JP2010078496A - Surface inspecting device and method - Google Patents

Surface inspecting device and method Download PDF

Info

Publication number
JP2010078496A
JP2010078496A JP2008248222A JP2008248222A JP2010078496A JP 2010078496 A JP2010078496 A JP 2010078496A JP 2008248222 A JP2008248222 A JP 2008248222A JP 2008248222 A JP2008248222 A JP 2008248222A JP 2010078496 A JP2010078496 A JP 2010078496A
Authority
JP
Japan
Prior art keywords
light
scattered light
light receiving
scattered
photosensitive drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008248222A
Other languages
Japanese (ja)
Other versions
JP2010078496A5 (en
Inventor
Michio Kawase
道夫 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008248222A priority Critical patent/JP2010078496A/en
Publication of JP2010078496A publication Critical patent/JP2010078496A/en
Publication of JP2010078496A5 publication Critical patent/JP2010078496A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly perform the inspection of the surface by a simple and inexpensive constitution. <P>SOLUTION: The surface of a photosensitive drum 1 is irradiated with a laser beam Lb at a minute glazing angle θ and the scattered beam component Lb2 thereof is detected by the light detecting members SA, SB and SC arranged on a scattered beam region S3 due to a flaw and the light detecting member SAU arranged on a scattered beam region S2 due to a stain (surface roughness). No light detecting member is arranged on a regular reflected beam region S1. Then, the degree of the flaw and stain of the photosensitive drum 1 is judged on the basis of the intensity of light of the scattered beam component detected by the light detecting members and, on the basis of the judge result, it is judged whether the photosensitive drum 1 must be replaced to display the judge result. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、検査対象物の表面の傷、汚れ等の状態を検査する技術に関し、特にレーザ光ビーム等の非分散光ビームを照射した際の散乱光の光強度に基づいて検査対象物の表面の状態を検査する技術に関する。   The present invention relates to a technique for inspecting the surface of an inspection object such as scratches and dirt, and in particular, the surface of the inspection object based on the light intensity of scattered light when irradiated with a non-dispersed light beam such as a laser light beam. It is related with the technique which inspects the state of.

電子写真方式の複写機、プリンタ、複合機等の画像形成装置では、感光ドラム、中間転写用のドラム又はベルト、トナー定着用のローラ又はベルト等は、その回転動作中における各種の摩擦等によって傷が発生することは避けられない。   In image forming apparatuses such as electrophotographic copying machines, printers, and multifunction machines, photosensitive drums, intermediate transfer drums or belts, toner fixing rollers or belts, and the like are scratched by various frictions during their rotation. It is inevitable that this will occur.

この傷は、形成画像においてスジとなって現れ、画像品質の低下を招くため、傷が大きくなって画像品質が大幅に低下する段階に至った場合には、感光ドラム、中間転写用のドラム又はベルト、トナー定着用のローラ又はベルト等を交換する必要がある。   The scratches appear as streaks in the formed image, leading to a reduction in image quality. Therefore, when the scratches become large and the image quality is greatly reduced, the photosensitive drum, intermediate transfer drum or It is necessary to replace the belt, the toner fixing roller or the belt.

また、感光ドラム、中間転写用のドラム又はベルト、トナー定着用のローラ又はベルト等には、通常、画像形成処理が終了した後もトナーが残留する。この残留トナーは、クリーニングブレード等で除去処理が行われるが、この除去処理の過程で上記の傷が発生する場合がある。   In general, toner remains on the photosensitive drum, the intermediate transfer drum or belt, the toner fixing roller or belt, and the like after the image forming process is completed. The residual toner is removed by a cleaning blade or the like, and the above-described scratch may occur during the removal process.

さらに、上記の除去処理では残留トナーを完全に除去することは困難であり、この除去し切れなかった残留トナーにより、感光ドラム、中間転写用のドラム又はベルト、トナー定着用のローラ又はベルト等の表面は、汚れた状態となる。この汚れの程度が大きくなると、傷や画像品質低下の主因となってしまう。   Further, it is difficult to completely remove the residual toner by the above-described removal process. Due to the residual toner that cannot be completely removed, a photosensitive drum, an intermediate transfer drum or belt, a toner fixing roller or belt, etc. The surface becomes dirty. When the degree of this stain becomes large, it becomes a main cause of scratches and image quality degradation.

従って、傷や汚れが発生した感光ドラム、中間転写用のドラム又はベルト、トナー定着用のローラ又はベルト等は、画像品質の低下との関係で適切な時期に新品なもの等に交換する必要がある。   Therefore, it is necessary to replace the photosensitive drum, the intermediate transfer drum or belt, or the toner fixing roller or belt with a new one or the like at an appropriate time in relation to a decrease in image quality. is there.

しかしながら、現在の傷や汚れが大きくなって画像品質の低下を招くようになる時期を、当該傷や汚れを見ただけで予測することは困難である。そこで、画像品質が現実に低下してしまった段階で交換しようとすると、新品等の在庫が切れており、画像品質が低下した状態のまま画像形成処理を続行せざるを得ない羽目になるときもある。   However, it is difficult to predict the time when the current scratches and stains become large and cause a reduction in image quality simply by looking at the scratches and stains. Therefore, if you try to replace the product when the image quality has actually deteriorated, the new product is out of stock, and the image formation process must be continued with the image quality deteriorated. There is also.

このため、感光ドラム、中間転写用のドラム又はベルト、トナー定着用のローラ又はベルト等の表面の傷や汚れの状態を検査する技術が必要となる。また、記録用紙を搬送するための各種のローラにおいても、ローラ表面の傷や汚れは記録用紙のジャムの原因となるので、これらローラ表面の傷や汚れを検知する必要がある。   For this reason, a technique for inspecting the surface of the photosensitive drum, intermediate transfer drum or belt, toner fixing roller or belt, etc., for scratches and dirt is required. Also, in various types of rollers for transporting recording paper, scratches and dirt on the roller surface cause jamming of the recording paper, so it is necessary to detect scratches and dirt on the roller surface.

従来、検査対象物の表面を検査する技術としては、検査対象物の表面を複数の領域毎に撮影し、それら撮影画像を2つの領域を1組として比較することで、何れの領域に欠陥があるかを判定する技術が実現されている(特許文献1参照)。   Conventionally, as a technique for inspecting the surface of an inspection object, the surface of the inspection object is imaged for each of a plurality of areas, and the captured images are compared as a set of two areas, so that any area has a defect. A technology for determining whether or not there is realized (see Patent Document 1).

また、レーザ光を被測定物への照射角度を変化させながら照射し、当該レーザ光の反射光である粒状斑点模様を撮像することにより、表面粗さを測定する測定する技術も実現されている(特許文献2参照)。   In addition, a measurement technique for measuring the surface roughness by irradiating laser light while changing the irradiation angle to the object to be measured and imaging a granular spot pattern that is reflected light of the laser light has been realized. (See Patent Document 2).

さらに、レーザ光を微粒子群に照射し、その回折光を固体撮像装置で撮像し、回折光の円環領域又は円環の一部の領域の光強度分布から粒径分布を求める技術が実現されている(特許文献3参照)。   Furthermore, a technology has been realized that irradiates a group of particles with laser light, images the diffracted light with a solid-state imaging device, and obtains the particle size distribution from the light intensity distribution of the annular region of the diffracted light or a partial region of the circular ring (See Patent Document 3).

また、画像形成装置に係る技術としては、像担持体上に形成した基準画像に光を照射し、基準画像からの反射光を受光することにより、トナー付着量を検知する技術が実現されている(特許文献4参照)。
特登録2882409号公報 特開2004−125632号公報 特登録2805664号公報 特登録3357470号公報
Further, as a technique related to the image forming apparatus, a technique for detecting the toner adhesion amount by irradiating a reference image formed on the image carrier with light and receiving reflected light from the reference image is realized. (See Patent Document 4).
Japanese Patent Registration No. 28882409 JP 2004-125632 A Japanese Patent Registration No. 2805664 Japanese Patent Registration No. 3357470

しかしながら、特許文献1の外観検査装置は、精密に外観検査を行うための高度な画像処理部を備え、高価で大型な装置であり、画像形成装置の感光ドラム等の部品の表面を検査するのに不適である。   However, the appearance inspection apparatus of Patent Document 1 is an expensive and large-sized apparatus that includes an advanced image processing unit for accurately performing an appearance inspection, and inspects the surface of a component such as a photosensitive drum of the image forming apparatus. Not suitable for.

また、特許文献2の技術では、被測定物の表面の広い領域で表面粗さを測定するためには、レーザ光の照射点を移動する走査を行う必要があり、迅速かつ簡単に測定することができない。   Further, in the technique of Patent Document 2, in order to measure the surface roughness in a wide area of the surface of the object to be measured, it is necessary to perform scanning that moves the irradiation point of the laser beam, and the measurement is performed quickly and easily. I can't.

また、特許文献3の測定方法は、粒径分布を求める方法であり、表面の傷、汚れ等の表面状態を検査する方法ではない。また、特許文献4の技術は、感光ドラム等の像担持体に形成された基準画像からの反射光を利用しているため、基準画像が形成されていない部材の表面を検査するには不適である。   Moreover, the measuring method of Patent Document 3 is a method for obtaining a particle size distribution, and is not a method for inspecting a surface state such as a scratch or a stain on the surface. Further, since the technique of Patent Document 4 uses reflected light from a reference image formed on an image carrier such as a photosensitive drum, it is not suitable for inspecting the surface of a member on which the reference image is not formed. is there.

従って、画像形成装置の各種の部材の表面を簡単、かつ安価な構成で迅速に検査する技術が要望されている。特に、部材を画像形成装置に組み込んだ状態のままで、その部材の表面を簡単かつ安価な構成で迅速に検査する技術が要望されている。更に、画像形成装置以外の装置や物品においても、同様の要望がある。   Therefore, there is a demand for a technique for quickly inspecting the surfaces of various members of the image forming apparatus with a simple and inexpensive configuration. In particular, there is a demand for a technique for quickly inspecting the surface of a member with a simple and inexpensive configuration while the member is incorporated in an image forming apparatus. Further, there is a similar demand for apparatuses and articles other than image forming apparatuses.

本発明は、このような従来技術の背景の下になされたもので、その目的は、簡単、かつ安価な構成で迅速に表面検査を行えるようにすることにある。   The present invention has been made under the background of such a prior art, and an object thereof is to enable quick surface inspection with a simple and inexpensive configuration.

上記目的を達成するため、本発明に係る表面検査装置は、検査対象物の表面上の直線ラインに非分散光ビームを走査無しに一括して照射する照射手段と、前記照射手段により照射された前記非分散光ビームの反射光の散乱光成分を受光する受光手段と、前記受光手段により受光された前記散乱光成分の光強度に基づいて前記検査対象物の表面の状態を判定する判定手段と、を有することを特徴とする。   In order to achieve the above object, a surface inspection apparatus according to the present invention is configured to irradiate a non-dispersed light beam all at once on a straight line on the surface of an inspection object without scanning, and the irradiation unit A light receiving means for receiving the scattered light component of the reflected light of the non-dispersed light beam, and a determination means for determining the surface state of the inspection object based on the light intensity of the scattered light component received by the light receiving means; It is characterized by having.

また、本発明に係る表面検査方法は、検査対象物の表面上の直線ラインに非分散光ビームを走査無しに一括して照射する照射工程と、前記照射工程により照射された前記非分散光ビームの反射光の散乱光成分を受光する受光工程と、前記受光工程により受光された前記散乱光成分の光強度に基づいて前記検査対象物の表面の状態を判定する判定工程と、を有することを特徴とする。   Further, the surface inspection method according to the present invention includes an irradiation step of collectively irradiating a non-dispersed light beam to a straight line on the surface of an inspection object without scanning, and the non-dispersed light beam irradiated by the irradiation step. A light receiving step for receiving the scattered light component of the reflected light, and a determination step for determining the state of the surface of the inspection object based on the light intensity of the scattered light component received by the light receiving step. Features.

本発明によれば、検査対象物の表面上の直線ラインに非分散光ビームを走査無しに一括して照射する等の構成により、当該非分散光ビームの径を小さく絞ることや走査を行う必要が無くなる等、簡単、かつ安価な構成で迅速に表面検査を行うことが可能となる。   According to the present invention, it is necessary to reduce the diameter of the non-dispersed light beam and to perform scanning by a configuration such as irradiating the non-dispersed light beam to the straight line on the surface of the inspection object all at once without scanning. Therefore, it is possible to perform surface inspection quickly with a simple and inexpensive configuration.

以下、本発明を実施するための最良の形態を、図面に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[第1の実施の形態]
図1は、本発明の実施の形態に係る表面検査装置を適用した画像形成装置の概略構成を示す断面図である。図1に示した画像形成装置は、電子写真方式の画像形成装置であり、感光ドラム1、露光走査ユニット2、現像ロータリ3、中間転写ベルト4、及び定着器5を有している。
[First Embodiment]
FIG. 1 is a cross-sectional view showing a schematic configuration of an image forming apparatus to which a surface inspection apparatus according to an embodiment of the present invention is applied. The image forming apparatus illustrated in FIG. 1 is an electrophotographic image forming apparatus, and includes a photosensitive drum 1, an exposure scanning unit 2, a developing rotary 3, an intermediate transfer belt 4, and a fixing device 5.

感光ドラム1の形状は円筒状であり、その表面には感光層が形成されている。この表面の感光層の傷、汚れは、画像品質の低下を招く。そこで、本実施の形態では、後述の手法により感光ドラム1の表面の傷、汚れを検知し、その検知結果や感光ドラム1の交換を促すメッセージ等を表示する。   The photosensitive drum 1 has a cylindrical shape, and a photosensitive layer is formed on the surface thereof. The scratches and dirt on the photosensitive layer on the surface lead to a decrease in image quality. Therefore, in this embodiment, scratches and dirt on the surface of the photosensitive drum 1 are detected by a method described later, and a detection result, a message for prompting the replacement of the photosensitive drum 1, and the like are displayed.

感光ドラム1は、ドラムモータ24(図2参照)により回転駆動される。露光走査ユニット2は、画像データに基づいて変調されたレーザ光により感光ドラム1を露光走査する。この露光走査により、感光ドラム1の表面部分の感光層に静電潜像が画形成される。   The photosensitive drum 1 is rotationally driven by a drum motor 24 (see FIG. 2). The exposure scanning unit 2 exposes and scans the photosensitive drum 1 with a laser beam modulated based on the image data. By this exposure scanning, an electrostatic latent image is formed on the photosensitive layer on the surface portion of the photosensitive drum 1.

露光走査ユニット2は、レーザユニット2a、ポリゴンミラー2b、BDセンサ2c、及び反射ミラー2dを有し、ポリゴンミラー2bは、ポリゴンモータ2eにより回転駆動される。なお、図1において、レーザユニット2aは、ポリゴンミラー2bよりも紙面の奥側又は手前側に配備されている。   The exposure scanning unit 2 includes a laser unit 2a, a polygon mirror 2b, a BD sensor 2c, and a reflection mirror 2d. The polygon mirror 2b is rotationally driven by a polygon motor 2e. In FIG. 1, the laser unit 2 a is arranged on the back side or the near side of the page with respect to the polygon mirror 2 b.

レーザユニット2aは、画像データに基づいて変調されたレーザ光を、回転駆動中のポリゴンミラー2bの各鏡面に照射する。このポリゴンミラー2bの回転により、ポリゴンミラー1bの各鏡面に対するレーザ光の入射角が連続的に変化し、その反射光は、感光ドラム1の回転軸の方向(図3のZ方向)に相対的に進んでいく。これにより、各鏡面において、画像光(レーザ光)による1ライン分の露光走査(主走査)が行われることとなる。   The laser unit 2a irradiates each mirror surface of the polygon mirror 2b being rotationally driven with laser light modulated based on the image data. The rotation of the polygon mirror 2b continuously changes the incident angle of the laser beam on each mirror surface of the polygon mirror 1b, and the reflected light is relative to the direction of the rotation axis of the photosensitive drum 1 (Z direction in FIG. 3). Proceed to Thereby, exposure scanning (main scanning) for one line by image light (laser light) is performed on each mirror surface.

BDセンサ2cは、各主走査ライン間で画像の書き出し位置の同期を取ること等を目的として設けられ、BDセンサ2cの出力信号(BD信号)は、主走査同期信号として利用される。また、反射ミラー2dは、ポリゴンミラー2bからの反射光の進行方向を、感光ドラム1の方向に変更するために設けられている。   The BD sensor 2c is provided for the purpose of synchronizing the image writing position between the main scanning lines, and the output signal (BD signal) of the BD sensor 2c is used as a main scanning synchronization signal. The reflecting mirror 2d is provided to change the traveling direction of the reflected light from the polygon mirror 2b to the direction of the photosensitive drum 1.

現像ロータリ3は、Y(イエロー)、M(マゼンタ)、C(シアン)、BK(ブラック)の色のトナーをそれぞれ収納し、これらトナーを感光ドラム1に向けて飛翔させるトナーユニット3Y,3M,3C,3BKを有している。この現像ユニット3は、現像ロータリモータ25(図3参照)により回転駆動される。この回転駆動により、各色のトナーユニット3Y,3M,3C,3BKは、感光ドラム1との対向位置を順次通過していく。この通過の際に、当該色のトナーが感光ドラム1に飛翔し、感光ドラム1上の静電潜像は、視認可能な当該色のトナー像として現像される。   The developing rotary 3 stores toners of Y (yellow), M (magenta), C (cyan), and BK (black), respectively, and causes these toners to fly toward the photosensitive drum 1. 3C, 3BK. The developing unit 3 is rotationally driven by a developing rotary motor 25 (see FIG. 3). By this rotational drive, the toner units 3Y, 3M, 3C, and 3BK of the respective colors sequentially pass through the positions facing the photosensitive drum 1. During this passage, the toner of the color flies to the photosensitive drum 1, and the electrostatic latent image on the photosensitive drum 1 is developed as a visible toner image of the color.

中間転写ベルト4は、大径の駆動ローラと複数の張設ローラ17等により張設され、駆動ローラに連結されたメインモータ23(図3参照)を駆動源として回転駆動される。この中間転写ベルト4が回転する過程で、感光ドラム1上のトナー像が積層状態で中間転写ベルト4上に一次転写されていく。   The intermediate transfer belt 4 is stretched by a large-diameter driving roller and a plurality of stretching rollers 17 and the like, and is rotationally driven by using a main motor 23 (see FIG. 3) connected to the driving roller as a driving source. As the intermediate transfer belt 4 rotates, the toner image on the photosensitive drum 1 is primarily transferred onto the intermediate transfer belt 4 in a laminated state.

中間転写ベルト4には、基準マーク4bが形成されており、この基準マーク4bは、光反射型の周長センサ4aにより検知される。この周長センサ4aによる検知信号(周長信号)は、中間転写ベルト4上に各色のトナー像を色ズレが無い状態で積層するために利用される。   A reference mark 4b is formed on the intermediate transfer belt 4, and the reference mark 4b is detected by a light reflection type peripheral sensor 4a. The detection signal (peripheral length signal) from the peripheral length sensor 4a is used for laminating the toner images of the respective colors on the intermediate transfer belt 4 without any color misregistration.

中間転写ベルト4上に一次転写された積層状態の各色のトナー像、すなわちフルカラーのトナー像は、二次転写ローラ6により、記録用紙P上に二次転写される。この記録用紙Pは、搬送ローラ群等により、給紙カセット7又は手差しトレイ8から二次転写ローラ6と対向する二次転写位置に給送されてくる。   The toner images of the respective colors in the stacked state that are primarily transferred onto the intermediate transfer belt 4, that is, full-color toner images are secondarily transferred onto the recording paper P by the secondary transfer roller 6. The recording paper P is fed from the paper feed cassette 7 or the manual feed tray 8 to a secondary transfer position facing the secondary transfer roller 6 by a transport roller group or the like.

記録用紙P上に二次転写されたトナー像は、定着器5の加熱ローラ5aと加圧ベルト5bによる加熱・加圧処理によって、当該記録用紙P上に定着される。その後、当該記録用紙Pは、排紙部9に排紙される。なお、加圧ベルト5bは、大径の駆動ローラ、張設ローラ18等により張設されている。   The toner image secondarily transferred onto the recording paper P is fixed onto the recording paper P by a heating / pressurizing process using the heating roller 5a and the pressure belt 5b of the fixing device 5. Thereafter, the recording paper P is discharged to the paper discharge unit 9. The pressure belt 5b is stretched by a large-diameter drive roller, a tension roller 18 and the like.

一次転写後に感光ドラム1の表面に残留しているトナーは、クリーニングブレード10により、感光ドラム1から掻き取られる。また、二次転写後に中間転写ベルト4の表面に残留しているトナーは、クリーニングブレード11により、中間転写ベルト4から掻き取られる。   The toner remaining on the surface of the photosensitive drum 1 after the primary transfer is scraped off from the photosensitive drum 1 by the cleaning blade 10. Further, the toner remaining on the surface of the intermediate transfer belt 4 after the secondary transfer is scraped off from the intermediate transfer belt 4 by the cleaning blade 11.

本画像形成装置には、感光ドラム1、中間転写ベルト4、定着器5の加熱ローラ5a、加圧ベルト5bの表面の傷、汚れ等(主として、トナー汚れ)を光学的に検知するために、それぞれ、レーザ発光部材12,13,14,15が設けられている。この傷、汚れの検知処理を行う場合、環境センサ16も利用される。この検知処理については、後で詳細に説明する。   In this image forming apparatus, in order to optically detect scratches, dirt, etc. (mainly toner dirt) on the surface of the photosensitive drum 1, the intermediate transfer belt 4, the heating roller 5a of the fixing device 5, and the pressure belt 5b, Laser light emitting members 12, 13, 14, and 15 are provided, respectively. The environment sensor 16 is also used when this scratch and dirt detection processing is performed. This detection process will be described later in detail.

次に、図1の画像形成装置の制御系の構成を、図2に基づいて説明する。この画像形成装置による電子写真方式の画像形成処理は、CPU21の制御の下に実行される。このCPU21には、メモリ22、メインモータ23、ドラムモータ24、現像ロータリモータ25、露光走査ユニット2のレーザユニット2a、BDセンサ2c、ポリゴンモータ2eが接続されている。また、CPU21には、周長センサ4a、環境センサ16、レーザ発光部材12〜15、受光部材SA,SAU,SB,SC,SD,SE,SF、及び液晶表示部26も接続されている。   Next, the configuration of the control system of the image forming apparatus in FIG. 1 will be described with reference to FIG. The electrophotographic image forming process by the image forming apparatus is executed under the control of the CPU 21. The CPU 21 is connected to a memory 22, a main motor 23, a drum motor 24, a developing rotary motor 25, a laser unit 2a of the exposure scanning unit 2, a BD sensor 2c, and a polygon motor 2e. Also connected to the CPU 21 are a circumference sensor 4a, an environmental sensor 16, laser light emitting members 12 to 15, light receiving members SA, SAU, SB, SC, SD, SE, SF, and a liquid crystal display unit 26.

CPU21は、上記の各デバイスを利用して、前述の電子写真方式の一連の画像形成処理を実行する。メモリ22は、ROM(図示省略)、EEPROM22a、RAM22b、を含んでいる。ROMには、上記の一連の画像形成処理に係るアプリケーションプログラムが格納されている。   The CPU 21 executes the above-described electrophotographic series of image forming processes using each of the above devices. The memory 22 includes a ROM (not shown), an EEPROM 22a, and a RAM 22b. The ROM stores application programs related to the series of image forming processes described above.

また、EEPROM22aには、感光ドラム1、中間転写ベルト4、定着器5の加熱ローラ5a,加圧ベルト5bの検査処理(表面の傷、汚れの検知処理を含む)に係るアプリケーションプログラム等が格納されている。CPU21は、これらのプログラムを実行する際にRAM22bをワークエリアとして利用する。   The EEPROM 22a stores application programs and the like related to inspection processing (including surface scratches and dirt detection processing) of the photosensitive drum 1, the intermediate transfer belt 4, the heating roller 5a of the fixing device 5, and the pressure belt 5b. ing. The CPU 21 uses the RAM 22b as a work area when executing these programs.

メインモータ23は、給紙カセット7からの記録用紙のピックアップ、給送、排紙などの用紙の搬送動作、中間転写ベルト4、定着器5の加熱ローラ5a、加圧ベルト5bの回転動作の動力源として利用される。メインモータ23は、さらに、トナーユニット3Y,3M,3C,3BKの不図示の現像スリーブの回転動作の動力源としても用いられる。   The main motor 23 powers the sheet conveyance operation such as picking up, feeding, and discharging the recording sheet from the sheet feeding cassette 7, and the rotational operation of the intermediate transfer belt 4, the heating roller 5a of the fixing device 5, and the pressure belt 5b. Used as a source. The main motor 23 is also used as a power source for the rotation operation of the developing sleeve (not shown) of the toner units 3Y, 3M, 3C, 3BK.

ドラムモータ24は、感光ドラム1を回転駆動する動力源として用いられる。現像ロータリモータ25は、CPU21の制御の下に現像ロータリ3を回転駆動して、トナーユニット3Y,3M,3C,3BKを感光ドラム1と対向する現像位置に順次回動させる。   The drum motor 24 is used as a power source that rotationally drives the photosensitive drum 1. The development rotary motor 25 rotationally drives the development rotary 3 under the control of the CPU 21 to sequentially rotate the toner units 3Y, 3M, 3C, 3BK to the development position facing the photosensitive drum 1.

レーザユニット2は、CPU21の制御の下に、画像データを反映した画像光(レーザ光)をポリゴンミラー2bに向けて発光する。周長センサ4aは、中間転写ベルト4上に印された基準マーク4bを検知する。CPU21は、この基準マーク検知信号に基づいて中間転写ベルト4の周長を算出し、Y,M,C,BKの各色のトナー像がズレない形で中間転写ベルト4上に重畳されていくように制御する。   The laser unit 2 emits image light (laser light) reflecting image data toward the polygon mirror 2b under the control of the CPU 21. The circumference sensor 4 a detects a reference mark 4 b marked on the intermediate transfer belt 4. The CPU 21 calculates the circumferential length of the intermediate transfer belt 4 based on the reference mark detection signal, and superimposes the Y, M, C, and BK toner images on the intermediate transfer belt 4 in a form that does not shift. To control.

環境センサ16は、温度、湿度を検知する。CPU21は、検知された温度、湿度に基づいて、例えば、感光ドラム1の帯電電圧を変化させるなど、画像形成装置の配置場所の現在の自然環境に応じた最適な画像形成動作を行うように制御する。また、環境センサ16により検知された温度、湿度は、受光部材SA〜SF,SAUの後述する自動選択処理にも利用される。この自動選択処理を行うために、EEPROM22aには、温度、湿度の情報と対応付けて、当該温度、湿度において選択されるべき受光部材の識別情報が予め登録されている。   The environmental sensor 16 detects temperature and humidity. Based on the detected temperature and humidity, the CPU 21 performs control so as to perform an optimal image forming operation according to the current natural environment at the location where the image forming apparatus is disposed, for example, by changing the charging voltage of the photosensitive drum 1. To do. Further, the temperature and humidity detected by the environment sensor 16 are also used for automatic selection processing (to be described later) of the light receiving members SA to SF and SAU. In order to perform this automatic selection processing, the EEPROM 22a is pre-registered with identification information of a light receiving member to be selected at the temperature and humidity in association with the temperature and humidity information.

レーザ発光部材12〜15は、レーザ波長650nm(赤色レーザ)、射出パワー1mW、ビーム径2mm〜3mm程度の性能の安価な半導体レーザで構成され、CPU21の制御の下にレーザ発光動作を行う。レーザ発光部材12からのレーザ光は、感光ドラム1の表面の傷、汚れを検知すべく、当該感光ドラム1の表面に対して微小なグレージング角で照射される。レーザ発光部材13からのレーザ光は、中間転写ベルト4の表面の傷、汚れを検知すべく、当該中間転写ベルト4の表面に対して微小なグレージング角で照射される。   The laser light emitting members 12 to 15 are constituted by inexpensive semiconductor lasers having a laser wavelength of 650 nm (red laser), an emission power of 1 mW, and a beam diameter of about 2 mm to 3 mm, and perform laser light emission operation under the control of the CPU 21. Laser light from the laser light emitting member 12 is applied to the surface of the photosensitive drum 1 with a minute glazing angle in order to detect scratches and dirt on the surface of the photosensitive drum 1. Laser light from the laser light emitting member 13 is applied to the surface of the intermediate transfer belt 4 with a minute glazing angle in order to detect scratches and dirt on the surface of the intermediate transfer belt 4.

レーザ発光部材14からのレーザ光は、定着器5の加熱ローラ5aの表面の傷、汚れを検知すべく、当該加熱ローラ5aの表面に対して微小なグレージング角で照射される。レーザ発光部材15からのレーザ光は、定着器5の加圧ベルト5bの表面の傷、汚れを検知すべく、当該加圧ベルト5bの表面に対して微小なグレージング角で照射される。なお、上記の「微小なグレージング角」については、後で詳細に説明する。   Laser light from the laser light emitting member 14 is applied to the surface of the heating roller 5a at a minute glazing angle in order to detect scratches and dirt on the surface of the heating roller 5a of the fixing device 5. Laser light from the laser light emitting member 15 is applied to the surface of the pressure belt 5b at a minute glazing angle in order to detect scratches and dirt on the surface of the pressure belt 5b of the fixing device 5. The “minute glazing angle” will be described in detail later.

受光部材SA,SAU,SB,SCは、レーザ発光部材12により感光ドラム1の表面に照射されたレーザ光の反射光の散乱光成分を受光するために設けられている。受光部材SDは、レーザ発光部材13により中間転写ベルト4の表面に照射されたレーザ光の反射光の散乱光成分を受光するために設けられている。   The light receiving members SA, SAU, SB, and SC are provided to receive the scattered light component of the reflected light of the laser light irradiated on the surface of the photosensitive drum 1 by the laser light emitting member 12. The light receiving member SD is provided to receive the scattered light component of the reflected light of the laser light irradiated on the surface of the intermediate transfer belt 4 by the laser light emitting member 13.

受光部材SEは、レーザ発光部材14により加熱ローラ5aの表面に照射されたレーザ光の反射光の散乱光成分を受光するために設けられている。受光部材SFは、レーザ発光部材15により加圧ベルト5bの表面に照射されたレーザ光の反射光の散乱光成分を受光するために設けられている。   The light receiving member SE is provided to receive the scattered light component of the reflected light of the laser light irradiated on the surface of the heating roller 5a by the laser light emitting member 14. The light receiving member SF is provided to receive the scattered light component of the reflected light of the laser light irradiated on the surface of the pressure belt 5b by the laser light emitting member 15.

なお、本実施の形態では、受光部材SA〜SF,SAUとしては、単体のフォトダイオード、フォトトランジスタ等(1画素分の受光素子)、ピンポイントで光を検知する安価な光センサを用いることを想定している。   In the present embodiment, as the light receiving members SA to SF, SAU, a single photodiode, a phototransistor or the like (light receiving element for one pixel), an inexpensive optical sensor that detects light at a pinpoint is used. Assumed.

感光ドラム1等の表面の傷、汚れをレーザ光(非分散光ビーム)の照射によって検査する検査原理を、図3〜7に基づいて説明する。   An inspection principle for inspecting scratches and dirt on the surface of the photosensitive drum 1 and the like by irradiation with a laser beam (non-dispersed light beam) will be described with reference to FIGS.

図3に示したように、レーザ発光部材12は、感光ドラム1の表面(接平面)に対して、微小なグレージング角θ(θ=π/2−入射角)でレーザ光Lbを照射する。この微小なグレージング角θは、感光ドラム1の少なくとも感光層の領域に係る直線ラインが一括して照射される程度の微小な角度である(図4〜7の照射領域Sd参照)。   As shown in FIG. 3, the laser light emitting member 12 irradiates the surface (tangent plane) of the photosensitive drum 1 with the laser light Lb at a minute glazing angle θ (θ = π / 2−incident angle). The minute glazing angle θ is a minute angle such that a straight line related to at least the photosensitive layer region of the photosensitive drum 1 is collectively irradiated (see the irradiation region Sd in FIGS. 4 to 7).

換言すれば、微小なグレージング角θは、感光ドラム1の表面にレーザ光Lbを照射した際に、感光ドラム1によるレーザ光Lbの切断長さ(図4等のZ軸方向の切断長さ)が、少なくとも感光ドラム1の感光層のZ軸方向の長さ以上となるような角度である。   In other words, the minute glazing angle θ is the cutting length of the laser beam Lb by the photosensitive drum 1 when the surface of the photosensitive drum 1 is irradiated with the laser beam Lb (the cutting length in the Z-axis direction in FIG. 4 and the like). Is an angle that is at least the length of the photosensitive layer of the photosensitive drum 1 in the Z-axis direction.

このような微小なグレージング角θでレーザ光Lbを照射することにより、レーザ光Lbの走査無しに、すなわち照準点の移動制御を行うことなく、簡単に感光ドラム1の感光層の1つの直線ラインに一括してレーザ光Lbを照射することが可能となる。更に、表面検査の迅速化を図ることも可能となる。   By irradiating the laser beam Lb with such a small glazing angle θ, one straight line of the photosensitive layer of the photosensitive drum 1 can be easily obtained without scanning the laser beam Lb, that is, without controlling the movement of the aiming point. It is possible to irradiate the laser beam Lb at once. Furthermore, it is possible to speed up the surface inspection.

図3に示したように、微小なグレージング角θで感光ドラム1に照射されたレーザ光Lbの反射光の正反射光成分Lb1は、受光部材SA,SAU,SB,SCの何れにも受光されることはない。一方、散乱光成分Lb2は、受光部材SA,SAU,SB,SCにより受光される。   As shown in FIG. 3, the regular reflected light component Lb1 of the reflected light of the laser beam Lb irradiated to the photosensitive drum 1 with a minute glazing angle θ is received by any of the light receiving members SA, SAU, SB, and SC. Never happen. On the other hand, the scattered light component Lb2 is received by the light receiving members SA, SAU, SB, and SC.

感光ドラム1の表面に傷や汚れが無い場合は、感光ドラム1に照射されたレーザ光Lbの反射光は、ほぼ全てが正反射光成分Lb1となって、図3〜7に示した正反射光領域S1を通過する。しかし、この正反射光領域S1には、受光部材SA,SAU,SB,SCは配備されておらず、これら受光部材により受光されることは殆ど無い。   When there is no scratch or dirt on the surface of the photosensitive drum 1, almost all of the reflected light of the laser beam Lb irradiated on the photosensitive drum 1 becomes a regular reflection light component Lb1, and the regular reflection shown in FIGS. It passes through the light region S1. However, the light receiving members SA, SAU, SB, and SC are not provided in the regular reflection light region S1, and are hardly received by these light receiving members.

一方、感光ドラム1の表面に傷が有る場合は、感光ドラム1に照射されたレーザ光Lbの反射光の一部は散乱光成分Lb2となって、受光部材SA,SAU,SB,SCにより受光される。また、感光ドラム1の表面に汚れが有る場合は、感光ドラム1に照射されたレーザ光Lbの反射光の一部は散乱光成分Lb2となって、受光部材SAUにより受光される。   On the other hand, when the surface of the photosensitive drum 1 is scratched, a part of the reflected light of the laser beam Lb irradiated to the photosensitive drum 1 becomes a scattered light component Lb2 and is received by the light receiving members SA, SAU, SB, and SC. Is done. When the surface of the photosensitive drum 1 is dirty, part of the reflected light of the laser light Lb irradiated to the photosensitive drum 1 becomes a scattered light component Lb2 and is received by the light receiving member SAU.

このように、散乱光成分Lb2が受光部材SA,SAU,SB,SCにより受光されるのは、これら受光部材を実験結果に基づいて図3〜7に示した散乱光領域に配備しているからである。   As described above, the scattered light component Lb2 is received by the light receiving members SA, SAU, SB, and SC because these light receiving members are arranged in the scattered light region shown in FIGS. 3 to 7 based on the experimental results. It is.

ここで、上記の実験について説明する。この実験では、図4〜6に示したように、レーザ波長650nm(赤色レーザ)、射出パワー1mW、ビーム径2mm〜3mm程度の性能を有する半導体レーザと光学レンズからなる市販の安価なレーザ照射器Lを用いた。このレーザ照射器Lにより、感光ドラム1の表面に微小なグレージング角でレーザ光を照射した。   Here, the above experiment will be described. In this experiment, as shown in FIGS. 4 to 6, a commercially available inexpensive laser irradiator comprising a semiconductor laser and an optical lens having a laser wavelength of 650 nm (red laser), an emission power of 1 mW, and a beam diameter of about 2 mm to 3 mm. L was used. With this laser irradiator L, the surface of the photosensitive drum 1 was irradiated with laser light with a minute glazing angle.

感光ドラム1の直径は62mm、長手方向(Z軸方向)の長さは、460mmである。この感光ドラム1の半分の長さに相当する230mm程度の位置(長手中心Zd2)から奥側の端部Zd3までの領域に、微小なグレージング角でレーザ光を照射した。感光ドラム1としては、最初は、周方向(回転方法)に多数の傷K(周スジの傷)が発生している中古品を用いた(図4参照)。   The photosensitive drum 1 has a diameter of 62 mm and a length in the longitudinal direction (Z-axis direction) of 460 mm. Laser light was irradiated with a minute glazing angle to a region from a position (longitudinal center Zd2) of about 230 mm corresponding to half the length of the photosensitive drum 1 to the end Zd3 on the back side. As the photosensitive drum 1, a used product in which a large number of scratches K (scratches on the circumferential stripe) occurred in the circumferential direction (rotation method) was used at first (see FIG. 4).

この実験では、長手中心Zd2から奥側の端部Zd3までの領域の傷Kに起因するものと考えられる散乱光成分は、感光ドラム1のレーザ光照射面に対する法線方向(図4に示したX軸方向)に分布していることが判明した。そこで、感光ドラム1の奥側の端部Zd3のZ位置で、X―Y平面上に紙をかざしてメジャーで散乱光成分を測定したところ、その散乱光成分は、端部Zd3から200mmを超えるX軸方向の位置まで達していた。また、散乱光成分は、感光ドラム1から離れるに従ってその光強度が低減していく傾向が見られた。   In this experiment, the scattered light component considered to be caused by the scratch K in the region from the longitudinal center Zd2 to the end Zd3 on the back side is in the normal direction to the laser light irradiation surface of the photosensitive drum 1 (shown in FIG. 4). It was found that it was distributed in the (X-axis direction). Therefore, when the scattered light component is measured with a measure while holding the paper over the XY plane at the Z position of the end Zd3 on the back side of the photosensitive drum 1, the scattered light component exceeds 200 mm from the end Zd3. It reached the position in the X-axis direction. In addition, the scattered light component tended to decrease its light intensity as it moved away from the photosensitive drum 1.

この実験結果から、感光ドラム1の手前側の端部Zd1から奥側の端部Zd3までの領域に、より微小なグレージング角でレーザ光を照射した場合は、散乱光成分はX軸方向に更に延びることが予想される。そこで、このようなレーザ光の照射を実際に行ってみたところ、予想通りに、散乱光成分は、X軸方向に更に延びていた(図4,7のS3参照)。   From this experimental result, when the laser light is irradiated to the region from the front end Zd1 to the back end Zd3 of the photosensitive drum 1 with a finer glazing angle, the scattered light component further increases in the X-axis direction. Expected to extend. Therefore, when such laser light irradiation was actually performed, as expected, the scattered light component further extended in the X-axis direction (see S3 in FIGS. 4 and 7).

なお、この予想に基づく実験では、レーザ光は、レーザ照射器Lから直接、感光ドラム1に照射するのではなく、図5,6に示したように、ライトパイプLPを介して照射した。これは、感光ドラム1が画像形成装置に実際に組み込まれた状態で実験を行ったため、レーザ照射器Lを装置内に配備するための十分なスペースが無かったからである。従って、本実施の形態に係る表面検査装置を画像形成装置等の装置に搭載する場合も、必要に応じて、ライトパイプLP等の導光部材を介してレーザ光を照射することが望ましい。   In the experiment based on this prediction, the laser beam was not directly irradiated onto the photosensitive drum 1 from the laser irradiator L, but was irradiated through the light pipe LP as shown in FIGS. This is because the experiment was performed in a state where the photosensitive drum 1 was actually incorporated in the image forming apparatus, so that there was not enough space for arranging the laser irradiator L in the apparatus. Therefore, even when the surface inspection apparatus according to the present embodiment is mounted on an apparatus such as an image forming apparatus, it is desirable to irradiate laser light through a light guide member such as a light pipe LP as necessary.

一方、最初の実験において、正反射光成分は、光強度の強いスポット光として正反射光領域(図4〜7のS1参照)に分布していた。また、正反射光領域S1の形状は、円形ではなく、X軸方向を長軸とする楕円形であった。このように、正反射光領域S1がX軸方向を長軸とする楕円形となるのは、傷Kの部分にも正反射光成分、又は正反射光成分に限りなく近い領域で散乱光成分を発生させる反射部分が未だ残っているからだと思われる。   On the other hand, in the first experiment, the specularly reflected light component was distributed in the specularly reflected light region (see S1 in FIGS. 4 to 7) as spot light having a high light intensity. The shape of the regular reflection light region S1 was not a circle but an ellipse having the major axis in the X-axis direction. As described above, the specularly reflected light region S1 has an elliptical shape whose major axis is the X-axis direction. The specularly reflected light component or the scattered light component is also close to the specularly reflected light component even in the portion of the scratch K. This is thought to be because the reflection part that generates sine remains.

次に、図5に示したように、周方向にトナー汚れTYが有る感光ドラム1に対して、微小なグレージング角でレーザ光を照射してみた。この場合には、正反射光領域S1を取り囲む広い領域(図5のSTY参照)で新たに散乱光成分が見られ、傷Kに起因する散乱光領域S3では、散乱光成分は殆ど見られなかった。   Next, as shown in FIG. 5, a laser beam was irradiated at a minute glazing angle on the photosensitive drum 1 having the toner stain TY in the circumferential direction. In this case, a new scattered light component is seen in a wide region (see STY in FIG. 5) surrounding the regular reflection light region S1, and almost no scattered light component is seen in the scattered light region S3 resulting from the scratch K. It was.

すなわち、周方向のトナー汚れTYに起因する散乱光領域STYは、正反射光領域S1、及び後述する散乱光領域S2を取り囲む比較的広い領域であり、傷Kに起因する散乱光領域S3のようにX軸方向に長く延びてはいなかった。また、傷Kに起因する散乱光領域S3がX軸方向に細長く延びているに対し、周方向のトナー汚れに起因する散乱光領域STYは、正反射光領域S1をほぼ中心として、放射状に広い角度で広がっていた。   That is, the scattered light region STY caused by the circumferential toner stain TY is a relatively wide region surrounding the specularly reflected light region S1 and a scattered light region S2 described later, and is similar to the scattered light region S3 caused by the scratch K. It did not extend long in the X-axis direction. Further, while the scattered light region S3 caused by the scratch K extends in the X-axis direction and elongated, the scattered light region STY caused by the circumferential toner contamination is radially wide with the specularly reflected light region S1 as the center. It spread at an angle.

このように、傷に起因する散乱光領域S3とトナー汚れに起因する散乱光領域STYとが異なる現象は、受光部材の配備位置を工夫することで、傷に起因する散乱光成分とトナー汚れに起因する散乱光成分とを互いに識別可能に検知できることを意味する。そこで、本実施の形態では、傷に起因する散乱光成分を検知する受光部材SA,SB,SCの他に、汚れに起因する散乱光成分を検知する受光部材SAUを別途設けている。   As described above, the phenomenon in which the scattered light region S3 caused by the scratch differs from the scattered light region STY caused by the toner stain is that the scattered light component and the toner stain caused by the scratch are obtained by devising the arrangement position of the light receiving member. This means that the resulting scattered light components can be detected in a distinguishable manner. Therefore, in the present embodiment, in addition to the light receiving members SA, SB, and SC that detect scattered light components caused by scratches, a light receiving member SAU that detects scattered light components caused by dirt is separately provided.

なお、図6に示したように、新品の感光ドラム1に対して、手前側の端部から奥側の端部までの領域に、同様に微小なグレージング角でレーザ光を照射してみた。この実験では、感光ドラム1から遠い領域では散乱光成分は殆ど見られなかったが、感光ドラム1に近い領域(図4〜7のS2参照)では、光強度の弱い散乱光成分が見られた。正反射光領域S1では、当然に、光強度の強い正反射光成分が見られた。ただし、その正反射光領域S1の楕円形(X方向が長軸)の形状は、中古の感光ドラムの場合に比べて円形に近づいていた。   In addition, as shown in FIG. 6, the laser beam was similarly irradiated to the area | region from the edge part of this near side to the edge part of the back side with respect to the new photosensitive drum 1 with a very small glazing angle. In this experiment, almost no scattered light component was observed in the region far from the photosensitive drum 1, but in the region close to the photosensitive drum 1 (see S2 in FIGS. 4 to 7), a scattered light component with low light intensity was observed. . Of course, in the regular reflection light region S1, a regular reflection light component having a high light intensity was observed. However, the shape of the oval shape (the X direction is the long axis) of the regular reflection light region S1 is closer to a circle than that of a used photosensitive drum.

上記の散乱光領域S2における光強度の弱い散乱光成分は、たとえ新品の感光ドラムであっても、その表面は多少の凹凸、すなわち或る程度の大きさの表面粗さを持っていることに起因するものと推測できる。そこで、実際に、新品の感光ドラム1の表面よりも表面粗さが十分に小さい部材(鏡など)で実験してみた。その結果、正反射光領域S1では光強度が非常に強い正反射光成分が見られたものの、その周辺の散乱光領域S2では、散乱光成分が殆ど見られず、上記の推測の正しさが証明された。   The scattered light component having a low light intensity in the scattered light region S2 has a slight unevenness, that is, a certain degree of surface roughness, even if it is a new photosensitive drum. It can be inferred that this is caused. Therefore, an experiment was actually performed with a member (mirror or the like) whose surface roughness was sufficiently smaller than the surface of the new photosensitive drum 1. As a result, although the specularly reflected light component having a very strong light intensity was observed in the specularly reflected light region S1, almost no scattered light component was observed in the surrounding scattered light region S2, and the correctness of the above estimation was confirmed. Proven.

なお、周方向ではなく、回転軸方向(Z軸方向)に傷や汚れが有る感光ドラムに対して、同様に、微小なグレージング角でレーザ光を照射してみたところ、散乱光成分は非常に少なかった。このことは、本実施の形態に係る表面検査技術を他の物品の表面検査に適用する場合には、レーザ光の照射方向と検知対象の傷や汚れの方向とを可及的に90度又は90度に近い角度で交差させることで、効率よく傷や汚れを検知できることを示唆している。   Similarly, when the photosensitive drum having scratches and dirt in the rotation axis direction (Z-axis direction), not in the circumferential direction, was irradiated with laser light at a minute glazing angle, the scattered light component was very high. There were few. This means that when the surface inspection technique according to the present embodiment is applied to the surface inspection of other articles, the irradiation direction of the laser beam and the direction of scratches or dirt on the detection target are set to 90 degrees as much as possible. This suggests that scratches and dirt can be detected efficiently by intersecting at an angle close to 90 degrees.

なお、上記の回転軸方向(Z軸方向)の傷や汚れは、感光ドラム1、中間転写ベルト4、加熱ローラ5a,加圧ベルト5bでは殆ど発生しないので、それらデバイスの交換時期を判断するためにZ軸方向の傷や汚れを検知する必要性は乏しい。   Note that scratches and dirt in the rotational axis direction (Z-axis direction) hardly occur in the photosensitive drum 1, the intermediate transfer belt 4, the heating roller 5a, and the pressure belt 5b, so that it is necessary to determine the replacement timing of these devices. In addition, there is little need to detect scratches and dirt in the Z-axis direction.

上記の各実験の実験結果に鑑みて、本実施の形態では、図3〜7に示したように、周方向の傷Kに起因する散乱光成分を受光する受光部材として、受光部材SA,SB、SCを傷に起因する散乱光領域S3の両端部、中央部に配備した。   In view of the experimental results of each of the above experiments, in the present embodiment, as shown in FIGS. 3 to 7, the light receiving members SA and SB are used as the light receiving members that receive the scattered light component caused by the circumferential scratch K. , SC were arranged at both ends and the center of the scattered light region S3 caused by scratches.

また、周方向の汚れに起因する散乱光成分を受光するための受光部材SAUは、装置内のスペース等の関係で、周方向のトナー汚れに起因する散乱光領域STYではなく、それよりも狭いドラムの表面粗さに起因する散乱光領域S2に配備した。   Further, the light receiving member SAU for receiving the scattered light component caused by the circumferential dirt is not a scattered light area STY caused by the circumferential toner dirt but a narrower one due to the space in the apparatus. It was arranged in the scattered light region S2 due to the surface roughness of the drum.

この場合、周方向のトナー汚れTYに起因する散乱光成分の検知精度は若干低下する虞がある。しかし、トナー汚れTYは、クリーニング処理で解消でき、感光ドラムの交換時期を判断する際の重要な判断材料とはならないので、周方向のトナー汚れTYに起因する散乱光成分の検知精度が若干低下しても特に問題とはならない。また、後述する基準情報、限界情報を適切に設定することにより、散乱光領域STYに配備した場合と同等の精度で、周方向のトナー汚れTYの程度を判定することも可能となる。従って、周方向の汚れに起因する散乱光成分を受光するための受光部材SAUをドラムの表面粗さに起因する散乱光領域S2に配備しても、特に問題はない。   In this case, there is a possibility that the detection accuracy of the scattered light component due to the toner stain TY in the circumferential direction is slightly lowered. However, the toner contamination TY can be eliminated by the cleaning process and is not an important determination material for determining the replacement timing of the photosensitive drum, so the detection accuracy of the scattered light component due to the circumferential toner contamination TY is slightly reduced. But that doesn't matter. Further, by appropriately setting reference information and limit information, which will be described later, it is possible to determine the degree of toner contamination TY in the circumferential direction with the same accuracy as that provided in the scattered light region STY. Therefore, there is no particular problem even if the light receiving member SAU for receiving the scattered light component due to the dirt in the circumferential direction is provided in the scattered light region S2 due to the surface roughness of the drum.

周方向の汚れに起因する散乱光成分を受光するための受光部材SAUを、周方向のトナー汚れTYに起因する散乱光領域STYに配備してもよいことは、言うまでもない。   Needless to say, the light receiving member SAU for receiving the scattered light component caused by the circumferential dirt may be disposed in the scattered light region STY caused by the circumferential toner dirt TY.

次に、受光部材SA,SAU,SB,SCの配備位置等を、図7に基づいて補足説明する。   Next, the location of the light receiving members SA, SAU, SB, and SC will be supplementarily described with reference to FIG.

前述の実験の結果、傷に起因する散乱光領域S3は、X軸方向に延びていた。このX軸方向は、感光ドラム1のレーザ光の照射ライン(Z方向)に係る面に対する法線の方向となっている。すなわち、散乱光領域S3は、図7に示したZθ0平面上に位置している。   As a result of the above-described experiment, the scattered light region S3 caused by the scratch extends in the X-axis direction. The X-axis direction is a normal direction to a surface related to the laser light irradiation line (Z direction) of the photosensitive drum 1. That is, the scattered light region S3 is located on the Zθ0 plane shown in FIG.

そこで、傷に起因する散乱光成分を検知するための受光部材SA,SB,SCは、感光ドラム1の奥側の端部Zd3よりも多少奥側のZ座標位置で、X軸方向(Zθ0平面上の散乱光領域S3)に配列している。   Therefore, the light receiving members SA, SB, and SC for detecting the scattered light component due to the scratch are in the X-axis direction (Zθ0 plane) at the Z coordinate position slightly behind the end Zd3 on the back side of the photosensitive drum 1. They are arranged in the upper scattered light region S3).

また、汚れに起因する散乱光成分を検知するための受光部材SAUは、受光部材SA,SB,SCと同一のZ座標位置で、Zθ0平面と所定角度θaをなすZθa平面(散乱光領域S2)に配備している。   In addition, the light receiving member SAU for detecting the scattered light component caused by dirt is the Zθa plane (scattered light region S2) that forms the predetermined angle θa with the Zθ0 plane at the same Z coordinate position as the light receiving members SA, SB, and SC. Has been deployed.

なお、汚れに起因する散乱光成分を検知するための受光部材SAUは、受光部材SA,SB,SCと同一のZ座標位置で、Zθ0平面と所定角度−θaをなすZ−θa平面(散乱光領域S2)等に配備してもよい。或いは、Zθa平面等とZ−θa平面等の両方に、汚れに起因する散乱光成分を検知するための受光部材を配備してもよい。要するに、汚れに起因する散乱光成分を検知するための受光部材は、散乱光領域S2又は散乱光領域STYの領域内であれば、複数配備してもよい。   The light receiving member SAU for detecting the scattered light component caused by the dirt is a Z-θa plane (scattered light) that forms a predetermined angle −θa with the Zθ0 plane at the same Z coordinate position as the light receiving members SA, SB, and SC. You may arrange | position to area | region S2) etc. Or you may arrange | position the light-receiving member for detecting the scattered light component resulting from dirt on both a Z (theta) a plane etc. and a Z- (theta) a plane. In short, a plurality of light receiving members for detecting the scattered light component caused by dirt may be provided as long as they are within the scattered light region S2 or the scattered light region STY.

また、各受光部材は、上記のように同一のZ座標位置に配備することなく、装置内のスペース等の関係で、異なるZ座標位置に配備することも可能である。   Further, the light receiving members can be arranged at different Z coordinate positions due to the space in the apparatus or the like without being arranged at the same Z coordinate position as described above.

なお、副走査方向については、画像形成時と同様にきめ細かく走査する必要はないが、例えば、感光ドラム1の回転角90°位の副走査間隔で複数回、レーザ光を微小なグレージング角で照射するのが望ましい。これにより、傷や汚れが感光ドラム1の周方向の一部の領域に偏在していたとしても、それを見逃すことなく検知できるようになるからである。   In the sub-scanning direction, it is not necessary to scan finely as in the case of image formation. For example, the laser beam is irradiated with a small glazing angle a plurality of times at a sub-scanning interval of about 90 ° rotation angle of the photosensitive drum 1. It is desirable to do. As a result, even if scratches and dirt are unevenly distributed in a partial region of the photosensitive drum 1 in the circumferential direction, it can be detected without missing it.

次に、中間転写ベルト4の傷、汚れに起因する散乱光成分等を図8に基づいて説明する。   Next, the scattered light component caused by scratches and dirt on the intermediate transfer belt 4 will be described with reference to FIG.

なお、図1に示したように、中間転写ベルト4の右横の位置には、二次転写ローラ6が存在するため、レーザ光の照射実験は、図8に示したように、張設ローラ17の下側の位置から中間転写ベルト4に対して微小なグレージング角で行った。   As shown in FIG. 1, since the secondary transfer roller 6 exists at the right side position of the intermediate transfer belt 4, a laser beam irradiation experiment is performed as shown in FIG. The measurement was performed with a small glazing angle from the lower position of 17 to the intermediate transfer belt 4.

この場合、上記のように下側の位置からレーザ光を照射したため、散乱光成分は−Y方向に広がった。詳細には、正反射領域ST1は、感光ドラム1の場合の正反射領域S1よりも多少大きかった。また、中間転写ベルト4の回転方向の傷KTに起因する散乱光領域ST3は、感光ドラム1の場合の散乱光領域S3のように細長くはなく、有る程度太くて短い領域の形状となった。換言すれば、中間転写ベルト4の回転方向の傷KTに起因する散乱光成分は、感光ドラム1の場合に比べて、広がり角が大きく、かつレーザ光の照射面からの最大離間距離は短かった。   In this case, since the laser beam was irradiated from the lower position as described above, the scattered light component spread in the −Y direction. Specifically, the regular reflection area ST1 is slightly larger than the regular reflection area S1 in the case of the photosensitive drum 1. Further, the scattered light region ST3 due to the scratch KT in the rotation direction of the intermediate transfer belt 4 is not elongated like the scattered light region S3 in the case of the photosensitive drum 1, but has a shape that is somewhat thick and short. In other words, the scattered light component caused by the scratch KT in the rotation direction of the intermediate transfer belt 4 has a larger spread angle and a shorter maximum separation distance from the laser light irradiation surface than in the case of the photosensitive drum 1. .

さらに、中間転写ベルト4の表面粗さ(汚れによる表面粗さを含む)に起因する散乱光領域ST2は、感光ドラム1の場合の表面粗さ(汚れによる表面粗さを含む)の場合と比べてかなり広かった。また、中間転写ベルト4の回転方向の傷KTに起因する散乱光領域ST3と、表面粗さに起因する散乱光領域ST2とに間には、かなり広い重複領域が存在していた。   Further, the scattered light region ST2 caused by the surface roughness (including the surface roughness due to dirt) of the intermediate transfer belt 4 is compared with the surface roughness (including the surface roughness due to dirt) in the case of the photosensitive drum 1. It was quite wide. Further, a considerably wide overlapping area exists between the scattered light region ST3 caused by the scratch KT in the rotation direction of the intermediate transfer belt 4 and the scattered light region ST2 caused by the surface roughness.

これらの現象は、張設ローラ17の径が感光ドラム1の径より小さく、レーザ光を照射する部分の曲率か感光ドラム1よりも大きいためであると考えられる。現に、中間転写ベルト4に係る張設ローラ17よりも更に径が小さな張設ローラ18(図1参照)で張設された加圧ベルト5bの場合は、中間転写ベルト4の場合の上記の散乱光成分の現象が、中間転写ベルト4の場合よりも顕著に現れた。   These phenomena are considered to be because the diameter of the tension roller 17 is smaller than the diameter of the photosensitive drum 1 and the curvature of the portion irradiated with the laser light is larger than that of the photosensitive drum 1. Actually, in the case of the pressure belt 5b stretched by the tension roller 18 (see FIG. 1) having a diameter smaller than that of the tension roller 17 related to the intermediate transfer belt 4, the above-described scattering in the case of the intermediate transfer belt 4. The phenomenon of the light component appeared more markedly than in the case of the intermediate transfer belt 4.

このことは、曲率が小さくなればなる程、換言すれば平面状態に近づけば近づく程、傷に起因する散乱光成分の散乱領域は、レーザ光の照射面に対する法線方向に長く延びていくことを意味する。従って、本実施の形態に係る表面検査技術は、曲面だけでなく平面の検査にも適用可能である。   This means that the smaller the curvature, in other words, the closer to the flat state, the longer the scattering region of the scattered light component caused by the scratch extends in the normal direction to the laser light irradiation surface. Means. Therefore, the surface inspection technique according to the present embodiment can be applied not only to curved surfaces but also to flat surfaces.

ただし、前述の説明から明らかなように、傷が延びていく方向と照射レーザ光とのなす角が90°に近づく程、散乱光成分は、レーザ光の照射面に対する法線方向に長く延びていく。従って、特に、曲率が小さい平面状の表面を検査する場合は、レーザ光を微小なグレージング角で一括照射する直線ラインの方向を変化させて複数回、検査することが望ましい。   However, as is clear from the above description, the scattered light component extends longer in the normal direction to the laser light irradiation surface as the angle between the direction in which the scratch extends and the irradiation laser light approaches 90 °. Go. Therefore, in particular, when inspecting a planar surface with a small curvature, it is desirable to inspect a plurality of times by changing the direction of a straight line that collectively irradiates laser light with a minute glazing angle.

上記の散乱光領域ST2とST3とが重複する現象に鑑みて、本実施の形態では、中間転写ベルト4の傷、汚れに起因する散乱光成分を検知するための受光部材としては、上記の重複領域に1つの受光部材SDだけを配備し、部品点数の削減化を図っている。   In view of the phenomenon in which the scattered light regions ST2 and ST3 overlap, in the present embodiment, the light receiving member for detecting the scattered light component due to scratches and dirt on the intermediate transfer belt 4 is the above-described overlap. Only one light receiving member SD is provided in the region to reduce the number of parts.

なお、詳細な説明は省略するが、定着器5の場合も、回転方向の傷に起因する散乱光領域と、表面粗さに起因する散乱光領域との重複領域に、加熱ローラ5a,加圧ベルト5bからの散乱光を受光する受光部材SE,SFをそれぞれ配備している。ただし、感光ドラム1の場合と同様に、表面粗さ(汚れによる表面粗さを含む)に起因する散乱光成分と、傷に起因する散乱光成分を異なる受光部材で個別に検知することも可能である。   Although the detailed description is omitted, in the case of the fixing device 5 as well, the heating roller 5a and the pressure are applied to the overlapping region of the scattered light region caused by the scratch in the rotation direction and the scattered light region caused by the surface roughness. Light receiving members SE and SF that receive scattered light from the belt 5b are provided. However, as in the case of the photosensitive drum 1, the scattered light component due to the surface roughness (including the surface roughness due to dirt) and the scattered light component due to the scratch can be individually detected by different light receiving members. It is.

本実施の形態では、レーザ発光部材12〜15、受光部材SA〜SF、SAUを用いて、図9,10のフローチャートに係る処理を行うことにより、感光ドラム1、中間転写ベルト4、定着器5の加熱ローラ5a、加圧ベルト5bの表面を検査している。   In the present embodiment, the photosensitive drum 1, the intermediate transfer belt 4, and the fixing device 5 are performed by performing processing according to the flowcharts of FIGS. 9 and 10 using the laser light emitting members 12 to 15 and the light receiving members SA to SF and SAU. The surfaces of the heating roller 5a and the pressure belt 5b are inspected.

図9のフローチャートは、感光ドラム1、中間転写ベルト4、定着器5の加熱ローラ5a、加圧ベルト5bの表面検査処理の概要を示すフローチャートである。図10は、図9のプロセスP5,P9,P13における傷、汚れの判定処理の詳細を示すフローチャートである。   The flowchart of FIG. 9 is a flowchart showing an outline of the surface inspection process of the photosensitive drum 1, the intermediate transfer belt 4, the heating roller 5a of the fixing device 5, and the pressure belt 5b. FIG. 10 is a flowchart showing details of the flaw / dirt determination processing in the processes P5, P9, and P13 of FIG.

表面検査処理では、CPU21は、まず、環境センサ16から現在の温度情報、湿度情報を取得する(P1)。次に、CPU21は、ユーザから感光ドラム1の表面検査の実行指示がなされているのか否かを判別し(P2)、否であれば、後述するプロセスP6に進む。   In the surface inspection process, the CPU 21 first acquires current temperature information and humidity information from the environmental sensor 16 (P1). Next, the CPU 21 determines whether or not the user has instructed execution of surface inspection of the photosensitive drum 1 (P2). If not, the process proceeds to a process P6 described later.

なお、感光ドラム1の表面検査の実行指示は、液晶表示部26に表示されるメニュー画面を介して行うことができる。このメニュー画面では、感光ドラム1の表面検査の実行指示だけでなく、中間転写ベルト4、定着器5の加熱ローラ5a、加圧ベルト5bの表面検査指示をも併せて行うことができる。   The execution instruction for the surface inspection of the photosensitive drum 1 can be performed via a menu screen displayed on the liquid crystal display unit 26. On this menu screen, not only an instruction to perform surface inspection of the photosensitive drum 1, but also an instruction to inspect the surface of the intermediate transfer belt 4, the heating roller 5a of the fixing device 5, and the pressure belt 5b can be performed together.

感光ドラム1の表面検査の実行指示がなされている場合には、CPU21は、取得した温度情報、湿度情報、当該画像形成装置の機種(型式)情報等に基づいて、受光部材を選択する(P3)。このプロセスP3では、CPU21は、感光ドラム1の表面検査を行うための受光部材SA,SAU,SB,SCの中から受光部材を1つ、又は複数選択する。   When an instruction to perform surface inspection of the photosensitive drum 1 is issued, the CPU 21 selects a light receiving member based on the acquired temperature information, humidity information, model (model) information of the image forming apparatus, and the like (P3). ). In this process P3, the CPU 21 selects one or a plurality of light receiving members from among the light receiving members SA, SAU, SB, and SC for performing the surface inspection of the photosensitive drum 1.

次に、CPU21は、感光ドラム1に対して、レーザ発光部材12から微小なグレージング角でレーザ光を照射し、選択に係る受光部材の出力信号、すなわち散乱光成分の光強度を測定する(P4)。   Next, the CPU 21 irradiates the photosensitive drum 1 with laser light from the laser light emitting member 12 with a minute glazing angle, and measures the output signal of the selected light receiving member, that is, the light intensity of the scattered light component (P4). ).

次に、CPU21は、選択した受光部材から得られた散乱光成分の光強度に基づいて、感光ドラム1の傷、汚れの程度を判定する(P5)。そして、CPU21は、更に、その判定結果に基づいて感光ドラム1の交換の良否等を判定し(P5)、プロセスP6に進む。   Next, the CPU 21 determines the degree of scratches and dirt on the photosensitive drum 1 based on the light intensity of the scattered light component obtained from the selected light receiving member (P5). Then, the CPU 21 further determines whether or not the photosensitive drum 1 is replaced based on the determination result (P5), and proceeds to the process P6.

プロセスP6では、CPU21は、ユーザから中間転写ベルト4の表面検査の実行指示がなされているのか否かを判別する。その結果、中間転写ベルト4の表面検査の実行指示がなされていなければ、CPU21は、後述するプロセスP10に進む。   In process P6, the CPU 21 determines whether or not an instruction to perform surface inspection of the intermediate transfer belt 4 has been issued from the user. As a result, if the execution instruction for the surface inspection of the intermediate transfer belt 4 is not given, the CPU 21 proceeds to a process P10 described later.

一方、中間転写ベルト4の表面検査の実行指示がなされていれば、CPU21は、取得した温度情報、湿度情報、当該画像形成装置の機種(型式)情報等に基づいて、受光部材を選択する(P7)。この場合、本実施の形態では、中間転写ベルト4の表面検査を行うための受光部材としては、受光部材SDだけが配備されているので、CPU21は、必然的に受光部材SDを選択することとなる。   On the other hand, if the execution instruction for the surface inspection of the intermediate transfer belt 4 has been made, the CPU 21 selects the light receiving member based on the acquired temperature information, humidity information, model (model) information of the image forming apparatus, and the like ( P7). In this case, in this embodiment, since only the light receiving member SD is provided as the light receiving member for performing the surface inspection of the intermediate transfer belt 4, the CPU 21 inevitably selects the light receiving member SD. Become.

次に、CPU21は、中間転写ベルト4に対して、レーザ発光部材13から微小なグレージング角でレーザ光を照射し、選択に係る受光部材SDの出力信号、すなわち散乱光成分の光強度を測定する(P8)。   Next, the CPU 21 irradiates the intermediate transfer belt 4 with laser light from the laser light emitting member 13 at a minute glazing angle, and measures the output signal of the selected light receiving member SD, that is, the light intensity of the scattered light component. (P8).

次に、CPU21は、選択した受光部材SDから得られた散乱光の光強度に基づいて、中間転写ベルト4の傷、汚れの程度を判定する(P9)。そして、CPU21は、更に、その判定結果に基づいて中間転写ベルト4の交換の良否等を判定し(P9)、プロセスP10に進む。   Next, the CPU 21 determines the degree of scratches and dirt on the intermediate transfer belt 4 based on the light intensity of the scattered light obtained from the selected light receiving member SD (P9). The CPU 21 further determines whether or not the intermediate transfer belt 4 is exchanged based on the determination result (P9), and proceeds to the process P10.

プロセスP10では、CPU21は、ユーザから定着器5の表面検査の実行指示がなされているのか否かを判別する。その結果、定着器5の表面検査の実行指示がなされていなければ、CPU21は、本検査処理を終了する。   In process P10, the CPU 21 determines whether or not a user has instructed execution of surface inspection of the fixing device 5. As a result, if the execution instruction for the surface inspection of the fixing device 5 has not been issued, the CPU 21 ends the inspection process.

一方、定着器5の表面検査の実行指示がなされていれば、CPU21は、取得した温度情報、湿度情報、当該画像形成装置の機種(型式)情報等に基づいて、受光部材を選択する(P11)。   On the other hand, if the execution instruction for the surface inspection of the fixing device 5 is given, the CPU 21 selects the light receiving member based on the acquired temperature information, humidity information, model (model) information of the image forming apparatus, etc. (P11). ).

本実施の形態では、定着器5に関しては、加熱ローラ5aと加圧ベルト5bを個別に検査することとし、加熱ローラ5a、加圧ベルト5bの表面検査を行うための受光部材として、それぞれ、受光部材SE、SFが配備されている。従って、プロセスP11では、CPU21は、必然的に受光部材SE、SFを選択することとなる。   In the present embodiment, with respect to the fixing device 5, the heating roller 5a and the pressure belt 5b are individually inspected, and the light receiving members are used as light receiving members for performing surface inspection of the heating roller 5a and the pressure belt 5b, respectively. Members SE and SF are provided. Therefore, in the process P11, the CPU 21 inevitably selects the light receiving members SE and SF.

次に、CPU21は、加熱ローラ5a、加圧ベルト5bに対して、それぞれ、レーザ発光部材14,15から微小なグレージング角でレーザ光を照射し、選択に係る受光部材SE,SFの出力信号、すなわち散乱光成分の光強度を測定する(P12)。   Next, the CPU 21 irradiates the heating roller 5a and the pressure belt 5b with laser light from the laser light emitting members 14 and 15 with a minute glazing angle, respectively, and outputs signals from the light receiving members SE and SF according to selection, That is, the light intensity of the scattered light component is measured (P12).

次に、CPU21は、選択した受光部材SE、SFから得られた散乱光成分の光強度に基づいて、それぞれ、加熱ローラ5a、加圧ベルト5bの傷、汚れの程度を判定する(P13)。そして、CPU21は、更に、その判定結果に基づいて定着器5の交換の必要性(要否)等を判定し(P13)、本検査処理を終了する。   Next, the CPU 21 determines the degree of scratches and dirt on the heating roller 5a and the pressure belt 5b based on the light intensity of the scattered light components obtained from the selected light receiving members SE and SF (P13). Then, the CPU 21 further determines the necessity (necessity of replacement) of the fixing device 5 based on the determination result (P13), and ends this inspection process.

なお、定着器5の構造が加熱ローラ5aと加圧ベルト5bを個別に交換可能となっている場合には、プロセスP13では、加熱ローラ5aの交換の良否と加圧ベルト5b交換の良否を個別に判定することも可能である。   If the structure of the fixing device 5 is such that the heating roller 5a and the pressure belt 5b can be individually replaced, in process P13, whether or not the heating roller 5a is replaced and whether or not the pressure belt 5b is replaced are individually determined. It is also possible to make a determination.

次に、図9のプロセスP5,P9,P13における傷、汚れの判定処理の詳細を、図10のフローチャートに基づいて説明する。   Next, details of the scratch / dirt determination processing in processes P5, P9, and P13 of FIG. 9 will be described based on the flowchart of FIG.

傷、汚れの判定処理では、CPU21は、選択した受光部材から得られた測定結果(散乱光成分の光強度、又はその分布の広がり度)と、当該受光部材に対応する基準情報を比較する(P21)。そして、CPU21は、少なくとも1つの選択受光部材に係る測定結果が対応の基準情報以上であるか否かを判別する(P22)。   In the scratch / dirt determination process, the CPU 21 compares the measurement result (the light intensity of the scattered light component or the spread degree of the distribution) obtained from the selected light receiving member with the reference information corresponding to the light receiving member ( P21). Then, the CPU 21 determines whether or not the measurement result related to at least one selected light receiving member is equal to or more than the corresponding reference information (P22).

なお、上記の「分布の広がり」は、後述する第4の実施の形態(エリアセンサ)を意識したものである。これは、図9のプロセスP4、P8,P12における「散乱光の強度等」という記述での「等」も同様である。   The above-mentioned “spreading distribution” is intended for the fourth embodiment (area sensor) described later. This also applies to “etc.” in the description of “scattered light intensity etc.” in the processes P4, P8, P12 of FIG.

また、「基準情報」は、傷や汚れの程度が異なる多数の被検査対象物(感光ドラム等)について、図9のプロセスP4、P8,P12と同様の手法で予め散乱光成分の強度等を測定した測定結果から導かれたものである(後述の「限界情報」も同様)。この「基準情報」は、受光部材毎(受光手段毎)に異なる情報(光強度に関する情報)であって、各受光部材と対応付けてEEPRPM22aに予め登録されている(「限界情報」も同様)。
また、基準情報と限界情報との間には、
[数1]
基準情報<限界情報
という関係がある。
In addition, the “reference information” is used to determine in advance the intensity of the scattered light component and the like for a large number of objects to be inspected (photosensitive drums and the like) having different degrees of scratches and dirt by the same method as the processes P4, P8, and P12 in FIG. This is derived from the measured measurement results (the same applies to “limit information” described later). This “reference information” is information (information relating to light intensity) that is different for each light receiving member (each light receiving means), and is registered in advance in the EEPROM 22a in association with each light receiving member (the same applies to “limit information”). .
In addition, between the reference information and the limit information,
[Equation 1]
There is a relationship of reference information <limit information.

CPU21は、少なくとも1つの選択受光部材に係る測定結果が対応の基準情報以上である場合は、散乱光成分の主因は、汚れではなく傷の方にあると予測し、その旨を液晶表示部26に表示し(P23)、プロセスP25に進む。   When the measurement result related to at least one selected light receiving member is equal to or more than the corresponding reference information, the CPU 21 predicts that the main cause of the scattered light component is not the dirt but the scratch, and this is indicated in the liquid crystal display unit 26. (P23) and the process proceeds to process P25.

一方、全ての選択受光部材に係る測定結果が対応の基準情報未満である場合は、CPU21は、散乱光成分の主因は、傷ではなく汚れの方にあると予測し、その旨を液晶表示部26に表示し(P24)、プロセスP25に進む。   On the other hand, if the measurement results for all the selected light receiving members are less than the corresponding reference information, the CPU 21 predicts that the main cause of the scattered light component is not the scratch but the dirt, and this is indicated in the liquid crystal display unit. 26 (P24), and the process proceeds to process P25.

プロセスP25では、CPU21は、各選択受光部材での測定結果と、当該選択受光部材に対応する限界情報(散乱光成分の光強度、又はその分布の広がり度の限界情報)との差分を算出する。この「限界情報」は、ある程度の高い画像品質を維持するために必要な傷、汚れの限界を示す散乱光成分の光強度又はその分布の広がり度である。   In the process P25, the CPU 21 calculates a difference between the measurement result of each selected light receiving member and the limit information corresponding to the selected light receiving member (the light intensity of the scattered light component or the limit information of the spread of the distribution). . This “limit information” is the light intensity of the scattered light component indicating the limit of scratches and dirt necessary to maintain a certain level of high image quality, or the degree of spread of the distribution.

また、限界情報は、後述の説明から明らかなように、感光ドラム1等の検査対象物の表面状態を散乱光成分の光強度に基づいて判定する際の判定情報として利用される。なお、当然ながら、限界情報(判定情報)は、各種の表面状態の例えば感光ドラム等の検査対象物(同一種:同一型番)に係る散乱光成分の光強度を予め測定し、その測定結果に基づいて予め設定されるものである。そして、この限界情報(判定情報)は、同一種の検査対象物の表面検査を実際に行う場合に使用される。   Further, the limit information is used as determination information when determining the surface state of the inspection object such as the photosensitive drum 1 based on the light intensity of the scattered light component, as will be apparent from the following description. Of course, the limit information (determination information) is obtained by measuring in advance the light intensity of the scattered light component related to the inspection target (same type: same model number) such as a photosensitive drum in various surface states, It is preset based on this. The limit information (determination information) is used when the surface inspection of the same type of inspection object is actually performed.

次に、CPU21は、各選択受光部材について、その限界情報(Li)に対する測定結果(Re)の割合(P.C.:百分率)を算出する(P25)。
[数2]
P.C.=Re/Li×100
次に、CPU21は、算出した割合(P.C.:百分率)に関して、大、中、小を判定テーブルで判定する(P26)。
Next, the CPU 21 calculates the ratio (PC: percentage) of the measurement result (Re) to the limit information (Li) for each selected light receiving member (P25).
[Equation 2]
P. C. = Re / Li × 100
Next, with respect to the calculated ratio (PC: percentage), the CPU 21 determines large, medium, and small using the determination table (P26).

この判定テーブルでは、大、中、小の判定基準(範囲)が受光部材毎に決められている。換言すれば、同一の割合、例えば80%であっても、その判定結果が各受光部材で同一であるとは限らない。例えば、傷に係る受光部材SAにおける80%は、「大」と判定されるが、汚れに係る受光部材SAUにおける80%は、「中」と判定される。   In this determination table, large, medium, and small determination criteria (ranges) are determined for each light receiving member. In other words, even if the ratio is the same, for example, 80%, the determination result is not always the same for each light receiving member. For example, 80% in the light receiving member SA related to the scratch is determined to be “large”, but 80% in the light receiving member SAU related to the stain is determined to be “medium”.

受光部材毎に大、中、小の判定基準(範囲)を決めたのは、傷は進行速度が速く、汚れは進行速度が遅いこと、傷に係る受光部材SA,SB,SC間でも、散乱光成分の光強度が増大していく速度が異なること等の事情を考慮したものである。なお、判定テーブルは、EEPROM22aに予め記憶されている。   The reason why the large, medium, and small judgment criteria (ranges) are determined for each light receiving member is that the flaw has a high advancing speed and the dirt has a low advancing speed, and the light receiving members SA, SB, and SC related to the flaw are scattered This is because of considerations such as the speed at which the light intensity of the light component increases. The determination table is stored in advance in the EEPROM 22a.

このように、受光部材毎に大、中、小の判定基準(範囲)を決めることにより、画像品質の劣化が目立たない範囲で被検査対象物の交換時期を最大限、引き延ばし、維持管理費を低減することが可能となる。   In this way, by deciding large, medium, and small judgment criteria (ranges) for each light receiving member, it is possible to extend the replacement time of the inspection object as much as possible within a range where deterioration in image quality is not noticeable, and to maintain maintenance costs. It becomes possible to reduce.

なお、判定テーブルの判定基準は、当該画像形成装置(表面検査装置)を使い込んでいく過程で変更することが望ましい。この場合、例えば、表面検査を行う毎にその測定結果をデータベースに蓄積していき、その蓄積された測定結果から傷や汚れの進行態様をより厳密に把握して判定基準を更新していく手法が考えられる。   Note that it is desirable to change the determination criteria of the determination table in the course of using the image forming apparatus (surface inspection apparatus). In this case, for example, each time surface inspection is performed, the measurement results are accumulated in a database, and the determination criteria are updated by more accurately grasping the progress of scratches and dirt from the accumulated measurement results. Can be considered.

CPU21は、判定テーブルでの判定を行った後、「大」であると判定された選択受光部材が1つでも存在するか否かを判別する(P27)。その結果、「大」であると判定された選択受光部材が1つでも存在すれば、CPU21は、当該選択受光部材に対応する被検査対象物(感光ドラム等)の交換、又はクリーニングの必要がある旨を液晶表示部26に表示する(P28)。   After making the determination in the determination table, the CPU 21 determines whether or not there is at least one selected light receiving member determined to be “large” (P27). As a result, if there is at least one selected light receiving member determined to be “large”, the CPU 21 needs to replace or clean the inspection target object (photosensitive drum or the like) corresponding to the selected light receiving member. A message to that effect is displayed on the liquid crystal display unit 26 (P28).

上記の「交換」の要否は、「傷」に係る選択受光部材の場合に表示され、「クリーニング」の要否は、「汚れ」に係る選択受光部材の場合に表示される。この表示処理を行った後、CPU21は、本判定処理を終了し、図9のフローにリターンする。   Whether or not “replacement” is necessary is displayed for the selected light receiving member related to “scratches”, and whether or not “cleaning” is necessary is displayed for the selected light receiving member related to “dirt”. After performing this display process, the CPU 21 ends this determination process and returns to the flow of FIG.

一方、「大」であると判定された選択受光部材が1つも存在しなければ、CPU21は、「中」であると判定された選択受光部材が1つでも存在するか否かを判別する(P29)。その結果、「中」であると判定された選択受光部材が1つでも存在すれば、CPU21は、当該選択受光部材に対応する被検査対象物の交換又はクリーニングの必要は無いが、傷、汚れがある程度進行している旨を液晶表示部26に表示する(P30)。   On the other hand, if there is no selected light receiving member determined to be “large”, the CPU 21 determines whether or not there is even one selected light receiving member determined to be “medium” ( P29). As a result, if there is at least one selected light receiving member determined to be “medium”, the CPU 21 does not need to replace or clean the object to be inspected corresponding to the selected light receiving member. Is displayed on the liquid crystal display unit 26 (P30).

この表示処理を行った後、CPU21は、本判定処理を終了し、図9のフローにリターンする。   After performing this display process, the CPU 21 ends this determination process and returns to the flow of FIG.

一方、「中」であると判定された選択受光部材が1つも存在しなければ、CPU21は、当該選択受光部材に対応する被検査対象物は良好である旨を液晶表示部26に表示して(P31)、本判定処理を終了し、図9のフローにリターンする。   On the other hand, if there is no selected light receiving member determined to be “medium”, the CPU 21 displays on the liquid crystal display unit 26 that the object to be inspected corresponding to the selected light receiving member is good. (P31), this determination process is terminated, and the process returns to the flow of FIG.

以上説明したように、本実施の形態では、CPU21は、感光ドラム1等の表面に微小なグレージング角θでレーザ光Lbを照射する。その散乱光成分Lb2は、傷による散乱光領域S3に配備された受光部材SA,SB,SCと、汚れ(表面粗さ)による散乱光領域S2に配備された受光部材SAUとで受光される。   As described above, in the present embodiment, the CPU 21 irradiates the surface of the photosensitive drum 1 or the like with the laser light Lb with a minute glazing angle θ. The scattered light component Lb2 is received by the light receiving members SA, SB, SC disposed in the scattered light region S3 due to scratches and the light receiving member SAU disposed in the scattered light region S2 due to dirt (surface roughness).

そして、CPU21は、温度、湿度、機種等に基づいて自動的に受光部材を選択し、その選択受光部材で受光された散乱光成分の光強度に基づいて、感光ドラム1等の傷、汚れの度合い(大、中、小)を判定する。そして、CPU21は、判定結果に基づいて感光ドラム1等を交換すべきか否かを判断して、その判断結果を表示する。   Then, the CPU 21 automatically selects the light receiving member based on the temperature, humidity, model, etc., and based on the light intensity of the scattered light component received by the selected light receiving member, scratches and dirt on the photosensitive drum 1 etc. Determine the degree (large, medium, small). Then, the CPU 21 determines whether or not the photosensitive drum 1 or the like should be replaced based on the determination result, and displays the determination result.

この表面検査処理において検査対象物の表面に照射するレーザ光のビーム径は2mm〜3mm程度でよく、出力パワーも1mW程度、波長は赤色の650nm程度でよく、安価なレーザ発光部材を使用することができる。   In this surface inspection process, the beam diameter of the laser beam irradiated on the surface of the inspection object may be about 2 mm to 3 mm, the output power may be about 1 mW, the wavelength may be about 650 nm in red, and an inexpensive laser emitting member should be used. Can do.

また、レーザ光を走査することなく、検査対象物の表面の1ラインに一括してレーザ光を照射することで、迅速に表面検査を行うことが可能となる。更に、受光部材SA〜SF、SAUも安価なフォトダイオード、フォトトランジスタ等で構成することができる。従って、簡単、かつ安価な構成で迅速に表面検査を行うことが可能となる。   In addition, it is possible to perform surface inspection quickly by irradiating laser light to one line on the surface of the inspection object at once without scanning with laser light. Furthermore, the light receiving members SA to SF and SAU can also be constituted by inexpensive photodiodes, phototransistors, and the like. Therefore, it is possible to perform surface inspection quickly with a simple and inexpensive configuration.

なお、散乱光成分の光強度に基づいて検査対象物の表面状態を検査する図10に示した検査手法は一例であり、これ以外の手法により、散乱光成分の光強度に基づいて検査対象物の表面状態を検査することも可能である。   Note that the inspection method shown in FIG. 10 for inspecting the surface state of the inspection object based on the light intensity of the scattered light component is an example, and the inspection object is based on the light intensity of the scattered light component by other methods. It is also possible to inspect the surface condition.

[第2の実施の形態]
レーザ発光部材からのレーザ光を微小なグレージング角で検査対象のデバイスの表面に照射するための導光部材としては、図5,6に示したようなライトパイプLPではなく、図11に示したように、ミラーMiを用いることも可能である。更に、図示省略したが、導光部材としては、レンズ、光ファイバー、反射板、透明樹脂等を用いることも可能である。なお、上記の各種の導光部材は、その内の何れか1つだけを用いても、或いは2つ以上を適宜組み合わせて用いてもよい。
[Second Embodiment]
As a light guide member for irradiating the surface of a device to be inspected with a minute glazing angle with laser light from a laser light emitting member, the light pipe LP shown in FIGS. 5 and 6 is used instead of the light pipe LP shown in FIG. Thus, it is also possible to use the mirror Mi. Further, although not shown, a lens, an optical fiber, a reflector, a transparent resin, or the like can be used as the light guide member. Note that only one of the various light guide members described above may be used, or two or more of them may be used in appropriate combination.

このようなライトパイプLP、ミラーMi等の導光部材を用いることにより、レーザ光を微小なグレージング角で検査対象物に照射する場合に、レーザ発光部材の配置位置の自由度が高くなり、画像形成装置を大型化する必要はなくなる。   By using such a light guide member such as the light pipe LP and the mirror Mi, when irradiating the inspection object with a minute glazing angle, the degree of freedom of the arrangement position of the laser light emitting member is increased. There is no need to increase the size of the forming apparatus.

更に、高温になる定着器5、特に加熱ローラ5aにレーザ光を照射するレーザ発光部材14を加熱ローラ5aから離れた位置に配備することができ、耐熱性の低いレーザ発光部材14の熱破壊、レーザ光の強度変動等を防止することが可能となる。   Further, the fixing device 5 that becomes high temperature, in particular, the laser light emitting member 14 for irradiating the heating roller 5a with laser light can be disposed at a position away from the heating roller 5a, and the laser light emitting member 14 having low heat resistance is thermally destroyed. It is possible to prevent fluctuations in the intensity of the laser light.

また、図11に示したように、散乱光成分は、受光部材が検査対象物から直接受光することなく、ライトガイドレンズLGL等の広角集光部材を介して1つの受光部材LGLにより受光するように構成することも可能である。   Further, as shown in FIG. 11, the scattered light component is received by one light receiving member LGL via a wide-angle condensing member such as a light guide lens LGL without the light receiving member directly receiving light from the inspection object. It is also possible to configure.

このライトガイドレンズLGLは、散乱光成分を集光するレンズ機能と、集光した散乱光成分の進行方向を反射部により偏光する機能を有している。すなわち、ライトガイドレンズLGLは、傷による散乱光領域S3のX軸方向の長さよりも短くても、当該散乱光領域S3の散乱光成分を十分に集光することができる。   The light guide lens LGL has a lens function for collecting the scattered light component and a function for polarizing the traveling direction of the collected scattered light component by the reflecting portion. That is, even if the light guide lens LGL is shorter than the length of the scattered light region S3 due to scratches in the X-axis direction, the light guide lens LGL can sufficiently collect the scattered light component of the scattered light region S3.

従って、広角集光部材を用いた場合は、例えば、レーザ発光部材の配備位置が限定され、導光部材も利用できない等の事情により、傷による散乱光領域S3の方向のスペースを十分に取れないときでも、傷による散乱光成分を受光できるようになる可能性が高くなる。   Therefore, when the wide-angle light condensing member is used, the space in the direction of the scattered light region S3 due to scratches cannot be taken sufficiently due to, for example, the location where the laser light emitting member is disposed and the light guiding member cannot be used. Even then, there is a high possibility that the scattered light component due to scratches can be received.

また、広角集光部材を用いることにより、受光部材の配置位置の自由度が高くなる。これにより、高温になる定着器5の加熱ローラ5a、加圧ベルト5bからの散乱光成分を検知する受光部材SE,SFを、これら加熱ローラ5a、加圧ベルト5bから離れた位置に配備することができる。これにより、受光部材SE,SFの熱破壊、検知信号のレベル変動等を防止することが可能となる。   Further, the use of the wide-angle light collecting member increases the degree of freedom of the arrangement position of the light receiving member. Accordingly, the light receiving members SE and SF for detecting the scattered light components from the heating roller 5a and the pressure belt 5b of the fixing device 5 that are at a high temperature are arranged at positions away from the heating roller 5a and the pressure belt 5b. Can do. Thereby, it is possible to prevent thermal destruction of the light receiving members SE and SF, level fluctuation of the detection signal, and the like.

[第3の実施の形態]
図12の構成例では、細長い2つ集光部材F,Gを用いて、感光ドラム1からの散乱光成分を集光している。この集光部材Fは、傷に起因する散乱光成分を集光すべく、Zθ0面内に略Z軸と平行に配備されている。また、集光部材Gは、汚れに起因する散乱光成分を集光すべく、Zθa面内に略Z軸と平行に配備されている。
[Third Embodiment]
In the configuration example of FIG. 12, the scattered light components from the photosensitive drum 1 are condensed using two elongated light collecting members F and G. This condensing member F is arranged in the Zθ0 plane substantially parallel to the Z axis in order to condense the scattered light component resulting from the scratch. Further, the condensing member G is disposed substantially parallel to the Z axis in the Zθa plane so as to collect the scattered light component caused by the dirt.

集光部材Fで集光された散乱光成分は、受光部材SAの方向に導かれ、当該受光部材SAにより検知される。   The scattered light component collected by the light collecting member F is guided in the direction of the light receiving member SA and detected by the light receiving member SA.

集光部材Gで集光された散乱光成分は、受光部材SAUの方向に導かれ、当該受光部材SAUにより検知される。このような集光部材G,Fを用いることで、散乱光成分と他の部品との干渉を低減することができ、装置内の部品配置の自由度が高くなり、装置の大型化を回避することができる。   The scattered light component collected by the light collecting member G is guided in the direction of the light receiving member SAU and detected by the light receiving member SAU. By using such condensing members G and F, interference between the scattered light component and other components can be reduced, the degree of freedom of component arrangement in the device is increased, and the size of the device is avoided. be able to.

また、図12の構成例では、レーザ発光部材Lからのレーザ光を集光レンズLeを介して検査対象物に照射するようにしている。この集光レンズLeを用いることにより、レーザ発光部材Lから発射するレーザ光(ビーム光)の径をある程度大きくすることができ、より安価なレーザ発光部材Lを用いることが可能となる。   In the configuration example of FIG. 12, the inspection target is irradiated with the laser light from the laser light emitting member L via the condenser lens Le. By using this condensing lens Le, the diameter of the laser light (beam light) emitted from the laser light emitting member L can be increased to some extent, and a cheaper laser light emitting member L can be used.

また、集光部材G,Fでの集光効率が向上するように、レーザ光のビーム径や形状を最適化することも可能となる。   In addition, the beam diameter and shape of the laser light can be optimized so that the light collection efficiency of the light collection members G and F is improved.

[第4の実施の形態]
以上の第1〜第3の実施の形態では、受光部材SA〜SG,SAUとしては、単体のフォトダイオード、フォトトランジスタ(1画素分の受光素子)を用いることを想定していた。しかし、これら受光部材をCCDセンサ、CMOSセンサ等のエリアセンサ(2次元センサ:複数画素分の受光素子群)により構成することも可能である。この場合、エリアセンサの画素数、画素サイズ、画素密度は最低クラスでも十分であり、非常に安価なエリアセンサを用いることができる。
[Fourth Embodiment]
In the first to third embodiments described above, it is assumed that a single photodiode or phototransistor (light receiving element for one pixel) is used as the light receiving members SA to SG and SAU. However, these light receiving members can also be constituted by area sensors (two-dimensional sensors: light receiving element groups for a plurality of pixels) such as CCD sensors and CMOS sensors. In this case, the minimum number of pixels, pixel size, and pixel density of the area sensor are sufficient, and a very inexpensive area sensor can be used.

受光部材としてエリアセンサを用いる意義は、次のような点にある。すなわち、単体のフォトダイオード、フォトトランジスタを用いた場合は、検査対象物からの散乱光成分をピンポイントで検知するだけで、有る程度広い領域において検知することはできない。   The significance of using an area sensor as the light receiving member is as follows. That is, when a single photodiode or phototransistor is used, it is impossible to detect a scattered light component from the inspection object in a certain wide area only by pinpoint detection.

そのため、受光部材として単体のフォトダイオード、フォトトランジスタを用いた場合は、散乱光成分の僅かな強度分布の差異を検知することができず、表面検査の精度が必ずしも高いとは言えない。   Therefore, when a single photodiode or phototransistor is used as the light receiving member, a slight difference in intensity distribution of the scattered light component cannot be detected, and the accuracy of the surface inspection is not necessarily high.

一方、受光部材としてエリアセンサを用いた場合は、散乱光成分の2次元的な強度分布を検知し、画像情報として記憶することができる。そして、各受光部材SA〜SG,SAUとしての各エリアセンサにおいて、画素毎に前述の基準情報、及び限界情報を設定すること等により、傷や汚れを高精度に検知することが可能となる。   On the other hand, when an area sensor is used as the light receiving member, a two-dimensional intensity distribution of the scattered light component can be detected and stored as image information. And in each area sensor as each light receiving member SA-SG, SAU, it becomes possible to detect a crack and dirt with high precision by setting the above-mentioned reference information and limit information for every pixel.

エリアセンサを用いる場合の基準情報、限界情報(判定情報)としては、画素単位での光強度だけでなく、各画素間における光強度の差分値(分布情報)、散乱光成分の広がりの程度等の情報も用いる。   Reference information and limit information (judgment information) when using an area sensor include not only the light intensity in units of pixels, but also the difference value (distribution information) of the light intensity between pixels, the extent of the spread of scattered light components, etc. This information is also used.

この場合、画像解析を行って散乱光成分の光強度の分布パターンのマッチングを行うことで検査対象物の良否、交換を判断することも考えられる。しかしながら、本実施の形態では、画像解析等の高度な処理を行うことなく、簡単な手法で検査対象物の良否、交換を判断している。   In this case, it is conceivable to determine whether the inspection object is good or bad by performing image analysis and matching the distribution pattern of the light intensity of the scattered light component. However, in the present embodiment, whether or not the inspection object is good or bad is determined by a simple method without performing advanced processing such as image analysis.

例えば、主として、エリアセンサの外周部分の画素の光強度に着目して散乱光成分の広がりの程度を判定し、その広がりの程度が大きいほど、傷、汚れの程度が大きいと判定する。   For example, the degree of spread of the scattered light component is determined mainly by paying attention to the light intensity of the pixels in the outer peripheral portion of the area sensor, and the degree of scratches and dirt is determined as the degree of spread increases.

また、傷に起因する散乱光成分については、前述のX軸方向において検査対象物から離れて行く際の当該散乱光成分の光強度の低減率が小さい場合は、傷の程度が大きいと判定する。さらに、汚れに起因する散乱光成分については、エリアセンサの中央部分の画素から外周部分の画素へ進んで行く際の散乱光成分の光強度の低減率が小さい場合は、汚れの程度が大きいと判定する。   Further, regarding the scattered light component due to the scratch, if the reduction rate of the light intensity of the scattered light component when going away from the inspection target in the X-axis direction is small, it is determined that the degree of the scratch is large. . Furthermore, with regard to the scattered light component caused by dirt, if the reduction rate of the light intensity of the scattered light component when going from the central pixel of the area sensor to the peripheral pixel is small, the degree of dirt is large. judge.

以上のようにして、レーザ光の各種の導光部材、散乱光成分の各種の集光部材、各種の受光部材を最適に組み合わせることで、感光ドラム1などの各種の部品を画像形成装置に組み込んだままの状態で、当該部品の表面を検査することが可能となる。   As described above, various components such as the photosensitive drum 1 are incorporated into the image forming apparatus by optimally combining the various light guide members of the laser light, the various light collecting members of the scattered light component, and the various light receiving members. It is possible to inspect the surface of the part in a state as it is.

なお、図5,6,11,12では、導光部材、集光部材は、感光ドラムに対応するものだけを示したが、中間転写ベルト等の他の部品の表面を検査するユニットにおいても、同様の導光部材、集光部材を用いることができる。   5, 6, 11, and 12, only the light guide member and the light collecting member corresponding to the photosensitive drum are shown, but in the unit for inspecting the surface of other parts such as the intermediate transfer belt, Similar light guide members and light collecting members can be used.

本発明は、上記の各実施の形態に限定されることなく、例えば、画像形成装置以外の装置に内蔵された各種部品、更には単体の物品の表面検査に上記の各実施の形態に係る技術思想を適用することも可能である。   The present invention is not limited to each of the above-described embodiments. For example, the technology according to each of the above-described embodiments for surface inspection of various parts incorporated in an apparatus other than an image forming apparatus or a single article. It is also possible to apply ideas.

また、傷に起因する散乱光成分を受光する受光部材SA〜SCの代わりに、一次元のラインセンサ(リニアセンサ)を用いることも可能である。さらに、赤色レーザ光以外の波長に係るレーザ光(非分散光ビーム)を検査対象物に照射してもよい。   Moreover, it is also possible to use a one-dimensional line sensor (linear sensor) instead of the light receiving members SA to SC that receive scattered light components caused by scratches. Furthermore, the inspection object may be irradiated with laser light (non-dispersed light beam) having a wavelength other than red laser light.

本発明の実施の形態に表面検査装置を内蔵した画像形成装置の概略構成を示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of an image forming apparatus in which a surface inspection apparatus is built in an embodiment of the present invention. 図1の画像形成装置の制御系の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a control system of the image forming apparatus in FIG. 1. 上記の表面検査装置におけるレーザ光の照射方法を説明するための図である。It is a figure for demonstrating the irradiation method of the laser beam in said surface inspection apparatus. 上記の表面検査装置の基本的な構成を示す図である(感光ドラムの傷、汚れに対応)。It is a figure which shows the basic composition of said surface inspection apparatus (it respond | corresponds to the damage | wound and dirt of a photosensitive drum). 検査対象物(感光ドラム)の汚れに起因する散乱光とその受光部材を説明するための図である。It is a figure for demonstrating the scattered light resulting from the stain | pollution | contamination of a test subject (photosensitive drum) and its light-receiving member. 新品の検査対象物(感光ドラム)の表面粗さに起因する散乱光とその受光部材を説明するための図である。It is a figure for demonstrating the scattered light resulting from the surface roughness of a new test target object (photosensitive drum), and its light-receiving member. 受光部材の配備位置等を補足説明するための図である。It is a figure for supplementarily explaining the deployment position etc. of a light receiving member. 中間転写ベルトの表面を検査する場合の基本的な構成を示す図である。FIG. 3 is a diagram showing a basic configuration when inspecting the surface of an intermediate transfer belt. 表面検査処理の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of a surface inspection process. 図9のP5,P9,P13における傷、汚れ判定処理の詳細を示すフローチャートである。10 is a flowchart showing details of a flaw / dirt determination process in P5, P9, and P13 of FIG. 9; 本発明の第2の実施の形態に係る表面検査装置の構成を示す図である(第2の導光部材、第1の集光部材を使用)。It is a figure which shows the structure of the surface inspection apparatus which concerns on the 2nd Embodiment of this invention (The 2nd light guide member and the 1st condensing member are used). 本発明の第3の実施の形態に係る表面検査装置の構成を示す図である(第3の導光部材、第2の集光部材を使用)。It is a figure which shows the structure of the surface inspection apparatus which concerns on the 3rd Embodiment of this invention (The 3rd light guide member and the 2nd condensing member are used).

符号の説明Explanation of symbols

1…感光ドラム
4…中間転写ベルト
5…定着器
5a…加熱ローラ
5b…加圧ベルト
12〜15…レーザ発光部材
21…CPU
22…メモリ
22a…EEPROM
SA,SAU,SB,SC,SD、SE,SF,SG…受光部材
G,F…集光部材
Le…集光レンズ
LGL…ライトガイドレンズ
LP…ライトガイドパイプ
Mi…ミラー
S1…正反射領域
S2…表面粗さに起因する散乱光領域
S3…傷に起因する散乱光領域
STY…汚れに起因する散乱光領域
DESCRIPTION OF SYMBOLS 1 ... Photosensitive drum 4 ... Intermediate transfer belt 5 ... Fixing device 5a ... Heating roller 5b ... Pressure belt 12-15 ... Laser-emitting member 21 ... CPU
22 ... Memory 22a ... EEPROM
SA, SAU, SB, SC, SD, SE, SF, SG ... light receiving member G, F ... condensing member Le ... condensing lens LGL ... light guide lens LP ... light guide pipe Mi ... mirror S1 ... regular reflection region S2 ... Scattered light region S3 caused by surface roughness Scattered light region STY caused by scratch Sscattered light region caused by dirt

Claims (11)

検査対象物の表面上の直線ラインに非分散光ビームを走査無しに一括して照射する照射手段と、
前記照射手段により照射された前記非分散光ビームの反射光の散乱光成分を受光する受光手段と、
前記受光手段により受光された前記散乱光成分の光強度に基づいて前記検査対象物の表面の状態を判定する判定手段と、
を有することを特徴とする表面検査装置。
Irradiation means for collectively irradiating a non-dispersed light beam to a straight line on the surface of the inspection object without scanning;
A light receiving means for receiving a scattered light component of the reflected light of the non-dispersed light beam irradiated by the irradiation means;
Determination means for determining the state of the surface of the inspection object based on the light intensity of the scattered light component received by the light receiving means;
A surface inspection apparatus characterized by comprising:
前記受光手段は、単体の受光素子により構成されていることを特徴とする請求項1に記載の表面検査装置。   The surface inspection apparatus according to claim 1, wherein the light receiving unit includes a single light receiving element. 前記受光手段は、前記散乱光成分の散乱領域に応じて複数配備されていることを特徴とする請求項1又は2に記載の表面検査装置。   The surface inspection apparatus according to claim 1, wherein a plurality of the light receiving means are provided according to a scattering region of the scattered light component. 前記受光手段は、前記検査対象物の表面の傷に起因する散乱光成分の散乱領域と汚れに起因する散乱光成分の散乱領域とに、個別に配備されていることを特徴とする請求項1〜3の何れかに記載の表面検査装置。   2. The light receiving means is separately provided in a scattered region of scattered light components caused by scratches on the surface of the inspection object and a scattered region of scattered light components caused by dirt. The surface inspection apparatus in any one of -3. 前記受光手段は、前記検査対象物の表面の傷に起因する散乱光成分の散乱領域と汚れに起因する散乱光成分の散乱領域とが重複する重複領域に配備されていることを特徴とする請求項1又は2に記載の表面検査装置。   The light receiving means is arranged in an overlapping region where a scattered region of scattered light components caused by scratches on the surface of the inspection object overlaps with a scattered region of scattered light components caused by dirt. Item 3. The surface inspection apparatus according to Item 1 or 2. 前記受光手段は、前記検査対象物の表面の傷に起因する散乱光成分の散乱領域の形状に応じて、当該傷に起因する散乱光成分の散乱領域に複数配備されていることを特徴とする請求項1〜4の何れかに記載の表面検査装置。   According to the shape of the scattering region of the scattered light component caused by the scratch on the surface of the inspection object, a plurality of the light receiving means are provided in the scattering region of the scattered light component caused by the scratch. The surface inspection apparatus in any one of Claims 1-4. 前記判定手段は、各種の表面状態の検査対象物に係る前記散乱光成分の光強度に基づいて予め設定された判定情報を用いて、当該各種の表面状態の検査対象物と同一種の検査対象物であって実際に検査対象となっている検査対象物に係る前記散乱光成分の光強度を判定することにより、当該実際に検査対象となっている検査対象物の表面状態を判定することを特徴とする請求項1〜6の何れかに記載の表面検査装置。   The determination means uses the determination information set in advance based on the light intensity of the scattered light component related to the various surface state inspection objects, and the same type of inspection object as the various surface state inspection objects. Determining the surface state of the inspection object that is actually the inspection object by determining the light intensity of the scattered light component related to the inspection object that is actually the inspection object. The surface inspection apparatus according to any one of claims 1 to 6. 前記判定情報は、複数の前記受光手段毎に設定されていることを特徴とする請求項7に記載の表面検査装置。   The surface inspection apparatus according to claim 7, wherein the determination information is set for each of the plurality of light receiving units. 前記判定情報は、前記検査対象物の表面の傷に起因する散乱光成分の散乱領域に複数配備された受光手段に関しては、前記検査対象物との離間距離が大きい受光手段ほど、当該受光手段で受光された散乱光成分の光強度に対して傷の程度が大きいと判定するように設定されていることを特徴とする請求項8に記載の表面検査装置。   With respect to the light receiving means arranged in a plurality of scattered light component scattering regions caused by scratches on the surface of the inspection object, the light receiving means having a larger separation distance from the inspection object The surface inspection apparatus according to claim 8, wherein the surface inspection apparatus is set to determine that the degree of scratches is large with respect to the light intensity of the received scattered light component. 前記判定手段は、前記検査対象物の表面の状態の判定結果に基づいて、当該検査対象物の交換の要否を判定することを特徴とする請求項1〜9に記載の表面検査装置。   The surface inspection apparatus according to claim 1, wherein the determination unit determines whether or not the inspection object needs to be replaced based on a determination result of a surface state of the inspection object. 検査対象物の表面上の直線ラインに非分散光ビームを走査無しに一括して照射する照射工程と、
前記照射工程により照射された前記非分散光ビームの反射光の散乱光成分を受光する受光工程と、
前記受光工程により受光された前記散乱光成分の光強度に基づいて前記検査対象物の表面の状態を判定する判定工程と、
を有することを特徴とする表面検査方法。
An irradiation process for irradiating a non-dispersed light beam in a batch without scanning on a straight line on the surface of the inspection object;
A light receiving step for receiving a scattered light component of the reflected light of the non-dispersed light beam irradiated by the irradiation step;
A determination step of determining the state of the surface of the inspection object based on the light intensity of the scattered light component received by the light receiving step;
A surface inspection method characterized by comprising:
JP2008248222A 2008-09-26 2008-09-26 Surface inspecting device and method Withdrawn JP2010078496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248222A JP2010078496A (en) 2008-09-26 2008-09-26 Surface inspecting device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248222A JP2010078496A (en) 2008-09-26 2008-09-26 Surface inspecting device and method

Publications (2)

Publication Number Publication Date
JP2010078496A true JP2010078496A (en) 2010-04-08
JP2010078496A5 JP2010078496A5 (en) 2011-11-10

Family

ID=42209114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248222A Withdrawn JP2010078496A (en) 2008-09-26 2008-09-26 Surface inspecting device and method

Country Status (1)

Country Link
JP (1) JP2010078496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184053A (en) * 2014-03-20 2015-10-22 バンドー化学株式会社 Surface monitoring device, cleaning device, and transport device
CN110554057A (en) * 2019-09-18 2019-12-10 深圳市深科达智能装备股份有限公司 Full-automatic detection equipment for appearance of screen cover plate
US11493453B2 (en) * 2019-06-28 2022-11-08 Kyocera Document Solutions Inc. Belt inspection system, belt inspection method, and recording medium for belt inspection program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184053A (en) * 2014-03-20 2015-10-22 バンドー化学株式会社 Surface monitoring device, cleaning device, and transport device
US11493453B2 (en) * 2019-06-28 2022-11-08 Kyocera Document Solutions Inc. Belt inspection system, belt inspection method, and recording medium for belt inspection program
CN110554057A (en) * 2019-09-18 2019-12-10 深圳市深科达智能装备股份有限公司 Full-automatic detection equipment for appearance of screen cover plate
CN110554057B (en) * 2019-09-18 2024-05-17 深圳市深科达智能装备股份有限公司 Full-automatic detection equipment for appearance of screen cover plate

Similar Documents

Publication Publication Date Title
JP5456098B2 (en) Image forming apparatus
JP5742782B2 (en) Image forming apparatus
JP2004038879A (en) Image reader and image forming device
US9459567B2 (en) Fixing device and image forming apparatus
JP2008261835A (en) Paper type discrimination apparatus and image forming apparatus using it
JP2010078496A (en) Surface inspecting device and method
JP2008268172A (en) Image forming apparatus for forming image on recording medium
JP2010249614A (en) Recording material surface detecting device, and image forming apparatus having the same
JP5274350B2 (en) Recording material surface detection apparatus and image forming apparatus including the same
JP2010078498A (en) Surface inspecting device and method
EP4043964A1 (en) Image abnormality detecting device and image forming apparatus incorporating the image abnormality detecting device
JP2008261836A (en) Paper type discrimination apparatus and image forming apparatus using it
JP5213437B2 (en) Recording paper inspection device
JP4440319B2 (en) Paper surface detection apparatus and image forming apparatus
JP5754430B2 (en) Image forming apparatus
JP2010078497A (en) Surface inspecting device and method
JP4424740B2 (en) Recording material discrimination device
JP2013174924A (en) Recording material surface detection device and image formation device provided with the same
JP6225583B2 (en) Reflective optical sensor and image forming apparatus
JP6418426B2 (en) Fixing apparatus and image forming apparatus
JP2017026804A (en) Sensor device, fixing device, image forming apparatus, measuring method, and fixing method
JP5219497B2 (en) Image forming apparatus
JP2017009661A (en) Image formation apparatus and surface state improvement method of fixation rotary member
JP2015163929A (en) Fixing device and image forming apparatus
JP6056288B2 (en) Image forming apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20110922

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120125