WO2015186280A1 - Permanent magnet-embedded electric motor - Google Patents

Permanent magnet-embedded electric motor Download PDF

Info

Publication number
WO2015186280A1
WO2015186280A1 PCT/JP2015/001179 JP2015001179W WO2015186280A1 WO 2015186280 A1 WO2015186280 A1 WO 2015186280A1 JP 2015001179 W JP2015001179 W JP 2015001179W WO 2015186280 A1 WO2015186280 A1 WO 2015186280A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet
bridge portion
inner diameter
rotor
Prior art date
Application number
PCT/JP2015/001179
Other languages
French (fr)
Japanese (ja)
Inventor
河村 清美
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015186280A1 publication Critical patent/WO2015186280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to an embedded permanent magnet electric motor having an embedded permanent magnet rotor configured by embedding a plurality of permanent magnets at predetermined intervals in a rotor core.
  • Patent Document 1 In such a technical field, conventionally, for example, a technique as described in Patent Document 1 is known.
  • a first permanent magnet having a rectangular cross section in the radial direction of the rotor is separated from the outer periphery and embedded along the q-axis, and the center is disposed between the first permanent magnets.
  • a second permanent magnet having a rectangular cross-section with a long side perpendicular to the d-axis is embedded on the side.
  • a triangular flux barrier hole is formed between the first permanent magnet and the second permanent magnet.
  • flux barrier holes for suppressing leakage magnetic flux are formed in the first magnet embedded hole and the second magnet embedded hole.
  • the flux barrier hole is provided, there is a limit to lengthening the magnet, and it is difficult to sufficiently secure the generated magnetic flux.
  • the iron core between the first permanent magnet and the second permanent magnet holds the rotor core on the inner diameter side and the outer diameter side. For this reason, in order to ensure the strength, the width of the iron core of the connecting portion has to be increased, which has been a factor in increasing the leakage magnetic flux.
  • the embedded permanent magnet electric motor of the present invention has the following configuration. That is, a stator having a winding wound around a stator iron core and a rotor provided rotatably via an inner peripheral surface of the stator and a gap are provided.
  • the rotor includes a rotor core having a first magnet embedded hole provided on the q axis and a second magnet embedded hole provided on the d axis, and a first permanent magnet inserted into the first magnet embedded hole. And a second permanent magnet inserted into the second magnet embedding hole.
  • the rotor core is formed by laminating a plurality of thin steel plates, and in the thin steel plate, the short side of the inner circumference side of the first magnet embedded hole and the short sides of the two second magnet embedded holes facing the short side
  • board thickness of the internal-diameter bridge part which is the area
  • the magnetic flux generated from the first permanent magnet flows through the inner diameter bridge portion to the reverse magnetic pole side of the same permanent magnet or the reverse magnetic pole side of the second permanent magnet.
  • the inner diameter bridge portion must be increased in order to ensure the strength, and the magnetic resistance is decreased, so that the leakage magnetic flux increases.
  • the thickness of the bridge portion by configuring the thickness of the bridge portion to be thinner than the thickness of the portion other than the bridge portion, the magnetic resistance increases and the leakage magnetic flux can be reduced.
  • the magnetic flux leakage of the magnet can be reduced to a minimum, and the torque of the electric motor can be further increased.
  • FIG. 1 is a schematic diagram of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention.
  • FIG. 2A is a top view of the rotor core of the embedded permanent magnet electric motor.
  • 2B is a cross-sectional view taken along the line 2B-2B of FIG. 2A.
  • FIG. 2C is a top view of the thin iron plate of the rotor core of the permanent magnet embedded motor.
  • FIG. 3 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 2 of the present invention.
  • FIG. 4 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 3 of the present invention.
  • FIG. 1 is a schematic diagram of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention.
  • FIG. 2A is a top view of the rotor core of the embedded permanent magnet electric motor.
  • 2B is a cross-sectional view taken along the line 2
  • FIG. 5 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 4 of the present invention.
  • FIG. 6 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 5 of the present invention.
  • FIG. 7 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 6 of the present invention.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention, showing a cross section along a plane perpendicular to a rotation axis serving as a rotation center.
  • the electric motor 10 includes a stator 11 and a rotor 21 disposed on the inner peripheral side of the stator 11.
  • the stator 11 includes a stator core 14 in which a plurality of thin steel plates are laminated in the axial direction, and a winding (not shown) wound around the stator core 14.
  • the stator core 14 has a yoke 12, a plurality of teeth 13 formed on the inner peripheral side of the yoke 12, and a plurality of slots 15 formed between adjacent teeth 13. The winding is wound by concentrated winding or distributed winding and is accommodated in the slot 15.
  • the rotor 21 includes a rotor core 23 in which a plurality of first magnet embedding holes 22 and a plurality of second magnet embedding holes 25 are formed at predetermined intervals in the circumferential direction, and a first magnet embedded in the first magnet embedding hole 22.
  • the rotor core 23 is configured by laminating a plurality of thin steel plates in the axial direction.
  • the first permanent magnet 24 and the second permanent magnet 26 are sandwiched and fixed by upper and lower end plates, or are fixed by a resin, an adhesive, or the like.
  • a rotating shaft 20 is inserted in the center of the circular surface of the rotor 21, and the rotating shaft 20 extends from the center of the circular surface in both vertical directions.
  • the rotating shaft 20 of the rotor 21 is rotatably supported by a bearing (not shown).
  • the rotor 21 faces the inner peripheral surface of the teeth 13 of the stator 11 via an air gap.
  • the direction in which the rotating shaft 20 extends is the axial direction, and the circular surface of the rotor 21 has a radial direction around the rotating shaft 20 and a radial direction from the center of the rotating shaft 20 to the outer periphery. This will be described as a direction.
  • the side having the rotation shaft 20 will be described as the inner peripheral side
  • the side having the outer periphery will be described as the outer peripheral side.
  • a plurality of first permanent magnets 24 are arranged at equal intervals in the circumferential direction. Furthermore, each 1st permanent magnet 24 is arrange
  • the second permanent magnets 26 are arranged between the circumferential directions of the first permanent magnets 24, respectively. That is, the first permanent magnets 24 and the second permanent magnets 26 are alternately arranged in the circumferential direction.
  • Each of the second permanent magnets 26 has a rectangular cross section and is arranged so that the circumferential direction is a long side, that is, the radial direction is a short side. Further, the respective second permanent magnets 26 are arranged on the inner peripheral side further than the inner peripheral side end portion of the first permanent magnet 24 and at equal intervals in the circumferential direction.
  • both the first permanent magnet 24 and the second permanent magnet 26 have magnetic poles on the long side of the rectangular cross section. That is, the magnetization direction of the first permanent magnet 24 is substantially perpendicular to the q axis, and the magnetization direction of the second permanent magnet 26 is substantially parallel to the d axis.
  • the d-axis is a straight line passing through the center of the rotor 21 and the magnetic pole central portion of the magnetic pole formed on the rotor 21, and the q-axis is the magnetic pole formed on the center of the rotor 21 and the rotor 21. It is a straight line passing through between the magnetic poles.
  • the surface facing the circumferential direction of the adjacent first permanent magnet 24 and the outer peripheral surface of the second permanent magnet 26 are the same pole, and the region surrounded by these three surfaces is one magnetic pole.
  • the q-axis extends between the adjacent second permanent magnets 26 and further through the center of the first permanent magnet 24 in the radial direction from the center of the rotor 21.
  • the d-axis extends between the first permanent magnets 24 adjacent to each other, passes through the center of the second permanent magnet 26, and extends in the radial direction from the center of the rotor 21.
  • the number of poles of the rotor 21 is 4 and the number of slots of the stator 11 is 6.
  • the present invention is not limited to this combination, and other combinations are possible. It can also be applied.
  • the 1st permanent magnet 24 and the 2nd permanent magnet 26 use a neodymium sintered magnet, a neodymium bond magnet, a ferrite sintered magnet, a ferrite bond magnet, etc., it does not specifically limit to this.
  • FIG. 2A is a top view showing the rotor core 23 before the first permanent magnet 24 and the second permanent magnet 26 are inserted.
  • 2B is a 2B-2B cross-sectional view showing a cross section of 2B-2B in FIG. 2A.
  • FIG. 2C is a top view of the thin steel plate 30 constituting the rotor core 23.
  • the first magnet embedding hole 22 and the second magnet embedding hole 25 have shapes slightly larger than the cross-sectional areas of the first permanent magnet 24 and the second permanent magnet 26 to be inserted, respectively. Yes.
  • the plurality of first magnet embedded holes 22 and the plurality of second magnet embedded holes 25 have the same arrangement relationship as the first permanent magnet 24 and the second permanent magnet 26. Is formed. That is, the plurality of first magnet embedding holes 22 are arranged at equal intervals in the circumferential direction in the rotor core 23 so that each hole shape is rectangular and the radial direction is a long side.
  • the plurality of second magnet embedding holes 25 are respectively provided between the circumferential directions of the first magnet embedding holes 22 and further on the inner peripheral side than the inner peripheral end of the first magnet embedding hole 22.
