JP2004357430A - Permanent magnet motor and compressor - Google Patents

Permanent magnet motor and compressor Download PDF

Info

Publication number
JP2004357430A
JP2004357430A JP2003153156A JP2003153156A JP2004357430A JP 2004357430 A JP2004357430 A JP 2004357430A JP 2003153156 A JP2003153156 A JP 2003153156A JP 2003153156 A JP2003153156 A JP 2003153156A JP 2004357430 A JP2004357430 A JP 2004357430A
Authority
JP
Japan
Prior art keywords
rotor core
permanent magnet
density member
rotor
type motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003153156A
Other languages
Japanese (ja)
Other versions
JP4096254B2 (en
Inventor
Kazuhiko Baba
和彦 馬場
Hitoshi Kawaguchi
仁 川口
Tomoaki Oikawa
智明 及川
Yasuyoshi Tajima
庸賀 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003153156A priority Critical patent/JP4096254B2/en
Publication of JP2004357430A publication Critical patent/JP2004357430A/en
Application granted granted Critical
Publication of JP4096254B2 publication Critical patent/JP4096254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-efficiency compressor reduced in vibration and noise by suppressing the lowering of the efficiency of a permanent magnet type motor, suppressing the occurrence of vibration and noise, and by using this motor. <P>SOLUTION: In the compressor, the axial length of a rotor core is made to be the same of that of a stator core, a high-density member having a diameter smaller than the outside diameter of the rotor core is installed at the end of the rotor core, and the axial length of a rotor including the high-density member is made to be longer with respect to the axial length of a stator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、冷蔵庫、除湿機、エアコンなどの圧縮機に用いられるモータ及びこれを使用の圧縮機に関するものである。
【0002】
【従来の技術】
近年、エアコンや冷蔵庫用の圧縮機駆動用のモータなどでは、回転数の制御が容易で、モータ効率の良い永久磁石型モータが使用されている。
永久磁石型モータは圧縮機運転中の振動、運転騒音を防止するために例えば次のようになされていた。
シャフトの出力軸端のアンバランスを修正するために、ロータの両側にバランスウエイトを設け、ロータコアの軸方向長さをステータコアの軸方向長さよりも大きくし、かつ、ロータコアの軸方向中心を、ステータの軸方向中心よりも反出力側にずらす。(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−134882号公報(第5頁、第6頁、図3)
【0004】
【発明が解決しようとする課題】
以上の様に、従来の圧縮機駆動用の永久磁石型モータは、ロータ鉄心部の軸方向長さをステータ鉄心部の軸方向長さより大きくなるように構成していたため、永久磁石をロータ鉄心部の内部に埋め込んで構成した磁石埋め込み型ロータを用いた場合、永久磁石の作る磁束が、ロータ鉄心部の軸方向の端部において、磁石極間外周部の薄肉連結部を通って隣の磁極の永久磁石へ戻る経路の短絡磁束(Φ1)が発生し、トルクに寄与する有効な磁束が減少し、所望のトルクを得るための電流が増大し、銅損を増大させていた(課題A)。
【0005】
また、ステータ巻線に流れる電流によって作られる磁束が、ロータ鉄心部の軸方向の外周端部を通る経路の漏れ磁路が発生することにより、所望のトルクを得るためにより多くの電流が必要となり、銅損を増大させていた(課題B)。
【0006】
さらに、ステータ巻線のコイルエンド部とロータ鉄心部が対向して配置されており、ステータ巻線に流れる電流によって作られる磁束(Φ2)がロータ鉄心部の端部に対して垂直に変化するため、ステータ巻線のコイルエンド部と対向するロータ鉄心部の端部に渦電流損失が発生し、鉄損を増大させていた(課題C)。
【0007】
また、前記の課題Cに対して、ステータ巻線のコイルエンド部と対向するロータ鉄心部の端部の材質を非磁性の金属材料で構成しても、非磁性の金属材料内に渦電流が発生し、鉄損を増大させていた。
【0008】
また、ステータ巻線のコイルエンド部と対向するロータ鉄心部の端部の材質を非磁性の樹脂で形成した場合は、十分なモーメントを得るのにバランスウェイトの高さが大きくなり、圧縮機が大きくなっていた。
【0009】
以上のように、従来の永久磁石型モータが振動・騒音の抑制はできたとしても、同時に銅損及び鉄損の発生により、効率の低下を伴っていたのを解決するためになされたもので、本発明は、永久磁石型モータの効率低下を抑え、かつ、振動・騒音を抑制することを目的とする。また、この永久磁石型モータを使用することにより、高効率で振動・騒音の低い圧縮機を得ることを目的とする。
【0010】
【課題を解決するための手段】
本発明は、ロータ鉄心部の軸方向の端部に高密度部材からなる高密度部材部を設け、該高密度部材部の外径寸法をロータ鉄心部の外径寸法より小さくした永久磁石型モータ及びこの永久磁石型モータ使用の圧縮機である。
【0011】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図であり、図2は、同じく永久磁石型モータのロータの横断面図であり、図3は、同じく圧縮機の圧縮機構部を示す図である。
これらの図において、圧縮機は、密閉容器7内の上部にステータ5とロータ6からなる永久磁石型モータを配置し、下部に圧縮機構部15を配置し、両者を駆動軸13で連結し、永久磁石型モータにより駆動軸13を回転し、圧縮機構部15を働かせ、吸入冷媒を圧縮する。
【0012】
永久磁石型モータのステータ5は、中心部が開口した厚さ0.3〜0.5mm程度の円板状の電磁鋼板を複数枚軸方向に積層した中空積層体であるステータ鉄心部5aとその上下両端のコイルエンド部5bからなり、ステータ鉄心部5aは中心に配置されたロータ6を空隙部12を隔てて囲うように配置され、また、外周側を焼嵌めまたは、溶接等の手段により密閉容器7に直接取り付け、保持される。ステータ5のステータ鉄心部5には、複数のスロット(図示せず)が設けられ、このスロット内にコイルが巻回され、分布巻線または集中巻線などの巻線11が施される。
【0013】
ロータ6は、中心を軸方向に貫通する駆動軸13に固定されたロータ鉄心部6aとロータ鉄心部6aの上端及び下端に取付けられ、同様に中心を軸方向に貫通する駆動軸13に固定された高密度部材からなる高密度部材部6bより形成される。
ロータ鉄心部6aは、中心部が開口した厚さ0.3〜0.5mm程度の円板状の電磁鋼板を複数枚軸方向に積層し、一体化したものである。このロータ鉄心部6aには、駆動軸13直交面において、駆動軸13を中心にして、軸方向に複数の磁石挿入孔9が設けられ、永久磁石10がロータ鉄心部6aの軸方向全体にわたって挿入される。永久磁石10としては、ネオジウム、鉄、ボロンなどを主成分とした焼結希土類磁石が用いられる。
ステータ鉄心部5aとロータ鉄心部6aとは、ロータ鉄心部6aを中にして所定の空隙部12を設けて、駆動軸13方向に同心に形成される。
【0014】
ロータ鉄心部6aの上端及び下端に取付けられる高密度部材部6bは、外径をロータ鉄心部6aの外径より所定量小さくした中空円筒体である。また、高密度部材部6bは、非磁性金属製である。即ち、金属の非磁性体である真鍮(銅と亜鉛との合金)を用いている。この他に、銅、パラジウム、タングステン、塩化ニッケル、ステンレス等でもよく、高密度の非磁性材料であればよい。
ロータ鉄心部6a及び高密度部材部6bの中心を貫通し、固定する駆動軸13の圧縮機構部15側は、密閉容器7下部の軸受部14、14により回転自在に保持される。
【0015】
次に、図1に示すように、ステータ5とロータ6の寸法関係を説明する。
ロータ6のロータ鉄心部6aの軸方向長さL1をステータ5のステータ鉄心部5aの軸方向の長さL2と略同一とし、ロータ鉄心部6aの両端部にロータ鉄心部6aの外径D1よりも所定量小さい外径D2の高密度部材部6bを取り付け、かつ、ステータ鉄心部5aの軸方向長さL2に対し、高密度部材部6bを含むロータ6の軸方向長さL3を所定量大きくなるように構成した。
例えば、高密度部材部6bの外径D2は、ロータ鉄心部6aの外径D1に対し、およそ0.95倍以下となるように構成している。即ち、この高密度部材部6bの外径寸法D2は、永久磁石型モータの駆動時にコイルエンド部5bから発する漏れ磁束Φ2が高密度部材部6bに鎖交して渦電流が流れない寸法まで高密度部材部6bの外径D2を小さくなるように構成している。
【0016】
なお、ステータ鉄心部5aの軸方向長さL2に対し、高密度部材部6bを含むロータ6の軸方向長さL3を所定量大きくなるようにすれば、高密度部材部6bは、ロータ鉄心部6aの上端及び下端の両方に取付けなくても、どちらか一端に取付けてもよい。
さらに、ロータ6のロータ鉄心部6aの軸方向長さL1をステータ5のステータ鉄心部5aの軸方向の長さL2と略同一とせずに、ロータ鉄心部6aの軸方向長さL1をステータ鉄心部5aの軸方向の長さL2より長くしてもよい。
ステータ鉄心部5aの軸方向の長さL2に対してロータ鉄心部6aの軸方向長さL1を長くし、ロータ鉄心部6aの軸方向長さL1と略同一長さの永久磁石10を設けることによって、ロータ鉄心部6aの外周部を通りステータ鉄心部5aを鎖交する磁束を増加することができ、同一トルクを得るための電流を低減でき、銅損を低減できる。ロータ鉄心部6aの軸方向長さL1を長くすればするほど磁力が大きくなる訳ではなく、ある長さ以上では磁束はそれ以上増加しない。即ち、長さL1を長さL2の1.4倍以下とするのが望ましい。
【0017】
また、高密度部材部6bを含むロータ6の軸方向長さL3は、ロータ6の永久磁石10に希土類磁石を用いた場合、ステータ鉄心部5aの軸方向長さL2のおよそ2〜3倍となるように構成されている。このロータ6の軸方向長さL3は、ロータ6にフェライト磁石を用いて構成した場合に同一効率を得るために必要なロータ鉄心幅と概略等しくなるように構成されている。即ち、希土類磁石を用いることによりフェライト磁石を用いた場合より、軸方向長さが小さくなるように設計されている。
【0018】
また、圧縮機構部15は、外周部が密閉容器7に直接取付けられ、固定される。この圧縮機構部15は、図3で示すように吸入口16及び吐出口17が開口するシリンダ室を有するシリンダ18と、駆動軸13の偏心軸部に回転自在に嵌入され、シリンダ18内に配置されたピストン19と、該ピストン19に一体的に設けられシリンダ室を吸入口16に通じる圧縮室の低圧室20と、吐出口17に通じる圧縮室の高圧室21とに区画するベーン22によって構成されている。
【0019】
インバータによって永久磁石型モータの駆動軸13が回転駆動されると、これに連動してピストン19が回転し、吸入口16よりシリンダ室内に冷媒ガスが吸入され、圧縮され吐出口17より吐出する。この際、永久磁石型モータの駆動軸13は、図4に示すように1回転中に大きな圧力変動(駆動トルク変動)が伴うことになる。
【0020】
図5に、本モータをインバータを用いて120度矩形波駆動によって駆動した場合の電流波形を示す。図5(a)は、高密度部材部6bを取り付けない場合であり、図5(b)は、高密度部材部6bを取り付けた場合のモータ電流波形を示している。
両図の比較に示すように、高密度部材部6bを取り付けない状態では、1回転中に大きな電流脈動を発生していたのに対し、上記のような高密度部材部6bを取り付けることによって1回転中の電流脈動を低減し電流を均一化することができる。
即ち、ロータ鉄心部6aの軸方向長さL1をステータ鉄心部5aの軸方向の長さL2と略同一とし、ロータ鉄心部6aの両端部に金属の非磁性体からなる高密度部材部6bを設けたことにより、ロータ6の慣性力を増大させることができ、モータの振動・騒音を抑制できる。
なお、ステータ鉄心部5aの軸方向の長さL2に対してロータ鉄心部6aの軸方向長さL1を長くし、ロータ鉄心部6aの軸方向長さL1と略同一長さの永久磁石10を設けるようにしても同様の効果が得られる。
また、高密度部材部6bは、非磁性金属製に限らず、高密度部材からなるものであれば同様にロータ6の慣性力を増大させることができる。
また、駆動方式は120度矩形波駆動に限られるものではなく、120度以上の矩形波駆動や正弦波駆動など、他の如何なる駆動方式であっても同様の効果が得られる。
【0021】
また、ロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くし、ロータ鉄心部6aの端部に設けた高密度部材部6bの材質を非磁性の金属で構成しているため、ロータ鉄心部6aの内部に設けた永久磁石10の発する磁束が高密度部材部6bを通って隣接の磁石極10aを流れる経路の漏れ磁束Φ1が発生せず、即ち、短絡磁束Φ1が発生せず、銅損を低減できる(即ち、課題Aの解消ができる)。
【0022】
また、ロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くし、非磁性金属製の高密度部材部6bとロータ鉄心部6aの外径寸法関係をD2<D1とすることにより、即ち、高密度部材部6bの外径寸法D2を、ロータ鉄心部6aの外径寸法D1よりも所定量小さくことにより、永久磁石型モータ駆動時にコイルエンド部5bから発する漏れ磁束Φ2が高密度部材部6bに鎖交して渦電流が流れないので、ステータ巻線11によるロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減できる圧縮機モータを実現できる(即ち、課題Cの解消ができる)。
この際、高密度部材部6bは、非磁性金属製でなく、磁性金属製でもよい。
また、特に高密度部材部6bとロータ鉄心部6aの外径寸法関係をD2<D1としなくても、高密度部材部6bを、厚さの薄い磁性金属板(例えば、薄い真鍮板)又は磁性金属板(例えば、薄い電磁鋼板)を絶縁皮膜を介して積層しても課題Cの解消ができる。
【0023】
また、ロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くし、ロータ鉄心部6aの両端部にロータ鉄心部6aの外径D1よりも所定量小さい径D2の非磁性金属製の高密度部材部6bを取り付けたので、ステータ5の巻線11に流れる電流によって作られる磁束が、ロータ鉄心部6aの軸方向の外周端部を通る経路の漏れ磁路が発生することがなく、又は低減し銅損を低減できる(即ち、課題Bの解消ができる)。
この際、高密度部材部6bは、非磁性金属製でなく、磁性金属製でもよい。
【0024】
また、高密度部材部6bをロータ鉄心部6aと同様に積層体とすることにより、即ち、厚さの薄い磁性金属板の積層体とすることにより、ロータ鉄心部6aと同一の順送金型内で製造でき、製造工程が簡易化でき、製作が容易となる。
【0025】
以上のように本実施の形態の永久磁石型モータによれば、ロータ鉄心部6aの軸方向の端部に高密度部材からなる高密度部材部6bを設け、該高密度部材部6bの外径寸法をロータ鉄心部6aの外径寸法より小さくしたので、ロータ6の慣性力を増大させることができ、かつ、ロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減でき、モータの効率向上及び振動・騒音を抑制できる。
【0026】
また、ロータ鉄心部6aの軸方向の端部に非磁性金属製の高密度部材部6bを設けたので、ロータ6の慣性力を増大させることができ、かつ、ロータ鉄心部6aの内部を流れる漏れ磁束Φ1が発生せず、銅損を低減でき、モータの効率向上及び振動・騒音を抑制できる。
【0027】
また、前記の高密度部材からなる高密度部材部6b、又は磁性金属製の高密度部材部6bを、厚さの薄い磁性金属板の積層で形成したので、ロータ6の製造工程が簡易化でき、製作が容易となる。
【0028】
また、高密度部材部6bを、厚さの薄い金属板を絶縁皮膜を介して積層して形成したので、ロータ6の慣性力を増大させることができ、かつ、ロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減でき、モータの効率向上及び振動・騒音を抑制できる。
【0029】
また、本永久磁石型モータを圧縮機に用いることにより、密閉容器7や吐出管25、吸入管26を伝わって発生していた騒音を抑制でき、空調機や冷蔵庫などユニットとしての騒音を低減することが可能である。即ち、振動・騒音を抑制できる効率の高い圧縮機となる。さらに、永久磁石型モータのロータ6の高密度部材部6bを積層体で形成することにより、永久磁石型モータの製造が容易となり圧縮機の低コスト化ができる。
【0030】
実施の形態2.
図6は、この発明の実施の形態2を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図であり、図7、図8は、それぞれ、同じく永久磁石型モータのロータ鉄心部の横断面図と高密度部材部の横断面図であり、図9、図10は、それぞれ、同じく永久磁石型モータの別のロータ鉄心部の横断面図と高密度部材部の横断面図である。
本実施の形態では、ロータ6のロータ鉄心部6aの端部に設けた高密度部材部6bの材質を金属の磁性体で構成し、且つ、高密度部材部6bの外形寸法D3をロータ鉄心部6aに設けた磁石挿入孔9の外形寸法D4以下となるように構成している。更に、ロータ鉄心部6aの端部に設けた高密度部材部6bは、少なくとも一面に絶縁皮膜を施した0.3〜0.5mm程度の薄い電磁鋼板を一枚づつ積層して構成する。
【0031】
高密度部材部6bは、ロータ鉄心部6aの上端及び下端の両方に取付けなくても、どちらか一端に取付けてもよい点、及びロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くする点を含めて、その他の構成は実施の形態1と同様であるので、以下、主として相違点を説明する。
【0032】
図7、図8に示すロータ6のロータ鉄心部6aと高密度部材部6bの例では、駆動軸13の軸方向と直交するロータ鉄心部6aの断面上で、六角形状に配置した永久磁石挿入孔9に平板の永久磁石10である希土類磁石10を挿入する。また、駆動軸13の軸方向と直交するロータ鉄心部6aの断面(ロータ鉄心部6aの軸直交面)上で、対向する永久磁石挿入孔9の外形寸法をD4とし、駆動軸13の軸方向と直交する高密度部材部6bの断面(高密度部材部6bの軸直交面)での軸方向相当の高密度部材部6bの外形寸法をD3とすると、軸方向で対応するD3、D4の関係がD3≦D4とする。即ち、高密度部材部6bの軸直交断面の外形寸法D3を永久磁石挿入孔9の軸直交断面の軸方向対応の外形寸法D4以下とする。
【0033】
また、別の例として、図9で示すように、ロータ鉄心部6aの軸直交断面で、12枚の永久磁石10をV字型に配置した場合は、高密度部材部6bの軸直交断面は図10で示すようになり、同様にD3、D4の関係をD3≦D4とし、高密度部材部6bの軸直交断面の外形寸法D3を永久磁石挿入孔9の軸直交断面の軸方向対応外形寸法D4以下とする。
【0034】
以上のように、本実施の形態の永久磁石型モータによれば、ロータ鉄心部6の軸方向の端部に磁性金属製の高密度部材部6bを設け、該高密度部材6bとロータ鉄心部6aの磁石挿入孔9、それぞれの軸直交断面での軸方向対応の外形寸法をD3、D4としたとき、D3≦D4としたので、実施の形態1と同様に高密度部材部6bにより、低振動・低騒音の圧縮機モータを実現でき、かつ、D3≦D4の関係から、永久磁石10の磁路形成による有効磁束の減少が防止でき、銅損を低減できる(課題Aの解消)。
【0035】
また、高密度部材部6bにより、低振動・低騒音の実現とともに、高密度部材部6bを厚さの薄い磁性金属板を絶縁皮膜を介して積層して形成したので、ステータ巻線11によるロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減できる圧縮機モータを実現できる(課題Cの解消)。
なお、磁性金属板は、非磁性金属板でも課題Cの解消に有効である。
【0036】
また、高密度部材部6bの形状を、磁石挿入孔9の外径寸法D4よりも若干小さく、磁石挿入孔9の内径寸法より大きくなるように構成することで、軸方向の永久磁石10の保持を容易にすることができる。
【0037】
また、ロータ鉄心部6aと同様に高密度部材部6bも積層鉄心によって構成(厚さの薄い磁性金属板の積層)されているため、ロータ鉄心部6aと同一の順送金型内で高密度部材部6bを製造することができ、製造工程を低減した低コストな永久磁石型モータが提供できる。
【0038】
また、本永久磁石型モータを用いることにより、低騒音で高効率の圧縮機を実現できる。さらに、永久磁石型モータのロータ6の高密度部材部6bを積層体で形成することにより、永久磁石型モータの製造が容易となり圧縮機の低コスト化ができる。
【0039】
実施の形態1、2において、永久磁石型モータは、ロータ鉄心部6aの端部に高密度材からなる高密度部材部6bを設けることにより、ロータ6の慣性力を増大させ、モータの振動・騒音を低減し、同時に課題A、B、Cを解消する特徴ある構成を設けることにより効率を向上できるが、これらの課題A、B、Cを解消する構成は、少なくとも一構成は設けることにより効率を向上でき、さらに複数設けることにより、より高い効率の向上が可能となる。
また、このような永久磁石型モータを圧縮機に使用することにより、振動・騒音を低減し、同時に課題A、B、Cの少なくといずれかを解消する効率の高い圧縮機を得ることができる。
【0040】
【発明の効果】
以上のように本発明では永久磁石型モータは、ロータ鉄心部の軸方向の端部に高密度部材からなる高密度部材部を設け、該高密度部材部の外径寸法をロータ鉄心部の外径寸法より小さくする。
そこで、ロータの慣性力を増大させることができ、高効率で低騒音な永久磁石型モータが実現できる。
また、この永久磁石型モータを使用することにより、圧縮機構部の吸入、圧縮、吐出工程の中で発生していた圧力変動に伴うロータの速度変動を緩和し、振動を低減でき、密閉容器や吐出管、吸入管を伝わって発生していた騒音を抑制でき、高効率で、振動・騒音の低減した圧縮機を得ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図である。
【図2】図1のロータの横断面図である。
【図3】図1の圧縮機の圧縮機機構部を示す簡略図である。
【図4】圧縮機の圧力変動を示す概念図である。
【図5】永久磁石型モータの電流波形波形を示した図である。
【図6】この発明の実施の形態2を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図である。
【図7】図6の永久磁石型モータのロータ鉄心部の横断面図である。
【図8】図6の永久磁石型モータの高密度部材部の横断面図である。
【図9】図6の永久磁石型モータの別のロータ鉄心部の横断面図である。
【図10】図6の永久磁石型モータの別の高密度部材部の横断面図である。
【符号の説明】
5 ステータ、5a ステータ鉄心部、6 ロータ、6a ロータ鉄心部、6b 高密度部材部、9 磁石挿入孔、10 永久磁石、11 巻線、13 駆動軸。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor used for a compressor such as a refrigerator, a dehumidifier, and an air conditioner, and a compressor using the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in a motor for driving a compressor for an air conditioner or a refrigerator, for example, a permanent magnet type motor having easy motor speed control and high motor efficiency has been used.
Permanent magnet type motors have been used, for example, as follows to prevent vibration and operation noise during compressor operation.
In order to correct the imbalance at the output shaft end of the shaft, balance weights are provided on both sides of the rotor, the axial length of the rotor core is made larger than the axial length of the stator core, and the axial center of the rotor core is From the center in the axial direction. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2000-134882 (page 5, page 6, FIG. 3)
[0004]
[Problems to be solved by the invention]
As described above, in the conventional permanent magnet type motor for driving the compressor, the axial length of the rotor core is configured to be larger than the axial length of the stator core. When a magnet-embedded rotor configured to be embedded inside the rotor is used, the magnetic flux generated by the permanent magnet passes through the thin connecting portion of the outer peripheral portion between the magnet poles at the axial end of the rotor core, and the magnetic flux of the adjacent magnetic pole is formed. Short-circuit magnetic flux (Φ1) is generated in the path returning to the permanent magnet, the effective magnetic flux contributing to the torque is reduced, the current for obtaining the desired torque is increased, and the copper loss is increased (Problem A).
[0005]
In addition, a magnetic flux generated by the current flowing through the stator winding generates a leakage magnetic path in a path passing through the outer peripheral end in the axial direction of the rotor core, so that more current is required to obtain a desired torque. And the copper loss was increased (Problem B).
[0006]
Further, since the coil end portion of the stator winding and the rotor core are arranged to face each other, the magnetic flux (Φ2) generated by the current flowing through the stator winding changes perpendicularly to the end of the rotor core. In addition, an eddy current loss occurs at the end of the rotor core portion facing the coil end portion of the stator winding, thereby increasing the iron loss (Problem C).
[0007]
In addition, even if the material of the end of the rotor core facing the coil end of the stator winding is made of a non-magnetic metal material, an eddy current is generated in the non-magnetic metal material. And increased iron loss.
[0008]
Also, if the material of the end of the rotor core facing the coil end of the stator winding is made of a non-magnetic resin, the height of the balance weight becomes large to obtain a sufficient moment, and the compressor is It was getting bigger.
[0009]
As described above, even if the conventional permanent magnet type motor can suppress the vibration and noise, it was made to solve the problem that the efficiency was reduced due to the occurrence of copper loss and iron loss at the same time. An object of the present invention is to suppress a decrease in efficiency of a permanent magnet type motor and to suppress vibration and noise. It is another object of the present invention to obtain a compressor with high efficiency and low vibration and noise by using this permanent magnet type motor.
[0010]
[Means for Solving the Problems]
The present invention provides a permanent magnet type motor in which a high-density member made of a high-density member is provided at an axial end of a rotor core, and the outer diameter of the high-density member is smaller than the outer diameter of the rotor core. And a compressor using this permanent magnet type motor.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of a compressor incorporating a permanent magnet type motor for driving a compressor according to Embodiment 1 of the present invention, and FIG. 2 is a transverse sectional view of a rotor of the permanent magnet type motor. FIG. 3 is a view showing a compression mechanism of the compressor.
In these figures, in the compressor, a permanent magnet type motor including a stator 5 and a rotor 6 is arranged at an upper part in a closed container 7, a compression mechanism part 15 is arranged at a lower part, and both are connected by a drive shaft 13, The drive shaft 13 is rotated by the permanent magnet type motor, and the compression mechanism 15 is operated to compress the drawn refrigerant.
[0012]
The stator 5 of the permanent magnet type motor has a stator core portion 5a which is a hollow laminated body formed by laminating a plurality of disk-shaped electromagnetic steel plates having a thickness of about 0.3 to 0.5 mm and having a central portion opened in the axial direction. The stator core 5a is arranged so as to surround the rotor 6 disposed at the center with the gap 12 therebetween, and the outer peripheral side is sealed by means of shrink fitting or welding. Attached directly to the container 7 and held. A plurality of slots (not shown) are provided in the stator core portion 5 of the stator 5, and a coil is wound in the slots, and a winding 11 such as a distributed winding or a concentrated winding is provided.
[0013]
The rotor 6 has a rotor core 6a fixed to a drive shaft 13 penetrating the center in the axial direction and upper and lower ends of the rotor core 6a. Similarly, the rotor 6 is fixed to the drive shaft 13 penetrating the center in the axial direction. Formed from a high-density member portion 6b made of a high-density member.
The rotor core portion 6a is formed by laminating a plurality of disk-shaped electromagnetic steel plates having a thickness of about 0.3 to 0.5 mm with an open central portion in the axial direction and integrating them. The rotor core 6a is provided with a plurality of magnet insertion holes 9 in the axial direction about the drive shaft 13 on a plane orthogonal to the drive shaft 13, and the permanent magnet 10 is inserted over the entire rotor core 6a in the axial direction. Is done. As the permanent magnet 10, a sintered rare earth magnet mainly containing neodymium, iron, boron or the like is used.
The stator core part 5a and the rotor core part 6a are formed concentrically in the direction of the drive shaft 13 with a predetermined gap 12 provided with the rotor core part 6a at the center.
[0014]
The high-density members 6b attached to the upper and lower ends of the rotor core 6a are hollow cylinders whose outer diameter is smaller than the outer diameter of the rotor core 6a by a predetermined amount. The high-density member 6b is made of a non-magnetic metal. That is, brass (an alloy of copper and zinc) which is a non-magnetic material of metal is used. In addition, copper, palladium, tungsten, nickel chloride, stainless steel, or the like may be used as long as it is a high-density nonmagnetic material.
The compression mechanism 15 side of the drive shaft 13, which penetrates and fixes the center of the rotor core 6 a and the high-density member 6 b, is rotatably held by bearings 14, 14 at the lower part of the closed casing 7.
[0015]
Next, as shown in FIG. 1, a dimensional relationship between the stator 5 and the rotor 6 will be described.
The axial length L1 of the rotor core 6a of the rotor 6 is substantially the same as the axial length L2 of the stator core 5a of the stator 5, and the outer diameter D1 of the rotor core 6a is provided at both ends of the rotor core 6a. Also, the high-density member 6b having an outer diameter D2 smaller by a predetermined amount is attached, and the axial length L3 of the rotor 6 including the high-density member 6b is made larger by a predetermined amount than the axial length L2 of the stator core 5a. It was configured to be.
For example, the outer diameter D2 of the high-density member 6b is configured to be about 0.95 times or less the outer diameter D1 of the rotor core 6a. That is, the outer diameter dimension D2 of the high-density member 6b is high enough to prevent leakage current Φ2 generated from the coil end portion 5b from interlinking with the high-density member 6b when the permanent magnet type motor is driven, so that eddy current does not flow. The outer diameter D2 of the density member 6b is configured to be small.
[0016]
If the axial length L3 of the rotor 6 including the high-density member 6b is made larger by a predetermined amount than the axial length L2 of the stator core 5a, the high-density member 6b becomes It may not be attached to both the upper end and the lower end of 6a, but may be attached to either one end.
Further, the axial length L1 of the rotor core 6a of the rotor 6 is not substantially equal to the axial length L2 of the stator core 5a of the stator 5, and the axial length L1 of the rotor core 6a is changed to the stator core. It may be longer than the axial length L2 of the portion 5a.
The length L1 in the axial direction of the rotor core 6a is made longer than the length L2 in the axial direction of the stator core 5a, and a permanent magnet 10 having substantially the same length as the axial length L1 of the rotor core 6a is provided. As a result, it is possible to increase the magnetic flux linking the stator core 5a through the outer periphery of the rotor core 6a, to reduce the current for obtaining the same torque, and to reduce the copper loss. As the axial length L1 of the rotor core 6a increases, the magnetic force does not necessarily increase as the axial length L1 increases. When the length is longer than a certain length, the magnetic flux does not increase any more. That is, it is desirable that the length L1 be 1.4 times or less the length L2.
[0017]
Further, when a rare earth magnet is used for the permanent magnet 10 of the rotor 6, the axial length L3 of the rotor 6 including the high-density member 6b is approximately two to three times the axial length L2 of the stator core 5a. It is configured to be. The axial length L3 of the rotor 6 is configured to be substantially equal to the rotor core width required to obtain the same efficiency when the rotor 6 is formed using a ferrite magnet. That is, it is designed such that the length in the axial direction is smaller by using a rare earth magnet than by using a ferrite magnet.
[0018]
Further, the outer periphery of the compression mechanism 15 is directly attached to the closed container 7 and fixed. As shown in FIG. 3, the compression mechanism 15 is rotatably fitted to a cylinder 18 having a cylinder chamber in which the suction port 16 and the discharge port 17 open, and an eccentric shaft of the drive shaft 13. And a vane 22 which is provided integrally with the piston 19 and is divided into a low-pressure chamber 20 of a compression chamber communicating with the suction port 16 and a high-pressure chamber 21 of the compression chamber communicating with the discharge port 17. Have been.
[0019]
When the drive shaft 13 of the permanent magnet type motor is rotationally driven by the inverter, the piston 19 rotates in conjunction therewith, and refrigerant gas is sucked into the cylinder chamber from the suction port 16, compressed and discharged from the discharge port 17. At this time, the drive shaft 13 of the permanent magnet type motor undergoes a large pressure fluctuation (driving torque fluctuation) during one rotation as shown in FIG.
[0020]
FIG. 5 shows a current waveform when this motor is driven by a 120-degree rectangular wave drive using an inverter. FIG. 5A shows a case where the high-density member 6b is not attached, and FIG. 5B shows a motor current waveform when the high-density member 6b is attached.
As shown in the comparison between the two figures, in a state where the high-density member 6b was not attached, a large current pulsation was generated during one rotation. Current pulsation during rotation can be reduced, and the current can be made uniform.
That is, the axial length L1 of the rotor core 6a is substantially the same as the axial length L2 of the stator core 5a, and the high-density member 6b made of a metal nonmagnetic material is provided at both ends of the rotor core 6a. With the provision, the inertial force of the rotor 6 can be increased, and the vibration and noise of the motor can be suppressed.
The length L1 of the rotor core 6a in the axial direction is made longer than the length L2 of the stator core 5a in the axial direction, and the permanent magnet 10 having substantially the same length as the length L1 of the rotor core 6a in the axial direction is used. The same effect can be obtained even if it is provided.
In addition, the high-density member 6b is not limited to the non-magnetic metal, but can be made of a high-density member to similarly increase the inertial force of the rotor 6.
The driving method is not limited to the 120-degree rectangular wave driving, and the same effect can be obtained by any other driving method such as a rectangular wave driving of 120 degrees or more and a sine wave driving.
[0021]
The rotor core 6a and the stator core 5a may have substantially the same axial length, or the rotor core 6a provided with the permanent magnets 10 having substantially the same length may have the same axial length as the stator core. Since the material of the high-density member 6b provided at the end of the rotor core 6a is made of a non-magnetic metal, the permanent member provided inside the rotor core 6a is longer than the axial length of the portion 5a. No leakage magnetic flux Φ1 is generated in a path where the magnetic flux generated by the magnet 10 flows through the adjacent magnet pole 10a through the high-density member 6b, that is, no short-circuit magnetic flux Φ1 is generated, and copper loss can be reduced (that is, a problem). A can be eliminated).
[0022]
The rotor core 6a and the stator core 5a may have substantially the same axial length, or the rotor core 6a provided with the permanent magnets 10 having substantially the same length may have the same axial length as the stator core. The length of the high-density member 6b is made longer than the axial length of the high-density member 6b, and the outer diameter of the high-density member 6b made of nonmagnetic metal and the outer diameter of the rotor core 6a are set to D2 <D1, that is, the outer diameter of the high-density member 6b. By making the dimension D2 smaller than the outer diameter dimension D1 of the rotor core 6a by a predetermined amount, the leakage magnetic flux Φ2 generated from the coil end 5b when the permanent magnet type motor is driven interlinks with the high-density member 6b to reduce eddy current. Since it does not flow, the eddy current loss of the rotor core 6a due to the stator winding 11 can be reduced, and a compressor motor that can reduce iron loss can be realized (that is, problem C can be solved).
In this case, the high-density member 6b may be made of a magnetic metal instead of a non-magnetic metal.
Further, even if the outer diameter dimension relationship between the high-density member 6b and the rotor core 6a is not set to D2 <D1, the high-density member 6b may be formed of a thin magnetic metal plate (for example, a thin brass plate) or a magnetic material. Even if a metal plate (for example, a thin electromagnetic steel plate) is laminated via an insulating film, the problem C can be solved.
[0023]
The rotor core 6a and the stator core 5a may have substantially the same axial length, or the rotor core 6a provided with the permanent magnets 10 having substantially the same length may have the same axial length as the stator core. Since the non-magnetic metal high-density member portion 6b having a diameter D2 smaller than the outer diameter D1 of the rotor core portion 6a by a predetermined amount is attached to both ends of the rotor core portion 6a so as to be longer than the axial length of the portion 5a. The magnetic flux generated by the current flowing through the winding 11 of the stator 5 does not cause or reduces the occurrence of a leakage magnetic path in a path passing through the axially outer peripheral end of the rotor core 6a, thereby reducing copper loss (that is, copper loss). And the problem B can be solved).
In this case, the high-density member 6b may be made of a magnetic metal instead of a non-magnetic metal.
[0024]
In addition, by forming the high-density member 6b as a laminate in the same manner as the rotor core 6a, that is, by forming a thin magnetic metal plate laminate, the same progressive die as the rotor core 6a is formed. , The manufacturing process can be simplified, and the manufacturing becomes easier.
[0025]
As described above, according to the permanent magnet type motor of the present embodiment, the high-density member 6b made of a high-density member is provided at the axial end of the rotor core 6a, and the outer diameter of the high-density member 6b. Since the size is smaller than the outer diameter of the rotor core 6a, the inertial force of the rotor 6 can be increased, the eddy current loss of the rotor core 6a can be reduced, the iron loss can be reduced, and the motor efficiency can be reduced. Improvement and vibration / noise can be suppressed.
[0026]
Further, since the high-density member 6b made of a non-magnetic metal is provided at the axial end of the rotor core 6a, the inertia of the rotor 6 can be increased, and the rotor 6a flows inside the rotor core 6a. Leakage flux Φ1 is not generated, copper loss can be reduced, motor efficiency can be improved, and vibration and noise can be suppressed.
[0027]
Further, since the high-density member 6b made of the high-density member or the high-density member 6b made of magnetic metal is formed by laminating thin magnetic metal plates, the manufacturing process of the rotor 6 can be simplified. , Making it easier.
[0028]
Further, since the high-density member 6b is formed by laminating thin metal plates with an insulating film interposed therebetween, the inertia of the rotor 6 can be increased, and the eddy current loss of the rotor core 6a can be increased. Can be reduced, iron loss can be reduced, motor efficiency can be improved, and vibration and noise can be suppressed.
[0029]
In addition, by using the permanent magnet type motor for a compressor, noise generated through the closed container 7, the discharge pipe 25, and the suction pipe 26 can be suppressed, and noise as a unit such as an air conditioner or a refrigerator can be reduced. It is possible. That is, a highly efficient compressor capable of suppressing vibration and noise can be obtained. Furthermore, by forming the high-density member portion 6b of the rotor 6 of the permanent magnet type motor with a laminated body, the manufacture of the permanent magnet type motor is facilitated, and the cost of the compressor can be reduced.
[0030]
Embodiment 2 FIG.
FIG. 6 is a longitudinal sectional view of a compressor incorporating a permanent magnet type motor for driving a compressor according to a second embodiment of the present invention. FIGS. 7 and 8 show rotors of the permanent magnet type motor, respectively. FIGS. 9 and 10 are a cross-sectional view of the iron core portion and a cross-sectional view of the high-density member portion, respectively. FIGS. FIG.
In the present embodiment, the material of the high-density member 6b provided at the end of the rotor core 6a of the rotor 6 is made of a metal magnetic material, and the outer dimension D3 of the high-density member 6b is set to the rotor core. The outer diameter D4 of the magnet insertion hole 9 provided in the hole 6a is smaller than or equal to D4. Further, the high-density member 6b provided at the end of the rotor core 6a is formed by laminating thin electromagnetic steel sheets of about 0.3 to 0.5 mm each having an insulating coating on at least one surface.
[0031]
The high-density member 6b does not have to be attached to both the upper end and the lower end of the rotor core 6a, but may be attached to either one end. Also, the rotor core 6a and the stator core 5a have respective axial lengths. And other configurations including the point that the axial length of the rotor core 6a provided with the permanent magnets 10 having substantially the same length or the same length is longer than the axial length of the stator core 5a. Are the same as those in the first embodiment, and therefore, differences will be mainly described below.
[0032]
In the example of the rotor core 6 a and the high-density member 6 b of the rotor 6 shown in FIGS. 7 and 8, a permanent magnet inserted in a hexagonal shape on the cross section of the rotor core 6 a orthogonal to the axial direction of the drive shaft 13. A rare earth magnet 10 which is a flat permanent magnet 10 is inserted into the hole 9. Further, on the cross section of the rotor core 6a perpendicular to the axial direction of the drive shaft 13 (the plane perpendicular to the axis of the rotor core 6a), the outer dimensions of the opposed permanent magnet insertion holes 9 are D4, and the axial direction of the drive shaft 13 is Assuming that the outer dimension of the high-density member 6b corresponding to the axial direction in the cross section of the high-density member 6b perpendicular to the axis (the axis orthogonal to the high-density member 6b) is D3, the relationship between D3 and D4 corresponding in the axial direction is D3. Is D3 ≦ D4. In other words, the outer dimension D3 of the high-density member portion 6b in the cross section orthogonal to the axis is set to be equal to or less than the outer dimension D4 of the permanent magnet insertion hole 9 corresponding to the axial direction of the cross section orthogonal to the axis.
[0033]
As another example, as shown in FIG. 9, in a case where twelve permanent magnets 10 are arranged in a V-shape in a cross section perpendicular to the axis of the rotor core 6 a, the cross section perpendicular to the axis of the high-density member portion 6 b is As shown in FIG. 10, similarly, the relationship between D3 and D4 is set to D3 ≦ D4, and the external dimension D3 of the cross section orthogonal to the axis of the high-density member portion 6b is set to the external dimension corresponding to the axial cross section of the permanent magnet insertion hole 9 orthogonal to the axis. D4 or less.
[0034]
As described above, according to the permanent magnet type motor of the present embodiment, the high-density member 6b made of magnetic metal is provided at the axial end of the rotor core 6, and the high-density member 6b and the rotor core are provided. Assuming that D3 ≦ D4 when the outer dimensions corresponding to the axial direction of the magnet insertion hole 9 of each of the magnets 6a in the cross section perpendicular to the axis are D3 and D4, the high-density member 6b is used as in the first embodiment. It is possible to realize a compressor motor with low vibration and noise, and from the relationship of D3 ≦ D4, it is possible to prevent a decrease in effective magnetic flux due to the formation of the magnetic path of the permanent magnet 10 and to reduce copper loss (elimination of the problem A).
[0035]
In addition, the high-density member 6b realizes low vibration and low noise, and the high-density member 6b is formed by laminating a thin magnetic metal plate via an insulating film. The compressor motor that can reduce the eddy current loss of the iron core portion 6a and reduce the iron loss can be realized (elimination of the problem C).
It should be noted that a magnetic metal plate is also effective for solving the problem C even with a non-magnetic metal plate.
[0036]
Further, the configuration of the high-density member portion 6b is configured to be slightly smaller than the outer diameter dimension D4 of the magnet insertion hole 9 and larger than the inner diameter dimension of the magnet insertion hole 9, thereby holding the permanent magnet 10 in the axial direction. Can be facilitated.
[0037]
Since the high-density member 6b is also formed of a laminated core (lamination of thin magnetic metal plates) like the rotor core 6a, the high-density member 6b is formed in the same progressive die as the rotor core 6a. The portion 6b can be manufactured, and a low-cost permanent magnet type motor with a reduced number of manufacturing steps can be provided.
[0038]
Further, by using the permanent magnet type motor, a compressor with low noise and high efficiency can be realized. Furthermore, by forming the high-density member portion 6b of the rotor 6 of the permanent magnet type motor with a laminated body, the manufacture of the permanent magnet type motor is facilitated, and the cost of the compressor can be reduced.
[0039]
In the first and second embodiments, the permanent magnet type motor increases the inertial force of the rotor 6 by providing the high-density member 6b made of a high-density material at the end of the rotor core 6a, thereby increasing the vibration and motor vibration. Efficiency can be improved by providing a characteristic configuration that reduces noise and at the same time eliminates the problems A, B, and C. However, at least one of the configurations that eliminates the problems A, B, and C has an efficiency Can be improved, and by providing more than one, higher efficiency can be improved.
In addition, by using such a permanent magnet type motor for a compressor, it is possible to obtain a highly efficient compressor that reduces vibration and noise and at the same time eliminates at least one of the problems A, B, and C. .
[0040]
【The invention's effect】
As described above, in the present invention, the permanent magnet type motor is provided with the high-density member portion made of the high-density member at the axial end of the rotor core portion, and the outer diameter of the high-density member portion is set outside the rotor core portion. Make it smaller than the diameter.
Thus, the inertia force of the rotor can be increased, and a highly efficient and low noise permanent magnet type motor can be realized.
Also, by using this permanent magnet type motor, the speed fluctuation of the rotor due to the pressure fluctuation occurring during the suction, compression and discharge processes of the compression mechanism can be reduced, vibration can be reduced, and the sealed container and The noise generated through the discharge pipe and the suction pipe can be suppressed, and a highly efficient compressor with reduced vibration and noise can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a compressor incorporating a permanent magnet type motor for driving a compressor according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view of the rotor of FIG.
FIG. 3 is a simplified diagram showing a compressor mechanism of the compressor of FIG. 1;
FIG. 4 is a conceptual diagram showing pressure fluctuation of a compressor.
FIG. 5 is a diagram showing a current waveform of a permanent magnet type motor.
FIG. 6 is a longitudinal sectional view of a compressor incorporating a permanent magnet type motor for driving a compressor according to a second embodiment of the present invention.
FIG. 7 is a cross-sectional view of a rotor core of the permanent magnet type motor of FIG. 6;
FIG. 8 is a cross-sectional view of a high-density member of the permanent magnet type motor of FIG. 6;
FIG. 9 is a cross-sectional view of another rotor core of the permanent magnet type motor of FIG. 6;
FIG. 10 is a cross-sectional view of another high-density member of the permanent magnet motor of FIG. 6;
[Explanation of symbols]
Reference Signs List 5 stator, 5a stator core, 6 rotor, 6a rotor core, 6b high-density member, 9 magnet insertion hole, 10 permanent magnet, 11 winding, 13 drive shaft.

Claims (6)

駆動軸と、永久磁石が挿入され、中心を貫通する前記駆動軸に固定されて一体に回転するロータ鉄心部を有するロータと、前記ロータ鉄心部の外周部から所定の間隙を設けて前記ロータ鉄心部を囲むように形成されたステータ鉄心部を有し、巻線が施されたステータとを備えた永久磁石型モータにおいて、
前記ロータ鉄心部の軸方向の端部に高密度部材からなる高密度部材部を設け、該高密度部材部の外径寸法を前記ロータ鉄心部の外径寸法より小さくしたことを特徴とする永久磁石型モータ。
A rotor having a drive shaft, a rotor core in which a permanent magnet is inserted and fixed to the drive shaft penetrating the center, and integrally rotating; and a rotor core provided with a predetermined gap from an outer peripheral portion of the rotor core. A permanent magnet type motor having a stator core portion formed so as to surround the portion, and a stator provided with a winding.
A permanent magnet, wherein a high-density member made of a high-density member is provided at an axial end of the rotor core, and an outer diameter of the high-density member is smaller than an outer diameter of the rotor core. Magnet type motor.
前記ロータ鉄心部の軸方向の端部に非磁性金属製の高密度部材部を設けたことを特徴とする請求項1記載の永久磁石型モータ。2. The permanent magnet motor according to claim 1, wherein a high-density member made of a non-magnetic metal is provided at an axial end of the rotor core. 駆動軸と、永久磁石が挿入され、中心を貫通する前記駆動軸に固定されて一体に回転するロータ鉄心部を有するロータと、前記ロータ鉄心部の外周部から所定の間隙を設けて前記ロータ鉄心部を囲むように形成されたステータ鉄心部を有し、巻線が施されたステータとを備えた永久磁石型モータにおいて、
前記ロータ鉄心部の軸方向の端部に磁性金属製の高密度部材部を設け、該高密度部材と前記ロータ鉄心部の磁石挿入孔、それぞれの軸直交断面での軸方向対応の外形寸法をD3、D4としたとき、D3≦D4であることを特徴とする永久磁石型モータ。
A rotor having a drive shaft, a rotor core in which a permanent magnet is inserted and fixed to the drive shaft penetrating the center, and integrally rotating; and a rotor core provided with a predetermined gap from an outer peripheral portion of the rotor core. A permanent magnet type motor having a stator core portion formed so as to surround the portion, and a stator provided with a winding.
A high-density member made of a magnetic metal is provided at an axial end of the rotor core, and the high-density member and the magnet insertion hole of the rotor core, the outer dimensions corresponding to the axial direction in a cross section orthogonal to the respective axes. D3 ≦ D4, wherein D3 ≦ D4.
前記高密度部材部を、厚さの薄い金属板の積層で形成したことを特徴とする請求項1または請求項3に記載の永久磁石型モータ。The permanent magnet type motor according to claim 1 or 3, wherein the high-density member is formed by laminating thin metal plates. 駆動軸と、永久磁石が挿入され、中心を貫通する前記駆動軸に固定されて一体に回転するロータ鉄心部を有するロータと、前記ロータ鉄心部の外周部から所定の間隙を設けて前記ロータ鉄心部を囲むように形成されたステータ鉄心部を有し、巻線が施されたステータとを備えた永久磁石型モータにおいて、
前記ロータ鉄心部の軸方向の端部に高密度部材からなる高密度部材部を設け、該高密度部材部を、厚さの薄い金属板を絶縁皮膜を介して積層して形成したことを特徴とする永久磁石型モータ。
A rotor having a drive shaft, a rotor core in which a permanent magnet is inserted and fixed to the drive shaft penetrating the center, and integrally rotating; and a rotor core provided with a predetermined gap from an outer peripheral portion of the rotor core. A permanent magnet type motor having a stator core portion formed so as to surround the portion, and a stator provided with a winding.
A high-density member portion made of a high-density member is provided at an axial end of the rotor core portion, and the high-density member portion is formed by laminating a thin metal plate via an insulating film. Permanent magnet type motor.
圧縮機のモータに、請求項1〜請求項5のいずれかの請求項に記載の永久磁石型モータを使用したことを特徴とする圧縮機。A compressor using the permanent magnet type motor according to any one of claims 1 to 5 as a motor of the compressor.
JP2003153156A 2003-05-29 2003-05-29 Permanent magnet type motor and compressor Expired - Lifetime JP4096254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153156A JP4096254B2 (en) 2003-05-29 2003-05-29 Permanent magnet type motor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153156A JP4096254B2 (en) 2003-05-29 2003-05-29 Permanent magnet type motor and compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007340332A Division JP4712026B2 (en) 2007-12-28 2007-12-28 Permanent magnet type motor and compressor

Publications (2)

Publication Number Publication Date
JP2004357430A true JP2004357430A (en) 2004-12-16
JP4096254B2 JP4096254B2 (en) 2008-06-04

Family

ID=34048193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153156A Expired - Lifetime JP4096254B2 (en) 2003-05-29 2003-05-29 Permanent magnet type motor and compressor

Country Status (1)

Country Link
JP (1) JP4096254B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262656A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Electric motor
WO2016068119A1 (en) * 2014-10-30 2016-05-06 三菱重工オートモーティブサーマルシステムズ株式会社 Motor rotor, motor using this and electric compressor
WO2016203563A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet embedded-type electric motor for compressor, compressor, and refrigeration cycle device
CN107534370A (en) * 2015-06-09 2018-01-02 三菱电机株式会社 Electric motor for compressor, compressor and refrigerating circulatory device
EP3282564A1 (en) * 2016-08-09 2018-02-14 Huangshi Dongbei Electrical Appliance Co., Ltd. Brushless type motor and rotor for a motor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262656A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Electric motor
WO2016068119A1 (en) * 2014-10-30 2016-05-06 三菱重工オートモーティブサーマルシステムズ株式会社 Motor rotor, motor using this and electric compressor
JP2016092889A (en) * 2014-10-30 2016-05-23 三菱重工オートモーティブサーマルシステムズ株式会社 Motor rotor and motor using the same, and motor compressor
US10424996B2 (en) 2014-10-30 2019-09-24 Mitsubishi Heavy Industries Thermal Systems, Ltd. Motor rotor, motor using this and electric compressor
CN107534370A (en) * 2015-06-09 2018-01-02 三菱电机株式会社 Electric motor for compressor, compressor and refrigerating circulatory device
CN111342632A (en) * 2015-06-09 2020-06-26 三菱电机株式会社 Motor for compressor, and refrigeration cycle device
US10900696B2 (en) 2015-06-09 2021-01-26 Mitsubishi Electric Corporation Electric motor for compressor, compressor, and refrigeration cycle device
CN111342632B (en) * 2015-06-09 2022-05-10 三菱电机株式会社 Compressor motor, compressor, and refrigeration cycle device
CN107431394A (en) * 2015-06-17 2017-12-01 三菱电机株式会社 Compressor permanent magnetic baried type motor, compressor and refrigerating circulatory device
JPWO2016203563A1 (en) * 2015-06-17 2017-08-31 三菱電機株式会社 Rotor, permanent magnet embedded electric motor for compressor, compressor, and refrigeration cycle apparatus
WO2016203563A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet embedded-type electric motor for compressor, compressor, and refrigeration cycle device
US10879760B2 (en) 2015-06-17 2020-12-29 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor for compressor, compressor, and refrigeration cycle device
CN107431394B (en) * 2015-06-17 2021-02-05 三菱电机株式会社 Compressor and refrigeration cycle device
EP3282564A1 (en) * 2016-08-09 2018-02-14 Huangshi Dongbei Electrical Appliance Co., Ltd. Brushless type motor and rotor for a motor
CN107707048A (en) * 2016-08-09 2018-02-16 黄石东贝电器股份有限公司 Brushless motor and rotor

Also Published As

Publication number Publication date
JP4096254B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP6858845B2 (en) Rotors, electric motors, compressors and air conditioners
CN110326190B (en) Rotor, motor, compressor, and blower
WO2017126053A1 (en) Permanent magnet synchronous motor, compressor and air conditioner
WO2003079516A1 (en) Permanent magnet type motor and compressor comprising it
US20120131945A1 (en) Self-Starting Type Axial Gap Synchronous Motor, Compressor and Refrigeration Cycle Apparatus Using the Same
JP2001342954A (en) Electric compressor and cooling system using the same
CN107431394B (en) Compressor and refrigeration cycle device
CN112075011B (en) Rotor, motor, compressor and air conditioner
JP2005210826A (en) Electric motor
JPH07236239A (en) Rotor for compressor motor
JP4096254B2 (en) Permanent magnet type motor and compressor
CN111342632B (en) Compressor motor, compressor, and refrigeration cycle device
JP6261672B2 (en) Neodymium permanent magnet type motor and hermetic compressor equipped with the neodymium permanent magnet type motor
JP4712026B2 (en) Permanent magnet type motor and compressor
JP7150181B2 (en) motors, compressors, and air conditioners
JP2015002651A (en) Motor and compressor employing the same
JP3485879B2 (en) Rotor of motor for compressor
JP3485909B2 (en) Hermetic compressor
JP6714907B2 (en) Rotor, electric motor, hermetic compressor and rotor manufacturing method
US11888353B2 (en) Motor, compressor, and air conditioner
JP3485877B2 (en) Rotor of motor for compressor
JP2011015500A (en) Rotor of electric motor
JP3485878B2 (en) Rotor of motor for compressor
JP6080554B2 (en) Neodymium permanent magnet type motor and hermetic compressor equipped with the neodymium permanent magnet type motor
JP3485881B2 (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4096254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term