JP2010130819A - Field element and method for manufacturing field element - Google Patents

Field element and method for manufacturing field element Download PDF

Info

Publication number
JP2010130819A
JP2010130819A JP2008304076A JP2008304076A JP2010130819A JP 2010130819 A JP2010130819 A JP 2010130819A JP 2008304076 A JP2008304076 A JP 2008304076A JP 2008304076 A JP2008304076 A JP 2008304076A JP 2010130819 A JP2010130819 A JP 2010130819A
Authority
JP
Japan
Prior art keywords
field
field element
divided
core
element core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008304076A
Other languages
Japanese (ja)
Inventor
Yoshinari Asano
能成 浅野
Keiji Aota
桂治 青田
Shin Nakamasu
伸 中増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008304076A priority Critical patent/JP2010130819A/en
Publication of JP2010130819A publication Critical patent/JP2010130819A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a field element capable of reducing difficulties in production. <P>SOLUTION: A plurality of first field magnets 40 and a plurality of second field magnets 41 are alternately arranged circularly around a rotating shaft P. The first field magnets 40 are magnetized in a diameter direction centered at the rotating shaft P. The second field magnets 41 are magnetized in a diameter direction in a circumferential direction centered at the rotating shaft P. The first field magnets 40 and the second field magnets 41 penetrate through a field element core 10 in an axial direction. The field element core 10 includes split field element cores 20 and 30. The first field magnets 40 are sandwiched by split field magnet cores 20, 30 to each other from the opposite side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は界磁子及び界磁子の製造方法に関し、特にハルバッハ配列に従って配置された界磁磁石を有する界磁子及び界磁子の製造方法に関する。   The present invention relates to a field element and a method for manufacturing the field element, and more particularly to a field element having field magnets arranged according to a Halbach array and a method for manufacturing the field element.

回転電機は界磁子と電機子とを備えている。界磁子が有する磁石をハルバッハ配列に従って配置することで、漏れ磁束を低減して鎖交磁束を向上させることができる。ハルバッハ配列では、所定方向に並べて配置された複数の磁石において、その各々の磁化方向が所定方向で90度ずつ回転している。   The rotating electric machine includes a field element and an armature. By arranging the magnets of the field element according to the Halbach array, the leakage flux can be reduced and the linkage flux can be improved. In the Halbach array, each of the plurality of magnets arranged side by side in a predetermined direction rotates by 90 degrees in the predetermined direction.

なお、本発明に関連する技術が特許文献1乃至3に記載されている。   Patent Documents 1 to 3 describe techniques related to the present invention.

特開2007−104819号公報JP 2007-104819 A 特開平10−295061号公報Japanese Patent Laid-Open No. 10-295061 特開2000−152569号公報Japanese Patent Application Laid-Open No. 2000-152569

しかしながら、磁石をハルバッハ配列に従って配置すると、これらの磁石の相互間に吸引力あるいは反発力が作用し、配置を困難にしていた。   However, when the magnets are arranged according to the Halbach arrangement, an attractive force or a repulsive force acts between these magnets, making the arrangement difficult.

従って、本発明は、製造上の困難を低減できる界磁子及び界磁子の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a field element and a method for manufacturing the field element that can reduce manufacturing difficulties.

本発明にかかる界磁子の第1の態様は、所定の軸(P)の周りで環状に配置され、前記軸を中心とした径方向に磁極面を呈し、前記軸を中心とした周方向において隣り合う前記磁極面の極性が互いに異なる複数の第1界磁磁石(40)と、各々が、前記周方向で隣り合う前記第1界磁磁石の二者の間に配置され、前記周方向に磁極面を呈する第2界磁磁石(41)と、前記軸に沿う軸方向に沿って前記第1界磁磁石及び前記第2界磁磁石が貫挿される界磁子コア(10)とを備える界磁子であって、前記界磁子コアは第1分割界磁子コア(20)と第2分割界磁子コア(30)を有し、前記第1分割界磁子コアの少なくとも一部と前記第2分割界磁子コアとは、前記軸を中心とする径方向において前記第1界磁磁石(40)を相互に反対側から挟み、前記周方向で相互に対向する前記第2界磁磁石の前記磁極面同士は同極性である。   A first aspect of the field element according to the present invention is arranged in a ring around a predetermined axis (P), presents a magnetic pole surface in a radial direction around the axis, and is circumferential in the center about the axis. Are arranged between two of the first field magnets adjacent to each other in the circumferential direction, and the circumferential direction of the first field magnets is different from each other. A second field magnet (41) having a magnetic pole surface, and a field element core (10) into which the first field magnet and the second field magnet are inserted along an axial direction along the axis. The field element core includes a first divided field element core (20) and a second divided field element core (30), and at least one of the first divided field element cores. And the second divided field element core are the first field magnet (40) opposite to each other in a radial direction about the axis? Sandwiching the pole faces of the second field magnet facing each other in the circumferential direction is the same polarity.

本発明にかかる界磁子の第2の態様は、第1の態様にかかる界磁子であって、前記第2界磁磁石(41)はその径方向において前記第1分割界磁子コア(20)の少なくとも一部と前記第2分割界磁子コア(30)とで挟まれる。   A second aspect of the field element according to the present invention is the field element according to the first aspect, wherein the second field magnet (41) has the first divided field element core ( 20) and at least a part of the second divided field element core (30).

本発明にかかる界磁子の第3の態様は、第1又は第2の態様にかかる界磁子であって、前記第1分割界磁子コア(20)は前記第2界磁磁石(41;411,412)を介して相互に径方向で対向する一対の面(24,34;242,342)を有する。   A third aspect of the field element according to the present invention is the field element according to the first or second aspect, wherein the first split field element core (20) is the second field magnet (41). 411, 412) and a pair of surfaces (24, 34; 242, 342) opposed to each other in the radial direction.

本発明にかかる界磁子の第4の態様は、第1乃至第3の何れか一つにかかる界磁子であって、前記第1分割界磁子コア(20)は前記第1界磁磁石(40)を介して相互に径方向で対向する一対の面(22,32)を有する。   A field element according to a fourth aspect of the present invention is a field element according to any one of the first to third aspects, wherein the first divided field element core (20) is the first field field. It has a pair of surface (22, 32) which opposes mutually in a radial direction via a magnet (40).

本発明にかかる界磁子の第5の態様は、第4の態様にかかる界磁子であって、前記第1分割界磁子コア(20)は前記第2分割界磁子コア(30)側において前記第1界磁磁石(40)を覆う薄肉部を備え、前記薄肉部は前記一対の面の一方(32,34)を呈する。   A fifth aspect of the field element according to the present invention is the field element according to the fourth aspect, wherein the first divided field element core (20) is the second divided field element core (30). On the side, a thin portion covering the first field magnet (40) is provided, and the thin portion exhibits one (32, 34) of the pair of surfaces.

本発明にかかる界磁子の第6の態様は、第1又は第2の態様にかかる界磁子であって、前記第1分割界磁子コア(20)は複数の第1の表面(241,242)を有し、前記第2分割界磁コア(20)は複数の第2の表面(341,342)を有し、前記第1及び前記第2の表面は複数の前記第2界磁磁石(41)の各々を介して前記径方向で相互に対向し、前記第1分割界磁子コアは前記第1の表面の各々から前記第2分割界磁子コアへと向かって前記径方向に突出する複数の第1突部(26)を有し、前記第2分割界磁子コアは前記第2の表面の各々から前記第1分割界磁子コアへと向かって前記径方向に突出し、前記第1突部の各々と前記径方向で当接面において当接する複数の第2突部(36)を有し、前記当接面の複数はいずれも前記周方向に対して同じ側に傾斜し、前記第1分割界磁子コア及び前記第2分割界磁子コアは前記当接面を除いて前記径方向で相互に離間している。   A sixth aspect of the field element according to the present invention is the field element according to the first or second aspect, wherein the first split field element core (20) has a plurality of first surfaces (241). 242), the second split field core (20) has a plurality of second surfaces (341, 342), and the first and second surfaces are a plurality of the second field magnets. The first split field element cores are opposed to each other in the radial direction via each of the magnets (41), and the first split field element core is in the radial direction from each of the first surfaces to the second split field element core. A plurality of first projecting portions (26) projecting from the second surface of each of the second surfaces toward the first segmented field core. And a plurality of second protrusions (36) that contact each of the first protrusions at the contact surface in the radial direction. Inclined on the same side of the serial peripheral direction, the first split field element core and the second split field element core is spaced apart from each other in the radial direction except for the contact surface.

本発明にかかる界磁子の第7の態様は、第6の態様にかかる界磁子であって、前記第2界磁磁石(41)の各々は当該第2界磁磁石を挟む前記第1界磁磁石(40)の間で、前記軸の周りで隣り合う2つの第3界磁磁石(411)と第4界磁磁石(412)とを有し、前記第1突部と前記第2突部は前記第3及び前記第4界磁磁石の間で当接する。   A seventh aspect of the field element according to the present invention is the field element according to the sixth aspect, wherein each of the second field magnets (41) sandwiches the second field magnet. Between the field magnets (40), there are two third field magnets (411) and a fourth field magnet (412) that are adjacent to each other around the axis, and the first protrusion and the second field magnet (412). The protrusion abuts between the third and fourth field magnets.

本発明にかかる界磁子の第8の態様は、第1乃至第7の何れか一つの態様にかかる界磁子であって、前記第1分割界磁子コア(20)及び前記第2分割界磁子コア(30)は前記軸方向に積層された複数の積層鋼板を有し、前記第1分割界磁子コアが有する前記積層鋼板の第1圧延方向と、前記第2分割界磁子コアが有する前記積層鋼板の第2圧延方向とは相互に傾斜している。   An eighth aspect of the field element according to the present invention is the field element according to any one of the first to seventh aspects, wherein the first divided field element core (20) and the second divided part are provided. The field element core (30) has a plurality of laminated steel sheets laminated in the axial direction, the first rolling direction of the laminated steel sheets of the first divided field element core, and the second divided field element. It is mutually inclined with respect to the 2nd rolling direction of the said laminated steel plate which a core has.

本発明にかかる界磁子の第9の態様は、第8の態様にかかる界磁子であって、前記第1圧延方向と前記第2圧延方向とは直交する。   A ninth aspect of the field element according to the present invention is the field element according to the eighth aspect, wherein the first rolling direction and the second rolling direction are orthogonal to each other.

本発明にかかる界磁子の製造方法の第1の態様は、所定の軸(P)の周りで交互に配置される複数の第1界磁磁石(40)及び複数の第2界磁磁石(41)と、前記軸に沿う軸方向に沿って前記第1界磁磁石及び前記第2界磁磁石が貫挿される界磁子コア(10)とを備え、前記界磁子コアは第1分割界磁子コア(20)と第2分割界磁子コア(30)を有し、前記第1分割界磁子コアと第2分割界磁子コアとは、前記軸を中心とした径方向において前記第1界磁磁石(40)を相互に反対側から挟む界磁子を製造する製造方法であって、着磁後に前記第1界磁磁石となる硬磁性の第1磁性体(400)の複数及び着磁後に前記第2界磁磁石となる硬磁性の第2磁性体(410)の複数が固定された前記第1分割界磁コアに対して、(a)前記第2分割界磁子コア(30)を、前記軸を中心とした径方向で対面させ、前記第1分割界磁子コアに対して前記第1磁性体及び前記第2磁性体とは反対側から、前記軸を中心とした径方向において着磁用磁極面(60a)の複数をそれぞれ前記第1磁性体の各々と対向させて、前記着磁用磁極面から着磁用磁界を発生させ、前記第1磁性体を着磁して前記第1界磁磁石を形成する第1工程と、(b)前記第2分割界磁子コアを除去した状態で、前記着磁用磁極面の複数をそれぞれ前記第1磁性体の各々と対向させ前記着磁用磁極面から前記第1工程と同じ極性で前記着磁用磁界を発生させ、前記第2磁性体を着磁して前記第2界磁磁石を形成する第2工程とが実行される。   A first aspect of the method of manufacturing a field element according to the present invention includes a plurality of first field magnets (40) and a plurality of second field magnets (alternatively arranged around a predetermined axis (P). 41) and a field element core (10) into which the first field magnet and the second field magnet are inserted along an axial direction along the axis, and the field element core is divided into first parts. A field element core (20) and a second divided field element core (30) are provided, and the first divided field element core and the second divided field element core are arranged in a radial direction about the axis. A manufacturing method for manufacturing a field element that sandwiches the first field magnet (40) from opposite sides of the hard magnetic first magnetic body (400) that becomes the first field magnet after magnetization. With respect to the first divided field core to which a plurality and a plurality of hard magnetic second magnetic bodies (410) to be the second field magnets after being magnetized are fixed, The second split field element core (30) is opposed to the first split field element core in a radial direction centered on the axis, and is opposite to the first magnetic body and the second magnetic body. From the radial direction centering on the axis, a plurality of magnetizing magnetic pole faces (60a) are respectively opposed to the first magnetic bodies to generate a magnetizing magnetic field from the magnetizing magnetic pole face, A first step of magnetizing the first magnetic body to form the first field magnet; and (b) removing a plurality of the magnetic pole surfaces for magnetization with the second split field element core removed. The magnetizing magnetic field is generated with the same polarity as the first step from the magnetizing magnetic pole face so as to face each of the first magnetic bodies, and the second magnetic body is magnetized to generate the second field magnet. A second step of forming a magnet is performed.

本発明にかかる界磁子の製造方法の第2の態様は、第1の態様にかかる界磁子の製造方法であって、前記第2工程は前記第1工程の実行前に実行される。   A second aspect of the field element manufacturing method according to the present invention is the field element manufacturing method according to the first aspect, wherein the second step is executed before the execution of the first step.

本発明にかかる界磁子の製造方法の第3の態様は、第1又は第2の態様にかかる界磁子の製造方法であって、前記第2界磁磁石(41)は前記径方向において前記第1分割界磁子コア(20)の少なくとも一部と前記第2分割界磁子コア(30)とで挟まれる。   A third aspect of the method for manufacturing a field element according to the present invention is a method for manufacturing a field element according to the first or second aspect, wherein the second field magnet (41) is arranged in the radial direction. It is sandwiched between at least a part of the first divided field element core (20) and the second divided field element core (30).

本発明にかかる界磁子の製造方法の第4の態様は、第1乃至第3の何れか一つの態様にかかる界磁子の製造方法であって、前記第1分割界磁子コア(20)は前記第2界磁磁石(41;411,412)を介して相互に径方向で対向する一対の面(24,34;242,342)を有する。   A field element manufacturing method according to a fourth aspect of the present invention is a field element manufacturing method according to any one of the first to third aspects, in which the first split field element core (20 ) Has a pair of surfaces (24, 34; 242, 342) facing each other in the radial direction via the second field magnets (41; 411, 412).

本発明にかかる界磁子の製造方法の第5の態様は、第1乃至第4の何れか一つの態様にかかる界磁子の製造方法であって、前記第1分割界磁子コア(20)は前記第1界磁磁石(40)を介して相互に径方向で対向する一対の面(22,32)を有する。   A fifth aspect of the field element manufacturing method according to the present invention is a field element manufacturing method according to any one of the first to fourth aspects, wherein the first split field element core (20 ) Has a pair of surfaces (22, 32) opposed to each other in the radial direction via the first field magnet (40).

本発明にかかる界磁子の製造方法の第6の態様は、第5の態様にかかる界磁子の製造方法であって、前記第1分割界磁子コア(40)は前記第1分割界磁子コア(41)側において前記第1界磁磁石(41)を覆う薄肉部を備え、前記薄肉部は前記第1界磁磁石(40)を介して相互に径方向で対向する前記一対の面(22,32)を形成する。   According to a sixth aspect of the field element manufacturing method of the present invention, there is provided the field element manufacturing method according to the fifth aspect, wherein the first split field element core (40) is the first split field. The magnetic core (41) side includes a thin portion that covers the first field magnet (41), and the thin portions are opposed to each other in the radial direction via the first field magnet (40). Surfaces (22, 32) are formed.

本発明にかかる界磁子の製造方法の第7の態様は、第1又は第2の態様にかかる界磁子の製造方法であって、前記第1分割界磁子コア(20)は複数の第1の表面(241,242)を有し、前記第2分割界磁コア(20)は複数の第2の表面(341,342)を有し、前記第1及び前記第2の表面は複数の前記第2界磁磁石(41)の各々を介して前記径方向で相互に対向し、前記第1分割界磁子コアは前記第1の表面の各々から前記第2分割界磁子コアへと向かって前記径方向に突出する複数の第1突部(26)を有し、前記第2分割界磁子コアは前記第2の表面の各々から前記第1分割界磁子コアへと向かって前記径方向に突出する複数の第2突部(36)とを有し、前記界磁子において、前記第1突部の各々と前記第2突部の各々とは前記径方向で当接面において当接し、前記第1分割界磁子コア及び前記第2分割界磁子コアは前記当接面を除いて前記径方向で相互に離間しており、前記周方向における前記第1表面の長さは前記周方向における前記第2突部の幅よりも広く、前記周方向における前記第2表面の長さは前記周方向における前記第1突部の幅よりも広く、所定の鋼板において、前記第1突部と前記第2突部とを周方向にずらした位置関係で、前記軸方向から見た前記第1分割界磁子コア及び前記第2分割界磁子コアの形状を打ち抜いて、前記第1分割界磁子コアと前記第2分割界磁子コアについての積層鋼板を形成し、前記積層鋼板を前記軸方向に積層する。   A seventh aspect of the method for manufacturing a field element according to the present invention is the method for manufacturing a field element according to the first or second aspect, wherein the first divided field element core (20) includes a plurality of field elements. The second split field core (20) has a plurality of second surfaces (341, 342), and the first and second surfaces are a plurality of first surfaces (241, 242). Of each of the second field magnets (41) of each of the first field magnet cores are opposed to each other in the radial direction, and the first split field element cores extend from each of the first surfaces to the second split field magnet cores. A plurality of first protrusions (26) projecting in the radial direction toward the first surface, and the second divided field element core is directed from each of the second surfaces to the first divided field element core. And a plurality of second protrusions (36) protruding in the radial direction, and in the field element, each of the first protrusions and each of the second protrusions Are in contact with each other in the radial direction at the contact surface, and the first divided field element core and the second divided field element core are separated from each other in the radial direction except for the contact surface. The length of the first surface in the direction is wider than the width of the second protrusion in the circumferential direction, and the length of the second surface in the circumferential direction is larger than the width of the first protrusion in the circumferential direction. Widely, in a predetermined steel plate, the first split field core and the second split field viewed from the axial direction in a positional relationship in which the first protrusion and the second protrusion are shifted in the circumferential direction. The shape of the child core is punched to form laminated steel sheets for the first divided field element core and the second divided field element core, and the laminated steel sheets are laminated in the axial direction.

本発明にかかる界磁子の製造方法の第8の態様は、第7の態様にかかる界磁子の製造方法であって、前記当接面の複数はいずれも前記周方向に対して同じ方向に傾斜している。   An eighth aspect of the method for manufacturing a field element according to the present invention is the method for manufacturing a field element according to the seventh aspect, wherein a plurality of the contact surfaces are in the same direction with respect to the circumferential direction. It is inclined to.

本発明にかかる界磁子の製造方法の第9の態様は、第7又は第8の態様にかかる界磁子の製造方法であって、前記第2界磁磁石(41)の各々は当該第2界磁磁石を挟む前記第1界磁磁石(40)の間で、前記軸の周りで隣り合う2つの第3界磁磁石(411)と第4界磁磁石(412)とを有し、前記界磁子において、前記第1突部(26)と前記第2突部(36)は前記第3及び前記第4界磁磁石の間で当接する。   According to a ninth aspect of the field element manufacturing method of the present invention, there is provided the field element manufacturing method according to the seventh or eighth aspect, wherein each of the second field magnets (41) is the second field magnet (41). Between the first field magnet (40) sandwiching the two field magnets, there are two third field magnets (411) and a fourth field magnet (412) adjacent to each other around the axis, In the field element, the first protrusion (26) and the second protrusion (36) abut between the third and fourth field magnets.

本発明にかかる界磁子の第1の態様によれば、この発明にかかる界磁子の第1の態様は、いわゆるハルバッハ配列を呈する界磁磁石を有する。第2分割界磁子コアを設けた状態で着磁前の第1界磁磁石たる第1磁性体を着磁し、第2分割界磁子コアを設けない状態で着磁前の第2界磁磁石たる第2磁性体を着磁して第1界磁磁石及び第2界磁磁石を形成する製造方法に資することができる。   According to the 1st aspect of the field element concerning this invention, the 1st aspect of the field element concerning this invention has a field magnet which exhibits what is called a Halbach arrangement. The first magnetic body, which is the first field magnet before magnetization, is provided with the second divided field element core provided, and the second field before magnetization is provided without the second divided field element core. It can contribute to the manufacturing method which magnetizes the 2nd magnetic body which is a magnet magnet, and forms a 1st field magnet and a 2nd field magnet.

本発明にかかる界磁子の第2の態様によれば、第2分割界磁子コアを設けない状態で着磁前の第2界磁磁石たる第2磁性体を着磁するに際して、第2磁性体に対して第1分割界磁子コアと反対側では例えば空気などの磁気抵抗の大きい非磁性体が径方向に延在する。第2磁性体は周方向において第1磁性体の間に挟まれているので、第1分割界磁コアを介しての着磁用磁極面からの磁束は第1磁性体を径方向に通過するよりも、第2磁性体を周方向に通りやすい。従って、第2磁性体を着磁しやすい。   According to the second aspect of the field element according to the present invention, when the second magnetic body, which is the second field magnet before magnetization, is magnetized without providing the second divided field element core, On the side opposite to the first divided field element core with respect to the magnetic material, a nonmagnetic material having a large magnetic resistance, such as air, extends in the radial direction. Since the second magnetic body is sandwiched between the first magnetic bodies in the circumferential direction, the magnetic flux from the magnetizing magnetic pole surface through the first divided field core passes through the first magnetic body in the radial direction. It is easier to pass through the second magnetic body in the circumferential direction. Therefore, it is easy to magnetize the second magnetic body.

本発明にかかる界磁子の第3の態様によれば、着磁前の第1界磁磁石及び第2界磁磁石たる第1磁性体及び第2磁性体を着磁するに際して、第1分割界磁子コアは第2磁性体を径方向に固定することができる。よって、第2磁性体を固定する部材を別途に用意する必要がない。   According to the third aspect of the field element of the present invention, when the first magnetic body and the second magnetic body that are the first field magnet and the second field magnet before magnetization are magnetized, the first division is performed. The field element core can fix the second magnetic body in the radial direction. Therefore, there is no need to separately prepare a member for fixing the second magnetic body.

本発明にかかる界磁子の第4の態様によれば、着磁前の第1界磁磁石及び第2界磁磁石たる第1磁性体及び第2磁性体を着磁するに際して、第1分割界磁子コアは第1磁性体を径方向に固定することができる。よって、第1磁性体を固定する部材を別途に用意する必要がない。   According to the 4th aspect of the field element concerning this invention, when magnetizing the 1st magnetic body and the 2nd magnetic body which are the 1st field magnet and the 2nd field magnet before magnetization, the 1st division The field element core can fix the first magnetic body in the radial direction. Therefore, there is no need to separately prepare a member for fixing the first magnetic body.

本発明にかかる界磁子の第5の態様によれば、薄肉部には磁束が通りにくいので、第2分割界磁子コアを除去した状態での第1分割界磁子コアを介した着磁用磁極面からの磁束は、着磁前の第1界磁磁石たる第1磁性体をより通りにくく、着磁前の第2界磁磁石たる第2磁性体をより通りやすい。   According to the fifth aspect of the field element of the present invention, since the magnetic flux does not easily pass through the thin wall portion, the attachment through the first divided field element core in the state where the second divided field element core is removed. The magnetic flux from the magnetic pole face is less likely to pass through the first magnetic body that is the first field magnet before magnetization, and more likely to pass through the second magnetic body that is the second field magnet before magnetization.

本発明にかかる界磁子の第6の態様によれば、第1突部と第2突部とを当接させて第1分割界磁子コアと第2分割界磁子コアとを組み立てる場合に、第1分割界磁子コアに対して第2分割界磁子コアを周方向に回転させることで、第1突部と第2突部とを当接させることができるので、容易に組み立てることができる。   According to the sixth aspect of the field element of the present invention, when the first divided field element core and the second divided field element core are assembled by bringing the first protrusion and the second protrusion into contact with each other. In addition, since the first projecting portion and the second projecting portion can be brought into contact with each other by rotating the second segmented field core core in the circumferential direction with respect to the first segmented field core, it is easily assembled. be able to.

本発明にかかる界磁子の第7の態様によれば、第1突部と第2突部とから成る部分によって、ハルバッハ配列においてもq軸インダクタンスを向上させることができる。   According to the seventh aspect of the field element of the present invention, the q-axis inductance can be improved even in the Halbach array by the portion composed of the first protrusion and the second protrusion.

本発明にかかる界磁子の第8の態様によれば、界磁子コアの磁気特性はその圧延方向に依存する。径方向で第1界磁磁石を挟む第1分割界磁子コア及び第2分割界磁子コアの圧延方向が互いに傾斜しているので、複数の第1界磁磁石の各々において第1分割界磁子コアの圧延方向の第1界磁磁石磁極中心と回転中心を結ぶ線に対する角度の絶対値と、第2分割界磁子コアの圧延方向の第一界磁磁石磁極中心と回転中心を結ぶ線に対する角度の絶対値とを平均した角度について、対応する第1界磁磁石に対するその方向の角度が互いに近づく。よって、複数の第1界磁磁石の動作点磁束密度のばらつきを低減することができる。   According to the eighth aspect of the field element of the present invention, the magnetic properties of the field element core depend on its rolling direction. Since the rolling directions of the first divided field element core and the second divided field element core sandwiching the first field magnet in the radial direction are inclined with respect to each other, the first divided field in each of the plurality of first field magnets The absolute value of the angle with respect to the line connecting the first field magnet magnetic pole center and the rotation center in the rolling direction of the magnetic core, and the first field magnet magnetic pole center and the rotation center in the rolling direction of the second divided field core. About the angle which averaged the absolute value of the angle with respect to a line, the angle of the direction with respect to a corresponding 1st field magnet approaches mutually. Therefore, it is possible to reduce variations in the operating point magnetic flux density of the plurality of first field magnets.

本発明にかかる界磁子の第9の態様によれば、複数の第1界磁磁石の各々において第1分割界磁子コアの圧延方向の第一界磁磁石磁極中心と回転中心を結ぶ線に対する角度の絶対値と、第2分割界磁子コアの圧延方向の第一界磁磁石磁極中心と回転中心を結ぶ線に対する角度の絶対値とを平均した角度について、対応する第1界磁磁石に対するその方向の角度が全ての極において45°となる。   According to the ninth aspect of the field element of the present invention, the line connecting the first field magnet magnetic pole center and the rotation center in the rolling direction of the first divided field element core in each of the plurality of first field magnets. The first field magnet corresponding to the angle obtained by averaging the absolute value of the angle with respect to the angle and the absolute value of the angle with respect to the line connecting the first field magnet magnetic pole center and the rotation center in the rolling direction of the second divided field element core The angle in that direction with respect to is 45 ° at all poles.

本発明にかかる界磁子の製造方法の第1の態様によれば、第1工程においては、第2分割界磁子コアが設けられているので、一の着磁用磁極面から流出する磁束は第1磁性体を径方向に通過しやすい。よって、第1磁性体を径方向に着磁して第1界磁磁石を形成しやすい。   According to the first aspect of the field element manufacturing method of the present invention, since the second split field element core is provided in the first step, the magnetic flux flows out from one magnetizing magnetic pole surface. Easily passes through the first magnetic body in the radial direction. Therefore, it is easy to form the first field magnet by magnetizing the first magnetic body in the radial direction.

第2工程においては、第2分割界磁子コアが設けられていないので、第1界磁磁石に対して着磁用磁極面とは反対側に位置するコアの径方向における幅は短い。従って、一の着磁用磁極面から流出する磁束は、第2分割界磁子コアがある場合に比べて第1磁性体を貫通しにくい。言い換えるならば、比較的第2磁性体を周方向に通過しやすい。よって、第2磁性体を径方向に着磁して第2界磁磁石を形成しやすい。   In the second step, since the second split field element core is not provided, the width in the radial direction of the core located on the side opposite to the magnetizing magnetic pole surface with respect to the first field magnet is short. Therefore, the magnetic flux flowing out from one magnetizing magnetic pole surface is less likely to penetrate the first magnetic body as compared with the case where the second divided field element core is provided. In other words, it is relatively easy to pass through the second magnetic body in the circumferential direction. Therefore, it is easy to form the second field magnet by magnetizing the second magnetic body in the radial direction.

よって、第1界磁磁石及び第2界磁磁石がいわゆるハルバッハ配列を構成した界磁子を製造することができる。また着磁後の第1界磁磁石及び第2界磁磁石を軸の周りで交互に配置する場合にこれらが吸引あるいは反発し合って配置を困難にする、という製造上の不都合を排除できる。   Therefore, a field element in which the first field magnet and the second field magnet constitute a so-called Halbach array can be manufactured. Further, when the first field magnet and the second field magnet after magnetization are alternately arranged around the axis, it is possible to eliminate the manufacturing inconvenience that they are attracted or repelled to make the arrangement difficult.

本発明にかかる界磁子の製造方法の第2の態様によれば、第1工程及び第2工程において第1磁性体及び第2磁性体を着磁した後は第2分割界磁子コアを除去する必要がない。よって、第1及び第2工程を実行することで、第1磁性体及び第2磁性体を着磁しながら、界磁子を組み立てることができる。   According to the 2nd aspect of the manufacturing method of the field element concerning this invention, after magnetizing the 1st magnetic body and the 2nd magnetic body in the 1st process and the 2nd process, the 2nd division field element core is used. There is no need to remove it. Therefore, by performing the first and second steps, the field element can be assembled while magnetizing the first magnetic body and the second magnetic body.

本発明にかかる界磁子の製造方法の第3の態様によれば、着磁前の第2界磁磁石たる第2磁性体を着磁するに際して、着磁用磁極面とは反対側には第2分割界磁子コアが除去されているので、着磁前の第1界磁磁石たる第1磁性体の第2表面側は例えば空気などの磁気抵抗の大きい非磁性体によって覆われる。よって、着磁用磁極面からの磁束は第1磁性体を径方向により通過しにくく、より第2磁性体を通りやすい。従って、第2磁性体を着磁しやすい。   According to the third aspect of the field element manufacturing method of the present invention, when magnetizing the second magnetic body, which is the second field magnet before magnetization, Since the second divided field element core is removed, the second surface side of the first magnetic body that is the first field magnet before magnetization is covered with a nonmagnetic material having a large magnetic resistance such as air. Therefore, the magnetic flux from the magnetizing magnetic pole surface is less likely to pass through the first magnetic body in the radial direction, and more easily passes through the second magnetic body. Therefore, it is easy to magnetize the second magnetic body.

本発明にかかる界磁子の製造方法の第4の態様によれば、着磁前の第1界磁磁石及び第2界磁磁石たる第1磁性体及び第2磁性体を着磁するに際して、第1分割界磁子コアは第2磁性体を径方向に固定することができる。よって、第2磁性体を固定する部材を別途に用意する必要がない。   According to the fourth aspect of the method for manufacturing a field element according to the present invention, when magnetizing the first magnetic body and the second magnetic body that are the first field magnet and the second field magnet before magnetization, The first divided field element core can fix the second magnetic body in the radial direction. Therefore, there is no need to separately prepare a member for fixing the second magnetic body.

本発明にかかる界磁子の製造方法の第5の態様によれば、着磁前の第1界磁磁石及び第2界磁磁石たる第1磁性体及び第2磁性体を着磁するに際して、第1分割界磁子コアは第1磁性体を径方向に固定することができる。よって、第1磁性体を固定する部材を別途に用意する必要がない。   According to the fifth aspect of the method of manufacturing a field element according to the present invention, when magnetizing the first magnetic body and the second magnetic body that are the first field magnet and the second field magnet before magnetization, The first divided field element core can fix the first magnetic body in the radial direction. Therefore, there is no need to separately prepare a member for fixing the first magnetic body.

本発明にかかる界磁子の製造方法の第6の態様によれば、薄肉部には磁束が通りにくいので、第2分割界磁子コアを除去した状態で着磁用磁極面からの磁束は、着磁前の第1界磁磁石たる第1磁性体をより通りにくく、着磁前の第2界磁磁石たる第2磁性体をより通りやすい。   According to the sixth aspect of the method for manufacturing a field element according to the present invention, since the magnetic flux hardly passes through the thin portion, the magnetic flux from the magnetizing magnetic pole surface with the second split field element core removed is The first magnetic body that is the first field magnet before magnetization is more difficult to pass, and the second magnetic body that is the second field magnet before magnetization is easier to pass.

本発明にかかる界磁子の製造方法の第7の態様によれば、第1突部と第2突部とは周方向にずれているので、所定の鋼板に対して1度の打ち抜きで第1分割界磁子コアと第2分割界磁子コアについての積層鋼板を形成できる。   According to the seventh aspect of the field element manufacturing method of the present invention, since the first protrusion and the second protrusion are displaced in the circumferential direction, the first protrusion is punched once with respect to a predetermined steel plate. Laminated steel sheets for the first divided field element core and the second divided field element core can be formed.

本発明にかかる界磁子の製造方法の第8の態様によれば、第1突部と第2突部とを当接させて第1分割界磁子コアと第2分割界磁子コアとを組み立てる場合に、第1分割界磁子コアに対して第2分割界磁子コアを周方向に回転させることで、第1突部と第2突部とを当接させることができるので、容易に組み立てることができる。   According to the 8th aspect of the manufacturing method of the field element concerning this invention, a 1st division | segmentation field element core and a 2nd division field element core are made to contact | abut a 1st protrusion and a 2nd protrusion. When assembling, by rotating the second divided field element core in the circumferential direction with respect to the first divided field element core, the first protrusion and the second protrusion can be brought into contact with each other, Can be easily assembled.

本発明にかかる界磁子の製造方法の第9の態様によれば、第1突部と第2突部とから成る部分によって、ハルバッハ配列においてもq軸インダクタンスを向上させることができる。   According to the ninth aspect of the method of manufacturing a field element according to the present invention, the q-axis inductance can be improved even in the Halbach array by the portion including the first protrusion and the second protrusion.

第1の実施の形態.
<界磁子の構成>
図1は界磁子の概念的な構成の一例を示している。図1は回転軸Pに垂直な断面を示している。なお、以下で説明する他の図においても同じ断面が示される。
First embodiment.
<Configuration of field element>
FIG. 1 shows an example of a conceptual configuration of a field element. FIG. 1 shows a cross section perpendicular to the rotation axis P. The same cross section is also shown in other drawings described below.

本界磁子1はラジアルギャップ型の回転電機における界磁子として採用される。界磁子1は複数の第1界磁磁石40と、複数の第2界磁磁石41と、界磁子コア10とを備えている。   The field element 1 is employed as a field element in a radial gap type rotating electrical machine. The field element 1 includes a plurality of first field magnets 40, a plurality of second field magnets 41, and a field element core 10.

第1界磁磁石40は例えばネオジム、鉄、ホウ素を主成分とした希土類磁石であって、回転軸Pの周りで環状に配置されている。図1では4つの第1界磁磁石40(いわゆる4極)が示されているが、6個以上あってもよい。第1界磁磁石40は例えば板状の形状を有しており、その厚み方向が第1界磁磁石40の径方向に沿うように配置されている。図1で例示された形状についてより正確に言えば、第1界磁磁石40の厚み方向が、回転軸Pに垂直な断面における第1界磁磁石40の中心の位置(以下、磁極中心とも呼ぶ)での径方向と一致する。また第1界磁磁石40は径方向(以下、構成要素について径方向に言及する場合、当該構成要素が配置された位置での径方向を、単に径方向と呼ぶ)に着磁される。ここでは第1界磁磁石40の厚み方向に着磁される。軸を中心とした周方向(以下、単に周方向と呼ぶ)で隣り合う第1界磁磁石40が径方向の一方に呈する磁極面は周方向で互いに異なっている。第1界磁磁石40の異方性は、望ましくは、磁極中心と回転中心を結ぶ線の方向に平行である平行異方性を呈する。磁束密度が高く、着磁方向を一定に安定させやすいからである。   The first field magnet 40 is a rare earth magnet mainly composed of neodymium, iron, or boron, for example, and is arranged in a ring around the rotation axis P. In FIG. 1, four first field magnets 40 (so-called four poles) are shown, but there may be six or more. The first field magnet 40 has, for example, a plate shape, and is arranged so that the thickness direction thereof is along the radial direction of the first field magnet 40. More precisely, in the shape illustrated in FIG. 1, the thickness direction of the first field magnet 40 is the position of the center of the first field magnet 40 in the cross section perpendicular to the rotation axis P (hereinafter also referred to as the magnetic pole center). ) In the radial direction. The first field magnet 40 is magnetized in the radial direction (hereinafter, when referring to the radial direction of the component, the radial direction at the position where the component is arranged is simply referred to as the radial direction). Here, the first field magnet 40 is magnetized in the thickness direction. The magnetic pole surfaces that the first field magnets 40 adjacent to each other in the circumferential direction around the axis (hereinafter simply referred to as the circumferential direction) present in one radial direction are different from each other in the circumferential direction. The anisotropy of the first field magnet 40 preferably exhibits a parallel anisotropy that is parallel to the direction of the line connecting the magnetic pole center and the rotation center. This is because the magnetic flux density is high and the magnetization direction is easily stabilized.

第2界磁磁石41は例えばネオジム、鉄、ホウ素を主成分とした希土類磁石であって、回転軸Pの周りで環状に配置されている。第2界磁磁石41の各々は周方向で隣り合う第1界磁磁石40の二者の間に配置されている。第2界磁磁石41は例えば直方体形状を有しており、回転軸Pにおける断面でその長手方向が第2界磁磁石41が配置された位置における径方向に沿うように配置されている。第2界磁磁石41は周方向に着磁されている。ここでは、第2界磁磁石41が、その長手方向と垂直な厚み方向に着磁される。第2界磁磁石41は周方向で自身と隣り合い、図示せぬ電機子が配置される側(図1においては径方向において回転軸Pとは反対側)にN極を呈する第1界磁磁石40へと向かって着磁される。言い換えると、第1界磁磁石40が電機子に対して呈する磁極面に対して、周方向で当該第1界磁磁石40と隣り合う第1界磁磁石41は、当該第1界磁磁石40に向かって同一の極性面を呈する。第2界磁磁石41の異方性は、望ましくは、磁極境界(周方向で隣り合う磁極同士の中央)と回転中心を結ぶ線の方向に直交する平行異方性を呈する。磁束密度が高く、着磁方向を一定に安定させやすいからである。   The second field magnet 41 is a rare earth magnet mainly composed of neodymium, iron, or boron, for example, and is arranged in a ring around the rotation axis P. Each of the second field magnets 41 is disposed between two of the first field magnets 40 adjacent in the circumferential direction. The second field magnet 41 has, for example, a rectangular parallelepiped shape, and is arranged such that the longitudinal direction of the second field magnet 41 is along the radial direction at the position where the second field magnet 41 is arranged. The second field magnet 41 is magnetized in the circumferential direction. Here, the second field magnet 41 is magnetized in the thickness direction perpendicular to the longitudinal direction. The second field magnet 41 is adjacent to itself in the circumferential direction, and the first field magnet presenting an N pole on the side where an armature (not shown) is arranged (in FIG. 1, the side opposite to the rotation axis P in the radial direction). Magnetized toward the magnet 40. In other words, the first field magnet 41 adjacent to the first field magnet 40 in the circumferential direction with respect to the magnetic pole surface that the first field magnet 40 presents to the armature is the first field magnet 40. It exhibits the same polar surface toward The anisotropy of the second field magnet 41 desirably exhibits parallel anisotropy orthogonal to the direction of the line connecting the magnetic pole boundary (the center between the magnetic poles adjacent in the circumferential direction) and the rotation center. This is because the magnetic flux density is high and the magnetization direction is easily stabilized.

このような第1界磁磁石40及び第2界磁磁石41の配列はいわゆるハルバッハ配列に基づいている。これによって、回転軸Pに対して反対側から界磁子1に対向して電機子を配置した場合に、極間の磁束の漏洩を低減し、界磁子1が電機子へと供給する有効磁束を増大させることができる。   Such an arrangement of the first field magnet 40 and the second field magnet 41 is based on a so-called Halbach arrangement. Accordingly, when the armature is disposed opposite to the field element 1 from the opposite side to the rotation axis P, leakage of magnetic flux between the poles is reduced, and the field element 1 is effectively supplied to the armature. Magnetic flux can be increased.

界磁子コア10は例えば回転軸Pに沿った軸方向(以下、単に軸方向と呼ぶ)に延在した円柱形状を有している。界磁子コア10は透磁率の高い軟磁性体(例えば鉄)によって構成される。また界磁子コア10の導電率は第1界磁磁石40及び第2界磁磁石41の導電率よりも低いことが望ましく、例えば圧粉磁心や軸方向に積層された積層鋼板(以下、電磁鋼板とも呼ぶ)で構成される。これによって、渦電流の発生を抑制することができる。また界磁子コア10が電磁鋼板で構成される場合は軸方向に貫通するリベットでこれらの相互間を固定するとよい。   The field element core 10 has, for example, a cylindrical shape extending in the axial direction along the rotation axis P (hereinafter simply referred to as the axial direction). The field element core 10 is made of a soft magnetic material (for example, iron) having a high magnetic permeability. Further, it is desirable that the conductivity of the field element core 10 is lower than the conductivity of the first field magnet 40 and the second field magnet 41, for example, a dust core or a laminated steel sheet laminated in the axial direction (hereinafter referred to as electromagnetic). (Also called a steel plate). Thereby, generation | occurrence | production of an eddy current can be suppressed. Further, when the field element core 10 is made of an electromagnetic steel plate, it is preferable to fix these with a rivet penetrating in the axial direction.

界磁子コア10は軸方向に沿って第1界磁磁石40及び第2界磁磁石41が貫挿される。言い換えると界磁子コア10は第1界磁磁石40が貫挿される第1貫挿孔12と、第2界磁磁石41が貫挿される第2貫挿孔14とを備えている。なお、図1においては、第1界磁磁石40と第2界磁磁石41とがそれぞれ第1貫挿孔12と第2貫挿孔14に対して接触しない程度に小さく表現されている。実際は表面22,32が第1界磁磁石40と接触し、又は/及び表面24,34が第2界磁磁石41と接触する。また周方向における第1界磁磁石40及び第2界磁磁石41の両端の実際の位置が破線で示されている。   A first field magnet 40 and a second field magnet 41 are inserted through the field element core 10 along the axial direction. In other words, the field element core 10 includes a first insertion hole 12 through which the first field magnet 40 is inserted, and a second insertion hole 14 through which the second field magnet 41 is inserted. In FIG. 1, the first field magnet 40 and the second field magnet 41 are expressed so small that they do not contact the first through hole 12 and the second through hole 14, respectively. Actually, the surfaces 22 and 32 are in contact with the first field magnet 40, and / or the surfaces 24 and 34 are in contact with the second field magnet 41. In addition, the actual positions of both ends of the first field magnet 40 and the second field magnet 41 in the circumferential direction are indicated by broken lines.

また界磁子コア10は分割界磁子コア20,30を有している。分割界磁子コア20の少なくとも一部と分割界磁子コア30とは径方向において第1界磁磁石40を相互に反対側から挟んでいる。   The field element core 10 has divided field element cores 20 and 30. At least a part of the divided field element core 20 and the divided field element core 30 sandwich the first field magnet 40 from the opposite side in the radial direction.

以下、界磁子コア10について図1を例に挙げてより具体的に説明する。第1貫挿孔12は径方向において第1界磁磁石40を介して相互に対向する一対の表面22,32を有している。第2貫挿孔14は径方向において第2界磁磁石41を介して相互に対向する一対の表面24,34を有している。言い換えると表面22,32が第1界磁磁石40を、表面24,34が第2界磁磁石41をそれぞれ径方向で挟む。   Hereinafter, the field element core 10 will be described more specifically with reference to FIG. The first insertion hole 12 has a pair of surfaces 22 and 32 that are opposed to each other via the first field magnet 40 in the radial direction. The second through hole 14 has a pair of surfaces 24 and 34 that face each other with the second field magnet 41 in the radial direction. In other words, the surfaces 22 and 32 sandwich the first field magnet 40 and the surfaces 24 and 34 sandwich the second field magnet 41 in the radial direction.

分割界磁子コア20,30は界磁子コア10を径方向に分割した形状を有している。分割界磁子コア20は分割界磁子コア30に対して回転軸Pとは反対側に位置している。分割界磁子コア20は表面22,24を備え、分割界磁子コア30は表面32,34を備えている。かかる態様によれば、第1界磁磁石40及び第2界磁磁石41がそれぞれ径方向で分割界磁子コア20,30によって挟まれる。   The divided field element cores 20 and 30 have a shape obtained by dividing the field element core 10 in the radial direction. The divided field element core 20 is located on the side opposite to the rotation axis P with respect to the divided field element core 30. The split field element core 20 includes surfaces 22 and 24, and the split field element core 30 includes surfaces 32 and 34. According to this aspect, the first field magnet 40 and the second field magnet 41 are sandwiched between the split field element cores 20 and 30 in the radial direction, respectively.

このような界磁子1によれば、分割界磁子コア30を設けた状態で硬磁性体に着磁して第1界磁磁石40を形成し、分割界磁子コア30を設けない状態で硬磁性体に着磁して第2界磁磁石41を形成する製造方法に資することができる。以下、着磁されて第1界磁磁石40となる硬磁性体を第1磁性体と称し、着磁されて第2界磁磁石41となる硬磁性体を第2磁性体と称する。   According to such a field element 1, the first field magnet 40 is formed by magnetizing the hard magnetic body with the divided field element core 30 provided, and the divided field element core 30 is not provided. Thus, the second magnetic field magnet 41 can be formed by magnetizing the hard magnetic material. Hereinafter, the hard magnetic body that is magnetized and becomes the first field magnet 40 is referred to as a first magnetic body, and the hard magnetic body that is magnetized and becomes the second field magnet 41 is referred to as a second magnetic body.

<界磁子の製造方法>
以下、界磁子1の製造方法について説明する。図2は界磁子の製造方法の一例を示すフローチャートである。図2に示すフローチャートは第1磁性体を着磁して第1界磁磁石40を形成した後に第2磁性体を着磁して第2界磁磁石41を形成する場合の一例を示している。
<Method for manufacturing field element>
Hereinafter, a method for manufacturing the field element 1 will be described. FIG. 2 is a flowchart showing an example of a method for manufacturing a field element. The flowchart shown in FIG. 2 shows an example in which the first magnetic body is magnetized to form the first field magnet 40 and then the second magnetic body is magnetized to form the second field magnet 41. .

まず、ステップS1にて、第1磁性体と第2磁性体とを、それぞれ第1界磁磁石40及び第2界磁磁石41が配置される位置に配置して界磁子コア10に貫挿させて相互に固定する。第1磁性体及び第2磁性体はいずれも着磁前であるので、これらの相互間には吸引力あるいは反発力が作用しない。よって、第1磁性体及び第2磁性体を容易に配置して固定できる。   First, in step S1, the first magnetic body and the second magnetic body are disposed at positions where the first field magnet 40 and the second field magnet 41 are disposed, respectively, and are inserted into the field element core 10. Let them fix each other. Since both the first magnetic body and the second magnetic body are not magnetized, no attractive force or repulsive force acts between them. Therefore, the first magnetic body and the second magnetic body can be easily arranged and fixed.

次に、ステップS2にて、分割界磁子コア20,30が設けられた状態で、第1磁性体を着磁して第1界磁磁石40を形成する。図3は第1磁性体400を着磁して第1界磁磁石40を形成するときの様子を示している。図3では、回転軸Pから見た周方向における一部の界磁子1が示されている。図中、矢印は着磁用磁界φ1の流れを示す。   Next, in step S2, with the split field element cores 20 and 30 provided, the first magnetic body is magnetized to form the first field magnet 40. FIG. 3 shows a state where the first magnetic body 400 is magnetized to form the first field magnet 40. In FIG. 3, a part of the field element 1 in the circumferential direction viewed from the rotation axis P is shown. In the figure, arrows indicate the flow of the magnetic field for magnetization φ1.

図3に示されるように、分割界磁子コア20に対して第1磁性体400とは反対側から着磁用磁極面60aの複数をそれぞれ径方向で複数の第1磁性体400の各々と対向させ、周方向において相互に隣り合う第1磁性体400に対して異なる極性を呈する着磁用磁界φ1を着磁用磁極面60aから発生させる。以下、具体的に説明する。   As shown in FIG. 3, a plurality of magnetizing magnetic pole surfaces 60 a are respectively arranged in the radial direction from the side opposite to the first magnetic body 400 with respect to the split field element core 20. The magnetizing magnetic field φ1 is generated from the magnetizing magnetic pole surface 60a so as to be opposed to each other and have different polarities with respect to the first magnetic bodies 400 adjacent to each other in the circumferential direction. This will be specifically described below.

着磁器は複数のティース60を備えている。複数のティース60は回転軸Pの周りで環状に配されている。ここでは、第1磁性体400の個数に対応して4個のティース60が設けられているものとする。そして複数のティース60の一端同士が回転軸Pとは反対側でバックヨーク(不図示)によって相互に磁気的に連結される。また複数のコイル(不図示)が径方向に沿った方向を軸としてそれぞれ複数のティース60の周りに巻回される。   The magnetizer includes a plurality of teeth 60. The plurality of teeth 60 are annularly arranged around the rotation axis P. Here, it is assumed that four teeth 60 are provided corresponding to the number of first magnetic bodies 400. One ends of the plurality of teeth 60 are magnetically coupled to each other by a back yoke (not shown) on the side opposite to the rotation axis P. In addition, a plurality of coils (not shown) are wound around the plurality of teeth 60 about the direction along the radial direction as an axis.

ティース60の他端は分割界磁子コア20に向けて着磁用磁極面60aを呈する。即ち、コイルに電流が流れることによって、着磁用磁極面60aからは着磁用磁束が発生する。このとき、周方向で隣り合うコイルに流れる電流の方向が互いに逆となるようにコイルに電流を流す。これによって、周方向で隣り合う着磁用磁極面60aの極性は相互に異なる。よって、一の着磁用磁極面60aから流出する磁束は当該一の着磁用磁極面60aの両隣に位置する着磁用磁極面60aへと流れる。当該磁束の向きは、一の着磁用磁極面60aから流出した直後で径方向に沿い、当該一の着磁用磁極面60aと、これと周方向で隣り合う着磁用磁極面60aとの中央で周方向に沿い、当該一の着磁用磁極面60aと周方向で隣り合う着磁用磁極面60aに流入する直前で軸方向に沿う。一の着磁用磁極面60aから流出した直後の磁束の向きは、これと周方向で隣り合う着磁用磁極面60aに流入する直前のそれと反対の方向である。   The other end of the tooth 60 presents a magnetizing magnetic pole surface 60 a toward the divided field element core 20. That is, when a current flows through the coil, a magnetizing magnetic flux is generated from the magnetizing magnetic pole surface 60a. At this time, the current is passed through the coils so that the directions of the currents flowing through the coils adjacent in the circumferential direction are opposite to each other. Accordingly, the polarities of the magnetizing magnetic pole surfaces 60a adjacent in the circumferential direction are different from each other. Therefore, the magnetic flux flowing out from one magnetizing magnetic pole surface 60a flows to the magnetizing magnetic pole surface 60a located on both sides of the one magnetizing magnetic pole surface 60a. The direction of the magnetic flux is in the radial direction immediately after flowing out from one magnetizing magnetic pole surface 60a, and between the one magnetizing magnetic pole surface 60a and the magnetizing magnetic pole surface 60a adjacent to this one in the circumferential direction. Along the circumferential direction at the center and along the axial direction immediately before flowing into the magnetization magnetic pole surface 60a adjacent to the one magnetization magnetic pole surface 60a in the circumferential direction. The direction of the magnetic flux immediately after flowing out from one magnetizing magnetic pole surface 60a is the opposite direction to that immediately before flowing into the magnetizing magnetic pole surface 60a adjacent in the circumferential direction.

そして着磁用磁極面60aが径方向において第1磁性体400と対向し、分割界磁子コア30が第1磁性体400に対して着磁用磁極面60aと反対側に配置されている。かかる位置関係によれば、一の着磁用磁極面60aから流出した磁束は磁気抵抗(リラクタンス)の低い分割界磁子コア30を介して、当該一の着磁用磁極面60aと周方向で隣り合う着磁用磁極面60aへと流入しやすい。一の着磁用磁極面60aから流出した磁束は、当該一の着磁用磁極面60aと対向する一の第1磁性体400を径方向に沿って通って分割界磁子コア30へ流入しやすい。当該磁束は分割界磁子コア30を周方向に流れて、当該一の第1磁性体400と隣り合う第1磁性体400を径方向に沿って通り、当該一の着磁用磁極面60aと隣り合う着磁用磁極面60aへと流入する。   The magnetizing magnetic pole surface 60a faces the first magnetic body 400 in the radial direction, and the divided field element core 30 is disposed on the opposite side of the magnetizing magnetic pole surface 60a with respect to the first magnetic body 400. According to this positional relationship, the magnetic flux flowing out from one magnetizing magnetic pole surface 60a is circumferentially separated from the one magnetizing magnetic pole surface 60a via the split field element core 30 having a low magnetic resistance (reluctance). It tends to flow into the adjacent magnetizing magnetic pole surface 60a. The magnetic flux flowing out from one magnetizing magnetic pole surface 60a flows into the divided field element core 30 through the one first magnetic body 400 facing the one magnetizing magnetic pole surface 60a along the radial direction. Cheap. The magnetic flux flows in the circumferential direction in the split field element core 30, passes through the first magnetic body 400 adjacent to the one first magnetic body 400 along the radial direction, and the one magnetic pole surface 60a for magnetization. It flows into the adjacent magnetizing magnetic pole surface 60a.

磁束が上記経路を流れることによって第1磁性体400は径方向に着磁されて第1界磁磁石40が形成される。そして周方向で隣り合う第1磁性体400には互いに反対方向の磁束が流れるので、これらは互いに反対方向に着磁される。また複数の第1磁性体400の全てに対向して着磁用磁極面60aを配置しているので、複数の第1磁性体400を1つの工程で同時に着磁できる。   When the magnetic flux flows through the path, the first magnetic body 400 is magnetized in the radial direction to form the first field magnet 40. Since magnetic fluxes in opposite directions flow through the first magnetic bodies 400 adjacent in the circumferential direction, they are magnetized in opposite directions. Further, since the magnetizing magnetic pole surface 60a is disposed so as to face all of the plurality of first magnetic bodies 400, the plurality of first magnetic bodies 400 can be magnetized simultaneously in one process.

なお、一の着磁用磁極面60aから第1磁性体400を介して当該一の着磁用磁極面60aと隣り合う着磁用磁極面60aへと至る第1経路における磁気抵抗が、一の着磁用磁極面60aから第2磁性体410を介して当該一の着磁用磁極面60aと隣り合う着磁用磁極面60aへと至る第2経路における磁気抵抗よりも低いことが望ましい。これによって、より多くの磁束が第1経路を通るので、より多くの磁束が第1磁性体400を通る。なお、ここで、第2磁性体も若干着磁されてもよい。   The magnetic resistance in the first path from one magnetizing magnetic pole surface 60a to the magnetizing magnetic pole surface 60a adjacent to the one magnetizing magnetic pole surface 60a via the first magnetic body 400 is one. It is desirable that the magnetic resistance be lower than that in the second path from the magnetizing magnetic pole surface 60a through the second magnetic body 410 to the magnetizing magnetic pole surface 60a adjacent to the one magnetizing magnetic pole surface 60a. Accordingly, more magnetic flux passes through the first path, so that more magnetic flux passes through the first magnetic body 400. Here, the second magnetic body may be slightly magnetized.

これは例えば周方向における第2磁性体410の幅が径方向における第1磁性体400の幅よりも広い構造を採用することで達成できる。なぜなら、界磁子コア10は透磁率の高い材料で構成されているところ、着磁用磁界が受ける磁気抵抗の大きさは透磁率の低い第1磁性体400及び第2磁性体410に大きく依存するからである。よって、第1経路において第1磁性体400を通る距離(径方向の厚みの2倍)を、第2経路において第2磁性体410を通る距離(周方向の厚み)よりも短くすることで、第1経路における磁気抵抗を第2経路における磁気抵抗よりも小さくできる。また、空隙の透磁率は低いので、周方向に隣接して第2磁性体410と接する空隙を設け、周方向における第2磁性体410の厚みと、周方向における当該空隙の幅の和が、径方向における第1磁性体400の厚みの2倍よりも広い構造を採用してもよい。   This can be achieved, for example, by adopting a structure in which the width of the second magnetic body 410 in the circumferential direction is wider than the width of the first magnetic body 400 in the radial direction. This is because the field element core 10 is made of a material having high magnetic permeability, and the magnitude of the magnetic resistance received by the magnetic field for magnetization greatly depends on the first magnetic body 400 and the second magnetic body 410 having low magnetic permeability. Because it does. Therefore, by making the distance (twice the radial thickness) through the first magnetic body 400 in the first path shorter than the distance (circumferential thickness) through the second magnetic body 410 in the second path, The magnetoresistance in the first path can be made smaller than the magnetoresistance in the second path. In addition, since the magnetic permeability of the air gap is low, an air gap that is adjacent to the circumferential direction in contact with the second magnetic body 410 is provided, and the sum of the thickness of the second magnetic body 410 in the circumferential direction and the width of the air gap in the circumferential direction is A structure wider than twice the thickness of the first magnetic body 400 in the radial direction may be employed.

次に、分割界磁子コア30を除去した状態で第2磁性体410を着磁して第2界磁磁石41を形成する。図4は第2磁性体410を着磁して第2界磁磁石41を形成するときの様子を示している。図4は回転軸Pに沿って見た周方向における一部の界磁子を示している。   Next, the second field magnet 41 is formed by magnetizing the second magnetic body 410 with the divided field element core 30 removed. FIG. 4 shows a state where the second magnetic body 410 is magnetized to form the second field magnet 41. FIG. 4 shows a part of the field elements in the circumferential direction as viewed along the rotation axis P.

まず、ステップS3にて分割界磁子コア30が除去される。しかしながら、単に分割界磁子コア30を除去した場合には、第2磁性体410が分割界磁子コア20から外れる可能性がある。第1界磁磁石40は着磁されているので、分割界磁子コア20との間に吸引力が働き、以って第1界磁磁石40は分割界磁子コア20に固定される。   First, the split field element core 30 is removed in step S3. However, when the split field element core 30 is simply removed, the second magnetic body 410 may be detached from the split field element core 20. Since the first field magnet 40 is magnetized, an attractive force is exerted between the first field magnet 40 and the divided field element core 20, so that the first field magnet 40 is fixed to the divided field element core 20.

第2磁性体410を固定するために、例えば分割界磁子コア30と同一形状を有する非磁性のダミー分割界磁子コア50を、分割界磁子コア30と交換するとよい。例えば軸方向の一方からダミー分割界磁子コア50を分割界磁子コア30に押し当てて、ダミー分割界磁子コア50によって分割界磁子コア30を軸方向に沿って押し出せばよい。   In order to fix the second magnetic body 410, for example, a non-magnetic dummy split field element core 50 having the same shape as the split field element core 30 may be replaced with the split field element core 30. For example, the dummy divided field element core 50 may be pressed against the divided field element core 30 from one side in the axial direction, and the divided field element core 30 may be pushed out along the axial direction by the dummy divided field element core 50.

次に、ステップS4にて、分割界磁子コア20に対して第1磁性体400とは反対側から複数の着磁用磁極面60aをそれぞれ複数の第1磁性体400に対向させ、着磁用磁極面60aからステップS2と同じ極性で着磁用磁界を発生させる。以下、具体的に説明する。   Next, in step S4, the plurality of magnetizing magnetic pole surfaces 60a are opposed to the plurality of first magnetic bodies 400 from the side opposite to the first magnetic body 400 with respect to the divided field element core 20, respectively. A magnetizing magnetic field is generated from the magnetic pole surface 60a with the same polarity as step S2. This will be specifically described below.

ステップS2と同じ対応関係で着磁用磁極面60aと第1磁性体400とが対向するように、第1磁性体400に対して着磁器が配置される。これによって、ステップS2と同じ極性で着磁用磁極面60aから着磁用磁界が発生する。   The magnetizer is arranged with respect to the first magnetic body 400 so that the magnetizing magnetic pole surface 60a and the first magnetic body 400 face each other with the same correspondence as in step S2. As a result, a magnetizing magnetic field is generated from the magnetizing magnetic pole surface 60a with the same polarity as in step S2.

かかる位置関係によれば、回転軸P側において第1界磁磁石40が透磁率の低い非磁性体によって覆われるので、着磁用磁極面60aから流出する磁束は第1界磁磁石41を通るよりも、当該磁束は第2磁性体410を周方向に沿って通過し、以って第2磁性体410が周方向に着磁されて第2界磁磁石41が形成される。かかる磁束が図4において矢印で示されている。そして周方向で隣り合う第2磁性体410には互いに反対方向の磁束が通過するので、これらは互いに反対方向に着磁される。このときステップS2と同じ方向の着磁用磁界が第2磁性体410に印加されるので、回転軸Pとは反対側に向かって着磁される第1磁性体400の両隣に位置する第2磁性体410の着磁方向が、第1磁性体400に対して回転軸Pとは反対側に向かう。よって、図1に示したハルバッハ配列を実現して第1界磁磁石40、第2界磁磁石41を形成できる。なお、ダミー分割界磁子コア50が導電率の高い金属であれば、自身に流れる渦電流の発生により、第1界磁磁石40への磁束の進入が阻害され、より第2界磁磁石41への磁束が増える。   According to this positional relationship, the first field magnet 40 is covered with the nonmagnetic material having a low permeability on the rotation axis P side, so that the magnetic flux flowing out from the magnetizing magnetic pole surface 60 a passes through the first field magnet 41. Rather, the magnetic flux passes through the second magnetic body 410 in the circumferential direction, so that the second magnetic body 410 is magnetized in the circumferential direction to form the second field magnet 41. Such a magnetic flux is indicated by an arrow in FIG. Since magnetic fluxes in opposite directions pass through the second magnetic bodies 410 adjacent in the circumferential direction, they are magnetized in opposite directions. At this time, since the magnetic field for magnetization in the same direction as that in step S2 is applied to the second magnetic body 410, the second magnetic body 400 that is positioned on both sides of the first magnetic body 400 that is magnetized toward the side opposite to the rotation axis P is used. The magnetization direction of the magnetic body 410 is directed to the opposite side of the rotation axis P with respect to the first magnetic body 400. Therefore, the first field magnet 40 and the second field magnet 41 can be formed by realizing the Halbach arrangement shown in FIG. If the dummy divided field element core 50 is a metal having a high conductivity, the generation of eddy currents flowing in the dummy divided field element core 50 prevents the magnetic flux from entering the first field magnet 40, and the second field magnet 41 is further reduced. Increases the magnetic flux.

またステップS4においても、複数の第1磁性体400の全てに対向して着磁用磁極面60aを配置しているので、複数の第2磁性体410を1つの工程で同時に着磁できる。   Also in step S4, since the magnetizing magnetic pole surface 60a is disposed so as to face all of the plurality of first magnetic bodies 400, the plurality of second magnetic bodies 410 can be magnetized simultaneously in one process.

次に、ステップS5にて、分割界磁子コア30を再び取り付ける。例えばステップS3と同様にして、ダミー分割界磁子コア50を分割界磁子コア30と交換すればよい。   Next, in step S5, the split field element core 30 is attached again. For example, the dummy split field element core 50 may be replaced with the split field element core 30 as in step S3.

かかる製造方法によれば、ステップS2,S4のいずれにおいても第1磁性体400と第2磁性体410とが相互に固定された状態で、それぞれ第1磁性体400と第2磁性体410とが着磁される。従って、着磁後の第1界磁磁石40と着磁後の第2界磁磁石41とをハルバッハ配列に従って配設固定する場合に、これらが吸引又は反発し合って配設固定を困難にする、という製造上の不都合を回避できる。   According to such a manufacturing method, the first magnetic body 400 and the second magnetic body 410 are respectively in a state where the first magnetic body 400 and the second magnetic body 410 are fixed to each other in both steps S2 and S4. Magnetized. Therefore, when the first field magnet 40 after magnetization and the second field magnet 41 after magnetization are arranged and fixed according to the Halbach array, they are attracted or repelled to make arrangement and fixing difficult. , Manufacturing inconveniences can be avoided.

なお、着磁器は着磁専用に特別に作られたものである必要はなく、例えば界磁子1と対向して配置される電機子を用いてもよい。例えば電機子が3相の集中巻のコイルによって構成され、ティースの個数と、第1磁性体400の個数との比率が2:3である場合、ステップS2,S4の各々において、通電するコイルと、界磁子1に対する着磁用磁極面60aの位置を変更して、複数回の着磁によって、第1界磁磁石40及び第2界磁磁石41を形成してもよい。かかる着磁方法は特許文献2,3に記載されているので、詳細な説明は省略する。   The magnetizer need not be specially made exclusively for magnetization, and for example, an armature disposed opposite to the field element 1 may be used. For example, when the armature is composed of three-phase concentrated winding coils, and the ratio of the number of teeth and the number of first magnetic bodies 400 is 2: 3, in each of steps S2 and S4, The first field magnet 40 and the second field magnet 41 may be formed by changing the position of the magnetizing magnetic pole surface 60a with respect to the field element 1 and magnetizing a plurality of times. Since this magnetizing method is described in Patent Documents 2 and 3, detailed description thereof is omitted.

また、ステップS2にて第2磁性体410の一部が、ステップS4にて第1磁性体400の一部がそれぞれ着磁され得るが、これによる弊害は生じない。第2磁性体410が着磁される方向はステップS2,S4で同じであり、第1磁性体400が着磁される方向もステップS2,S4で同じだからである。   Further, a part of the second magnetic body 410 can be magnetized in step S2 and a part of the first magnetic body 400 can be magnetized in step S4, but this does not cause any adverse effects. This is because the direction in which the second magnetic body 410 is magnetized is the same in steps S2 and S4, and the direction in which the first magnetic body 400 is magnetized is also the same in steps S2 and S4.

<第1磁性体の着磁と第2磁性体の着磁の実行順序>
上述した製造方法では、第1磁性体400を着磁した後に第2磁性体410を着磁していたが、第2磁性体410を着磁した後に第1磁性体400を着磁してもよい。図5はかかる製造方法の一例を示すフローチャートである。
<Execution order of magnetization of first magnetic body and magnetization of second magnetic body>
In the manufacturing method described above, the second magnetic body 410 is magnetized after the first magnetic body 400 is magnetized. However, even if the first magnetic body 400 is magnetized after the second magnetic body 410 is magnetized. Good. FIG. 5 is a flowchart showing an example of such a manufacturing method.

まず、分割界磁子コア30を除去した状態で第2磁性体410を着磁して第2界磁磁石41を形成する。ステップS11にて、第1磁性体400及び第2磁性体410を分割界磁子コア20に配置し、例えばダミー分割界磁子コア50を径方向で分割界磁子コア20と対向させて第1磁性体400及び第2磁性体410を固定する。次にステップS12にて第2磁性体410を着磁して第2界磁磁石41を形成する。かかる着磁はステップS4における着磁と同様である。   First, the second field magnet 41 is formed by magnetizing the second magnetic body 410 with the divided field element core 30 removed. In step S11, the first magnetic body 400 and the second magnetic body 410 are disposed in the split field element core 20, and for example, the dummy split field core 50 is opposed to the split field core 20 in the radial direction. The first magnetic body 400 and the second magnetic body 410 are fixed. Next, in step S12, the second magnetic body 410 is magnetized to form the second field magnet 41. Such magnetization is similar to the magnetization in step S4.

次に、第1磁性体400を着磁して第1界磁磁石40を形成する。ステップS13にて、分割界磁子コア30を取り付ける。例えばダミー分割界磁子コア50と分割界磁子コア30とを交換する。かかる交換はステップS5と同様にして行えばよい。次に、ステップS14にて第1磁性体400を着磁して第1界磁磁石40を形成する。かかる着磁はステップS2における着磁と同様である。   Next, the first magnetic body 400 is magnetized to form the first field magnet 40. In step S13, the split field element core 30 is attached. For example, the dummy divided field element core 50 and the divided field element core 30 are exchanged. Such exchange may be performed in the same manner as in step S5. Next, in step S14, the first magnetic body 400 is magnetized to form the first field magnet 40. Such magnetization is the same as the magnetization in step S2.

かかる製造方法によっても、図2を参照して説明したいずれの効果も招来できる。また、第1界磁磁石40を形成した時点で第2界磁磁石41が既に形成されているので、第1界磁磁石40及び第2界磁磁石41を形成した後は分割界磁子コア30を除去する必要がない。よって、より少ない工程で界磁子1を組み立てることができる。しかもステップS12で第2磁性体410が着磁されて第2界磁磁石41が形成された後に、ステップS13で分割界磁子コア30を取り付けるときに、第1磁性体400は着磁されておらず、第2界磁磁石41と分割界磁子コア30との接触面も小さいので、当該取り付けが容易である。この点においても、ステップS2で第1界磁磁石40が形成された後に、これと大きな面で接触する分割界磁子コア30をステップS3で除去する、図2の手順よりも有利である。なお、いずれの着磁ステップを先にするにしても、第1回目の着磁工程において、第1回目の着磁工程において着磁されない方の磁性体は、必ずしも設けられている必要はない。ただし、当該磁性体も設けておいた方が、強度上望ましいし、仮に一部が着磁されたとしても、第2回目の着磁工程において着磁されるのと同一の方向であるので、特に弊害はない。   Any of the effects described with reference to FIG. 2 can also be brought about by such a manufacturing method. In addition, since the second field magnet 41 is already formed when the first field magnet 40 is formed, the divided field element core is formed after the first field magnet 40 and the second field magnet 41 are formed. There is no need to remove 30. Therefore, the field element 1 can be assembled with fewer steps. In addition, after the second magnetic body 410 is magnetized in step S12 and the second field magnet 41 is formed, the first magnetic body 400 is magnetized when the split field element core 30 is attached in step S13. In addition, since the contact surface between the second field magnet 41 and the split field element core 30 is also small, the attachment is easy. Also in this point, after the first field magnet 40 is formed in step S2, the divided field element core 30 that contacts the large field surface is removed in step S3, which is advantageous over the procedure of FIG. In any of the magnetization steps, the magnetic material that is not magnetized in the first magnetizing step is not necessarily provided in the first magnetizing step. However, it is desirable that the magnetic material is also provided in terms of strength, and even if part of the magnet is magnetized, it is in the same direction as magnetized in the second magnetizing step. There is no harmful effect.

第2の実施の形態.
図6は第2の実施の形態にかかる界磁子の概念的な構成の一例を示している。第1の実施の形態と比較して、分割界磁子コア20が表面32,34の一部を更に有している。分割界磁子コア30は表面32,34の残りの一部を有している。具体的には、分割界磁子コア20は、表面22,24の間から径方向に沿って分割界磁子コア30へと向かって延在して表面32,34の一部に至る部分をしている。言い換えると、分割界磁子コア20は、表面22,24を含み第1界磁磁石40及び第2界磁磁石41に対して回転軸Pと反対側に存在する部分と、表面32,34の一部を含み回転軸P側に存する部分とが、第1界磁磁石40と第2界磁磁石41との相互間で相互に連結された構造を有する。これによって、第1界磁磁石40及び第2界磁磁石41はそれぞれ周方向における両端で分割界磁子コア20によって径方向に挟まれる。
Second embodiment.
FIG. 6 shows an example of a conceptual configuration of the field element according to the second embodiment. Compared to the first embodiment, the split field element core 20 further includes a part of the surfaces 32 and 34. The split field element core 30 has the remaining portions of the surfaces 32, 34. Specifically, the divided field element core 20 extends from between the surfaces 22 and 24 toward the divided field element core 30 along the radial direction and reaches portions of the surfaces 32 and 34. is doing. In other words, the divided field element core 20 includes the surfaces 22 and 24, the portion existing on the opposite side of the rotation axis P with respect to the first field magnet 40 and the second field magnet 41, and the surfaces 32 and 34. A part including a part and existing on the rotation axis P side has a structure in which the first field magnet 40 and the second field magnet 41 are connected to each other. As a result, the first field magnet 40 and the second field magnet 41 are sandwiched in the radial direction by the split field element core 20 at both ends in the circumferential direction.

かかる構造によれば、分割界磁子コア30を除去した状態であっても、分割界磁子コア20が第1界磁磁石40と第2界磁磁石41とを保持できる。この場合であれば、図2あるいは図5を参照して説明した界磁子の製造方法において、ステップS3あるいはステップS11で説明したダミー分割界磁子コア50を不要にできるので、製造に必要なコストを低減できる。   According to such a structure, the divided field element core 20 can hold the first field magnet 40 and the second field magnet 41 even when the divided field element core 30 is removed. In this case, in the method of manufacturing a field element described with reference to FIG. 2 or FIG. 5, the dummy split field element core 50 described in step S3 or step S11 can be made unnecessary. Cost can be reduced.

なお、分割界磁子コア20は表面32,34の何れか一方の一部を有していてもよい。この場合であれば、分割界磁子コア20がそれぞれ第1界磁磁石40及び第2界磁磁石41の何れか一方を保持することができる。また、分割界磁子コア20が表面32を有さず、表面34の一部を有しているときは、図2に示すフローチャートに従って界磁子1を製造すると次の効果を招来する。即ち、第2磁性体410を着磁する時点(ステップS4)では既に第1磁性体400が着磁されて第1界磁磁石40が形成されているので、第1界磁磁石40と分割界磁子コア20との間には吸引力が働く。よって、分割界磁子コア30を除去した状態で第1界磁磁石40は分割界磁子コア20に固定される。第2磁性体410は分割界磁子コア20に保持されているので、ステップS3にてダミー分割界磁子コア50を不要にできる。   The divided field element core 20 may have a part of one of the surfaces 32 and 34. In this case, the split field element core 20 can hold either the first field magnet 40 or the second field magnet 41, respectively. Further, when the split field element core 20 does not have the surface 32 but has a part of the surface 34, the following effects are brought about when the field element 1 is manufactured according to the flowchart shown in FIG. That is, at the time of magnetizing the second magnetic body 410 (step S4), the first magnetic body 400 is already magnetized and the first field magnet 40 is formed. An attractive force acts between the magnetic core 20. Therefore, the first field magnet 40 is fixed to the divided field element core 20 with the divided field element core 30 removed. Since the second magnetic body 410 is held by the divided field element core 20, the dummy divided field element core 50 can be eliminated in step S3.

図7は第2の実施の形態にかかる界磁子1の概念的な構成の他の一例を示している。図6で示された界磁子1と比較して、その相違点について述べる。複数の第2界磁磁石41はそれぞれ2つの界磁磁石411,412を有している。界磁磁石411,412は周方向で隣り合う。これらは例えば直方体形状を有しており、回転軸Pに垂直な断面においてその長手方向が略径方向に沿うように配置されている。周方向における第1界磁磁石40同士の間の一つに存する界磁磁石411,412はそれぞれ同一の周方向に着磁される。   FIG. 7 shows another example of the conceptual configuration of the field element 1 according to the second embodiment. Compared with the field element 1 shown in FIG. Each of the plurality of second field magnets 41 includes two field magnets 411 and 412. The field magnets 411 and 412 are adjacent in the circumferential direction. These have a rectangular parallelepiped shape, for example, and are arranged so that the longitudinal direction thereof is substantially along the radial direction in a cross section perpendicular to the rotation axis P. The field magnets 411 and 412 existing in one between the first field magnets 40 in the circumferential direction are magnetized in the same circumferential direction.

界磁子コア10は界磁磁石411が貫挿される第1貫挿孔141と界磁磁石412が貫挿される第2貫挿孔142とを有している。第1貫挿孔141は界磁磁石411を径方向で挟む一対の表面241,341を有し、第2貫挿孔142は界磁磁石412を径方向で挟む一対の表面242,342を有している。   The field element core 10 has a first insertion hole 141 through which the field magnet 411 is inserted and a second insertion hole 142 through which the field magnet 412 is inserted. The first through hole 141 has a pair of surfaces 241 and 341 that sandwich the field magnet 411 in the radial direction, and the second through hole 142 has a pair of surfaces 242 and 342 that sandwich the field magnet 412 in the radial direction. is doing.

分割界磁子コア20は、表面22,241,242,341,342と、表面32の一部を有している。具体的には、周方向における表面241,242の間から回転軸Pへと向かって延在し、表面341,342へと至り、さらに周方向に延在して,表面32の一部へと至る部分を有している。言い換えると、界磁磁石411,412の間が分割界磁子コア20によって充填され、界磁磁石411,412が分割界磁子コア20によって径方向で挟まれ、第1界磁磁石40は周方向における両端で分割界磁子コア20によって径方向で挟まれる。   The divided field element core 20 has surfaces 22, 241, 242, 341, 342 and a part of the surface 32. Specifically, it extends from between the surfaces 241 and 242 in the circumferential direction toward the rotation axis P, reaches the surfaces 341 and 342, and further extends in the circumferential direction to a part of the surface 32. It has a part to reach. In other words, the space between the field magnets 411 and 412 is filled with the divided field element core 20, the field magnets 411 and 412 are sandwiched in the radial direction by the divided field element core 20, and the first field magnet 40 is It is sandwiched in the radial direction by the split field element core 20 at both ends in the direction.

界磁磁石411,412の間に充填されるコアはq軸インダクタンスを向上させる。これはd軸インダクタンスとq軸インダクタンスの差を大きくし、リラクタンストルクを得やすいという観点で好ましい。   The core filled between the field magnets 411 and 412 improves the q-axis inductance. This is preferable from the viewpoint that the difference between the d-axis inductance and the q-axis inductance is increased and reluctance torque is easily obtained.

分割界磁子コア30は表面32の残りの一部を有している。   The split field element core 30 has the remaining part of the surface 32.

かかる構造によっても、図6に示された界磁子1と同様に、分割界磁子コア30を除去した状態で、分割界磁子コア20が第1界磁磁石40と第2界磁磁石41とを保持できる。よって図6を参照して説明したいずれの効果も招来できる。なお、分割界磁子コア20は表面32を有していなくてもよい。この場合に奏する効果も図6を参照して説明したとおりである。   Even with such a structure, similarly to the field element 1 shown in FIG. 6, the divided field element core 20 has the first field magnet 40 and the second field magnet with the divided field element core 30 removed. 41 can be held. Therefore, any of the effects described with reference to FIG. 6 can be brought about. The divided field element core 20 may not have the surface 32. The effects achieved in this case are also as described with reference to FIG.

図8は第2の実施の形態にかかる界磁子の概念的な構成の他の一例を示している。図6に示した界磁子と比較して、その相違点について述べる。分割界磁子コア20は分割界磁子コア30側で第1界磁磁石40及び第2界磁磁石41を覆う薄肉部23を有している。薄肉部23は表面32,34を呈する。言い換えれば、分割界磁子コア20は第1貫挿孔12と第2貫挿孔14とを有している。第1貫挿孔12と第2貫挿孔14とは周方向で相互に離間している。分割界磁子コア20は、表面22,24を含み第1界磁磁石40及び第2界磁磁石41に対して回転軸Pとは反対側に存在する部分と、薄肉部23とが第1界磁磁石40と第2界磁磁石41との相互間で相互に連結されている。   FIG. 8 shows another example of the conceptual configuration of the field element according to the second embodiment. The differences will be described in comparison with the field element shown in FIG. The divided field element core 20 has a thin portion 23 that covers the first field magnet 40 and the second field magnet 41 on the divided field element core 30 side. The thin portion 23 has surfaces 32 and 34. In other words, the split field element core 20 has the first through hole 12 and the second through hole 14. The first through hole 12 and the second through hole 14 are spaced apart from each other in the circumferential direction. The divided field element core 20 includes the surfaces 22 and 24, a portion existing on the opposite side of the rotation axis P with respect to the first field magnet 40 and the second field magnet 41, and a thin portion 23. The field magnet 40 and the second field magnet 41 are connected to each other.

薄肉部23はその径方向の厚みが非常に小さいため、分割界磁子コア30が除去された状態では容易に磁気飽和する。よって、ステップS4あるいはステップS12にて、着磁用磁極面60aからの磁束は薄肉部23を通りにくく、第1磁性体400を介す第1経路よりも第2磁性体410を介す第2経路を好んで通る。よって、かかる構造によっても、図2あるいは図5で示したフローチャートに基づいて界磁子1を製造することができる。しかも、分割界磁子コア30を除去した状態で第1界磁磁石40と第2界磁磁石41とを固定することができるので、図6に示された界磁子と同様の効果を奏する。   Since the thin portion 23 has a very small thickness in the radial direction, the thin portion 23 is easily magnetically saturated in a state in which the divided field element core 30 is removed. Therefore, in step S4 or step S12, the magnetic flux from the magnetizing magnetic pole surface 60a is less likely to pass through the thin portion 23, and the second through the second magnetic body 410 rather than the first path through the first magnetic body 400. Pass through the route. Therefore, even with such a structure, the field element 1 can be manufactured based on the flowchart shown in FIG. 2 or FIG. In addition, since the first field magnet 40 and the second field magnet 41 can be fixed in a state in which the split field element core 30 is removed, the same effect as the field element shown in FIG. 6 can be obtained. .

第3の実施の形態.
図9は第3の実施の形態にかかる界磁子の概念的な一例の構成を示している。図7に示された界磁子と比較して、その相違点について説明する。分割界磁子コア20は表面241,242を有し、分割界磁子コア30は表面341,342を有している。分割界磁子コア20は表面241,242の間から分割界磁子コア30へと向かって突出する第1突部26を有している。分割界磁子コア30は表面341,342の間から分割界磁子コア20へと突出する第2突部36を有している。第2突部36は第1突部26と径方向で当接する。言い換えれば、第1突部26及び第2突部36は界磁磁石411,412の間で当接する。
Third embodiment.
FIG. 9 shows a configuration of a conceptual example of a field element according to the third embodiment. The differences will be described in comparison with the field element shown in FIG. The divided field element core 20 has surfaces 241 and 242, and the divided field element core 30 has surfaces 341 and 342. The split field element core 20 has a first protrusion 26 that protrudes from between the surfaces 241 and 242 toward the split field element core 30. The divided field element core 30 has a second protrusion 36 that protrudes from between the surfaces 341 and 342 to the divided field element core 20. The second protrusion 36 is in contact with the first protrusion 26 in the radial direction. In other words, the first protrusion 26 and the second protrusion 36 abut between the field magnets 411 and 412.

かかる構造によれば、界磁磁石411,412の間に介在する第1突部26と第2突部36との組がq軸インダクタンスを向上させることができる。   According to such a structure, the set of the first protrusion 26 and the second protrusion 36 interposed between the field magnets 411 and 412 can improve the q-axis inductance.

次に、界磁子コア10が軸方向に積層された電磁鋼板によって構成される場合に、軸方向からみた分割界磁子コア20,30の形状を一枚の電磁鋼板から打ち抜く場合について考察する。例えば図9に示された分割界磁子コア20,30の位置関係で、一枚の電磁鋼板から分割界磁子コア20,30の形状を打ち抜く。この場合、第1突部26と第2突部36とが当接した状態で分割界磁子コア20,30の形状が打ち抜かれる。しかしながら、打ち抜きによって、分割界磁子コア20,30の周縁が削り取られるおそれがあり、その場合、第1突部26と第2突部36との間に間隙が生じる。   Next, in the case where the field element core 10 is composed of electromagnetic steel sheets laminated in the axial direction, a case where the shape of the divided field element cores 20 and 30 viewed from the axial direction is punched from one electromagnetic steel sheet will be considered. . For example, the shape of the split field element cores 20 and 30 is punched from one electromagnetic steel sheet in the positional relationship of the split field element cores 20 and 30 shown in FIG. In this case, the shape of the split field element cores 20 and 30 is punched in a state where the first protrusion 26 and the second protrusion 36 are in contact with each other. However, there is a possibility that the peripheral edges of the split field element cores 20 and 30 are scraped off by punching, and in this case, a gap is generated between the first protrusion 26 and the second protrusion 36.

このような問題を解決するための分割界磁子コア20,30の形状及び打ち抜き方法について説明する。   The shape and the punching method of the divided field element cores 20 and 30 for solving such a problem will be described.

分割界磁子コア20,30は第1突部26及び第2突部36の当接面を除いて径方向で相互に離間している。言い換えると、分割界磁子コア20は表面22を有し、表面22,241,242が上記当接面以外では分割界磁子コア30と当接することなく連結している。また分割界磁子コア30は表面32を有し、表面32,341,342が上記当接面以外では分割界磁子コア30と当接することなく連続する。   The divided field element cores 20 and 30 are separated from each other in the radial direction except for the contact surfaces of the first protrusion 26 and the second protrusion 36. In other words, the divided field element core 20 has a surface 22, and the surfaces 22, 241, and 242 are connected to each other without contacting the divided field element core 30 except for the contact surface. The divided field element core 30 has a surface 32, and the surfaces 32, 341, and 342 are continuous without contacting the divided field element core 30 except for the contact surface.

そして、第1突部26及び第2突部36の周方向における幅は貫挿孔141,142の周方向における幅よりも狭い。   The width in the circumferential direction of the first protrusion 26 and the second protrusion 36 is narrower than the width in the circumferential direction of the through holes 141 and 142.

図10は所定の電磁鋼板を打ち抜く際の分割界磁子コア20,30の位置関係を示している。上述したように、分割界磁子コア20,30が当接面以外で相互に離間し、また周方向における第1突部26及び第2突部36の幅が周方向における貫挿孔141,142の幅よりも狭い。これによって、図10に示されるように、電磁鋼板上の分割界磁子コア20,30の形状として、分割界磁子コア30を分割界磁子コア20に対して周方向にずらした位置関係を適用できる。言い換えると、第1突部26と第2突部36との相対位置が周方向にずらされて、第2突部36が表面241と対向し、第1突部26が表面342と対向している。   FIG. 10 shows the positional relationship between the divided field element cores 20 and 30 when a predetermined electromagnetic steel sheet is punched out. As described above, the split field element cores 20 and 30 are separated from each other except the contact surface, and the widths of the first protrusion 26 and the second protrusion 36 in the circumferential direction are the through holes 141 and 141 in the circumferential direction. It is narrower than the width of 142. As a result, as shown in FIG. 10, as the shape of the divided field element cores 20 and 30 on the magnetic steel sheet, the positional relationship in which the divided field element core 30 is shifted in the circumferential direction with respect to the divided field element core 20. Can be applied. In other words, the relative position between the first protrusion 26 and the second protrusion 36 is shifted in the circumferential direction, the second protrusion 36 faces the surface 241, and the first protrusion 26 faces the surface 342. Yes.

かかる位置関係によれば、界磁子コア10を構成する前の分割界磁子コア20,30が任意の径方向で互いに離間される。よって、打ち抜きによってこれらの周縁が削られたとしても、削り取られる長さを考慮して、第1突部26及び第2突部36の少なくとも一方の径方向における長さを予め長めに設定できる。かかる形状の一例が図10の破線で示されている。これによって、電磁鋼板から分割界磁子コア20,30の形状を打ち抜いた場合に、より確実に第1突部26及び第2突部36を当接させることができる。   According to this positional relationship, the divided field element cores 20 and 30 before constituting the field element core 10 are separated from each other in an arbitrary radial direction. Therefore, even if these peripheral edges are cut by punching, the length in the radial direction of at least one of the first protrusion 26 and the second protrusion 36 can be set longer in advance in consideration of the length to be cut off. An example of such a shape is indicated by a broken line in FIG. Thereby, when the shape of the divided field element cores 20 and 30 is punched from the electromagnetic steel sheet, the first protrusion 26 and the second protrusion 36 can be brought into contact with each other more reliably.

そして、所定の電磁鋼板を打ち抜いて分割界磁子コア20,30についての電磁鋼板を形成し、この電磁鋼板を軸方向に積層して、分割界磁子コア20,30を製造する。   Then, a predetermined electromagnetic steel sheet is punched to form an electromagnetic steel sheet for the divided field element cores 20 and 30, and the electromagnetic steel sheets are laminated in the axial direction to manufacture the divided field element cores 20 and 30.

図11は第3の実施の形態にかかる界磁子の概念的な構成の他の一例を示している。なお、図11においては、周方向における界磁子の一部が示されている。図9に示す界磁子と比較して、その相違点について述べる。第1突部26と第2突部36との当接面は周方向に対して傾斜している。なお、図1においては一つの第1突部26と一つの第2突部36とが示されているが、複数の第1突部26と複数の第2突部36とがそれぞれ当接する当接面のいずれもが周方向に対して同じ方向に傾斜している。また、分割界磁子コア20,30は当接面を除いて相互に径方向で離間している。   FIG. 11 shows another example of the conceptual configuration of the field element according to the third embodiment. FIG. 11 shows a part of the field element in the circumferential direction. The differences will be described in comparison with the field element shown in FIG. The contact surface between the first protrusion 26 and the second protrusion 36 is inclined with respect to the circumferential direction. In FIG. 1, one first protrusion 26 and one second protrusion 36 are shown, but the plurality of first protrusions 26 and the plurality of second protrusions 36 are in contact with each other. All of the contact surfaces are inclined in the same direction with respect to the circumferential direction. The divided field element cores 20 and 30 are separated from each other in the radial direction except for the contact surface.

図12は分割界磁子コア30を分割界磁子コア20に対して周方向でずらした場合の界磁子コア10の位置関係を示している。分割界磁子コア20,30が当接面を除いて相互に径方向で離間しているので、分割界磁子コア30を分割界磁子コア20に対して周方向にずらすことができる。また、複数の当接面が同じ方向に傾斜しているので、図12に示す状態から分割界磁子コア30を分割界磁子コア20に対して周方向に回転させることで、第1突部26と第2突部36を当接させることができる。よって、容易に組み立てることができる。   FIG. 12 shows the positional relationship of the field element core 10 when the divided field element core 30 is shifted in the circumferential direction with respect to the divided field element core 20. Since the divided field element cores 20 and 30 are separated from each other in the radial direction except for the contact surface, the divided field element core 30 can be shifted in the circumferential direction with respect to the divided field element core 20. Further, since the plurality of contact surfaces are inclined in the same direction, the first protrusion is obtained by rotating the divided field element core 30 in the circumferential direction with respect to the divided field element core 20 from the state shown in FIG. The portion 26 and the second protrusion 36 can be brought into contact with each other. Therefore, it can be assembled easily.

また図12に示す位置関係で、所定の電磁鋼板から分割界磁子コア20,30の形状を打ち抜いて、分割界磁子コア20,30についての電磁鋼板を形成してもよい。この場合であれば、図10を参照して説明した打ち抜き方法と同様に、より確実に第1突部26と第2突部36とを当接させることができる。   In addition, the shape of the split field element cores 20 and 30 may be punched out from a predetermined electromagnetic steel sheet in the positional relationship shown in FIG. In this case, similarly to the punching method described with reference to FIG. 10, the first protrusion 26 and the second protrusion 36 can be brought into contact with each other more reliably.

なお、周方向における第1突部26及び第2突部36の幅は貫挿孔141,142の幅よりも広くてもよい。複数の当接面のいずれもが周方向に対して同じ方向に傾斜しているので、分割界磁子コア30を分割界磁子コア20に対して周方向にわずかでも回転させることで、第1突部26と第2突部36との間には間隙が生じる。これによって、第1突部26及び第2突部36の少なくとも何れか一方の径方向における長さを予め長めに打ち抜くことができる。これによって、打ち抜きによって分割界磁子コア20,30の周縁が削られたとしても、第1突部26と第2突部36とをより確実に当接させることができる。   The widths of the first protrusions 26 and the second protrusions 36 in the circumferential direction may be wider than the widths of the through holes 141 and 142. Since all of the plurality of contact surfaces are inclined in the same direction with respect to the circumferential direction, the divided field element core 30 can be rotated slightly with respect to the divided field element core 20 in the circumferential direction. A gap is generated between the first protrusion 26 and the second protrusion 36. Thereby, the length in the radial direction of at least one of the first protrusion 26 and the second protrusion 36 can be punched out in advance. As a result, even if the peripheral edges of the split field element cores 20 and 30 are cut by punching, the first protrusion 26 and the second protrusion 36 can be brought into contact with each other more reliably.

なお、第3の実施の形態においては、第1突部26及び第2突部36がいずれも界磁磁石411,412の間に介在するものとして説明したがこれに限らない。例えば、図1に示す界磁子1において、第1界磁磁石40と第2界磁磁石41との間で、分割界磁子コア20,30が相互に径方向で当接していてもよい。より具体的には、分割界磁子コア20が表面22,24の相互間から分割界磁子コア30へと向かって突出する第1突部を有し、分割界磁子コア30が表面32,34の相互間から分割界磁子コア20へと突出する第2突部を有し、第1突部と第2突部とが径方向で相互に当接していてもよい。   In the third embodiment, the first protrusion 26 and the second protrusion 36 are described as being interposed between the field magnets 411 and 412, but the present invention is not limited to this. For example, in the field element 1 shown in FIG. 1, the divided field element cores 20 and 30 may be in contact with each other in the radial direction between the first field magnet 40 and the second field magnet 41. . More specifically, the split field element core 20 has a first protrusion that protrudes from between the surfaces 22 and 24 toward the split field element core 30, and the split field element core 30 has the surface 32. , 34 may protrude from each other to the split field element core 20, and the first protrusion and the second protrusion may be in contact with each other in the radial direction.

第4の実施の形態.
第4の実施の形態では、第1界磁磁石の磁化容易方向について述べる。第4の実施の形態にかかる界磁子の概念的な構成は第1乃至第3の何れかの実施の形態で述べた界磁子と同一である。一例として、図13に第4の実施の形態にかかる界磁子の周方向における一部の一例が示されている。かかる界磁子は図1に示す界磁子と同一の構造を有している。第1界磁磁石40の磁化容易方向は周方向において自身の中央へと向かって傾斜している。かかる磁化容易方向が図13において矢印で示されている。
Fourth embodiment.
In the fourth embodiment, the easy magnetization direction of the first field magnet will be described. The conceptual configuration of the field element according to the fourth embodiment is the same as that of the field element described in any of the first to third embodiments. As an example, FIG. 13 shows an example of a part of the field element according to the fourth embodiment in the circumferential direction. Such a field element has the same structure as the field element shown in FIG. The easy magnetization direction of the first field magnet 40 is inclined toward the center of itself in the circumferential direction. Such an easy magnetization direction is indicated by an arrow in FIG.

このような界磁子1によれば、例えば第2磁性体410を着磁するとき(図2におけるステップS4又は図5におけるステップS2)、着磁用磁極面からの磁束が、第1磁性体400の周方向における両端で第1磁性体400の磁化容易方向に沿う(図4も参照)。よって、第2磁性体410の着磁工程の際に、周方向における第1磁性体400の両端を着磁することができる。   According to such a field element 1, for example, when the second magnetic body 410 is magnetized (step S4 in FIG. 2 or step S2 in FIG. 5), the magnetic flux from the magnetizing magnetic pole surface is changed to the first magnetic body. Both ends in the circumferential direction of 400 are along the easy magnetization direction of the first magnetic body 400 (see also FIG. 4). Therefore, both ends of the first magnetic body 400 in the circumferential direction can be magnetized during the magnetization process of the second magnetic body 410.

また、電機子を界磁子1と径方向に対向させて回転電機を構成した場合、第1界磁磁石40は周方向における中央に向かって界磁磁束を電機子に供給するので、有効磁束を向上することができる。   Further, when the rotary electric machine is configured with the armature opposed to the field element 1 in the radial direction, the first field magnet 40 supplies the field magnetic flux to the armature toward the center in the circumferential direction. Can be improved.

第5の実施の形態.
第5の実施の形態では、複数の第1界磁磁石40が電機子へとそれぞれ供給する磁束を均一化する。第5の実施の形態にかかる界磁子の概念的な構成は第1乃至第4の何れかの実施の形態で述べた界磁子と同一である。但し、界磁子コア10は軸方向に積層された電磁鋼板で構成される。この電磁鋼板は自身の圧延方向に応じた磁気特性を有している。具体的には、仮に無方向性電磁鋼板であっても圧延方向の磁気特性は他の方向に比べて優れる。従って、第1界磁磁石40が分割界磁子コア20と接する面と、第1界磁磁石40が分割界磁子コア30と接する面とで、お互いのコアの圧延方向を異ならせることができる。
Fifth embodiment.
In the fifth embodiment, the plurality of first field magnets 40 equalize the magnetic fluxes respectively supplied to the armature. The conceptual configuration of the field element according to the fifth embodiment is the same as that of the field element described in any one of the first to fourth embodiments. However, the field element core 10 is composed of electromagnetic steel plates laminated in the axial direction. This electrical steel sheet has magnetic properties corresponding to its rolling direction. Specifically, even in the case of a non-oriented electrical steel sheet, the magnetic properties in the rolling direction are superior to those in other directions. Therefore, the rolling directions of the cores can be made different between the surface where the first field magnet 40 is in contact with the split field element core 20 and the surface where the first field magnet 40 is in contact with the split field element core 30. it can.

そして、分割界磁子コア20の圧延方向と分割界磁子コア30の圧延方向とが互いに傾斜されて界磁子コア10を構成する。より具体的には、360度を界磁子の極数(第1界磁磁石の個数)で割った値の倍数のうち、90度に最も近い角度だけ、傾斜させる。   The rolling direction of the split field element core 20 and the rolling direction of the split field element core 30 are inclined with each other to constitute the field element core 10. More specifically, it is inclined by an angle closest to 90 degrees among multiples of a value obtained by dividing 360 degrees by the number of poles of the field element (the number of first field magnets).

図14は第5の実施の形態にかかる界磁子の周方向における一部の一例を示している。図14は第1の実施の形態にかかる界磁子と同一の構成を有している。分割界磁子コア20の圧延方向は一の第1界磁磁石40に平行である。分割界磁子コア30の圧延方向は分割界磁子コア20の圧延方向に対して90度傾斜している。   FIG. 14 shows an example of a part in the circumferential direction of the field element according to the fifth embodiment. FIG. 14 has the same configuration as the field element according to the first embodiment. The rolling direction of the divided field element core 20 is parallel to the first field magnet 40. The rolling direction of the split field element core 30 is inclined by 90 degrees with respect to the rolling direction of the split field element core 20.

従って、複数の第1界磁磁石40の各々において分割界磁子コア20の圧延方向の、第1界磁磁石40の磁極中心と回転中心を結ぶ線に対する角度の絶対値と、分割界磁子コア30の圧延方向の、第1界磁磁石40の磁極中心と回転中心を結ぶ線に対する角度の絶対値とを平均した角度について、対応する第1界磁磁石40に対するその方向の角度が全ての極において45°となる。よって、複数の第1界磁磁石40の各々について、動作点磁束密度を均一化することができる。従って、界磁子1の外周側から生じさせる磁束を均一化することができる。   Therefore, in each of the plurality of first field magnets 40, the absolute value of the angle of the rolling direction of the divided field element core 20 with respect to the line connecting the magnetic pole center and the rotation center of the first field magnet 40, and the divided field element Regarding the angle obtained by averaging the rolling direction of the core 30 and the absolute value of the angle with respect to the line connecting the magnetic pole center of the first field magnet 40 and the rotation center, the angle of the direction with respect to the corresponding first field magnet 40 is all 45 ° at the pole. Therefore, the operating point magnetic flux density can be made uniform for each of the plurality of first field magnets 40. Therefore, the magnetic flux generated from the outer peripheral side of the field element 1 can be made uniform.

なお、必ずしも上述した角度だけ分割界磁子コア20,30の圧延方向を傾斜させる必要はなく、分割界磁子コア20,30の圧延方向が互いに傾斜していれば、複数の第1界磁磁石40の各々について、界磁子1の外周側から生じさせる磁束のばらつきを抑制することができる。   In addition, it is not always necessary to incline the rolling direction of the divided field element cores 20 and 30 by the above-described angle. If the rolling directions of the divided field element cores 20 and 30 are inclined to each other, a plurality of first field magnets are used. For each of the magnets 40, it is possible to suppress variations in magnetic flux generated from the outer peripheral side of the field element 1.

また、極数に限らず、分割界磁子コア20,30の圧延方向を互いに90度で交差させても構わない。これを実現するためには例えば次のようにして界磁子コア10を製造するとよい。分割界磁子コア20,30を一枚の電磁鋼板から打ち抜いて形成する。具体的には、界磁子コア10が対称となる基準線に対して、電磁鋼板の圧延方向のなす角度が45°となるように、分割界磁子コア20,30を打ち抜く。かかるうち抜きの様子が図15に示されている。図15において、基準線が破線で、電磁鋼板の圧延方向が矢印で示されている。   Further, the rolling direction of the divided field element cores 20 and 30 is not limited to the number of poles, and may intersect each other at 90 degrees. In order to realize this, for example, the field element core 10 may be manufactured as follows. The divided field element cores 20 and 30 are formed by punching from one electromagnetic steel sheet. Specifically, the divided field element cores 20 and 30 are punched so that the angle formed by the rolling direction of the electromagnetic steel sheet is 45 ° with respect to a reference line on which the field element core 10 is symmetric. FIG. 15 shows a state in which this is omitted. In FIG. 15, the reference line is indicated by a broken line, and the rolling direction of the electromagnetic steel sheet is indicated by an arrow.

そして、打ち抜いた分割界磁子コア20,30のいずれか一方のみを基準線に対して反転させて、分割界磁子コア20,30を組み立てる。これによって、分割界磁子コア20の圧延方向と、分割界磁子コア30の圧延方向が互いに90度で交差する(図14に示す分割界磁子コア20,30を参照)。   Then, only one of the punched divided field element cores 20 and 30 is inverted with respect to the reference line, and the divided field element cores 20 and 30 are assembled. Thereby, the rolling direction of the divided field element core 20 and the rolling direction of the divided field element core 30 intersect each other at 90 degrees (see the divided field element cores 20 and 30 shown in FIG. 14).

なお、図15においては基準線が極間を通っているが磁極中心を通っていてもよい。   In FIG. 15, the reference line passes between the poles, but may pass through the center of the magnetic pole.

第1の実施の形態にかかる界磁子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the field element concerning 1st Embodiment. 界磁子の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of a field element. 第1磁性体を着磁して第1界磁磁石を形成する様子を示す図である。It is a figure which shows a mode that a 1st magnetic body is magnetized and a 1st field magnet is formed. 第2磁性体を着磁して第2界磁磁石を形成する様子を示す図である。It is a figure which shows a mode that a 2nd magnetic body is magnetized and a 2nd field magnet is formed. 界磁子の製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of a field element. 第2の実施の形態にかかる界磁子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the field element concerning 2nd Embodiment. 第2の実施の形態にかかる界磁子の概念的な構成の他の一例を示す図である。It is a figure which shows another example of the notional structure of the field element concerning 2nd Embodiment. 第2の実施の形態にかかる界磁子の概念的な構成の他の一例を示す図である。It is a figure which shows another example of the notional structure of the field element concerning 2nd Embodiment. 第3の実施の形態にかかる界磁子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the field element concerning 3rd Embodiment. 分割界磁子コア同士の位置関係を示す図である。It is a figure which shows the positional relationship between division field element cores. 第3の実施の形態にかかる界磁子の概念的な構成の他の一例を示す図である。It is a figure which shows another example of the notional structure of the field element concerning 3rd Embodiment. 分割界磁子コア同士の位置関係を示す図である。It is a figure which shows the positional relationship between division field element cores. 第4の実施の形態にかかる界磁子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the field element concerning 4th Embodiment. 第5の実施の形態にかかる界磁子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the field element concerning 5th Embodiment. 分割界磁子コアを打ち抜く様子を示す図である。It is a figure which shows a mode that a division | segmentation field element core is punched.

符号の説明Explanation of symbols

1 界磁子
10 界磁子コア
20,30 分割界磁子コア
22,24,32,34,241,341,242,342 表面
26 第1突部
36 第2突部
40 第1界磁磁石
41 第2界磁磁石
411,412 界磁磁石
DESCRIPTION OF SYMBOLS 1 Field element 10 Field element core 20, 30 Division field element core 22, 24, 32, 34, 241, 341, 242, 342 Surface 26 First protrusion 36 Second protrusion 40 First field magnet 41 Second field magnet 411, 412 Field magnet

Claims (18)

所定の軸(P)の周りで環状に配置され、前記軸を中心とした径方向に磁極面を呈し、前記軸を中心とした周方向において隣り合う前記磁極面の極性が互いに異なる複数の第1界磁磁石(40)と、
各々が、前記周方向で隣り合う前記第1界磁磁石の二者の間に配置され、前記周方向に磁極面を呈する第2界磁磁石(41)と、
前記軸に沿う軸方向に沿って前記第1界磁磁石及び前記第2界磁磁石が貫挿される界磁子コア(10)と
を備える界磁子であって、
前記界磁子コアは第1分割界磁子コア(20)と第2分割界磁子コア(30)を有し、
前記第1分割界磁子コアの少なくとも一部と前記第2分割界磁子コアとは、前記軸を中心とする径方向において前記第1界磁磁石(40)を相互に反対側から挟み、
前記周方向で相互に対向する前記第2界磁磁石の前記磁極面同士は同極性である、界磁子。
A plurality of first poles arranged in a ring around a predetermined axis (P), exhibiting magnetic pole faces in the radial direction centered on the axis, and different polarities of the adjacent magnetic pole faces in the circumferential direction centered on the axis. One field magnet (40);
A second field magnet (41), each disposed between two of the first field magnets adjacent in the circumferential direction, and presenting a magnetic pole surface in the circumferential direction;
A field element comprising a field element core (10) through which the first field magnet and the second field magnet are inserted along an axial direction along the axis;
The field element core has a first divided field element core (20) and a second divided field element core (30),
At least part of the first divided field element core and the second divided field element core sandwich the first field magnet (40) from opposite sides in the radial direction centered on the axis,
A field element in which the magnetic pole faces of the second field magnets facing each other in the circumferential direction have the same polarity.
前記第2界磁磁石(41)はその径方向において前記第1分割界磁子コア(20)の少なくとも一部と前記第2分割界磁子コア(30)とで挟まれる、請求項1に記載の界磁子。   The second field magnet (41) is sandwiched between at least a part of the first divided field element core (20) and the second divided field element core (30) in a radial direction thereof. The field element described. 前記第1分割界磁子コア(20)は前記第2界磁磁石(41;411,412)を介して相互に径方向で対向する一対の面(24,34;242,342)を有する、請求項1又は2に記載の界磁子。   The first split field element core (20) has a pair of surfaces (24, 34; 242, 342) that are radially opposed to each other via the second field magnet (41; 411, 412). The field element according to claim 1 or 2. 前記第1分割界磁子コア(20)は前記第1界磁磁石(40)を介して相互に径方向で対向する一対の面(22,32)を有する、請求項1乃至3のいずれか一つに記載の界磁子。   The said 1st division | segmentation field element core (20) has a pair of surface (22, 32) which opposes mutually in a radial direction via the said 1st field magnet (40). The field element according to one. 前記第1分割界磁子コア(20)は前記第2分割界磁子コア(30)側において前記第1界磁磁石(40)を覆う薄肉部を備え、前記薄肉部は前記一対の面の一方(32,34)を呈する、請求項4に記載の界磁子。   The first divided field element core (20) includes a thin part that covers the first field magnet (40) on the second divided field element core (30) side, and the thin part is formed of the pair of surfaces. The field element according to claim 4, which exhibits one (32, 34). 前記第1分割界磁子コア(20)は複数の第1の表面(241,242)を有し、前記第2分割界磁コア(20)は複数の第2の表面(341,342)を有し、前記第1及び前記第2の表面は複数の前記第2界磁磁石(41)の各々を介して前記径方向で相互に対向し、
前記第1分割界磁子コアは前記第1の表面の各々から前記第2分割界磁子コアへと向かって前記径方向に突出する複数の第1突部(26)を有し、
前記第2分割界磁子コアは前記第2の表面の各々から前記第1分割界磁子コアへと向かって前記径方向に突出し、前記第1突部の各々と前記径方向で当接面において当接する複数の第2突部(36)を有し、
前記当接面の複数はいずれも前記周方向に対して同じ側に傾斜し、
前記第1分割界磁子コア及び前記第2分割界磁子コアは前記当接面を除いて前記径方向で相互に離間している、請求項1又は2に記載の界磁子。
The first divided field core (20) has a plurality of first surfaces (241, 242), and the second divided field core (20) has a plurality of second surfaces (341, 342). The first and second surfaces are opposed to each other in the radial direction via each of the plurality of second field magnets (41),
The first divided field element core has a plurality of first protrusions (26) protruding in the radial direction from each of the first surfaces toward the second divided field element core,
The second divided field element core protrudes in the radial direction from each of the second surfaces toward the first divided field element core, and is in contact with each of the first protrusions in the radial direction. A plurality of second protrusions (36) abutting at
A plurality of the contact surfaces are all inclined to the same side with respect to the circumferential direction,
3. The field element according to claim 1, wherein the first divided field element core and the second divided field element core are separated from each other in the radial direction except for the contact surface.
前記第2界磁磁石(41)の各々は当該第2界磁磁石を挟む前記第1界磁磁石(40)の間で、前記軸の周りで隣り合う2つの第3界磁磁石(411)と第4界磁磁石(412)とを有し、
前記第1突部と前記第2突部は前記第3及び前記第4界磁磁石の間で当接する、請求項6に記載の界磁子。
Each of the second field magnets (41) includes two third field magnets (411) adjacent to each other around the axis between the first field magnets (40) sandwiching the second field magnet. And a fourth field magnet (412),
The field element according to claim 6, wherein the first protrusion and the second protrusion are in contact between the third and fourth field magnets.
前記第1分割界磁子コア(20)及び前記第2分割界磁子コア(30)は前記軸方向に積層された複数の積層鋼板を有し、
前記第1分割界磁子コアが有する前記積層鋼板の第1圧延方向と、前記第2分割界磁子コアが有する前記積層鋼板の第2圧延方向とは相互に傾斜している、請求項1乃至7のいずれか一つに記載の界磁子。
The first divided field element core (20) and the second divided field element core (30) have a plurality of laminated steel plates laminated in the axial direction,
The 1st rolling direction of the said laminated steel plate which the said 1st division field element core has, and the 2nd rolling direction of the said lamination steel plate which the said 2nd division field element core have are mutually inclined. 8. The field element according to any one of 1 to 7.
前記第1圧延方向と前記第2圧延方向とは直交する、請求項8に記載の界磁子。   The field element according to claim 8, wherein the first rolling direction and the second rolling direction are orthogonal to each other. 所定の軸(P)の周りで交互に配置される複数の第1界磁磁石(40)及び複数の第2界磁磁石(41)と、
前記軸に沿う軸方向に沿って前記第1界磁磁石及び前記第2界磁磁石が貫挿される界磁子コア(10)と
を備え、
前記界磁子コアは第1分割界磁子コア(20)と第2分割界磁子コア(30)を有し、
前記第1分割界磁子コアと第2分割界磁子コアとは、前記軸を中心とした径方向において前記第1界磁磁石(40)を相互に反対側から挟む界磁子を製造する製造方法であって、
着磁後に前記第1界磁磁石となる硬磁性の第1磁性体(400)の複数及び着磁後に前記第2界磁磁石となる硬磁性の第2磁性体(410)の複数が固定された前記第1分割界磁コアに対して、
(a)前記第2分割界磁子コア(30)を、前記軸を中心とした径方向で対面させ、前記第1分割界磁子コアに対して前記第1磁性体及び前記第2磁性体とは反対側から、前記軸を中心とした径方向において着磁用磁極面(60a)の複数をそれぞれ前記第1磁性体の各々と対向させて、前記着磁用磁極面から着磁用磁界を発生させ、前記第1磁性体を着磁して前記第1界磁磁石を形成する第1工程と、
(b)前記第2分割界磁子コアを除去した状態で、前記着磁用磁極面の複数をそれぞれ前記第1磁性体の各々と対向させ前記着磁用磁極面から前記第1工程と同じ極性で前記着磁用磁界を発生させ、前記第2磁性体を着磁して前記第2界磁磁石を形成する第2工程と
が実行される、界磁子の製造方法。
A plurality of first field magnets (40) and a plurality of second field magnets (41) arranged alternately around a predetermined axis (P);
A field element core (10) through which the first field magnet and the second field magnet are inserted along the axial direction along the axis;
The field element core has a first divided field element core (20) and a second divided field element core (30),
The first divided field element core and the second divided field element core manufacture a field element that sandwiches the first field magnet (40) from opposite sides in the radial direction centered on the axis. A manufacturing method comprising:
A plurality of hard magnetic first magnetic bodies (400) that become the first field magnet after magnetization and a plurality of hard magnetic second magnetic bodies (410) that become the second field magnet after magnetization are fixed. For the first divided field core,
(A) The second divided field element core (30) is opposed to the first divided field element core in a radial direction about the axis, and the first magnetic body and the second magnetic body are opposed to the first divided field element core. From the opposite side, a plurality of magnetization magnetic pole surfaces (60a) are opposed to the first magnetic bodies in the radial direction centered on the axis, respectively, and the magnetization magnetic field is introduced from the magnetization magnetic pole surface. A first step of forming the first field magnet by magnetizing the first magnetic body;
(B) With the second divided field element core removed, the plurality of magnetizing magnetic pole faces are made to face the first magnetic bodies, respectively, and the same as the first step from the magnetizing magnetic pole face. A field element manufacturing method, wherein the second step of generating the magnetizing magnetic field with polarity and magnetizing the second magnetic body to form the second field magnet is executed.
前記第2工程は前記第1工程の実行前に実行される、請求項10に記載の界磁子の製造方法。   The field element manufacturing method according to claim 10, wherein the second step is performed before the first step. 前記第2界磁磁石(41)は前記径方向において前記第1分割界磁子コア(20)の少なくとも一部と前記第2分割界磁子コア(30)とで挟まれる、請求項10又は11に記載の界磁子の製造方法。   The said 2nd field magnet (41) is pinched | interposed by at least one part of the said 1st division field core (20) and the said 2nd division field element core (30) in the said radial direction. 11. A method for producing a field element according to 11. 前記第1分割界磁子コア(20)は前記第2界磁磁石(41;411,412)を介して相互に径方向で対向する一対の面(24,34;242,342)を有する、請求項10乃至12のいずれか一つに記載の界磁子の製造方法。   The first split field element core (20) has a pair of surfaces (24, 34; 242, 342) that are radially opposed to each other via the second field magnet (41; 411, 412). The method for producing a field element according to claim 10. 前記第1分割界磁子コア(20)は前記第1界磁磁石(40)を介して相互に径方向で対向する一対の面(22,32)を有する、請求項10乃至13のいずれか一つに記載の界磁子の製造方法。   The said 1st division | segmentation field element core (20) has a pair of surface (22, 32) which opposes mutually in a radial direction via the said 1st field magnet (40). The manufacturing method of the field element as described in one. 前記第1分割界磁子コア(40)は前記第1分割界磁子コア(41)側において前記第1界磁磁石(41)を覆う薄肉部を備え、前記薄肉部は前記第1界磁磁石(40)を介して相互に径方向で対向する前記一対の面(22,32)を形成する、請求項14に記載の界磁子の製造方法。   The first split field element core (40) includes a thin part covering the first field magnet (41) on the first split field element core (41) side, and the thin part is the first field magnet. 15. The method of manufacturing a field element according to claim 14, wherein the pair of surfaces (22, 32) facing each other in the radial direction are formed via a magnet (40). 前記第1分割界磁子コア(20)は複数の第1の表面(241,242)を有し、前記第2分割界磁コア(20)は複数の第2の表面(341,342)を有し、前記第1及び前記第2の表面は複数の前記第2界磁磁石(41)の各々を介して前記径方向で相互に対向し、
前記第1分割界磁子コアは前記第1の表面の各々から前記第2分割界磁子コアへと向かって前記径方向に突出する複数の第1突部(26)を有し、前記第2分割界磁子コアは前記第2の表面の各々から前記第1分割界磁子コアへと向かって前記径方向に突出する複数の第2突部(36)とを有し、
前記界磁子において、前記第1突部の各々と前記第2突部の各々とは前記径方向で当接面において当接し、前記第1分割界磁子コア及び前記第2分割界磁子コアは前記当接面を除いて前記径方向で相互に離間しており、
前記周方向における前記第1表面の長さは前記周方向における前記第2突部の幅よりも広く、前記周方向における前記第2表面の長さは前記周方向における前記第1突部の幅よりも広く、
所定の鋼板において、前記第1突部と前記第2突部とを周方向にずらした位置関係で、前記軸方向から見た前記第1分割界磁子コア及び前記第2分割界磁子コアの形状を打ち抜いて、前記第1分割界磁子コアと前記第2分割界磁子コアについての積層鋼板を形成し、前記積層鋼板を前記軸方向に積層する、請求項10又は11に記載の界磁子の製造方法。
The first divided field core (20) has a plurality of first surfaces (241, 242), and the second divided field core (20) has a plurality of second surfaces (341, 342). The first and second surfaces are opposed to each other in the radial direction via each of the plurality of second field magnets (41),
The first divided field element core has a plurality of first protrusions (26) protruding in the radial direction from each of the first surfaces toward the second divided field element core, The two-segment field core has a plurality of second protrusions (36) projecting in the radial direction from each of the second surfaces toward the first segment field core,
In the field element, each of the first protrusions and each of the second protrusions abut on a contact surface in the radial direction, and the first divided field element core and the second divided field element The cores are separated from each other in the radial direction except for the contact surface,
The length of the first surface in the circumferential direction is wider than the width of the second protrusion in the circumferential direction, and the length of the second surface in the circumferential direction is the width of the first protrusion in the circumferential direction. Wider than
In a predetermined steel plate, the first divided field element core and the second divided field element core viewed from the axial direction in a positional relationship in which the first protrusion and the second protrusion are shifted in the circumferential direction. 12 is punched out to form a laminated steel sheet for the first divided field element core and the second divided field element core, and the laminated steel sheet is laminated in the axial direction. Manufacturing method of field element.
前記当接面の複数はいずれも前記周方向に対して同じ方向に傾斜している、請求項16に記載の界磁子の製造方法。   The field element manufacturing method according to claim 16, wherein a plurality of the contact surfaces are all inclined in the same direction with respect to the circumferential direction. 前記第2界磁磁石(41)の各々は当該第2界磁磁石を挟む前記第1界磁磁石(40)の間で、前記軸の周りで隣り合う2つの第3界磁磁石(411)と第4界磁磁石(412)とを有し、
前記界磁子において、前記第1突部(26)と前記第2突部(36)は前記第3及び前記第4界磁磁石の間で当接する、請求項16又は17に記載の界磁子の製造方法。
Each of the second field magnets (41) includes two third field magnets (411) adjacent to each other around the axis between the first field magnets (40) sandwiching the second field magnet. And a fourth field magnet (412),
The field magnet according to claim 16 or 17, wherein in the field element, the first protrusion (26) and the second protrusion (36) abut between the third and fourth field magnets. Child manufacturing method.
JP2008304076A 2008-11-28 2008-11-28 Field element and method for manufacturing field element Pending JP2010130819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304076A JP2010130819A (en) 2008-11-28 2008-11-28 Field element and method for manufacturing field element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304076A JP2010130819A (en) 2008-11-28 2008-11-28 Field element and method for manufacturing field element

Publications (1)

Publication Number Publication Date
JP2010130819A true JP2010130819A (en) 2010-06-10

Family

ID=42330780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304076A Pending JP2010130819A (en) 2008-11-28 2008-11-28 Field element and method for manufacturing field element

Country Status (1)

Country Link
JP (1) JP2010130819A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217278A (en) * 2011-04-01 2012-11-08 Mitsubishi Electric Corp Permanent magnet type rotary electric machine and manufacturing method therefor
JP2013126318A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Embedded magnet type rotor and embedded magnet type permanent magnet rotary electric machine using the same
US9893571B2 (en) * 2011-07-08 2018-02-13 Mitsubishi Electric Corporation Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
WO2019131915A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Rotary electric machine and method for manufacturing rotary electric machine
JP2019122250A (en) * 2017-12-28 2019-07-22 株式会社デンソー Rotary electric machine and method for manufacturing rotary electric machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217278A (en) * 2011-04-01 2012-11-08 Mitsubishi Electric Corp Permanent magnet type rotary electric machine and manufacturing method therefor
US9893571B2 (en) * 2011-07-08 2018-02-13 Mitsubishi Electric Corporation Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
JP2013126318A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Embedded magnet type rotor and embedded magnet type permanent magnet rotary electric machine using the same
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
JP2019122250A (en) * 2017-12-28 2019-07-22 株式会社デンソー Rotary electric machine and method for manufacturing rotary electric machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
JP7010204B2 (en) 2017-12-28 2022-01-26 株式会社デンソー Rotating machine and manufacturing method of rotating machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
CN111512523A (en) * 2017-12-28 2020-08-07 株式会社电装 Rotating electrical machine and method for manufacturing rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
WO2019131915A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Rotary electric machine and method for manufacturing rotary electric machine

Similar Documents

Publication Publication Date Title
JP2010130819A (en) Field element and method for manufacturing field element
KR101880377B1 (en) Interior permanent magnet rotating electric machine
JP5305887B2 (en) Permanent magnet rotating electric machine
JP2010130818A (en) Method for manufacturing field element
JP5472200B2 (en) Rotating electrical machine rotor
JP2008022663A (en) Rotating electric machine
WO2013098912A1 (en) Rotor
US20130234555A1 (en) Rotary electric machine
JP2011135638A (en) Rotator of rotating electric machine, and rotating electric machine
JP5889155B2 (en) Magnetizing apparatus and magnetizing method
JP2007143335A (en) Field magneton and motor
JP6065568B2 (en) Magnetizer
JP4574297B2 (en) Rotating electrical machine rotor
JP5124923B2 (en) Field element, electric motor and driving method thereof
JP2010193587A (en) Magnet magnetization device for rotors, and motor
JP2017055493A (en) Embedded magnet type rotor and manufacturing method of the same
JP2013132124A (en) Core for field element
JP2016005419A (en) Permanent magnet motor
JP2017112705A (en) Permanent magnet type rotary electric machine and method for manufacturing the same
JP2014023275A (en) Field element, rotary electric machine, and method of manufacturing field element
JP5920025B2 (en) Magnetizing apparatus for rotor and magnetizing method for rotor
JP2008029130A (en) Rotating electric machine
JP2005204477A (en) Apparatus and method for polarizing dynamo-electric machine
JP2008022664A (en) Magnetic field element and rotating electric machine
JP2009118594A (en) Axial gap type motor