  • the shape is a rectangle and the radial direction is a short side.
  • the q-axis extends between the adjacent second magnet embedding holes 25 and further through the center of the first magnet embedding hole 22 in the radial direction from the center of the rotor core 23.
  • the d-axis extends between the adjacent first magnet embedding holes 22 and further through the center of the second magnet embedding hole 25 in the radial direction from the center of the rotor core 23.
  • the first permanent magnet 24 and the second permanent magnet 26 are respectively inserted into the first magnet embedding hole 22 and the second magnet embedding hole 25 and mechanically fixed by an end plate or the like, or an adhesive or resin Fix and fix with.
  • the outer periphery of the rotor core 23 will be described by taking an example of a perfect circle shape as shown in FIG. 2A.
  • the distance from the center is the q-axis with the d-axis portion as the outermost diameter. It may be configured by a curve or a straight line so that the distance from the center becomes smaller as it goes.
  • the rotor core 23 is formed by laminating a plurality of thin steel plates 30 having a plate thickness d1, as shown in the 2B-2B sectional view of FIG. 2B.
  • Each thin steel plate 30 is laminated in the axial direction so that the positions of the first magnet embedding hole 22 and the second magnet embedding hole 25 coincide.
  • the shape of the surface of the thin iron plate 30 is the same as the shape of the upper surface of the rotor core 23 shown in FIG. 2A, as shown in FIG. 2C.
  • the plurality of first magnet embedding holes 22 are arranged on the q-axis so that the hole shapes are rectangular and the radial direction is a long side at regular intervals in the circumferential direction.
  • the plurality of second magnet embedding holes 25 are respectively provided between the circumferential directions of the first magnet embedding holes 22 and further on the inner peripheral side than the inner peripheral end of the first magnet embedding hole 22. They are arranged on the d-axis so that the shape is rectangular and the radial direction is the short side.
  • the thin steel plate 30 has a configuration in which an iron plate outer peripheral portion 31 that forms the outer peripheral side of the thin plate iron plate 30 and an iron plate inner peripheral portion 32 that forms the inner peripheral side of the thin plate iron plate 30 are connected by a plurality of inner diameter bridge portions 28. .
  • the plate thickness d2 of the inner diameter bridge portion 28 is thinner than the plate thickness d1 of the thin plate iron plate 30, as shown in FIG. 2B. That is, the inner diameter bridge portion 28 is thinned by crushing the thin iron plate 30 with, for example, a press so that the plate thickness d2 is thinner than the iron plate outer peripheral portion 31 and the iron plate inner peripheral portion 32 which are other portions. Is formed. Further, in the present embodiment, as shown in FIG. 2C, a region in which the first magnet embedding hole 22 and the two second magnet embedding holes 25 are respectively connected by the boundary line 28a at the three shortest distances is provided. Such an inner diameter bridge portion 28 is used.
  • the short side 22si on the inner peripheral side of the first magnet embedded hole 22 and the short side 25s of the two second magnet embedded holes 25 facing the short side 22si are connected to each other.
  • a region surrounded by the three boundary lines 28 a is an inner diameter bridge portion 28.
  • the leakage magnetic flux passes through the inner diameter bridge portion 28 in the rotor 21, but the magnetic resistance increases by reducing the plate thickness to d2, and the leakage magnetic flux is reduced. Moreover, the leakage magnetic flux from the side surface on the short side of the permanent magnet cross section to the inner bridge portion 28 can also be reduced. For this reason, leakage flux can be reduced even if the flux barrier hole conventionally provided on the side surface of the magnet embedding hole is not provided or smaller than the conventional one, and the permanent magnet can be enlarged.
  • the boundary of the inner diameter bridge portion 28 is provided with a gradient 28c that smoothly changes from the plate thickness d1 to d2, as shown in a circular enlarged partial view 2BB in FIG. 2B. Yes.
  • the gradient 28c may be configured as a curve or a straight line, or may be stepped.
  • the stress generated by the centrifugal force when the rotor rotates concentrates on the boundary surface that changes from the plate thickness d1 to the plate thickness d2.
  • the slope 28c in this portion the stress can be dispersed as a whole without concentrating on a specific location, so that the strength of the rotor can be ensured and high-speed rotation can be achieved.
  • the range in which the inner diameter bridge portion 28 is provided is a region in which the first magnet embedding hole 22 and the two second magnet embedding holes 25 are connected to each other by the three straight boundary lines 28a at the shortest distance.
  • a region of the inner diameter bridge portion 28 having a plate thickness d2 thinner than the plate thickness d1 of the thin steel plate 30 is enlarged toward the inner and outer diameter sides by a boundary line 28b. That is, in the inner diameter bridge portion 28 of the present embodiment, the boundary line 28b connecting the first magnet embedding hole 22 and the two second magnet embedding holes 25 to each other is outside the boundary line 28a of the first embodiment.
  • the shape is a bulging area. More specifically, the two boundary lines 28b between the first magnet embedding hole 22 and the second magnet embedding hole 25 swell in the direction of the iron plate outer peripheral portion 31, and one boundary between the second magnet embedding holes 25 is formed. The boundary line 28 b swells in the direction of the iron plate inner peripheral portion 32.
  • the external shape between the embedding holes of the internal diameter bridge part 28 is expanded outside so that the area
  • the magnetic resistance of the flow path of the leakage magnetic flux can be increased. It is possible to further reduce the leakage magnetic flux.
  • FIG. 4 is a top view of the thin iron plate 30 according to the third embodiment.
  • the outer diameter bridge portion 29 is a region surrounded by the outer periphery of the thin steel plate 30 constituting the rotor core 23 and the short side 22so on the outer peripheral side of the first magnet embedding hole 22. It is said.
  • the plate thickness d3 of the outer diameter bridge portion 29 is configured to be smaller than the plate thickness d1 of the thin steel plate 30.
  • the leakage flux of the inner diameter bridge portion 28 is reduced.
  • the leakage flux can be further reduced.
  • a torque motor can be realized.
  • the plate thickness d3 of the outer diameter bridge portion 29 may be the same as or different from the plate thickness d2 of the inner diameter bridge portion 28. Further, instead of providing the outer diameter bridge portion 29, a region corresponding to the outer diameter bridge portion 29 may be cut out from the thin steel plate 30.
  • FIG. 5 is a top view of the thin steel plate 30 according to the fourth embodiment.
  • the short side 22si on the inner peripheral side of the first magnet buried hole 22 and the short side 25s of the second magnet buried hole 25 facing the short side 22si are in contact with each other.
  • An elongated hole portion 27 that penetrates the inner diameter bridge portion 28 is provided. That is, the hole portion 27 is provided on the outer periphery of the inner diameter bridge portion 28.
  • the leakage magnetic flux from the side surface on the short side of the permanent magnet cross section to the inner diameter bridge portion 28 can be reduced by reducing the plate thickness.
  • the leakage magnetic flux can be further reduced, and a high torque motor can be realized.
  • the outer shape of the inner diameter bridge portion 28 the shape shown in the first and third embodiments can be applied.
  • FIG. 6 is a top view of the thin iron plate 30 according to the fifth embodiment.
  • an inner diameter bridge portion 28 is provided in a region surrounded by the first magnet embedding hole 22 and the two second magnet embedding holes 25 as in the first to third embodiments.
  • a hole portion 40 penetrating the inner diameter bridge portion 28 is provided in the vicinity of the center on the inner side of the inner diameter bridge portion 28.
  • the leakage magnetic flux can be reduced and a high torque motor can be realized by providing the hole portion 40 having an arbitrary shape.
  • the shape shown in the first and third embodiments can be applied.
  • FIG. 7 is a top view of the thin steel plate 30 according to the seventh embodiment.
  • the shape of the second magnet embedding hole 25 is also curved on the outer peripheral side accordingly. It has a shape that has By making the side surface of the second permanent magnet 26 a curved surface, the generated magnetic flux can be increased, and the leakage magnetic flux can be reduced by reducing the thickness of the portion on the side surface of the permanent magnet where the leakage magnetic flux is likely to be generated. it can. It is particularly useful for bonded magnets with a high degree of freedom in shape.
  • the cross-sectional shape of the second permanent magnet 26 in FIG. 7 is a kamaboko shape in which one of the two long sides is a straight line and the other one is a curve.
  • the shape is not limited to this and is U-shaped or V-shaped. It may be the shape.
  • the application field of the present invention is not particularly limited, and can be widely used as, for example, an electric motor including a permanent magnet embedded rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This permanent magnet-embedded electric motor is equipped with: a stator having windings that are wound around a stator core; and a rotor that is rotatably disposed with a gap from the inner circumferential surface of the stator. The rotor has a rotor core that has first magnet-embedding holes disposed on a q-axis and second magnet-embedding holes disposed on a d-axis, first permanent magnets that are inserted in the first magnet-embedding holes, and second permanent magnets that are inserted in the second magnet-embedding holes. The rotor core is constructed by stacking multiple thin iron plates, wherein the plate thickness of an inner diameter bridge section of a thin iron plate is smaller than the plate thickness of the thin iron plate, said inner diameter bridge section being an area surrounded by the short side of the first magnet-embedding hole on the inner circumferential side and short sides of two second magnet-embedding holes facing the aforementioned short side.

Description

永久磁石埋込型電動機Permanent magnet embedded motor
 本発明は、回転子鉄心に複数の永久磁石を所定間隔毎に埋め込んで構成される永久磁石埋込型回転子を有する永久磁石埋込型電動機に関する。 The present invention relates to an embedded permanent magnet electric motor having an embedded permanent magnet rotor configured by embedding a plurality of permanent magnets at predetermined intervals in a rotor core.
 このような技術分野において、従来、例えば、特許文献1に記載のような技術が知られている。特許文献1に開示されている回転子は、回転子の半径方向に断面長方形とした第1の永久磁石を外周から離し、かつq軸に沿って埋め込むとともに、第1の永久磁石の間に中心側にd軸と直角方向を長辺とした断面長方形の第2の永久磁石を埋め込んでいる。そして、第1永久磁石と第2永久磁石間には三角形のフラックスバリア孔を構成している。 In such a technical field, conventionally, for example, a technique as described in Patent Document 1 is known. In the rotor disclosed in Patent Document 1, a first permanent magnet having a rectangular cross section in the radial direction of the rotor is separated from the outer periphery and embedded along the q-axis, and the center is disposed between the first permanent magnets. A second permanent magnet having a rectangular cross-section with a long side perpendicular to the d-axis is embedded on the side. A triangular flux barrier hole is formed between the first permanent magnet and the second permanent magnet.
 上記従来の構成では、第1磁石埋設孔と第2磁石埋設孔とに漏洩磁束を抑制するためのフラックスバリア孔が構成されている。ところが、フラックスバリア孔を設けると、磁石を長くするのに限界があり、発生磁束を十分に確保することが困難である。 In the conventional configuration described above, flux barrier holes for suppressing leakage magnetic flux are formed in the first magnet embedded hole and the second magnet embedded hole. However, when the flux barrier hole is provided, there is a limit to lengthening the magnet, and it is difficult to sufficiently secure the generated magnetic flux.
 また、第1永久磁石と第2永久磁石間の鉄心で、内径側と外径側との回転子鉄心を保持している。このため、強度確保のためには連結部の鉄心幅を大きくせざるを得ず、漏洩磁束が増加する要因ともなっていた。 In addition, the iron core between the first permanent magnet and the second permanent magnet holds the rotor core on the inner diameter side and the outer diameter side. For this reason, in order to ensure the strength, the width of the iron core of the connecting portion has to be increased, which has been a factor in increasing the leakage magnetic flux.
特開2001-333553号公報JP 2001-333553 A
 本発明の永久磁石埋込型電動機は、次のような構成を有する。すなわち、固定子鉄心に巻線が巻回された固定子と、固定子の内周面とギャップを介して回転自在に設けられた回転子とを備えている。 The embedded permanent magnet electric motor of the present invention has the following configuration. That is, a stator having a winding wound around a stator iron core and a rotor provided rotatably via an inner peripheral surface of the stator and a gap are provided.
 回転子は、q軸上に設けられた第1磁石埋設孔とd軸上に設けられた第2磁石埋設孔とを有する回転子鉄心と、第1磁石埋設孔に挿入された第1永久磁石と、第2磁石埋設孔に挿入された第2永久磁石とを有している。 The rotor includes a rotor core having a first magnet embedded hole provided on the q axis and a second magnet embedded hole provided on the d axis, and a first permanent magnet inserted into the first magnet embedded hole. And a second permanent magnet inserted into the second magnet embedding hole.
 回転子鉄心は複数の薄板鉄板が積層されて構成され、その薄板鉄板において、第1磁石埋設孔の内周側の短辺と、その短辺と対向する2つの第2磁石埋設孔の短辺とで囲まれた領域である内径ブリッジ部の板厚は、薄板鉄板の板厚よりも小さいことを特徴とする。 The rotor core is formed by laminating a plurality of thin steel plates, and in the thin steel plate, the short side of the inner circumference side of the first magnet embedded hole and the short sides of the two second magnet embedded holes facing the short side The plate | board thickness of the internal-diameter bridge part which is the area | region enclosed by is characterized by being smaller than the plate | board thickness of a thin steel plate.
 第1永久磁石より発生する磁束は、内径ブリッジ部を通り同一永久磁石の逆磁極側もしくは第2永久磁石の逆磁極側へ流れる。内径ブリッジ部を介して磁束が流れる際、強度の確保のために内径ブリッジ部を大きくせざるを得ず、磁気抵抗が小さくなるため漏洩磁束が大きくなる。ここで、ブリッジ部の板厚をブリッジ部以外の板厚よりも薄く構成することで磁気抵抗が大きくなり漏洩磁束が低減できる。 The magnetic flux generated from the first permanent magnet flows through the inner diameter bridge portion to the reverse magnetic pole side of the same permanent magnet or the reverse magnetic pole side of the second permanent magnet. When the magnetic flux flows through the inner diameter bridge portion, the inner diameter bridge portion must be increased in order to ensure the strength, and the magnetic resistance is decreased, so that the leakage magnetic flux increases. Here, by configuring the thickness of the bridge portion to be thinner than the thickness of the portion other than the bridge portion, the magnetic resistance increases and the leakage magnetic flux can be reduced.
 本発明によれば、磁石の漏れ磁束を最小限に低減することができ、電動機のさらなる高トルク化が可能となる。 According to the present invention, the magnetic flux leakage of the magnet can be reduced to a minimum, and the torque of the electric motor can be further increased.
図1は、本発明の実施の形態1に係る永久磁石埋込型電動機の概略図である。FIG. 1 is a schematic diagram of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention. 図2Aは、同永久磁石埋込型電動機の回転子鉄心の上面図である。FIG. 2A is a top view of the rotor core of the embedded permanent magnet electric motor. 図2Bは、図2Aの2B-2B断面図である。2B is a cross-sectional view taken along the line 2B-2B of FIG. 2A. 図2Cは、同永久磁石埋込型電動機の回転子鉄心の薄板鉄板の上面図である。FIG. 2C is a top view of the thin iron plate of the rotor core of the permanent magnet embedded motor. 図3は、本発明の実施の形態2に係る永久磁石埋込型電動機の回転子鉄心の構成図である。FIG. 3 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 2 of the present invention. 図4は、本発明の実施の形態3に係る永久磁石埋込型電動機の回転子鉄心の構成図である。FIG. 4 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 3 of the present invention. 図5は、本発明の実施の形態4に係る永久磁石埋込型電動機の回転子鉄心の構成図である。FIG. 5 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 4 of the present invention. 図6は、本発明の実施の形態5に係る永久磁石埋込型電動機の回転子鉄心の構成図である。FIG. 6 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 5 of the present invention. 図7は、本発明の実施の形態6に係る永久磁石埋込型電動機の回転子鉄心の構成図である。FIG. 7 is a configuration diagram of a rotor core of a permanent magnet embedded electric motor according to Embodiment 6 of the present invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る永久磁石埋込型電動機の断面図であり、回転中心となる回転軸に垂直な面に沿った断面を示している。電動機10は、固定子11と、固定子11の内周側に配置される回転子21とを備えている。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention, showing a cross section along a plane perpendicular to a rotation axis serving as a rotation center. The electric motor 10 includes a stator 11 and a rotor 21 disposed on the inner peripheral side of the stator 11.
 固定子11は、複数の薄板鋼板が軸方向に積層された固定子鉄心14と、固定子鉄心14に巻回された巻線(図示せず)とを含む。固定子鉄心14は、ヨーク12と、ヨーク12の内周側に形成された複数のティース13と、隣り合うティース13間に形成された複数のスロット15とを有する。巻線は集中巻または分布巻で巻回され、スロット15に収納されている。 The stator 11 includes a stator core 14 in which a plurality of thin steel plates are laminated in the axial direction, and a winding (not shown) wound around the stator core 14. The stator core 14 has a yoke 12, a plurality of teeth 13 formed on the inner peripheral side of the yoke 12, and a plurality of slots 15 formed between adjacent teeth 13. The winding is wound by concentrated winding or distributed winding and is accommodated in the slot 15.
 回転子21は、複数の第1磁石埋設孔22および複数の第2磁石埋設孔25が周方向に所定間隔で形成された回転子鉄心23と、第1磁石埋設孔22に埋設された第1永久磁石24および第2磁石埋設孔25に埋設された第2永久磁石26とを含む。回転子鉄心23は、複数の薄板鉄板を軸方向に積層することで構成している。第1永久磁石24および第2永久磁石26は、上下端板にて挟み込み固定されるか、もしくは樹脂や接着剤などで固着されている。また、回転子21の円形面中央には回転軸20が挿入されており、回転軸20は、この円形面中央から垂直両方向に延伸している。回転子21の回転軸20は、軸受(図示せず)にて回転自在に支承される。そして、回転子21は、固定子11のティース13の内周面とエアギャップを介して対向している。なお、回転軸20が延伸する方向を軸方向とし、また、回転子21の円形面において、回転軸20の周りを周回する方向を周方向、回転軸20の中心から外周へ放射する方向を半径方向として説明する。また、回転子21の円形面の半径方向において、回転軸20がある側を内周側、外周がある側を外周側として説明する。 The rotor 21 includes a rotor core 23 in which a plurality of first magnet embedding holes 22 and a plurality of second magnet embedding holes 25 are formed at predetermined intervals in the circumferential direction, and a first magnet embedded in the first magnet embedding hole 22. A permanent magnet 24 and a second permanent magnet 26 embedded in the second magnet embedding hole 25. The rotor core 23 is configured by laminating a plurality of thin steel plates in the axial direction. The first permanent magnet 24 and the second permanent magnet 26 are sandwiched and fixed by upper and lower end plates, or are fixed by a resin, an adhesive, or the like. A rotating shaft 20 is inserted in the center of the circular surface of the rotor 21, and the rotating shaft 20 extends from the center of the circular surface in both vertical directions. The rotating shaft 20 of the rotor 21 is rotatably supported by a bearing (not shown). The rotor 21 faces the inner peripheral surface of the teeth 13 of the stator 11 via an air gap. The direction in which the rotating shaft 20 extends is the axial direction, and the circular surface of the rotor 21 has a radial direction around the rotating shaft 20 and a radial direction from the center of the rotating shaft 20 to the outer periphery. This will be described as a direction. Further, in the radial direction of the circular surface of the rotor 21, the side having the rotation shaft 20 will be described as the inner peripheral side, and the side having the outer periphery will be described as the outer peripheral side.
 本実施の形態では、図1に示すように、回転子21において、複数の第1永久磁石24を周方向に等間隔で配置している。さらに、それぞれの第1永久磁石24は、断面が長方形であり、半径方向が長辺となるように配置される。そして、これら第1永久磁石24の周方向の間に、第2永久磁石26をそれぞれ配置している。すなわち、第1永久磁石24と第2永久磁石26とを周方向に交互に配置している。それぞれの第2永久磁石26は、断面が長方形であり、周方向が長辺、すなわち半径方向が短辺となるように配置される。また、それぞれの第2永久磁石26は、第1永久磁石24の内周側端部よりもさらに内周側で、かつ、それぞれが周方向に等間隔となるように配置される。 In the present embodiment, as shown in FIG. 1, in the rotor 21, a plurality of first permanent magnets 24 are arranged at equal intervals in the circumferential direction. Furthermore, each 1st permanent magnet 24 is arrange | positioned so that a cross section is a rectangle and a radial direction may become a long side. The second permanent magnets 26 are arranged between the circumferential directions of the first permanent magnets 24, respectively. That is, the first permanent magnets 24 and the second permanent magnets 26 are alternately arranged in the circumferential direction. Each of the second permanent magnets 26 has a rectangular cross section and is arranged so that the circumferential direction is a long side, that is, the radial direction is a short side. Further, the respective second permanent magnets 26 are arranged on the inner peripheral side further than the inner peripheral side end portion of the first permanent magnet 24 and at equal intervals in the circumferential direction.
 また、第1永久磁石24および第2永久磁石26ともに断面の長方形の長辺側を磁極としている。すなわち、第1永久磁石24の磁化方向はq軸に略垂直方向であり、第2永久磁石26の磁化方向はd軸に略平行方向となっている。ここで、d軸は、回転子21の中心と回転子21に形成された磁極の磁極中央部とを通る直線であり、q軸は、回転子21の中心と回転子21に形成された磁極の磁極間部とを通る直線である。 Also, both the first permanent magnet 24 and the second permanent magnet 26 have magnetic poles on the long side of the rectangular cross section. That is, the magnetization direction of the first permanent magnet 24 is substantially perpendicular to the q axis, and the magnetization direction of the second permanent magnet 26 is substantially parallel to the d axis. Here, the d-axis is a straight line passing through the center of the rotor 21 and the magnetic pole central portion of the magnetic pole formed on the rotor 21, and the q-axis is the magnetic pole formed on the center of the rotor 21 and the rotor 21. It is a straight line passing through between the magnetic poles.
 さらに、隣接する第1永久磁石24の周方向に相対する面および第2永久磁石26の外周側の面を同一極とし、これら3つの面で囲まれた領域を1つの磁極としている。本実施の形態では、このようにして、4つの磁極が形成された一例を示している。また、言い換えると、図1に示すように、q軸は、隣接する第2永久磁石26間を通り、さらに第1永久磁石24の中心を通って、回転子21の中心から半径方向に延伸している。また、d軸は、隣接する第1永久磁石24間を通り、さらに第2永久磁石26の中心を通って、回転子21の中心から半径方向に延伸している。 Furthermore, the surface facing the circumferential direction of the adjacent first permanent magnet 24 and the outer peripheral surface of the second permanent magnet 26 are the same pole, and the region surrounded by these three surfaces is one magnetic pole. In the present embodiment, an example in which four magnetic poles are formed in this way is shown. In other words, as shown in FIG. 1, the q-axis extends between the adjacent second permanent magnets 26 and further through the center of the first permanent magnet 24 in the radial direction from the center of the rotor 21. ing. The d-axis extends between the first permanent magnets 24 adjacent to each other, passes through the center of the second permanent magnet 26, and extends in the radial direction from the center of the rotor 21.
 なお、図1においては、回転子21の極数は4であり、固定子11のスロット数は6の場合を示しているが、本発明はこの組合せに限定されるものではなく、その他の組合せについても適用できる。また、第1永久磁石24および第2永久磁石26は、ネオジム焼結磁石、ネオジムボンド磁石、フェライト焼結磁石、フェライトボンド磁石などを用いるが、特にこれに限定するものではない。 In FIG. 1, the number of poles of the rotor 21 is 4 and the number of slots of the stator 11 is 6. However, the present invention is not limited to this combination, and other combinations are possible. It can also be applied. Moreover, although the 1st permanent magnet 24 and the 2nd permanent magnet 26 use a neodymium sintered magnet, a neodymium bond magnet, a ferrite sintered magnet, a ferrite bond magnet, etc., it does not specifically limit to this.
 図2Aは、第1永久磁石24および第2永久磁石26を挿入する前の回転子鉄心23を示す上面図である。また、図2Bは、図2Aの2B-2Bの断面を示す2B-2B断面図である。そして、図2Cは、回転子鉄心23を構成する薄板鉄板30の上面図である。図2Aに示すように、第1磁石埋設孔22および第2磁石埋設孔25は、それぞれ挿入される第1永久磁石24および第2永久磁石26の断面積よりもわずかに大きい形状を有している。これより、当然のことながら、回転子鉄心23において、複数の第1磁石埋設孔22および複数の第2磁石埋設孔25は、第1永久磁石24および第2永久磁石26と同様な配置関係で形成されている。すなわち、複数の第1磁石埋設孔22は、回転子鉄心23において、周方向に等間隔で、それぞれの孔形状が長方形で半径方向が長辺となるように配置されている。そして、複数の第2磁石埋設孔25は、これら第1磁石埋設孔22の周方向の間で、かつ第1磁石埋設孔22の内周側端部よりもさらに内周側に、それぞれの孔形状が長方形で半径方向が短辺となるように配置されている。さらに、q軸は、隣接する第2磁石埋設孔25間を通り、さらに第1磁石埋設孔22の中心を通って、回転子鉄心23の中心から半径方向に延伸している。また、d軸は、隣接する第1磁石埋設孔22間を通り、さらに第2磁石埋設孔25の中心を通って、回転子鉄心23の中心から半径方向に延伸している。第1永久磁石24および第2永久磁石26は、それぞれ、この第1磁石埋設孔22および第2磁石埋設孔25に挿入され、端板などで機械的に固定されるか、もしくは接着剤や樹脂にて固着し固定される。 FIG. 2A is a top view showing the rotor core 23 before the first permanent magnet 24 and the second permanent magnet 26 are inserted. 2B is a 2B-2B cross-sectional view showing a cross section of 2B-2B in FIG. 2A. FIG. 2C is a top view of the thin steel plate 30 constituting the rotor core 23. As shown in FIG. 2A, the first magnet embedding hole 22 and the second magnet embedding hole 25 have shapes slightly larger than the cross-sectional areas of the first permanent magnet 24 and the second permanent magnet 26 to be inserted, respectively. Yes. Accordingly, as a matter of course, in the rotor core 23, the plurality of first magnet embedded holes 22 and the plurality of second magnet embedded holes 25 have the same arrangement relationship as the first permanent magnet 24 and the second permanent magnet 26. Is formed. That is, the plurality of first magnet embedding holes 22 are arranged at equal intervals in the circumferential direction in the rotor core 23 so that each hole shape is rectangular and the radial direction is a long side. The plurality of second magnet embedding holes 25 are respectively provided between the circumferential directions of the first magnet embedding holes 22 and further on the inner peripheral side than the inner peripheral end of the first magnet embedding hole 22. The shape is a rectangle and the radial direction is a short side. Further, the q-axis extends between the adjacent second magnet embedding holes 25 and further through the center of the first magnet embedding hole 22 in the radial direction from the center of the rotor core 23. The d-axis extends between the adjacent first magnet embedding holes 22 and further through the center of the second magnet embedding hole 25 in the radial direction from the center of the rotor core 23. The first permanent magnet 24 and the second permanent magnet 26 are respectively inserted into the first magnet embedding hole 22 and the second magnet embedding hole 25 and mechanically fixed by an end plate or the like, or an adhesive or resin Fix and fix with.
