JP4694253B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP4694253B2
JP4694253B2 JP2005138969A JP2005138969A JP4694253B2 JP 4694253 B2 JP4694253 B2 JP 4694253B2 JP 2005138969 A JP2005138969 A JP 2005138969A JP 2005138969 A JP2005138969 A JP 2005138969A JP 4694253 B2 JP4694253 B2 JP 4694253B2
Authority
JP
Japan
Prior art keywords
permanent magnet
iron core
magnetic
space factor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005138969A
Other languages
Japanese (ja)
Other versions
JP2006320088A (en
Inventor
信一 山口
晴之 米谷
友弘 菊池
崇 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005138969A priority Critical patent/JP4694253B2/en
Publication of JP2006320088A publication Critical patent/JP2006320088A/en
Application granted granted Critical
Publication of JP4694253B2 publication Critical patent/JP4694253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、サーボモータ等の永久磁石式回転電機に関し、特に、小型化や高出力密度化およびコギングトルクの低減を目的とした永久磁石式回転電機に関するものである。   The present invention relates to a permanent magnet type rotating electrical machine such as a servo motor, and more particularly to a permanent magnet type rotating electrical machine for the purpose of downsizing, high output density and reduction of cogging torque.

永久磁石式回転電機の一般的な構成においては、固定子の中に回転子が配置されている。固定子は、内側に突出する複数の凸極が形成された略円筒形状をなす固定子鉄心の内周に複数個の固定子巻線を設けて複数個の磁極を形成している。回転子は、固定子の中心を回転中心軸として回転できるように回転子鉄心が配設され、回転子鉄心の表面、あるいは内部に永久磁石が設けられ、永久磁石はN極とS極が周方向(回転方向)に交互に並ぶように着磁されている。この回転電機では、固定子巻線に適宜通電し、回転磁界を形成することにより、回転子が回転中心軸の回りに回転する。
上述のような永久磁石式回転電機にあっては、固定子巻線に電流を通電しない状態において回転子を回転させた場合(無負荷状態)においてもコギングトルクと称される回転トルク変動が発生する。コギングトルクは、振動や騒音を発生させたり、回転電機の制御性能を低下させたりする等の要因となる。
このコギングトルクを低減するために、永久磁石の磁極の境界線にスキューを設けることが知られている。一般的には、永久磁石のN極、S極の極間は回転中心軸に対して斜めの直線状であり、コギングトルクを最も低減できる理論スキュー角α(機械角)は、360/(固定子側の磁極数(スロット数)と磁極数の最小公倍数)[degree]である(例えば、特許文献1参照)。
これを回転子の磁極数(極数)および固定子の磁極数(スロット数)を用いて電気角で表すと、コギングトルクを最も低減できる理論スキュー角度θsは、θs=180×(回転子の磁極数)/(回転子の磁極数と固定子の磁極数との最小公倍数)[degree]で表される。
しかし、理論スキュー角度θs(電気角)を上記のように理論的に決定し、実際の回転電機に適用した場合、コギングトルクの低減はまだ不十分であると考えられる。その理由は、スキューを採用したことによって軸(回転中心軸)方向漏洩磁束が発生するが、この漏洩磁束による磁気飽和の影響が考慮されていないからである。一方、永久磁石式回転電機では、小型高出力密度化する必要があり、同一出力における体格を小さくとることが必要となっている。体格縮小のためには、電気装荷あるいは磁気装荷を大きくする必要があるが、電気装荷を大きくすると巻線における発熱が顕著となり、連続定格条件が温度的に満たされなくなる可能性が高いため、電気装荷を大きくすることによる小型高出力密度化は難しい。このため、磁気装荷すなわち磁束密度を高くすることにより小型高出力密度化を達成することが求められている。
そのため、スキュー角度を理論角度とは異なった角度に設定することで、コギングトルクを理論スキュー角度とした場合よりも低減しながら、磁束密度を大きくすることにより高出力密度化することが可能な永久磁石式回転電機を提供することが述べられている(例えば、特許文献2参照)。
In a general configuration of a permanent magnet type rotating electric machine, a rotor is disposed in a stator. The stator is provided with a plurality of stator windings on the inner periphery of a substantially cylindrical stator core having a plurality of convex poles protruding inward to form a plurality of magnetic poles. The rotor is provided with a rotor core so that it can rotate with the center of the stator as the center axis of rotation, and a permanent magnet is provided on or inside the rotor core, and the permanent magnet has N and S poles around it. Magnetized so as to be arranged alternately in the direction (rotation direction). In this rotating electrical machine, the rotor is rotated around the rotation center axis by appropriately energizing the stator windings to form a rotating magnetic field.
In the permanent magnet type rotating electrical machine as described above, even when the rotor is rotated in a state where no current is passed through the stator winding (no load state), a rotational torque variation called cogging torque occurs. To do. The cogging torque causes factors such as generation of vibration and noise, and deterioration of the control performance of the rotating electrical machine.
In order to reduce the cogging torque, it is known to provide a skew at the boundary line of the magnetic pole of the permanent magnet. In general, the distance between the N and S poles of the permanent magnet is a straight line oblique to the rotation center axis, and the theoretical skew angle α (mechanical angle) that can reduce the cogging torque most is 360 / (fixed) The number of magnetic poles (slot number) on the child side and the least common multiple of the number of magnetic poles) [degree] (see, for example, Patent Document 1).
When this is expressed in terms of electrical angle using the number of magnetic poles (number of poles) of the rotor and the number of magnetic poles (number of slots) of the stator, the theoretical skew angle θs that can most reduce the cogging torque is θs = 180 × (the rotor The number of magnetic poles) / (the least common multiple of the number of magnetic poles of the rotor and the number of magnetic poles of the stator) [degree].
However, when the theoretical skew angle θs (electrical angle) is theoretically determined as described above and applied to an actual rotating electrical machine, it is considered that the reduction of cogging torque is still insufficient. The reason is that the use of skew causes a leakage flux in the axial (rotation center axis) direction, but the effect of magnetic saturation due to this leakage flux is not taken into account. On the other hand, in a permanent magnet type rotating electrical machine, it is necessary to reduce the size and increase the output density, and it is necessary to reduce the size of the same output. In order to reduce the size of the body, it is necessary to increase the electrical load or magnetic load. However, if the electrical load is increased, heat generation in the windings becomes prominent, and there is a high possibility that the continuous rating condition will not be met in terms of temperature. It is difficult to reduce the size and increase the output density by increasing the load. For this reason, it is required to achieve a smaller and higher output density by increasing the magnetic loading, that is, the magnetic flux density.
Therefore, by setting the skew angle to a different angle from the theoretical angle, it is possible to increase the output density by increasing the magnetic flux density while reducing the cogging torque compared to the theoretical skew angle. It is described that a magnet-type rotating electrical machine is provided (for example, see Patent Document 2).

