JP4096254B2 - Permanent magnet type motor and compressor - Google Patents

Permanent magnet type motor and compressor Download PDF

Info

Publication number
JP4096254B2
JP4096254B2 JP2003153156A JP2003153156A JP4096254B2 JP 4096254 B2 JP4096254 B2 JP 4096254B2 JP 2003153156 A JP2003153156 A JP 2003153156A JP 2003153156 A JP2003153156 A JP 2003153156A JP 4096254 B2 JP4096254 B2 JP 4096254B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor core
density member
core portion
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003153156A
Other languages
Japanese (ja)
Other versions
JP2004357430A (en
Inventor
和彦 馬場
仁 川口
智明 及川
庸賀 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003153156A priority Critical patent/JP4096254B2/en
Publication of JP2004357430A publication Critical patent/JP2004357430A/en
Application granted granted Critical
Publication of JP4096254B2 publication Critical patent/JP4096254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、冷蔵庫、除湿機、エアコンなどの圧縮機に用いられるモータ及びこれを使用の圧縮機に関するものである。
【0002】
【従来の技術】
近年、エアコンや冷蔵庫用の圧縮機駆動用のモータなどでは、回転数の制御が容易で、モータ効率の良い永久磁石型モータが使用されている。
永久磁石型モータは圧縮機運転中の振動、運転騒音を防止するために例えば次のようになされていた。
シャフトの出力軸端のアンバランスを修正するために、ロータの両側にバランスウエイトを設け、ロータコアの軸方向長さをステータコアの軸方向長さよりも大きくし、かつ、ロータコアの軸方向中心を、ステータの軸方向中心よりも反出力側にずらす。(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−134882号公報(第5頁、第6頁、図3)
【0004】
【発明が解決しようとする課題】
以上の様に、従来の圧縮機駆動用の永久磁石型モータは、ロータ鉄心部の軸方向長さをステータ鉄心部の軸方向長さより大きくなるように構成していたため、永久磁石をロータ鉄心部の内部に埋め込んで構成した磁石埋め込み型ロータを用いた場合、永久磁石の作る磁束が、ロータ鉄心部の軸方向の端部において、磁石極間外周部の薄肉連結部を通って隣の磁極の永久磁石へ戻る経路の短絡磁束(Φ1)が発生し、トルクに寄与する有効な磁束が減少し、所望のトルクを得るための電流が増大し、銅損を増大させていた(課題A)。
【0005】
また、ステータ巻線に流れる電流によって作られる磁束が、ロータ鉄心部の軸方向の外周端部を通る経路の漏れ磁路が発生することにより、所望のトルクを得るためにより多くの電流が必要となり、銅損を増大させていた(課題B)。
【0006】
さらに、ステータ巻線のコイルエンド部とロータ鉄心部が対向して配置されており、ステータ巻線に流れる電流によって作られる磁束(Φ2)がロータ鉄心部の端部に対して垂直に変化するため、ステータ巻線のコイルエンド部と対向するロータ鉄心部の端部に渦電流損失が発生し、鉄損を増大させていた(課題C)。
【0007】
また、前記の課題Cに対して、ステータ巻線のコイルエンド部と対向するロータ鉄心部の端部の材質を非磁性の金属材料で構成しても、非磁性の金属材料内に渦電流が発生し、鉄損を増大させていた。
【0008】
また、ステータ巻線のコイルエンド部と対向するロータ鉄心部の端部の材質を非磁性の樹脂で形成した場合は、十分なモーメントを得るのにバランスウェイトの高さが大きくなり、圧縮機が大きくなっていた。
【0009】
以上のように、従来の永久磁石型モータが振動・騒音の抑制はできたとしても、同時に銅損及び鉄損の発生により、効率の低下を伴っていたのを解決するためになされたもので、本発明は、永久磁石型モータの効率低下を抑え、かつ、振動・騒音を抑制することを目的とする。また、この永久磁石型モータを使用することにより、高効率で振動・騒音の低い圧縮機を得ることを目的とする。
【0010】
【課題を解決するための手段】
本発明は、ロータ鉄心部の軸方向の端部に磁性金属製の高密度部材部を設け、該高密度部材とロータ鉄心部の磁石挿入孔、それぞれの軸直交断面での軸方向対応の外形寸法をD3、D4としたとき、D3≦D4である永久磁石型モータ及びこの永久磁石型モータ使用の圧縮機である。
【0011】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図であり、図2は、同じく永久磁石型モータのロータの横断面図であり、図3は、同じく圧縮機の圧縮機構部を示す図である。
これらの図において、圧縮機は、密閉容器7内の上部にステータ5とロータ6からなる永久磁石型モータを配置し、下部に圧縮機構部15を配置し、両者を駆動軸13で連結し、永久磁石型モータにより駆動軸13を回転し、圧縮機構部15を働かせ、吸入冷媒を圧縮する。
【0012】
永久磁石型モータのステータ5は、中心部が開口した厚さ0.3〜0.5mm程度の円板状の電磁鋼板を複数枚軸方向に積層した中空積層体であるステータ鉄心部5aとその上下両端のコイルエンド部5bからなり、ステータ鉄心部5aは中心に配置されたロータ6を空隙部12を隔てて囲うように配置され、また、外周側を焼嵌めまたは、溶接等の手段により密閉容器7に直接取り付け、保持される。ステータ5のステータ鉄心部5には、複数のスロット(図示せず)が設けられ、このスロット内にコイルが巻回され、分布巻線または集中巻線などの巻線11が施される。
【0013】
ロータ6は、中心を軸方向に貫通する駆動軸13に固定されたロータ鉄心部6aとロータ鉄心部6aの上端及び下端に取付けられ、同様に中心を軸方向に貫通する駆動軸13に固定された高密度部材からなる高密度部材部6bより形成される。
ロータ鉄心部6aは、中心部が開口した厚さ0.3〜0.5mm程度の円板状の電磁鋼板を複数枚軸方向に積層し、一体化したものである。このロータ鉄心部6aには、駆動軸13直交面において、駆動軸13を中心にして、軸方向に複数の磁石挿入孔9が設けられ、永久磁石10がロータ鉄心部6aの軸方向全体にわたって挿入される。永久磁石10としては、ネオジウム、鉄、ボロンなどを主成分とした焼結希土類磁石が用いられる。
ステータ鉄心部5aとロータ鉄心部6aとは、ロータ鉄心部6aを中にして所定の空隙部12を設けて、駆動軸13方向に同心に形成される。
【0014】
ロータ鉄心部6aの上端及び下端に取付けられる高密度部材部6bは、外径をロータ鉄心部6aの外径より所定量小さくした中空円筒体である。また、高密度部材部6bは、非磁性金属製である。即ち、金属の非磁性体である真鍮(銅と亜鉛との合金)を用いている。この他に、銅、パラジウム、タングステン、塩化ニッケル、ステンレス等でもよく、高密度の非磁性材料であればよい。
ロータ鉄心部6a及び高密度部材部6bの中心を貫通し、固定する駆動軸13の圧縮機構部15側は、密閉容器7下部の軸受部14、14により回転自在に保持される。
【0015】
次に、図1に示すように、ステータ5とロータ6の寸法関係を説明する。
ロータ6のロータ鉄心部6aの軸方向長さL1をステータ5のステータ鉄心部5aの軸方向の長さL2と略同一とし、ロータ鉄心部6aの両端部にロータ鉄心部6aの外径D1よりも所定量小さい外径D2の高密度部材部6bを取り付け、かつ、ステータ鉄心部5aの軸方向長さL2に対し、高密度部材部6bを含むロータ6の軸方向長さL3を所定量大きくなるように構成した。
例えば、高密度部材部6bの外径D2は、ロータ鉄心部6aの外径D1に対し、およそ0.95倍以下となるように構成している。即ち、この高密度部材部6bの外径寸法D2は、永久磁石型モータの駆動時にコイルエンド部5bから発する漏れ磁束Φ2が高密度部材部6bに鎖交して渦電流が流れない寸法まで高密度部材部6bの外径D2を小さくなるように構成している。
【0016】
なお、ステータ鉄心部5aの軸方向長さL2に対し、高密度部材部6bを含むロータ6の軸方向長さL3を所定量大きくなるようにすれば、高密度部材部6bは、ロータ鉄心部6aの上端及び下端の両方に取付けなくても、どちらか一端に取付けてもよい。
さらに、ロータ6のロータ鉄心部6aの軸方向長さL1をステータ5のステータ鉄心部5aの軸方向の長さL2と略同一とせずに、ロータ鉄心部6aの軸方向長さL1をステータ鉄心部5aの軸方向の長さL2より長くしてもよい。
ステータ鉄心部5aの軸方向の長さL2に対してロータ鉄心部6aの軸方向長さL1を長くし、ロータ鉄心部6aの軸方向長さL1と略同一長さの永久磁石10を設けることによって、ロータ鉄心部6aの外周部を通りステータ鉄心部5aを鎖交する磁束を増加することができ、同一トルクを得るための電流を低減でき、銅損を低減できる。ロータ鉄心部6aの軸方向長さL1を長くすればするほど磁力が大きくなる訳ではなく、ある長さ以上では磁束はそれ以上増加しない。即ち、長さL1を長さL2の1.4倍以下とするのが望ましい。
【0017】
また、高密度部材部6bを含むロータ6の軸方向長さL3は、ロータ6の永久磁石10に希土類磁石を用いた場合、ステータ鉄心部5aの軸方向長さL2のおよそ2〜3倍となるように構成されている。このロータ6の軸方向長さL3は、ロータ6にフェライト磁石を用いて構成した場合に同一効率を得るために必要なロータ鉄心幅と概略等しくなるように構成されている。即ち、希土類磁石を用いることによりフェライト磁石を用いた場合より、軸方向長さが小さくなるように設計されている。
【0018】
また、圧縮機構部15は、外周部が密閉容器7に直接取付けられ、固定される。この圧縮機構部15は、図3で示すように吸入口16及び吐出口17が開口するシリンダ室を有するシリンダ18と、駆動軸13の偏心軸部に回転自在に嵌入され、シリンダ18内に配置されたピストン19と、該ピストン19に一体的に設けられシリンダ室を吸入口16に通じる圧縮室の低圧室20と、吐出口17に通じる圧縮室の高圧室21とに区画するベーン22によって構成されている。
【0019】
インバータによって永久磁石型モータの駆動軸13が回転駆動されると、これに連動してピストン19が回転し、吸入口16よりシリンダ室内に冷媒ガスが吸入され、圧縮され吐出口17より吐出する。この際、永久磁石型モータの駆動軸13は、図4に示すように1回転中に大きな圧力変動(駆動トルク変動)が伴うことになる。
【0020】
図5に、本モータをインバータを用いて120度矩形波駆動によって駆動した場合の電流波形を示す。図5(a)は、高密度部材部6bを取り付けない場合であり、図5(b)は、高密度部材部6bを取り付けた場合のモータ電流波形を示している。
両図の比較に示すように、高密度部材部6bを取り付けない状態では、1回転中に大きな電流脈動を発生していたのに対し、上記のような高密度部材部6bを取り付けることによって1回転中の電流脈動を低減し電流を均一化することができる。
即ち、ロータ鉄心部6aの軸方向長さL1をステータ鉄心部5aの軸方向の長さL2と略同一とし、ロータ鉄心部6aの両端部に金属の非磁性体からなる高密度部材部6bを設けたことにより、ロータ6の慣性力を増大させることができ、モータの振動・騒音を抑制できる。
なお、ステータ鉄心部5aの軸方向の長さL2に対してロータ鉄心部6aの軸方向長さL1を長くし、ロータ鉄心部6aの軸方向長さL1と略同一長さの永久磁石10を設けるようにしても同様の効果が得られる。
また、高密度部材部6bは、非磁性金属製に限らず、高密度部材からなるものであれば同様にロータ6の慣性力を増大させることができる。
また、駆動方式は120度矩形波駆動に限られるものではなく、120度以上の矩形波駆動や正弦波駆動など、他の如何なる駆動方式であっても同様の効果が得られる。
【0021】
また、ロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くし、ロータ鉄心部6aの端部に設けた高密度部材部6bの材質を非磁性の金属で構成しているため、ロータ鉄心部6aの内部に設けた永久磁石10の発する磁束が高密度部材部6bを通って隣接の磁石極10aを流れる経路の漏れ磁束Φ1が発生せず、即ち、短絡磁束Φ1が発生せず、銅損を低減できる(即ち、課題Aの解消ができる)。
【0022】
また、ロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くし、非磁性金属製の高密度部材部6bとロータ鉄心部6aの外径寸法関係をD2<D1とすることにより、即ち、高密度部材部6bの外径寸法D2を、ロータ鉄心部6aの外径寸法D1よりも所定量小さくことにより、永久磁石型モータ駆動時にコイルエンド部5bから発する漏れ磁束Φ2が高密度部材部6bに鎖交して渦電流が流れないので、ステータ巻線11によるロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減できる圧縮機モータを実現できる(即ち、課題Cの解消ができる)。
この際、高密度部材部6bは、非磁性金属製でなく、磁性金属製でもよい。
また、特に高密度部材部6bとロータ鉄心部6aの外径寸法関係をD2<D1としなくても、高密度部材部6bを、厚さの薄い磁性金属板(例えば、薄い真鍮板)又は磁性金属板(例えば、薄い電磁鋼板)を絶縁皮膜を介して積層しても課題Cの解消ができる。
【0023】
また、ロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くし、ロータ鉄心部6aの両端部にロータ鉄心部6aの外径D1よりも所定量小さい径D2の非磁性金属製の高密度部材部6bを取り付けたので、ステータ5の巻線11に流れる電流によって作られる磁束が、ロータ鉄心部6aの軸方向の外周端部を通る経路の漏れ磁路が発生することがなく、又は低減し銅損を低減できる(即ち、課題Bの解消ができる)。
この際、高密度部材部6bは、非磁性金属製でなく、磁性金属製でもよい。
【0024】
また、高密度部材部6bをロータ鉄心部6aと同様に積層体とすることにより、即ち、厚さの薄い磁性金属板の積層体とすることにより、ロータ鉄心部6aと同一の順送金型内で製造でき、製造工程が簡易化でき、製作が容易となる。
【0025】
以上のように本実施の形態の永久磁石型モータによれば、ロータ鉄心部6aの軸方向の端部に高密度部材からなる高密度部材部6bを設け、該高密度部材部6bの外径寸法をロータ鉄心部6aの外径寸法より小さくしたので、ロータ6の慣性力を増大させることができ、かつ、ロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減でき、モータの効率向上及び振動・騒音を抑制できる。
【0026】
また、ロータ鉄心部6aの軸方向の端部に非磁性金属製の高密度部材部6bを設けたので、ロータ6の慣性力を増大させることができ、かつ、ロータ鉄心部6aの内部を流れる漏れ磁束Φ1が発生せず、銅損を低減でき、モータの効率向上及び振動・騒音を抑制できる。
【0027】
また、前記の高密度部材からなる高密度部材部6b、又は磁性金属製の高密度部材部6bを、厚さの薄い磁性金属板の積層で形成したので、ロータ6の製造工程が簡易化でき、製作が容易となる。
【0028】
また、高密度部材部6bを、厚さの薄い金属板を絶縁皮膜を介して積層して形成したので、ロータ6の慣性力を増大させることができ、かつ、ロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減でき、モータの効率向上及び振動・騒音を抑制できる。
【0029】
また、本永久磁石型モータを圧縮機に用いることにより、密閉容器7や吐出管25、吸入管26を伝わって発生していた騒音を抑制でき、空調機や冷蔵庫などユニットとしての騒音を低減することが可能である。即ち、振動・騒音を抑制できる効率の高い圧縮機となる。さらに、永久磁石型モータのロータ6の高密度部材部6bを積層体で形成することにより、永久磁石型モータの製造が容易となり圧縮機の低コスト化ができる。
【0030】
実施の形態2.
図6は、この発明の実施の形態2を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図であり、図7、図8は、それぞれ、同じく永久磁石型モータのロータ鉄心部の横断面図と高密度部材部の横断面図であり、図9、図10は、それぞれ、同じく永久磁石型モータの別のロータ鉄心部の横断面図と高密度部材部の横断面図である。
本実施の形態では、ロータ6のロータ鉄心部6aの端部に設けた高密度部材部6bの材質を金属の磁性体で構成し、且つ、高密度部材部6bの外形寸法D3をロータ鉄心部6aに設けた磁石挿入孔9の外形寸法D4以下となるように構成している。更に、ロータ鉄心部6aの端部に設けた高密度部材部6bは、少なくとも一面に絶縁皮膜を施した0.3〜0.5mm程度の薄い電磁鋼板を一枚づつ積層して構成する。
【0031】
高密度部材部6bは、ロータ鉄心部6aの上端及び下端の両方に取付けなくても、どちらか一端に取付けてもよい点、及びロータ鉄心部6aとステータ鉄心部5a、それぞれの軸方向の長さを略同一とするか、または、略同一長さの永久磁石10を設けるロータ鉄心部6aの軸方向長さをステータ鉄心部5aの軸方向の長さより長くする点を含めて、その他の構成は実施の形態1と同様であるので、以下、主として相違点を説明する。
【0032】
図7、図8に示すロータ6のロータ鉄心部6aと高密度部材部6bの例では、駆動軸13の軸方向と直交するロータ鉄心部6aの断面上で、六角形状に配置した永久磁石挿入孔9に平板の永久磁石10である希土類磁石10を挿入する。また、駆動軸13の軸方向と直交するロータ鉄心部6aの断面(ロータ鉄心部6aの軸直交面)上で、対向する永久磁石挿入孔9の外形寸法をD4とし、駆動軸13の軸方向と直交する高密度部材部6bの断面(高密度部材部6bの軸直交面)での軸方向相当の高密度部材部6bの外形寸法をD3とすると、軸方向で対応するD3、D4の関係がD3≦D4とする。即ち、高密度部材部6bの軸直交断面の外形寸法D3を永久磁石挿入孔9の軸直交断面の軸方向対応の外形寸法D4以下とする。
【0033】
また、別の例として、図9で示すように、ロータ鉄心部6aの軸直交断面で、12枚の永久磁石10をV字型に配置した場合は、高密度部材部6bの軸直交断面は図10で示すようになり、同様にD3、D4の関係をD3≦D4とし、高密度部材部6bの軸直交断面の外形寸法D3を永久磁石挿入孔9の軸直交断面の軸方向対応外形寸法D4以下とする。
【0034】
以上のように、本実施の形態の永久磁石型モータによれば、ロータ鉄心部6の軸方向の端部に磁性金属製の高密度部材部6bを設け、該高密度部材6bとロータ鉄心部6aの磁石挿入孔9、それぞれの軸直交断面での軸方向対応の外形寸法をD3、D4としたとき、D3≦D4としたので、実施の形態1と同様に高密度部材部6bにより、低振動・低騒音の圧縮機モータを実現でき、かつ、D3≦D4の関係から、永久磁石10の磁路形成による有効磁束の減少が防止でき、銅損を低減できる(課題Aの解消)。
【0035】
また、高密度部材部6bにより、低振動・低騒音の実現とともに、高密度部材部6bを厚さの薄い磁性金属板を絶縁皮膜を介して積層して形成したので、ステータ巻線11によるロータ鉄心部6aの渦電流損失が低減でき、鉄損を低減できる圧縮機モータを実現できる(課題Cの解消)。
なお、磁性金属板は、非磁性金属板でも課題Cの解消に有効である。
【0036】
また、高密度部材部6bの形状を、磁石挿入孔9の外径寸法D4よりも若干小さく、磁石挿入孔9の内径寸法より大きくなるように構成することで、軸方向の永久磁石10の保持を容易にすることができる。
【0037】
また、ロータ鉄心部6aと同様に高密度部材部6bも積層鉄心によって構成(厚さの薄い磁性金属板の積層)されているため、ロータ鉄心部6aと同一の順送金型内で高密度部材部6bを製造することができ、製造工程を低減した低コストな永久磁石型モータが提供できる。
【0038】
また、本永久磁石型モータを用いることにより、低騒音で高効率の圧縮機を実現できる。さらに、永久磁石型モータのロータ6の高密度部材部6bを積層体で形成することにより、永久磁石型モータの製造が容易となり圧縮機の低コスト化ができる。
【0039】
実施の形態1、2において、永久磁石型モータは、ロータ鉄心部6aの端部に高密度材からなる高密度部材部6bを設けることにより、ロータ6の慣性力を増大させ、モータの振動・騒音を低減し、同時に課題A、B、Cを解消する特徴ある構成を設けることにより効率を向上できるが、これらの課題A、B、Cを解消する構成は、少なくとも一構成は設けることにより効率を向上でき、さらに複数設けることにより、より高い効率の向上が可能となる。
また、このような永久磁石型モータを圧縮機に使用することにより、振動・騒音を低減し、同時に課題A、B、Cの少なくといずれかを解消する効率の高い圧縮機を得ることができる。
【0040】
【発明の効果】
以上のように本発明では永久磁石型モータは、ロータ鉄心部の軸方向の端部に磁性金属製の高密度部材部を設け、該高密度部材とロータ鉄心部の磁石挿入孔、それぞれの軸直交断面での軸方向対応の外形寸法をD3、D4としたとき、D3≦D4であるので、低振動・低騒音の圧縮機モータを実現でき、かつ、永久磁石の磁路形成による有効磁束の減少が防止でき、銅損を低減できる。
また、この永久磁石型モータを使用することにより、圧縮機構部の吸入、圧縮、吐出工程の中で発生していた圧力変動に伴うロータの速度変動を緩和し、振動を低減でき、密閉容器や吐出管、吸入管を伝わって発生していた騒音を抑制でき、高効率で、振動・騒音の低減した圧縮機を得ることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図である。
【図2】 図1のロータの横断面図である。
【図3】 図1の圧縮機の圧縮機機構部を示す簡略図である。
【図4】 圧縮機の圧力変動を示す概念図である。
【図5】 永久磁石型モータの電流波形波形を示した図である。
【図6】 この発明の実施の形態2を示す圧縮機駆動用の永久磁石型モータを組み込んだ圧縮機の縦断面図である。
【図7】 図6の永久磁石型モータのロータ鉄心部の横断面図である。
【図8】 図6の永久磁石型モータの高密度部材部の横断面図である。
【図9】 図6の永久磁石型モータの別のロータ鉄心部の横断面図である。
【図10】 図6の永久磁石型モータの別の高密度部材部の横断面図である。
【符号の説明】
5 ステータ、5a ステータ鉄心部、6 ロータ、6a ロータ鉄心部、6b 高密度部材部、9 磁石挿入孔、10 永久磁石、11 巻線、13 駆動軸。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor used in a compressor such as a refrigerator, a dehumidifier, and an air conditioner, and a compressor using the motor.
[0002]
[Prior art]
In recent years, motors for driving compressors for air conditioners and refrigerators have used permanent magnet motors that can easily control the number of rotations and have high motor efficiency.
For example, the permanent magnet type motor has been implemented as follows in order to prevent vibration and noise during operation of the compressor.