 なお、本実施の形態では、回転子鉄心23の外周は、図2Aのように真円形状とした例を挙げて説明するが、中心からの距離がd軸部分を最外径として、q軸にいくにつれ中心からの距離が小さくなるような曲線もしくは直線で構成されていてもよい。 In the present embodiment, the outer periphery of the rotor core 23 will be described by taking an example of a perfect circle shape as shown in FIG. 2A. However, the distance from the center is the q-axis with the d-axis portion as the outermost diameter. It may be configured by a curve or a straight line so that the distance from the center becomes smaller as it goes.
 回転子鉄心23は、図2Bの2B-2B断面図に示すように、板厚d1の薄板鉄板30を複数枚積層して形成されている。また、それぞれの薄板鉄板30は、第1磁石埋設孔22および第2磁石埋設孔25の位置が一致するように、軸方向に積層されている。これより、当然のことながら、薄板鉄板30の表面の形状は、図2Cに示すように、図2Aに示す回転子鉄心23の上面形状と同じである。すなわち、薄板鉄板30においても、複数の第1磁石埋設孔22は、周方向に等間隔で、それぞれの孔形状が長方形で半径方向が長辺となるように、q軸上に配置されている。そして、複数の第2磁石埋設孔25は、これら第1磁石埋設孔22の周方向の間で、かつ第1磁石埋設孔22の内周側端部よりもさらに内周側に、それぞれの孔形状が長方形で半径方向が短辺となるように、d軸上に配置されている。 The rotor core 23 is formed by laminating a plurality of thin steel plates 30 having a plate thickness d1, as shown in the 2B-2B sectional view of FIG. 2B. Each thin steel plate 30 is laminated in the axial direction so that the positions of the first magnet embedding hole 22 and the second magnet embedding hole 25 coincide. Thus, as a matter of course, the shape of the surface of the thin iron plate 30 is the same as the shape of the upper surface of the rotor core 23 shown in FIG. 2A, as shown in FIG. 2C. That is, also in the thin steel plate 30, the plurality of first magnet embedding holes 22 are arranged on the q-axis so that the hole shapes are rectangular and the radial direction is a long side at regular intervals in the circumferential direction. . The plurality of second magnet embedding holes 25 are respectively provided between the circumferential directions of the first magnet embedding holes 22 and further on the inner peripheral side than the inner peripheral end of the first magnet embedding hole 22. They are arranged on the d-axis so that the shape is rectangular and the radial direction is the short side.
 そして、図2Cに示すように、この薄板鉄板30の第1磁石埋設孔22の内周側の短辺22siと、この短辺22siに対向する2つの第2磁石埋設孔25の短辺25sで囲まれた略三角状の形状を成す領域を、内径ブリッジ部28と称す。すなわち、薄板鉄板30は、薄板鉄板30の外周側を成す鉄板外周部31と薄板鉄板30の内周側を成す鉄板内周部32とが、複数の内径ブリッジ部28で接続された構成である。また、薄板鉄板30の厚み方向において、図2Bに示すように、この内径ブリッジ部28の板厚d2は、薄板鉄板30の板厚d1よりも薄くなっている。すなわち、内径ブリッジ部28は、薄板鉄板30を例えばプレスなどで潰すことで薄肉化して、この板厚d2がこれ以外の部分である鉄板外周部31や鉄板内周部32よりも薄くなるように形成されている。また、本実施の形態では、図2Cのように、第1磁石埋設孔22と2つの第2磁石埋設孔25とをそれぞれ互いに3つの最短距離となる直線での境界線28aによって結んだ領域を、このような内径ブリッジ部28としている。以上のように、本実施の形態では、第1磁石埋設孔22の内周側の短辺22siと、短辺22siに対向する2つの第2磁石埋設孔25の短辺25sと、それらを結ぶ3つの境界線28aによって囲まれた領域を内径ブリッジ部28としている。 Then, as shown in FIG. 2C, a short side 22si on the inner peripheral side of the first magnet embedding hole 22 of the thin iron plate 30 and a short side 25s of the two second magnet embedding holes 25 facing the short side 22si. A region having a substantially triangular shape surrounded is referred to as an inner diameter bridge portion 28. That is, the thin steel plate 30 has a configuration in which an iron plate outer peripheral portion 31 that forms the outer peripheral side of the thin plate iron plate 30 and an iron plate inner peripheral portion 32 that forms the inner peripheral side of the thin plate iron plate 30 are connected by a plurality of inner diameter bridge portions 28. . Further, in the thickness direction of the thin steel plate 30, the plate thickness d2 of the inner diameter bridge portion 28 is thinner than the plate thickness d1 of the thin plate iron plate 30, as shown in FIG. 2B. That is, the inner diameter bridge portion 28 is thinned by crushing the thin iron plate 30 with, for example, a press so that the plate thickness d2 is thinner than the iron plate outer peripheral portion 31 and the iron plate inner peripheral portion 32 which are other portions. Is formed. Further, in the present embodiment, as shown in FIG. 2C, a region in which the first magnet embedding hole 22 and the two second magnet embedding holes 25 are respectively connected by the boundary line 28a at the three shortest distances is provided. Such an inner diameter bridge portion 28 is used. As described above, in the present embodiment, the short side 22si on the inner peripheral side of the first magnet embedded hole 22 and the short side 25s of the two second magnet embedded holes 25 facing the short side 22si are connected to each other. A region surrounded by the three boundary lines 28 a is an inner diameter bridge portion 28.
 このような構成にすると、回転子21において漏洩磁束が内径ブリッジ部28を通るが、板厚をd2に薄くすることで磁気抵抗が大きくなり、漏洩磁束が低減する。また、永久磁石断面の短辺側となる側面から内径ブリッジ部28への漏洩磁束も、低減することができる。このため、磁石埋設孔側面に従来設けていたフラックスバリア孔を設けず、もしくは従来のものより小さくても漏洩磁束を低減することができ、永久磁石を大きくすることが可能となる。 With such a configuration, the leakage magnetic flux passes through the inner diameter bridge portion 28 in the rotor 21, but the magnetic resistance increases by reducing the plate thickness to d2, and the leakage magnetic flux is reduced. Moreover, the leakage magnetic flux from the side surface on the short side of the permanent magnet cross section to the inner bridge portion 28 can also be reduced. For this reason, leakage flux can be reduced even if the flux barrier hole conventionally provided on the side surface of the magnet embedding hole is not provided or smaller than the conventional one, and the permanent magnet can be enlarged.
 なお、薄板鉄板30の縦断面において、内径ブリッジ部28の境界は、図2Bの円形の部分拡大図2BBで示すように、板厚d1からd2へとなめらかに変化するような勾配28cをつけている。この勾配28cは、曲線や直線状に構成してもよく、あるいは階段状にしてもよい。 In the longitudinal cross section of the thin steel plate 30, the boundary of the inner diameter bridge portion 28 is provided with a gradient 28c that smoothly changes from the plate thickness d1 to d2, as shown in a circular enlarged partial view 2BB in FIG. 2B. Yes. The gradient 28c may be configured as a curve or a straight line, or may be stepped.
 回転子が回転したときの遠心力で発生する応力は、板厚d1から板厚d2へ変化する境界面に集中する。これに対し、この部分に勾配28cを設けることで、応力は特定の箇所に集中せずに全体的に分散させることができるので、回転子の強度を確保でき、高速回転をすることができる。 The stress generated by the centrifugal force when the rotor rotates concentrates on the boundary surface that changes from the plate thickness d1 to the plate thickness d2. On the other hand, by providing the slope 28c in this portion, the stress can be dispersed as a whole without concentrating on a specific location, so that the strength of the rotor can be ensured and high-speed rotation can be achieved.
 また、以下、実施の形態2~6として、薄板鉄板30の構成を本実施の形態から部分的に変形させた例を挙げるが、回転子鉄心23や回転子21は以上説明した本実施の形態と同様に構成される。 Hereinafter, as the second to sixth embodiments, examples in which the configuration of the thin steel plate 30 is partially modified from the present embodiment will be described, but the rotor core 23 and the rotor 21 are described in the present embodiment described above. It is configured in the same way.
 (実施の形態2)
 実施の形態1では、内径ブリッジ部28を設ける範囲は、第1磁石埋設孔22と2つの第2磁石埋設孔25とをそれぞれ互いに3つの直線の境界線28aによって最短距離で結んだ領域とした。本実施の形態2では、図3に示すように、薄板鉄板30の板厚d1よりも薄い板厚d2とした内径ブリッジ部28の領域を、境界線28bによって内外径側に大きくしている。すなわち、本実施の形態の内径ブリッジ部28は、第1磁石埋設孔22と2つの第2磁石埋設孔25とをそれぞれ互いに結ぶ境界線28bが、実施の形態1の境界線28aよりも外側に膨らむような領域となる形状としている。より具体的には、第1磁石埋設孔22と第2磁石埋設孔25間となる2つの境界線28bは、鉄板外周部31の方向に膨らみ、第2磁石埋設孔25どうし間となる1つの境界線28bは、鉄板内周部32の方向に膨らんでいる。
(Embodiment 2)
In the first embodiment, the range in which the inner diameter bridge portion 28 is provided is a region in which the first magnet embedding hole 22 and the two second magnet embedding holes 25 are connected to each other by the three straight boundary lines 28a at the shortest distance. . In the second embodiment, as shown in FIG. 3, a region of the inner diameter bridge portion 28 having a plate thickness d2 thinner than the plate thickness d1 of the thin steel plate 30 is enlarged toward the inner and outer diameter sides by a boundary line 28b. That is, in the inner diameter bridge portion 28 of the present embodiment, the boundary line 28b connecting the first magnet embedding hole 22 and the two second magnet embedding holes 25 to each other is outside the boundary line 28a of the first embodiment. The shape is a bulging area. More specifically, the two boundary lines 28b between the first magnet embedding hole 22 and the second magnet embedding hole 25 swell in the direction of the iron plate outer peripheral portion 31, and one boundary between the second magnet embedding holes 25 is formed. The boundary line 28 b swells in the direction of the iron plate inner peripheral portion 32.