特開2000−308286号公報(第3頁、第2図及び第5図)JP 2000-308286 A (page 3, FIG. 2 and FIG. 5) 特開2005−20930号公報JP 2005-20930 A

しかしながら、上記ののように磁気飽和の影響を考慮しスキュー角度を決定する場合には、スキュー角度を最適化するということが必要であった。また、磁気飽和の状況によっては、最適化されたスキュー角度は、トルクリップルの増加を招くスキュー角度となることがあった。   However, when the skew angle is determined in consideration of the influence of magnetic saturation as described above, it is necessary to optimize the skew angle. Further, depending on the situation of magnetic saturation, the optimized skew angle may be a skew angle that causes an increase in torque ripple.

この発明は上記のような課題を解決するためになされたもので、スキュー角度を理論角度とし、出力の低減をできるだけ抑えながら、コギングトルクを低減可能な永久磁石式回転電機を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a permanent magnet type rotating electrical machine that can reduce the cogging torque while setting the skew angle as the theoretical angle and suppressing the reduction in output as much as possible. It is what.

この発明に係る永久磁石式回転電機においては、円周方向に複数の磁極を持つ永久磁石を配置し、永久磁石の磁極の境界線もしくは境界部にスキューを設けた回転子と、該回転子を内部に配置し、内側に突出する複数の凸極が形成された略円筒形状の固定子鉄心を有する固定子とを備え、固定子鉄心の軸長をL、固定子鉄心に使用した電磁鋼板の板厚をt、使用した電磁鋼板の枚数をnとし、P=nt/L×100[%]にて算出できる鉄心の占積率Pを、97〜99.4%の範囲とすると共に、永久磁石のスキュー角度を360/(回転子磁極数と固定子磁極数の最小公倍数)としたものである。 In the permanent magnet type rotating electrical machine according to the present invention, a permanent magnet having a plurality of magnetic poles in the circumferential direction is disposed, a rotor having a skew at the boundary line or boundary portion of the magnetic pole of the permanent magnet, and the rotor And a stator having a substantially cylindrical stator core formed with a plurality of projecting poles protruding inward, the axial length of the stator core being L, and the electrical steel sheet used for the stator core The sheet thickness is t, the number of used electromagnetic steel sheets is n, and the space factor P of the iron core that can be calculated by P = nt / L × 100 [%] is in the range of 97 to 99.4%, and is permanent. The skew angle of the magnet is 360 / (the least common multiple of the number of rotor magnetic poles and the number of stator magnetic poles) .

この発明によれば、円周方向に複数の磁極を持つ永久磁石を配置し、永久磁石の磁極の境界線にスキューを設けた回転子と、該回転子を内部に配置し、内側に突出する複数の凸極が形成された略円筒形状の固定子鉄心を有する固定子とを備え、鉄心の占積率Pを、97〜99.4%の範囲とすると共に、永久磁石のスキュー角度を360/(回転子磁極数と固定子磁極数の最小公倍数)としたことより、高出力密度化を維持しつつコギングトル低減が可能な永久磁石式回転電機を得ることができる。 According to the present invention, a permanent magnet having a plurality of magnetic poles is arranged in the circumferential direction, a rotor having a skew in a boundary line between the magnetic poles of the permanent magnet, the rotor is arranged inside, and protrudes inward. And a stator having a substantially cylindrical stator core formed with a plurality of convex poles. The core space factor P is in the range of 97 to 99.4%, and the skew angle of the permanent magnet is 360. / (The least common multiple of the number of rotor magnetic poles and the number of stator magnetic poles), it is possible to obtain a permanent magnet type rotating electrical machine capable of reducing cogging torque while maintaining high output density.

実施の形態1.
図1はこの発明の実施の形態1における永久磁石式回転電機を示す斜視図、図2はこの発明の実施の形態1における永久磁石式回転電機を示す平面図、図3はこの発明の実施の形態1における永久磁石式回転電機のティース部拡大図、図4は図3のカシメ部での積層方向の断面図、図5は図4のカシメ部の一部を拡大して示す概略寸法図、図6は3次元磁界解析結果より得られた鉄心の占積率100%の場合を基準とした鉄心の占積率とコギングトルクおよび無負荷誘起電圧の関係を示す特性図、図7は鉄心の占積率100%の場合における図3のカシメ部での積層方向の断面図、図8は永久磁石式回転電機のティース部の異なるカシメ形状を示す図3相当図、図9は永久磁石式回転電機のティース部の他の異なるカシメ形状を示す図3相当図である。
図1および図2に示すように、回転子3は、回転子シャフト33に固定された回転子鉄心31の外周面に永久磁石32が配置されている。永久磁石32は、磁極32a〜32fが、N極とS極が周方向(回転方向)に交互に並ぶように着磁され、各磁極32aと32b、32bと32c、32cと32d、32dと32e、32eと32f、32fと32aの境界線にスキュー(スキュー角度θである)が設けられている。
また、固定子2は、内側に突出する複数の凸極からなる固定子ティース23が形成された円筒形状をなす固定子鉄心21の内周に複数個の固定子巻線22を設けて複数個の磁極を形成している。図2では固定子2の磁極数(スロット数)は9個である。
回転子3は、固定子2の中心を回転中心軸として回転できるように回転子鉄心31が配設され、固定子巻線22に適宜通電し、回転磁界を形成することにより、回転子3が回転中心軸回りに回転する。
図2では回転子3の磁極数は6個であり、固定子2の磁極数は9個であることから、この永久磁石式回転電機のコギングトルク低減のための理論スキュー角度θ(機械角度)は20度(=360/回転子磁極数と固定子磁極数の最小公倍数18)となる。
図4に示したように、高出力密度が必要とされる回転電機には、一般に低鉄損材料である薄い電磁鋼板4(板厚0.2〜0.5mm)が使用されると共に、鉄心を金型にて打ち抜くと同時にカシメ5、すなわち、接着材等を使用せずに、接合部分にはめこまれた爪や金具を工具で打ったり締めたりして接合部を固く止めることにより電磁鋼板4を一体化させるということが行われる。
図5は図4のカシメ部の一部を拡大して示す概略寸法図であり、カシメ5の寸法記号を記載したものである。tは電磁鋼板4の板厚、t'はカシメ部における隣接する電磁鋼板間距離+電磁鋼板の板厚、aは凹部の直径、bは凹部の深さ、cは凸部の直径、dは凸部の高さ、V1は凹部の体積、V2は凸部の体積である。
この発明では、使用した鉄心の電磁鋼板4の板厚t×使用した枚数n/固定子鉄心21の長さLを、鉄心の占積率Pとして定義することとする。すなわち、P=nt/L×100[%]にて算出できる。
図5に示したカシメ部5の寸法記号を用いると、鉄心の占積率Pは

Figure 0004694253
となる。ただし、a≠c およびb≠dとした。また、a=c もしくはb=dの場合には、鉄心の占積率は100%となる。
次に、高出力化を目的としてカシメ5を実施した場合のカシメ部での積層方向の断面図を図7に示す。図7に示すように、高出力化のため通常は、各電磁鋼板4間での隙間は出来るだけ低減させることを行う。そのため、図5におけるカシメ部寸法はa=c、d=bとなるよう、つまり、鉄心の占積率Pは100%となるように設定する。
次に、図2に示したような回転子磁極数が6個、固定子磁極数が9個の回転電機について、理論スキュー角度が20度(機械角度360/18=20度)の回転子スキューを施した場合について、3次元磁界解析を行い、鉄心の占積率Pの大きさを変化させた場合のコギングトルクおよび無負荷誘起電圧算出結果を図6に示す。図6は、鉄心の占積率Pが100%の場合を基準として、コギングトルク比および無負荷誘起電圧比を示している。
図6より、鉄心の占積率Pが100%から小さくなるに伴い、コギングトルクも小さくなっていることが分かる。これは、占積率Pを低くするに伴い、図1に示した軸方向漏洩磁束13が減少したためと考えられる。つまり、理論スキュー角度でのコギングトルク低減のためには、軸方向漏洩磁束13が低減することが必要となり、占積率Pは低くした方が良いものと考えられる。
一方、永久磁石式回転電機のトルク出力は、一般的に無負荷誘起電圧×通電電流で表すことができる。つまり、通電電流が一定である場合には、トルク出力を大きくするためには、出来るだけ無負荷誘起電圧を大きくすることが必要となる。図6では、鉄心の占積率Pの低下に伴い、無負荷誘起電圧が低下していることが分かる。これは、鉄心の占積率Pが低下したことより、等価的に固定子鉄心21の鉄心幅が短くなったためである。
よって高トルク出力および低コギングトルクを達成するためには、鉄心の占積率Pの設定が非常に重要となり、この発明では、高トルク出力(低減率1%以下)および低コギングトルク(低減率50%以下)を達成するために、鉄心の占積率Pは97〜99.4%の範囲となるように設定した。
次に、図5のカシメ5の寸法記号を用い、カシメ5実施時の占積率低減方法について述べる。
まず、カシメ5の形状として、図2および図3に示した丸形状について説明を行う。
図5において、電磁鋼板4を打ち抜き丸形カシメ時に発生するするカシメ部の凸凹形状の体積V1、V2は一定であると考えられることから、次式が成立する。
Figure 0004694253
よって丸形カシメ時を使用した際の鉄心の占積率Pは(1)式より
Figure 0004694253
と表すことができる。
よって、丸形カシメを使用した場合には、(2)式を用い、鉄心の占積率Pを97〜99.4の範囲となるように、カシメ形状寸法a、b、c、dを決定することより、高トルク出力および低コギングトルクが達成できるものと考えられる。
次に、カシメ形状として、図8の正方形カシメ6を用いた場合について述べる。ここで、aは凹部の一辺の長さである。正方形カシメを用いた場合も、カシメ部の凸凹形状の体積は一定であることから次式が成り立つ。
Figure 0004694253
よって、正方形カシメを使用した際の鉄心の占積率Pは(2)式と同様となり、丸形カシメを使用した場合と同様、カシメ形状寸法a、b、c、dを(2)式を用い決定することより、高トルク出力および低コギングトルクが達成できるものと考えられる。
次に、カシメ形状として、長方形カシメの場合について述べる。ここで、aは凹部の短辺の長さ、eは凹部の長辺の長さである。長方形カシメの場合もカシメ部の凸凹部体積は一定であることから、次式が成立する。
Figure 0004694253
よって長方形カシメを使用した場合の鉄心の占積率Pは、次式で表すことができる。
Figure 0004694253
よって、長方形カシメを使用した場合には、カシメ形状寸法a、b、c、dを(3)式を用い、鉄心の占積率Pが97〜99.4%の範囲となるように設定することより、高トルク出力および低コギングトルクが達成できるものと考えられる。
なお、この実施の形態1は、丸形・長方形・正方形カシメの場合について述べたが、他のカシメ形状の場合でも同様に、カシメ部寸法を鉄心の占積率から決定することで、低コギングトルク化が行えるものと考えられる。
また、図2および図3では、1つのティース当たり1個のカシメを用いた場合について説明を行ったが、図14に示すように1つのティース当たり複数のカシメを使用した場合についてもカシメ部寸法を鉄心の占積率から決定することで、低コギングトルク化を行うことができるものと考えられる。
さらに、図15に示すようにカシメを実施したティースと実施しないティースを混合させた場合等についてもカシメ部寸法を鉄心の占積率から決定することで、低コギングトルク化を行うことができるものと考えられる。 Embodiment 1 FIG.
1 is a perspective view showing a permanent magnet type rotating electrical machine according to Embodiment 1 of the present invention, FIG. 2 is a plan view showing the permanent magnet type rotating electrical machine according to Embodiment 1 of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a cross-sectional view in the stacking direction of the caulking portion of FIG. 3, and FIG. 5 is a schematic dimensional diagram showing an enlarged part of the caulking portion of FIG. 4; FIG. 6 is a characteristic diagram showing the relationship between the space factor of the iron core, the cogging torque, and the no-load induced voltage based on the case where the space factor of the iron core is 100% obtained from the three-dimensional magnetic field analysis results. 3 is a cross-sectional view in the stacking direction at the caulking portion of FIG. 3 when the space factor is 100%, FIG. 8 is a view corresponding to FIG. 3 showing different caulking shapes of the teeth portion of the permanent magnet type rotating electrical machine, and FIG. FIG. 3 equivalent to another different caulking shape of the electric teeth portion It is.
As shown in FIGS. 1 and 2, in the rotor 3, permanent magnets 32 are arranged on the outer peripheral surface of a rotor core 31 fixed to the rotor shaft 33. The permanent magnet 32 is magnetized such that the magnetic poles 32a to 32f are alternately arranged in the circumferential direction (rotation direction) with the N pole and the S pole, and the magnetic poles 32a and 32b, 32b and 32c, 32c and 32d, and 32d and 32e. , 32e and 32f, and 32f and 32a are provided with a skew (a skew angle θ).
The stator 2 includes a plurality of stator windings 22 provided on the inner periphery of a cylindrical stator core 21 having a stator tooth 23 formed of a plurality of convex poles protruding inward. The magnetic pole is formed. In FIG. 2, the number of magnetic poles (number of slots) of the stator 2 is nine.
The rotor 3 is provided with a rotor core 31 so as to be able to rotate about the center of the stator 2 as a rotation center axis. By appropriately energizing the stator winding 22 and forming a rotating magnetic field, the rotor 3 is Rotates around the rotation center axis.
In FIG. 2, the number of magnetic poles of the rotor 3 is 6, and the number of magnetic poles of the stator 2 is 9. Therefore, the theoretical skew angle θ (mechanical angle) for reducing the cogging torque of this permanent magnet type rotating electric machine. Is 20 degrees (= 360 / the least common multiple of the number of rotor magnetic poles and the number of stator magnetic poles 18).
As shown in FIG. 4, a rotating electrical machine that requires a high power density generally uses a thin electromagnetic steel plate 4 (thickness 0.2 to 0.5 mm), which is a low iron loss material, and uses an iron core as a mold. At the same time as punching in, without using caulking 5, that is, without using an adhesive or the like, the magnetic steel sheet 4 is integrated by firmly fastening the joint by hitting or tightening a nail or metal fitting fitted into the joint with a tool. It is performed.
FIG. 5 is an enlarged schematic dimensional diagram showing a part of the caulking portion of FIG. 4, in which dimensional symbols of the caulking 5 are described. t is the thickness of the electromagnetic steel sheet 4, t ′ is the distance between the adjacent electromagnetic steel sheets in the crimped portion + the thickness of the electromagnetic steel sheet, a is the diameter of the concave portion, b is the depth of the concave portion, c is the diameter of the convex portion, d is The height of the convex part, V1 is the volume of the concave part, and V2 is the volume of the convex part.
In this invention, the thickness t of the used magnetic steel sheet 4 of the iron core × the number n used / the length L of the stator core 21 is defined as the space factor P of the iron core. That is, P = nt / L × 100 [%].
If the dimension symbol of the crimping part 5 shown in FIG. 5 is used, the space factor P of the iron core is
Figure 0004694253
It becomes. However, a ≠ c and b ≠ d. When a = c or b = d, the space factor of the iron core is 100%.
Next, FIG. 7 shows a cross-sectional view in the stacking direction at the crimping portion when the crimping 5 is performed for the purpose of increasing the output. As shown in FIG. 7, the gap between the electromagnetic steel sheets 4 is usually reduced as much as possible for higher output. Therefore, the caulking portion dimensions in FIG. 5 are set to be a = c and d = b, that is, the space factor P of the iron core is set to 100%.
Next, for a rotating electrical machine having six rotor magnetic poles and nine stator magnetic poles as shown in FIG. 2, a rotor skew having a theoretical skew angle of 20 degrees (mechanical angle 360/18 = 20 degrees). FIG. 6 shows the cogging torque and no-load induced voltage calculation results when a three-dimensional magnetic field analysis is performed and the space factor P of the iron core is changed. FIG. 6 shows the cogging torque ratio and the no-load induced voltage ratio based on the case where the space factor P of the iron core is 100%.
From FIG. 6, it can be seen that the cogging torque decreases as the space factor P of the iron core decreases from 100%. This is presumably because the axial leakage magnetic flux 13 shown in FIG. 1 decreased as the space factor P was lowered. That is, in order to reduce the cogging torque at the theoretical skew angle, it is necessary to reduce the axial leakage magnetic flux 13, and it is considered that the space factor P should be lowered.
On the other hand, the torque output of a permanent magnet type rotating electrical machine can be generally expressed as no-load induced voltage × energization current. That is, when the energization current is constant, in order to increase the torque output, it is necessary to increase the no-load induced voltage as much as possible. In FIG. 6, it can be seen that as the space factor P of the iron core decreases, the no-load induced voltage decreases. This is because the core width of the stator core 21 is equivalently shortened from the fact that the space factor P of the iron core has decreased.
Therefore, in order to achieve a high torque output and a low cogging torque, the setting of the space factor P of the iron core is very important. In the present invention, a high torque output (a reduction rate of 1% or less) and a low cogging torque (a reduction rate). 50% or less), the space factor P of the iron core was set to be in a range of 97 to 99.4%.
Next, a method for reducing the space factor when the caulking 5 is carried out will be described using the dimension symbols of the caulking 5 in FIG.
First, the round shape shown in FIGS. 2 and 3 will be described as the shape of the crimp 5.
In FIG. 5, the convex and concave volumes V1 and V2 of the caulking portion generated when punching the electromagnetic steel sheet 4 and round caulking are considered to be constant.
Figure 0004694253
Therefore, the space factor P of the iron core when using round caulking is calculated from the equation (1)
Figure 0004694253
It can be expressed as.
Therefore, when round caulking is used, the caulking shape dimensions a, b, c, d are determined so that the space factor P of the iron core is in the range of 97 to 99.4 using equation (2). Thus, it is considered that high torque output and low cogging torque can be achieved.
Next, the case where the square caulking 6 in FIG. 8 is used as the caulking shape will be described. Here, a is the length of one side of the recess. Even when square caulking is used, the following equation holds because the volume of the irregular shape of the caulking portion is constant.
Figure 0004694253
Therefore, the space factor P of the iron core when square caulking is used is the same as that in equation (2), and the caulking shape dimensions a, b, c, and d are expressed by equation (2) as in the case of using round caulking. It is considered that a high torque output and a low cogging torque can be achieved by determining the use.
Next, the case of rectangular caulking will be described as the caulking shape. Here, a is the length of the short side of the recess, and e is the length of the long side of the recess. In the case of rectangular caulking, since the convex and concave volume of the caulking portion is constant, the following equation is established.
Figure 0004694253
Therefore, the space factor P of the iron core when the rectangular caulking is used can be expressed by the following equation.
Figure 0004694253
Therefore, when rectangular caulking is used, caulking shape dimensions a, b, c, and d are set using equation (3) such that the space factor P of the iron core is in the range of 97 to 99.4%. Therefore, it is considered that high torque output and low cogging torque can be achieved.
In the first embodiment, the case of round, rectangular and square caulking has been described. Similarly, in the case of other caulking shapes, the size of the caulking portion is determined from the space factor of the iron core, thereby reducing low cogging. It is considered that torque can be achieved.
2 and 3, the case where one caulking is used per tooth has been described. However, as shown in FIG. 14, the caulking portion dimensions are also obtained when a plurality of caulking is used per one tooth. It is considered that the cogging torque can be reduced by determining from the space factor of the iron core.
Furthermore, as shown in FIG. 15, even when teeth that have been crimped and teeth that have not been crimped are mixed, the cogging torque can be reduced by determining the size of the crimped portion from the space factor of the iron core. it is conceivable that.

実施の形態2.
実施の形態1では、鉄心の占積率Pを変化させるため、カシメ部の凸凹形状を変化させた場合について述べたが、この実施の形態2では、カシメを使用せずに、接着鋼板等を用い、電磁鋼板を一体化させた場合について述べる。
図10はこの発明の実施の形態2における永久磁石式回転電機の鉄心積層方向の断面図である。すなわち、図10に示したように、板厚tの電磁鋼板4からなる鉄心積層間に板厚yの非磁性材料6を設置することによっても鉄心の等価占積率Pを制御することが可能となる。
なお、非磁性材料6を使用した場合の鉄心の占積率Pは、非磁性材料6の板厚y[mm]、枚数をmとすると

Figure 0004694253
にて表すことができる。これにより、鉄心占積率Pを変化させることが可能となる。
また、図11に示したように、板厚ts[mm]の磁性材料部10と板厚ys[mm]の非磁性材部11を接合させることで、t[mm]の板厚とする鉄心材料をn枚を用いた場合には、鉄心の占積率Pは
Figure 0004694253
にて表すことができる。よって、磁性材料部10と非磁性材料部11を接合させた電磁鋼板を用いた場合にも、鉄心の占積率Pを変化させることが可能となる。 Embodiment 2. FIG.
In Embodiment 1, in order to change the space factor P of an iron core, although the case where the uneven shape of the crimping part was changed was described, in this Embodiment 2, an adhesive steel plate etc. are used without using crimping. The case where the electromagnetic steel sheets are integrated will be described.
FIG. 10 is a cross-sectional view of the permanent magnet type rotating electric machine in the iron core lamination direction according to Embodiment 2 of the present invention. That is, as shown in FIG. 10, it is possible to control the equivalent space factor P of the iron core also by installing a nonmagnetic material 6 having a thickness y between the iron core laminates made of electromagnetic steel plates 4 having a thickness t. It becomes.
Note that the space factor P of the iron core when the nonmagnetic material 6 is used is the thickness y [mm] of the nonmagnetic material 6 and the number of sheets is m.
Figure 0004694253
Can be expressed as Thereby, the iron core space factor P can be changed.
Further, as shown in FIG. 11, an iron core having a thickness of t [mm] is obtained by joining a magnetic material portion 10 having a thickness ts [mm] and a non-magnetic material portion 11 having a thickness ys [mm]. When n pieces of materials are used, the space factor P of the iron core is
Figure 0004694253
Can be expressed as Therefore, even when an electromagnetic steel sheet in which the magnetic material part 10 and the nonmagnetic material part 11 are joined is used, the space factor P of the iron core can be changed.

実施の形態3.
図12はこの発明の実施の形態3における永久磁石式回転電機の鉄心積層方向の断面図である。この実施の形態3では、カシメを軸方向に設けた場合と設けない場合を設けることで、鉄心の占積率Pを調整したものである。
Embodiment 3 FIG.
FIG. 12 is a cross-sectional view of the permanent magnet type rotating electrical machine in the iron core lamination direction according to Embodiment 3 of the present invention. In the third embodiment, the space factor P of the iron core is adjusted by providing a case where caulking is provided in the axial direction and a case where caulking is not provided.

実施の形態4.
実施の形態1〜3を併用することでも鉄心の占積率Pを変化させることは可能である。
Embodiment 4 FIG.
It is possible to change the space factor P of the iron core also by using the first to third embodiments.

実施の形態5.
永久磁石式回転電機の小型化・高出力密度化に際しては、鉄心の磁束密度が高くなるように設計することが一般的である。しかしながら、鉄心の磁束密度が高い設計である場合には、軸方向漏洩磁束13も増加し、鉄心の占積率Pがコギングトルク等に与える影響は大きくなるものと推測される。そこで、固定子ティース23中央部の磁束密度をパラメータとし、鉄心の占積率Pとコギングトルク比の関係について3次元解析を実施した結果を図13に示す。なお、図中のコギングトルクは、磁束密度1.3T、鉄心の占積率100%の場合を基準としたものである。
図13より、磁束密度が高くなるに伴い、鉄心の占積率の影響も増加していることが分かる。すなわち、磁束密度が高い設計とした場合、磁気エネルギー増大によりコギングトルク値も大きくなる。これは、磁束密度が高い設計となっている永久磁石式回転電機に対しては、軸方向漏洩磁束量も多いことから、鉄心の占積率の低減よる軸方向漏洩磁束の低減の効果もより大きくなっているものと考えられる。図13より固定子ティース23部の磁束密度が概略1T以上の場合は、鉄心の占積率を97〜99.4%の範囲としたことによるコギングトルクの低減効果が非常に高いものと考えられる。
Embodiment 5 FIG.
In order to reduce the size and increase the output density of a permanent magnet type rotating electric machine, it is common to design the magnetic flux density of the iron core to be high. However, in the case of a design in which the magnetic flux density of the iron core is high, the axial leakage magnetic flux 13 is also increased, and it is estimated that the influence of the space factor P of the iron core on the cogging torque and the like is increased. Therefore, FIG. 13 shows the result of three-dimensional analysis of the relationship between the space factor P of the iron core and the cogging torque ratio with the magnetic flux density at the center of the stator teeth 23 as a parameter. The cogging torque in the figure is based on the case where the magnetic flux density is 1.3 T and the space factor of the iron core is 100%.
FIG. 13 shows that the influence of the space factor of the iron core increases as the magnetic flux density increases. That is, in the case of a design with a high magnetic flux density, the cogging torque value increases as the magnetic energy increases. This is because the amount of magnetic flux leakage in the axial direction is large for permanent magnet type rotating electrical machines that are designed to have a high magnetic flux density, so the effect of reducing the magnetic flux leakage in the axial direction by reducing the space factor of the iron core is also greater. It seems that it is getting bigger. From FIG. 13, when the magnetic flux density of the stator teeth 23 part is approximately 1T or more, it is considered that the cogging torque reduction effect by setting the space factor of the iron core in the range of 97 to 99.4% is very high. .

実施の形態6.
固定子磁極数と回転子磁極数の比が2:3である永久磁石式回転電機については、ティース部の磁束密度が高くなる設計であることから、さらに鉄心の占積率を97〜99.4%の範囲としたことによるコギングトルクの低減効果は高くなる。
Embodiment 6 FIG.
The permanent magnet type rotating electrical machine in which the ratio between the number of stator magnetic poles and the number of rotor magnetic poles is 2: 3 is designed to increase the magnetic flux density of the tooth portion, and therefore the space factor of the iron core is set to 97 to 99.99. The effect of reducing the cogging torque due to the range of 4% increases.

この発明の実施の形態1における永久磁石式回転電機を示す斜視図である。It is a perspective view which shows the permanent magnet type rotary electric machine in Embodiment 1 of this invention. この発明の実施の形態1における永久磁石式回転電機を示す平面図である。It is a top view which shows the permanent magnet type rotary electric machine in Embodiment 1 of this invention. この発明の実施の形態1における永久磁石式回転電機のティース部拡大図である。It is a teeth part enlarged view of the permanent magnet type rotary electric machine in Embodiment 1 of this invention. 図3のカシメ部での積層方向の断面図である。It is sectional drawing of the lamination direction in the crimping | crimped part of FIG. 図4のカシメ部の一部を拡大して示す概略寸法図である。It is a schematic dimension drawing which expands and shows a part of crimping part of FIG. 3次元磁界解析結果より得られた鉄心の占積率100%の場合を基準とした鉄心の占積率とコギングトルクおよび無負荷誘起電圧の関係を示す特性図である。It is a characteristic view showing the relationship between the space factor of the iron core, the cogging torque and the no-load induced voltage based on the case where the space factor of the iron core is 100% obtained from the three-dimensional magnetic field analysis result. 鉄心の占積率100%の場合における図3のカシメ部での積層方向の断面図である。It is sectional drawing of the lamination direction in the crimping | crimped part of FIG. 3 in the case of 100% of space factor of an iron core. 永久磁石式回転電機のティース部の異なるカシメ形状を示す図3相当図である。FIG. 4 is a view corresponding to FIG. 3 showing different caulking shapes of teeth portions of the permanent magnet type rotating electric machine. 永久磁石式回転電機のティース部の他の異なるカシメ形状を示す図3相当図である。FIG. 6 is a view corresponding to FIG. 3 showing another different caulking shape of the teeth portion of the permanent magnet type rotating electric machine. この発明の実施の形態2における永久磁石式回転電機の鉄心積層方向の断面図である。It is sectional drawing of the iron core lamination direction of the permanent magnet type rotary electric machine in Embodiment 2 of this invention. この発明の実施の形態2における永久磁石式回転電機の鉄心積層方向の異なる断面図である。It is sectional drawing from which the iron core lamination direction differs of the permanent-magnet-type rotary electric machine in Embodiment 2 of this invention. この発明の実施の形態3における永久磁石式回転電機の鉄心積層方向の断面図である。It is sectional drawing of the iron core lamination direction of the permanent magnet type rotary electric machine in Embodiment 3 of this invention. この発明の実施の形態5における永久磁石式回転電機の固定子ティース中央部の磁束密度をパラメータとした場合の鉄心占積率とコギングトルク比の関係を示す特性図である。It is a characteristic view which shows the relationship between a core space factor and a cogging torque ratio at the time of setting the magnetic flux density of the stator teeth center part of the permanent magnet type rotary electric machine in Embodiment 5 of this invention as a parameter. この発明の実施の形態1による1つのティース当たり複数のカシメを用いた場合の永久磁石式回転電機を示す平面図である。It is a top view which shows the permanent-magnet-type rotary electric machine at the time of using the several crimping per teeth by Embodiment 1 of this invention. この発明の実施の形態1によるカシメを実施したティースと実施しないティースを混合させた場合の永久磁石式回転電機を示す平面図である。It is a top view which shows the permanent-magnet-type rotary electric machine at the time of mixing the tooth which implemented the crimping by Embodiment 1 of this invention, and the tooth which is not implemented.

符号の説明Explanation of symbols

2 固定子
21 固定子鉄心
22 固定子巻線、
23 固定子ティース
3 回転子
31 回転子鉄心
32 永久磁石
32a〜32f 磁極
33 回転子シャフト
4 電磁鋼板(磁性材料)
5、8 カシメ(丸形状)、
6 正方形カシメ、
7 長方形カシメ、
9 非磁性材料、
10 磁性材料部、
11 非磁性材料部
2 Stator 21 Stator core 22 Stator winding,
23 Stator Teeth 3 Rotor 31 Rotor Core 32 Permanent Magnets 32a to 32f Magnetic Pole 33 Rotor Shaft 4 Magnetic Steel Sheet (Magnetic Material)
5, 8 Caulking (round shape),
6 Square caulking,
7 Rectangular caulking,
9 Non-magnetic materials,
10 Magnetic material part,
11 Non-magnetic material part

Claims (7)

円周方向に複数の磁極を持つ永久磁石を配置し、前記永久磁石の磁極の境界線もしくは境界部にスキューを設けた回転子と、該回転子を内部に配置し、内側に突出する複数の凸極が形成された略円筒形状の固定子鉄心を有する固定子とを備え、前記固定子鉄心の軸長をL、固定子鉄心に使用した電磁鋼板の板厚をt、使用した電磁鋼板の枚数をnとし、P=nt/L×100[%]にて算出できる鉄心の占積率Pを、97〜99.4%の範囲とすると共に、前記永久磁石のスキュー角度を360/(回転子磁極数と固定子磁極数の最小公倍数)としたことを特徴とする永久磁石式回転電機。 A permanent magnet having a plurality of magnetic poles in the circumferential direction is arranged, a rotor having a skew at the boundary line or boundary portion of the magnetic pole of the permanent magnet, and a plurality of the rotors arranged inside and projecting inward A stator having a substantially cylindrical stator core formed with convex poles, wherein the axial length of the stator core is L, the thickness of the electromagnetic steel sheet used for the stator core is t, The number of sheets is n, and the space factor P of the iron core that can be calculated by P = nt / L × 100 [%] is in the range of 97 to 99.4%, and the skew angle of the permanent magnet is 360 / (rotation) A permanent magnet type rotating electrical machine characterized by having the least common multiple of the number of child magnetic poles and the number of stator magnetic poles) . 下記の式にて表現した鉄心の占積率Pが97〜99.4の範囲となるように、丸形又は正方形のカシメ部の寸法形状a、b、c、dを設定したことを特徴とする請求項1記載の永久磁石式回転電機。
Figure 0004694253
(但し、aは凹部の直径又は一辺の長さ、bは凹部の深さ、cは凸部の直径又は一辺の長さ、dは凸部の高さである)
Dimensional shapes a, b, c, d of round or square caulking portions are set so that the space factor P of the iron core expressed by the following formula is in the range of 97 to 99.4. The permanent magnet type rotating electrical machine according to claim 1.
Figure 0004694253
(Where a is the diameter of the concave portion or the length of one side, b is the depth of the concave portion, c is the diameter of the convex portion or the length of one side, and d is the height of the convex portion)
下記の式にて表現した鉄心の占積率Pが97〜99.4%の範囲となるように、長方形のカシメ部の寸法形状a、b、c、dを設定したことを特徴とする請求項1記載の永久磁石式回転電機。
Figure 0004694253
(但し、aは凹部の一辺の長さ、bは凹部の深さ、cは凸部の一辺の長さ、dは凸部の高さである)
Dimensional shapes a, b, c, d of rectangular crimping portions are set so that the space factor P of the iron core expressed by the following formula is in a range of 97 to 99.4%. Item 10. The permanent magnet type rotating electric machine according to Item 1.
Figure 0004694253
(Where a is the length of one side of the concave portion, b is the depth of the concave portion, c is the length of one side of the convex portion, and d is the height of the convex portion)
電磁鋼板および非磁性材料を併用し、非磁性材料の板厚をy、枚数をmとすると、下記式にて表現した鉄心の占積率Pが97〜99.4%の範囲となるように、非磁性材料の板厚yおよび枚数mを設定したことを特徴とする請求項1〜請求項3のいずれかに記載の永久磁石式回転電機。
Figure 0004694253
When a magnetic steel sheet and a nonmagnetic material are used in combination, and the thickness of the nonmagnetic material is y and the number of sheets is m, the space factor P of the iron core expressed by the following formula is in the range of 97 to 99.4%. The permanent magnet type rotating electrical machine according to any one of claims 1 to 3, wherein the plate thickness y and the number m of nonmagnetic materials are set.
Figure 0004694253
ts[mm]の磁性材料とys[mm]の非磁性材料を接合させた鉄心材料を用い、下記式にて表現した鉄心の占積率Pが97〜99.4%の範囲となるように、磁性材料および非磁性材料部分の厚さを設定したことを特徴とする請求項1〜請求項4のいずれかに記載の永久磁石式回転電機。
Figure 0004694253
Using an iron core material in which a magnetic material of ts [mm] and a non-magnetic material of ys [mm] are joined, the space factor P of the iron core expressed by the following formula is in the range of 97 to 99.4%. The permanent magnet type rotating electrical machine according to any one of claims 1 to 4, wherein the thicknesses of the magnetic material and nonmagnetic material portions are set.
Figure 0004694253
無負荷時におけるティース部中央部の磁束密度の最大値が1T以上であることを特徴とする請求項1〜請求項5のいずれかに記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 5, wherein the maximum value of the magnetic flux density in the center portion of the tooth portion when no load is applied is 1T or more. 回転子の磁極数と固定子の磁極数との比が2:3であることを特徴とする請求項1〜請求項6のいずれかに記載の永久磁石式回転電機。   The permanent magnet rotating electrical machine according to any one of claims 1 to 6, wherein the ratio of the number of magnetic poles of the rotor to the number of magnetic poles of the stator is 2: 3.
JP2005138969A 2005-05-11 2005-05-11 Permanent magnet rotating electric machine Active JP4694253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138969A JP4694253B2 (en) 2005-05-11 2005-05-11 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138969A JP4694253B2 (en) 2005-05-11 2005-05-11 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2006320088A JP2006320088A (en) 2006-11-24
JP4694253B2 true JP4694253B2 (en) 2011-06-08

Family

ID=37540231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138969A Active JP4694253B2 (en) 2005-05-11 2005-05-11 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP4694253B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199704B2 (en) * 2008-03-05 2013-05-15 株式会社ミツバ Brushless motor
JP6484009B2 (en) * 2014-11-20 2019-03-13 日本電産サンキョー株式会社 motor
JP2018085853A (en) * 2016-11-24 2018-05-31 アイシン・エィ・ダブリュ株式会社 Stator core
JP7078425B2 (en) * 2018-03-07 2022-05-31 株式会社三井ハイテック Manufacturing method of laminated iron core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614481A (en) * 1992-06-25 1994-01-21 Mitsubishi Electric Corp Iron core of armature
JP2000308286A (en) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd Rotating electric machine
JP2001136686A (en) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp Lamination core
JP2004080944A (en) * 2002-08-20 2004-03-11 Toyota Motor Corp Stator core for motor
JP2004088970A (en) * 2002-08-29 2004-03-18 Hitachi Ltd Stacked iron core and rotating electric machine and transformer using the same
JP2005020930A (en) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp Permanent magnet rotating electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614481A (en) * 1992-06-25 1994-01-21 Mitsubishi Electric Corp Iron core of armature
JP2000308286A (en) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd Rotating electric machine
JP2001136686A (en) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp Lamination core
JP2004080944A (en) * 2002-08-20 2004-03-11 Toyota Motor Corp Stator core for motor
JP2004088970A (en) * 2002-08-29 2004-03-18 Hitachi Ltd Stacked iron core and rotating electric machine and transformer using the same
JP2005020930A (en) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp Permanent magnet rotating electric machine

Also Published As

Publication number Publication date
JP2006320088A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4838347B2 (en) Permanent magnet synchronous motor and hermetic compressor
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP4709132B2 (en) Rotor of permanent magnet embedded motor, motor for blower and motor for compressor
JP2008206308A (en) Permanent-magnet rotating electric machine
JP5394756B2 (en) Permanent magnet type rotating electrical machine rotor
JP5665660B2 (en) Permanent magnet rotating electric machine
US9172293B2 (en) Hybrid stepping motor
WO2010116921A1 (en) Magnetic circuit structure
JP2008259349A (en) Laminated core and rotary electric machine
JP6356391B2 (en) Permanent magnet rotating electric machine
JP4694253B2 (en) Permanent magnet rotating electric machine
JP4855747B2 (en) Permanent magnet type reluctance rotating electric machine
JP5242720B2 (en) Rotor of permanent magnet embedded motor
JP2012115089A (en) Rotor for ipm motor and ipm motor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP2002136094A (en) Stepping motor
JP6045804B2 (en) Hybrid stepping motor
JP2006254622A (en) Permanent magnet type motor
JP2007228771A (en) Permanent magnet type motor
JP2018042371A (en) Brushless motor
JP6627520B2 (en) Method of manufacturing rotor and rotor
JP5691451B2 (en) Rotor for rotating electrical machines
JP2008017634A (en) Permanent magnet motor
JP2006254621A (en) Permanent magnet type motor
JP3943532B2 (en) Sintered ring magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4694253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250