JP5656719B2 - Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine - Google Patents

Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine Download PDF

Info

Publication number
JP5656719B2
JP5656719B2 JP2011081381A JP2011081381A JP5656719B2 JP 5656719 B2 JP5656719 B2 JP 5656719B2 JP 2011081381 A JP2011081381 A JP 2011081381A JP 2011081381 A JP2011081381 A JP 2011081381A JP 5656719 B2 JP5656719 B2 JP 5656719B2
Authority
JP
Japan
Prior art keywords
yoke
permanent magnet
type rotating
magnet
magnet type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011081381A
Other languages
Japanese (ja)
Other versions
JP2012217278A (en
Inventor
祥子 川崎
祥子 川崎
宮本 佳典
佳典 宮本
石見 泰造
泰造 石見
弘枝 福住
弘枝 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011081381A priority Critical patent/JP5656719B2/en
Publication of JP2012217278A publication Critical patent/JP2012217278A/en
Application granted granted Critical
Publication of JP5656719B2 publication Critical patent/JP5656719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、永久磁石型回転電機及び永久磁石型回転電機の製造方法に関する。尚、永久磁石型回転電機を、単にモータと呼ぶ場合もある。   The present invention relates to a permanent magnet type rotating electrical machine and a method for manufacturing a permanent magnet type rotating electrical machine. The permanent magnet type rotating electric machine may be simply called a motor.

固定子鉄心のティースに集中的に巻線を施した、いわゆる集中巻構造の固定子を持ち、且つ、永久磁石を回転子に使用した回転電機において、特性が良好な回転電機を得るために、固定子鉄心と、固定子鉄心の個々のティースに集中的に巻回されたコイルと、を有する固定子と、回転子鉄心と、回転子鉄心に保持された複数の永久磁石とを有し、固定子のティースと空隙を介して回転可能に保持された回転子と、を有し、永久磁石は、希土類磁石であって、希土類磁性粉体をSiOにより結着されている永久磁石型回転電機が提案されている。この永久磁石型回転電機は、希土類磁石材料を用いることにより高出力化等、良好な特性を得ることができる(例えば、特許文献1参照)。 In order to obtain a rotating electrical machine with good characteristics in a rotating electrical machine that has a so-called concentrated winding structure with a concentrated winding on the teeth of the stator core, and that uses a permanent magnet as the rotor, A stator having a stator core, and a coil concentratedly wound on individual teeth of the stator core, a rotor core, and a plurality of permanent magnets held by the rotor core; A permanent magnet type rotation in which a permanent magnet is a rare earth magnet and a rare earth magnetic powder is bound by SiO 2. Electrics have been proposed. This permanent magnet type rotating electrical machine can obtain good characteristics such as high output by using a rare earth magnet material (see, for example, Patent Document 1).

また、表面配置型の永久磁石型回転電機において、高出力化に加え、コギングや脈動等を抑えるために、回転子の半径よりも小さいRを持つ円弧状に加工された希土類磁石を用いた永久磁石型回転電機も提案されている(例えば、特許文献2参照)。   In addition, in a surface-arranged permanent magnet type rotating electrical machine, in addition to high output, a permanent magnet using a rare earth magnet processed into an arc shape having an R smaller than the radius of the rotor in order to suppress cogging, pulsation and the like. A magnet-type rotating electrical machine has also been proposed (see, for example, Patent Document 2).

特開2009−71910号公報(第1頁、図5等)JP 2009-71910 A (first page, FIG. 5 etc.) 特開2004−173415号公報(第8頁、図6等)JP 2004-173415 A (8th page, FIG. 6 etc.)

近年、家庭用機器、車載用機器、及び工作機械などに用いられる永久磁石型回転電機は、高効率化、小型化が求められる。そのため、磁束密度が高い希土類磁石材料を用いる永久磁石型回転電機が増える傾向がある。   In recent years, permanent magnet type rotating electrical machines used for household equipment, in-vehicle equipment, machine tools, and the like are required to be highly efficient and downsized. Therefore, there is a tendency that the number of permanent magnet type rotating electrical machines using a rare earth magnet material having a high magnetic flux density is increased.

しかしながら、希土類磁石材料は地球上でも希少な材料とされ、埋蔵量・生産地域も限られていることから、永久磁石型回転電機のコストを増大させる主要因となっていた。さらに近年、生産地域からの材料供給の変動も激しい傾向があり、大量生産が前提の機器用に希土類磁石材料を確保することは、困難であった。   However, rare earth magnet materials are rare on the earth, and their reserves and production areas are limited, which has been a major factor in increasing the cost of permanent magnet type rotating electrical machines. Furthermore, in recent years, the supply of materials from production areas has tended to fluctuate rapidly, and it has been difficult to secure rare earth magnet materials for equipment premised on mass production.

また、上記特許文献2のように、低騒音を実現するために、磁石表面を回転子の半径よりも小さいRを持つ円弧状に加工している場合、材料歩留まりが悪く、より高コスト化する原因となっていた。   Moreover, when the magnet surface is processed into the circular arc shape having R smaller than the radius of the rotor to realize low noise as in Patent Document 2, the material yield is poor and the cost is increased. It was the cause.

この発明は、上記のような課題を解決するためになされたもので、出力を低下させることなく、希土類磁石材料の使用量を抑えることができる、小型・高出力・低コストの永久磁石型回転電機及び永久磁石型回転電機の製造方法を提供する。   The present invention has been made to solve the above-described problems, and can achieve a small, high-power, low-cost permanent magnet type rotation that can suppress the amount of rare earth magnet material used without lowering the output. A method for manufacturing an electric machine and a permanent magnet type rotating electric machine is provided.

この発明に係る永久磁石型回転電機は、固定子と、固定子の内側に空隙を介して設けられる回転子と、を備える永久磁石型回転電機であって、
回転子は、
所定の形状に打ち抜かれた電磁鋼板を所定枚数積層して形成されるヨークと、
ヨークの外周面に設けられ、ハルバッハ配列を成す主磁石と補助磁石とからなる界磁部と、
補助磁石に対向するヨーク内の所定箇所に設けられる、補助磁石の磁束漏れを抑制する空隙と、を備えたことを特徴とする。
A permanent magnet type rotating electrical machine according to the present invention is a permanent magnet type rotating electrical machine including a stator and a rotor provided inside the stator via a gap,
The rotor is
A yoke formed by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape;
A field portion that is provided on the outer peripheral surface of the yoke and includes a main magnet and an auxiliary magnet that form a Halbach array;
And a gap provided at a predetermined position in the yoke facing the auxiliary magnet to suppress magnetic flux leakage of the auxiliary magnet.

この発明に係る永久磁石型回転電機は、回転子が、所定の形状に打ち抜かれた電磁鋼板を所定枚数積層して形成されるヨークと、ヨークの外周面に設けられ、ハルバッハ配列を成す主磁石と補助磁石とからなる界磁部と、補助磁石に対向するヨーク内の所定箇所に設けられる、補助磁石の磁束漏れを抑制する空隙とを備えたことにより、補助磁石からの磁束がヨーク側に漏れるのを防ぎ、エアギャップの磁束量を増やすことができ、出力トルクが向上し、脈動も小さくなる。   A permanent magnet type rotating electrical machine according to the present invention includes a yoke in which a rotor is formed by laminating a predetermined number of electromagnetic steel plates punched into a predetermined shape, and a main magnet having a Halbach array provided on the outer peripheral surface of the yoke. And an auxiliary magnet and a gap provided in a predetermined position in the yoke facing the auxiliary magnet to suppress the magnetic flux leakage of the auxiliary magnet. Leakage can be prevented, the amount of magnetic flux in the air gap can be increased, output torque is improved, and pulsation is reduced.

実施の形態1を示す図で、永久磁石型回転電機100の横断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the permanent magnet type rotating electric machine 100. 図1のA−A断面図。AA sectional drawing of FIG. 実施の形態1を示す図で、固定子110の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of the stator 110. 実施の形態1を示す図で、固定子鉄心111の横断面図。FIG. 5 shows the first embodiment, and is a transverse cross-sectional view of the stator core 111. 実施の形態1を示す図で、回転子120の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of the rotor 120. 図5のB−B断面図。BB sectional drawing of FIG. 実施の形態1を示す図で、回転子120の永久磁石の配置と配向を示す模式図。FIG. 5 shows the first embodiment and is a schematic diagram showing the arrangement and orientation of permanent magnets of the rotor 120. FIG. 実施の形態1を示す図で、ヨーク121の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of a yoke 121. 実施の形態1を示す図で、変形例の回転子220の永久磁石の配置と配向を示す模式図。FIG. 5 shows the first embodiment and is a schematic diagram showing the arrangement and orientation of permanent magnets of a rotor 220 according to a modification. 実施の形態1を示す図で、希土類磁石量低減の効果を示す図。FIG. 5 shows the first embodiment, and shows the effect of reducing the amount of rare earth magnets. 実施の形態1を示す図で、ヨーク121,221外周に空隙124,224を設けたことによる効果を示す図。FIG. 5 shows the first embodiment, and shows the effect of providing gaps 124 and 224 on the outer circumferences of yokes 121 and 221. 実施の形態2を示す図で、永久磁石型回転電機300の横断面図。FIG. 5 shows the second embodiment, and is a cross-sectional view of a permanent magnet type rotating electric machine 300. 図12のC−C断面図。CC sectional drawing of FIG. 実施の形態2を示す図で、回転子320の横断面図。FIG. 5 shows the second embodiment and is a cross-sectional view of a rotor 320. 図14のD−D断面図。DD sectional drawing of FIG. 実施の形態2を示す図で、シャフト325等を省略した回転子320の斜視図。FIG. 9 is a diagram illustrating the second embodiment, and is a perspective view of a rotor 320 in which a shaft 325 and the like are omitted. 実施の形態2を示す図で、第1のヨーク321aの斜視図。FIG. 6 shows the second embodiment and is a perspective view of the first yoke 321a. 実施の形態2を示す図で、第2のヨーク321bの斜視図。FIG. 9 shows the second embodiment and is a perspective view of a second yoke 321b. 実施の形態2を示す図で、ヨーク321の斜視図。FIG. 9 is a diagram illustrating the second embodiment, and is a perspective view of a yoke 321. 実施の形態3を示す図で、回転子420の部分横断面図。FIG. 9 is a partial cross-sectional view of a rotor 420, showing Embodiment 3.

実施の形態1.
図1、図2は実施の形態1を示す図で、図1は永久磁石型回転電機100の横断面図、図2は図1のA−A断面図である。図1、図2に示す永久磁石型回転電機100は、固定子110と、固定子110の内側にエアギャップ130を介して配置される回転子120とを備える。
Embodiment 1 FIG.
1 and 2 are diagrams showing Embodiment 1, FIG. 1 is a transverse sectional view of a permanent magnet type rotating electric machine 100, and FIG. 2 is an AA sectional view of FIG. A permanent magnet type rotating electric machine 100 shown in FIGS. 1 and 2 includes a stator 110 and a rotor 120 disposed inside the stator 110 via an air gap 130.

本実施の形態の永久磁石型回転電機100は、回転子120に特徴があるが、先ず固定子110の構成について説明する。   The permanent magnet type rotating electrical machine 100 of the present embodiment is characterized by the rotor 120. First, the configuration of the stator 110 will be described.

図3は実施の形態1を示す図で、固定子110の横断面図である。図3に示すように、固定子110は、固定子鉄心111と、固定子鉄心111のスロット(後述する)に収納され、ティース(後述する)に巻回される巻線112とを備える。   FIG. 3 is a cross-sectional view of the stator 110 showing the first embodiment. As shown in FIG. 3, the stator 110 includes a stator core 111 and a winding 112 that is housed in a slot (described later) of the stator core 111 and is wound around a tooth (described later).

図4は実施の形態1を示す図で、固定子鉄心111の横断面図である。図4に示すように、固定子鉄心111は、全体が略円筒形状である。固定子鉄心111は、所定の形状に打ち抜かれた薄板(数百μm程度、一例では350μm)の電磁鋼板を、所定枚数積層して形成される。複数枚の電磁鋼板の固定は、抜きカシメ、溶接等により行われる。   FIG. 4 is a cross-sectional view of the stator core 111 showing the first embodiment. As shown in FIG. 4, the entire stator core 111 has a substantially cylindrical shape. The stator core 111 is formed by laminating a predetermined number of electromagnetic steel plates of a thin plate (about several hundred μm, for example, 350 μm in one example) punched into a predetermined shape. The plurality of electromagnetic steel plates are fixed by punching, welding, or the like.

図4に示す固定子鉄心111は、外周側に円筒形状のコアバック115が形成され、コアバック115から回転子120方向に、12個のティース113が周方向に略等間隔に放射状に延びている。隣接するティース113の間の空間をスロット114と呼ぶ。スロット114の数もティース113と同数の12個である。   A stator core 111 shown in FIG. 4 has a cylindrical core back 115 formed on the outer peripheral side. Twelve teeth 113 extend radially from the core back 115 in the direction of the rotor 120 at substantially equal intervals in the circumferential direction. Yes. A space between adjacent teeth 113 is called a slot 114. The number of slots 114 is twelve, which is the same number as the teeth 113.

ティース113の周方向幅は、径方向に略一定である。従って、隣接するティース113の間のスロット114は、回転子120側からコアバック115に向かって徐々に周方向の幅が広くなる。   The circumferential width of the teeth 113 is substantially constant in the radial direction. Therefore, the circumferential width of the slot 114 between the adjacent teeth 113 gradually increases from the rotor 120 side toward the core back 115.

スロット114は、固定子鉄心111の内周側端部が、開口している。この部分を、スロット開口部114aと呼ぶ。固定子鉄心111が、分割コアでなく一体のものでは、このスロット開口部114aから巻線112がスロット114内に挿入される。   The slot 114 is open at the inner peripheral side end of the stator core 111. This portion is called a slot opening 114a. When the stator core 111 is not a split core but an integral one, the winding 112 is inserted into the slot 114 from the slot opening 114a.

図5乃至図7は実施の形態1を示す図で、図5は回転子120の横断面図、図6は図5のB−B断面図、図7は回転子120の永久磁石の配置と配向を示す模式図である。図5、図6に示すように、回転子120は、略円筒形状のヨーク121と、ヨーク121の外周面に設けられる10個づつの主磁石122及び補助磁石123と、ヨーク121の略中心部に設けられるシャフト125と、シャフト125の両端部に固定される一対の軸受126a,126bとを備える。   5 to 7 are diagrams showing the first embodiment. FIG. 5 is a transverse sectional view of the rotor 120, FIG. 6 is a sectional view taken along the line BB of FIG. 5, and FIG. It is a schematic diagram which shows orientation. As shown in FIGS. 5 and 6, the rotor 120 includes a substantially cylindrical yoke 121, ten main magnets 122 and auxiliary magnets 123 provided on the outer peripheral surface of the yoke 121, and a substantially central portion of the yoke 121. And a pair of bearings 126a and 126b fixed to both ends of the shaft 125.