 以上、本実施の形態では、内径ブリッジ部28の領域が大きくなるように、内径ブリッジ部28の埋設孔間の外形を外側に膨らませいる。そして、このように、板厚が小さい領域である内径ブリッジ部28の一部を突出させて、内径ブリッジ部28の面積を大きくすることで、漏洩磁束の流路の磁気抵抗を大きくすることができ、より漏洩磁束が低減する。 As mentioned above, in this Embodiment, the external shape between the embedding holes of the internal diameter bridge part 28 is expanded outside so that the area | region of the internal diameter bridge part 28 may become large. Thus, by projecting a part of the inner diameter bridge portion 28, which is a region having a small plate thickness, and increasing the area of the inner diameter bridge portion 28, the magnetic resistance of the flow path of the leakage magnetic flux can be increased. It is possible to further reduce the leakage magnetic flux.
 (実施の形態3)
 図4は、実施の形態3における薄板鉄板30の上面図である。図4に示すように、本実施の形態では、回転子鉄心23を構成する薄板鉄板30の外周と第1磁石埋設孔22の外周側の短辺22soとで囲まれる領域を外径ブリッジ部29としている。この外径ブリッジ部29の板厚d3は薄板鉄板30の板厚d1よりも小さく構成されている。第1永久磁石24から発生される磁束は内径ブリッジ部28を通るものと、外径ブリッジ部29を通るものが存在する。図1では内径ブリッジ部28の漏洩磁束を低減するものであったが、これに加えて、外径ブリッジ部29の板厚を小さくすることで、漏洩磁束をより低減することが可能となり、高トルクモータを実現できる。
(Embodiment 3)
FIG. 4 is a top view of the thin iron plate 30 according to the third embodiment. As shown in FIG. 4, in the present embodiment, the outer diameter bridge portion 29 is a region surrounded by the outer periphery of the thin steel plate 30 constituting the rotor core 23 and the short side 22so on the outer peripheral side of the first magnet embedding hole 22. It is said. The plate thickness d3 of the outer diameter bridge portion 29 is configured to be smaller than the plate thickness d1 of the thin steel plate 30. There are magnetic fluxes generated from the first permanent magnet 24 that pass through the inner diameter bridge portion 28 and those that pass through the outer diameter bridge portion 29. In FIG. 1, the leakage flux of the inner diameter bridge portion 28 is reduced. In addition to this, by reducing the plate thickness of the outer diameter bridge portion 29, the leakage flux can be further reduced. A torque motor can be realized.
 ここで、外径ブリッジ部29の板厚d3は、内径ブリッジ部28の板厚d2と同じ厚みでも良いし、異なる厚みでも良い。また外径ブリッジ部29を設けることに代えて、その外径ブリッジ部29に相当する領域部分を薄板鉄板30から切り欠いても良い。 Here, the plate thickness d3 of the outer diameter bridge portion 29 may be the same as or different from the plate thickness d2 of the inner diameter bridge portion 28. Further, instead of providing the outer diameter bridge portion 29, a region corresponding to the outer diameter bridge portion 29 may be cut out from the thin steel plate 30.
 (実施の形態4)
 図5は、実施の形態4における薄板鉄板30の上面図である。図5に示すように、本実施の形態では、第1磁石埋設孔22の内周側の短辺22siおよびその短辺22siに対向する第2磁石埋設孔25の短辺25sに接するように、内径ブリッジ部28を貫通する、細長の空孔部27を設けている。つまり、内径ブリッジ部28の外周に空孔部27を設けている。
(Embodiment 4)
FIG. 5 is a top view of the thin steel plate 30 according to the fourth embodiment. As shown in FIG. 5, in the present embodiment, the short side 22si on the inner peripheral side of the first magnet buried hole 22 and the short side 25s of the second magnet buried hole 25 facing the short side 22si are in contact with each other. An elongated hole portion 27 that penetrates the inner diameter bridge portion 28 is provided. That is, the hole portion 27 is provided on the outer periphery of the inner diameter bridge portion 28.
 実施の形態1~3では、永久磁石断面の短辺側となる側面から内径ブリッジ部28への漏洩磁束は板厚を小さくすることで低減することが可能であるが、内径ブリッジ部28に空孔部27をさらに設けることで漏洩磁束がさらに低減でき、高トルクモータを実現できる。なお、内径ブリッジ部28の外形形状は、実施の形態1や3で示した形状が適用できる。 In the first to third embodiments, the leakage magnetic flux from the side surface on the short side of the permanent magnet cross section to the inner diameter bridge portion 28 can be reduced by reducing the plate thickness. By further providing the hole 27, the leakage magnetic flux can be further reduced, and a high torque motor can be realized. As the outer shape of the inner diameter bridge portion 28, the shape shown in the first and third embodiments can be applied.
 (実施の形態5)
 図6は、実施の形態5における薄板鉄板30の上面図である。図6に示すように、本実施の形態では、実施の形態1~3と同様に第1磁石埋設孔22および2つの第2磁石埋設孔25で囲まれた領域に内径ブリッジ部28を設けている。さらに、本実施の形態では、その内径ブリッジ部28の内部側の中央近傍に、内径ブリッジ部28を貫通する空孔部40を設けている。漏洩磁束が通過する内径ブリッジ部28の鉄心の体積を極小化するために、任意形状の空孔部40を設けることで、漏洩磁束を低減でき、高トルクモータを実現できる。なお、内径ブリッジ部28の外形形状は、実施の形態1や3で示した形状が適用できる。
(Embodiment 5)
FIG. 6 is a top view of the thin iron plate 30 according to the fifth embodiment. As shown in FIG. 6, in the present embodiment, an inner diameter bridge portion 28 is provided in a region surrounded by the first magnet embedding hole 22 and the two second magnet embedding holes 25 as in the first to third embodiments. Yes. Further, in the present embodiment, a hole portion 40 penetrating the inner diameter bridge portion 28 is provided in the vicinity of the center on the inner side of the inner diameter bridge portion 28. In order to minimize the volume of the iron core of the inner diameter bridge portion 28 through which the leakage magnetic flux passes, the leakage magnetic flux can be reduced and a high torque motor can be realized by providing the hole portion 40 having an arbitrary shape. As the outer shape of the inner diameter bridge portion 28, the shape shown in the first and third embodiments can be applied.
 (実施の形態6)
 図7は、実施の形態7における薄板鉄板30の上面図である。図7に示すように、本実施の形態では、第2永久磁石26の断面形状を長方形形状から曲面を持つ形状とするため、それに合わせて、第2磁石埋設孔25の形状も外周側に曲面を持つような形状としたものである。第2永久磁石26の側面を曲面とすることで、発生磁束を増加させることができるとともに、永久磁石側面の漏洩磁束が発生しやすい部分の厚みを小さくすることで、漏洩磁束を低減することができる。特に形状自由度の高いボンド磁石において有用である。
(Embodiment 6)
FIG. 7 is a top view of the thin steel plate 30 according to the seventh embodiment. As shown in FIG. 7, in the present embodiment, since the cross-sectional shape of the second permanent magnet 26 is changed from a rectangular shape to a shape having a curved surface, the shape of the second magnet embedding hole 25 is also curved on the outer peripheral side accordingly. It has a shape that has By making the side surface of the second permanent magnet 26 a curved surface, the generated magnetic flux can be increased, and the leakage magnetic flux can be reduced by reducing the thickness of the portion on the side surface of the permanent magnet where the leakage magnetic flux is likely to be generated. it can. It is particularly useful for bonded magnets with a high degree of freedom in shape.
 なお図7の第2永久磁石26の断面形状は、2つの長辺での1辺が直線で他の1辺が曲線となるカマボコ形としているが、これに限らずU字型やV字型の形状などであっても良い。 Note that the cross-sectional shape of the second permanent magnet 26 in FIG. 7 is a kamaboko shape in which one of the two long sides is a straight line and the other one is a curve. However, the shape is not limited to this and is U-shaped or V-shaped. It may be the shape.
 本発明の利用分野は、特に制限はなく、例えば永久磁石埋込型回転子を備えた電動機として広範囲に利用することができる。 The application field of the present invention is not particularly limited, and can be widely used as, for example, an electric motor including a permanent magnet embedded rotor.
 11  固定子
 12  ヨーク
 13  ティース
 14  固定子鉄心
 15  スロット
 20  回転軸
 21  回転子
 22  第1磁石埋設孔
 23  回転子鉄心
 24  第1永久磁石
 25  第2磁石埋設孔
 26  第2永久磁石
 27,40  空孔部
 28  内径ブリッジ部
 29  外径ブリッジ部
 30  薄板鉄板30
DESCRIPTION OF SYMBOLS 11 Stator 12 Yoke 13 Teeth 14 Stator iron core 15 Slot 20 Rotating shaft 21 Rotor 22 1st magnet embedding hole 23 Rotor iron core 24 1st permanent magnet 25 2nd magnet embedding hole 26 2nd permanent magnet 27, 40 Air | hole Part 28 inner diameter bridge part 29 outer diameter bridge part 30 thin steel plate 30

Claims (8)

  1. 固定子鉄心に巻線が巻回された固定子と、前記固定子の内周面とギャップを介して回転自在に設けられた回転子とを備え、
    前記回転子は、
    q軸上に設けられた第1磁石埋設孔と、d軸上に設けられた第2磁石埋設孔とを有する回転子鉄心と、
    前記第1磁石埋設孔に挿入された第1永久磁石と、
    前記第2磁石埋設孔に挿入された第2永久磁石とを有し、
    前記回転子鉄心は複数の薄板鉄板が積層されて構成され、
    前記薄板鉄板において、前記第1磁石埋設孔の内周側の短辺と、その短辺と対向する前記第2磁石埋設孔の2つの短辺とで囲まれた領域である内径ブリッジ部の板厚は、前記薄板鉄板の板厚よりも小さいことを特徴とする永久磁石埋込型電動機。
    A stator in which a winding is wound around a stator core; and a rotor provided rotatably via an inner peripheral surface of the stator and a gap;
    The rotor is
    a rotor core having a first magnet embedding hole provided on the q axis and a second magnet embedding hole provided on the d axis;
    A first permanent magnet inserted into the first magnet embedding hole;
    A second permanent magnet inserted into the second magnet embedding hole,
    The rotor core is configured by laminating a plurality of thin steel plates,
    In the thin steel plate, a plate of an inner diameter bridge portion which is a region surrounded by a short side on the inner peripheral side of the first magnet embedding hole and two short sides of the second magnet embedding hole facing the short side. A permanent magnet embedded type electric motor characterized in that the thickness is smaller than the thickness of the thin steel plate.
  2. 前記内径ブリッジ部の埋設孔間の外形を外側に膨らませたことを特徴とする請求項1に記載の永久磁石埋込型電動機。 The embedded permanent magnet electric motor according to claim 1, wherein an outer shape between the embedded holes of the inner diameter bridge portion is expanded outward.
  3. 前記回転子鉄心の外周と第1磁石埋設孔の外周側の短辺で囲まれた領域である外径ブリッジ部の板厚は、前記薄板鉄板の板厚よりも小さいことを特徴とする請求項1または2に記載の永久磁石埋込型電動機。 The plate thickness of the outer diameter bridge portion, which is a region surrounded by the outer periphery of the rotor core and the short side of the outer periphery of the first magnet embedding hole, is smaller than the plate thickness of the thin steel plate. 3. An embedded permanent magnet electric motor according to 1 or 2.
  4. 前記回転子鉄心の外周と第1磁石埋設孔の外周側の短辺で囲まれた領域を切り欠いたことを特徴とする請求項1または2に記載の永久磁石埋込型電動機。 3. The embedded permanent magnet electric motor according to claim 1, wherein a region surrounded by an outer periphery of the rotor core and a short side on an outer peripheral side of the first magnet embedding hole is cut out. 4.
  5. 前記内径ブリッジ部を貫通する空孔部を、前記内径ブリッジ部の外周に設けたことを特徴とする請求項1に記載の永久磁石埋込型電動機。 The embedded permanent magnet motor according to claim 1, wherein a hole portion that penetrates the inner diameter bridge portion is provided on an outer periphery of the inner diameter bridge portion.
  6. 前記内径ブリッジ部を貫通する空孔部を、前記内径ブリッジ部の内部に設けたことを特徴とする請求項1に記載の永久磁石埋込型電動機。 The embedded permanent magnet motor according to claim 1, wherein a hole portion that penetrates the inner diameter bridge portion is provided inside the inner diameter bridge portion.
  7. 前記ブリッジ部の厚み方向の境界面は、任意の勾配を持つ曲線または直線で構成されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。 The embedded permanent magnet motor according to claim 1, wherein a boundary surface in the thickness direction of the bridge portion is configured by a curve or a straight line having an arbitrary gradient.
  8. 前記第1永久磁石の磁化方向はq軸に垂直方向であり、前記第2永久磁石の磁化方向はd軸に平行方向であることを特徴とする請求項1に記載の永久磁石埋込型電動機。 2. The embedded permanent magnet electric motor according to claim 1, wherein the magnetization direction of the first permanent magnet is perpendicular to the q-axis, and the magnetization direction of the second permanent magnet is parallel to the d-axis. .
PCT/JP2015/001179 2014-06-02 2015-03-05 Permanent magnet-embedded electric motor WO2015186280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-113718 2014-06-02
JP2014113718 2014-06-02

Publications (1)

Publication Number Publication Date
WO2015186280A1 true WO2015186280A1 (en) 2015-12-10

Family

ID=54766367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001179 WO2015186280A1 (en) 2014-06-02 2015-03-05 Permanent magnet-embedded electric motor

Country Status (1)

Country Link
WO (1) WO2015186280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383159A (en) * 2020-07-09 2021-02-19 东南大学 Novel spoke type permanent magnet synchronous motor rotor structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289745A (en) * 1996-04-19 1997-11-04 Toyota Motor Corp Magnetic pole laminate of rotating machine
JP2001333553A (en) * 2000-05-19 2001-11-30 Fujitsu General Ltd Permanent magnet motor
JP2005130604A (en) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd Electromagnetic steel plate body, rotor for rotary machine incorporating permanent magnet employing it, rotary machine incorporating permanent magnet, and vehicle employing rotary machine incorporating permanent magnet
JP2005160133A (en) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd Electromagnetic steel plate forming object, rotor for rotating machine with built-in permanent magnet using it, rotating machine with built-in permanent magnet, and vehicle using this rotating machine with built-in permanent magnet
WO2008117497A1 (en) * 2007-03-26 2008-10-02 Kabushiki Kaisha Toshiba Permanent magnet rotary electric machine and permanent magnet motor drive system
JP2012105410A (en) * 2010-11-09 2012-05-31 Mitsubishi Electric Corp Electric motor and compressor
JP2013094041A (en) * 2011-10-07 2013-05-16 Asmo Co Ltd Buried magnet rotor and brushless motor
WO2013179375A1 (en) * 2012-05-28 2013-12-05 株式会社日立産機システム Composite torque rotating electric machine
WO2014047748A1 (en) * 2012-09-29 2014-04-03 Emerson Electric Co. Rotors with segmented magnet configurations and related dynamoelectric machines and compressors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289745A (en) * 1996-04-19 1997-11-04 Toyota Motor Corp Magnetic pole laminate of rotating machine
JP2001333553A (en) * 2000-05-19 2001-11-30 Fujitsu General Ltd Permanent magnet motor
JP2005130604A (en) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd Electromagnetic steel plate body, rotor for rotary machine incorporating permanent magnet employing it, rotary machine incorporating permanent magnet, and vehicle employing rotary machine incorporating permanent magnet
JP2005160133A (en) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd Electromagnetic steel plate forming object, rotor for rotating machine with built-in permanent magnet using it, rotating machine with built-in permanent magnet, and vehicle using this rotating machine with built-in permanent magnet
WO2008117497A1 (en) * 2007-03-26 2008-10-02 Kabushiki Kaisha Toshiba Permanent magnet rotary electric machine and permanent magnet motor drive system
JP2012105410A (en) * 2010-11-09 2012-05-31 Mitsubishi Electric Corp Electric motor and compressor
JP2013094041A (en) * 2011-10-07 2013-05-16 Asmo Co Ltd Buried magnet rotor and brushless motor
WO2013179375A1 (en) * 2012-05-28 2013-12-05 株式会社日立産機システム Composite torque rotating electric machine
WO2014047748A1 (en) * 2012-09-29 2014-04-03 Emerson Electric Co. Rotors with segmented magnet configurations and related dynamoelectric machines and compressors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383159A (en) * 2020-07-09 2021-02-19 东南大学 Novel spoke type permanent magnet synchronous motor rotor structure
CN112383159B (en) * 2020-07-09 2022-04-29 东南大学 Spoke type permanent magnet synchronous motor rotor structure

Similar Documents

Publication Publication Date Title
JP6273499B2 (en) Permanent magnet embedded motor and method for manufacturing the same
JP6508168B2 (en) Electric rotating machine
CN112838693B (en) Rotary electric machine
JP6226196B2 (en) Rotating electrical machine rotor
JP5159153B2 (en) Rotating electric machine rotor and rotating electric machine
JP5309630B2 (en) Permanent magnet embedded motor
JP6573031B2 (en) Rotor
JP7185414B2 (en) Rotor core, rotor and synchronous reluctance rotary electric machine
JP5240592B2 (en) Rotating electric machine
WO2017195498A1 (en) Rotor and rotary electric machine
JP6748852B2 (en) Brushless motor
JP5611680B2 (en) motor
JP2018057155A (en) Rotator of rotating electrical machine
JP2012239327A (en) Permanent magnet motor
JP6237412B2 (en) Rotor structure of embedded magnet type rotating electrical machine
JP5672149B2 (en) Rotating electric machine rotor and rotating electric machine using the same
JP2013051771A (en) Rotor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP2009261167A (en) Permanent magnet rotor
JP6357859B2 (en) Permanent magnet embedded rotary electric machine
WO2015186280A1 (en) Permanent magnet-embedded electric motor
JP6079132B2 (en) Embedded magnet rotor
JP2011193627A (en) Rotor core and rotary electric machine
JP2009296841A (en) Rotary electric machine
JP5750995B2 (en) Synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP