifically, it relates to the structure of the rotor. Moreover, it is related with the compressor carrying the electric motor.

最近の永久磁石埋込型電動機は、小型高効率化が強く求められ、それに加えて振動、騒音を低減したいという課題がある。また、昨今の環境への意識の高まりから空気調和機の圧縮機、電気自動車、ハイブリッド自動車および燃料電池自動車に搭載される電動機においても、振動、騒音の低減のためトルク脈動を低減することは有効である。   Recent permanent magnet embedded motors are strongly required to be small and highly efficient, and in addition, there is a problem of reducing vibration and noise. In addition, due to the recent increase in environmental awareness, it is effective to reduce torque pulsation in order to reduce vibration and noise in motors installed in air conditioner compressors, electric vehicles, hybrid vehicles, and fuel cell vehicles. It is.

従来、回転子の磁石収納孔の外周部にスリット孔を設けることにより、電機子反作用磁束を軽減すると共に、外周部鉄心の磁束分布を改善することにより、騒音や振動の少ない高効率な永久磁石電動機が提案されている(例えば、特許文献1参照)。   Conventionally, a slit hole is provided in the outer periphery of the magnet housing hole of the rotor to reduce the armature reaction magnetic flux, and improve the magnetic flux distribution of the outer peripheral core, thereby reducing the noise and vibration. An electric motor has been proposed (see, for example, Patent Document 1).

特許第4248984号公報Japanese Patent No. 4248984

しかしながら、上記特許文献1記載のものは、スリット孔の効果を有効に利用するために、打ち抜き部を回転子表面付近に配置することが必要であり、回転子外周部に鉄心の磁路が狭い薄肉部が存在し、回転時の遠心力に対する強度が低下する課題がある。   However, in order to effectively use the effect of the slit hole, the one described in Patent Document 1 requires that the punched portion be disposed near the rotor surface, and the magnetic path of the iron core is narrow on the outer periphery of the rotor. There exists a subject that the thin part exists and the strength against centrifugal force during rotation is reduced.

また、磁極表面(磁石収納孔の外周部)の鉄心は、面積が小さいため、打ち抜きによる幅、形状等の設計自由度は低い。かつ、打ち抜きプレスの加工精度の制約が大きく、磁束分布の改善に対する制約は大きいと言える。   Further, since the iron core on the magnetic pole surface (the outer peripheral portion of the magnet housing hole) has a small area, the degree of freedom in designing the width, shape, etc. by punching is low. Moreover, it can be said that there are large restrictions on the processing accuracy of the punching press, and there are great restrictions on the improvement of the magnetic flux distribution.

この発明は、上記のような課題を解決するためになされたもので、磁極表面に板厚を薄くして構成した磁束制御部を設けることで、回転子表面の磁束分布を正弦波化し、振動の原因となるトルク脈動を抑制すると共に、従来の打ち抜きスリットに比べ、遠心力、及び電磁加振力に対する機械的強度が向上する電動機及びその電動機を用いる圧縮機を提供する。   The present invention has been made to solve the above-described problems. By providing a magnetic flux control unit configured with a thin plate thickness on the magnetic pole surface, the magnetic flux distribution on the rotor surface is converted into a sine wave, and vibration is generated. An electric motor that suppresses the torque pulsation that causes the above-described problem and has improved mechanical strength against centrifugal force and electromagnetic excitation force as compared with a conventional punching slit, and a compressor that uses the electric motor.

この発明に係る電動機は、固定子と、永久磁石埋込型の回転子とを備える電動機であって、
回転子は、
外周縁に沿って複数の磁石挿入孔が形成された回転子鉄心と、
磁石挿入孔に挿入される複数の永久磁石と、を備え、
回転子鉄心は、磁石挿入孔の外側の外周鉄心部、並びに極間部に、板厚を薄くして構成される磁束制御部が形成された電磁鋼板を所定の枚数積層して形成されることを特徴とする。
An electric motor according to the present invention is an electric motor including a stator and a permanent magnet embedded rotor,
The rotor is
A rotor core in which a plurality of magnet insertion holes are formed along the outer periphery;
A plurality of permanent magnets inserted into the magnet insertion holes,
The rotor core is formed by laminating a predetermined number of magnetic steel sheets each having a magnetic flux control unit formed by reducing the plate thickness at the outer peripheral core part outside the magnet insertion hole and between the poles. It is characterized by.

この発明に係る電動機は、回転子鉄心が、磁石挿入孔の外側の外周鉄心部、並びに極間部に、板厚を薄くして構成される磁束制御部が形成された電磁鋼板を所定の枚数積層して形成されることにより、回転子表面の磁束分布を正弦波化し、振動の原因となるトルク脈動を抑制すると共に、従来の打ち抜きスリットに比べ、遠心力、及び電磁加振力に対する機械的強度が向上する効果がある。   In the electric motor according to the present invention, the rotor core has a predetermined number of electromagnetic steel plates in which a magnetic flux control unit configured by thinning the plate thickness is formed on the outer peripheral core part outside the magnet insertion hole and the inter-pole part. By forming the laminated structure, the magnetic flux distribution on the rotor surface is made sinusoidal, and the torque pulsation that causes vibration is suppressed, and mechanical force against centrifugal force and electromagnetic excitation force is compared to conventional punch slits. There is an effect of improving the strength.

比較のために示す図で、一般的な電動機600の横断面図。It is a figure shown for a comparison and is a cross-sectional view of a general electric motor 600. 比較のために示す図で、一般的な電動機600の固定子610の横断面図。The figure shown for a comparison and the cross-sectional view of the stator 610 of the general electric motor 600. FIG. 比較のために示す図で、一般的な電動機600の固定子鉄心611の横断面図。It is a figure shown for a comparison and is a cross-sectional view of a stator core 611 of a general electric motor 600. 比較のために示す図で、一般的な電動機600の回転子620の横断面図。The figure shown for a comparison and the cross-sectional view of the rotor 620 of the common electric motor 600. FIG. 比較のために示す図で、一般的な電動機600の回転子鉄心621の横断面図。It is a figure shown for a comparison and is a cross-sectional view of the rotor core 621 of a general electric motor 600. 比較のために示す図で、スリット725を有する一般的な回転子720の部分横断面図。The figure shown for a comparison and the fragmentary cross-sectional view of the common rotor 720 which has the slit 725. FIG. 図6の拡大図。The enlarged view of FIG. 比較のために示す図で、一般的な回転子鉄心721の部分横断面図。It is a figure shown for a comparison and is a partial cross-sectional view of a general rotor core 721. 実施の形態1を示す図で、電動機100の横断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the electric motor 100. 実施の形態1を示す図で、電動機100の回転子20の横断面図。FIG. 3 shows the first embodiment, and is a cross-sectional view of the rotor 20 of the electric motor 100. 実施の形態1を示す図で、電動機100の回転子鉄心21の横断面図。FIG. 3 shows the first embodiment, and is a cross-sectional view of a rotor core 21 of the electric motor 100. FIG. 図10の部分拡大図。The elements on larger scale of FIG. 図11の部分拡大図。The elements on larger scale of FIG. 図12のA−A断面図。AA sectional drawing of FIG. 図12の部分拡大図。The elements on larger scale of FIG. 図15のB−B断面図。BB sectional drawing of FIG. 実施の形態1を示す図で、回転子20の磁束制御部なしの場合に、固定子10の巻線に誘起される誘起電圧の波形を示す図。FIG. 6 shows the first embodiment, and shows the waveform of the induced voltage induced in the winding of the stator 10 when the rotor 20 has no magnetic flux control unit. 実施の形態1を示す図で、回転子20の磁束制御部ありの場合に、固定子10の巻線に誘起される誘起電圧の波形を示す図。FIG. 6 shows the first embodiment, and shows a waveform of an induced voltage induced in the winding of the stator 10 when the rotor 20 has a magnetic flux control unit. 実施の形態1を示す図で、固定子10の巻線に誘起される誘起電圧の高調波成分含有率を、磁束制御部なしと磁束制御部ありとで比較した図。FIG. 6 shows the first embodiment, and compares the harmonic content of induced voltage induced in the winding of the stator 10 with and without the magnetic flux control unit. 実施の形態1を示す図で、回転子20の磁束制御部を打ち抜いた場合の遠心力に対する変形の解析結果を示す図。FIG. 5 shows the first embodiment, and shows the analysis result of deformation with respect to centrifugal force when the magnetic flux control unit of the rotor 20 is punched out. 実施の形態1を示す図で、回転子20の磁束制御部の板厚を薄くした場合の遠心力に対する変形の解析結果を示す図。FIG. 5 shows the first embodiment, and shows the analysis result of deformation with respect to centrifugal force when the plate thickness of the magnetic flux control unit of the rotor 20 is reduced. 実施の形態1を示す図で、回転子20の磁束制御部を打ち抜いた場合と磁束制御部の板厚を薄くした場合の応力の解析結果を示す図。FIG. 5 shows the first embodiment, and shows the analysis result of stress when the magnetic flux control unit of the rotor 20 is punched and when the plate thickness of the magnetic flux control unit is reduced. 実施の形態1を示す図で、変形例1の回転子120の部分横断面図。FIG. 5 shows the first embodiment, and is a partial cross-sectional view of a rotor 120 of a first modification. 図23の拡大図。The enlarged view of FIG. 実施の形態1を示す図で、変形例2の回転子220の部分横断面図。FIG. 6 shows the first embodiment, and is a partial cross-sectional view of a rotor 220 of a second modification. 図25の拡大図。The enlarged view of FIG. 図26のC−C断面図。CC sectional drawing of FIG. 図26の部分拡大図。The elements on larger scale of FIG. 図28のD−D断面図。DD sectional drawing of FIG. 実施の形態1を示す図で、変形例3の回転子320の部分横断面図。FIG. 5 shows the first embodiment, and is a partial cross-sectional view of a rotor 320 of a third modification. 図30の拡大図。The enlarged view of FIG. 図31のE部拡大図。The E section enlarged view of FIG. 図32のF−F断面図。FF sectional drawing of FIG. 実施の形態2を示す図で、回転子420の横断面図。FIG. 5 shows the second embodiment and is a transverse cross-sectional view of a rotor 420; 実施の形態2を示す図で、回転子鉄心421の横断面図。FIG. 5 shows the second embodiment and is a cross-sectional view of a rotor core 421. 図34の部分拡大図。The elements on larger scale of FIG. 図36のG−G断面図。GG sectional drawing of FIG. 実施の形態2を示す図で、回転子420の磁束制御部ありの場合に、固定子の巻線に誘起される誘起電圧の波形を示す図。FIG. 5 shows the second embodiment, and shows a waveform of an induced voltage induced in a stator winding when the rotor 420 has a magnetic flux control unit. 実施の形態2を示す図で、固定子の巻線に誘起される誘起電圧の高調波成分含有率を、磁束制御部なしと磁束制御部ありとで比較した図。FIG. 6 shows the second embodiment, and compares the harmonic content of induced voltage induced in the winding of the stator with and without the magnetic flux control unit. 実施の形態3を示す図で、ロータリ圧縮機500の縦断面図。FIG. 5 shows the third embodiment and is a longitudinal sectional view of a rotary compressor 500.

実施の形態1.
図1は比較のために示す図で、一般的な電動機600の横断面図である。図1に示す一般的な電動機600は、例えばブラシレスDCモータである。電動機600は、固定子610と、この固定子610の内側に空隙640を介して配置される回転子620とを備える。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a general electric motor 600 shown for comparison. A general electric motor 600 shown in FIG. 1 is, for example, a brushless DC motor. The electric motor 600 includes a stator 610 and a rotor 620 disposed inside the stator 610 via a gap 640.

図2は比較のために示す図で、一般的な電動機600の固定子610の横断面図である。固定子610は、少なくとも固定子鉄心611と、巻線612(図示しない絶縁部材で固定子鉄心611と絶縁される)とを備える。巻線612は、ティース613に巻回される集中巻であるが、分布巻の場合もある。巻線612は、三相巻線であり、結線方式はY結線(星形結線、スター結線)である。但し、結線方式は、三角結線の場合もある。   FIG. 2 is a view for comparison, and is a cross-sectional view of a stator 610 of a general electric motor 600. The stator 610 includes at least a stator core 611 and a winding 612 (insulated from a stator core 611 by an insulating member not shown). The windings 612 are concentrated windings wound around the teeth 613, but may be distributed windings. The winding 612 is a three-phase winding, and the connection method is Y connection (star connection, star connection). However, the connection method may be a triangular connection.

図3は比較のために示す図で、一般的な電動機600の固定子鉄心611の横断面図である。固定子鉄心611は略リング状で、外周側にリング状のコアバック615が形成されている。ティース613が、コアバック615から回転子620側に放射状に9個形成される。9個のティース613は、周方向に略等間隔に配置される。ティース613の周方向の幅は、径方向に略一定である。   FIG. 3 is a view for comparison, and is a cross-sectional view of a stator core 611 of a general electric motor 600. The stator core 611 is substantially ring-shaped, and a ring-shaped core back 615 is formed on the outer peripheral side. Nine teeth 613 are radially formed from the core back 615 to the rotor 620 side. Nine teeth 613 are arranged at substantially equal intervals in the circumferential direction. The circumferential width of the teeth 613 is substantially constant in the radial direction.

隣接するティース613の間の空間をスロット614と呼ぶ。スロット614の数も、ティース613の数と同じ9個である。ティース613の周方向の幅は、径方向に略一定であるので、スロット614の周方向の幅は、内側から外側(コアバック615側)に向かって徐々に大きくなる構成である。スロット614は、スロット開口部614aで回転子620側に開口している。   A space between adjacent teeth 613 is called a slot 614. The number of slots 614 is nine, which is the same as the number of teeth 613. Since the circumferential width of the teeth 613 is substantially constant in the radial direction, the circumferential width of the slot 614 is configured to gradually increase from the inside toward the outside (core back 615 side). The slot 614 opens to the rotor 620 side at the slot opening 614a.

固定子鉄心611は、厚さ0.7mm以下の薄い電磁鋼板を所定の形状に形成されて、所定の枚数を積層することで構成される。   The stator core 611 is formed by laminating a predetermined number of thin electromagnetic steel sheets having a thickness of 0.7 mm or less in a predetermined shape.

図4は比較のために示す図で、一般的な電動機600の回転子620の横断面図である。回転子620は永久磁石埋込型であり、少なくとも回転子鉄心621と、回転子鉄心621の磁石挿入孔623に挿入される、平板形状の永久磁石622を備える。   FIG. 4 is a view for comparison, and is a cross-sectional view of a rotor 620 of a general electric motor 600. The rotor 620 is a permanent magnet embedded type, and includes at least a rotor iron core 621 and a plate-shaped permanent magnet 622 inserted into the magnet insertion hole 623 of the rotor iron core 621.

6個の永久磁石622は、回転子鉄心621の外周縁に沿って形成された磁石挿入孔623に挿入され、6極の回転子620を構成する。   The six permanent magnets 622 are inserted into magnet insertion holes 623 formed along the outer peripheral edge of the rotor core 621 to constitute a six-pole rotor 620.

回転子620の永久磁石622は、Nd−Fe−B(ネオジウム ・鉄・ボロン)を主成分とするネオジウム希土類磁石を搭載しており、厚さ2mm程度の平板形状である。   The permanent magnet 622 of the rotor 620 is mounted with a neodymium rare earth magnet mainly composed of Nd—Fe—B (neodymium, iron, boron) and has a flat plate shape with a thickness of about 2 mm.

図5は比較のために示す図で、一般的な電動機600の回転子鉄心621の横断面図である。回転子鉄心621は、略円柱状であり、外周縁に沿って断面形状が略長方形の磁石挿入孔623が、6個形成されている。横断面において、6個の磁石挿入孔623で略六角形を形成している。回転子鉄心621の略中心部に、回転軸(図示せず)が挿入される軸孔624を備える。   FIG. 5 is a view for comparison, and is a cross-sectional view of a rotor core 621 of a general electric motor 600. The rotor iron core 621 has a substantially cylindrical shape, and six magnet insertion holes 623 having a substantially rectangular cross-sectional shape are formed along the outer peripheral edge. In the cross section, the six magnet insertion holes 623 form a substantially hexagonal shape. A shaft hole 624 into which a rotation shaft (not shown) is inserted is provided at a substantially central portion of the rotor core 621.

回転子鉄心621も、固定子鉄心611と同様に、厚さ0.7mm以下の薄い電磁鋼板を所定の形状に形成されて、所定の枚数を積層することで構成される。   Similarly to the stator core 611, the rotor core 621 is formed by forming a thin electromagnetic steel sheet having a thickness of 0.7 mm or less into a predetermined shape and laminating a predetermined number of sheets.

上記のように構成された一般的な電動機600の回転子620は、磁石挿入孔623の外側の外周鉄心部の影響により、回転子620の表面の磁束密度が正弦波に近い波形になりにくい、また固定子610の巻線612に電流が流れることにより生じる磁束(電機子反作用磁束)が磁石挿入孔623の外側の外周鉄心部に周り込むという課題があった。   In the rotor 620 of the general electric motor 600 configured as described above, the magnetic flux density on the surface of the rotor 620 is less likely to have a waveform close to a sine wave due to the influence of the outer peripheral core part outside the magnet insertion hole 623. In addition, there is a problem that a magnetic flux (an armature reaction magnetic flux) generated by a current flowing through the winding 612 of the stator 610 wraps around the outer peripheral core portion outside the magnet insertion hole 623.

その対策として、磁石挿入孔の外側の外周鉄心部にスリットを設けるのが一般的である。図6乃至図8は比較のために示す図で、図6はスリット725を有する一般的な回転子720の部分横断面図、図7は図6の拡大図、図8は一般的な回転子鉄心721の部分横断面図である。例えば、図6に示すように、別の一般的な回転子720の回転子鉄心721には、永久磁石722が挿入される磁石挿入孔723の外側の外周鉄心部に、複数のスリット725が形成されている。   As a countermeasure, it is common to provide a slit in the outer peripheral core part outside the magnet insertion hole. 6 to 8 are views for comparison, FIG. 6 is a partial cross-sectional view of a general rotor 720 having a slit 725, FIG. 7 is an enlarged view of FIG. 6, and FIG. 8 is a general rotor. 3 is a partial cross-sectional view of an iron core 721. FIG. For example, as shown in FIG. 6, a plurality of slits 725 are formed in a rotor core 721 of another general rotor 720 in the outer peripheral core portion outside the magnet insertion hole 723 into which the permanent magnet 722 is inserted. Has been.

詳細には、図7に示すように、一磁極において、磁石挿入孔723の外側の外周鉄心部に、略長穴形状のスリット725a〜725dが形成されている。スリット725aは、磁極中心線上に位置し、スリット725aを中心にしてその左右の極間までの間に、スリット725b〜725dが順に形成されている。スリット725b〜725dは、その外側への延長線が、回転子720の外部において磁極中心線に交わる方向に向いている。スリット725a〜725dにより、永久磁石722の磁束は、上記のように制御されるため、回転子720の表面の磁束密度が正弦波に近い波形になる。   Specifically, as shown in FIG. 7, in one magnetic pole, slits 725 a to 725 d having substantially elongated holes are formed in the outer peripheral core portion outside the magnet insertion hole 723. The slit 725a is positioned on the magnetic pole center line, and slits 725b to 725d are sequentially formed between the left and right poles with the slit 725a as the center. The slits 725 b to 725 d are oriented so that the outward extension line intersects the magnetic pole center line outside the rotor 720. Since the magnetic flux of the permanent magnet 722 is controlled as described above by the slits 725a to 725d, the magnetic flux density on the surface of the rotor 720 has a waveform close to a sine wave.

但し、一般的な回転子720に設けられる長円穴形状のスリット725a〜725dは、回転子鉄心721が電磁鋼板(0.7mm以下)を所定の形状に打ち抜き、所定枚数を積層して形成される際に、同時に打ち抜きにより形成される。   However, the oblong hole-shaped slits 725a to 725d provided in the general rotor 720 are formed by punching electromagnetic steel sheets (0.7 mm or less) into a predetermined shape and laminating a predetermined number of rotor cores 721. At the same time, it is formed by punching.

スリット725a〜725dの効果を有効に利用するために、打ち抜き部であるスリット725a〜725dを回転子720の表面付近に配置することが必要であり、回転子外周部に鉄心の磁路が狭い薄肉部(Ta〜Td、T、図8参照)が存在し、回転時の遠心力に対する強度が低下する課題がある。薄肉部(Ta〜Td、T)の最小寸法は、電磁鋼板の板厚(0.7mm以下)程度である。   In order to effectively use the effects of the slits 725a to 725d, it is necessary to arrange the slits 725a to 725d as punched portions near the surface of the rotor 720, and the magnetic path of the iron core is narrow on the outer periphery of the rotor. There exists a part (Ta-Td, T, refer FIG. 8), and the subject with respect to the strength with respect to the centrifugal force at the time of rotation falls. The minimum dimension of the thin part (Ta to Td, T) is about the thickness (0.7 mm or less) of the electromagnetic steel sheet.

本実施の形態は、打ち抜き部で構成されるスリット725a〜725dを有する一般的な回転子720の上記課題(強度不足)を解決するものである。   The present embodiment solves the above-described problem (insufficient strength) of a general rotor 720 having slits 725a to 725d formed by punched portions.

本実施の形態は、一般的な回転子720のように、完全に打ち抜かれたスリット725a〜725dではなく、スリット725a〜725dに相当する部分を、板厚を薄くして構成した磁束制御部とし、永久磁石の磁束を制御する機能を有するとともに、回転時の遠心力に対する強度が低下することのない優れた回転子を提供する。尚、本実施の形態は、極間部にも磁石挿入孔外周部に板厚を薄くした磁束制御部が形成されている。   In the present embodiment, unlike a general rotor 720, a portion corresponding to the slits 725a to 725d is not a completely punched slit 725a to 725d, but a magnetic flux control unit configured by reducing the plate thickness. The present invention provides an excellent rotor that has a function of controlling the magnetic flux of a permanent magnet and that does not decrease the strength against centrifugal force during rotation. In the present embodiment, a magnetic flux control unit having a thin plate thickness is also formed on the outer periphery of the magnet insertion hole in the inter-polar part.

図9乃至図16は実施の形態1を示す図で、図9は電動機100の横断面図、図10は電動機100の回転子20の横断面図、図11は電動機100の回転子鉄心21の横断面図、図12は図10の部分拡大図、図13は図11の部分拡大図、図14は図12のA−A断面図、図15は図12の部分拡大図、図16は図15のB−B断面図である。   9 to 16 are diagrams showing the first embodiment. FIG. 9 is a transverse sectional view of the electric motor 100, FIG. 10 is a transverse sectional view of the rotor 20 of the electric motor 100, and FIG. 11 is an illustration of the rotor core 21 of the electric motor 100. 12 is a partially enlarged view of FIG. 10, FIG. 13 is a partially enlarged view of FIG. 11, FIG. 14 is a sectional view taken along line AA of FIG. 12, FIG. 15 is a partially enlarged view of FIG. It is BB sectional drawing of 15.

図9乃至図16を参照しながら電動機100の構成を説明する。図9に示す電動機100も、例えばブラシレスDCモータである。電動機100は、固定子10と、この固定子10の内側に空隙40を介して配置される回転子20とを備える。   The configuration of the electric motor 100 will be described with reference to FIGS. 9 to 16. The electric motor 100 shown in FIG. 9 is also a brushless DC motor, for example. The electric motor 100 includes a stator 10 and a rotor 20 disposed inside the stator 10 via a gap 40.

固定子10の構成は、一般的な電動機600の固定子610と同様であるので、説明は省略する。   Since the configuration of the stator 10 is the same as that of the stator 610 of a general electric motor 600, the description thereof is omitted.

図10に示すように、回転子20は永久磁石埋込型であり、少なくとも回転子鉄心21と、回転子鉄心21の磁石挿入孔23に挿入される、平板形状の永久磁石22を備える。本実施の形態は、回転子鉄心21の構成に特徴がある。   As shown in FIG. 10, the rotor 20 is a permanent magnet embedded type, and includes at least a rotor core 21 and a plate-shaped permanent magnet 22 inserted into a magnet insertion hole 23 of the rotor core 21. This embodiment is characterized by the configuration of the rotor core 21.

6個の永久磁石22は、回転子鉄心21の外周縁に沿って形成された磁石挿入孔23にされ、6極の回転子20を構成する。   The six permanent magnets 22 are made into magnet insertion holes 23 formed along the outer peripheral edge of the rotor core 21 to constitute a six-pole rotor 20.

回転子20の永久磁石22は、Nd−Fe−B(ネオジウム ・鉄・ボロン)を主成分とするネオジウム希土類磁石を搭載しており、厚さ2mm程度の平板形状である。   The permanent magnet 22 of the rotor 20 is mounted with a neodymium rare earth magnet mainly composed of Nd—Fe—B (neodymium, iron, boron) and has a flat plate shape with a thickness of about 2 mm.

図11に示すように、回転子鉄心21は、略円柱状であり、外周縁に沿って断面形状が略長方形の磁石挿入孔23が、6個形成されている。横断面において、6個の磁石挿入孔23で略六角形を形成している。回転子鉄心21の略中心部に、回転軸(図示せず)が挿入される軸孔24を備える。   As shown in FIG. 11, the rotor core 21 has a substantially columnar shape, and six magnet insertion holes 23 having a substantially rectangular cross section are formed along the outer peripheral edge. In the cross section, the six magnet insertion holes 23 form a substantially hexagonal shape. A shaft hole 24 into which a rotating shaft (not shown) is inserted is provided at a substantially central portion of the rotor core 21.

回転子鉄心21は、厚さ0.7mm以下の薄い電磁鋼板を所定の形状に形成されて、所定の枚数を積層することで構成される。   The rotor core 21 is formed by laminating a predetermined number of thin electromagnetic steel sheets having a thickness of 0.7 mm or less in a predetermined shape.

回転子鉄心21は、各磁石挿入孔23の外側の外周鉄心部及び極間部に、永久磁石22の磁束を制御する(回転子20表面の磁束密度が正弦波になるように)磁束制御部30が形成されている。磁束制御部30は、回転子鉄心21を構成する各電磁鋼板に夫々設けられる。   The rotor core 21 controls the magnetic flux of the permanent magnet 22 on the outer peripheral core portion and the interpole portion outside each magnet insertion hole 23 (so that the magnetic flux density on the surface of the rotor 20 is a sine wave). 30 is formed. The magnetic flux control unit 30 is provided for each electromagnetic steel sheet constituting the rotor core 21.

図12に示すように、磁束制御部30は、各磁石挿入孔23の外側の外周鉄心部に形成され、平面視で長穴形状の複数の磁束制御部30a〜30dと、磁石挿入孔23の端部に接続して極間部に形成され、平面視で多角形状の磁束制御部30eとで構成される。   As shown in FIG. 12, the magnetic flux control unit 30 is formed on the outer peripheral iron core portion of each magnet insertion hole 23, and includes a plurality of magnetic flux control units 30 a to 30 d having a long hole shape in plan view, and the magnet insertion holes 23. It is connected to the end portion, is formed at the inter-pole portion, and is constituted by a polygonal magnetic flux control unit 30e in plan view.

磁束制御部30aは、磁極中心線上に位置し、磁束制御部30aを中心にしてその左右の極間までの間に、磁束制御部30b〜30dが順に形成されている。磁束制御部30b〜30dは、その外側への延長線が、回転子20の外部において磁極中心線に交わる方向に向いている。磁束制御部30a〜30dにより、永久磁石22の磁束は、上記のように制御されるため、回転子20の表面の磁束密度が正弦波に近い波形になる。尚、磁束制御部30a〜30dの周方向幅は、例えば、2mm程度である。   The magnetic flux control unit 30a is located on the magnetic pole center line, and the magnetic flux control units 30b to 30d are sequentially formed between the left and right poles with the magnetic flux control unit 30a as the center. The magnetic flux control units 30 b to 30 d are oriented in a direction in which the outward extension line intersects the magnetic pole center line outside the rotor 20. Since the magnetic flux of the permanent magnet 22 is controlled as described above by the magnetic flux control units 30a to 30d, the magnetic flux density on the surface of the rotor 20 has a waveform close to a sine wave. In addition, the circumferential direction width | variety of the magnetic flux control parts 30a-30d is about 2 mm, for example.

極間部の磁束制御部30eは、極間における永久磁石22の磁束の漏れを抑制する。   The inter-pole magnetic flux control unit 30e suppresses leakage of magnetic flux of the permanent magnet 22 between the poles.

図13に示すように、磁束制御部30a〜30eと回転子鉄心21の外周部との夫々の最小寸法Ta1、Tb1、Tc1、Td1、Te1は、電磁鋼板の板厚(0.7mm以下)程度である。   As shown in FIG. 13, the minimum dimensions Ta1, Tb1, Tc1, Td1, and Te1 of the magnetic flux control units 30a to 30e and the outer peripheral portion of the rotor core 21 are about the thickness (0.7 mm or less) of the electromagnetic steel sheet. It is.

また、磁束制御部30a〜30dと磁石挿入孔23との最小寸法Ta2、Tb2、Tc2、Td2も、電磁鋼板の板厚(0.7mm以下)程度である。   Further, the minimum dimensions Ta2, Tb2, Tc2, and Td2 between the magnetic flux control units 30a to 30d and the magnet insertion hole 23 are also about the plate thickness (0.7 mm or less) of the electromagnetic steel plate.

図14、図16に示すように、回転子鉄心21を構成する電磁鋼板21aの厚さW0は、例えば0.35mmで構成されており、磁束制御部30a〜30eの厚さW1は、例えば0.1mmで構成されている。一枚一枚の電磁鋼板21aに、磁束制御部30a〜30eは構成され、本実施の形態の回転子鉄心21は、電磁鋼板21aをカシメにより位相を固定し、軸方向に積層している。   As shown in FIGS. 14 and 16, the thickness W0 of the electromagnetic steel plate 21a constituting the rotor core 21 is, for example, 0.35 mm, and the thickness W1 of the magnetic flux control units 30a to 30e is, for example, 0. .1mm. Each magnetic steel sheet 21a includes magnetic flux control units 30a to 30e, and the rotor core 21 of the present embodiment fixes the phase of the electromagnetic steel sheets 21a by caulking and is laminated in the axial direction.

本実施の形態では、エッチングにより電磁鋼板21aの板厚を薄く加工して磁束制御部30a〜30eを形成する。その他、プレス等により電磁鋼板21aの板厚を薄く加工しても同様の効果がある。   In the present embodiment, the magnetic flux control units 30a to 30e are formed by thinning the thickness of the electromagnetic steel plate 21a by etching. In addition, the same effect can be obtained even if the thickness of the electromagnetic steel sheet 21a is reduced by pressing or the like.

次に、磁束制御部30a〜30eを形成する基本プロセスであるエッチング加工について説明する。   Next, the etching process which is a basic process for forming the magnetic flux control units 30a to 30e will be described.

電磁鋼板に前処理を施し、レジストを塗布する。このレジストに対してマスクを用いて、磁束制御部30a〜30eを露光し、それぞれ現像する。この形状に基づきレジストを除去し、エッチング液により加工する。   A pretreatment is applied to the electrical steel sheet, and a resist is applied. Using this mask, the magnetic flux control units 30a to 30e are exposed to light and developed. The resist is removed based on this shape and processed with an etching solution.

エッチング液による加工後、残ったレジストを除去すれば、所望の磁束制御部30a〜30eを有する電磁鋼板21aが形成できる。こうした製造には、例えばフォトエッチング加工が有効であり、金属マスクを用いた微細孔を精密に加工する方法を使用することも有効である。   If the remaining resist is removed after the processing with the etching solution, the electrical steel sheet 21a having the desired magnetic flux control units 30a to 30e can be formed. For such production, for example, photo-etching is effective, and it is also effective to use a method of precisely processing fine holes using a metal mask.

エッチング加工を用いれば、磁束制御部30a〜30eを極めて高い加工精度、例えば、誤差として±10μm以下、好ましくは±5μm以下で形成することが可能である。   If etching is used, the magnetic flux controllers 30a to 30e can be formed with extremely high processing accuracy, for example, with an error of ± 10 μm or less, preferably ± 5 μm or less.

本実施の形態では、各磁極の永久磁石22の外側の外周鉄心部に、7個の長穴形状の磁束制御部30a〜30d(1個の磁束制御部30a、2個づつの磁束制御部30b〜30d)が、磁束制御部30aが磁極中心に配置され、磁束制御部30aの左右に磁束制御部30b〜30dが対称に順に配置されている。さらに、7個の長穴形状の磁束制御部30a〜30dは、磁極中心部に向くように形成されている。このように構成することで、永久磁石22の磁束を磁極中心部に集中させ、磁極中心部から、磁束密度分布がなだらかに正弦波状になるように調整されている。   In the present embodiment, seven long hole-shaped magnetic flux control units 30a to 30d (one magnetic flux control unit 30a and two magnetic flux control units 30b) are provided on the outer peripheral iron core portion of the permanent magnet 22 of each magnetic pole. ˜30d), the magnetic flux control unit 30a is arranged at the magnetic pole center, and the magnetic flux control units 30b to 30d are arranged symmetrically in order on the left and right of the magnetic flux control unit 30a. Further, the seven long hole-shaped magnetic flux control units 30a to 30d are formed so as to face the central part of the magnetic pole. With this configuration, the magnetic flux of the permanent magnet 22 is concentrated at the magnetic pole center, and the magnetic flux density distribution is adjusted from the magnetic pole center so as to have a sine wave shape.

厚さW1が、例えば0.1mmに加工された磁束制御部30a〜30dは、磁路が狭いため、透磁率が低く磁束が流れにくくなる。磁束制御部30a〜30dを適切に配置することで磁束の流れを制御し、回転子20表面の磁束密度分布を正弦波状にすることが可能となる。   Since the magnetic flux control units 30a to 30d processed to have a thickness W1 of, for example, 0.1 mm have a narrow magnetic path, the magnetic permeability is low and the magnetic flux does not easily flow. By appropriately arranging the magnetic flux control units 30a to 30d, the flow of magnetic flux can be controlled, and the magnetic flux density distribution on the surface of the rotor 20 can be made sinusoidal.

図17乃至図19は実施の形態1を示す図で、図17は回転子20の磁束制御部なしの場合に、固定子10の巻線に誘起される誘起電圧の波形を示す図、図18は回転子20の磁束制御部ありの場合に、固定子10の巻線に誘起される誘起電圧の波形を示す図、図19は固定子10の巻線に誘起される誘起電圧の高調波成分含有率を、磁束制御部なしと磁束制御部ありとで比較した図である。   17 to 19 are diagrams showing the first embodiment, and FIG. 17 is a diagram showing a waveform of an induced voltage induced in the winding of the stator 10 when the rotor 20 does not have a magnetic flux control unit. FIG. 19 is a diagram showing a waveform of an induced voltage induced in the winding of the stator 10 when the magnetic flux control unit of the rotor 20 is provided, and FIG. 19 is a harmonic component of the induced voltage induced in the winding of the stator 10. It is the figure which compared the content rate with a magnetic flux control part and with a magnetic flux control part.

回転子20に磁束制御部30a〜30dがないときの、固定子10の巻線に誘起される誘起電圧の波形は、図17に示すような波形であった。また、回転子20に磁束制御部30a〜30dがあるときの、固定子10の巻線に誘起される誘起電圧の波形は、図18に示すような波形であった。これらの波形の周波数分析を行い、誘起電圧の高調波成分含有率(高調波成分の振幅の二乗和の平方根を基本波成分の振幅で割った値)を比較したところ、図19に示すように、磁束制御部なしが7.6%に対し、磁束制御部ありが3.6%と半減する結果であった。   When the rotor 20 does not have the magnetic flux controllers 30a to 30d, the waveform of the induced voltage induced in the winding of the stator 10 is a waveform as shown in FIG. Further, when the rotor 20 has the magnetic flux control units 30a to 30d, the waveform of the induced voltage induced in the winding of the stator 10 is a waveform as shown in FIG. The frequency analysis of these waveforms was performed, and the harmonic content of the induced voltage (value obtained by dividing the square root of the square sum of the amplitudes of the harmonic components by the amplitude of the fundamental component) was compared, as shown in FIG. The result was halved to 7.6% without the magnetic flux control unit and 3.6% with the magnetic flux control unit.

回転子20を駆動するトルクは、固定子10の巻線の誘起電圧と巻線を流れる電流との積に比例するため、回転子20に磁束制御部30a〜30dを設けることで、発生トルクの高調波成分を低減でき、低振動で高効率な電動機100が得られる。   The torque for driving the rotor 20 is proportional to the product of the induced voltage of the winding of the stator 10 and the current flowing through the winding. Therefore, by providing the rotor 20 with the magnetic flux control units 30a to 30d, The harmonic component can be reduced, and the motor 100 with low vibration and high efficiency can be obtained.

また、電磁鋼板の極間部の板厚を薄くして形成される磁束制御部30eは、隣接する極性の異なる磁極間で短絡する磁束を、磁気抵抗を大きくすることで流れにくくし、固定子10側に流れるように制御する働きを持つ。磁極間で短絡する短絡磁束を低減し、永久磁石22の磁束を固定子10に鎖交させることで、固定子10が発生するマグネットトルクが向上し、低電流で駆動できる高効率な電動機100が得られる。   Further, the magnetic flux control unit 30e formed by reducing the thickness of the inter-electrode portion of the electromagnetic steel sheet makes the magnetic flux that is short-circuited between adjacent magnetic poles having different polarities difficult to flow by increasing the magnetic resistance. It has the function of controlling to flow to the 10 side. By reducing the short-circuit magnetic flux that is short-circuited between the magnetic poles and interlinking the magnetic flux of the permanent magnet 22 with the stator 10, the magnet torque generated by the stator 10 is improved, and the highly efficient electric motor 100 that can be driven at a low current is obtained. can get.

上記のような磁束制御は磁束制御部を打ち抜くことでも可能であったが、その場合、磁束制御部の効果を有効に利用するために、打ち抜き部を回転子表面付近に配置することが必要であり、回転子外周部に鉄心の磁路が狭い薄肉部が存在し、回転時の遠心力に対する強度の低下が課題となっていた。   The magnetic flux control as described above was possible by punching out the magnetic flux control unit, but in that case, in order to effectively use the effect of the magnetic flux control unit, it is necessary to arrange the punched part near the rotor surface. In addition, there is a thin-walled portion where the magnetic path of the iron core is narrow on the outer periphery of the rotor, and the reduction in strength against centrifugal force during rotation has been a problem.

図20乃至図22は実施の形態1を示す図で、図20は回転子20の磁束制御部を打ち抜いた場合の遠心力に対する変形の解析結果を示す図、図21は回転子20の磁束制御部の板厚を薄くした場合の遠心力に対する変形の解析結果を示す図、図22は回転子20の磁束制御部を打ち抜いた場合と磁束制御部の板厚を薄くした場合の応力の解析結果を示す図である。   20 to 22 are diagrams showing the first embodiment. FIG. 20 is a diagram showing an analysis result of deformation with respect to centrifugal force when the magnetic flux control unit of the rotor 20 is punched. FIG. 21 is a magnetic flux control of the rotor 20. FIG. 22 is a diagram showing the analysis result of deformation with respect to centrifugal force when the plate thickness of the magnetic part is reduced. FIG. 22 shows the analysis result of stress when the magnetic flux control unit of the rotor 20 is punched and when the magnetic flux control unit is made thin. FIG.

図20、図21は、回転子20を100rpm(回転毎分 (rotation per minute))で回転させたときの遠心力に対する変形(2000倍に拡大したもの)で、図20は回転子20の磁束制御部を打ち抜いた場合の変形、図21は回転子20の磁束制御部の板厚を薄くした場合の変形を示す。   20 and 21 are deformations (enlarged 2000 times) against centrifugal force when the rotor 20 is rotated at 100 rpm (rotation per minute), and FIG. 20 shows the magnetic flux of the rotor 20. FIG. 21 shows a modification when the thickness of the magnetic flux control part of the rotor 20 is reduced.

図20と図21とを比較すると、磁束制御部30a〜30eを打ち抜きから、板厚を薄くして(例えば、厚さ0.35mmの電磁鋼板に対して、板厚を0.1mmに薄くする)、構成することにより、回転子20の外周付近の強度が大幅に向上し、永久磁石22に働く遠心力による各磁極部の変形が著しく小さくなっていることがわかる。   20 is compared with FIG. 21, after punching out the magnetic flux control units 30a to 30e, the plate thickness is reduced (for example, the thickness is reduced to 0.1 mm for an electromagnetic steel plate having a thickness of 0.35 mm). ), It can be seen that the strength near the outer periphery of the rotor 20 is greatly improved, and the deformation of each magnetic pole portion due to the centrifugal force acting on the permanent magnet 22 is remarkably reduced.

また、図22に示すように、回転数を変化したときの磁束制御部の外側の外周鉄心部のミーゼス応力(ミーゼス応力の概念を簡単に言うと、多方向から複合的に荷重が加わるような応力場において、1軸の引張り又は圧縮応力へ投影した値をいう)は、磁束制御部30a〜30eを打ち抜きから、板厚を薄くして(例えば、厚さ0.35mmの電磁鋼板に対して、板厚を0.1mmに薄くする)、構成することにより、約1/3以下に低減することができる。   Further, as shown in FIG. 22, the Mises stress of the outer peripheral core part outside the magnetic flux controller when the rotational speed is changed (simply speaking, the concept of Mises stress is such that a complex load is applied from multiple directions. In the stress field, the value projected on the uniaxial tensile or compressive stress is obtained by punching out the magnetic flux control units 30a to 30e and then reducing the plate thickness (for example, for a magnetic steel sheet having a thickness of 0.35 mm). By reducing the thickness of the plate to 0.1 mm, it can be reduced to about 1/3 or less.

本実施の形態は、低振動で高効率な電動機100が得られると共に、遠心力に対する機械的強度が上した信頼性の高い電動機100が得られるものである。   In the present embodiment, the highly efficient electric motor 100 with low vibration is obtained, and the highly reliable electric motor 100 with improved mechanical strength against centrifugal force is obtained.

図23、図24は実施の形態1を示す図で、図23は変形例1の回転子120の部分横断面図、図24は図23の拡大図である。図23に示すように、変形例1の回転子120は、回転子鉄心121の各磁石挿入孔123の外側の外周鉄心部及び極間部に、永久磁石122の磁束を制御する(回転子120表面の磁束密度が正弦波になるように)、もしくは極間における永久磁石122の漏れを抑制する磁束制御部130が形成されている。磁束制御部130は、回転子鉄心121を構成する各電磁鋼板に夫々設けられる。   23 and 24 are diagrams showing the first embodiment. FIG. 23 is a partial cross-sectional view of the rotor 120 of the first modification, and FIG. 24 is an enlarged view of FIG. As shown in FIG. 23, the rotor 120 according to the first modification controls the magnetic flux of the permanent magnet 122 to the outer peripheral core portion and the inter-pole portion outside each magnet insertion hole 123 of the rotor core 121 (rotor 120). The magnetic flux control unit 130 is formed to suppress leakage of the permanent magnet 122 between the poles so that the surface magnetic flux density becomes a sine wave. The magnetic flux control unit 130 is provided for each electromagnetic steel sheet constituting the rotor core 121.

図24に示すように、磁束制御部130は、各磁石挿入孔123の外側の外周鉄心部に形成され、平面視で長穴形状の複数の磁束制御部130a〜130dと、磁石挿入孔123の端部に接続して極間部に形成され、平面視で多角形状の磁束制御部130eとで構成される。   As shown in FIG. 24, the magnetic flux control unit 130 is formed on the outer peripheral iron core portion outside each magnet insertion hole 123, and includes a plurality of magnetic flux control units 130 a to 130 d having a long hole shape in plan view, and the magnet insertion hole 123. It is connected to the end portion, is formed at the inter-pole portion, and is constituted by a polygonal magnetic flux control unit 130e in plan view.

磁束制御部130a〜130eが、図12に示す磁束制御部30a〜30eと異なる点は、磁束制御部130a〜130dが、回転子120の外周及び磁石挿入孔123に接していること、及び磁束制御部130eが回転子120の外周に接していることである。   The magnetic flux controllers 130a to 130e are different from the magnetic flux controllers 30a to 30e shown in FIG. 12 in that the magnetic flux controllers 130a to 130d are in contact with the outer periphery of the rotor 120 and the magnet insertion hole 123, and the magnetic flux control. That is, the portion 130 e is in contact with the outer periphery of the rotor 120.

磁束制御部130aは、磁極中心線上に位置し、磁束制御部130aを中心にしてその左右の極間までの間に、磁束制御部130b〜130dが順に形成されている。磁束制御部130b〜130dは、その外側への延長線が、回転子20の外部において磁極中心線に交わる方向に向いている。磁束制御部130a〜130dにより、永久磁石122の磁束は、上記のように制御されるため、回転子120の表面の磁束密度が正弦波に近い波形になる。尚、磁束制御部130a〜130dの周方向幅は、例えば、2mm程度である。   The magnetic flux control unit 130a is located on the magnetic pole center line, and magnetic flux control units 130b to 130d are sequentially formed between the left and right poles with the magnetic flux control unit 130a as the center. The magnetic flux control units 130 b to 130 d are oriented in a direction in which the outward extension line intersects the magnetic pole center line outside the rotor 20. Since the magnetic flux of the permanent magnet 122 is controlled as described above by the magnetic flux control units 130a to 130d, the magnetic flux density on the surface of the rotor 120 has a waveform close to a sine wave. In addition, the circumferential direction width | variety of the magnetic flux control parts 130a-130d is about 2 mm, for example.

極間部の磁束制御部130eは、極間における永久磁石122の磁束の漏れを抑制する。   The inter-pole magnetic flux control unit 130e suppresses leakage of magnetic flux of the permanent magnet 122 between the poles.

図12に示す回転子20と比較すると、変形例1の回転子120は機械低強度はやや低下するが、磁束制御部130a〜130dが磁石挿入孔123、及び回転子120の外周部に接する。そのため、永久磁石122の磁束の流れの制御性が向上し、回転子120の表面の磁束密度分布を正弦波状に適正化することが可能となる。また、極間部の磁石挿入孔123の外周の磁束制御部130eも回転子120の外周部に接することで、極間の漏れ磁束が低減され、マグネットトルクが向上した高効率な電動機を構成することが可能となる。   Compared with the rotor 20 shown in FIG. 12, the mechanical strength of the rotor 120 of Modification 1 is slightly reduced, but the magnetic flux control units 130 a to 130 d are in contact with the magnet insertion hole 123 and the outer peripheral portion of the rotor 120. Therefore, the controllability of the magnetic flux flow of the permanent magnet 122 is improved, and the magnetic flux density distribution on the surface of the rotor 120 can be optimized in a sine wave shape. Moreover, the magnetic flux control part 130e on the outer periphery of the magnet insertion hole 123 in the inter-polar part is also in contact with the outer peripheral part of the rotor 120, so that a leakage magnetic flux between the poles is reduced and a highly efficient electric motor with improved magnet torque is configured. It becomes possible.

回転子鉄心121の打ち抜き時には、構成上必ず回転子120の表面に鉄心部を配置する必要があり、回転子120の表面の鉄心部で磁束が短絡しやすいという課題があったため、回転子20よりも変形例1の回転子120の方が、永久磁石122の磁束の制御性が改善できる。   When the rotor core 121 is punched, it is necessary to arrange an iron core portion on the surface of the rotor 120 due to the configuration, and there is a problem that magnetic flux is easily short-circuited at the iron core portion of the rotor 120 surface. In the rotor 120 of the first modification, the controllability of the magnetic flux of the permanent magnet 122 can be improved.

また、磁束制御部130の板厚が薄い部分が回転子120の外周部に接していることは次のような効果もある。一般に鉄心は外部変動磁界に対し、磁束の変動を打ち消す方向に鉄心内に渦電流が流れ、この渦電流によって渦電流損失を発生する。このため、電動機の鉄心は固有抵抗が高くなるように断面積の小さい、薄い電磁鋼板を積層して構成される。また、回転子鉄心の渦電流損は、磁気変動の大きい回転子表面で発生しやすい。図23の構成では、磁束制御部130が回転子鉄心121の表面の板厚を局所的に薄くしているため、回転子鉄心121の表面の固有抵抗が大きくなり、渦電流が流れにくくなり、渦電流損を低減できる。   In addition, the fact that the thin part of the magnetic flux control unit 130 is in contact with the outer periphery of the rotor 120 has the following effects. In general, an eddy current flows in an iron core in the direction to cancel the fluctuation of magnetic flux with respect to an externally varying magnetic field, and eddy current loss is generated by this eddy current. For this reason, the iron core of an electric motor is comprised by laminating | stacking a thin electromagnetic steel plate with a small cross-sectional area so that a specific resistance may become high. Further, eddy current loss of the rotor core is likely to occur on the rotor surface where the magnetic fluctuation is large. In the configuration of FIG. 23, since the magnetic flux controller 130 locally reduces the plate thickness of the surface of the rotor core 121, the specific resistance of the surface of the rotor core 121 is increased, and the eddy current is less likely to flow. Eddy current loss can be reduced.

図25乃至図29は実施の形態1を示す図で、図25は変形例2の回転子220の部分横断面図、図26は図25の拡大図、図27は図26のC−C断面図、図28は図26の部分拡大図、図29は図28のD−D断面図である。   FIGS. 25 to 29 are diagrams showing the first embodiment. FIG. 25 is a partial cross-sectional view of a rotor 220 according to a second modification, FIG. 26 is an enlarged view of FIG. 25, and FIG. 28 is a partially enlarged view of FIG. 26, and FIG. 29 is a sectional view taken along the line DD of FIG.

変形例2の回転子220の長穴形状の磁束制御部230は、板厚の異なる複数の磁束制御部で構成される点に特徴がある。   The long hole-shaped magnetic flux control unit 230 of the rotor 220 of Modification 2 is characterized in that it is composed of a plurality of magnetic flux control units having different plate thicknesses.

図25に示すように、変形例2の回転子220は、回転子鉄心221の各磁石挿入孔223の外側の外周鉄心部及び極間部に、永久磁石222の磁束を制御する(回転子220表面の磁束密度が正弦波になるように)、もしくは極間における永久磁石222の漏れを抑制する磁束制御部230が形成されている。磁束制御部230は、回転子鉄心221を構成する各電磁鋼板に夫々設けられる。   As illustrated in FIG. 25, the rotor 220 according to the second modification controls the magnetic flux of the permanent magnet 222 to the outer peripheral core portion and the interpole portion outside the magnet insertion holes 223 of the rotor core 221 (rotor 220. A magnetic flux controller 230 is formed to suppress leakage of the permanent magnet 222 between the poles so that the magnetic flux density on the surface becomes a sine wave. The magnetic flux control unit 230 is provided for each electromagnetic steel plate constituting the rotor core 221.

図26に示すように、磁束制御部230は、各磁石挿入孔223の外側の外周鉄心部に形成され、平面視で長穴形状の複数の磁束制御部230a〜230dと、磁石挿入孔223の端部に接続して極間部に形成され、平面視で多角形状の磁束制御部230eとで構成される。   As shown in FIG. 26, the magnetic flux control unit 230 is formed on the outer peripheral iron core of each magnet insertion hole 223, and has a plurality of long hole-shaped magnetic flux control units 230 a to 230 d and a magnet insertion hole 223 in plan view. It is connected to the end portion, is formed at the inter-pole portion, and is composed of a polygonal magnetic flux control unit 230e in plan view.

磁束制御部230a〜230eが、図12に示す磁束制御部30a〜30eと異なるのは、磁束制御部230a〜230dの板厚が異なり、磁極中心から極間に向かうほど、磁束制御部の厚さが薄くなっている点である。   The magnetic flux control units 230a to 230e are different from the magnetic flux control units 30a to 30e shown in FIG. 12 in that the thicknesses of the magnetic flux control units 230a to 230d are different. The point is that it is thinner.

図27に示すように、磁極中心線上に位置する磁束制御部230aの厚さが最大で、磁束制御部230b〜230dの順に徐々に厚さが小さくなっている。磁束制御部230dは、厚さがゼロ、即ちスリットになっている。   As shown in FIG. 27, the thickness of the magnetic flux control unit 230a located on the magnetic pole center line is the maximum, and the thickness gradually decreases in the order of the magnetic flux control units 230b to 230d. The magnetic flux control unit 230d has a thickness of zero, that is, a slit.

磁束制御部230aは、磁極中心線上に位置し、磁束制御部230aを中心にしてその左右の極間までの間に、磁束制御部230b〜230dが順に形成されている。磁束制御部230b〜230dは、その外側への延長線が、回転子220の外部において磁極中心線に交わる方向に向いている。磁束制御部230a〜230dにより、永久磁石222の磁束は、上記のように制御されるため、回転子220の表面の磁束密度が正弦波に近い波形になる。尚、磁束制御部230a〜230dの周方向幅は、例えば、2mm程度である。   The magnetic flux control unit 230a is located on the magnetic pole center line, and the magnetic flux control units 230b to 230d are sequentially formed between the left and right poles with the magnetic flux control unit 230a as the center. The magnetic flux control units 230 b to 230 d are oriented in a direction in which the outward extension line intersects the magnetic pole center line outside the rotor 220. Since the magnetic flux of the permanent magnet 222 is controlled as described above by the magnetic flux control units 230a to 230d, the magnetic flux density on the surface of the rotor 220 has a waveform close to a sine wave. In addition, the circumferential direction width | variety of the magnetic flux control parts 230a-230d is about 2 mm, for example.

極間部の磁束制御部230eは、極間における永久磁石222の磁束の漏れを抑制する。図9に示すように、ここでは、磁束制御部230eの厚さは、磁束制御部230aの厚さと同じにしている。   The inter-pole magnetic flux control unit 230e suppresses leakage of magnetic flux of the permanent magnet 222 between the poles. As shown in FIG. 9, here, the thickness of the magnetic flux controller 230e is the same as the thickness of the magnetic flux controller 230a.

回転子20、変形例1の回転子120では、磁束制御のための長穴形状の磁束制御部30,130を、向き、幅、長さ等をパラメータとして磁路の最適形状を検討した。変形例2の回転子220では、磁束制御部230の板厚による磁路設計を追加することにより、磁路の設計尤度が向上し、より回転子220の表面の磁束密度分布を正弦波状に適正化することが可能となる。   In the rotor 20 and the rotor 120 of the first modification, the optimum shape of the magnetic path was examined using the long hole-shaped magnetic flux control units 30 and 130 for magnetic flux control as parameters of the orientation, width, length, and the like. In the rotor 220 of the modified example 2, the magnetic path design likelihood is improved by adding the magnetic path design based on the thickness of the magnetic flux controller 230, and the magnetic flux density distribution on the surface of the rotor 220 is made sinusoidal. It becomes possible to optimize.

図30乃至図33は実施の形態1を示す図で、図30は変形例3の回転子320の部分横断面図、図31は図30の拡大図、図32は図31のE部拡大図、図33は図32のF−F断面図である。   30 to 33 are diagrams showing the first embodiment. FIG. 30 is a partial cross-sectional view of a rotor 320 according to a third modification, FIG. 31 is an enlarged view of FIG. 30, and FIG. 33 is a cross-sectional view taken along line FF in FIG.

変形例3の回転子320の長穴形状の磁束制御部330は、磁束制御部330の夫々が板厚ゼロの領域と薄肉部とで構成される点に特徴がある。   The long hole-shaped magnetic flux control unit 330 of the rotor 320 of Modification 3 is characterized in that each of the magnetic flux control units 330 is composed of a zero-thickness region and a thin portion.

図30に示すように、変形例3の回転子320は、回転子鉄心321の各磁石挿入孔323の外側の外周鉄心部及び極間部に、永久磁石322の磁束を制御する(回転子320表面の磁束密度が正弦波になるように)、もしくは極間における永久磁石322の漏れを抑制する磁束制御部330が形成されている。磁束制御部330は、回転子鉄心321を構成する各電磁鋼板に夫々設けられる。   As illustrated in FIG. 30, the rotor 320 of the third modification controls the magnetic flux of the permanent magnet 322 at the outer peripheral core portion and the inter-pole portion outside each magnet insertion hole 323 of the rotor core 321 (rotor 320). A magnetic flux control unit 330 is formed to suppress leakage of the permanent magnet 322 between the poles so that the surface magnetic flux density becomes a sine wave. The magnetic flux control unit 330 is provided for each electromagnetic steel sheet constituting the rotor core 321.

図31に示すように、磁束制御部330は、各磁石挿入孔323の外側の外周鉄心部に形成され、平面視で長穴形状の複数の磁束制御部330a〜330dと、磁石挿入孔323の端部に接続して極間部に形成され、平面視で多角形状の磁束制御部330eとで構成される。   As shown in FIG. 31, the magnetic flux control unit 330 is formed on the outer peripheral iron core of each magnet insertion hole 323, and has a plurality of long hole-shaped magnetic flux control units 330 a to 330 d and a magnet insertion hole 323. It is connected to the end portion, is formed at the inter-pole portion, and is constituted by a polygonal magnetic flux control unit 330e in plan view.

磁束制御部330a〜330eが、図12に示す磁束制御部30a〜30eと異なるのは、磁束制御部330a〜330eの夫々が板厚ゼロの領域と薄肉部とで構成される点である。さらに、薄肉部が、磁束制御部330a〜330eの回転子320の外周側に配置される。磁束制御部330a〜330eは、薄肉部の内側が、板厚ゼロの領域になっている。   The magnetic flux control units 330a to 330e are different from the magnetic flux control units 30a to 30e shown in FIG. 12 in that each of the magnetic flux control units 330a to 330e includes a zero-thickness region and a thin portion. Furthermore, a thin part is arrange | positioned at the outer peripheral side of the rotor 320 of the magnetic flux control parts 330a-330e. As for the magnetic flux control parts 330a-330e, the inner side of the thin part is an area | region where plate | board thickness is zero.

磁束制御部330aは、磁極中心線上に位置し、磁束制御部330aを中心にしてその左右の極間までの間に、磁束制御部330b〜330dが順に形成されている。磁束制御部330b〜330dは、その外側への延長線が、回転子320の外部において磁極中心線に交わる方向に向いている。磁束制御部330a〜330dにより、永久磁石322の磁束は、上記のように制御されるため、回転子320の表面の磁束密度が正弦波に近い波形になる。尚、磁束制御部330a〜330dの周方向幅は、例えば、2mm程度である。   The magnetic flux control unit 330a is located on the magnetic pole center line, and magnetic flux control units 330b to 330d are sequentially formed between the left and right poles with the magnetic flux control unit 330a as a center. The magnetic flux control units 330 b to 330 d are oriented in a direction in which the outward extension line intersects the magnetic pole center line outside the rotor 320. Since the magnetic flux of the permanent magnet 322 is controlled as described above by the magnetic flux control units 330a to 330d, the magnetic flux density on the surface of the rotor 320 has a waveform close to a sine wave. In addition, the circumferential direction width | variety of the magnetic flux control parts 330a-330d is about 2 mm, for example.

磁束制御部330aを例として、さらに構成を説明する。図32、図33に示すように、磁束制御部330aは、薄肉部330a−1と、打ち抜き部330a−2(板厚ゼロの領域)とで構成される。   The configuration will be further described by taking the magnetic flux controller 330a as an example. As shown in FIGS. 32 and 33, the magnetic flux controller 330a includes a thin portion 330a-1 and a punched portion 330a-2 (a region having a zero plate thickness).

磁束を流れにくくする効果は、板厚が薄いほど効果があるが、打ち抜きだと機械的強度が低下するため、強度の弱い打ち抜き部330a−2の回転子320表面側を薄い板厚の薄肉部330a−1で構成することで、回転子320の強度低下を抑制することができる。   The effect of making the magnetic flux difficult to flow is more effective as the plate thickness is thinner. However, since the mechanical strength decreases when punched, the surface portion of the rotor 320 of the weakly punched portion 330a-2 is thinned with a thin plate thickness. By comprising 330a-1, the strength reduction of the rotor 320 can be suppressed.

実施の形態2.
図34乃至図37は実施の形態2を示す図で、図34は回転子420の横断面図、図35は回転子鉄心421の横断面図、図36は図34の部分拡大図、図37は図36のG−G断面図である。
Embodiment 2. FIG.
34 to 37 show the second embodiment. FIG. 34 is a transverse sectional view of the rotor 420, FIG. 35 is a transverse sectional view of the rotor core 421, FIG. 36 is a partially enlarged view of FIG. FIG. 37 is a sectional view taken along line GG in FIG. 36.

図34に示すように、回転子420は永久磁石埋込型であり、少なくとも回転子鉄心421と、回転子鉄心421の磁石挿入孔423に挿入される、平板形状の永久磁石422を備える。   As shown in FIG. 34, the rotor 420 is a permanent magnet embedded type, and includes at least a rotor core 421 and a plate-shaped permanent magnet 422 inserted into the magnet insertion hole 423 of the rotor core 421.

6個の永久磁石422は、回転子鉄心421の外周縁に沿って形成された磁石挿入孔423に挿入され、6極の回転子420を構成する。   The six permanent magnets 422 are inserted into magnet insertion holes 423 formed along the outer peripheral edge of the rotor core 421 to constitute a six-pole rotor 420.

回転子420の永久磁石422は、Nd−Fe−B(ネオジウム ・鉄・ボロン)を主成分とするネオジウム希土類磁石を搭載しており、厚さ2mm程度の平板形状である。   The permanent magnet 422 of the rotor 420 is mounted with a neodymium rare earth magnet mainly composed of Nd—Fe—B (neodymium, iron, boron) and has a flat plate shape with a thickness of about 2 mm.

図35に示すように、回転子鉄心421は、略円柱状であり、外周縁に沿って断面形状が略長方形の磁石挿入孔423が、6個形成されている。横断面において、6個の磁石挿入孔423で略六角形を形成している。回転子鉄心421の略中心部に、回転軸(図示せず)が挿入される軸孔424を備える。   As shown in FIG. 35, the rotor core 421 has a substantially columnar shape, and six magnet insertion holes 423 having a substantially rectangular cross section are formed along the outer peripheral edge. In the cross section, the six magnet insertion holes 423 form a substantially hexagonal shape. A shaft hole 424 into which a rotating shaft (not shown) is inserted is provided at a substantially central portion of the rotor core 421.

回転子鉄心421は、厚さ0.7mm以下の薄い電磁鋼板を所定の形状に形成されて、所定の枚数を積層することで構成される。   The rotor core 421 is configured by forming a thin electromagnetic steel sheet having a thickness of 0.7 mm or less into a predetermined shape and laminating a predetermined number of sheets.

回転子鉄心421は、各磁石挿入孔423の外側の外周鉄心部及び極間部に、永久磁石422の磁束を制御する(回転子420表面の磁束密度が正弦波になるように)磁束制御部430が形成されている。板厚を薄くした磁束制御部430は、回転子鉄心421を構成する各電磁鋼板に夫々設けられる。   The rotor core 421 controls the magnetic flux of the permanent magnet 422 at the outer peripheral core portion and the pole portion outside each magnet insertion hole 423 (so that the magnetic flux density on the surface of the rotor 420 becomes a sine wave). 430 is formed. The magnetic flux control unit 430 having a reduced plate thickness is provided for each electromagnetic steel plate constituting the rotor core 421.

磁束制御部430は、磁極中心部から極間部に向けてなだらかに径方向の幅が広がるように構成される。具体的には、磁束制御部430の内周は、磁極部が外側に凸、極間部が外側に凹とするような略正弦波状の花びら形状である(例えば、図36の拡大図参照)。   The magnetic flux controller 430 is configured so that the radial width gradually increases from the magnetic pole center toward the inter-pole. Specifically, the inner periphery of the magnetic flux control unit 430 has a substantially sinusoidal petal shape in which the magnetic pole part is convex outward and the inter-polar part is concave outward (see, for example, the enlarged view of FIG. 36). .

図37に示すように、回転子鉄心421を構成する電磁鋼板421aの厚さW0は、例えば0.35mmで構成されており、磁束制御部430の厚さW1は、例えば0.1mmで構成されている。一枚一枚の電磁鋼板421aに、磁束制御部430は構成され、本実施の形態の回転子鉄心421は、電磁鋼板421aをカシメにより位相を固定し、軸方向に積層している。   As shown in FIG. 37, the thickness W0 of the electromagnetic steel plate 421a constituting the rotor core 421 is configured to be 0.35 mm, for example, and the thickness W1 of the magnetic flux controller 430 is configured to be 0.1 mm, for example. ing. The magnetic flux control unit 430 is constituted by each electromagnetic steel plate 421a, and the rotor core 421 of the present embodiment fixes the phase of the electromagnetic steel plates 421a by caulking and is laminated in the axial direction.

磁束制御部430は、板厚が薄いため(例えば0.1mm)磁束が通りにくい。そのため、磁極部で磁束密度が高く、極間部で磁束密度が低い構成にでき、回転子420の表面の磁束密度分布を正弦波化する効果がある。   Since the magnetic flux control unit 430 has a small plate thickness (for example, 0.1 mm), it is difficult for the magnetic flux to pass therethrough. For this reason, the magnetic pole portion can be configured to have a high magnetic flux density and the inter-pole portion can have a low magnetic flux density, which has the effect of making the magnetic flux density distribution on the surface of the rotor 420 sinusoidal.

図38、図39は実施の形態2を示す図で、図38は回転子420の磁束制御部ありの場合に、固定子の巻線に誘起される誘起電圧の波形を示す図、図39は固定子の巻線に誘起される誘起電圧の高調波成分含有率を、磁束制御部なしと磁束制御部ありとで比較した図である。   38 and 39 are diagrams showing the second embodiment. FIG. 38 is a diagram showing a waveform of an induced voltage induced in the stator winding when the magnetic flux control unit of the rotor 420 is provided. FIG. It is the figure which compared the harmonic component content rate of the induced voltage induced by the coil | winding of a stator with and without a magnetic flux control part.

図38に示すように、回転子420の磁束制御部430ありの場合、固定子の巻線に誘起される誘起電圧の波形は、正弦波に可なり近い波形である。   As shown in FIG. 38, in the case where the magnetic flux control unit 430 of the rotor 420 is provided, the waveform of the induced voltage induced in the stator winding is a waveform very close to a sine wave.

図39に示すように、誘起電圧の高調波含有率(高調波成分の振幅の二乗和の平方根を基本波成分の振幅で割った値)は、磁束制御部430なしが7.6%に対し、磁束制御部430ありが2.6%と約1/3まで低減している。   As shown in FIG. 39, the harmonic content of the induced voltage (the value obtained by dividing the square root of the square sum of the amplitudes of the harmonic components by the amplitude of the fundamental component) is 7.6% without the magnetic flux control unit 430. The magnetic flux control unit 430 is 2.6%, which is reduced to about 1/3.

上記のように構成することで、発生トルクの高調波成分を低減でき、低振動で高効率な電動機を構成することが可能となる。また、磁束密度の高調波成分が低減するため、高調波成分の磁気変動によって発生する鉄損を低減することが可能となり、高効率な電動機を構成することができる。   By configuring as described above, it is possible to reduce the harmonic component of the generated torque, and it is possible to configure a motor with low vibration and high efficiency. Further, since the harmonic component of the magnetic flux density is reduced, it is possible to reduce the iron loss caused by the magnetic fluctuation of the harmonic component, and it is possible to configure a highly efficient electric motor.

また、永久磁石電動機は、固定子と回転子間に磁気吸引力が働くため、偏心等による製造ばらつきにより振動が発生しやすく、エアギャップの管理を行っている。上記の構成を打ち抜きにより実施した場合、つまり磁束制御部430を打ち抜いた場合、固定子と回転子420の間のエアギャップが不均一となるため、偏心を調べるエアギャップ管理が困難となるが、本実施の形態では回転子420外周は真円であるため、エアギャップは一定となり、ギャップ管理が行いやすいという利点がある。   In addition, since a magnetic attraction force acts between the stator and the rotor in the permanent magnet motor, vibration is likely to occur due to manufacturing variations due to eccentricity or the like, and the air gap is managed. When the above configuration is performed by punching, that is, when the magnetic flux control unit 430 is punched, the air gap between the stator and the rotor 420 becomes non-uniform, so air gap management for examining eccentricity becomes difficult. In this embodiment, since the outer periphery of the rotor 420 is a perfect circle, there is an advantage that the air gap is constant and the gap management is easy.

実施の形態3.
図40は実施の形態3を示す図で、ロータリ圧縮機500の縦断面図である。例えば、実施の形態1の回転子20,120,220,320、実施の形態2の回転子420を用いるブラシレスDCモータを、冷凍空調用圧縮機に搭載する。当該ブラシレスDCモータは、低振動で高効率な電動機を構成すると共に、遠心力に対する機械的強度を向上した信頼性の高い電動機であるため、優れた圧縮機が得られる。
Embodiment 3 FIG.
FIG. 40 is a longitudinal sectional view of the rotary compressor 500 showing the third embodiment. For example, a brushless DC motor using the rotors 20, 120, 220, and 320 of the first embodiment and the rotor 420 of the second embodiment is mounted on the compressor for refrigeration and air conditioning. Since the brushless DC motor constitutes an electric motor with low vibration and high efficiency and is a highly reliable electric motor with improved mechanical strength against centrifugal force, an excellent compressor can be obtained.

以下、図40を参照しながら、実施の形態1の電動機100を搭載したロータリ圧縮機500(圧縮機の一例)について説明する。但し、実施の形態1の回転子120,220,320、実施の形態2の回転子420を用いる電動機(ブラシレスDCモータ)でもよい。   Hereinafter, a rotary compressor 500 (an example of a compressor) equipped with the electric motor 100 of the first embodiment will be described with reference to FIG. However, an electric motor (brushless DC motor) using the rotors 120, 220, and 320 of the first embodiment and the rotor 420 of the second embodiment may be used.

図40に示すロータリ圧縮機500の一例は、密閉容器70内が高圧の縦型のものである。密閉容器70内の下部に圧縮要素501が収納される。密閉容器70内の上部で、圧縮要素501の上方に圧縮要素501を駆動する電動要素である電動機100(図9参照)が収納される。   An example of the rotary compressor 500 shown in FIG. 40 is a vertical type in which the inside of the sealed container 70 is high pressure. A compression element 501 is housed in the lower part of the sealed container 70. An electric motor 100 (see FIG. 9), which is an electric element that drives the compression element 501, is accommodated above the compression element 501 in the upper part of the sealed container 70.

密閉容器70内の底部に、圧縮要素501の各摺動部を潤滑する冷凍機油90が貯留されている。   Refrigerating machine oil 90 that lubricates the sliding portions of the compression element 501 is stored at the bottom of the sealed container 70.

先ず、圧縮要素501の構成を説明する。内部に圧縮室が形成されるシリンダ1は、外周が平面視略円形で、内部に平面視略円形の空間であるシリンダ室(図示せず)を備える。シリンダ室は、軸方向両端が開口している。シリンダ1は、側面視で所定の軸方向の高さを持つ。   First, the configuration of the compression element 501 will be described. The cylinder 1 in which the compression chamber is formed has a cylinder chamber (not shown) that is a space having a substantially circular outer periphery in a plan view and a substantially circular space in a plan view. The cylinder chamber is open at both axial ends. The cylinder 1 has a predetermined axial height in a side view.

シリンダ1の略円形の空間であるシリンダ室に連通し、半径方向に延びる平行なベーン溝(図示せず)が軸方向に貫通して設けられる。   Parallel vane grooves (not shown) that communicate with a cylinder chamber that is a substantially circular space of the cylinder 1 and extend in the radial direction are provided so as to penetrate in the axial direction.

また、ベーン溝の背面(外側)に、ベーン溝に連通する平面視略円形の空間である背面室(図示せず)が設けられる。   A back chamber (not shown), which is a substantially circular space in plan view, communicates with the vane groove is provided on the back surface (outside) of the vane groove.

シリンダ1には、冷凍サイクルからの吸入ガスが通る吸入ポート(図示せず)が、シリンダ1の外周面からシリンダ室に貫通している。   An intake port (not shown) through which intake gas from the refrigeration cycle passes through the cylinder 1 passes through the cylinder chamber from the outer peripheral surface of the cylinder 1.

シリンダ1には、略円形の空間であるシリンダ室を形成する円の縁部付近(電動機100側の端面)を切り欠いた吐出ポート(図示せず)が設けられる。   The cylinder 1 is provided with a discharge port (not shown) in which the vicinity of the edge of the circle forming the cylinder chamber which is a substantially circular space (end surface on the side of the electric motor 100) is cut out.

シリンダ1の材質は、ねずみ鋳鉄、焼結、炭素鋼等である。   The material of the cylinder 1 is gray cast iron, sintered, carbon steel or the like.

ローリングピストン2が、シリンダ室内を偏心回転する。ローリングピストン2はリング状で、ローリングピストン2の内周が回転軸50の偏心軸部50aに摺動自在に嵌合する。   The rolling piston 2 rotates eccentrically in the cylinder chamber. The rolling piston 2 has a ring shape, and the inner periphery of the rolling piston 2 is slidably fitted to the eccentric shaft portion 50 a of the rotating shaft 50.

ローリングピストン2の外周と、シリンダ1のシリンダ室の内壁との間は、常に一定の隙間があるように組立られる。   It is assembled so that there is always a constant gap between the outer periphery of the rolling piston 2 and the inner wall of the cylinder chamber of the cylinder 1.

ローリングピストン2の材質は、クロム等を含有した合金鋼等である。   The material of the rolling piston 2 is alloy steel containing chromium or the like.

ベーン3がシリンダ1のベーン溝内に収納され、背圧室に設けられるベーンスプリング8でベーン3が常にローリングピストン2に押し付けられている。ロータリ圧縮機500は、密閉容器70内が高圧であるから、運転を開始するとベーン3の背面(背圧室側)に密閉容器70内の高圧とシリンダ室の圧力との差圧による力が作用するので、ベーンスプリング8は主にロータリ圧縮機500の起動時(密閉容器70内とシリンダ室の圧力に差がない状態)に、ベーン3をローリングピストン2に押し付ける目的で使用される。   The vane 3 is accommodated in the vane groove of the cylinder 1, and the vane 3 is always pressed against the rolling piston 2 by the vane spring 8 provided in the back pressure chamber. In the rotary compressor 500, since the inside of the sealed container 70 is at a high pressure, when the operation is started, a force due to a differential pressure between the high pressure in the sealed container 70 and the pressure in the cylinder chamber acts on the back surface (back pressure chamber side) of the vane 3. Therefore, the vane spring 8 is mainly used for the purpose of pressing the vane 3 against the rolling piston 2 when the rotary compressor 500 is started up (in a state where there is no difference in pressure between the inside of the sealed container 70 and the cylinder chamber).

ベーン3の形状は、平たい(周方向の厚さが、径方向及び軸方向の長さよりも小さい)略直方体である。   The shape of the vane 3 is a flat shape (the thickness in the circumferential direction is smaller than the length in the radial direction and the axial direction).

ベーン3の材料には、高速度工具鋼が主に用いられている。   High-speed tool steel is mainly used as the material of the vane 3.

主軸受け4は、回転軸50の主軸部50b(偏心軸部50aより上の部分で、回転子20に嵌合する部分)に摺動自在に嵌合するとともに、シリンダ1のシリンダ室(ベーン溝も含む)の一方の端面(電動機100側)を閉塞する。   The main bearing 4 is slidably fitted into a main shaft portion 50b (a portion above the eccentric shaft portion 50a and a portion fitting with the rotor 20) of the rotating shaft 50, and a cylinder chamber (vane groove) of the cylinder 1. One end surface (including the electric motor 100 side) of the motor is closed.

主軸受け4は、吐出弁(図示せず)を備える。但し、主軸受け4、副軸受け5のいずれか一方、または、両方に付く場合もある。   The main bearing 4 includes a discharge valve (not shown). However, it may be attached to either one or both of the main bearing 4 and the sub-bearing 5.

主軸受け4は、側面視略逆T字状である。   The main bearing 4 has a substantially inverted T shape when viewed from the side.

副軸受け5が、回転軸50の副軸部50c(偏心軸部50aより下の部分)に摺動自在に嵌合するとともに、シリンダ1のシリンダ室(ベーン溝も含む)の他方の端面(冷凍機油90側)を閉塞する。   The sub-bearing 5 is slidably fitted to the sub-shaft portion 50c (a portion below the eccentric shaft portion 50a) of the rotating shaft 50, and the other end face (freezing) of the cylinder chamber (including the vane groove) of the cylinder 1 is also provided. The machine oil 90 side) is closed.

副軸受け5は、側面視略T字状である。   The secondary bearing 5 is substantially T-shaped in a side view.

主軸受け4、副軸受け5の材質は、シリンダ1の材質と同じで、ねずみ鋳鉄、焼結、炭素鋼等である。   The material of the main bearing 4 and the sub bearing 5 is the same as that of the cylinder 1, and is made of gray cast iron, sintered, carbon steel, or the like.

主軸受け4には、その外側(電動機100側)に吐出マフラ7が取り付けられる。主軸受け4の吐出弁から吐出される高温・高圧の吐出ガスは、一端吐出マフラ7に入り、その後吐出マフラ7から密閉容器70内に放出される。但し、副軸受け5側に吐出マフラ7を持つ場合もある。   A discharge muffler 7 is attached to the main bearing 4 on the outer side (motor 100 side). The high-temperature and high-pressure discharge gas discharged from the discharge valve of the main bearing 4 enters the discharge muffler 7 at one end and is then discharged from the discharge muffler 7 into the sealed container 70. However, the discharge muffler 7 may be provided on the sub-bearing 5 side.

密閉容器70の横に、冷凍サイクルからの低圧の冷媒ガスを吸入し、液冷媒が戻る場合に液冷媒が直接シリンダ1のシリンダ室に吸入されるのを抑制する吸入マフラ51が設けられる。吸入マフラ51は、シリンダ1の吸入ポートに吸入管52を介して接続する。吸入マフラ51本体は、溶接等により密閉容器70の側面に固定される。   A suction muffler 51 is provided beside the hermetic container 70 to suck low-pressure refrigerant gas from the refrigeration cycle and prevent liquid refrigerant from being directly drawn into the cylinder chamber of the cylinder 1 when the liquid refrigerant returns. The suction muffler 51 is connected to the suction port of the cylinder 1 via the suction pipe 52. The main body of the suction muffler 51 is fixed to the side surface of the sealed container 70 by welding or the like.

密閉容器70には、電力の供給源である電源に接続する端子74(ガラス端子という)が、溶接により固定されている。図40の例では、密閉容器70の上面に端子74が設けられる。端子74には、電動要素である電動機100からのリード線73が接続される。   A terminal 74 (referred to as a glass terminal) connected to a power source that is a power supply source is fixed to the sealed container 70 by welding. In the example of FIG. 40, a terminal 74 is provided on the upper surface of the sealed container 70. A lead wire 73 from the electric motor 100 that is an electric element is connected to the terminal 74.

密閉容器70の上面に、両端が開口した吐出管75が嵌挿されている。圧縮要素501から吐出される吐出ガスは、密閉容器70内から吐出管75を通って外部の冷凍サイクルへ吐出される。   A discharge pipe 75 having both ends opened is inserted into the upper surface of the sealed container 70. The discharge gas discharged from the compression element 501 is discharged from the sealed container 70 through the discharge pipe 75 to the external refrigeration cycle.

ロータリ圧縮機500の一般的な動作について説明する。端子74、リード線73から電動要素である電動機100の固定子10に電力が供給されることにより、回転子20が回転する。すると回転子20に固定された回転軸50が回転し、それに伴いローリングピストン2はシリンダ1のシリンダ室内で偏心回転する。シリンダ1のシリンダ室とローリングピストン2との間の空間は、ベーン3によって2分割されている。回転軸50の回転に伴い、それらの2つの空間の容積が変化し、片側はだんだん容積が広がることにより吸入マフラ51より冷媒を吸入し、他側は容積が除々に縮小することにより、中の冷媒ガスが圧縮される。圧縮された吐出ガスは、吐出マフラ7から密閉容器70内に一度吐出され、更に電動要素である電動機100を通過して密閉容器70の上面にある吐出管75より密閉容器70外へ吐出される。   A general operation of the rotary compressor 500 will be described. When electric power is supplied from the terminal 74 and the lead wire 73 to the stator 10 of the electric motor 100 which is an electric element, the rotor 20 rotates. Then, the rotating shaft 50 fixed to the rotor 20 rotates, and accordingly, the rolling piston 2 rotates eccentrically in the cylinder chamber of the cylinder 1. A space between the cylinder chamber of the cylinder 1 and the rolling piston 2 is divided into two by a vane 3. As the rotary shaft 50 rotates, the volume of these two spaces changes, the volume gradually increases on one side and the refrigerant is sucked in from the suction muffler 51, and the volume gradually decreases on the other side. The refrigerant gas is compressed. The compressed discharge gas is discharged once from the discharge muffler 7 into the sealed container 70, further passes through the electric motor 100 as an electric element, and is discharged out of the sealed container 70 through the discharge pipe 75 on the upper surface of the sealed container 70. .

電動要素である電動機100を通過する吐出ガスは、例えば、図示しない電動機100の回転子20の風穴部(貫通孔)、固定子10のスロット開口部(図示せず)含む空隙40(図9参照)、固定子10の外周に配置された切欠き(図9参照)等を通る。   The discharge gas that passes through the electric motor 100, which is an electric element, is, for example, a void 40 (see FIG. 9) including an air hole (through hole) of the rotor 20 of the electric motor 100 (not shown) and a slot opening (not shown) of the stator 10. ), And passes through a notch (see FIG. 9) disposed on the outer periphery of the stator 10.

1 シリンダ、2 ローリングピストン、3 ベーン、4 主軸受け、5 副軸受け、7 吐出マフラ、8 ベーンスプリング、10 固定子、20 回転子、21 回転子鉄心、21a 電磁鋼板、22 永久磁石、23 磁石挿入孔、24 軸孔、30 磁束制御部、30a〜30e 磁束制御部、40 空隙、50 回転軸、50a 偏心軸部、50b 主軸部、50c 副軸部、51 吸入マフラ、52 吸入管、70 密閉容器、73 リード線、74 端子、75 吐出管、90 冷凍機油、100 電動機、120 回転子、121 回転子鉄心、122 永久磁石、123 磁石挿入孔、130 磁束制御部、130a〜130e 磁束制御部、220 回転子、221 回転子鉄心、222 永久磁石、223 磁石挿入孔、230 磁束制御部、230a〜230e 磁束制御部、320 回転子、321 回転子鉄心、322 永久磁石、323 磁石挿入孔、330 磁束制御部、330a 磁束制御部、330a−1 薄肉部、330a−2 打ち抜き部、330b〜330e 磁束制御部、420 回転子、421 回転子鉄心、422 永久磁石、423 磁石挿入孔、424 軸孔、430 磁束制御部、500 ロータリ圧縮機、501 圧縮要素、600 電動機、610 固定子、611 固定子鉄心、612 巻線、613 ティース、614 スロット、614a スロット開口部、615 コアバック、620 回転子、621 回転子鉄心、622 永久磁石、623 磁石挿入孔、624 軸孔、640 空隙、720 回転子、721 回転子鉄心、722 永久磁石、723 磁石挿入孔、725 スリット、725a〜725d スリット。   1 Cylinder, 2 Rolling piston, 3 Vane, 4 Main bearing, 5 Sub bearing, 7 Discharge muffler, 8 Vane spring, 10 Stator, 20 Rotor, 21 Rotor core, 21a Electrical steel plate, 22 Permanent magnet, 23 Magnet insertion Hole, 24 shaft hole, 30 magnetic flux control unit, 30a-30e magnetic flux control unit, 40 air gap, 50 rotating shaft, 50a eccentric shaft part, 50b main shaft part, 50c secondary shaft part, 51 suction muffler, 52 suction pipe, 70 airtight container 73 lead wire, 74 terminal, 75 discharge pipe, 90 refrigerating machine oil, 100 electric motor, 120 rotor, 121 rotor core, 122 permanent magnet, 123 magnet insertion hole, 130 magnetic flux control unit, 130a to 130e magnetic flux control unit, 220 Rotor, 221 Rotor core, 222 Permanent magnet, 223 Magnet insertion hole, 230 Magnetic flux controller, 2 0a to 230e Magnetic flux control unit, 320 rotor, 321 rotor core, 322 permanent magnet, 323 magnet insertion hole, 330 magnetic flux control unit, 330a magnetic flux control unit, 330a-1 thin portion, 330a-2 punching unit, 330b to 330e Magnetic flux control unit, 420 Rotor, 421 Rotor core, 422 Permanent magnet, 423 Magnet insertion hole, 424 Shaft hole, 430 Magnetic flux control unit, 500 Rotary compressor, 501 Compression element, 600 Electric motor, 610 Stator, 611 Stator Iron core, 612 winding, 613 teeth, 614 slot, 614a slot opening, 615 core back, 620 rotor, 621 rotor core, 622 permanent magnet, 623 magnet insertion hole, 624 shaft hole, 640 gap, 720 rotor, 721 Rotor core, 722 permanent magnet, 723 magnet Insertion hole, 725 slit, 725a to 725d slit.

Claims (8)

固定子と、永久磁石埋込型の回転子とを備える電動機であって、
前記回転子は、
外周縁に沿って複数の磁石挿入孔が形成された回転子鉄心と、
前記磁石挿入孔に挿入される複数の永久磁石と、を備え、
前記回転子鉄心は、前記磁石挿入孔の外側の外周鉄心部、並びに極間部に、板厚を薄くして構成される磁束制御部が形成された電磁鋼板を所定の枚数積層して形成されることを特徴とする電動機。
An electric motor comprising a stator and a permanent magnet embedded rotor,
The rotor is
A rotor core in which a plurality of magnet insertion holes are formed along the outer periphery;
A plurality of permanent magnets inserted into the magnet insertion holes,
The rotor core is formed by laminating a predetermined number of electromagnetic steel plates each having a magnetic flux control unit formed by reducing the plate thickness at the outer peripheral core part outside the magnet insertion hole and between the poles. An electric motor characterized by that.
前記磁石挿入孔の外側の外周鉄心部に形成される前記磁束制御部が、平面視で長穴形状に形成されることを特徴とする請求項1に記載の電動機。   2. The electric motor according to claim 1, wherein the magnetic flux control unit formed in the outer peripheral core part outside the magnet insertion hole is formed in a long hole shape in a plan view. 前記磁束制御部が、前記磁石挿入孔、もしくは前記回転子外周部に接していることを特徴とする請求項1に記載の電動機。   The electric motor according to claim 1, wherein the magnetic flux control unit is in contact with the magnet insertion hole or the outer periphery of the rotor. 前記複数の磁束制御部は、板厚が異なることを特徴とする請求項1に記載の電動機。   The electric motor according to claim 1, wherein the plurality of magnetic flux control units have different plate thicknesses. 各磁束制御部が、薄肉部と、板厚ゼロの領域である打ち抜き部とで構成されることを特徴とする請求項1に記載の電動機。   2. The electric motor according to claim 1, wherein each magnetic flux control unit includes a thin-walled portion and a punched portion that is a region having a plate thickness of zero. 前記磁束制御部は、磁極部から極間部に向けてなだらかに広がるように形成されることを特徴とする請求項1に記載の電動機。   2. The electric motor according to claim 1, wherein the magnetic flux control unit is formed to gently spread from the magnetic pole part toward the inter-pole part. 前記磁束制御部は、エッチングにより形成されることを特徴とする請求項1乃至6のいずれかに記載の電動機。   The electric motor according to claim 1, wherein the magnetic flux control unit is formed by etching. 請求項1乃至7に記載の電動機を搭載したことを特徴とする圧縮機。   A compressor equipped with the electric motor according to claim 1.
JP2010250518A 2010-11-09 2010-11-09 Electric motor and compressor Active JP5478461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250518A JP5478461B2 (en) 2010-11-09 2010-11-09 Electric motor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250518A JP5478461B2 (en) 2010-11-09 2010-11-09 Electric motor and compressor

Publications (2)

Publication Number Publication Date
JP2012105410A true JP2012105410A (en) 2012-05-31
JP5478461B2 JP5478461B2 (en) 2014-04-23

Family

ID=46395145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250518A Active JP5478461B2 (en) 2010-11-09 2010-11-09 Electric motor and compressor

Country Status (1)

Country Link
JP (1) JP5478461B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068655A1 (en) * 2012-10-30 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
JP2014090638A (en) * 2012-10-31 2014-05-15 Toshiba Corp Permanent magnet type rotary electric machine, rotor, and stator
JP2014093802A (en) * 2012-11-01 2014-05-19 Jtekt Corp Rotor for rotary machine
WO2014171133A1 (en) 2013-04-16 2014-10-23 日本発條株式会社 Magnetic plate used for rotor core of motor and method for manufacturing magnetic plate
WO2015045026A1 (en) * 2013-09-25 2015-04-02 三菱電機株式会社 Electric motor with embedded permanent magnet, compressor, and refrigeration/air-conditioning device
WO2015083274A1 (en) * 2013-12-05 2015-06-11 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
WO2015186280A1 (en) * 2014-06-02 2015-12-10 パナソニックIpマネジメント株式会社 Permanent magnet-embedded electric motor
CN107683556A (en) * 2015-06-12 2018-02-09 捷豹路虎有限公司 Electric Drive Motor
CN108352743A (en) * 2015-11-18 2018-07-31 三菱电机株式会社 Motor and air conditioner
CN110582926A (en) * 2017-04-26 2019-12-17 三菱电机株式会社 Permanent magnet motor
WO2020110191A1 (en) * 2018-11-27 2020-06-04 三菱電機株式会社 Rotating electrical machine
JP2020520219A (en) * 2017-05-11 2020-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Rotors and electromechanical
WO2020161990A1 (en) * 2019-02-07 2020-08-13 パナソニックIpマネジメント株式会社 Electric tool
WO2023175670A1 (en) * 2022-03-14 2023-09-21 三菱電機株式会社 Stator for electric motor, compressor, and refrigeration air conditioning device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144772U (en) * 1985-02-26 1986-09-06
JPH10285851A (en) * 1997-04-07 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor
JPH11187597A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Rotor with embedded permanent magnets
JP2001037127A (en) * 1999-07-26 2001-02-09 Toshiba Corp Permanent magnet type motor
JP2005130604A (en) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd Electromagnetic steel plate body, rotor for rotary machine incorporating permanent magnet employing it, rotary machine incorporating permanent magnet, and vehicle employing rotary machine incorporating permanent magnet
JP2008131853A (en) * 2006-11-27 2008-06-05 Mitsubishi Electric Corp Magnet-embedded rotor and manufacturing method therefor
JP2008167583A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor, electric motor for blower and electric motor for compressor
WO2008102439A1 (en) * 2007-02-21 2008-08-28 Mitsubishi Electric Corporation Permanent magnet synchronous motor and enclosed compressor
JP2008245384A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Permanent magnet type rotary electric machine, and compressor using the same
JP2009219291A (en) * 2008-03-12 2009-09-24 Mitsubishi Electric Corp Rotor for synchronous electric motor, and compressor
JP2010081776A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Rotor of synchronous motor, and method of manufacturing the same rotor
JP2010220324A (en) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp Electric motor, compressor, and air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144772U (en) * 1985-02-26 1986-09-06
JPH10285851A (en) * 1997-04-07 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor
JPH11187597A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Rotor with embedded permanent magnets
JP2001037127A (en) * 1999-07-26 2001-02-09 Toshiba Corp Permanent magnet type motor
JP2005130604A (en) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd Electromagnetic steel plate body, rotor for rotary machine incorporating permanent magnet employing it, rotary machine incorporating permanent magnet, and vehicle employing rotary machine incorporating permanent magnet
JP2008131853A (en) * 2006-11-27 2008-06-05 Mitsubishi Electric Corp Magnet-embedded rotor and manufacturing method therefor
JP2008167583A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor, electric motor for blower and electric motor for compressor
WO2008102439A1 (en) * 2007-02-21 2008-08-28 Mitsubishi Electric Corporation Permanent magnet synchronous motor and enclosed compressor
JP2008245384A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Permanent magnet type rotary electric machine, and compressor using the same
JP2009219291A (en) * 2008-03-12 2009-09-24 Mitsubishi Electric Corp Rotor for synchronous electric motor, and compressor
JP2010081776A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Rotor of synchronous motor, and method of manufacturing the same rotor
JP2010220324A (en) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp Electric motor, compressor, and air conditioner

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931213B2 (en) * 2012-10-30 2016-06-08 三菱電機株式会社 Permanent magnet embedded motor and refrigeration air conditioner equipped with the same
WO2014069438A1 (en) * 2012-10-30 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
JPWO2014069438A1 (en) * 2012-10-30 2016-09-08 三菱電機株式会社 Permanent magnet embedded motor and refrigeration air conditioner equipped with the same
EP2916435A4 (en) * 2012-10-30 2016-06-22 Mitsubishi Electric Corp Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
US9929610B2 (en) 2012-10-30 2018-03-27 Mitsubishi Electric Corporation Electric motor with embedded permanent magnet, and refrigerating air conditioning equipment equipped with same
WO2014068655A1 (en) * 2012-10-30 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
CN104823357A (en) * 2012-10-30 2015-08-05 三菱电机株式会社 Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
US20150256038A1 (en) * 2012-10-30 2015-09-10 Mitsubishi Electric Corporation Electric motor with embedded permanent magnet, and refrigerating air conditioning equipment equipped with same
JP2014090638A (en) * 2012-10-31 2014-05-15 Toshiba Corp Permanent magnet type rotary electric machine, rotor, and stator
JP2014093802A (en) * 2012-11-01 2014-05-19 Jtekt Corp Rotor for rotary machine
CN105164896A (en) * 2013-04-16 2015-12-16 日本发条株式会社 Magnetic plate used for rotor core of motor and method for manufacturing magnetic plate
CN105164896B (en) * 2013-04-16 2017-08-18 日本发条株式会社 Magnetic sheet and its manufacture method for the rotor core of motor
US9570948B2 (en) 2013-04-16 2017-02-14 Nhk Spring Co., Ltd. Magnetic plate used for rotor core of motor and method for manufacturing magnetic plate
WO2014171133A1 (en) 2013-04-16 2014-10-23 日本発條株式会社 Magnetic plate used for rotor core of motor and method for manufacturing magnetic plate
JPWO2015045026A1 (en) * 2013-09-25 2017-03-02 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6037361B2 (en) * 2013-09-25 2016-12-07 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
US20160172913A1 (en) * 2013-09-25 2016-06-16 Mitsubishi Electric Corporation Electric motor with embedded permanent magnet, compressor, and refrigeration/air-conditioning device
US9634531B2 (en) 2013-09-25 2017-04-25 Mitsubishi Electric Corporation Electric motor with embedded permanent magnet, compressor, and refrigeration/air-conditioning device
WO2015045026A1 (en) * 2013-09-25 2015-04-02 三菱電機株式会社 Electric motor with embedded permanent magnet, compressor, and refrigeration/air-conditioning device
CN105794087A (en) * 2013-12-05 2016-07-20 三菱电机株式会社 Permanent magnet embedded motor, compressor and refrigeration air-conditioning device
US10103588B2 (en) 2013-12-05 2018-10-16 Mitsubishi Electric Corporation Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JPWO2015083274A1 (en) * 2013-12-05 2017-03-16 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2015083274A1 (en) * 2013-12-05 2015-06-11 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
CN105794087B (en) * 2013-12-05 2019-01-08 三菱电机株式会社 Permanent magnetic baried formula motor, compressor and refrigerating air conditioning device
WO2015186280A1 (en) * 2014-06-02 2015-12-10 パナソニックIpマネジメント株式会社 Permanent magnet-embedded electric motor
CN107683556A (en) * 2015-06-12 2018-02-09 捷豹路虎有限公司 Electric Drive Motor
US10778054B2 (en) 2015-06-12 2020-09-15 Jaguar Land Rover Limited Electric drive motor
CN107683556B (en) * 2015-06-12 2020-11-03 捷豹路虎有限公司 Electric drive motor
CN108352743A (en) * 2015-11-18 2018-07-31 三菱电机株式会社 Motor and air conditioner
US10855126B2 (en) 2015-11-18 2020-12-01 Mitsubishi Electric Corporation Electric motor and air conditioner
CN110582926A (en) * 2017-04-26 2019-12-17 三菱电机株式会社 Permanent magnet motor
EP3618233A4 (en) * 2017-04-26 2020-04-15 Mitsubishi Electric Corporation Permanent magnet-type motor
US11404925B2 (en) 2017-04-26 2022-08-02 Mitsubishi Electric Corporation Permanent magnet motor
JP2020520219A (en) * 2017-05-11 2020-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Rotors and electromechanical
JP7055220B2 (en) 2018-11-27 2022-04-15 三菱電機株式会社 Rotating electric machine
WO2020110191A1 (en) * 2018-11-27 2020-06-04 三菱電機株式会社 Rotating electrical machine
US11901772B2 (en) 2018-11-27 2024-02-13 Mitsubishi Electric Corporation Rotating electrical machine
JPWO2020110191A1 (en) * 2018-11-27 2021-09-27 三菱電機株式会社 Rotating machine
WO2020161990A1 (en) * 2019-02-07 2020-08-13 パナソニックIpマネジメント株式会社 Electric tool
EP3923447A4 (en) * 2019-02-07 2022-04-20 Panasonic Intellectual Property Management Co., Ltd. Electric tool
US20220131434A1 (en) * 2019-02-07 2022-04-28 Panasonic Intellectual Property Management Co., Ltd. Electric tool
CN113424396A (en) * 2019-02-07 2021-09-21 松下知识产权经营株式会社 Electric tool
JP7308441B2 (en) 2019-02-07 2023-07-14 パナソニックIpマネジメント株式会社 Electric tool
US11876408B2 (en) 2019-02-07 2024-01-16 Panasonic Intellectual Property Management Co., Ltd. Electric tool
JP2020129877A (en) * 2019-02-07 2020-08-27 パナソニックIpマネジメント株式会社 Electric tool
WO2023175670A1 (en) * 2022-03-14 2023-09-21 三菱電機株式会社 Stator for electric motor, compressor, and refrigeration air conditioning device

Also Published As

Publication number Publication date
JP5478461B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5478461B2 (en) Electric motor and compressor
JP5361942B2 (en) Embedded magnet rotor, electric motor, compressor, air conditioner, and electric vehicle
JP5042365B2 (en) Induction motor and hermetic compressor
JP6858845B2 (en) Rotors, electric motors, compressors and air conditioners
WO2013141323A1 (en) Motor and electric compressor using same
US20120131945A1 (en) Self-Starting Type Axial Gap Synchronous Motor, Compressor and Refrigeration Cycle Apparatus Using the Same
JP6680779B2 (en) Compressor and refrigeration cycle device
JP2012060799A (en) Electric motor for compressor, compressor, and refrigeration cycle apparatus
WO2010016583A1 (en) Stator, motor, and compressor
JP2005210826A (en) Electric motor
JP5143166B2 (en) Single-phase induction motor and hermetic compressor
CN109923757B (en) Permanent magnet type rotating electrical machine and compressor using the same
JP2011015499A (en) Rotor of electric motor
CN111033947A (en) Rotor, motor, compressor, and air conditioner
JP2023168510A (en) Motor, compressor, air blower, and refrigerating air conditioner
JP2012124976A (en) Permanent magnet type motor and compressor
JP5159807B2 (en) Single-phase induction motor and hermetic compressor
JP2011147313A (en) Electric motor, compressor, and refrigeration cycle device
JP2011015500A (en) Rotor of electric motor
JP6854910B2 (en) Manufacturing method of permanent magnet type motor
JP2008138591A (en) Compressor
WO2020166430A1 (en) Compressor
JP2004357430A (en) Permanent magnet motor and compressor
CN213521442U (en) Rotor, permanent magnet synchronous motor, compressor and refrigeration equipment
US20230318368A1 (en) Motor, compressor, refrigeration cycle apparatus, and manufacturing method of motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250