In order to correct the unbalance of the output shaft end of the shaft, balance weights are provided on both sides of the rotor, the axial length of the rotor core is made larger than the axial length of the stator core, and the axial center of the rotor core is Shift to the non-output side from the axial center. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-134882 (5th page, 6th page, FIG. 3)
[0004]
[Problems to be solved by the invention]
As described above, the conventional permanent magnet type motor for driving the compressor is configured such that the axial length of the rotor core portion is larger than the axial length of the stator core portion. When the embedded magnet rotor is used, the magnetic flux produced by the permanent magnet is passed through the thin connecting portion of the outer periphery between the magnet poles at the end of the rotor core in the axial direction. The short-circuit magnetic flux (Φ1) on the path to the permanent magnet is generated, the effective magnetic flux contributing to the torque is reduced, the current for obtaining the desired torque is increased, and the copper loss is increased (Problem A).
[0005]
In addition, the magnetic flux generated by the current flowing through the stator windings generates a leakage magnetic path that passes through the outer peripheral end in the axial direction of the rotor core, so that more current is required to obtain the desired torque. The copper loss was increased (Problem B).
[0006]
Furthermore, since the coil end portion of the stator winding and the rotor core portion are arranged to face each other, the magnetic flux (Φ2) generated by the current flowing in the stator winding changes perpendicularly to the end portion of the rotor core portion. An eddy current loss occurs at the end of the rotor core that faces the coil end of the stator winding, increasing the iron loss (Problem C).
[0007]
Further, even if the material of the end portion of the rotor core portion facing the coil end portion of the stator winding is made of a nonmagnetic metal material, the eddy current is generated in the nonmagnetic metal material. Generated and increased iron loss.
[0008]
Also, if the material of the end of the rotor core facing the coil end of the stator winding is made of non-magnetic resin, the balance weight will be high to obtain a sufficient moment, and the compressor will It was getting bigger.
[0009]
As described above, even if the conventional permanent magnet type motor can suppress the vibration and noise, it was made to solve the problem that the copper loss and the iron loss caused the decrease in efficiency at the same time. An object of the present invention is to suppress a decrease in efficiency of a permanent magnet motor and to suppress vibration and noise. Another object of the present invention is to obtain a compressor with high efficiency and low vibration and noise by using this permanent magnet type motor.
[0010]
[Means for Solving the Problems]
The present invention provides a high-density member made of magnetic metal at the axial end of the rotor core, and the outer shape corresponding to the axial direction of the high-density member and the magnet insertion hole of the rotor core in the cross-section perpendicular to each axis. When the dimensions are D3 and D4, it is a permanent magnet type motor in which D3 ≦ D4 and a compressor using this permanent magnet type motor.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of a compressor incorporating a permanent magnet type motor for driving a compressor according to Embodiment 1 of the present invention. FIG. 2 is a transverse sectional view of a rotor of the permanent magnet type motor. FIG. 3 is a view showing the compression mechanism of the compressor.
In these drawings, the compressor has a permanent magnet type motor composed of a stator 5 and a rotor 6 arranged in the upper part of the hermetic container 7, a compression mechanism part 15 arranged in the lower part, and both are connected by a drive shaft 13, The drive shaft 13 is rotated by a permanent magnet type motor, the compression mechanism unit 15 is operated, and the sucked refrigerant is compressed.
[0012]
The stator 5 of the permanent magnet type motor includes a stator core portion 5a which is a hollow laminated body in which a plurality of disk-shaped electromagnetic steel plates having a thickness of about 0.3 to 0.5 mm with an opening at the center are laminated in the axial direction, and the stator core portion 5a. Consists of upper and lower coil end portions 5b, and the stator core portion 5a is disposed so as to surround the rotor 6 disposed in the center with the gap 12 therebetween, and the outer peripheral side is sealed by means such as shrink fitting or welding. Attached directly to the container 7 and held. The stator core portion 5 of the stator 5 is provided with a plurality of slots (not shown), in which coils are wound, and windings 11 such as distributed windings or concentrated windings are applied.
[0013]
The rotor 6 is attached to the rotor core 6a fixed to the drive shaft 13 passing through the center in the axial direction and the upper and lower ends of the rotor core 6a, and similarly fixed to the drive shaft 13 passing through the center in the axial direction. The high-density member portion 6b made of a high-density member.
The rotor core portion 6a is formed by laminating a plurality of disc-shaped electromagnetic steel plates having a thickness of about 0.3 to 0.5 mm with an opening at the center in the axial direction. In the rotor core portion 6a, a plurality of magnet insertion holes 9 are provided in the axial direction about the drive shaft 13 on the plane orthogonal to the drive shaft 13, and the permanent magnet 10 is inserted over the entire axial direction of the rotor core portion 6a. Is done. As the permanent magnet 10, a sintered rare earth magnet mainly composed of neodymium, iron, boron or the like is used.
The stator core portion 5a and the rotor core portion 6a are formed concentrically in the direction of the drive shaft 13 by providing a predetermined gap portion 12 with the rotor core portion 6a in the middle.
[0014]
The high-density member portion 6b attached to the upper end and the lower end of the rotor core portion 6a is a hollow cylindrical body having an outer diameter smaller than the outer diameter of the rotor core portion 6a by a predetermined amount. The high density member 6b is made of a nonmagnetic metal. That is, brass (alloy of copper and zinc), which is a nonmagnetic metal material, is used. In addition, copper, palladium, tungsten, nickel chloride, stainless steel, or the like may be used as long as it is a high-density nonmagnetic material.
The compression mechanism 15 side of the drive shaft 13 that passes through and is fixed to the center of the rotor core 6a and the high-density member 6b is rotatably held by bearings 14 and 14 below the hermetic container 7.
[0015]
Next, as shown in FIG. 1, the dimensional relationship between the stator 5 and the rotor 6 will be described.
The axial length L1 of the rotor core portion 6a of the rotor 6 is substantially the same as the axial length L2 of the stator core portion 5a of the stator 5, and the outer diameter D1 of the rotor core portion 6a is formed at both ends of the rotor core portion 6a. A high-density member portion 6b having an outer diameter D2 that is smaller by a predetermined amount is attached, and the axial length L3 of the rotor 6 including the high-density member portion 6b is larger by a predetermined amount than the axial length L2 of the stator core portion 5a. It comprised so that it might become.
For example, the outer diameter D2 of the high-density member 6b is configured to be approximately 0.95 times or less than the outer diameter D1 of the rotor core 6a. That is, the outer diameter D2 of the high-density member 6b is high enough to prevent leakage magnetic flux Φ2 generated from the coil end 5b when the permanent magnet type motor is driven, from interlinking with the high-density member 6b. The outer diameter D2 of the density member portion 6b is configured to be small.
[0016]
If the axial length L3 of the rotor 6 including the high-density member portion 6b is increased by a predetermined amount with respect to the axial length L2 of the stator core portion 5a, the high-density member portion 6b becomes the rotor core portion. It does not need to be attached to both the upper end and the lower end of 6a, and may be attached to either one end.
Further, the axial length L1 of the rotor core portion 6a of the rotor 6 is not substantially the same as the axial length L2 of the stator core portion 5a of the stator 5, and the axial length L1 of the rotor core portion 6a is set to the stator core. You may make it longer than the length L2 of the axial direction of the part 5a.
The axial length L1 of the rotor core portion 6a is made longer than the axial length L2 of the stator core portion 5a, and the permanent magnet 10 having substantially the same length as the axial length L1 of the rotor core portion 6a is provided. Thus, the magnetic flux passing through the outer periphery of the rotor core portion 6a and interlinking with the stator core portion 5a can be increased, the current for obtaining the same torque can be reduced, and the copper loss can be reduced. The longer the axial length L1 of the rotor core portion 6a, the larger the magnetic force does not increase, and the magnetic flux does not increase beyond a certain length. That is, it is desirable that the length L1 is 1.4 times or less of the length L2.
[0017]
Further, the axial length L3 of the rotor 6 including the high density member portion 6b is about 2 to 3 times the axial length L2 of the stator core portion 5a when a rare earth magnet is used as the permanent magnet 10 of the rotor 6. It is comprised so that it may become. The axial length L3 of the rotor 6 is configured to be approximately equal to the rotor core width required to obtain the same efficiency when the rotor 6 is configured using a ferrite magnet. That is, the axial length is designed to be smaller by using rare earth magnets than when using ferrite magnets.
[0018]
Further, the outer peripheral portion of the compression mechanism portion 15 is directly attached to the sealed container 7 and fixed. As shown in FIG. 3, the compression mechanism portion 15 is rotatably fitted in a cylinder 18 having a cylinder chamber in which a suction port 16 and a discharge port 17 are opened, and an eccentric shaft portion of the drive shaft 13, and is disposed in the cylinder 18. And a vane 22 that is provided integrally with the piston 19 and is divided into a low pressure chamber 20 of a compression chamber that communicates the cylinder chamber with the suction port 16 and a high pressure chamber 21 of the compression chamber that communicates with the discharge port 17. Has been.
[0019]
When the drive shaft 13 of the permanent magnet type motor is driven to rotate by the inverter, the piston 19 rotates in conjunction with this, and the refrigerant gas is sucked into the cylinder chamber from the suction port 16 and compressed and discharged from the discharge port 17. At this time, the drive shaft 13 of the permanent magnet type motor is accompanied by a large pressure fluctuation (drive torque fluctuation) during one rotation as shown in FIG.
[0020]
FIG. 5 shows a current waveform when this motor is driven by a 120-degree rectangular wave drive using an inverter. FIG. 5A shows a case where the high-density member portion 6b is not attached, and FIG. 5B shows a motor current waveform when the high-density member portion 6b is attached.
As shown in the comparison between the two figures, a large current pulsation was generated during one rotation when the high-density member portion 6b was not attached, whereas by attaching the high-density member portion 6b as described above, 1 Current pulsation during rotation can be reduced and current can be made uniform.
That is, the axial length L1 of the rotor core portion 6a is substantially the same as the axial length L2 of the stator core portion 5a, and high-density member portions 6b made of a metal nonmagnetic material are provided at both ends of the rotor core portion 6a. By providing, the inertia force of the rotor 6 can be increased and the vibration and noise of the motor can be suppressed.
The axial length L1 of the rotor core 6a is made longer than the axial length L2 of the stator core 5a, and the permanent magnet 10 having substantially the same length as the axial length L1 of the rotor core 6a is provided. Even if it is provided, the same effect can be obtained.
Further, the high-density member portion 6b is not limited to a non-magnetic metal, and if it is made of a high-density member, the inertia force of the rotor 6 can be increased similarly.
Further, the driving method is not limited to the 120 ° rectangular wave driving, and the same effect can be obtained by any other driving method such as a rectangular wave driving of 120 ° or more and a sine wave driving.
[0021]
Further, the axial lengths of the rotor core portion 6a and the stator core portion 5a are made substantially the same in the axial direction, or the axial length of the rotor core portion 6a provided with the permanent magnet 10 having the substantially same length is set as the stator core. Since the material of the high-density member portion 6b which is longer than the axial length of the portion 5a and is provided at the end of the rotor core portion 6a is made of nonmagnetic metal, the permanent portion provided inside the rotor core portion 6a. The leakage flux Φ1 of the path through which the magnetic flux generated by the magnet 10 passes through the adjacent magnet pole 10a through the high-density member portion 6b does not occur, that is, the short-circuit flux Φ1 does not occur, and the copper loss can be reduced (that is, the problem) A can be eliminated).
[0022]
Further, the axial lengths of the rotor core portion 6a and the stator core portion 5a are made substantially the same in the axial direction, or the axial length of the rotor core portion 6a provided with the permanent magnet 10 having the substantially same length is set as the stator core. It is longer than the axial length of the portion 5a, and the outer diameter dimensional relationship between the non-magnetic metal high-density member portion 6b and the rotor core portion 6a is D2 <D1, that is, the outer diameter of the high-density member portion 6b. By making the dimension D2 smaller by a predetermined amount than the outer diameter dimension D1 of the rotor core 6a, the leakage magnetic flux Φ2 generated from the coil end 5b when the permanent magnet motor is driven is linked to the high-density member 6b and an eddy current is generated. Since it does not flow, the eddy current loss of the rotor core 6a due to the stator winding 11 can be reduced, and a compressor motor capable of reducing the iron loss can be realized (that is, the problem C can be solved).
At this time, the high density member portion 6b may be made of a magnetic metal instead of a nonmagnetic metal.
Even if the outer diameter dimension relationship between the high-density member portion 6b and the rotor core portion 6a is not particularly D2 <D1, the high-density member portion 6b is made of a thin magnetic metal plate (for example, a thin brass plate) or magnetic. Even if a metal plate (for example, a thin electromagnetic steel plate) is laminated through an insulating film, the problem C can be solved.
[0023]
Further, the axial lengths of the rotor core portion 6a and the stator core portion 5a are made substantially the same in the axial direction, or the axial length of the rotor core portion 6a provided with the permanent magnet 10 having the substantially same length is set as the stator core. Since the length in the axial direction of the portion 5a is longer and the non-magnetic metal high-density member portion 6b having a diameter D2 smaller than the outer diameter D1 of the rotor core portion 6a is attached to both ends of the rotor core portion 6a, The magnetic flux generated by the current flowing through the winding 11 of the stator 5 does not generate or reduces the leakage magnetic path of the path passing through the outer peripheral end in the axial direction of the rotor core 6a (that is, the copper loss can be reduced). Problem B can be solved).
At this time, the high density member portion 6b may be made of a magnetic metal instead of a nonmagnetic metal.
[0024]
Further, by forming the high-density member portion 6b in the same manner as the rotor core portion 6a, that is, by forming a thin magnetic metal plate in the same progressive die as the rotor core portion 6a. The manufacturing process can be simplified, and the manufacturing becomes easy.
[0025]
As described above, according to the permanent magnet type motor of the present embodiment, the high-density member portion 6b made of a high-density member is provided at the axial end of the rotor core portion 6a, and the outer diameter of the high-density member portion 6b. Since the dimensions are smaller than the outer diameter of the rotor core 6a, the inertial force of the rotor 6 can be increased, the eddy current loss of the rotor core 6a can be reduced, the iron loss can be reduced, and the motor efficiency Improvement and suppression of vibration and noise.
[0026]
In addition, since the nonmagnetic metal high-density member 6b is provided at the axial end of the rotor core 6a, the inertial force of the rotor 6 can be increased, and the rotor core 6a flows inside the rotor core 6a. Leakage flux Φ1 is not generated, copper loss can be reduced, motor efficiency can be improved, and vibration and noise can be suppressed.
[0027]
Further, since the high-density member portion 6b made of the high-density member or the high-density member portion 6b made of magnetic metal is formed by laminating thin magnetic metal plates, the manufacturing process of the rotor 6 can be simplified. Manufacturing becomes easy.
[0028]
Further, since the high-density member portion 6b is formed by laminating thin metal plates via an insulating film, the inertial force of the rotor 6 can be increased, and eddy current loss of the rotor core portion 6a can be achieved. Can be reduced, iron loss can be reduced, motor efficiency can be improved, and vibration and noise can be suppressed.
[0029]
Further, by using this permanent magnet type motor for the compressor, noise generated through the hermetic container 7, the discharge pipe 25, and the suction pipe 26 can be suppressed, and the noise as a unit such as an air conditioner or a refrigerator can be reduced. It is possible. That is, it becomes a highly efficient compressor which can suppress vibration and noise. Furthermore, by forming the high-density member portion 6b of the rotor 6 of the permanent magnet motor as a laminated body, the permanent magnet motor can be easily manufactured and the cost of the compressor can be reduced.
[0030]
Embodiment 2. FIG.
FIG. 6 is a longitudinal sectional view of a compressor incorporating a permanent magnet type motor for driving a compressor according to Embodiment 2 of the present invention. FIGS. 7 and 8 are respectively a rotor of a permanent magnet type motor. FIG. 9 and FIG. 10 are respectively a cross-sectional view of another rotor core portion and a cross-sectional view of the high-density member portion of the permanent magnet motor, respectively. FIG.
In the present embodiment, the material of the high density member 6b provided at the end of the rotor core 6a of the rotor 6 is made of a metal magnetic material, and the outer dimension D3 of the high density member 6b is set to the rotor core. The outer diameter D4 of the magnet insertion hole 9 provided in 6a is set to be equal to or smaller than D4. Furthermore, the high density member portion 6b provided at the end of the rotor core portion 6a is formed by laminating thin magnetic steel sheets of about 0.3 to 0.5 mm each having an insulating film on at least one surface.
[0031]
The high density member portion 6b may be attached to either one of the upper end and the lower end of the rotor core portion 6a, or may be attached to either end, and the axial lengths of the rotor core portion 6a and the stator core portion 5a. Other configurations including the point that the axial length of the rotor core portion 6a in which the permanent magnets 10 having substantially the same length or substantially the same length are provided is longer than the axial length of the stator core portion 5a. Since this is the same as that of the first embodiment, the difference will be mainly described below.
[0032]
In the example of the rotor core portion 6a and the high-density member portion 6b of the rotor 6 shown in FIGS. 7 and 8, permanent magnet insertion arranged in a hexagonal shape on the cross section of the rotor core portion 6a orthogonal to the axial direction of the drive shaft 13 A rare earth magnet 10, which is a flat permanent magnet 10, is inserted into the hole 9. Further, on the cross section of the rotor core portion 6a orthogonal to the axial direction of the drive shaft 13 (axis orthogonal surface of the rotor core portion 6a), the outer dimension of the opposing permanent magnet insertion hole 9 is D4, and the axial direction of the drive shaft 13 When the outer dimension of the high-density member portion 6b corresponding to the axial direction in the cross section of the high-density member portion 6b orthogonal to the axis (the axis orthogonal surface of the high-density member portion 6b) is D3, the relationship between D3 and D4 corresponding in the axial direction Is D3 ≦ D4. That is, the outer dimension D3 of the high-density member portion 6b in the axis-orthogonal cross section is set to be equal to or smaller than the outer dimension D4 corresponding to the axial direction of the axis-orthogonal section of the permanent magnet insertion hole 9.
[0033]
As another example, as shown in FIG. 9, when 12 permanent magnets 10 are arranged in a V shape in the axial orthogonal cross section of the rotor core portion 6 a, the axial orthogonal cross section of the high density member portion 6 b is Similarly, the relationship between D3 and D4 is set as D3 ≦ D4, and the external dimension D3 of the high-density member portion 6b is perpendicular to the axial direction of the permanent magnet insertion hole 9. D4 or less.
[0034]
As described above, according to the permanent magnet type motor of the present embodiment, the high-density member 6b made of magnetic metal is provided at the axial end of the rotor core 6, and the high-density member 6b and the rotor core When the outer dimensions corresponding to the axial direction of the magnet insertion hole 9 of 6a and the respective axial cross sections are D3 and D4, D3 ≦ D4. A compressor motor with vibration and low noise can be realized, and from the relationship of D3 ≦ D4, a decrease in effective magnetic flux due to magnetic path formation of the permanent magnet 10 can be prevented, and copper loss can be reduced (resolving problem A).
[0035]
Further, the high-density member portion 6b realizes low vibration and low noise, and the high-density member portion 6b is formed by laminating a thin magnetic metal plate with an insulating film interposed therebetween. The eddy current loss of the iron core portion 6a can be reduced, and a compressor motor that can reduce the iron loss can be realized (solvent C).
In addition, even if a magnetic metal plate is a non-magnetic metal plate, it is effective in solving the problem C.
[0036]
Further, the configuration of the high-density member portion 6b is configured to be slightly smaller than the outer diameter dimension D4 of the magnet insertion hole 9 and larger than the inner diameter dimension of the magnet insertion hole 9, thereby holding the permanent magnet 10 in the axial direction. Can be made easier.
[0037]
Further, since the high-density member portion 6b is also composed of a laminated core (laminate of thin magnetic metal plates) in the same manner as the rotor core portion 6a, the high-density member in the same progressive die as the rotor core portion 6a. The part 6b can be manufactured, and a low-cost permanent magnet type motor with a reduced manufacturing process can be provided.
[0038]
Further, by using this permanent magnet type motor, a low noise and high efficiency compressor can be realized. Furthermore, by forming the high-density member portion 6b of the rotor 6 of the permanent magnet motor as a laminated body, the permanent magnet motor can be easily manufactured and the cost of the compressor can be reduced.
[0039]
In the first and second embodiments, the permanent magnet type motor increases the inertial force of the rotor 6 by providing the high-density member portion 6b made of a high-density material at the end of the rotor core portion 6a. The efficiency can be improved by providing a characteristic configuration that reduces noise and solves the problems A, B, and C at the same time, but the configuration that eliminates these problems A, B, and C is efficient by providing at least one configuration. Further improvement of efficiency can be achieved by providing more than one.
Moreover, by using such a permanent magnet type motor for the compressor, it is possible to obtain a highly efficient compressor that reduces vibration and noise and at the same time eliminates at least one of the problems A, B, and C. .
[0040]
【The invention's effect】
As described above, in the present invention, the permanent magnet type motor is provided with a high-density member made of magnetic metal at the axial end of the rotor core portion, and the high-density member and the magnet insertion hole of the rotor core portion, When the external dimensions corresponding to the axial direction in the orthogonal cross section are D3 and D4, since D3 ≦ D4, a low-vibration and low-noise compressor motor can be realized, and the effective magnetic flux generated by the magnetic path formation of the permanent magnet can be realized. Reduction can be prevented and copper loss can be reduced.
In addition, by using this permanent magnet type motor, the speed fluctuation of the rotor due to the pressure fluctuation generated during the suction, compression, and discharge processes of the compression mechanism can be mitigated, and vibration can be reduced. Noise generated through the discharge pipe and suction pipe can be suppressed, and a highly efficient compressor with reduced vibration and noise can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a longitudinal sectional view of a compressor incorporating a permanent magnet motor for driving a compressor according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view of the rotor of FIG.
FIG. 3 is a simplified diagram showing a compressor mechanism of the compressor of FIG. 1;
FIG. 4 is a conceptual diagram showing pressure fluctuations in the compressor.
FIG. 5 is a diagram showing a current waveform waveform of a permanent magnet type motor.
6 is a longitudinal sectional view of a compressor incorporating a permanent magnet motor for driving a compressor according to Embodiment 2 of the present invention. FIG.
7 is a cross-sectional view of a rotor core portion of the permanent magnet type motor of FIG.
8 is a cross-sectional view of a high-density member portion of the permanent magnet type motor of FIG.
9 is a cross-sectional view of another rotor core portion of the permanent magnet type motor of FIG. 6. FIG.
10 is a cross-sectional view of another high density member portion of the permanent magnet type motor of FIG. 6;
[Explanation of symbols]
5 Stator, 5a Stator core, 6 Rotor, 6a Rotor core, 6b High density member, 9 Magnet insertion hole, 10 Permanent magnet, 11 Winding, 13 Drive shaft.

Claims (4)

駆動軸と、永久磁石が挿入され、中心を貫通する前記駆動軸に固定されて一体に回転するロータ鉄心部を有するロータと、前記ロータ鉄心部の外周部から所定の間隙を設けて前記ロータ鉄心部を囲むように形成されたステータ鉄心部を有し、巻線が施されたステータとを備えた永久磁石型モータにおいて、
前記ロータ鉄心部の軸方向の端部に磁性金属製の高密度部材部を設け、該高密度部材と前記ロータ鉄心部の磁石挿入孔、それぞれの軸直交断面での軸方向対応の外形寸法をD3、D4としたとき、D3≦D4であることを特徴とする永久磁石型モータ。
A rotor having a drive shaft, a rotor core portion into which a permanent magnet is inserted, fixed to the drive shaft passing through the center and rotating integrally, and a predetermined gap from an outer peripheral portion of the rotor core portion. In a permanent magnet type motor having a stator iron core part formed so as to surround the part, and a stator provided with a winding,
A high-density member made of magnetic metal is provided at the axial end of the rotor core, and the outer dimensions corresponding to the axial direction of the high-density member and the magnet insertion hole of the rotor core are orthogonal to each other. A permanent magnet type motor characterized by D3 ≦ D4 when D3 and D4.
前記高密度部材部を、厚さの薄い金属板の積層で形成したことを特徴とする請求項1記載の永久磁石型モータ。Claim 1 Symbol placement of a permanent magnet motor, characterized in that the dense member portion, is formed by lamination of thin metal plate thicknesses. 記ロータ鉄心部の軸方向の端部に高密度部材からなる高密度部材部を設け、該高密度部材部を、厚さの薄い金属板を絶縁皮膜を介して積層して形成したことを特徴とする請求項1記載の永久磁石型モータ。 Before SL provided a high density member unit Do that a dense member in the end portion in the axial direction of the rotor core portion, that the high-density member unit, the thin metal plate having a thickness of was formed by stacking via an insulating film The permanent magnet type motor according to claim 1 . 圧縮機のモータに、請求項1〜請求項のいずれかの請求項に記載の永久磁石型モータを使用したことを特徴とする圧縮機。A compressor using the permanent magnet type motor according to any one of claims 1 to 3 as a motor of the compressor.
JP2003153156A 2003-05-29 2003-05-29 Permanent magnet type motor and compressor Expired - Lifetime JP4096254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153156A JP4096254B2 (en) 2003-05-29 2003-05-29 Permanent magnet type motor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153156A JP4096254B2 (en) 2003-05-29 2003-05-29 Permanent magnet type motor and compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007340332A Division JP4712026B2 (en) 2007-12-28 2007-12-28 Permanent magnet type motor and compressor

Publications (2)

Publication Number Publication Date
JP2004357430A JP2004357430A (en) 2004-12-16
JP4096254B2 true JP4096254B2 (en) 2008-06-04

Family

ID=34048193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153156A Expired - Lifetime JP4096254B2 (en) 2003-05-29 2003-05-29 Permanent magnet type motor and compressor

Country Status (1)

Country Link
JP (1) JP4096254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360733A (en) * 2014-10-30 2017-11-17 三菱重工汽车空调系统株式会社 Motor rotor and the motor and motor compressor using the motor rotor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262656A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Electric motor
WO2016199226A1 (en) 2015-06-09 2016-12-15 三菱電機株式会社 Compressor electric motor, compressor, and refrigeration cycle device
CN107431394B (en) * 2015-06-17 2021-02-05 三菱电机株式会社 Compressor and refrigeration cycle device
JP2018068100A (en) * 2016-08-09 2018-04-26 ホアンシー ドンベイ エレクトリカル アプライアンス カンパニー リミテッド Brushless type motor and rotor for motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360733A (en) * 2014-10-30 2017-11-17 三菱重工汽车空调系统株式会社 Motor rotor and the motor and motor compressor using the motor rotor
CN107360733B (en) * 2014-10-30 2019-09-17 三菱重工制冷空调系统株式会社 Motor rotor and the motor and motor compressor for using the motor rotor

Also Published As

Publication number Publication date
JP2004357430A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP6858845B2 (en) Rotors, electric motors, compressors and air conditioners
JP4485225B2 (en) Permanent magnet motor, hermetic compressor and fan motor
US20120131945A1 (en) Self-Starting Type Axial Gap Synchronous Motor, Compressor and Refrigeration Cycle Apparatus Using the Same
WO2018158930A1 (en) Rotor, electrical motor, compressor, and air blower
WO2003079516A1 (en) Permanent magnet type motor and compressor comprising it
JP6942246B2 (en) Rotors, motors, compressors and air conditioners
CN108886276B (en) Motor, blower, compressor, and air conditioner
JPH07236239A (en) Rotor for compressor motor
JP4096254B2 (en) Permanent magnet type motor and compressor
JP7150181B2 (en) motors, compressors, and air conditioners
CN107534370B (en) Motor for compressor, and refrigeration cycle device
JP6261672B2 (en) Neodymium permanent magnet type motor and hermetic compressor equipped with the neodymium permanent magnet type motor
JP4712026B2 (en) Permanent magnet type motor and compressor
JP4464584B2 (en) Compressor
JP7019033B2 (en) Motors, compressors and air conditioners
JP3485879B2 (en) Rotor of motor for compressor
JP3485909B2 (en) Hermetic compressor
JP6714907B2 (en) Rotor, electric motor, hermetic compressor and rotor manufacturing method
JP3485878B2 (en) Rotor of motor for compressor
JP3485877B2 (en) Rotor of motor for compressor
JP6080554B2 (en) Neodymium permanent magnet type motor and hermetic compressor equipped with the neodymium permanent magnet type motor
JP3485881B2 (en) Compressor
JP7026811B2 (en) Stator, motor, compressor and air conditioner
JP7256432B1 (en) Rotors, motors, compressors and air conditioners
JP2006280021A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4096254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term