図7に示すように、隣接する主磁石122の間に、補助磁石123が設けられる。主磁石122の磁化の向きは径方向であり、補助磁石123の磁化の向きは周方向である。このような構成は、ハルバッハ配列と呼ばれる。   As shown in FIG. 7, an auxiliary magnet 123 is provided between adjacent main magnets 122. The magnetization direction of the main magnet 122 is the radial direction, and the magnetization direction of the auxiliary magnet 123 is the circumferential direction. Such a configuration is called a Halbach array.

界磁部は、ハルバッハ配列を成す主磁石122と補助磁石123とからなる。   The field part is composed of a main magnet 122 and an auxiliary magnet 123 that form a Halbach array.

主磁石122には、希土類永久磁石が用いられる。希土類永久磁石は、ネオジム(元素記号:Nd)、鉄(元素記号:Fe)、ボロン(元素記号:B)を主成分とした希土類永久磁石であり、保磁力を高めるために、ディスプロシウム(元素記号:Dy)が含有される場合もある。尚、別の表現をすると、希土類永久磁石は、ネオジム、鉄、ボロン及びディスプロシウムを含む磁石である。   A rare earth permanent magnet is used for the main magnet 122. The rare earth permanent magnet is a rare earth permanent magnet mainly composed of neodymium (element symbol: Nd), iron (element symbol: Fe), and boron (element symbol: B), and dysprosium ( The element symbol: Dy) may be contained. In other words, the rare earth permanent magnet is a magnet containing neodymium, iron, boron, and dysprosium.

補助磁石123には、フェライト磁石が用いられる。   A ferrite magnet is used for the auxiliary magnet 123.

補助磁石123が設けられるヨーク121の外周部には、補助磁石123に対向して切欠き部(後述する)が設けられる。補助磁石123と切欠き部とが組み合わされて空隙124が形成される。後述するが、空隙124により、補助磁石123からの磁束がヨーク121側に漏れるのを抑制する。   A notch (described later) is provided on the outer periphery of the yoke 121 where the auxiliary magnet 123 is provided so as to face the auxiliary magnet 123. The gap 124 is formed by combining the auxiliary magnet 123 and the notch. As will be described later, the gap 124 prevents the magnetic flux from the auxiliary magnet 123 from leaking to the yoke 121 side.

図8は実施の形態1を示す図で、ヨーク121の横断面図である。ヨーク121も固定子鉄心111と同様、所定の形状に打ち抜かれた薄板(数百μm程度、一例では350μm)の電磁鋼板を、所定枚数積層して形成される。複数枚の電磁鋼板の固定は、抜きカシメ、溶接等により行われる。   FIG. 8 shows the first embodiment, and is a cross-sectional view of the yoke 121. Similarly to the stator core 111, the yoke 121 is formed by laminating a predetermined number of thin steel plates (several hundred μm, for example 350 μm) punched into a predetermined shape. The plurality of electromagnetic steel plates are fixed by punching, welding, or the like.

図8に示すように、ヨーク121は、全体が略円筒形状である。ヨーク121は、外周面に切欠き部128が形成されている。10個の切欠き部128が、周方向に略等間隔に形成されている。切欠き部128に対向して、ヨーク121の外周面に補助磁石123が設けられる。例えば、補助磁石123は、接着等によりヨーク121の外周面に固定される。そのため、切欠き部128の周方向の長さを、補助磁石123の周方向の長さよりも短くして、装着面(接着面)を確保している。また、切欠き部128の周方向の長さを補助磁石123の周方向の長さよりも短くすることにより、q軸パーミアンスも確保している。尚、切欠き部128の径方向の長さは、エアギャップ130と同等で、数百μmである。切欠き部128の径方向の長さが、これよりも大きくなると、主磁石122の磁束の磁路を狭める。   As shown in FIG. 8, the yoke 121 has a substantially cylindrical shape as a whole. The yoke 121 has a notch 128 formed on the outer peripheral surface. Ten notches 128 are formed at substantially equal intervals in the circumferential direction. An auxiliary magnet 123 is provided on the outer peripheral surface of the yoke 121 so as to face the notch portion 128. For example, the auxiliary magnet 123 is fixed to the outer peripheral surface of the yoke 121 by adhesion or the like. Therefore, the circumferential length of the notch 128 is made shorter than the circumferential length of the auxiliary magnet 123 to secure the mounting surface (adhesion surface). Further, the q-axis permeance is ensured by making the circumferential length of the notch 128 shorter than the circumferential length of the auxiliary magnet 123. The length of the notch 128 in the radial direction is the same as that of the air gap 130 and is several hundred μm. When the length in the radial direction of the notch 128 is larger than this, the magnetic path of the magnetic flux of the main magnet 122 is narrowed.

ヨーク121の略中心部に、シャフト125が嵌合される軸孔127が形成されている。   A shaft hole 127 into which the shaft 125 is fitted is formed at a substantially central portion of the yoke 121.

図9は実施の形態1を示す図で、変形例の回転子220の永久磁石の配置と配向を示す模式図である。変形例の回転子220が回転子120と異なるのは、空隙224が外部に開口していない点、また、補助磁石223と空隙224との間に薄肉鉄心部229が存在することである。空隙224は、ヨーク221の内部に位置することになる。薄肉鉄心部229の径方向寸法は、電磁鋼板の板厚(例えば、0.35mm)程度である。磁束漏れを抑制するという空隙224の機能を発揮するためには、薄肉鉄心部229の径方向寸法は可能な限り小さいことが望ましいが、本実施の形態1の例では、打ち抜き精度を確保するため、板厚程度の寸法としている。   FIG. 9 is a diagram showing the first embodiment, and is a schematic diagram showing the arrangement and orientation of the permanent magnets of the rotor 220 according to a modification. The rotor 220 of the modified example is different from the rotor 120 in that the gap 224 is not open to the outside, and that a thin iron core 229 exists between the auxiliary magnet 223 and the gap 224. The air gap 224 is located inside the yoke 221. The radial dimension of the thin iron core portion 229 is about the thickness (for example, 0.35 mm) of the electromagnetic steel sheet. In order to exhibit the function of the air gap 224 for suppressing magnetic flux leakage, it is desirable that the radial dimension of the thin core portion 229 is as small as possible. However, in the example of Embodiment 1, in order to ensure punching accuracy. The dimensions are about the plate thickness.

空隙224をヨーク221の内部に設けることにより、補助磁石223とヨーク221との装着面(接着面)の面積及びq軸パーミアンスを、回転子120よりも大きくすることができる。   By providing the gap 224 inside the yoke 221, the area and q-axis permeance of the mounting surface (adhesion surface) between the auxiliary magnet 223 and the yoke 221 can be made larger than those of the rotor 120.

図10は実施の形態1を示す図で、希土類磁石量低減の効果を示す図である。   FIG. 10 is a diagram showing the first embodiment, and shows the effect of reducing the amount of rare earth magnets.

磁化の向きが径方向の主磁石122と、磁化の向きが周方向の補助磁石123とをハルバッハ配列することにより、回転子120,220外周側に出る磁束量が増えるため、従来の磁石(ラジアル配向や平行配向)よりもトルクを出しやすくなる。   By arranging the main magnet 122 with the magnetization direction in the radial direction and the auxiliary magnet 123 with the magnetization direction in the circumferential direction into the Halbach array, the amount of magnetic flux emitted to the outer peripheral side of the rotors 120 and 220 is increased. (Orientation or parallel orientation) is easier to generate torque.

図10は、従来例、希土類磁石量のみを低減した例及び本実施の形態1について、出力トルク比及び希土類磁石重量比(従来例を100%)を比較したものである。   FIG. 10 compares the output torque ratio and the rare earth magnet weight ratio (100% of the conventional example) for the conventional example, the example in which only the rare earth magnet amount is reduced, and the first embodiment.

上記三種類の従来例、希土類磁石量のみを低減した例及び本実施の形態1は以下に示すものである。
(1)従来例:希土類磁石を使用し、ラジアル配向や平行配向のもの;
(2)希土類磁石量のみを低減した例:希土類磁石を使用し、ラジアル配向や平行配向のもので、従来例よりも希土類磁石量を低減したもの;
(3)本実施の形態1:磁化の向きが径方向で希土類磁石を用いる主磁石122と、磁化の向きが周方向でフェライト磁石を用いる補助磁石123とをハルバッハ配列したもの。
The above three types of conventional examples, an example in which only the rare earth magnet amount is reduced, and the first embodiment are as follows.
(1) Conventional example: using rare earth magnets, with radial or parallel orientation;
(2) Example in which only the amount of rare earth magnet is reduced: A rare earth magnet is used, which has a radial orientation or a parallel orientation, and the amount of rare earth magnet is reduced from the conventional example;
(3) Embodiment 1: A Halbach array of a main magnet 122 using a rare earth magnet with a radial magnetization direction and an auxiliary magnet 123 using a ferrite magnet with a circumferential magnetization direction.

図10に示すように、(2)希土類磁石量のみを低減した例では、従来例に対して希土類磁石量を約77%に低減すると、出力トルクが2〜3%低下する。   As shown in FIG. 10, in the example in which (2) only the rare earth magnet amount is reduced, the output torque is reduced by 2-3% when the rare earth magnet amount is reduced to about 77% compared to the conventional example.

しかし、本実施の形態1のように、磁化の向きが径方向の主磁石122と、磁化の向きが周方向の補助磁石123とをハルバッハ配列することにより、従来例に対して希土類磁石量を約77%に低減しても、出力トルクは従来例と変わらない。   However, as in the first embodiment, the amount of rare earth magnets can be reduced as compared with the conventional example by arranging the main magnet 122 with the magnetization direction in the radial direction and the auxiliary magnet 123 with the magnetization direction in the circumferential direction. Even if it is reduced to about 77%, the output torque is not different from the conventional example.

図11は実施の形態1を示す図で、ヨーク121,221外周に空隙124,224を設けたことによる効果を示す図である。ヨーク121の外周に切欠き部128を設けることにより形成される空隙124、もしくはヨーク221の外周より内側に薄肉鉄心部229を間にして設けられる空隙224により、補助磁石123,223からの磁束がヨーク121,221側に漏れるのを防ぎ、エアギャップ130の磁束量を増やすことができる。即ち、図11に示すように、出力トルクがわずかながら向上し、脈動(リプル)も小さくなることがわかる。   FIG. 11 is a diagram illustrating the first embodiment, and is a diagram illustrating an effect obtained by providing the gaps 124 and 224 on the outer circumferences of the yokes 121 and 221. Magnetic flux from the auxiliary magnets 123 and 223 is generated by the gap 124 formed by providing the notch 128 on the outer periphery of the yoke 121 or the gap 224 provided on the inner side of the outer periphery of the yoke 221 with the thin core portion 229 interposed therebetween. Leakage to the yokes 121 and 221 side can be prevented, and the amount of magnetic flux in the air gap 130 can be increased. That is, as shown in FIG. 11, it can be seen that the output torque is slightly improved and the pulsation (ripple) is also reduced.

以上のように、実施の形態1によれば以下に示す効果が得られる。
(1)磁化の向きが径方向で希土類磁石を用いる主磁石122と、磁化の向きが周方向でフェライト磁石を用いる補助磁石123とをハルバッハ配列することにより、希土類磁石量を従来例の約77%に低減しても、出力トルクは従来例と変わらない。
(2)ヨーク121の外周に切欠き部128を設けることにより形成される空隙124、もしくはヨーク221の外周より内側に薄肉鉄心部229を間にして設けられる空隙224により、補助磁石123,223からの磁束がヨーク121,221側に漏れるのを防ぎ、エアギャップ130の磁束量を増やすことができ、出力トルクがわずかながら空隙なしよりも向上し、脈動(リプル)も小さくなる。
(3)空隙224をヨーク221の内部に設けることにより、補助磁石223とヨーク221との装着面(接着面)の面積及びq軸パーミアンスを、回転子120よりも大きくすることができる。
As described above, according to the first embodiment, the following effects can be obtained.
(1) The main magnet 122 using a rare earth magnet with a magnetization direction in the radial direction and the auxiliary magnet 123 using a ferrite magnet with a magnetization direction in the circumferential direction are arranged in a Halbach array, thereby reducing the amount of rare earth magnets to about 77 of the conventional example. Even if it is reduced to%, the output torque is not different from the conventional example.
(2) From the auxiliary magnets 123 and 223, the gap 124 formed by providing the notch 128 on the outer periphery of the yoke 121 or the gap 224 provided inside the outer periphery of the yoke 221 with the thin core portion 229 interposed therebetween. Can be prevented from leaking to the yokes 121 and 221 side, the amount of magnetic flux in the air gap 130 can be increased, the output torque is slightly improved compared to that without air gaps, and pulsation (ripple) is also reduced.
(3) By providing the gap 224 inside the yoke 221, the area and q-axis permeance of the mounting surface (adhesion surface) between the auxiliary magnet 223 and the yoke 221 can be made larger than those of the rotor 120.

実施の形態2.
図12、図13は実施の形態2を示す図で、図12は永久磁石型回転電機300の横断面図、図13は図12のC−C断面図である。図12、図13に示す永久磁石型回転電機300は、固定子310と、固定子310の内側にエアギャップ330を介して配置される回転子320とを備える。
Embodiment 2. FIG.
12 and 13 show the second embodiment. FIG. 12 is a transverse sectional view of the permanent magnet type rotating electric machine 300, and FIG. 13 is a sectional view taken along the line CC in FIG. A permanent magnet type rotating electrical machine 300 shown in FIGS. 12 and 13 includes a stator 310 and a rotor 320 disposed inside the stator 310 via an air gap 330.

固定子310の構成は、実施の形態1の固定子110と同じであるので、説明は省略する。   Since the configuration of the stator 310 is the same as that of the stator 110 of the first embodiment, description thereof is omitted.

図14乃至図16は実施の形態2を示す図で、図14は回転子320の横断面図、図15は図14のD−D断面図、図16はシャフト325等を省略した回転子320の斜視図である。図14乃至図16に示すように、回転子320は、略円筒形状のヨーク321と、ヨーク321の外周面に設けられる10個づつの主磁石322及び補助磁石323と、ヨーク321の略中心部に設けられるシャフト325と、シャフト325の両端部に固定される一対の軸受326a,326bとを備える。但し、補助磁石323に対向してヨーク321内に設けられる空隙は図示を省略している。   14 to 16 show the second embodiment. FIG. 14 is a cross-sectional view of the rotor 320, FIG. 15 is a cross-sectional view taken along the line DD of FIG. 14, and FIG. FIG. As shown in FIGS. 14 to 16, the rotor 320 includes a substantially cylindrical yoke 321, ten main magnets 322 and auxiliary magnets 323 provided on the outer peripheral surface of the yoke 321, and a substantially central portion of the yoke 321. And a pair of bearings 326a and 326b fixed to both ends of the shaft 325. However, the air gap provided in the yoke 321 so as to face the auxiliary magnet 323 is not shown.

回転子320も回転子120と同様、隣接する主磁石322の間に、補助磁石323が設けられる。主磁石322の磁化の向きは径方向で、補助磁石323の磁化の向きが周方向のハルバッハ配列である。   Similarly to the rotor 120, the rotor 320 is provided with an auxiliary magnet 323 between adjacent main magnets 322. The magnetization direction of the main magnet 322 is a radial direction, and the magnetization direction of the auxiliary magnet 323 is a Halbach array in the circumferential direction.

主磁石322には、希土類永久磁石が用いられる。希土類永久磁石は、ネオジム(元素記号:Nd)、鉄(元素記号:Fe)、ボロン(元素記号:B)を主成分とした希土類永久磁石であり、保磁力を高めるために、ディスプロシウム(元素記号:Dy)が含有される場合もある。尚、別の表現をすると、希土類永久磁石は、ネオジム、鉄、ボロン及びディスプロシウムを含む磁石である。   A rare earth permanent magnet is used for the main magnet 322. The rare earth permanent magnet is a rare earth permanent magnet mainly composed of neodymium (element symbol: Nd), iron (element symbol: Fe), and boron (element symbol: B), and dysprosium ( The element symbol: Dy) may be contained. In other words, the rare earth permanent magnet is a magnet containing neodymium, iron, boron, and dysprosium.

補助磁石323には、フェライト磁石が用いられる。   A ferrite magnet is used for the auxiliary magnet 323.

本実施の形態は、ヨーク321に特徴がある。図17乃至図19は実施の形態2を示す図で、図17は第1のヨーク321aの斜視図、図18は第2のヨーク321bの斜視図、図19はヨーク321の斜視図である。   This embodiment is characterized by the yoke 321. 17 to 19 are diagrams showing the second embodiment. FIG. 17 is a perspective view of the first yoke 321a, FIG. 18 is a perspective view of the second yoke 321b, and FIG. 19 is a perspective view of the yoke 321.

ヨーク321は、軸方向に2分割され、第1のヨーク321aと、第2のヨーク321bとから構成される。   The yoke 321 is divided into two in the axial direction, and includes a first yoke 321a and a second yoke 321b.

図17に示すように、第1のヨーク321aは、以下に示す要素で構成される。
(1)ヨーク321の軸方向の長さLcより短い軸方向の長さLaであり、略円筒形状の第1のヨーク本体321a−1。
(2)第1のヨーク本体321a−1の外周面から外側(径方向)に張り出して形成され、周方向に略等間隔に設けられる第1のヨーク径方向張出部321a−2(外側の面が主磁石装着面となる)。第1のヨーク径方向張出部321a−2は、主磁石322と同数の10個である。
(3)隣接する第1のヨーク径方向張出部321a−2の対向する周方向端部と第1のヨーク本体321a−1の外周面とで形成され、軸方向の長さLaの第1のヨーク連結部321a−3。
As shown in FIG. 17, the first yoke 321a includes the following elements.
(1) A first yoke body 321a-1 having an axial length La shorter than the axial length Lc of the yoke 321 and having a substantially cylindrical shape.
(2) The first yoke radial extending portion 321a-2 (outside of the first yoke main body 321a-1 is formed to protrude outward (radial direction) from the outer peripheral surface of the first yoke body 321a-1. The surface becomes the main magnet mounting surface). The number of the first yoke radial direction overhanging portions 321a-2 is ten, which is the same as the number of the main magnets 322.
(3) A first end having an axial length La, which is formed by the circumferential end portions of the adjacent first yoke radial extending portions 321a-2 and the outer peripheral surface of the first yoke body 321a-1. Yoke connecting portion 321a-3.

第1のヨーク321aは、所定の形状に打ち抜かれた薄板(数百μm程度、一例では350μm)の電磁鋼板を、所定枚数積層して形成される。複数枚の電磁鋼板の固定は、抜きカシメ、溶接等により行われる。   The first yoke 321a is formed by laminating a predetermined number of electromagnetic steel plates that are punched into a predetermined shape (several hundred μm, for example, 350 μm). The plurality of electromagnetic steel plates are fixed by punching, welding, or the like.

図18に示すように、第2のヨーク321bは、以下に示す要素で構成される。
(1)ヨーク321の軸方向の長さLcより短い軸方向の長さLbであり、略円筒形状の第2のヨーク本体321b−1。
(2)第2のヨーク本体321b−1の外周面から外側(径方向)に張り出して形成され、周方向に略等間隔に設けられる第2のヨーク径方向張出部321b−2(外側の面が補助磁石装着面となる)。第2のヨーク径方向張出部321b−2は、補助磁石323と同数の10個である。
(3)隣接する第2のヨーク径方向張出部321b−2の対向する周方向端部と第2のヨーク本体321b−1の外周面とで形成され、軸方向の長さLbの第2のヨーク連結部321b−3。
As shown in FIG. 18, the second yoke 321b includes the following elements.
(1) A second yoke body 321b-1 having a substantially cylindrical shape and a length Lb in the axial direction shorter than the length Lc in the axial direction of the yoke 321.
(2) Second yoke radial projecting portions 321b-2 (outside of the outer surface of the second yoke main body 321b-1 are formed so as to project outward (radial direction) from the outer peripheral surface of the second yoke main body 321b-1. The surface becomes the auxiliary magnet mounting surface). There are ten second yoke radial extending portions 321b-2, which is the same number as the auxiliary magnets 323.
(3) A second end of the axial length Lb is formed by the opposing circumferential end of the adjacent second yoke radial extending portion 321b-2 and the outer peripheral surface of the second yoke body 321b-1. Yoke connecting portion 321b-3.

第1のヨーク本体321a−1及び第1のヨーク連結部321a−3の軸方向長さLa、第2のヨーク本体321b−1及び第2のヨーク連結部321b−3の軸方向長さLb及びヨーク321の軸方向の長さLcは、以下に示す関係を有する。
La+Lb=Lc
The axial length La of the first yoke body 321a-1 and the first yoke coupling portion 321a-3, the axial length Lb of the second yoke body 321b-1 and the second yoke coupling portion 321b-3, and The axial length Lc of the yoke 321 has the following relationship.
La + Lb = Lc

図19に示すように、ヨーク321は、第1のヨーク321aと第2のヨーク321bとが、互いに軸方向に沿って嵌め合わされて形成される。第1のヨーク321aの第1のヨーク連結部321a−3に、第2のヨーク321bの第2のヨーク径方向張出部321b−2が挿入される。同時に第2のヨーク321bの第2のヨーク連結部321b−3に、第1のヨーク321aの第1のヨーク径方向張出部321a−2が挿入される。第1のヨーク321aの第1のヨーク本体321a−1と、第2のヨーク321bの第2のヨーク本体321b−1の内側の軸方向端部が互いに当接するまで、第1のヨーク321aと第2のヨーク321bとが、互いに軸方向に沿って嵌め合わされる。   As shown in FIG. 19, the yoke 321 is formed by fitting a first yoke 321a and a second yoke 321b together in the axial direction. The second yoke radial extending portion 321b-2 of the second yoke 321b is inserted into the first yoke coupling portion 321a-3 of the first yoke 321a. At the same time, the first yoke radial extending portion 321a-2 of the first yoke 321a is inserted into the second yoke coupling portion 321b-3 of the second yoke 321b. The first yoke 321a and the first yoke 321a and the second yoke 321b are in contact with the first yoke 321a and the second yoke 321b until the axial end portions inside the second yoke body 321b-1 come into contact with each other. The two yokes 321b are fitted together along the axial direction.

第1のヨーク321aと第2のヨーク321bとが連結後は、第1のヨーク321aの軸孔321a−4及び第2のヨーク321bの軸孔321b−4に、シャフト325が圧入もしくはコーキングもしくは焼き嵌め等の方法で、挿入・固定される。   After the first yoke 321a and the second yoke 321b are connected, the shaft 325 is press-fitted, coked or baked into the shaft hole 321a-4 of the first yoke 321a and the shaft hole 321b-4 of the second yoke 321b. It is inserted and fixed by a method such as fitting.

第2のヨーク321bの第2のヨーク径方向張出部321b−2には、実施の形態1と同様、補助磁石323からの磁束がヨーク321側に漏れるのを抑制する空隙(図示せず)を設けてもよい。その場合、空隙は、第2のヨーク径方向張出部321b−2の外周部に切欠き部を設けて形成してもよいし(補助磁石323を装着する面を残す)、また薄肉鉄心部(電磁鋼板の板厚程度)を間にして第2のヨーク径方向張出部321b−2に貫通穴を設けて形成してもよい(補助磁石323を装着する面が、切欠き部の場合よりも広くなる)。   A gap (not shown) that suppresses leakage of magnetic flux from the auxiliary magnet 323 to the yoke 321 side in the second yoke radial extending portion 321b-2 of the second yoke 321b, as in the first embodiment. May be provided. In that case, the air gap may be formed by providing a notch on the outer peripheral portion of the second yoke radial extending portion 321b-2 (leaving the surface on which the auxiliary magnet 323 is mounted), or a thin iron core portion. A through-hole may be provided in the second yoke radial extending portion 321b-2 with (the thickness of the electromagnetic steel plate about) (when the surface on which the auxiliary magnet 323 is mounted is a notch) Wider than).

第1のヨーク321aの第1のヨーク径方向張出部321a−2の外周面に、軸方向略全長に亘り主磁石322が装着される。また、第2のヨーク321bの第2のヨーク径方向張出部321b−2の外周面に、軸方向略全長に亘り補助磁石323が装着される。   A main magnet 322 is attached to the outer peripheral surface of the first yoke radial extending portion 321a-2 of the first yoke 321a over substantially the entire axial direction. In addition, the auxiliary magnet 323 is attached to the outer peripheral surface of the second yoke radial protruding portion 321b-2 of the second yoke 321b over substantially the entire axial direction.

主磁石322の第1のヨーク321aの第1のヨーク径方向張出部321a−2への装着もしくは補助磁石323の第2のヨーク321bの第2のヨーク径方向張出部321b−2への装着は、ヨーク321組立前に行う。   Attaching the first magnet 322 to the first yoke radial extension 321a-2 of the first yoke 321a or the auxiliary magnet 323 to the second yoke radial extension 321b-2 of the second yoke 321b. The mounting is performed before the yoke 321 is assembled.

主磁石322を第1のヨーク321aの第1のヨーク径方向張出部321a−2へ、また補助磁石323を第2のヨーク321bの第2のヨーク径方向張出部321b−2へ装着してからヨーク321を組み立てることで、磁石(主磁石322、補助磁石323)の位置決めが容易になり、ハルバッハ配列の回転子320を容易に得ることができる。   The main magnet 322 is attached to the first yoke radial extension 321a-2 of the first yoke 321a, and the auxiliary magnet 323 is attached to the second yoke radial extension 321b-2 of the second yoke 321b. Assembling the yoke 321 after that facilitates the positioning of the magnets (the main magnet 322 and the auxiliary magnet 323), and the rotor 320 in the Halbach array can be easily obtained.

第1のヨーク321aの第1のヨーク径方向張出部321a−2、第2のヨーク321bの第2のヨーク径方向張出部321b−2は、それぞれ、片端部(周方向)に、磁石(主磁石322、補助磁石323)の位置決め用の径方向突出部(図示せず)を有していてもよい。   The first yoke diametrically extending portion 321a-2 of the first yoke 321a and the second yoke diametrically extending portion 321b-2 of the second yoke 321b are each provided with a magnet at one end (circumferential direction). You may have the radial direction protrusion part (not shown) for positioning (the main magnet 322 and the auxiliary magnet 323).

実施の形態3.
図20は実施の形態3を示す図で、回転子420の部分横断面図である。図20に示す回転子420は、第1のヨーク421aの第1のヨーク径方向張出部421a−2と、第2のヨーク421bの第2のヨーク径方向張出部421b−2との間に、所定の周方向寸法の隙間429(ガタ)を設けたものである。
Embodiment 3 FIG.
FIG. 20 is a partial cross-sectional view of the rotor 420 showing the third embodiment. The rotor 420 shown in FIG. 20 is between the first yoke radial extending portion 421a-2 of the first yoke 421a and the second yoke radial extending portion 421b-2 of the second yoke 421b. In addition, a gap 429 (backlash) having a predetermined circumferential dimension is provided.

その場合は、回転子420の組立後の磁束密度分布が最適(高調波成分が最小)になるように、第1のヨーク421aの第1のヨーク径方向張出部421a−2と第2のヨーク421bの第2のヨーク径方向張出部421b−2の周方向位置を調整しながら組み立てる。   In that case, the first yoke radial direction overhanging part 421a-2 of the first yoke 421a and the second magnetic flux density distribution after the assembly of the rotor 420 are optimized (the harmonic component is minimized). Assembling is performed while adjusting the circumferential position of the second yoke radial extending portion 421b-2 of the yoke 421b.

それにより、磁石形状のばらつきを吸収するとともに、エアギャップ磁束密度の歪みが抑制されて、低振動化が図れる。   As a result, variations in the magnet shape can be absorbed, and distortion of the air gap magnetic flux density can be suppressed to reduce vibration.

本実施の形態では、回転子420の組立後の磁束密度分布が最適(高調波成分が最小)になるように、第1のヨーク421aの第1のヨーク径方向張出部421a−2と第2のヨーク421bの第2のヨーク径方向張出部421b−2の周方向位置を調整しながら組み立てるので、第1のヨーク421aと第2のヨーク421bとを組み合わせる前に、主磁石422、補助磁石423をそれぞれ着磁しておく必要がある。   In the present embodiment, the first yoke radial extending portion 421a-2 of the first yoke 421a and the first protruding portion 421a-2 of the first yoke 421a are optimized so that the magnetic flux density distribution after the assembly of the rotor 420 is optimized (the harmonic component is minimized). Since the second yoke 421b is assembled while adjusting the circumferential position of the second yoke radial extending portion 421b-2, before the first yoke 421a and the second yoke 421b are combined, the main magnet 422, the auxiliary The magnets 423 need to be magnetized.

焼結磁石(希土類磁石)は、形状のばらつきが生じやすく(±0.1mmというのがよくある公差)、貼り付け位置によってコギングやリプルが増大することがあったが、主磁石422と補助磁石423との周方向の位置関係を調整することにより、エアギャップの磁束密度分布を最適化することができ、コギング・リプルの極端な増大を避けることができる。   Sintered magnets (rare earth magnets) tend to vary in shape (tolerance is often ± 0.1 mm), and cogging and ripple may increase depending on the attachment position, but the main magnet 422 and auxiliary magnet By adjusting the circumferential positional relationship with 423, the magnetic flux density distribution in the air gap can be optimized, and an extreme increase in cogging ripple can be avoided.

100 永久磁石型回転電機、110 固定子、111 固定子鉄心、112 巻線、113 ティース、114 スロット、114a スロット開口部、115 コアバック、120 回転子、121 ヨーク、122 主磁石、123 補助磁石、124 空隙、125 シャフト、126a 軸受、126b 軸受、128 切欠き部、130 エアギャップ、220 回転子、221 ヨーク、222 主磁石、223 補助磁石、224 空隙、229 薄肉鉄心部、300 永久磁石型回転電機、310 固定子、320 回転子、321 ヨーク、321a 第1のヨーク、321a−1 第1のヨーク本体、321a−2 第1のヨーク径方向張出部、321a−3 第1のヨーク連結部、321a−4 軸孔、321b 第2のヨーク、321b−1 第2のヨーク本体、321b−2 第2のヨーク径方向張出部、321b−3 第2のヨーク連結部、321b−4 軸孔、322 主磁石、323 補助磁石、325 シャフト、326a 軸受、326b 軸受、330 エアギャップ、420 回転子、421a 第1のヨーク、421a−2 第1のヨーク径方向張出部、421b 第2のヨーク、421b−2 第2のヨーク径方向張出部、429 隙間。   100 permanent magnet type rotating electric machine, 110 stator, 111 stator core, 112 winding, 113 teeth, 114 slot, 114a slot opening, 115 core back, 120 rotor, 121 yoke, 122 main magnet, 123 auxiliary magnet, 124 gap, 125 shaft, 126a bearing, 126b bearing, 128 notch, 130 air gap, 220 rotor, 221 yoke, 222 main magnet, 223 auxiliary magnet, 224 gap, 229 thin iron core, 300 permanent magnet type rotating electrical machine , 310 stator, 320 rotor, 321 yoke, 321a first yoke, 321a-1 first yoke body, 321a-2 first yoke radial projecting portion, 321a-3 first yoke coupling portion, 321a-4 Shaft hole, 321b Second yoke, 321b DESCRIPTION OF SYMBOLS 1 2nd yoke main body, 321b-2 2nd yoke radial direction overhang | projection part, 321b-3 2nd yoke connection part, 321b-4 axial hole, 322 main magnet, 323 auxiliary magnet, 325 shaft, 326a bearing, 326b bearing, 330 air gap, 420 rotor, 421a first yoke, 421a-2 first yoke radial overhang, 421b second yoke, 421b-2 second yoke radial overhang, 429 Gaps.

Claims (11)

固定子と、前記固定子の内側にエアギャップを介して設けられる回転子と、を備える永久磁石型回転電機であって、
前記回転子は、
所定の形状に打ち抜かれた電磁鋼板を所定枚数積層して形成されるヨークと、
前記ヨークの外周面に設けられ、磁化の向きが径方向である主磁石と磁化の向きが周方向である補助磁石とからなる界磁部と、
前記補助磁石に対向する前記ヨーク内の所定箇所に設けられる、前記補助磁石の磁束漏れを抑制するための空隙と、を備えたことを特徴とする永久磁石型回転電機。
A permanent magnet type rotating electrical machine comprising a stator and a rotor provided via an air gap inside the stator,
The rotor is
A yoke formed by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape;
A field portion that is provided on the outer peripheral surface of the yoke and includes a main magnet having a radial magnetization direction and an auxiliary magnet having a circumferential magnetization direction ;
A permanent magnet type rotating electrical machine, comprising: a gap provided at a predetermined position in the yoke facing the auxiliary magnet for suppressing magnetic flux leakage of the auxiliary magnet.
前記ヨークの外周部に、前記補助磁石に対向して周方向に略等間隔に形成される所定の形状の切欠き部が形成され、前記切欠き部が前記空隙を構成することを特徴とする請求項1記載の永久磁石型回転電機。 A notch having a predetermined shape is formed on the outer periphery of the yoke so as to face the auxiliary magnet at substantially equal intervals in the circumferential direction, and the notch constitutes the gap. The permanent magnet type rotating electrical machine according to claim 1. 前記ヨークの外周部の内側に薄肉鉄心部を介して前記空隙が形成されることを特徴とする請求項1記載の永久磁石型回転電機。 The permanent magnet type rotating electric machine according to claim 1 , wherein the gap is formed inside the outer peripheral portion of the yoke via a thin iron core portion. 前記空隙の周方向長さは、前記補助磁石の周方向長さよりも短いことを特徴とする請求項1から3のいずれかに記載の永久磁石型回転電機。 The circumferential length of the air gap, the permanent magnet rotating electric machine according to any one of claims 1 to 3, characterized in that shorter than the circumferential length of the auxiliary magnets. 前記主磁石に希土類永久磁石が用いられるとともに、前記補助磁石にはフェライト磁石が用いられることを特徴とする請求項1から4のいずれかに記載の永久磁石型回転電機。 The permanent magnet type rotating electric machine according to any one of claims 1 to 4, wherein a rare earth permanent magnet is used for the main magnet and a ferrite magnet is used for the auxiliary magnet. 前記ヨークは、
軸方向に2分割され、第1のヨークと、第2のヨークとから構成され、
前記第1のヨークは、
前記ヨークの軸方向の長さLcより短い軸方向の長さLaを持つ、略円筒形状の第1のヨーク本体と、
前記第1のヨーク本体の外周面から外側に張り出して形成され、周方向に略等間隔に設けられる第1のヨーク径方向張出部と、
隣接する前記第1のヨーク径方向張出部の対向する周方向端部と前記第1のヨーク本体の外周面とで形成され、軸方向の長さLaを持つ第1のヨーク連結部と、を有し、
前記第2のヨークは、
前記ヨークの軸方向の長さLcより短い軸方向の長さLbを持つ、略円筒形状の第2のヨーク本体と、
前記第2のヨーク本体の外周面から外側に張り出して形成され、周方向に略等間隔に設けられる第2のヨーク径方向張出部と、
隣接する前記第2のヨーク径方向張出部の対向する周方向端部と前記第2のヨーク本体の外周面とで形成され、軸方向の長さLbを持つ第2のヨーク連結部と、を有し、
前記第1のヨークの前記第1のヨーク連結部に、前記第2のヨークの前記第2のヨーク径方向張出部が挿入され、同時に前記第2のヨークの前記第2のヨーク連結部に、前記第1のヨークの前記第1のヨーク径方向張出部が挿入されることにより、前記第1のヨークと前記第2のヨークとが、互いに軸方向に沿って嵌め合わされて前記ヨークが形成されることを特徴とする請求項1から5のいずれかに記載の永久磁石型回転電機。
The yoke is
Divided into two in the axial direction, composed of a first yoke and a second yoke ;
The first yoke is
A substantially cylindrical first yoke body having an axial length La shorter than an axial length Lc of the yoke;
A first yoke radial projecting portion formed to project outward from the outer peripheral surface of the first yoke body and provided at substantially equal intervals in the circumferential direction;
A first yoke coupling portion formed by an opposing circumferential end portion of the adjacent first yoke radial projecting portion and an outer circumferential surface of the first yoke body, and having an axial length La; Have
The second yoke is
A substantially cylindrical second yoke body having an axial length Lb shorter than the axial length Lc of the yoke;
A second yoke radial projecting portion formed to project outward from the outer peripheral surface of the second yoke main body and provided at substantially equal intervals in the circumferential direction;
A second yoke coupling portion formed by an opposing circumferential end portion of the adjacent second yoke radial projecting portion and an outer circumferential surface of the second yoke body, and having an axial length Lb; Have
The second yoke radial projecting portion of the second yoke is inserted into the first yoke coupling portion of the first yoke, and at the same time, the second yoke coupling portion of the second yoke. By inserting the first yoke radial projecting portion of the first yoke, the first yoke and the second yoke are fitted together along the axial direction so that the yoke is The permanent magnet type rotating electric machine according to claim 1, wherein the permanent magnet type rotating electric machine is formed.
前記第1のヨーク本体及び前記第1のヨーク連結部の軸方向長さLa、前記第2のヨーク本体及び前記第2のヨーク連結部の軸方向長さLbと、前記ヨークの軸方向の長さLcは、
La+Lb=Lc
の関係を満たすことを特徴とする請求項6記載の永久磁石型回転電機。
Wherein the length La of the first yoke main body and the axial direction of the first yoke connecting portion, and the length Lb of the second yoke main body and the axial direction of the second yoke connecting portion, the axis of the yoke The length Lc in the direction is
La + Lb = Lc
The permanent magnet type rotating electric machine according to claim 6 , wherein the relationship is satisfied.
前記第1のヨークの前記第1のヨーク径方向張出部と、前記第2のヨークの前記第2のヨーク径方向張出部との間に、所定の周方向寸法の隙間が形成されていることを特徴とする請求項6又は7に記載の永久磁石型回転電機。 A gap having a predetermined circumferential dimension is formed between the first yoke radial projecting portion of the first yoke and the second yoke radial projecting portion of the second yoke. The permanent magnet type rotating electric machine according to claim 6 or 7, wherein 請求項6記載の永久磁石型回転電機の製造方法であって、
前記第1のヨークの前記第1のヨーク径方向張出部に前記主磁石を装着し、
前記第2のヨークの前記第2のヨーク径方向張出部に前記補助磁石を装着し、
前記第1のヨークと前記第2のヨークとを軸方向に沿って嵌め合わせて前記ヨークを形成した後、前記ヨークにシャフト挿入て固定ることを特徴とする永久磁石型回転電機の製造方法。
It is a manufacturing method of the permanent magnet type rotating electrical machine according to claim 6,
The main magnet is mounted on the first yoke radial projecting portion of the first yaw click,
The auxiliary magnet is mounted on the second yoke radially projecting portion of the second yaw click,
After a second yaw click and the first yaw click by fitting along the axial direction to form the yoke, permanent magnets, characterized that you fixed by inserting the shaft into the yoke A manufacturing method of a rotary electric machine.
前記回転子の組立て後のエアギャップの磁束密度分布の高調波成分がもっとも小さくなる位置まで、前記第1のヨークと前記第2のヨークとの周方向位置を調整後、前記ヨークにシャフト挿入て固定ることを特徴とする請求項9記載の永久磁石型回転電機の製造方法。 After adjusting the circumferential position of the first yoke and the second yoke until the harmonic component of the magnetic flux density distribution of the air gap after assembly of the rotor is minimized , the shaft is inserted into the yoke. manufacturing method of a permanent magnet rotating electrical machine according to claim 9 to the fixed to said isosamples. 前記第1のヨークと、前記第2のヨークと、前記シャフトと、圧入または焼き嵌めで固着ることを特徴とする請求項9又は10に記載の永久磁石型回転電機の製造方法。 Wherein the first yoke, the second yoke, said shaft and a manufacturing method of a permanent magnet rotating electrical machine according to claim 9 or 10, fixed to said Rukoto press fit or shrink in fitting.
JP2011081381A 2011-04-01 2011-04-01 Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine Expired - Fee Related JP5656719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081381A JP5656719B2 (en) 2011-04-01 2011-04-01 Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081381A JP5656719B2 (en) 2011-04-01 2011-04-01 Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2012217278A JP2012217278A (en) 2012-11-08
JP5656719B2 true JP5656719B2 (en) 2015-01-21

Family

ID=47269533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081381A Expired - Fee Related JP5656719B2 (en) 2011-04-01 2011-04-01 Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5656719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356704A (en) * 2015-10-22 2016-02-24 江苏大学 U-shaped fault-tolerant permanent magnet motor made of hybrid magnetic material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683698B (en) * 2013-12-05 2015-09-09 张学义 The production method of composite type magnetic pole radial permanent magnet constant voltage generator
CN104184290B (en) * 2014-07-16 2016-08-31 江苏大学 Mixing magnetic material fault tolerant permanent magnet vernier motor
WO2016199836A1 (en) 2015-06-12 2016-12-15 新日鐵住金株式会社 Eddy-current-type deceleration device
US10897168B2 (en) * 2016-01-27 2021-01-19 Mitsubishi Electric Corporation Magnetizing method, rotor, motor, and scroll compressor
CN109560672B (en) * 2017-09-25 2024-01-09 厦门威而特动力科技有限公司 Disk motor magnetic steel dishing machine
KR102234182B1 (en) * 2019-11-15 2021-03-31 하이윈 마이크로시스템 코포레이션 Rotor structure of permanent magnet motor
CN110977843B (en) * 2019-12-30 2024-03-01 深圳核心医疗科技股份有限公司 Assembling jig and assembling method for halbach array magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175388A (en) * 1998-12-02 2000-06-23 Meidensha Corp Permanent magnet burial type motor
JP2006320109A (en) * 2005-05-12 2006-11-24 Asmo Co Ltd Rotating electric machine and manufacturing method thereof
JP2007236160A (en) * 2006-03-03 2007-09-13 Meidensha Corp Synchronous motor
JP5332082B2 (en) * 2006-06-07 2013-11-06 ダイキン工業株式会社 motor
JP2009050148A (en) * 2007-07-26 2009-03-05 Meidensha Corp Permanent-magnet electric motor with constant output in wide range
JP5264567B2 (en) * 2008-06-05 2013-08-14 本田技研工業株式会社 motor
JP4935799B2 (en) * 2008-11-17 2012-05-23 株式会社デンソー Rotating electric machine and its rotor
JP2010130819A (en) * 2008-11-28 2010-06-10 Daikin Ind Ltd Field element and method for manufacturing field element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356704A (en) * 2015-10-22 2016-02-24 江苏大学 U-shaped fault-tolerant permanent magnet motor made of hybrid magnetic material

Also Published As

Publication number Publication date
JP2012217278A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5656719B2 (en) Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine
JP6667084B2 (en) Surface magnet type motor
EP2693605B1 (en) Rotor and rotating electrical mechanism using same
US7474028B2 (en) Motor
JPWO2015156044A1 (en) Permanent magnet embedded rotary electric machine
US9774223B2 (en) Permanent magnet synchronous machine
WO2016136384A1 (en) Armature and rotating electric machine
JP2009136040A (en) Rotor of rotary electric machine
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
WO2016047078A1 (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
US20200059122A1 (en) Rotor and motor
JPWO2017141562A1 (en) Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
JP2019126102A (en) Rotor and rotary electric machine
JP2011015458A (en) Permanent magnet type rotary electric machine, and elevator device using the same
JP2021029067A (en) Axial gap motor
JP5702118B2 (en) Rotor structure and motor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
WO2017212575A1 (en) Permanent magnet motor
JP5471653B2 (en) Permanent magnet type electric motor
JP2011172359A (en) Split rotor and electric motor
CN102377307B (en) Rotary motor and manufacturing method thereof
JP2020010539A (en) Rotor and brushless motor
US20220190659A1 (en) Motor
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP5918070B2 (en) IPM motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees