JP2010078309A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2010078309A
JP2010078309A JP2009161054A JP2009161054A JP2010078309A JP 2010078309 A JP2010078309 A JP 2010078309A JP 2009161054 A JP2009161054 A JP 2009161054A JP 2009161054 A JP2009161054 A JP 2009161054A JP 2010078309 A JP2010078309 A JP 2010078309A
Authority
JP
Japan
Prior art keywords
evaporation
refrigerant
pipe
path
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009161054A
Other languages
Japanese (ja)
Other versions
JP5275929B2 (en
Inventor
Akihiko Hirano
明彦 平野
Shinichi Kaga
進一 加賀
Kazuyoshi Seki
和芳 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2009161054A priority Critical patent/JP5275929B2/en
Priority to US13/058,820 priority patent/US20110138849A1/en
Priority to PCT/JP2009/063418 priority patent/WO2010024080A1/en
Publication of JP2010078309A publication Critical patent/JP2010078309A/en
Application granted granted Critical
Publication of JP5275929B2 publication Critical patent/JP5275929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and compact cooling device without causing increases of circulation resistance of coolant, coolant filling quantity in a circuit, and cross-sectional area of each passage while maintaining desired cooling efficiency in the natural circulation circuit wherein natural convection of the coolant is caused by using a thermosiphon. <P>SOLUTION: A secondary cooling device 40 includes a secondary heat exchange part 42 of a cascade heat exchanger HE liquifying a gaseous phase secondary coolant, and an evaporator EP vaporizing a liquid phase secondary coolant. The secondary cooling device 40 includes a plurality of the natural circulation circuits 48 equipped with liquid piping 44 and gas piping 46 connecting the secondary heat exchange part 42 and the evaporator EP. In the evaporator EP, evaporation paths 52 of the natural circulation circuit 48 are provided in vertically separated layers. The evaporation path 52 is composed of a spiral fin tube type heat exchanger spirally wound with fins on an outer circumference of a steam generating tube carrying the secondary coolant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、熱交換部と蒸発器との間の温度勾配を利用して、冷媒を自然対流させる自然循環回路を備えた冷却装置に関するものである。   The present invention relates to a cooling device including a natural circulation circuit that naturally convects a refrigerant by using a temperature gradient between a heat exchange unit and an evaporator.

冷媒を自然対流させるサーモサイフォンを用いた冷却装置が、冷蔵庫等の貯蔵設備や空調設備に採用されている(例えば、特許文献1参照)。サーモサイフォンを用いた冷却装置は、図20に示すように、気化冷媒を凝縮して液化冷媒とする凝縮器64と、この凝縮器64の下方に配置されて、液化冷媒を蒸発させて気化冷媒とする蒸発器66とを有し、液化冷媒を凝縮器64から蒸発器66へ液配管68を介して流下させると共に、気化冷媒を蒸発器66から凝縮器64へガス配管70を介して流通させる自然循環回路72が構成される。   A cooling device using a thermosiphon that naturally convects a refrigerant is employed in a storage facility such as a refrigerator or an air conditioning facility (see, for example, Patent Document 1). As shown in FIG. 20, the cooling device using the thermosyphon is a condenser 64 that condenses the vaporized refrigerant to form a liquefied refrigerant, and is disposed below the condenser 64 to evaporate the liquefied refrigerant and vaporize the refrigerant. The evaporator 66 is configured to flow down the liquefied refrigerant from the condenser 64 to the evaporator 66 through the liquid pipe 68, and the vaporized refrigerant is circulated from the evaporator 66 to the condenser 64 through the gas pipe 70. A natural circulation circuit 72 is configured.

前記凝縮器64および蒸発器66では、内部に設けた冷媒経路64a,66aを流通する冷媒が外気や水等の他の媒体と熱交換することで、冷媒が凝縮または蒸発するようになっている。すなわち、冷却装置の冷却効率は、冷媒と他の媒体との間で交換される熱量に依存するので、冷却装置では、凝縮器64および蒸発器66に蛇行状の冷媒経路64a,66aを設けることで、冷媒経路64a,66aと他の媒体との接触面積(以下、熱交換面積という)を大きくしている。   In the condenser 64 and the evaporator 66, the refrigerant flowing through the refrigerant paths 64a and 66a provided therein exchanges heat with other media such as outside air and water, so that the refrigerant is condensed or evaporated. . That is, since the cooling efficiency of the cooling device depends on the amount of heat exchanged between the refrigerant and the other medium, the cooling device is provided with meandering refrigerant paths 64a and 66a in the condenser 64 and the evaporator 66. Thus, the contact area (hereinafter referred to as heat exchange area) between the refrigerant paths 64a and 66a and the other medium is increased.

また、前記蒸発器66の形態としては、複数の平行な平板状のフィンを貫通する直線配管と、該直線配管の端部に溶接されるU字状に折れ曲ったベンド部とから、冷媒経路66aを蛇行状に形成した所謂フィンアンドチューブ型の熱交換器が採用されている(例えば、特許文献1参照)。このフィンアンドチューブ型の熱交換器は、配管密度を比較的容易に向上させ得る特徴があることから、空冷式の熱交換器として広く採用されている。また、蒸発器の別形態として、冷媒が流通する蒸発管の外周囲にフィンを螺旋状に巻き付けると共に蛇行状に折り曲げたスパイラルフィンチューブ型の熱交換器も知られている。   Further, as the form of the evaporator 66, a refrigerant path includes a straight pipe penetrating a plurality of parallel flat fins and a bent part bent in a U shape welded to an end of the straight pipe. A so-called fin-and-tube heat exchanger in which 66a is formed in a meandering shape is employed (see, for example, Patent Document 1). This fin-and-tube heat exchanger is widely used as an air-cooled heat exchanger because it has a feature that the pipe density can be improved relatively easily. As another form of the evaporator, there is also known a spiral fin tube type heat exchanger in which fins are spirally wound around the outer periphery of an evaporation pipe through which a refrigerant flows and bent in a meandering manner.

特開昭63−96463号公報JP 63-96463 A

前記冷却装置では、所要の冷却効率が得られる熱交換面積を確保するために必要な配管長を設定すると、冷媒経路64a,66aが長くなって該経路64a,66aにおける冷媒の流通抵抗が大きくなると共に、長くなる冷媒経路64a,66aをコンパクトにするのに冷媒経路64a,66aの屈曲部分が多くなるので、冷媒の流通抵抗が更に大きくなる。また冷却装置の如くサーモサイフォンを用いた方式では、凝縮器64と蒸発器66との間の温度勾配を利用して冷媒を自然対流する構成であるから、冷媒をポンプ等で強制循環させる方式と比べて冷媒の循環力が弱く、僅かな圧力損失や冷媒に対する流れ抵抗によって、冷媒の円滑な流動が大きく妨げられる。そして、冷媒経路64a,66aにおいて、冷媒の流動が円滑に行なわれなくなると、蒸発器66を含む自然循環回路72内での冷媒の循環が悪くなったり、冷媒が逆流したりして冷熱の運搬能力が低下し、対象を効率よく冷却できない問題が生じる。そこで、前記冷却装置では、冷却効率を低下させないために、冷媒の循環量に応じて冷媒経路64a,66aの断面積を大きく設定して冷媒の流通抵抗を減少させることで、僅かな圧力損失に大きな影響を受ける冷媒の流動状態を安定させる必要がある。しかし、冷媒経路64a,66aを構成する配管が大径化することで、冷媒経路を形成する上での制約が大きくなると共に、凝縮器64や蒸発器66の大型化を招き、コストの上昇に繋がってしまう。   In the cooling device, when a pipe length necessary to secure a heat exchange area that can achieve a required cooling efficiency is set, the refrigerant paths 64a and 66a become longer, and the refrigerant flow resistance in the paths 64a and 66a increases. At the same time, since the lengths of the refrigerant paths 64a and 66a are made compact in order to make the refrigerant paths 64a and 66a longer, the flow resistance of the refrigerant is further increased. Further, in the method using a thermosyphon like a cooling device, since the refrigerant is naturally convected using the temperature gradient between the condenser 64 and the evaporator 66, the refrigerant is forcedly circulated by a pump or the like. In comparison, the circulating force of the refrigerant is weak, and the smooth flow of the refrigerant is greatly hindered by a slight pressure loss and flow resistance against the refrigerant. If the refrigerant does not flow smoothly in the refrigerant paths 64a and 66a, the refrigerant circulation in the natural circulation circuit 72 including the evaporator 66 is deteriorated, or the refrigerant flows backward to carry cold heat. A problem occurs in that the capacity is reduced and the object cannot be efficiently cooled. Therefore, in the cooling device, in order not to lower the cooling efficiency, the cross-sectional area of the refrigerant paths 64a and 66a is set large according to the circulation amount of the refrigerant to reduce the flow resistance of the refrigerant, thereby reducing a slight pressure loss. It is necessary to stabilize the flow state of the refrigerant that is greatly affected. However, since the pipes constituting the refrigerant paths 64a and 66a are increased in diameter, restrictions on forming the refrigerant path are increased, and the condenser 64 and the evaporator 66 are increased in size, resulting in an increase in cost. It will be connected.

ここで、前記フィンアンドチューブ型の熱交換器は、配管の密度を上げることができる反面、直線配管とベンド部とを溶接するため、冷媒の流通経路内に複数の溶接部が存在し、冷媒漏れに対する信頼性が低い難点がある。しかも、フィンアンドチューブ型の熱交換器では、熱交換効率を向上するべく平板状の各フィンの間隔を狭くすると、平板状の各フィンが隣り合う全ての直線配管に接続されているため、隣り合う直線配管の間のフィンにも霜が成長し易く、配管間の隙間が霜で塞がれて空気の流れを阻害する問題を招き易い構造であった。   Here, the fin-and-tube heat exchanger can increase the density of the pipe, but on the other hand, since the straight pipe and the bend are welded, there are a plurality of welds in the refrigerant flow path. There is a drawback that the reliability against leakage is low. Moreover, in the fin-and-tube heat exchanger, when the interval between the flat fins is narrowed to improve the heat exchange efficiency, the flat fins are connected to all adjacent straight pipes. It was a structure in which frost easily grows on the fins between the matching straight pipes, and the gap between the pipes is blocked with frost, and the air flow is hindered.

これに対し、前記スパイラルフィンチューブ型の熱交換器は、フィンアンドチューブ型の熱交換器とは異なり、その製造過程で配管同士の溶接や配管の拡管加工を行なう必要がなく、製造工程が大きく簡素化されると共に、冷媒の流通経路内に配管の溶接部が存在しないから冷媒漏れに対する信頼性も高い利点がある。またスパイラルフィンチューブ型の熱交換器は、蒸発管にフィンを螺旋状に巻き付ける構造であるため、熱交換効率を向上するべくフィンの螺旋ピッチを狭くしても、隣り合う直線配管のフィンが相互に接触していないため、該フィンに霜が成長したとしても配管間の隙間は塞がれ難く、着霜による目詰りが発生し難い構造である   On the other hand, unlike the fin-and-tube heat exchanger, the spiral fin tube type heat exchanger does not require welding of pipes or pipe expansion in the manufacturing process, and the manufacturing process is large. In addition to simplification, there is an advantage that the reliability of refrigerant leakage is high because there is no pipe weld in the refrigerant flow path. In addition, the spiral fin tube type heat exchanger has a structure in which fins are wound spirally around the evaporation tube, so that even if the fin pitch of the fins is narrowed to improve heat exchange efficiency, the fins of adjacent straight pipes are mutually connected. Because it is not in contact with the fin, even if frost grows on the fin, the gap between the pipes is not easily blocked, and clogging due to frost formation is difficult to occur.

しかしながら、スパイラルフィンチューブ型の熱交換器は、フィンを巻きつけた後に蒸発管を曲げ加工するため、前述したように冷媒の流通抵抗を減少させるために蒸発管を大径化すると、最小曲げ半径が大きくなり、配管密度が疎な状態となるので、蒸発器のコンパクト化が困難であった。このため、フィンアンドチューブ型の熱交換器と同程度まで蒸発管の配管密度を上げることは難しく、サーモサイフォンを用いた冷却装置の蒸発器としては、フィンアンドチューブ型の熱交換器に対してコスト、冷媒漏れに対する信頼性、および霜による目詰り抑制等の点で優れているスパイラルフィンチューブ型の熱交換器を採用していないのが現状である。   However, since the spiral fin tube type heat exchanger bends the evaporator tube after the fins are wound, if the evaporator tube is enlarged to reduce the flow resistance of the refrigerant as described above, the minimum bending radius is reduced. And the pipe density is sparse, making it difficult to make the evaporator compact. For this reason, it is difficult to increase the pipe density of the evaporator tube to the same level as the fin-and-tube heat exchanger, and as an evaporator of a cooling device using a thermosyphon, The present situation is that a spiral fin tube type heat exchanger, which is excellent in terms of cost, reliability against refrigerant leakage, and suppression of clogging due to frost, is not employed.

前述したような冷却装置による冷却効率を向上するための構成や、スパイラルフィンチューブ型の熱交換器は、熱交換器を大型化することで採用が可能となる。しかしながら、冷却装置が用いられる冷蔵庫では、その商品上の価値として庫内容積を大きくすることが挙げられ、これを確保するためには庫内熱交換器(蒸発器)をコンパクトに設計することが肝要であり、安易に熱交換器を大型化することは難しい。むしろ、潜在的には庫内熱交換器(蒸発器)を更にコンパクトに設計することが求められている。すなわち、限られた空間で効率よく熱交換を行なうための冷却装置が希求されているのが実状である。   The structure for improving the cooling efficiency by the cooling device as described above and the spiral fin tube type heat exchanger can be adopted by increasing the size of the heat exchanger. However, in refrigerators in which cooling devices are used, increasing the internal volume is one of the commercial values. To ensure this, the internal heat exchanger (evaporator) can be designed compactly. It is important and it is difficult to increase the size of the heat exchanger easily. Rather, there is a need for a more compact design of the internal heat exchanger (evaporator). That is, there is a demand for a cooling device for efficiently performing heat exchange in a limited space.

すなわち本発明は、従来の技術に係る冷却装置に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、サーモサイフォンを用いて冷媒が自然対流する自然循環回路において、所望の冷却効率を維持したまま、冷媒の流通抵抗、該回路内の冷媒充填量および各経路の断面積の増加を招くことなく、安価でコンパクトな冷却装置を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the cooling device according to the prior art, and in a natural circulation circuit in which a refrigerant naturally convects using a thermosiphon, An object of the present invention is to provide an inexpensive and compact cooling device without increasing the flow resistance of the refrigerant, the refrigerant filling amount in the circuit, and the cross-sectional area of each path while maintaining the desired cooling efficiency.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の冷却装置は、
凝縮経路を流通する気化冷媒を凝縮して液化冷媒とする熱交換部と、この熱交換部の下方に配置され、内部の蒸発経路を流通する液化冷媒を蒸発させて気化冷媒とする管状の蒸発管とを有し、液化冷媒を熱交換部の凝縮経路から前記蒸発経路へ液配管を介して流下させると共に、気化冷媒を前記蒸発経路から熱交換部の凝縮経路へガス配管を介して流通させる自然循環回路を設けた冷却装置において、
互いに独立した複数の自然循環回路と、複数の自然循環回路の蒸発管の集合で構成される蒸発器とを備えると共に、各自然循環回路を循環する冷媒として二酸化炭素を用い、
前記各蒸発管は、蒸発管群を流通する空気の流れ方向と交差する横方向に直線部分が延在するよう蛇行状に折り曲げて形成され、
前記蒸発管における前記空気の流れ方向下流側の部位に前記液配管が接続されると共に、前記蒸発管における前記空気の流れ方向上流側の部位に前記ガス配管が接続され、
前記複数の蒸発管は、相互に離間する状態で上下の関係で層状に配置されることを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended object, the cooling device of the invention according to claim 1 of the present application includes:
A heat exchange section that condenses the vaporized refrigerant flowing through the condensation path to form a liquefied refrigerant, and a tubular evaporation that is disposed below the heat exchange section and evaporates the liquefied refrigerant flowing through the internal evaporation path to form a vaporized refrigerant. A liquefied refrigerant is allowed to flow from the condensation path of the heat exchange section to the evaporation path via the liquid pipe, and the vaporized refrigerant is circulated from the evaporation path to the condensation path of the heat exchange section via the gas pipe. In a cooling device provided with a natural circulation circuit,
A plurality of natural circulation circuits independent of each other and an evaporator constituted by a set of evaporation pipes of the plurality of natural circulation circuits are used, and carbon dioxide is used as a refrigerant circulating in each natural circulation circuit,
Each of the evaporation pipes is formed by bending in a meandering manner so that a linear portion extends in a lateral direction intersecting a flow direction of air flowing through the evaporation pipe group,
The liquid pipe is connected to a portion of the evaporation pipe downstream in the air flow direction, and the gas pipe is connected to a portion of the evaporation pipe upstream of the air flow direction,
The plurality of evaporation tubes are arranged in a layered relationship in an up-down relationship in a state of being separated from each other.

請求項1に係る発明によれば、夫々の自然循環回路が、経路や配管の分岐を伴わず互いに独立して1つの回路を構成するように、凝縮経路と蒸発経路とが液配管およびガス配管で接続されている。そして、熱交換部および蒸発器において要求される熱交換面積に応じた数の自然循環回路を冷却装置に設けることで、必要とされる凝縮経路および蒸発経路を熱交換部および蒸発器に配置することができ、回路全体として必要とされる熱交換面積が担保される。これにより、凝縮経路および蒸発経路の1本当たりに必要とされる熱交換面積が小さくなり、各凝縮経路および各蒸発経路の必要長さを抑えることができる。各凝縮経路および各蒸発経路の長さが短くなることから、経路の長さに由来する流通抵抗が小さくなると共に、蛇行させる回数を減らして経路の屈曲部分に由来する流通抵抗を減らすことも可能となる。この結果、従来では流通抵抗が大きくなり過ぎて不可能であった従来と比して小さい断面積で各凝縮経路および各蒸発経路を設定でき、各凝縮経路および各蒸発経路に流通させる冷媒量を減少させることができる。このように、各凝縮経路および各蒸発経路の長さや断面積を減じることが可能であるので、熱交換部や蒸発器をコンパクトにできると共に、循環する冷媒量を低減することで、回路の圧力上昇を緩和する膨張タンクの容量等の付帯設備も小さくなるので、全体としてコンパクトにすることができ、コストダウンも可能となる。しかも、各自然循環回路は互いに独立しているので、冷媒の偏流が生じ難く、冷媒を円滑に自然対流させることができる。
また、蒸発管群を流通する空気の流れ方向下流側から上流側に冷媒が流動するよう構成すると共に、冷媒として伝熱性能に優れた二酸化炭素を用いることで、蒸発器での熱交換効率を低下させることなく熱交換面積の小さな小径の蒸発管を採用することができ、蒸発器のコストを低減し得ると共によりコンパクト化を図り得る。更に、複数の蒸発管を相互に離間する状態で上下の関係で層状に配置する構成により、これら複数の蒸発管が熱交換効率の高い蒸発器として機能する。
According to the first aspect of the present invention, the condensing path and the evaporating path are the liquid pipe and the gas pipe so that each natural circulation circuit forms one circuit independently of each other without branching of the path or the pipe. Connected with. Then, by providing the cooling device with the number of natural circulation circuits corresponding to the heat exchange area required in the heat exchange section and the evaporator, the necessary condensation path and evaporation path are arranged in the heat exchange section and the evaporator. The heat exchange area required for the entire circuit can be ensured. Thereby, the heat exchange area required per one condensation path and evaporation path is reduced, and the required length of each condensation path and each evaporation path can be suppressed. Since the length of each condensation path and each evaporation path is shortened, the flow resistance derived from the length of the path is reduced, and the flow resistance derived from the bent portion of the path can be reduced by reducing the number of times of meandering. It becomes. As a result, each condensing path and each evaporating path can be set with a smaller cross-sectional area than in the past, which was impossible because the flow resistance was too high in the past, and the amount of refrigerant flowing through each condensing path and each evaporating path was reduced. Can be reduced. In this way, the length and cross-sectional area of each condensing path and each evaporating path can be reduced, so that the heat exchange section and the evaporator can be made compact, and the circuit pressure can be reduced by reducing the amount of circulating refrigerant. Since the incidental facilities such as the capacity of the expansion tank that alleviates the rise are also reduced, the overall size can be reduced and the cost can be reduced. And since each natural circulation circuit is mutually independent, the drift of a refrigerant | coolant does not arise easily and a refrigerant | coolant can be smoothly convected naturally.
In addition, it is configured so that the refrigerant flows from the downstream side to the upstream side in the flow direction of the air flowing through the evaporator tube group, and by using carbon dioxide having excellent heat transfer performance as the refrigerant, the heat exchange efficiency in the evaporator is improved. A small-diameter evaporator tube with a small heat exchange area can be adopted without lowering, and the cost of the evaporator can be reduced and further downsizing can be achieved. Furthermore, the plurality of evaporator tubes function as an evaporator having high heat exchange efficiency by a configuration in which the evaporator tubes are arranged in a layered relationship in an up-down relationship in a state of being separated from each other.

前記課題を克服し、所期の目的を達成するため、本願の請求項2に係る発明の冷却装置は、
凝縮経路を流通する気化冷媒を凝縮して液化冷媒とする熱交換部と、この熱交換部の下方に配置され、内部の蒸発経路を流通する液化冷媒を蒸発させて気化冷媒とする管状の蒸発管とを有し、液化冷媒を熱交換部の凝縮経路から前記蒸発経路へ液配管を介して流下させると共に、気化冷媒を前記蒸発経路から熱交換部の凝縮経路へガス配管を介して流通させる自然循環回路を設けた冷却装置において、
前記自然循環回路は、複数の蒸発管の集合で構成される蒸発器と、該複数の蒸発管と同数の凝縮経路とを備えると共に、該自然循環回路を循環する冷媒として二酸化炭素を用い、
前記凝縮経路の流出端に接続する液配管を、当該凝縮経路の流入端に連結したガス配管が接続している蒸発管と別の蒸発管に接続すると共に、蒸発管の流出端に接続するガス配管を、当該蒸発管の流入端に連結した液配管が接続している凝縮経路と別の凝縮経路に接続して、全体として1つの自然循環回路を構成し、
前記各蒸発管は、蒸発管群を流通する空気の流れ方向と交差する横方向に直線部分が延在するよう蛇行状に折り曲げて形成され、
前記蒸発管における前記空気の流れ方向下流側の部位に前記液配管が接続されると共に、前記蒸発管における前記空気の流れ方向上流側の部位に前記ガス配管が接続され、
前記複数の蒸発管は、相互に離間する状態で上下の関係で層状に配置されることを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, the cooling device of the invention according to claim 2 of the present application includes:
A heat exchange section that condenses the vaporized refrigerant flowing through the condensation path to form a liquefied refrigerant, and a tubular evaporation that is disposed below the heat exchange section and evaporates the liquefied refrigerant flowing through the internal evaporation path to form a vaporized refrigerant. A liquefied refrigerant is allowed to flow from the condensation path of the heat exchange section to the evaporation path via the liquid pipe, and the vaporized refrigerant is circulated from the evaporation path to the condensation path of the heat exchange section via the gas pipe. In a cooling device provided with a natural circulation circuit,
The natural circulation circuit includes an evaporator constituted by a set of a plurality of evaporation tubes, and the same number of condensation paths as the plurality of evaporation tubes, and uses carbon dioxide as a refrigerant circulating in the natural circulation circuit,
The liquid pipe connected to the outflow end of the condensing path is connected to the evaporation pipe connected to the gas pipe connected to the inflow end of the condensing path and to the evaporating pipe connected to the outflow end of the evaporation pipe. Connect the pipe to a condensation path that is connected to the condensation pipe connected to the liquid pipe connected to the inflow end of the evaporation pipe to form one natural circulation circuit as a whole,
Each of the evaporation pipes is formed by bending in a meandering manner so that a linear portion extends in a lateral direction intersecting a flow direction of air flowing through the evaporation pipe group,
The liquid pipe is connected to a portion of the evaporation pipe downstream in the air flow direction, and the gas pipe is connected to a portion of the evaporation pipe upstream of the air flow direction,
The plurality of evaporation tubes are arranged in a layered relationship in an up-down relationship in a state of being separated from each other.

請求項2に係る発明によれば、経路や配管の分岐を伴わず全体として1つの自然循環回路を構成するように、凝縮経路と蒸発経路とが液配管およびガス配管で接続されている。すなわち、熱交換部および蒸発器において要求される熱交換面積に応じた数の凝縮経路および蒸発経路を適宜に配置することができる。これにより、凝縮経路および蒸発経路の1本当たりに必要とされる熱交換面積が小さくなり、各凝縮経路および各蒸発経路の必要長さを抑えることができる。各凝縮経路および各蒸発経路の長さが短くなることから、経路の長さに由来する流通抵抗が小さくなると共に、蛇行させる回数を減らして経路の屈曲部分に由来する流通抵抗を減らすことも可能となる。この結果、従来では流通抵抗が大きくなり過ぎて不可能であった従来と比して小さい断面積で各凝縮経路および各蒸発経路を設定でき、各凝縮経路および各蒸発経路に流通させる冷媒量を減少させることができる。このように、各凝縮経路および各蒸発経路の長さや断面積を減じることが可能であるので、熱交換部や蒸発器をコンパクトにできると共に、循環する冷媒量を低減することで、回路の圧力上昇を緩和する膨張タンクの容量等の付帯設備も小さくなるので、全体としてコンパクトにすることができ、コストダウンも可能となる。しかも、複数の凝縮経路および複数の蒸発経路を設けても、経路や配管の分岐を伴わずに全体として1つの自然循環回路となっているので、複数の凝縮経路および複数の蒸発経路に対して冷媒がバランスよく流通して、冷媒の偏流が生じず、冷媒を円滑に自然対流させることができる。
また、蒸発器を構成する蒸発管群を流通する空気の流れ方向下流側から上流側に冷媒が流動するよう構成すると共に、冷媒として伝熱性能に優れた二酸化炭素を用いることで、蒸発器での熱交換効率を低下させることなく熱交換面積の小さな小径の蒸発管を採用することができ、蒸発器のコストを低減し得ると共によりコンパクト化を図り得る。更に、複数の蒸発管を相互に離間する状態で上下の関係で層状に配置する構成により、これら複数の蒸発管が熱交換効率の高い蒸発器として機能する。
According to the second aspect of the present invention, the condensing path and the evaporation path are connected by the liquid pipe and the gas pipe so as to constitute one natural circulation circuit as a whole without branching the path or the pipe. That is, the number of condensation paths and evaporation paths corresponding to the heat exchange areas required in the heat exchange unit and the evaporator can be appropriately arranged. Thereby, the heat exchange area required per one condensation path and evaporation path is reduced, and the required length of each condensation path and each evaporation path can be suppressed. Since the length of each condensation path and each evaporation path is shortened, the flow resistance derived from the length of the path is reduced, and the flow resistance derived from the bent portion of the path can be reduced by reducing the number of times of meandering. It becomes. As a result, each condensing path and each evaporating path can be set with a smaller cross-sectional area than in the past, which was impossible because the flow resistance was too high in the past, and the amount of refrigerant flowing through each condensing path and each evaporating path was reduced. Can be reduced. In this way, the length and cross-sectional area of each condensing path and each evaporating path can be reduced, so that the heat exchange section and the evaporator can be made compact, and the circuit pressure can be reduced by reducing the amount of circulating refrigerant. Since the incidental facilities such as the capacity of the expansion tank that alleviates the rise are also reduced, the overall size can be reduced and the cost can be reduced. In addition, even if a plurality of condensation paths and a plurality of evaporation paths are provided, the entire circuit is one natural circulation circuit without any branching of the paths and pipes. The refrigerant circulates in a well-balanced manner, so that the refrigerant does not drift, and the refrigerant can be smoothly convected naturally.
In addition, it is configured so that the refrigerant flows from the downstream side to the upstream side in the flow direction of the air flowing through the evaporator tube group constituting the evaporator, and by using carbon dioxide having excellent heat transfer performance as the refrigerant, Therefore, it is possible to employ a small-diameter evaporator tube having a small heat exchange area without lowering the heat exchange efficiency, thereby reducing the cost of the evaporator and making it more compact. Furthermore, the plurality of evaporator tubes function as an evaporator having high heat exchange efficiency by a configuration in which the evaporator tubes are arranged in a layered relationship in an up-down relationship in a state of being separated from each other.

請求項3の発明では、前記蒸発経路の液配管が接続する流入端は、ガス配管が接続する流出端より下方に位置していることを要旨とする。
請求項3に係る発明によれば、蒸発経路の流入端を流出端より下方に位置させることで、蒸発器で蒸発する冷媒の循環を速やかに行なうことができる。
The gist of the invention of claim 3 is that the inflow end to which the liquid pipe of the evaporation path is connected is located below the outflow end to which the gas pipe is connected.
According to the invention which concerns on Claim 3, the circulation of the refrigerant | coolant which evaporates with an evaporator can be performed rapidly by positioning the inflow end of an evaporation path below the outflow end.

請求項4に係る発明では、前記各蒸発管は、前記直線部分が少なくとも一部を上下に重なるよう配置された段差部によって蒸発管群を流通する空気の流れ方向において階段状に形成され、該階段状に形成された複数の蒸発管は、各段が上下の関係となるよう層状に配置されることを要旨とする。
請求項4に係る発明によれば、直線部分が少なくとも一部を上下に重なるよう配置された段差部によって蒸発管を階段状に形成することで、各蒸発管における熱交換長を、同一平面上で蛇行するよう形成した場合に比べて長くすることができ、同一能力の蒸発器を少ない本数の蒸発管で構成してコストを低減し得る。
In the invention according to claim 4, each of the evaporation pipes is formed in a step shape in the flow direction of the air flowing through the evaporation pipe group by the step portion in which the linear portion is arranged so that at least a part thereof overlaps vertically. The gist of the plurality of evaporating tubes formed in a staircase shape is that they are arranged in a layered manner so that each step is in a vertical relationship.
According to the invention of claim 4, the heat exchange length in each of the evaporation tubes is set on the same plane by forming the evaporation tubes in a stepped manner by the stepped portion in which the linear portion is arranged so that at least a part thereof overlaps vertically. Therefore, the cost can be reduced by forming an evaporator having the same capacity with a small number of evaporator tubes.

請求項5に係る発明では、前記蒸発管の外周囲に伝熱促進部材が配設されると共に、蛇行状に折り曲げられている該蒸発管における隣り合う直線部分の伝熱促進部材は相互に離間するよう構成され、
前記複数の蒸発管は、前記伝熱促進部材が相互に離間する状態で上下の関係で層状に配置されることを要旨とする。
請求項5に係る発明によれば、スパイラルフィンチューブ型の熱交換器を採用することで、蒸発器のコストを低減し得ると共に、冷媒漏れに対する信頼性を向上することができ、更には熱交換効率の向上を図りつつ霜による目詰りの発生を抑制し得る。なお、スパイラルフィンチューブ型の熱交換器の懸念事項として、配管密度を上げ難い点が挙げられるが、冷媒として用いられる二酸化炭素の優れた伝熱性能が、配管密度の低い状態で形成された配管群の冷媒側の伝熱性能を補償するため、蒸発器として適切に機能しうる。
In the invention according to claim 5, a heat transfer promoting member is disposed around the outer periphery of the evaporation tube, and the heat transfer promoting members of adjacent straight portions of the evaporation tube bent in a meandering manner are separated from each other. Configured to
The gist of the plurality of evaporation tubes is that they are arranged in a layered relationship in an up-and-down relationship with the heat transfer promoting members spaced apart from each other.
According to the invention which concerns on Claim 5, while adopting a spiral fin tube type heat exchanger, the cost of an evaporator can be reduced, the reliability with respect to a refrigerant | coolant leakage can be improved, and also heat exchange Generation of clogging due to frost can be suppressed while improving efficiency. In addition, although it is difficult to raise the pipe density as a concern for the spiral fin tube type heat exchanger, the excellent heat transfer performance of carbon dioxide used as a refrigerant is a pipe formed with a low pipe density. In order to compensate the heat transfer performance on the refrigerant side of the group, it can function properly as an evaporator.

請求項6に係る発明では、冷媒を強制循環させる機械圧縮式の一次側の回路に対して、前記自然循環回路が前記熱交換部を介して熱的に接続されることを要旨とする。
請求項6に係る発明によれば、所謂二次ループ式冷凍回路を構成した設備における二次側として自然循環回路を用いることで、所望の冷却効率を損なうことなく、設備全体をコンパクトで安価な構成とすることができる。
The gist of the invention according to claim 6 is that the natural circulation circuit is thermally connected to the mechanical compression primary circuit for forcibly circulating the refrigerant through the heat exchange section.
According to the invention of claim 6, by using the natural circulation circuit as the secondary side in the equipment constituting the so-called secondary loop refrigeration circuit, the entire equipment can be made compact and inexpensive without impairing the desired cooling efficiency. It can be configured.

本発明に係る冷却装置によれば、所望の冷却効率を維持したまま、冷媒の流通抵抗、該回路内の冷媒充填量および各経路の断面積の増加を招くことなく、安価でコンパクトにすることができる。   According to the cooling device of the present invention, while maintaining a desired cooling efficiency, it is inexpensive and compact without causing an increase in the flow resistance of the refrigerant, the refrigerant filling amount in the circuit, and the cross-sectional area of each path. Can do.

本発明の好適な実施例1に係る冷却装置を冷却設備の二次回路として備えた冷蔵庫を示す側断面図である。It is side sectional drawing which shows the refrigerator provided with the cooling device which concerns on suitable Example 1 of this invention as a secondary circuit of cooling equipment. 実施例1の冷却装置を二次回路として備えた冷却設備の要部を示す概略回路図である。It is a schematic circuit diagram which shows the principal part of the cooling equipment provided with the cooling device of Example 1 as a secondary circuit. 実施例1に係る蒸発経路を示す要部正面図である。FIG. 3 is a front view of a principal part showing an evaporation path according to the first embodiment. 実施例1に係る蒸発経路を示す平面図である。2 is a plan view showing an evaporation path according to Embodiment 1. FIG. 実施例1に係る蒸発器を示す概略側面図である。1 is a schematic side view showing an evaporator according to Embodiment 1. FIG. 本発明の好適な実施例2に係る冷却装置を二次回路として備えた冷却設備の要部を示す概略回路図である。It is a schematic circuit diagram which shows the principal part of the cooling equipment provided with the cooling device which concerns on suitable Example 2 of this invention as a secondary circuit. 変更例に係る蒸発器を示す概略側面図である。It is a schematic side view which shows the evaporator which concerns on the example of a change. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けた変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the example of a change which provided the heat-transfer promotion member. 伝熱促進部材を設けない変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the modification which does not provide a heat-transfer promotion member. 伝熱促進部材を設けない変更例に係る蒸発管を示す概略斜視図である。It is a schematic perspective view which shows the evaporation pipe which concerns on the modification which does not provide a heat-transfer promotion member. 別の変更例に係る蒸発器を示す概略側面図である。It is a schematic side view which shows the evaporator which concerns on another modification. 従来の技術に係る冷却装置の自然循環回路を示す概略図である。It is the schematic which shows the natural circulation circuit of the cooling device which concerns on a prior art.

昨今では、冷蔵庫や冷凍庫等の冷却装置を備えた設備において、冷媒としてのフロンの使用が地球温暖化防止の観点から制限されている。特に、業務用冷凍機器等の大型な設備では、フロンの使用量が多いことから、その使用量の削減またはノンフロン化への要望が非常に大きい。そこで、ノンフロン化を推進する上で有利な回路構成である二次ループ式冷凍回路が注目されている。二次ループ式冷凍回路は、冷媒を強制循環させる機械圧縮式の一次側の回路とサーモサイフォンを用いて冷媒を自然対流させる二次側の回路との独立した2つの回路をカスケード熱交換器を介して接続したものであって、各回路に循環させる冷媒としてフロン以外の熱媒体を用いることができる。しかしながら、従来の二次ループ式冷凍回路は、冷媒としてフロンを使用した機械圧縮式の冷凍回路と比較して、装置全体が大型化して大きな設置面積を要すると共にコストの上昇を伴う欠点を有しており、従来のフロンを用いた設備に対して大きさおよび価格的な競争力がなく、ノンフロン化の促進への妨げになっている。そこで、発明者は、所望の冷却効率を損なうことなく、コンパクトで安価な構成の本発明に係る冷却装置を発明した。例えば、本発明に係る冷却装置を二次ループ式冷凍回路に適用することで、従来のフロンを用いた設備と同等の大きさおよびコストで二次ループ式冷凍回路を備えた設備を設計することが可能となり、前記欠点が解消されて市場での競争力を獲得することができる。すなわち、本発明に係る冷却装置は、地球温暖化防止の観点から重要視されている二次ループ式冷凍回路によるノンフロン化技術の普及を推進する上で、有効な技術的な位置付けを有している。このように、本発明に係る冷却装置は、二次ループ式冷凍回路に適用することで、従来の二次ループ式冷凍回路の大型である欠点や高価である欠点を解消し、一般に普及し得る技術とすることができる非常に有意義な発明である。   In recent years, in facilities equipped with a cooling device such as a refrigerator or a freezer, the use of CFC as a refrigerant is restricted from the viewpoint of preventing global warming. In particular, large facilities such as commercial refrigeration equipment use a large amount of chlorofluorocarbon, so there is a great demand for reducing the amount of chlorofluorocarbon or non-fluorocarbon. Therefore, a secondary loop refrigeration circuit, which is an advantageous circuit configuration for promoting non-fluorocarbons, has attracted attention. The secondary loop refrigeration circuit is a cascade heat exchanger that combines two independent circuits, a mechanical compression primary circuit that forcibly circulates the refrigerant and a secondary circuit that naturally convects the refrigerant using a thermosiphon. A heat medium other than chlorofluorocarbon can be used as a refrigerant to be circulated through each circuit. However, the conventional secondary loop type refrigeration circuit has the disadvantages that the entire apparatus is enlarged and requires a large installation area and costs are increased as compared with a mechanical compression type refrigeration circuit using chlorofluorocarbon as a refrigerant. Therefore, it is not competitive in terms of size and price compared to conventional chlorofluorocarbon equipment, which hinders the promotion of non-fluorocarbons. Therefore, the inventor has invented the cooling device according to the present invention having a compact and inexpensive configuration without impairing the desired cooling efficiency. For example, by applying the cooling device according to the present invention to a secondary loop refrigeration circuit, designing a facility equipped with a secondary loop refrigeration circuit at the same size and cost as a conventional chlorofluorocarbon facility. And the above-mentioned drawbacks are eliminated, and the competitiveness in the market can be acquired. That is, the cooling device according to the present invention has an effective technical position in promoting the spread of non-fluorocarbon technology using a secondary loop refrigeration circuit, which is regarded as important from the viewpoint of preventing global warming. Yes. As described above, the cooling device according to the present invention can be applied to the secondary loop refrigeration circuit to eliminate the large-scale and expensive disadvantages of the conventional secondary loop refrigeration circuit and can be widely spread. It is a very meaningful invention that can be a technology.

次に、本発明に係る冷却装置につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。実施例では、店舗等の業務用途に用いられ、野菜や肉等の物品を多量に収納し得る大型の冷蔵庫を例に挙げ、この冷蔵庫の冷却設備として、本発明に係る冷却装置を二次側の回路に用いた所謂二次ループ冷凍回路を採用した場合について説明する。   Next, the cooling device according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments. In the embodiment, a large refrigerator that can be used for business use such as a store and can store a large amount of articles such as vegetables and meat is taken as an example, and the cooling device according to the present invention is used as a cooling facility for the refrigerator on the secondary side. A case where a so-called secondary loop refrigeration circuit used in this circuit is employed will be described.

図1に示すように、冷蔵庫10は、収納室14を内部画成した断熱構造の箱体(断熱箱体)12と、この箱体12の上方に設けられ、金属パネル18により外壁を構成したキャビネット16とを備えている。箱体12には、前側に開放して物品の出し入れ口となる開口部12aが収納室14に連通して開設され、この開口部12aは、図示しないヒンジにより箱体12の前部に開閉可能に支持された断熱扉22で塞がれる。   As shown in FIG. 1, the refrigerator 10 is provided with a box body (heat insulation box body) 12 having a heat insulation structure in which a storage chamber 14 is defined, and an outer wall formed by a metal panel 18 provided above the box body 12. Cabinet 16. The box body 12 has an opening 12a that opens to the front side and serves as an entry / exit port for communicating with the storage chamber 14, and the opening 12a can be opened and closed to the front of the box body 12 by a hinge (not shown). The heat insulating door 22 supported by

前記キャビネット16の内部には、収納室14を冷却するための冷却設備32の一部および該冷却設備32を制御する制御用電装箱(図示せず)が配設される機械室20が画成される。機械室20の底部には、箱体12の天板12bに載置されて、該機械室20に配設する機器の共通基板となる台板24が設置されている。そして、キャビネット16の外壁をなす金属パネル18には、機械室20に連通する空気流通孔(図示せず)が適宜部位に開設され、この空気流通孔を介して機械室20内の雰囲気と外気とが入替わるようになっている。   Inside the cabinet 16 is a machine room 20 in which a part of the cooling equipment 32 for cooling the storage room 14 and a control electrical box (not shown) for controlling the cooling equipment 32 are arranged. Made. At the bottom of the machine room 20, a base plate 24 that is placed on the top plate 12 b of the box 12 and serves as a common substrate for the devices disposed in the machine room 20 is installed. The metal panel 18 forming the outer wall of the cabinet 16 is provided with air circulation holes (not shown) communicating with the machine room 20 at appropriate locations, and the atmosphere in the machine room 20 and the outside air are communicated through the air circulation holes. And are to be replaced.

前記収納室14の上部には、箱体12における天板12bの下面から所定間隔離間して冷却ダクト26が配設され、この冷却ダクト26と、箱体12の天板12bに開設した切欠口12cを介して収納室14側に臨む台板24との間に冷却室28が画成される。この冷却室28は、冷却ダクト26の底部前側に形成した吸込口26aおよび後側に形成した冷気吹出口26bを介して収納室14に連通している。吸込口26aには送風ファン30が配設され、該送風ファン30を駆動することで、吸込口26aから収納室14の空気を冷却室28に取込み、冷気吹出口26bから冷却室28の冷気が収納室14に送出される。天板12bの切欠口12cは、台板24で気密的に塞がれて、収納室14(冷却室28)と機械室20とは、台板24で区切られて互いに独立した空間となっている(図1参照)。   In the upper part of the storage chamber 14, a cooling duct 26 is disposed at a predetermined distance from the lower surface of the top plate 12b in the box 12, and the cooling duct 26 and a notch formed in the top plate 12b of the box 12 are provided. A cooling chamber 28 is defined between the base plate 24 facing the storage chamber 14 via 12c. The cooling chamber 28 communicates with the storage chamber 14 via a suction port 26 a formed on the front side of the bottom of the cooling duct 26 and a cold air outlet 26 b formed on the rear side. A blower fan 30 is disposed at the suction port 26a. By driving the blower fan 30, the air in the storage chamber 14 is taken into the cooling chamber 28 from the suction port 26a, and the cool air in the cooling chamber 28 is drawn from the cool air outlet 26b. It is sent to the storage chamber 14. The notch 12c of the top plate 12b is hermetically closed by the base plate 24, and the storage chamber 14 (cooling chamber 28) and the machine room 20 are separated from each other by the base plate 24 and become independent spaces. (See FIG. 1).

図2は、二次側の回路として実施例1に係る二次冷却装置(冷却装置)40を備える冷却設備32を示す概略回路図である。図2に示す如く、冷却設備32は、冷媒を強制循環する機械圧縮式の一次冷却装置(一次側の回路)34と、冷媒が自然対流するサーモサイフォンからなる二次冷却装置40とを、カスケード熱交換器HEを介して熱交換するように熱的に接続(カスケード接続)した二次ループ冷凍回路が採用される。カスケード熱交換器HEは、機械室20に設置され、一次冷却装置34を構成する一次熱交換部36と、この一次熱交換部36と別系統に形成されて、二次冷却装置40を構成する二次熱交換部(熱交換部)42とを備えている。すなわち、一次冷却装置34および二次冷却装置40には、独立した冷媒が循環する回路が夫々形成され、二次冷却装置40を循環する二次冷媒(冷媒)としては、粘性が低くかつ熱伝達率が高い特性を有し、更に毒性、可燃性および腐食性を有していない安全性の高い二酸化炭素が採用される。これに対し、一次冷却装置34を循環する一次冷媒としては、蒸発熱や飽和圧等の冷媒としての特性に優れているブタンやプロパン等のHC系の冷媒またはアンモニアなどが採用され、実施例1ではイソブタンやプロパンが用いられている。すなわち、冷却設備32は、冷媒としてフロンを使用する必要はない。なお、カスケード熱交換器HEとしては、例えばプレート式、二重管式およびその発展型またはそれに類するものが採用される。   FIG. 2 is a schematic circuit diagram illustrating a cooling facility 32 including a secondary cooling device (cooling device) 40 according to the first embodiment as a secondary circuit. As shown in FIG. 2, the cooling facility 32 cascades a mechanical compression primary cooling device (primary circuit) 34 that forcibly circulates a refrigerant and a secondary cooling device 40 that includes a thermosiphon that naturally convects the refrigerant. A secondary loop refrigeration circuit that is thermally connected (cascade connected) so as to exchange heat via the heat exchanger HE is employed. The cascade heat exchanger HE is installed in the machine room 20 and formed in a separate system from the primary heat exchange unit 36 that constitutes the primary cooling device 34 and the primary heat exchange unit 36, and constitutes the secondary cooling device 40. A secondary heat exchanging section (heat exchanging section) 42. That is, the primary cooling device 34 and the secondary cooling device 40 are each formed with a circuit in which independent refrigerant circulates, and the secondary refrigerant (refrigerant) circulating through the secondary cooling device 40 has low viscosity and heat transfer. Highly safe carbon dioxide, which has high rate characteristics and is not toxic, flammable or corrosive, is employed. On the other hand, as the primary refrigerant circulating in the primary cooling device 34, an HC refrigerant such as butane or propane having excellent characteristics as a refrigerant such as heat of evaporation or saturation pressure, ammonia, or the like is employed. In isobutane and propane are used. That is, the cooling facility 32 does not need to use chlorofluorocarbon as a refrigerant. In addition, as the cascade heat exchanger HE, for example, a plate type, a double pipe type and the developed type thereof or the like are adopted.

前記一次冷却装置34は、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる膨張弁EVと、液相一次冷媒を気化するカスケード熱交換器HEの一次熱交換部36とを冷媒配管38で接続して構成される(図2参照)。圧縮機CMおよび凝縮器CDは、機械室20において台板24上に共通的に配設され、凝縮器CDを強制冷却する凝縮器ファンFMも、該凝縮器CDに対向して台板24上に配設されている。一次冷却装置34では、圧縮機CMによる一次冷媒の圧縮により、圧縮機CM、凝縮器CD、膨張弁EV、カスケード熱交換器HEの一次熱交換部36および圧縮機CMの順に、一次冷媒が強制循環され、各機器の作用下に一次熱交換部36において所要の冷却を行なうようになっている(図2参照)。   The primary cooling device 34 includes a compressor CM that compresses the gas phase primary refrigerant, a condenser CD that liquefies the compressed primary refrigerant, an expansion valve EV that reduces the pressure of the liquid primary refrigerant, and a liquid primary refrigerant. A primary heat exchanging portion 36 of the vaporizing cascade heat exchanger HE is connected by a refrigerant pipe 38 (see FIG. 2). The compressor CM and the condenser CD are commonly arranged on the base plate 24 in the machine room 20, and a condenser fan FM for forcibly cooling the condenser CD is also provided on the base plate 24 so as to face the condenser CD. It is arranged. In the primary cooling device 34, the compression of the primary refrigerant by the compressor CM forces the primary refrigerant in the order of the compressor CM, the condenser CD, the expansion valve EV, the primary heat exchange unit 36 of the cascade heat exchanger HE, and the compressor CM. Circulated and required cooling is performed in the primary heat exchange section 36 under the action of each device (see FIG. 2).

前記二次冷却装置40は、気相二次冷媒(気化冷媒)を液化するカスケード熱交換器HEの二次熱交換部42と、液相二次冷媒(液化冷媒)を気化する配管の集合で構成される蒸発器EPとを備え、二次熱交換部42と蒸発器EPとが1対1の関係で対応している(図2参照)。また二次冷却装置40は、二次熱交換部42と蒸発器EPとを接続する液配管44およびガス配管46を備え、液配管44を介して二次熱交換部42から蒸発器EPへ重力の作用下に液相二次冷媒を供給し、ガス配管46を介して蒸発器EPから二次熱交換部42へ気相二次冷媒を還流させる自然循環回路48が設けられる。そして、実施例1の二次冷却装置40には、互いに独立した複数(図示の例では3回路であるが2以上であればよい)の自然循環回路48が並列に構築される。なお、二次熱交換部42は、機械室20に配設される一方、蒸発器EPは、当該機械室20の下方に位置する冷却室28(箱体12の内部)に配設され、台板24を挟んで二次熱交換部42より下方に蒸発器EPが配置される。   The secondary cooling device 40 is a set of a secondary heat exchange unit 42 of a cascade heat exchanger HE that liquefies a gas phase secondary refrigerant (vaporized refrigerant) and a pipe that vaporizes the liquid phase secondary refrigerant (liquefied refrigerant). The evaporator EP comprised is comprised, and the secondary heat exchange part 42 and the evaporator EP respond | correspond in the one-to-one relationship (refer FIG. 2). Further, the secondary cooling device 40 includes a liquid pipe 44 and a gas pipe 46 that connect the secondary heat exchange unit 42 and the evaporator EP, and gravity is passed from the secondary heat exchange unit 42 to the evaporator EP via the liquid pipe 44. A natural circulation circuit 48 is provided that supplies the liquid phase secondary refrigerant under the action of the above and recirculates the gas phase secondary refrigerant from the evaporator EP to the secondary heat exchange section 42 via the gas pipe 46. In the secondary cooling device 40 of the first embodiment, a plurality of independent natural circulation circuits 48 (in the illustrated example, three circuits but two or more) may be constructed in parallel. The secondary heat exchange unit 42 is disposed in the machine room 20, while the evaporator EP is disposed in a cooling chamber 28 (inside the box body 12) located below the machine room 20. The evaporator EP is disposed below the secondary heat exchange unit 42 with the plate 24 interposed therebetween.

前記二次熱交換部42には、凝縮経路50が、並列して複数(実施例1では3本)設けられている。また蒸発器EPには、蒸発経路52が、並列して複数(実施例1では3本)設けられている。図2では、凝縮経路50をガス配管46に接続する流入端50aから液配管44に接続する流出端50bまで直線的な経路で表わすと共に、蒸発経路52を液配管44に接続する流入端52aからガス配管46に接続する流出端52bまで直線的な経路で表わしているが、凝縮経路50は蛇行させても、直線状に形成してもよい。但し、後述するように蒸発経路52は蛇行するように折曲形成されている。ここで、二次冷却装置40では、複数の凝縮経路50、複数の蒸発経路52、複数の液配管44および複数のガス配管46が同数となる。各自然循環回路48において、液配管44は、上端(始端)を二次熱交換部42における凝縮経路50の流出端50bに接続して台板24を貫通して配管され、冷却室28側に位置する下端(終端)が蒸発器EPにおける蒸発経路52の流入端52aに接続される。各自然循環回路48において、ガス配管46は、冷却室28側に位置する下端(始端)が蒸発器EPにおける蒸発経路52の流出端52bに接続して台板24を貫通して配管され、機械室20側に位置する上端(終端)が二次熱交換部42における凝縮経路50の流入端50aに接続される。なお、符号54は、各自然循環回路48に冷媒を充填するために設けられた冷媒チャージポートである。   The secondary heat exchanging section 42 is provided with a plurality of condensing paths 50 (three in the first embodiment) in parallel. The evaporator EP is provided with a plurality of evaporation paths 52 (three in the first embodiment) in parallel. In FIG. 2, the condensation path 50 is represented by a straight path from the inflow end 50 a connecting to the gas pipe 46 to the outflow end 50 b connecting to the liquid pipe 44, and from the inflow end 52 a connecting the evaporation path 52 to the liquid pipe 44. Although the straight path is shown to the outflow end 52b connected to the gas pipe 46, the condensing path 50 may be meandered or formed in a straight line. However, as will be described later, the evaporation path 52 is bent so as to meander. Here, in the secondary cooling device 40, the same number of the plurality of condensation paths 50, the plurality of evaporation paths 52, the plurality of liquid pipes 44, and the plurality of gas pipes 46 are provided. In each natural circulation circuit 48, the liquid pipe 44 is piped through the base plate 24 by connecting the upper end (starting end) to the outflow end 50 b of the condensing path 50 in the secondary heat exchange section 42, and to the cooling chamber 28 side. The lower end (end) located is connected to the inflow end 52a of the evaporation path 52 in the evaporator EP. In each natural circulation circuit 48, the gas pipe 46 is piped through the base plate 24 with the lower end (starting end) located on the cooling chamber 28 side connected to the outflow end 52b of the evaporation path 52 in the evaporator EP. The upper end (termination) located on the chamber 20 side is connected to the inflow end 50 a of the condensation path 50 in the secondary heat exchange section 42. Reference numeral 54 denotes a refrigerant charge port provided to fill each natural circulation circuit 48 with a refrigerant.

前記二次冷却装置40では、各自然循環回路48において、強制冷却される一次熱交換部36との熱交換により冷却される二次熱交換部42と蒸発器EPとの間に温度勾配が形成され、二次冷媒が二次熱交換部42、液配管44、蒸発器EPおよびガス配管46を自然対流して二次熱交換部42に再び戻る冷媒の循環サイクルが形成される。   In the secondary cooling device 40, in each natural circulation circuit 48, a temperature gradient is formed between the secondary heat exchanger 42 and the evaporator EP that are cooled by heat exchange with the primary heat exchanger 36 that is forcibly cooled. Thus, a refrigerant circulation cycle is formed in which the secondary refrigerant naturally convects through the secondary heat exchange unit 42, the liquid pipe 44, the evaporator EP, and the gas pipe 46 and returns to the secondary heat exchange unit 42 again.

前記蒸発経路52は、図3に示すように、二次冷媒が流通する蒸発管56の外周にフィン(伝熱促進部材)58を螺旋状に巻き付けたスパイラルフィンチューブ型の熱交換器55で構成され、前記蒸発管56を直線部分56aと折曲げ部分56bとからなる蛇行状に折り曲げ加工することで形成される(図4参照)。また、隣り合う直線部分56a,56aの間隔は、各直線部分56a,56aに配設されているフィン58,58同士が相互に接触しない寸法に設定されて、フィン58,58同士が離間するよう構成される。蒸発管56は、1つの平面(以後、設置平面と称す)上に全ての直線部分56aと折曲げ部分56bとが位置するように折り曲げ形成されると共に、該設置平面は水平面に対して所定角度で傾斜するよう設定される(図5参照)。そして、傾斜下端側に位置する直線部分56aに液配管44が接続されると共に、傾斜上端側に位置する直線部分56aにガス配管46が接続されており、蒸発経路52(蒸発管56)における流入端52aは、流出端52bより下方に位置するようになっている。また、各直線部分56aは、図4に示す如く、前記送風ファン30を駆動した際に生ずる蒸発器EP(蒸発管56群)を流通する空気の流れに対し、交差する横方向に延在すると共に、前記設置平面の傾斜上端側が空気の流れ方向上流側に位置し、傾斜下端側が空気の流れ方向下流側に位置するよう設定される(図5参照)。すなわち、蒸発管56を構成する複数の直線部分56aは、蒸発器EPを流通する空気の流れ方向下流側から上流側に順に移行するよう配置されている。従って、蒸発管56に液配管44から流入した液冷媒(冷媒)は、図4に示す如く、空気の流れ方向最下流側の直線部分56aから順次上流側の直線部分56aへ折曲げ部分56bを介して流入することを繰返し、最終的に空気の流れ方向最上流側の直線部分56aからガス配管46へ流出するようになっている。   As shown in FIG. 3, the evaporation path 52 includes a spiral fin tube type heat exchanger 55 in which fins (heat transfer promotion members) 58 are spirally wound around the outer periphery of an evaporation pipe 56 through which a secondary refrigerant flows. Then, the evaporation pipe 56 is formed by bending it into a meandering shape composed of a straight portion 56a and a bent portion 56b (see FIG. 4). Further, the interval between the adjacent linear portions 56a and 56a is set to a dimension such that the fins 58 and 58 disposed in the respective linear portions 56a and 56a are not in contact with each other so that the fins 58 and 58 are separated from each other. Composed. The evaporation pipe 56 is bent so that all the straight portions 56a and the bent portions 56b are positioned on one plane (hereinafter referred to as an installation plane), and the installation plane is at a predetermined angle with respect to the horizontal plane. (See FIG. 5). The liquid pipe 44 is connected to the straight line portion 56a located on the inclined lower end side, and the gas pipe 46 is connected to the straight line portion 56a located on the inclined upper end side, so that the inflow in the evaporation path 52 (evaporation pipe 56). The end 52a is positioned below the outflow end 52b. Further, as shown in FIG. 4, each linear portion 56 a extends in a transverse direction intersecting with the air flow flowing through the evaporator EP (evaporation pipe 56 group) generated when the blower fan 30 is driven. At the same time, the upper inclined side of the installation plane is set on the upstream side in the air flow direction, and the lower end side of the inclination is set on the downstream side in the air flow direction (see FIG. 5). That is, the plurality of straight portions 56a constituting the evaporation pipe 56 are arranged so as to sequentially shift from the downstream side in the flow direction of the air flowing through the evaporator EP to the upstream side. Therefore, the liquid refrigerant (refrigerant) that has flowed into the evaporation pipe 56 from the liquid pipe 44 has bent portions 56b sequentially from the straight line portion 56a on the most downstream side in the air flow direction to the straight line portion 56a on the upstream side, as shown in FIG. Inflow is repeated, and finally flows out from the straight portion 56a on the most upstream side in the air flow direction to the gas pipe 46.

前記各蒸発管56は、図5に示す如く、該蒸発管56の配置平面を上下に離間して平行な関係で層状に配置してある。また、上下に位置する蒸発管56,56のフィン58,58は、相互に離間するよう設定されている。実施例1では、各蒸発経路52における冷媒の流入端52aおよび流出端52bが、上下方向に整列する位置関係で配置される。   As shown in FIG. 5, the respective evaporation pipes 56 are arranged in layers in a parallel relationship with the arrangement plane of the evaporation pipes 56 spaced apart in the vertical direction. Further, the fins 58, 58 of the evaporation pipes 56, 56 positioned above and below are set so as to be separated from each other. In the first embodiment, the refrigerant inflow end 52a and the outflow end 52b of each evaporation path 52 are arranged in a positional relationship in which they are aligned in the vertical direction.

〔実施例1の作用〕
次に、実施例1に係る二次冷却装置40を備えた冷却設備32の作用について説明する。冷却設備32では、冷却運転を開始すると、一次冷却装置34および二次冷却装置40の夫々で冷媒の循環が開始される。先ず、一次冷却装置34について説明すると、圧縮機CMおよび凝縮器ファンFMが駆動され、圧縮機CMで気相一次冷媒が圧縮されて、この一次冷媒を冷媒配管38を介して凝縮器CDに供給して、凝縮器ファンFMによる強制冷却により凝縮液化することで液相とする。液相一次冷媒は、膨張弁EVで減圧され、カスケード熱交換器HEの一次熱交換部36において二次熱交換部42を流通する二次冷媒から熱を奪って(吸熱)一挙に膨張気化する。このように一次冷却装置34は、カスケード熱交換器HEにおいて、一次熱交換部36により二次熱交換部42を強制冷却するように機能している。そして、一次熱交換部36で蒸発した気相一次冷媒は、冷媒配管38を経て圧縮機CMに帰還する強制循環サイクルを繰返す。
[Operation of Example 1]
Next, the effect | action of the cooling equipment 32 provided with the secondary cooling device 40 which concerns on Example 1 is demonstrated. In the cooling facility 32, when the cooling operation is started, circulation of the refrigerant is started in each of the primary cooling device 34 and the secondary cooling device 40. First, the primary cooling device 34 will be described. The compressor CM and the condenser fan FM are driven, the gas-phase primary refrigerant is compressed by the compressor CM, and this primary refrigerant is supplied to the condenser CD through the refrigerant pipe 38. Then, the liquid phase is obtained by condensing and liquefying by forced cooling by the condenser fan FM. The liquid phase primary refrigerant is decompressed by the expansion valve EV, and in the primary heat exchanging part 36 of the cascade heat exchanger HE, it takes heat from the secondary refrigerant flowing through the secondary heat exchanging part 42 (endothermic) and expands and vaporizes all at once. . Thus, the primary cooling device 34 functions to forcibly cool the secondary heat exchange unit 42 by the primary heat exchange unit 36 in the cascade heat exchanger HE. Then, the gas phase primary refrigerant evaporated in the primary heat exchange unit 36 repeats the forced circulation cycle that returns to the compressor CM through the refrigerant pipe 38.

前記二次冷却装置40では、二次熱交換部42が一次熱交換部36により冷却されているから、各自然循環回路48において二次熱交換部42の各凝縮経路50を流通する過程で気相二次冷媒が放熱して凝縮し、気相から液相に状態変化することで比重が増加するので、重力の作用下に二次熱交換部42の各凝縮経路50に沿って液相二次冷媒が流下する。二次冷却装置40では、二次熱交換部42を機械室20に配置する一方、蒸発器EPを機械室20の下方に位置する冷却室28に配設することで、二次熱交換部42と蒸発器EPとの間に落差を設けてある。すなわち、各自然循環回路48において、液相二次冷媒を、二次熱交換部42の下部に接続した液配管44を介して、複数の蒸発管56の集合で構成される蒸発器EPへ向けて重力の作用下に自然流下させることができる。液相二次冷媒は、蒸発器EPの各蒸発経路52を流通する過程で、蒸発管56の集合で構成される蒸発器EPの周囲雰囲気から熱を奪って蒸発して気相に移行する。気相二次冷媒は、ガス配管46を介して蒸発器EPから二次熱交換部42へ還流し、二次冷却装置40ではポンプやモータ等の動力を用いることなく、各自然循環回路48において、簡単な構成で二次冷媒が自然循環するサイクルが繰返される。   In the secondary cooling device 40, the secondary heat exchanging section 42 is cooled by the primary heat exchanging section 36, so that in the natural circulation circuit 48, air is circulated through each condensation path 50 of the secondary heat exchanging section 42. The phase secondary refrigerant dissipates heat and condenses, and the specific gravity increases as the state changes from the gas phase to the liquid phase. Therefore, the liquid phase secondary refrigerant flows along the respective condensation paths 50 of the secondary heat exchange unit 42 under the action of gravity. The next refrigerant flows down. In the secondary cooling device 40, the secondary heat exchange unit 42 is disposed in the machine room 20, while the evaporator EP is disposed in the cooling chamber 28 located below the machine room 20, thereby the secondary heat exchange unit 42. And an evaporator EP are provided with a head. That is, in each natural circulation circuit 48, the liquid phase secondary refrigerant is directed to the evaporator EP configured by a set of a plurality of evaporation pipes 56 through the liquid pipe 44 connected to the lower part of the secondary heat exchange unit 42. Can flow naturally under the action of gravity. In the process of flowing through the respective evaporation paths 52 of the evaporator EP, the liquid secondary refrigerant evaporates by taking heat from the ambient atmosphere of the evaporator EP constituted by the collection of the evaporation pipes 56 and moves to the gas phase. The gas phase secondary refrigerant is refluxed from the evaporator EP to the secondary heat exchanging section 42 via the gas pipe 46, and the secondary cooling device 40 does not use power from a pump, a motor, or the like in each natural circulation circuit 48. The cycle in which the secondary refrigerant naturally circulates with a simple configuration is repeated.

前記送風ファン30により吸込口26aから冷却室28に吸引された収納室14の空気を、冷却された蒸発器EPに吹付けることで、蒸発管56の集合で構成される蒸発器EPと熱交換した空気が冷気となる。そして冷気を、冷却室28から冷気吹出口26bを介して収納室14に送出することで、収納室14が冷却される。冷気は、収納室14の内部を循環して、吸込口26aを介して再び冷却室28内に戻るサイクルを反復する。この場合において、各自然循環回路48における蒸発経路52では、液配管44に接続する直線部分56aが空気の流れ方向最下流側に位置すると共に、ガス配管46に接続する直線部分56aが空気の流れ方向最上流側に位置するよう構成されているから、流出端52b側において温度の高い空気と冷媒とが熱交換して気化することで二次冷媒の循環が促進され、蒸発器EPでの熱交換が効率的に行なわれる。しかも、二次冷媒として伝熱性能に優れた二酸化炭素を用いることで、蒸発管56の集合で構成される蒸発器EPでのより効率的な熱交換が達成される。すなわち、蒸発器EPを流通する空気の流れ方向下流側から上流側に冷媒が流動するよう構成すると共に、二次冷媒として伝熱性能に優れた二酸化炭素を用いることで、蒸発器EPでの熱交換効率を向上することができる。従って、熱交換器55の蒸発管56として熱交換面積の小さな小径のものを採用しても蒸発器EPでの熱交換効率が低下するのを抑制することができ、蒸発管56の集合で構成される蒸発器EP自体のコンパクト化を図り得る。また、スパイラルフィンチューブ型の熱交換器55の採用により配管密度が低下しても、二次冷媒として用いられる二酸化炭素の優れた伝熱性能が、配管密度の低下による伝熱性能の低下を補い、蒸発器EPとして適切に機能しうる。更に、蒸発経路52における冷媒の流出端52bは、流入端52aより高い位置に臨んでいるから、気化した二次冷媒の循環を速やかに行なうことができる。   The air in the storage chamber 14 sucked into the cooling chamber 28 from the suction port 26a by the blower fan 30 is blown to the cooled evaporator EP, thereby exchanging heat with the evaporator EP configured by a set of the evaporation pipes 56. Air becomes cold. The storage chamber 14 is cooled by sending the cool air from the cooling chamber 28 to the storage chamber 14 via the cool air outlet 26b. The cold air circulates inside the storage chamber 14 and repeats a cycle of returning to the cooling chamber 28 again through the suction port 26a. In this case, in the evaporation path 52 in each natural circulation circuit 48, the straight portion 56a connected to the liquid pipe 44 is located on the most downstream side in the air flow direction, and the straight portion 56a connected to the gas pipe 46 flows in the air flow. Since the high-temperature air and the refrigerant exchange heat at the outflow end 52b side and vaporize, the circulation of the secondary refrigerant is promoted, and the heat in the evaporator EP is obtained. Exchange is performed efficiently. In addition, by using carbon dioxide having excellent heat transfer performance as the secondary refrigerant, more efficient heat exchange is achieved in the evaporator EP configured by the collection of the evaporator tubes 56. That is, it is configured such that the refrigerant flows from the downstream side to the upstream side in the flow direction of the air flowing through the evaporator EP, and the heat in the evaporator EP is obtained by using carbon dioxide having excellent heat transfer performance as the secondary refrigerant. Exchange efficiency can be improved. Therefore, even if a small diameter small heat exchange area is adopted as the evaporation pipe 56 of the heat exchanger 55, it is possible to suppress the heat exchange efficiency in the evaporator EP from being lowered. The evaporator EP itself can be made compact. Even if the pipe density decreases due to the adoption of the spiral fin tube type heat exchanger 55, the excellent heat transfer performance of carbon dioxide used as the secondary refrigerant compensates for the decrease in heat transfer performance due to the decrease in pipe density. It can function properly as an evaporator EP. Further, since the refrigerant outflow end 52b in the evaporation path 52 faces a position higher than the inflow end 52a, the vaporized secondary refrigerant can be circulated quickly.

前記二次冷却装置40では、夫々の自然循環回路48が、経路や配管の分岐を伴わず互いに独立して1つの回路を構成するように、凝縮経路50と蒸発経路52とが液配管44およびガス配管46で接続されている。このように、各自然循環回路48は、互いに独立しているから、凝縮経路50,50同士および蒸発経路52,52同士または凝縮経路50と蒸発経路52との間で二次冷媒が偏在することを抑制でき、各凝縮経路50および各蒸発経路52を流通する二次冷媒の量を一致させることができる。   In the secondary cooling device 40, the condensing path 50 and the evaporating path 52 are connected to the liquid pipe 44 and the evaporating path 52 so that each natural circulation circuit 48 forms one circuit independently of each other without any branching of the path or piping. They are connected by a gas pipe 46. Thus, since each natural circulation circuit 48 is independent from each other, secondary refrigerant is unevenly distributed between the condensation paths 50 and 50 and between the evaporation paths 52 and 52 or between the condensation path 50 and the evaporation path 52. Can be suppressed, and the amount of secondary refrigerant flowing through each condensation path 50 and each evaporation path 52 can be matched.

また、二次冷却装置40に作用する外気温の変動等の外因によって、各自然循環回路48を循環する二次冷媒が凝縮経路50や蒸発経路52の何れかに偏在する場合もある。しかるに、各自然循環回路48は、互いに独立したサーモサイフォンが構成されているので、各凝縮経路50および各蒸発経路52における二次冷媒の量が一致するように、二次冷媒のバランスが自然に調節される。従って、各凝縮経路50および各蒸発経路52において、二次冷媒の偏在自体が起きにくく、例え二次冷媒の偏在が生じても当該凝縮経路50および蒸発経路52を流通する二次冷媒の量を一致させるよう調節力が作用するので、二次冷媒のバランスを調節するために弁等の調節手段を設ける必要がなく、二次冷却装置40の構成を簡易にできる。しかも、自然循環回路48において、二次冷媒が円滑に自然対流するから、蒸発管56の集合で構成される蒸発器EPにおける冷却効率を向上することができる。そして、二次熱交換部42および蒸発器EPにおいて要求される熱交換面積に応じた数の自然循環回路48を二次冷却装置40に設けることで、必要とされる凝縮経路50および蒸発経路52を二次熱交換部42および蒸発器EPに配置することができ、装置全体として必要とされる熱交換面積が担保される。   Further, the secondary refrigerant circulating in each natural circulation circuit 48 may be unevenly distributed in either the condensation path 50 or the evaporation path 52 due to external factors such as fluctuations in the outside air temperature acting on the secondary cooling device 40. However, since the natural circulation circuits 48 are configured as thermosyphons independent of each other, the balance of the secondary refrigerant is naturally set so that the amount of the secondary refrigerant in each condensation path 50 and each evaporation path 52 matches. Adjusted. Therefore, in each condensation path 50 and each evaporation path 52, the secondary refrigerant is hardly unevenly distributed, and even if the secondary refrigerant is unevenly distributed, the amount of the secondary refrigerant flowing through the condensation path 50 and the evaporation path 52 is reduced. Since the adjusting force acts so as to match, it is not necessary to provide adjusting means such as a valve in order to adjust the balance of the secondary refrigerant, and the configuration of the secondary cooling device 40 can be simplified. In addition, since the secondary refrigerant smoothly convects naturally in the natural circulation circuit 48, the cooling efficiency in the evaporator EP constituted by the collection of the evaporation pipes 56 can be improved. Then, by providing the secondary cooling device 40 with the number of natural circulation circuits 48 corresponding to the heat exchange area required in the secondary heat exchange section 42 and the evaporator EP, the required condensation path 50 and evaporation path 52 are provided. Can be disposed in the secondary heat exchange section 42 and the evaporator EP, and the heat exchange area required for the entire apparatus is secured.

前記二次冷却装置40では、二次熱交換部42および蒸発器EPの夫々に凝縮経路50および蒸発経路52を複数配置することができる。すなわち、1本当たりの凝縮経路50および蒸発経路52に要求される熱交換面積が小さくなり、各凝縮経路50および各蒸発経路52の配管長を短くすることが可能となる。これにより、各凝縮経路50および各蒸発経路52において、必要とされる配管長を稼ぐために蛇行させる回数を少なくでき、流通抵抗となる屈曲部分を減らせるから、当該凝縮経路50および蒸発経路52を流通する二次冷媒の圧力損失を小さくすることができる。また各自然循環回路48は、液配管44、ガス配管46、凝縮経路50および蒸発経路52を分岐させることなく、1つの冷媒の経路で構成しているから、配管等の分岐部に起因する圧力損失が発生しない。更に、各自然循環回路48では、凝縮経路50と蒸発経路52との間で自然対流に必要とされる二次冷媒のヘッド差を小さくできるので、凝縮経路50と蒸発経路52との間で要求される落差が小さくなり、二次熱交換部42と蒸発器EPとの上下の配置間隔を狭くすることが可能となり、二次冷却装置40をコンパクトにできる。また、各自然循環回路48において、二次冷媒の圧力損失が小さいので、液配管44およびガス配管46として従来と比較して細い管径を選定しても、同一量の二次冷媒を回路内に循環させることができ、回路全体として充填する二次冷媒の量を削減することが可能となる。   In the secondary cooling device 40, a plurality of condensing paths 50 and evaporating paths 52 can be arranged in the secondary heat exchanging section 42 and the evaporator EP, respectively. That is, the heat exchange area required for each condensation path 50 and evaporation path 52 is reduced, and the length of each condensation path 50 and each evaporation path 52 can be shortened. Thereby, in each condensation path 50 and each evaporation path 52, the number of times of meandering in order to earn a required pipe length can be reduced, and the bent portion that becomes a distribution resistance can be reduced. Therefore, the condensation path 50 and the evaporation path 52 are reduced. The pressure loss of the secondary refrigerant that circulates can be reduced. In addition, each natural circulation circuit 48 is configured by a single refrigerant path without branching the liquid pipe 44, the gas pipe 46, the condensation path 50, and the evaporation path 52, and therefore pressure caused by a branching portion such as a pipe. There is no loss. Further, in each natural circulation circuit 48, the head difference of the secondary refrigerant required for natural convection between the condensation path 50 and the evaporation path 52 can be reduced, so that there is a requirement between the condensation path 50 and the evaporation path 52. Thus, the drop between the secondary heat exchanger 42 and the evaporator EP can be narrowed, and the secondary cooling device 40 can be made compact. Further, in each natural circulation circuit 48, since the pressure loss of the secondary refrigerant is small, the same amount of the secondary refrigerant is placed in the circuit even when the liquid pipe 44 and the gas pipe 46 are selected to have a smaller pipe diameter than the conventional one. Therefore, it is possible to reduce the amount of secondary refrigerant to be filled in the entire circuit.

このように、各凝縮経路50および各蒸発経路52の長さや断面積を減じることが可能であるので、二次熱交換部42や蒸発器EPをコンパクトにできると共に、循環する冷媒量を低減することで、自然循環回路48の圧力上昇を緩和する膨張タンク(図示せず)の容量等の付帯設備も小さくなるので、二次冷却装置40全体としてコンパクトにすることができ、コストダウンも可能となる。また液配管44、ガス配管46および蒸発管56等の配管を細径化することで、これらの配管44,46,56において耐圧性能を確保するために必要な肉厚を減ずることが可能となる。すなわち、各配管44,46,56が細径化したことだけでなく、各配管44,46,56の肉厚が減少することとの相乗によって、配管重量を一層削減することができ、コストを更に低減し得る。そして、前記収納室14内の冷却室28に配設される前記蒸発器EPをコンパクト化することで、該蒸発器EPを配設するために要する設置スペースを削減(冷却室28の小型化)し得る一方、収納室14における物品を収納し得る内容積を大きくすることができ、冷蔵庫の商品価値を向上し得る。   Thus, since the length and cross-sectional area of each condensation path 50 and each evaporation path 52 can be reduced, the secondary heat exchange unit 42 and the evaporator EP can be made compact, and the amount of circulating refrigerant is reduced. As a result, incidental facilities such as the capacity of an expansion tank (not shown) that alleviates the pressure increase in the natural circulation circuit 48 are also reduced, so that the secondary cooling device 40 as a whole can be made compact and the cost can be reduced. Become. Further, by reducing the diameter of the pipes such as the liquid pipe 44, the gas pipe 46, and the evaporation pipe 56, it is possible to reduce the wall thickness necessary for ensuring pressure resistance performance in these pipes 44, 46, and 56. . That is, not only the diameter of each pipe 44, 46, 56 is reduced, but also synergistic with the decrease in the thickness of each pipe 44, 46, 56, the pipe weight can be further reduced, and the cost can be reduced. Further reduction can be achieved. Further, by reducing the size of the evaporator EP disposed in the cooling chamber 28 in the storage chamber 14, the installation space required for disposing the evaporator EP is reduced (miniaturization of the cooling chamber 28). On the other hand, the internal volume that can store articles in the storage chamber 14 can be increased, and the commercial value of the refrigerator can be improved.

ここで、液配管44、ガス配管46および蒸発管56等の配管の細径化によるコストの低減について具体的に説明する。
例えば、耐圧性能Pを有する配管の肉厚tは、以下の式で求められる。なお、σは材料の許容応力であり、Dは配管の外径である。
t=PD/2(σ+P)…(イ)
長さLの配管重量Mは、以下の式で求められる。なお、Cは材料の比重であり、Diは配管の内径である。
M=πLC(D2−Di 2 )/4…(ロ)
また、Di=D−2tと表わすことができるので、これを(ロ)式に代入すると、以下の式が導き出される。
M=πLC(Dt−t2)…(ハ)
そして(ハ)式に(イ)式を代入すると、以下の式が導き出される。
M=(1−P/2(σ+P))×πLCPD2/2(σ+P)…(ニ)
前記(ニ)式は、耐圧性能Pを有する配管の重量を示している。(ニ)式において、D以外の条件は不変とすると、π、L、C、P、σの条件は定数として扱うことができる。よって、耐圧性能Pを有する配管重量(配管の外径D)は、以下の式で表わすことができる。
M={(1−P/2(σ+P))×πLCP/2(σ+P)}×D2…(ホ)
(ホ)式における{ }内は前述の如く定数であるから、M=AD2と表わすことができる。
そして、耐圧性能Pを有する外径D1の配管の配管重量MD1は、AD1 2であり、耐圧性能Pを有する外径D2の配管の配管重量MD2は、AD2 2である。
更に、配管重量MD1と配管重量MD2との比は、以下のように表わされる。
MD2/MD1=D2 2/D1 2…(ヘ)
Here, the cost reduction by reducing the diameter of the pipes such as the liquid pipe 44, the gas pipe 46, and the evaporation pipe 56 will be specifically described.
For example, the wall thickness t of the pipe having the pressure resistance performance P is obtained by the following equation. Here, σ is the allowable stress of the material, and D is the outer diameter of the pipe.
t = PD / 2 (σ + P) (B)
The pipe weight M of the length L is calculated | required with the following formula | equation. C is the specific gravity of the material, and D i is the inner diameter of the pipe.
M = πLC (D 2 −D i 2 ) / 4 (b)
Further, since it can be expressed as D i = D−2t, substituting this into the expression (b) yields the following expression.
M = πLC (Dt−t 2) (C)
Then, by substituting (A) into (C), the following equation is derived.
M = (1-P / 2 (σ + P)) × πLCPD 2/2 (σ + P) ... ( d)
The expression (d) indicates the weight of the pipe having the pressure resistance performance P. In the expression (D), if conditions other than D are unchanged, the conditions of π, L, C, P, and σ can be treated as constants. Therefore, the weight of the pipe having the pressure resistance performance P (the outer diameter D of the pipe) can be expressed by the following expression.
M = {(1−P / 2 (σ + P)) × πLCP / 2 (σ + P)} × D 2 (e)
Since the value in {} in the expression (e) is a constant as described above, it can be expressed as M = AD 2 .
Then, the pipe weight MD 1 of the pipe outside diameter D 1 having a pressure resistance P is AD 1 2, pipe weight MD 2 of the outer diameter D 2 pipe having a pressure resistance P is AD 2 2.
Furthermore, the ratio of the pipe weight MD 1 and the pipe weight MD 2 is expressed as follows.
MD 2 / MD 1 = D 2 2 / D 1 2 (f)

前記(ヘ)式に具体的な数字を当てはめて説明する。一般的な冷却装置では、蒸発管の外径は9.52mmに設定されることが多い。これに対して、実施例1の冷却装置であれば、条件によっても変わるが外径6.35mmの蒸発管を用いることができる。これらの条件を前記(へ)式に当てはめると、以下のようになる。
MDφ6.35/MDφ9.52=(6.35)2/(9.52)2=0.44
また、実施例1の冷却装置において、外径4.76mmの蒸発管を用いた場合は、以下のようになる。
MDφ4.76/MDφ9.52=(4.76)2/(9.52)2=0.25
すなわち、配管の重量比は、配管の材料価格の比であるともいえるから、実施例1の二次冷却装置40によれば、従来の冷却装置と比較して配管が細径化することにより大幅なコスト削減を達成し得ることは明らかである。
The description will be made by applying specific numbers to the formula (f). In a general cooling device, the outer diameter of the evaporation tube is often set to 9.52 mm. On the other hand, if it is a cooling device of Example 1, although it changes with conditions, an evaporation pipe with an outer diameter of 6.35 mm can be used. When these conditions are applied to the above equation (f), the following is obtained.
MD φ 6.35 / MD φ 9.52 = (6.35) 2 /(9.52) 2 = 0.44
Moreover, in the cooling device of Example 1, when an evaporation tube having an outer diameter of 4.76 mm is used, the following is obtained.
MD φ 4.76 / MD φ 9.52 = (4.76) 2 /(9.52) 2 = 0.25
That is, the weight ratio of the pipe can be said to be a ratio of the material price of the pipe. Therefore, according to the secondary cooling device 40 of the first embodiment, the pipe is greatly reduced in diameter as compared with the conventional cooling device. Clearly, significant cost savings can be achieved.

前述したように自然循環回路48を複数とすることで、冷媒が流通する配管径を細くすることができるから、前記蒸発経路52として蒸発管56の外周囲にフィン58を螺旋状に巻き付けたスパイラルフィンチューブ型の熱交換器55を採用しても、蒸発器EPが大型化するのは抑制できる。すなわち、蒸発管56の最小曲げ半径を小さくすることで、寸法をコンパクトにし得ると共に、フィンアンドチューブ型の熱交換器と同等の配管密度とすることができる。そして、スパイラルフィンチューブ型の熱交換器においては、製造過程で配管同士の溶接や配管の拡管加工を行なう必要がなく、製造工程が大きく簡素化されて製造コストを低廉に抑えることができる。また、スパイラルフィンチューブ型の熱交換器55は、フィンアンドチューブ型の熱交換器のように直線状の配管に対してUベンド部が溶接されないシームレス構造となっているから、流通する冷媒の漏出に対する信頼性が向上する。すなわち、各自然循環回路48における配管径を小さくすることが可能となることで、蒸発管56の最小曲げ半径を小さくしたコンパクトな構成で、フィンアンドチューブ型の熱交換器と同程度まで蒸発管56の配管密度を上げた、スパイラルフィンチューブ型のように隣り合う直線部分のフィン58が相互に接触しない構成の熱交換器55を採用することができる。   As described above, by providing a plurality of natural circulation circuits 48, the diameter of the pipe through which the refrigerant flows can be reduced. Therefore, a spiral in which fins 58 are spirally wound around the outer periphery of the evaporation pipe 56 as the evaporation path 52. Even if the fin tube type heat exchanger 55 is employed, the enlargement of the evaporator EP can be suppressed. That is, by reducing the minimum bending radius of the evaporation pipe 56, the dimensions can be made compact, and the pipe density equivalent to that of the fin-and-tube heat exchanger can be obtained. And in a spiral fin tube type heat exchanger, it is not necessary to perform welding of pipes or pipe expansion of pipes in the manufacturing process, and the manufacturing process can be greatly simplified and the manufacturing cost can be kept low. Further, the spiral fin tube type heat exchanger 55 has a seamless structure in which the U-bend portion is not welded to the straight pipe like the fin and tube type heat exchanger. Reliability is improved. That is, since it becomes possible to reduce the pipe diameter in each natural circulation circuit 48, the evaporation pipe 56 has a compact configuration in which the minimum bending radius of the evaporation pipe 56 is reduced, and to the same extent as a fin-and-tube heat exchanger. It is possible to employ a heat exchanger 55 having a configuration in which the adjacent straight portions of the fins 58 are not in contact with each other as in the spiral fin tube type in which the piping density of 56 is increased.

前述した如く、スパイラルフィンチューブ型の熱交換器55は、フィンアンドチューブ型の熱交換器に比して着霜による目詰りが発生し難い構成であるから、図示しない除霜用ヒータ等の除霜手段による除霜運転を行なう頻度を少なくすることができる。これにより、頻繁な除霜運転に起因する収納室14内の温度上昇を抑制し得る。しかも、複数の自然循環回路48の蒸発経路52を構成するスパイラルフィンチューブ型の熱交換器55は、図5に示す如く、上下に離間して平行な層状に配置してあるから、蒸発器EPを薄型化して冷却室28に占める割合を小さくし、省スペース化を図り得る。また、上下に層状に配置される熱交換器55,55のフィン58,58も相互に離間しているから、熱交換器55,55の間での着霜による目詰りも発生し難い。   As described above, the spiral fin tube type heat exchanger 55 is less likely to be clogged due to frost formation than the fin and tube type heat exchanger. The frequency of performing the defrosting operation by the frosting means can be reduced. Thereby, the temperature rise in the storage chamber 14 resulting from frequent defrosting operation can be suppressed. In addition, since the spiral fin tube type heat exchanger 55 constituting the evaporation paths 52 of the plurality of natural circulation circuits 48 is arranged in parallel layers spaced apart from each other as shown in FIG. Can be made thin to reduce the proportion of the cooling chamber 28, thereby saving space. In addition, since the fins 58 and 58 of the heat exchangers 55 and 55 arranged in layers above and below are separated from each other, clogging due to frost formation between the heat exchangers 55 and 55 hardly occurs.

前記冷却設備32は、一次冷却装置34と二次冷却装置40とをカスケード熱交換器HEで接続し、このカスケード熱交換器HEにおいて、一次冷却装置34の一次冷媒と二次冷却装置40の二次冷媒とが蒸発および凝縮作用下に熱交換を行なう。すなわち、顕熱のみによる熱交換と比べて、非常に高い熱伝達率を持つので、一次冷却装置34と二次冷却装置40との間の伝熱面積を小さくすることができる。また、一次冷媒および二次冷媒は共に、潜熱により熱の輸送を行なうため、比較的少量で、多くの熱量を伝達することができるから、カスケード熱交換器HEにおける熱交換量を低下させることなく、一次冷却装置34および二次冷却装置40の熱容積を小さくすることが可能となる。従って、一次冷却装置34の一次冷媒量および二次冷却装置40の二次冷媒量を何れも低減でき、コストダウンや、一次冷却装置34および二次冷却装置40の小型化による冷却設備32の省スペース化を図り得る。   In the cooling facility 32, the primary cooling device 34 and the secondary cooling device 40 are connected by a cascade heat exchanger HE, and in the cascade heat exchanger HE, the primary refrigerant of the primary cooling device 34 and the secondary cooling device 40 are connected to each other. The secondary refrigerant exchanges heat under the action of evaporation and condensation. That is, since it has a very high heat transfer coefficient compared to heat exchange using only sensible heat, the heat transfer area between the primary cooling device 34 and the secondary cooling device 40 can be reduced. In addition, since both the primary refrigerant and the secondary refrigerant transport heat by latent heat, a large amount of heat can be transmitted with a relatively small amount, so that the amount of heat exchange in the cascade heat exchanger HE is not reduced. The heat volumes of the primary cooling device 34 and the secondary cooling device 40 can be reduced. Therefore, both the primary refrigerant amount of the primary cooling device 34 and the secondary refrigerant amount of the secondary cooling device 40 can be reduced, and the cost of the cooling equipment 32 can be reduced by reducing costs and downsizing the primary cooling device 34 and the secondary cooling device 40. Space can be achieved.

前記一次冷却装置34に必要とされる一次冷媒量が少ないから、法冷等で規定された冷媒の使用上限量以下とすることができ、一次冷媒として使用する冷媒の種類についての選択肢の幅が広がる。また機械室20は、凝縮器CDおよび圧縮機CMを空冷する都合上、空気を入替えられる開放された空間とされる。このような機械室20に一次冷却装置34を配設してあるから、一次冷媒が万が一漏出したとしても、機械室20に留まるおそれはない。更に、機械室20は、台板24により閉鎖空間である収納室14と気密的に区切られているから、漏出した一次冷媒が収納室14に流入することはなく、収納室14に収納した物品に由来するアンモニアや硫化水素等の腐食性ガスが、機械室20に流入することもない。しかも、冷却設備32を一次冷却装置34と二次冷却装置40との二次ループ式冷凍回路で構成することで、安全性に優れている二酸化炭素を二次冷媒として選択することが可能となる。すなわち、二次冷却装置40では、蒸発器EPが収納室14(冷却室28)に臨むが、例えば二次冷媒が収納室14に漏出したとしても、使用者に対する安全を担保し得る。   Since the amount of the primary refrigerant required for the primary cooling device 34 is small, it can be set to the upper limit amount of the refrigerant defined by the method cooling or the like, and there is a range of options for the type of refrigerant used as the primary refrigerant. spread. The machine room 20 is an open space in which air can be exchanged for the purpose of air-cooling the condenser CD and the compressor CM. Since the primary cooling device 34 is disposed in the machine room 20, even if the primary refrigerant leaks out, there is no possibility of staying in the machine room 20. Further, since the machine room 20 is airtightly separated from the storage room 14 which is a closed space by the base plate 24, the leaked primary refrigerant does not flow into the storage room 14, and the articles stored in the storage room 14 Corrosive gases such as ammonia and hydrogen sulfide derived from the above do not flow into the machine room 20. In addition, by configuring the cooling facility 32 with a secondary loop refrigeration circuit including the primary cooling device 34 and the secondary cooling device 40, it is possible to select carbon dioxide having excellent safety as the secondary refrigerant. . In other words, in the secondary cooling device 40, the evaporator EP faces the storage chamber 14 (cooling chamber 28), but even if the secondary refrigerant leaks into the storage chamber 14, for example, safety for the user can be ensured.

前記一次冷却装置34および二次冷却装置40は、カスケード熱交換器HEの一次熱交換部36と二次熱交換部42とで熱的に接続されているが、冷媒の循環経路として互いに独立している。冷却設備32を停止(圧縮機CM:停止)した際に、一次冷却装置34には凝縮器CDから高温の液相一次冷媒が一次熱交換部36に流入する。これによりカスケード熱交換器HEは昇温されるものの、二次冷却装置40は独立しているから、蒸発器EPは昇温されることはなく、冷却設備32を停止した際の収納室14の温度上昇が緩やかになる。すなわち、冷却設備32により収納室14を所要の設定温度まで冷却することで、冷却設備32を停止した後、冷却設備32を再度駆動するまでの時間を長くすることができる。よって、冷却設備32の稼働率が低下するので、消費電力量の削減に繋がる。   The primary cooling device 34 and the secondary cooling device 40 are thermally connected by the primary heat exchange unit 36 and the secondary heat exchange unit 42 of the cascade heat exchanger HE, but are independent of each other as a refrigerant circulation path. ing. When the cooling facility 32 is stopped (compressor CM: stopped), the high-temperature liquid-phase primary refrigerant flows from the condenser CD into the primary heat exchange unit 36 into the primary cooling device 34. As a result, the temperature of the cascade heat exchanger HE is increased, but the secondary cooling device 40 is independent. Therefore, the evaporator EP is not heated, and the storage chamber 14 when the cooling facility 32 is stopped is not used. The temperature rise becomes gradual. That is, by cooling the storage chamber 14 to a required set temperature by the cooling facility 32, it is possible to lengthen the time until the cooling facility 32 is driven again after the cooling facility 32 is stopped. Therefore, since the operating rate of the cooling facility 32 is reduced, the power consumption is reduced.

このように、実施例1の二次冷却装置40を二次ループ式冷凍回路からなる冷却設備32に適用することで、従来のフロンを用いた冷却設備と同等の大きさおよびコストで当該冷却設備32を設計することが可能となり、冷媒としてフロンを使用した機械圧縮式の冷凍回路と比較して、装置全体が大型化して大きな設置面積を要すると共にコストの上昇を伴う欠点が解消されて市場での競争力を獲得することができる。すなわち、実施例1に係る二次冷却装置40は、地球温暖化防止の観点から重要視されている二次ループ式冷凍回路によるノンフロン化技術の普及を推進する上で、有効な技術的な位置付けを有している。   Thus, by applying the secondary cooling device 40 of the first embodiment to the cooling facility 32 composed of the secondary loop type refrigeration circuit, the cooling facility is equivalent in size and cost to the conventional cooling facility using chlorofluorocarbon. 32 can be designed, and compared with a mechanical compression type refrigeration circuit using chlorofluorocarbon as a refrigerant, the entire apparatus is enlarged and requires a large installation area, and disadvantages associated with an increase in cost are eliminated in the market. Can be competitive. In other words, the secondary cooling device 40 according to the first embodiment is effective in positioning the non-fluorocarbon technology using the secondary loop refrigeration circuit, which is regarded as important from the viewpoint of preventing global warming. have.

図6は、二次側の回路として実施例2に係る二次冷却装置(冷却装置)60を備える冷却設備32を示す概略回路図である。なお、実施例2の冷却設備32は、実施例1で説明した冷蔵庫10に設置される。   FIG. 6 is a schematic circuit diagram illustrating a cooling facility 32 including a secondary cooling device (cooling device) 60 according to the second embodiment as a circuit on the secondary side. The cooling facility 32 of the second embodiment is installed in the refrigerator 10 described in the first embodiment.

図6に示す如く、実施例2に係る冷却設備32は、冷媒を強制循環する機械圧縮式の一次冷却装置(一次側の回路)34と、冷媒が自然対流するサーモサイフォンからなる二次冷却装置(冷却装置)60とを、カスケード熱交換器HEを介して熱交換するように熱的に接続(カスケード接続)した二次ループ冷凍回路が採用される。なお、一次冷却装置34の構成は、実施例1と同一であるので詳細説明は省略し、同一部材には同じ符号を付すものとする。また二次冷却装置60については、実施例1と同一部材には同じ符号を付すものとする。   As shown in FIG. 6, the cooling facility 32 according to the second embodiment includes a mechanical compression type primary cooling device (primary side circuit) 34 that forcibly circulates a refrigerant and a secondary cooling device that includes a thermosiphon that naturally convects the refrigerant. A secondary loop refrigeration circuit in which the (cooling device) 60 is thermally connected (cascade connection) so as to exchange heat with the cascade heat exchanger HE is employed. Since the configuration of the primary cooling device 34 is the same as that of the first embodiment, detailed description thereof is omitted, and the same members are denoted by the same reference numerals. For the secondary cooling device 60, the same members as those in the first embodiment are denoted by the same reference numerals.

前記二次冷却装置60は、気相二次冷媒(気化冷媒)を液化するカスケード熱交換器HEの二次熱交換部42と、液相二次冷媒(液化冷媒)を気化する蒸発器EPとを備え、二次熱交換部42と蒸発器EPとが1対1の関係で対応している(図6参照)。また二次冷却装置60は、二次熱交換部42と蒸発器EPとを接続する液配管44およびガス配管46を備え、液配管44を介して二次熱交換部42から蒸発器EPへ重力の作用下に液相二次冷媒を供給し、ガス配管46を介して蒸発器EPから二次熱交換部42へ気相二次冷媒を還流させる自然循環回路62が設けられる。二次熱交換部42は、機械室20に配設される一方、蒸発器EPは、当該機械室20の下方に位置する冷却室28に配設され、台板24を挟んで二次熱交換部42より下方に蒸発器EPが配置される。なお、符号54は、自然循環回路62に冷媒を充填するために設けられた冷媒チャージポートであって、実施例2の二次冷却装置60では、自然循環回路62が単一であるから、冷媒チャージポート54および安全弁や膨張タンク(何れも図示せず)等の付帯設備が1組で足りる。   The secondary cooling device 60 includes a secondary heat exchange unit 42 of the cascade heat exchanger HE that liquefies the gas phase secondary refrigerant (vaporized refrigerant), and an evaporator EP that vaporizes the liquid phase secondary refrigerant (liquefied refrigerant). The secondary heat exchange section 42 and the evaporator EP correspond to each other in a one-to-one relationship (see FIG. 6). The secondary cooling device 60 also includes a liquid pipe 44 and a gas pipe 46 that connect the secondary heat exchange unit 42 and the evaporator EP, and the gravity is transferred from the secondary heat exchange unit 42 to the evaporator EP via the liquid pipe 44. A natural circulation circuit 62 is provided that supplies the liquid phase secondary refrigerant under the action of the above and recirculates the gas phase secondary refrigerant from the evaporator EP to the secondary heat exchange section 42 via the gas pipe 46. The secondary heat exchange unit 42 is disposed in the machine room 20, while the evaporator EP is disposed in the cooling chamber 28 located below the machine room 20, and performs secondary heat exchange with the base plate 24 interposed therebetween. The evaporator EP is disposed below the part 42. Reference numeral 54 denotes a refrigerant charge port provided for charging the natural circulation circuit 62 with the refrigerant. In the secondary cooling device 60 of the second embodiment, since the natural circulation circuit 62 is single, One set of incidental facilities such as a charge port 54, a safety valve, and an expansion tank (both not shown) are sufficient.

前記二次熱交換部42には、凝縮経路50(特に区別する場合は、符号50にα,β,γ…を追加する。)が、並列して複数(実施例2では3本)設けられている。また蒸発器EPには、蒸発経路52が、並列して複数(実施例2では3本であって、特に区別する場合は、符号52にα,β,γ…を追加する。)設けられている。図6では、凝縮経路50をガス配管46に接続する流入端50aから液配管44に接続する流出端50bまで直線的な経路で表わすと共に、蒸発経路52を液配管44に接続する流入端52aからガス配管46に接続する流出端52bまで直線的な経路で表わしているが、凝縮経路47を蛇行させても、直線状に形成してもよい。   The secondary heat exchanging section 42 is provided with a plurality of condensing paths 50 (in the case of distinction, α, β, γ... Are added to the reference numeral 50) in parallel (three in the second embodiment). ing. Further, the evaporator EP is provided with a plurality of evaporation paths 52 in parallel (three in the second embodiment, and α, β, γ,... Are added to the reference numeral 52 when particularly distinguished). Yes. In FIG. 6, the condensation path 50 is represented by a straight path from the inflow end 50 a connecting to the gas pipe 46 to the outflow end 50 b connecting to the liquid pipe 44, and from the inflow end 52 a connecting the evaporation path 52 to the liquid pipe 44. Although the straight path is shown to the outflow end 52b connected to the gas pipe 46, the condensing path 47 may be meandered or formed in a straight line.

ここで、二次冷却装置60では、複数の凝縮経路50、複数の蒸発経路52、複数の液配管44(特に区別する場合は、符号44にα,β,γ…を追加する。)および複数のガス配管46(特に区別する場合は、符号46にα,β,γ…を追加する。)が同数に設定されている。液配管44は、上端(始端)を二次熱交換部42における凝縮経路50の流出端50bに接続して台板24を貫通して配管され、冷却室28側に位置する下端(終端)が蒸発器EPにおける蒸発経路52の流入端52aに接続される。そして、ガス配管46は、冷却室28側に位置する下端(始端)が蒸発器EPにおける蒸発経路52の流出端52bに接続して台板24を貫通して配管され、機械室20側に位置する上端(終端)が二次熱交換部42における凝縮経路50の流入端50aに接続される。   Here, in the secondary cooling device 60, a plurality of condensation paths 50, a plurality of evaporation paths 52, a plurality of liquid pipes 44 (α, β, γ. These gas pipes 46 (in particular, α, β, γ... Are added to the reference numeral 46 when distinguished) are set to the same number. The liquid pipe 44 is piped through the base plate 24 by connecting the upper end (starting end) to the outflow end 50b of the condensation path 50 in the secondary heat exchanging section 42, and the lower end (end) located on the cooling chamber 28 side. It is connected to the inflow end 52a of the evaporation path 52 in the evaporator EP. The gas pipe 46 is connected to the outflow end 52b of the evaporation path 52 in the evaporator EP at the lower end (starting end) located on the cooling chamber 28 side and is piped through the base plate 24, and is located on the machine room 20 side. The upper end (termination) is connected to the inflow end 50a of the condensation path 50 in the secondary heat exchange section 42.

前記二次冷却装置60では、凝縮経路50の流出端50bに接続する液配管44を、当該凝縮経路50の流入端50aに連結したガス配管46が接続している蒸発経路52と別の蒸発経路52に接続するよう構成される。また二次冷却装置60では、蒸発経路52の流出端52bに接続するガス配管46を、当該蒸発経路52の流入端52aに連結した液配管44が接続している凝縮経路50と別の凝縮経路50に接続して、複数の凝縮経路50、複数の蒸発経路52、複数の液配管44および複数のガス配管46によって、全体として1つの自然循環回路62が構成される。そして、二次冷却装置60には、強制冷却される一次熱交換部36との熱交換により冷却される二次熱交換部42と蒸発器EPとの間に温度勾配が形成され、二次冷媒が二次熱交換部42、液配管44、蒸発器EPおよびガス配管46を自然対流して二次熱交換部42に再び戻る冷媒の循環サイクルが形成される。   In the secondary cooling device 60, the liquid pipe 44 connected to the outflow end 50b of the condensation path 50 is different from the evaporation path 52 connected to the gas pipe 46 connected to the inflow end 50a of the condensation path 50. 52 is configured to connect. Further, in the secondary cooling device 60, the gas pipe 46 connected to the outflow end 52 b of the evaporation path 52 is different from the condensation path 50 connected to the liquid pipe 44 connected to the inflow end 52 a of the evaporation path 52. 50, a plurality of condensation paths 50, a plurality of evaporation paths 52, a plurality of liquid pipes 44, and a plurality of gas pipes 46 constitute a single natural circulation circuit 62 as a whole. In the secondary cooling device 60, a temperature gradient is formed between the secondary heat exchange unit 42 cooled by heat exchange with the primary heat exchange unit 36 that is forcibly cooled and the evaporator EP, and the secondary refrigerant However, a refrigerant circulation cycle is formed in which the secondary heat exchange section 42, the liquid pipe 44, the evaporator EP, and the gas pipe 46 are naturally convected and returned to the secondary heat exchange section 42 again.

前記二次冷却装置60に構成される自然循環回路62について、図6を参照してより具体的に説明する。実施例2の二次冷却装置60では、二次熱交換部42に冷媒経路として3本の凝縮経路50α,50β,50γが設けられ、蒸発器EPに冷媒経路として3本の蒸発経路52α,52β,52γが設けられている。第1凝縮経路50αの流出端50bには、第1液配管44αの始端が接続され、該第1液配管44αの終端が第1蒸発経路52αの流入端52aに接続され、第1凝縮経路50αから第1液配管44αを介して第1蒸発経路52αに二次液化冷媒が供給される。第1蒸発経路52αの流出端52bには、第1ガス配管46αの始端が接続され、該第1ガス配管46αの終端が第2凝縮経路50βの流入端50aに接続され、第1蒸発経路52αから第1ガス配管46αを介して第2凝縮経路50βに二次気化冷媒が戻される。第2凝縮経路50βの流出端50bには、第2液配管44βの始端が接続され、該第2液配管44βの終端が第2蒸発経路52βの流入端52aに接続され、第2凝縮経路50βから第2液配管44βを介して第2蒸発経路52βに二次液化冷媒が供給される。第2蒸発経路52βの流出端52bには、第2ガス配管46βの始端が接続され、該第2ガス配管46βの終端が第3凝縮経路50γの流入端50aに接続され、第2蒸発経路52βから第2ガス配管46βを介して第3凝縮経路50γに二次気化冷媒が戻される。第3凝縮経路50γの流出端50bには、第3液配管44γの始端が接続され、該第3液配管44γの終端が第3蒸発経路52γの流入端52aに接続され、第3凝縮経路50γから第3液配管44γを介して第3蒸発経路52γに二次液化冷媒が供給される。第3蒸発経路52γの流出端52bには、第3ガス配管46γの始端が接続され、該第3ガス配管46γの終端が第1凝縮経路50αの流入端50aに接続され、第3蒸発経路52γから第3ガス配管46γを介して第1凝縮経路50αに二次気化冷媒が戻され、二次冷媒が自然循環回路62内を一巡する。   The natural circulation circuit 62 configured in the secondary cooling device 60 will be described more specifically with reference to FIG. In the secondary cooling device 60 of the second embodiment, the secondary heat exchange unit 42 is provided with three condensation paths 50α, 50β, 50γ as refrigerant paths, and the evaporator EP has three evaporation paths 52α, 52β as refrigerant paths. , 52γ. The starting end of the first liquid pipe 44α is connected to the outflow end 50b of the first condensing path 50α, the end of the first liquid pipe 44α is connected to the inflow end 52a of the first evaporation path 52α, and the first condensing path 50α. Is supplied to the first evaporation path 52α through the first liquid pipe 44α. The outflow end 52b of the first evaporation path 52α is connected to the start end of the first gas pipe 46α, the end of the first gas pipe 46α is connected to the inflow end 50a of the second condensation path 50β, and the first evaporation path 52α. To the second condensing path 50β through the first gas pipe 46α. The outflow end 50b of the second condensing path 50β is connected to the start end of the second liquid pipe 44β, the end of the second liquid pipe 44β is connected to the inflow end 52a of the second evaporation path 52β, and the second condensing path 50β. Is supplied to the second evaporation path 52β through the second liquid pipe 44β. The start end of the second gas pipe 46β is connected to the outflow end 52b of the second evaporation path 52β, the end of the second gas pipe 46β is connected to the inflow end 50a of the third condensation path 50γ, and the second evaporation path 52β The secondary vaporized refrigerant is returned to the third condensing path 50γ through the second gas pipe 46β. The outflow end 50b of the third condensing path 50γ is connected to the starting end of the third liquid pipe 44γ, the end of the third liquid pipe 44γ is connected to the inflow end 52a of the third evaporation path 52γ, and the third condensing path 50γ. To the third evaporation path 52γ through the third liquid pipe 44γ. The start end of the third gas pipe 46γ is connected to the outflow end 52b of the third evaporation path 52γ, the end of the third gas pipe 46γ is connected to the inflow end 50a of the first condensation path 50α, and the third evaporation path 52γ. The secondary vaporized refrigerant is returned to the first condensation path 50α through the third gas pipe 46γ, and the secondary refrigerant makes a round in the natural circulation circuit 62.

実施例2の二次冷却装置60における各蒸発経路52は、実施例1と同じく、図3〜図5に示すスパイラルフィンチューブ型の熱交換器55で構成される。   Each evaporation path 52 in the secondary cooling device 60 of the second embodiment is configured by a spiral fin tube type heat exchanger 55 shown in FIGS. 3 to 5 as in the first embodiment.

〔実施例2の作用〕
次に、実施例2に係る二次冷却装置60を備えた冷却設備32の作用について説明する。冷却設備32では、冷却運転を開始すると、一次冷却装置34および二次冷却装置60の夫々で冷媒の循環が開始される。なお、一次冷却装置34の作用は、段落[0032]で説明しているので省略する。
[Operation of Example 2]
Next, the effect | action of the cooling equipment 32 provided with the secondary cooling device 60 which concerns on Example 2 is demonstrated. In the cooling facility 32, when the cooling operation is started, circulation of the refrigerant is started in each of the primary cooling device 34 and the secondary cooling device 60. In addition, since the effect | action of the primary cooling device 34 has been demonstrated in paragraph [0032], it abbreviate | omits.

前記二次冷却装置60では、二次熱交換部42が一次熱交換部36により冷却されているから、二次熱交換部42の各凝縮経路50を流通する過程で気相二次冷媒が放熱して凝縮し、気相から液相に状態変化することで比重が増加するので、重力の作用下に二次熱交換部42の各凝縮経路50に沿って液相二次冷媒が流下する。二次冷却装置60では、二次熱交換部42を機械室20に配置する一方、蒸発器EPを機械室20の下方に位置する冷却室28に配設することで、二次熱交換部42と蒸発器EPとの間に落差を設けてある。すなわち、液相二次冷媒を、二次熱交換部42の下部に接続した液配管44を介して、蒸発管56の集合で構成される蒸発器EPへ向けて重力の作用下に自然流下させることができる。液相二次冷媒は、蒸発器EPの各蒸発経路52を流通する過程で、蒸発管56の集合で構成される蒸発器EPの周囲雰囲気から熱を奪って蒸発して気相に移行する。気相二次冷媒は、ガス配管46を介して蒸発器EPから二次熱交換部42へ還流し、二次冷却装置60ではポンプやモータ等の動力を用いることなく、簡単な構成で二次冷媒が自然循環するサイクルが繰返される。   In the secondary cooling device 60, since the secondary heat exchange unit 42 is cooled by the primary heat exchange unit 36, the gas phase secondary refrigerant dissipates heat in the course of flowing through each condensation path 50 of the secondary heat exchange unit 42. Then, the specific gravity increases by condensing and changing the state from the gas phase to the liquid phase, so that the liquid phase secondary refrigerant flows down along the respective condensation paths 50 of the secondary heat exchange unit 42 under the action of gravity. In the secondary cooling device 60, the secondary heat exchange unit 42 is disposed in the machine room 20, while the evaporator EP is disposed in the cooling chamber 28 located below the machine room 20, thereby the secondary heat exchange unit 42. And an evaporator EP are provided with a head. That is, the liquid phase secondary refrigerant is allowed to flow naturally under the action of gravity through the liquid pipe 44 connected to the lower portion of the secondary heat exchange unit 42 toward the evaporator EP formed by the collection of the evaporation pipes 56. be able to. In the process of flowing through the respective evaporation paths 52 of the evaporator EP, the liquid secondary refrigerant evaporates by taking heat from the ambient atmosphere of the evaporator EP constituted by the collection of the evaporation pipes 56 and moves to the gas phase. The gas phase secondary refrigerant is refluxed from the evaporator EP to the secondary heat exchanging unit 42 via the gas pipe 46, and the secondary cooling device 60 can perform secondary operation with a simple configuration without using power of a pump, a motor, or the like. The cycle in which the refrigerant naturally circulates is repeated.

前記二次冷却装置60に構成した自然循環回路62では、複数の凝縮経路50とこの凝縮経路50と同数の蒸発経路52とを互い違いに接続することで、1本の凝縮経路50と1本の蒸発経路52とに交互に二次冷媒を流通させる1つのサーモサイフォンを形成してある。すなわち、自然循環回路62によれば、液配管44、ガス配管46、凝縮経路50および蒸発経路52を分岐させることなく、1つの回路の中に複数の凝縮経路50および複数の蒸発経路52を設けることができる。このように、自然循環回路62が全体として1つの冷媒の経路で構成されているから、凝縮経路50,50同士および蒸発経路52,52同士または凝縮経路50と蒸発経路52との間で二次冷媒が偏在することを抑制でき、各凝縮経路50および各蒸発経路52を流通する二次冷媒の量を一致させることができる。   In the natural circulation circuit 62 configured in the secondary cooling device 60, one condensing path 50 and one condensing path 50 are connected by alternately connecting a plurality of condensing paths 50 and the same number of condensing paths 50. One thermosiphon that allows the secondary refrigerant to flow alternately to the evaporation path 52 is formed. That is, according to the natural circulation circuit 62, the plurality of condensation paths 50 and the plurality of evaporation paths 52 are provided in one circuit without branching the liquid pipe 44, the gas pipe 46, the condensation path 50, and the evaporation path 52. be able to. As described above, since the natural circulation circuit 62 is constituted by one refrigerant path as a whole, the secondary is between the condensation paths 50 and 50 and between the evaporation paths 52 and 52 or between the condensation path 50 and the evaporation path 52. The uneven distribution of the refrigerant can be suppressed, and the amount of the secondary refrigerant flowing through each condensation path 50 and each evaporation path 52 can be matched.

また、二次冷却装置60に作用する外気温の変動等の外因によって、自然循環回路62を循環する二次冷媒が凝縮経路50や蒸発経路52の何れかに偏在する場合もある。しかるに、自然循環回路62は、1つのサーモサイフォンから構成されているので、各凝縮経路50および各蒸発経路52における二次冷媒の量が一致するように、二次冷媒のバランスが自然に調節される。従って、各凝縮経路50および各蒸発経路52において、二次冷媒の偏在自体が起きにくく、例え二次冷媒の偏在が生じても当該凝縮経路50および蒸発経路52を流通する二次冷媒の量を一致させるよう調節力が作用するので、二次冷媒のバランスを調節するために弁等の調節手段を設ける必要がなく、二次冷却装置60の構成を簡易にできる。しかも、自然循環回路62において、二次冷媒が円滑に自然対流するから、蒸発器EPにおける冷却効率を向上することができる。従って、二次熱交換部42および蒸発器EPに凝縮経路50および蒸発経路52を複数設けることができ、凝縮経路50および蒸発経路52を屈曲や分岐することなく、熱交換面積を稼ぐことができる。   Further, the secondary refrigerant circulating in the natural circulation circuit 62 may be unevenly distributed in either the condensation path 50 or the evaporation path 52 due to external factors such as fluctuations in the outside air temperature acting on the secondary cooling device 60. However, since the natural circulation circuit 62 is composed of one thermosyphon, the balance of the secondary refrigerant is naturally adjusted so that the amount of the secondary refrigerant in each condensation path 50 and each evaporation path 52 matches. The Therefore, in each condensation path 50 and each evaporation path 52, the secondary refrigerant is hardly unevenly distributed, and even if the secondary refrigerant is unevenly distributed, the amount of the secondary refrigerant flowing through the condensation path 50 and the evaporation path 52 is reduced. Since the adjusting force acts so as to match, it is not necessary to provide adjusting means such as a valve in order to adjust the balance of the secondary refrigerant, and the configuration of the secondary cooling device 60 can be simplified. Moreover, since the secondary refrigerant smoothly convects naturally in the natural circulation circuit 62, the cooling efficiency in the evaporator EP can be improved. Therefore, a plurality of condensation paths 50 and evaporation paths 52 can be provided in the secondary heat exchange section 42 and the evaporator EP, and a heat exchange area can be gained without bending or branching the condensation paths 50 and the evaporation paths 52. .

前記二次冷却装置60では、カスケード熱交換器HEおよび蒸発器EPの夫々に凝縮経路50および蒸発経路52を複数配置することができる。すなわち、1本当たりの凝縮経路50および蒸発経路52に要求される熱交換面積が小さくなり、各凝縮経路50および各蒸発経路52の配管長を短くすることが可能となる。これにより、各凝縮経路50および各蒸発経路52において、必要とされる配管長を稼ぐために蛇行させる回数を少なくでき、流通抵抗となる屈曲部分を減らせるから、当該凝縮経路50および蒸発経路52を流通する二次冷媒の圧力損失を小さくすることができる。また、二次冷却装置60は、液配管44、ガス配管46、凝縮経路50および蒸発経路52を分岐させることなく、自然循環回路62を全体として1つの冷媒の経路で構成しているから、配管等の分岐部に起因する圧力損失が発生しない。自然循環回路62では、凝縮経路50と蒸発経路52との間で自然対流に必要とされる二次冷媒のヘッド差を小さくできるので、凝縮経路50と蒸発経路52との間で要求される落差が小さくなり、二次熱交換部42と蒸発器EPとの上下の配置間隔を狭くすることが可能となり、二次冷却装置60をコンパクトにできる。また、自然循環回路62において、二次冷媒の圧力損失が小さいので、液配管44およびガス配管46として従来と比較して細い管径を選定しても、同一量の二次冷媒を回路内に循環させることができ、回路全体として充填する二次冷媒の量を削減することが可能となる。   In the secondary cooling device 60, a plurality of condensation paths 50 and evaporation paths 52 can be arranged in each of the cascade heat exchanger HE and the evaporator EP. That is, the heat exchange area required for each condensation path 50 and evaporation path 52 is reduced, and the length of each condensation path 50 and each evaporation path 52 can be shortened. Thereby, in each condensation path 50 and each evaporation path 52, the number of times of meandering in order to earn a required pipe length can be reduced, and the bent portion that becomes a distribution resistance can be reduced. Therefore, the condensation path 50 and the evaporation path 52 are reduced. The pressure loss of the secondary refrigerant that circulates can be reduced. In addition, the secondary cooling device 60 includes the natural circulation circuit 62 as a whole with one refrigerant path without branching the liquid pipe 44, the gas pipe 46, the condensation path 50, and the evaporation path 52. No pressure loss due to the branching part. In the natural circulation circuit 62, the head difference of the secondary refrigerant required for natural convection between the condensation path 50 and the evaporation path 52 can be reduced, so that the required drop between the condensation path 50 and the evaporation path 52 is required. Becomes smaller, and it is possible to narrow the upper and lower arrangement intervals between the secondary heat exchange section 42 and the evaporator EP, and the secondary cooling device 60 can be made compact. In addition, since the pressure loss of the secondary refrigerant is small in the natural circulation circuit 62, the same amount of the secondary refrigerant is put in the circuit even if the pipe diameter is smaller than the conventional pipe diameter as the liquid pipe 44 and the gas pipe 46. It is possible to circulate, and it is possible to reduce the amount of secondary refrigerant to be filled in the entire circuit.

このように、各凝縮経路50および各蒸発経路52の長さや断面積を減じることが可能であるので、二次熱交換部42や蒸発器EPをコンパクトにできると共に、循環する冷媒量を低減することで、自然循環回路62の圧力上昇を緩和する膨張タンク(図示せず)の容量等の付帯設備も小さくなるので、二次冷却装置60全体としてコンパクトにすることができ、コストダウンも可能となる。また液配管44、ガス配管46および蒸発管56等の配管を細径化することで、これらの配管44,46,56において耐圧性能を確保するために必要な肉厚を減ずることが可能となる。すなわち、各配管44,46,56が細径化したことだけでなく、各配管44,46,56の肉厚が減少することとの相乗によって、配管重量を一層削減することができ、コストを更に低減し得る。更に、実施例2の冷却設備32であっても、段落[0036],[0041]〜[0048]で説明した作用効果を奏する。   Thus, since the length and cross-sectional area of each condensation path 50 and each evaporation path 52 can be reduced, the secondary heat exchange unit 42 and the evaporator EP can be made compact, and the amount of circulating refrigerant is reduced. As a result, incidental facilities such as the capacity of an expansion tank (not shown) that relieve the pressure increase in the natural circulation circuit 62 are also reduced, so that the secondary cooling device 60 as a whole can be made compact and the cost can be reduced. Become. Further, by reducing the diameter of the pipes such as the liquid pipe 44, the gas pipe 46, and the evaporation pipe 56, it is possible to reduce the wall thickness necessary for ensuring pressure resistance performance in these pipes 44, 46, and 56. . That is, not only the diameter of each pipe 44, 46, 56 is reduced, but also synergistic with the decrease in the thickness of each pipe 44, 46, 56, the pipe weight can be further reduced, and the cost can be reduced. Further reduction can be achieved. Further, even the cooling facility 32 of the second embodiment exhibits the effects described in the paragraphs [0036] and [0041] to [0048].

実施例2の二次冷却装置60は、単一の自然循環回路62で構成されているので、冷媒チャージポート54や圧力の過剰な上昇を防ぐ安全弁や膨張タンク(何れも図示せず)等の付帯設備を1つ設けるだけでよい。すなわち、実施例1の二次冷却装置40の如く、独立した複数の自然循環回路48を備える構成と比較して、二次冷媒の偏流の防止や配管径の細径化等のメリットを維持しつつ、付帯設備がコンパクトになり、コストを低減し得る。また、実施例2の二次冷却装置60は、製造工程やメンテナンスにおける冷媒の充填作業を、単一の自然循環回路62に対し行なうだけなので、作業性およびメンテナンス性を向上し得る。   Since the secondary cooling device 60 of the second embodiment is composed of a single natural circulation circuit 62, the refrigerant charge port 54, a safety valve for preventing an excessive increase in pressure, an expansion tank (none of which are shown), and the like. It is only necessary to provide one incidental facility. That is, as compared with the configuration including a plurality of independent natural circulation circuits 48 as in the secondary cooling device 40 of the first embodiment, advantages such as prevention of drift of the secondary refrigerant and reduction in the pipe diameter are maintained. On the other hand, the incidental equipment becomes compact and the cost can be reduced. Moreover, since the secondary cooling device 60 of Example 2 performs only the refrigerant | coolant filling operation | work in a manufacturing process or a maintenance with respect to the single natural circulation circuit 62, workability | operativity and maintainability can be improved.

(変更例)
本願は前述した各実施例の構成に限定されるものではなく、その他の構成を適宜に採用することができる。
1.実施例では、複数の蒸発経路における冷媒の流入端および流出端を、上下方向に整列する位置関係で配置した場合で説明したが、図7に示すように、各蒸発経路52における冷媒の流入端52aおよび流出端52bが、空気の流れ方向に偏倚するよう配置してもよい。
2.実施例では、スパイラルフィンチューブ型の熱交換器の蒸発管を、同一平面(設置平面)上で蛇行状に配置した場合で説明したが、直線部分や折曲げ部分が同一平面上に配置されない構成であってもよい。例えば、図19に示す如く、各蒸発管56を、階段状の平面上で蛇行状に配置することで、該蒸発管56を、全体として蒸発管群を流通する空気の流れ方向で階段状に形成する。より具体的には、蒸発管56は、蒸発管群を流通する空気の流れ方向の上流側に設定された平面上で蛇行状に折り曲げて形成された上段部56Aと、下流側で上段部56Aより一段下がった位置に設定された平面上で蛇行状に折り曲げて形成された下段部56Bと、上段部56Aにおける空気の流れ方向の下流端部と下段部56Bにおける空気の流れ方向の上流端部とを接続する段差部56Cとからなり、上段部56Aの前記下流端部より下段部56Bの前記上流端部が上流側に延出して、全体としてZ字状に形成される。そして、これら階段状に形成された複数の蒸発管56が、各段を上下に離間するように層状に配置される。すなわち、上側に位置する蒸発管56における上段部56Aと、下側に位置する蒸発管56における上段部56Aとが上下に離間して層状に配置され、上側に位置する蒸発管56における下段部56Bと、下側に位置する蒸発管56における下段部56Bとが上下に離間して層状に配置される。
このように各蒸発管56を、直線部分56a,56aが上下に重なるように配置した段差部56Cによって階段状(Z字状)に形成することで、各蒸発管56における熱交換長を、蒸発管群を流通する空気の流れ方向に同じ長さの1つの平面上で蛇行状に折り曲げた場合より長くすることができる。すなわち、同一能力の蒸発器EPを、少ない本数の蒸発管56で構成することができ、部品点数および組立て工数を減らして製造コストを低減し得る。また、各蒸発管56は、蒸発経路52における流入端52a側から流出端52b側に上りとなる階段状に形成され、かつ上段部56Aおよび下段部56Bを構成する直線部分56aが冷媒の流入端52a側から流出端52b側に向けて順に上方に偏倚する(上段部56Aおよび下段部56Bが形成される平面が流入端52a側から流出端52b側に向けて上方傾斜する傾斜面となっている)よう形成されており、該蒸発管56で蒸発する冷媒の循環が速やかに行なわれる。
図19に示す変更例では、下側に位置する蒸発管56における上段部56Aの下側に、蒸発管56が存在しない空間が形成されるが、この空間の部分は、図1に示すように冷却室28に蒸発器EPを配置した場合に、前記送風ファン30により冷却室28に吸引された空気の流通量が少ない部分である。すなわち、蒸発管56を階段状に形成したことで空間が生じたとしても、冷却室28を流れる空気による熱交換が大きく低下するものではない。なお、蒸発管56の段数は2段に限らず3段以上であってもよく、また上段部56Aと下段部56Bとを接続する段差部56Cは鉛直等、直線部分56a,56aの少なくとも一部が上下に重なる関係となっていればよい。
3.実施例では、スパイラルフィンチューブ型の熱交換器の蒸発管を、同一平面(設置平面)上で蛇行状に配置した場合で説明したが、直線部分や折曲げ部分が同一平面上に配置されない構成であってもよい。例えば、蒸発管を階段状(例えばクランク状)の平面上で蛇行状に配置して熱交換器を構成し、各熱交換器における各段が上下に離間して層状に配置されるものであってもよい。なお、同一平面上に配置しない構成であっても、直線部分が冷媒の流入端側から流出端側に向けて順に上方に偏倚するように配置するのが好ましい。
4.実施例では、熱交換器として蒸発管の外周囲にフィンを螺旋状に巻き付けたスパイラルフィンチューブ型のものを採用した場合で説明したが、この構成に限定されるものではなく、例えば図8〜図16に示す構成を採用し得る。
図8は、蒸発管56の外周囲に螺旋状に巻き付けた突起状の伝熱促進部材74の軸方向(蒸発管56の長手方向)の厚みを大きくし、かつ伝熱促進部材74の螺旋ピッチを狭く設定したものである。
また図9は、図8の変更例に比べて伝熱促進部材74の軸方向の厚みを小さくし、かつ伝熱促進部材74の螺旋ピッチを広く設定したものである。
図10は、蒸発管56の外周囲に多数のスパインフィン(伝熱促進部材)76を螺旋状に突設したもの(所謂、スパインフィンチューブ)である。
図11は、蒸発管56の外周囲に、多数の突起状の伝熱促進部材78を螺旋を描くように突設したものである。なお、図11の変更例に係る伝熱促進部材78における螺旋ピッチや、軸方向の厚み等は任意に設定が可能である。
図12は、蒸発管56の長手方向に離間して複数の板状の伝熱促進部材80を並列に配設したものである。図12の変更例に示す伝熱促進部材80の形状としては、図12(a)の円形、図12(b)の四角形、図12(c)の八角形、図12(d)の上下左右に突部を有して全体として十字形となる多角形であってもよく、その他各種形状を採用し得る。
図13は、蒸発管56の長手方向に離間して、複数(2本以上で全ての蒸発管より少ない数)の蒸発管56に共通に接触するように板状の伝熱促進部材82を並列に配設したものである。図13の変更例に示す伝熱促進部材82の形状としては、図13(a)の四角形、図13(b)の小判形、図13(c)の矩形状に板体の左右端部に突部を有する多角形であってもよく、その他各種形状を採用し得る。
図14は、蒸発管56の長手方向に離間して複数の環状の伝熱促進部材84を並列に配設したものであって、軸方向の厚みを大きくすると共に軸方向の離間間隔を広く設定したものである。図14の変更例に示す伝熱促進部材84の形状としては、図14(a)の円形、図14(b)の四角形、図14(c)の八角形であってもよく、その他各種形状を採用し得る。
図15は、蒸発管56の外周囲に複数の突起86aを円形状に突設した伝熱促進部材86を、長手方向に離間して複数並列に配設したものである。なお、図15に示す変更例の伝熱促進部材86の軸方向の離間寸法や軸方向の厚み等は任意に設定が可能である。また各突起86aの形状についても、複数の突起86aから構成される伝熱促進部材86が、全体として図14(b),(c)等に示す変更例の伝熱促進部材84の外形形状と同一となるようなものであってもよい。
図16は、図14の変更例に比べて伝熱促進部材88の軸方向の厚みを大きくし、かつ伝熱促進部材88の螺旋ピッチを狭く設定したものである。なお、図16に示す変更例の伝熱促進部材88の形状については、図14の変更例と同様に各種形状のものを採用可能である。また、各伝熱促進部材88が、図15の変更例のように複数の突起から構成されるものであってもよい。
5.実施例では、熱交換器としてスパイラルフィンチューブ型のものを採用したが、蒸発器を流通する空気の流れに対する蒸発管の配置および二次冷媒として伝熱性能に優れた二酸化炭素を用いることで、蒸発器での効率的な熱交換が達成されることから、蒸発管(管体)に各種の伝熱促進部材を配設していない、蒸発管(管体)のみからなる熱交換器を採用することができる。そして、このように蒸発管(管体)のみからなる熱交換器を採用することで、複数の熱交換器の離間間隔を小さくすることができ、蒸発器をよりコンパクトにすることが可能となる。
なお、伝熱促進部材を配設しない蒸発管としては、例えば図17および図18の構成を採用することができる。
図17は、蒸発管56の断面形状を多角形状として表面積を大きくするようにしたものであって、図17(a)の八角形や、図17(b)の十字形等、その他各種の断面形状を採用することができる。
図18は、蒸発管56の表面に伝熱を促進する溝を形成したものであって、図18(a)および(b)に示すように周上で連続する溝90を軸方向に離間して形成したものや、図18(c)〜(e)に示すように、相互に連続しない多数の溝92を周方向および軸方向に離間して形成したものを採用することができる。なお、図18に示す変更例の溝の形状は、図示したものに限らず、任意の形状を採用し得る。
6.冷却設備の一次冷却装置として、吸収式やその他の冷凍回路も採用することができる。また、本発明に係る冷却装置は、熱交換部をファンによる送風等によって冷却する空冷式であってもよい。
7.カスケード熱交換器は、一次熱交換部と二次熱交換部とを別体で構成したり、他の方式の熱交換器であってもよい。
8.実施例では、一次冷却装置において液化冷媒を減圧する手段として膨張弁を用いたが、これに限られず、キャピラリーチューブまたはその他の減圧手段を採用し得る。
9.実施例では、二次ループ式冷凍回路を備える冷却設備の二次側に本発明に係る冷却装置を用いる例を挙げている。前述の如く、二次ループ式冷凍回路を備えた冷却設備の欠点を解消し得ることから、本発明に係る冷却装置を二次ループ式冷凍回路に適用することは非常に有用である。しかし、本発明に係る冷却装置は、二次ループ式冷凍回路に適用することに限定されず、単体で冷却装置として用いることも可能である。
10.本発明の冷却装置は、冷凍庫、冷凍・冷蔵庫、ショーケースおよびプレハブ庫等の所謂貯蔵庫、その他空調設備等にも適用し得る。
(Example of change)
The present application is not limited to the configuration of each of the embodiments described above, and other configurations can be appropriately employed.
1. In the embodiment, the case where the refrigerant inflow ends and the outflow ends in the plurality of evaporation paths are arranged in a positional relationship aligned in the vertical direction has been described. However, as shown in FIG. 52a and the outflow end 52b may be arranged so as to be biased in the air flow direction.
2. In the embodiment, the description has been given of the case where the evaporation tubes of the spiral fin tube type heat exchanger are arranged in a meandering manner on the same plane (installation plane), but the configuration in which the linear portion and the bent portion are not arranged on the same plane. It may be. For example, as shown in FIG. 19, by arranging the evaporator tubes 56 in a meandering manner on a stepped plane, the evaporator tubes 56 are stepped in the direction of the air flowing through the evaporator tube group as a whole. Form. More specifically, the evaporation pipe 56 includes an upper stage part 56A formed by meandering on a plane set on the upstream side in the flow direction of air flowing through the evaporator pipe group, and an upper stage part 56A on the downstream side. A lower step portion 56B formed by meandering on a plane set at a position that is lowered by one step, a downstream end portion in the air flow direction in the upper step portion 56A, and an upstream end portion in the air flow direction in the lower step portion 56B. The upstream end portion of the lower step portion 56B extends upstream from the downstream end portion of the upper step portion 56A, and is formed in a Z shape as a whole. The plurality of evaporation tubes 56 formed in a step shape are arranged in layers so as to separate each step up and down. In other words, the upper step portion 56A in the upper evaporation tube 56 and the upper step portion 56A in the lower evaporation tube 56 are arranged in layers in a vertically separated manner, and the lower step portion 56B in the upper evaporation tube 56 is located. And the lower step portion 56B of the evaporation pipe 56 located on the lower side are arranged in layers in a vertically spaced manner.
In this way, each evaporation pipe 56 is formed in a stepped shape (Z-shape) by the step portion 56C arranged so that the straight portions 56a and 56a overlap each other in the vertical direction, whereby the heat exchange length in each evaporation pipe 56 is evaporated. It can be made longer than the case where it is bent in a meandering manner on one plane having the same length in the flow direction of the air flowing through the tube group. That is, the evaporator EP having the same capacity can be configured with a small number of the evaporation pipes 56, and the number of parts and assembly man-hours can be reduced to reduce the manufacturing cost. Each of the evaporation pipes 56 is formed in a stepped shape that rises from the inflow end 52a side to the outflow end 52b side in the evaporation path 52, and the straight portions 56a constituting the upper step portion 56A and the lower step portion 56B are inflow ends of the refrigerant. Sequentially deviates upward from the 52a side toward the outflow end 52b (the plane on which the upper step portion 56A and the lower step portion 56B are formed is an inclined surface inclined upward from the inflow end 52a side toward the outflow end 52b side. The refrigerant that evaporates in the evaporation pipe 56 is circulated quickly.
In the modification shown in FIG. 19, a space where the evaporation pipe 56 does not exist is formed below the upper stage portion 56A of the evaporation pipe 56 located on the lower side. As shown in FIG. When the evaporator EP is disposed in the cooling chamber 28, this is a portion where the amount of air drawn into the cooling chamber 28 by the blower fan 30 is small. That is, even if a space is created by forming the evaporation pipe 56 in a stepped shape, the heat exchange by the air flowing through the cooling chamber 28 is not greatly reduced. The number of stages of the evaporation pipe 56 is not limited to two, but may be three or more, and the step part 56C that connects the upper part 56A and the lower part 56B is at least part of the straight parts 56a, 56a such as vertical. Need only be in a relationship of overlapping vertically.
3. In the embodiment, the description has been given of the case where the evaporation tubes of the spiral fin tube type heat exchanger are arranged in a meandering manner on the same plane (installation plane), but the configuration in which the linear portion and the bent portion are not arranged on the same plane. It may be. For example, the evaporator tubes are arranged in a meandering manner on a stepped (e.g., crank-shaped) plane to constitute a heat exchanger, and each stage in each heat exchanger is arranged in a layered manner with a vertical separation. May be. Note that, even in a configuration that is not arranged on the same plane, it is preferable that the linear portions are arranged so as to be displaced upward in order from the refrigerant inflow end side to the outflow end side.
4). In the embodiment, the case where a spiral fin tube type in which fins are spirally wound around the outer periphery of the evaporation tube is employed as the heat exchanger has been described. However, the present invention is not limited to this configuration. The configuration shown in FIG. 16 can be adopted.
FIG. 8 shows an increase in the axial thickness (longitudinal direction of the evaporation tube 56) of the protruding heat transfer promotion member 74 spirally wound around the outer periphery of the evaporation tube 56, and the helical pitch of the heat transfer promotion member 74. Is set narrowly.
FIG. 9 shows a case where the thickness of the heat transfer promotion member 74 in the axial direction is made smaller than that of the modified example of FIG.
FIG. 10 shows a so-called spine fin tube in which a large number of spine fins (heat transfer promoting members) 76 project in a spiral manner around the outer periphery of the evaporation tube 56.
In FIG. 11, a number of protruding heat transfer promoting members 78 are provided on the outer periphery of the evaporation tube 56 so as to draw a spiral. In addition, the helical pitch in the heat transfer promotion member 78 which concerns on the example of a change of FIG. 11, the thickness of an axial direction, etc. can be set arbitrarily.
FIG. 12 shows a plurality of plate-like heat transfer promoting members 80 arranged in parallel and spaced apart in the longitudinal direction of the evaporation pipe 56. The shape of the heat transfer promoting member 80 shown in the modified example of FIG. 12 includes a circle in FIG. 12 (a), a quadrangle in FIG. 12 (b), an octagon in FIG. 12 (c), and up, down, left and right in FIG. It may be a polygon having a protrusion and a cross shape as a whole, and various other shapes may be adopted.
In FIG. 13, the plate-like heat transfer promotion members 82 are arranged in parallel so as to be in contact with a plurality of (two or more and fewer than all the evaporation tubes) in common with a plurality of evaporation tubes 56 that are separated in the longitudinal direction of the evaporation tubes 56. Are arranged. As the shape of the heat transfer promoting member 82 shown in the modified example of FIG. 13, the rectangular shape of FIG. 13 (a), the oval shape of FIG. 13 (b), and the rectangular shape of FIG. A polygon having a protrusion may be used, and various other shapes may be employed.
FIG. 14 shows a configuration in which a plurality of annular heat transfer promoting members 84 are arranged in parallel apart from each other in the longitudinal direction of the evaporation pipe 56. The axial thickness is increased and the axial separation interval is set wide. It is a thing. The shape of the heat transfer promoting member 84 shown in the modified example of FIG. 14 may be the circular shape of FIG. 14 (a), the square shape of FIG. 14 (b), the octagonal shape of FIG. 14 (c), and other various shapes. Can be adopted.
FIG. 15 shows a configuration in which a plurality of heat transfer promoting members 86, each having a plurality of protrusions 86a projecting in a circular shape around the outer periphery of the evaporation pipe 56, are arranged in parallel spaced apart from each other in the longitudinal direction. In addition, the axial separation distance, the axial thickness, and the like of the heat transfer promotion member 86 of the modification shown in FIG. 15 can be arbitrarily set. Further, with respect to the shape of each protrusion 86a, the heat transfer promoting member 86 composed of a plurality of protrusions 86a is generally the same as the outer shape of the heat transfer promoting member 84 of the modified example shown in FIGS. 14 (b), (c) and the like. It may be the same.
FIG. 16 shows an example in which the thickness in the axial direction of the heat transfer promoting member 88 is increased and the helical pitch of the heat transfer promoting member 88 is set narrower than in the modified example of FIG. In addition, about the shape of the heat transfer promotion member 88 of the modification shown in FIG. 16, the thing of various shapes is employable similarly to the modification of FIG. Moreover, each heat-transfer promotion member 88 may be comprised from several protrusion like the example of a change of FIG.
5). In the examples, a spiral fin tube type was adopted as the heat exchanger, but by using carbon dioxide having excellent heat transfer performance as the secondary refrigerant and the arrangement of the evaporation tubes with respect to the air flow through the evaporator, Efficient heat exchange in the evaporator is achieved, so a heat exchanger consisting of only the evaporation pipe (tube body) that does not include various heat transfer promoting members on the evaporation pipe (tube body) is used. can do. And by adopting a heat exchanger consisting only of an evaporator tube (tube body) in this way, it is possible to reduce the spacing between the plurality of heat exchangers, and to make the evaporator more compact. .
In addition, as an evaporation pipe | tube which does not arrange | position a heat-transfer promotion member, the structure of FIG. 17 and FIG. 18 is employable, for example.
FIG. 17 shows a polygonal cross-sectional shape of the evaporation tube 56 to increase the surface area, and various other cross-sections such as an octagon in FIG. 17 (a) and a cross in FIG. 17 (b). Shape can be adopted.
FIG. 18 shows a structure in which a groove for promoting heat transfer is formed on the surface of the evaporation tube 56. As shown in FIGS. 18 (a) and 18 (b), the groove 90 continuous on the circumference is separated in the axial direction. As shown in FIGS. 18C to 18E, it is possible to employ a structure in which a large number of grooves 92 that are not continuous with each other are formed apart from each other in the circumferential direction and the axial direction. In addition, the shape of the groove of the modified example shown in FIG. 18 is not limited to the illustrated shape, and any shape can be adopted.
6). Absorption and other refrigeration circuits can also be employed as the primary cooling device for the cooling facility. In addition, the cooling device according to the present invention may be an air-cooling type that cools the heat exchanging portion by blowing air from a fan or the like.
7). In the cascade heat exchanger, the primary heat exchange unit and the secondary heat exchange unit may be configured separately, or a heat exchanger of another type may be used.
8). In the embodiment, the expansion valve is used as the means for reducing the pressure of the liquefied refrigerant in the primary cooling device. However, the present invention is not limited to this, and a capillary tube or other pressure reducing means may be employed.
9. In the Example, the example which uses the cooling device which concerns on this invention is given to the secondary side of the cooling equipment provided with a secondary loop type refrigerating circuit. As described above, it is possible to eliminate the disadvantages of the cooling equipment provided with the secondary loop type refrigeration circuit. Therefore, it is very useful to apply the cooling device according to the present invention to the secondary loop type refrigeration circuit. However, the cooling device according to the present invention is not limited to being applied to a secondary loop refrigeration circuit, and can be used alone as a cooling device.
10. The cooling device of the present invention can also be applied to so-called storages such as a freezer, a freezer / refrigerator, a showcase and a prefabricated store, and other air conditioning equipment.

34 一次冷却装置(一次側の回路),42 二次熱交換部(熱交換部),44 液配管
46 ガス配管,48 自然循環回路,50 凝縮経路,52 蒸発経路
52a 流入端,52b 流出端,55 熱交換器,56 蒸発管,56a 直線部分
56C 段差部,58 フィン(伝熱促進部材),62 自然循環回路
74,78,80,82,84,86,88 伝熱促進部材
76 スパインフィン(伝熱促進部材),EP 蒸発器
34 Primary cooling device (primary side circuit), 42 Secondary heat exchange part (heat exchange part), 44 Liquid piping 46 Gas piping, 48 Natural circulation circuit, 50 Condensation path, 52 Evaporation path 52a Inlet end, 52b Outlet end, 55 Heat exchanger, 56 Evaporating tube, 56a Linear portion 56C Stepped portion, 58 Fin (heat transfer promoting member), 62 Natural circulation circuit 74, 78, 80, 82, 84, 86, 88 Heat transfer promoting member 76 Spine fin ( Heat transfer promotion member), EP evaporator

Claims (6)

凝縮経路(50)を流通する気化冷媒を凝縮して液化冷媒とする熱交換部(42)と、この熱交換部(42)の下方に配置され、内部の蒸発経路(52)を流通する液化冷媒を蒸発させて気化冷媒とする管状の蒸発管(56)とを有し、液化冷媒を熱交換部(42)の凝縮経路(50)から前記蒸発経路(52)へ液配管(44)を介して流下させると共に、気化冷媒を前記蒸発経路(52)から熱交換部(42)の凝縮経路(50)へガス配管(46)を介して流通させる自然循環回路(48)を設けた冷却装置において、
互いに独立した複数の自然循環回路(48)と、複数の自然循環回路(48)の蒸発管(56)の集合で構成される蒸発器(EP)とを備えると共に、各自然循環回路(48)を循環する冷媒として二酸化炭素を用い、
前記各蒸発管(56)は、蒸発管(56)群を流通する空気の流れ方向と交差する横方向に直線部分(56a)が延在するよう蛇行状に折り曲げて形成され、
前記蒸発管(56)における前記空気の流れ方向下流側の部位に前記液配管(44)が接続されると共に、前記蒸発管(56)における前記空気の流れ方向上流側の部位に前記ガス配管(46)が接続され、
前記複数の蒸発管(56)は、相互に離間する状態で上下の関係で層状に配置される
ことを特徴とする冷却装置。
A heat exchange section (42) that condenses the vaporized refrigerant flowing through the condensation path (50) to form a liquefied refrigerant, and a liquefaction that is disposed below the heat exchange section (42) and flows through the internal evaporation path (52). A tubular evaporation pipe (56) that evaporates the refrigerant to be a vaporized refrigerant, and connects the liquid pipe (44) from the condensation path (50) of the heat exchange section (42) to the evaporation path (52) of the liquefied refrigerant. A cooling device provided with a natural circulation circuit (48) for flowing the vaporized refrigerant from the evaporation path (52) to the condensation path (50) of the heat exchange section (42) via the gas pipe (46). In
Each natural circulation circuit (48) includes a plurality of natural circulation circuits (48) independent of each other and an evaporator (EP) configured by a set of evaporation pipes (56) of the plurality of natural circulation circuits (48). Carbon dioxide is used as the refrigerant circulating through
Each of the evaporation pipes (56) is formed by being bent in a meandering manner so that a linear portion (56a) extends in a transverse direction intersecting a flow direction of air flowing through the evaporation pipe (56) group,
The liquid pipe (44) is connected to a part of the evaporation pipe (56) on the downstream side in the air flow direction, and the gas pipe (56) is connected to a part of the evaporation pipe (56) on the upstream side in the air flow direction. 46) is connected,
The cooling device, wherein the plurality of evaporation pipes (56) are arranged in a layered relationship in an up-down relationship in a state of being separated from each other.
凝縮経路(50)を流通する気化冷媒を凝縮して液化冷媒とする熱交換部(42)と、この熱交換部(42)の下方に配置され、内部の蒸発経路(52)を流通する液化冷媒を蒸発させて気化冷媒とする管状の蒸発管(56)とを有し、液化冷媒を熱交換部(42)の凝縮経路(50)から前記蒸発経路(52)へ液配管(44)を介して流下させると共に、気化冷媒を前記蒸発経路(52)から熱交換部(42)の凝縮経路(50)へガス配管(46)を介して流通させる自然循環回路(62)を設けた冷却装置において、
前記自然循環回路(62)は、複数の蒸発管(56)の集合で構成される蒸発器(EP)と、該複数の蒸発管(56)と同数の凝縮経路(50)とを備えると共に、該自然循環回路(62)を循環する冷媒として二酸化炭素を用い、
前記凝縮経路(50)の流出端(50b)に接続する液配管(44)を、当該凝縮経路(50)の流入端(50a)に連結したガス配管(46)が接続している蒸発管(56)と別の蒸発管(56)に接続すると共に、蒸発管(56)の流出端(52b)に接続するガス配管(46)を、当該蒸発管(56)の流入端(52a)に連結した液配管(44)が接続している凝縮経路(50)と別の凝縮経路(50)に接続して、全体として1つの自然循環回路(62)を構成し、
前記各蒸発管(56)は、蒸発管(56)群を流通する空気の流れ方向と交差する横方向に直線部分(56a)が延在するよう蛇行状に折り曲げて形成され、
前記蒸発管(56)における前記空気の流れ方向下流側の部位に前記液配管(44)が接続されると共に、前記蒸発管(56)における前記空気の流れ方向上流側の部位に前記ガス配管(46)が接続され、
前記複数の蒸発管(56)は、相互に離間する状態で上下の関係で層状に配置される
ことを特徴とする冷却装置。
A heat exchange section (42) that condenses the vaporized refrigerant flowing through the condensation path (50) to form a liquefied refrigerant, and a liquefaction that is disposed below the heat exchange section (42) and flows through the internal evaporation path (52). A tubular evaporation pipe (56) that evaporates the refrigerant to be a vaporized refrigerant, and connects the liquid pipe (44) from the condensation path (50) of the heat exchange section (42) to the evaporation path (52) of the liquefied refrigerant. And a cooling device provided with a natural circulation circuit (62) for flowing the vaporized refrigerant from the evaporation path (52) to the condensation path (50) of the heat exchange section (42) via the gas pipe (46). In
The natural circulation circuit (62) includes an evaporator (EP) constituted by a set of a plurality of evaporation tubes (56), and the same number of condensation paths (50) as the plurality of evaporation tubes (56), Using carbon dioxide as a refrigerant circulating in the natural circulation circuit (62),
The liquid pipe (44) connected to the outflow end (50b) of the condensation path (50) is an evaporation pipe (46) connected to the gas pipe (46) connected to the inflow end (50a) of the condensation path (50). 56) and another evaporation pipe (56) and a gas pipe (46) connected to the outflow end (52b) of the evaporation pipe (56) is connected to the inflow end (52a) of the evaporation pipe (56). Connected to the condensing path (50) to which the liquid pipe (44) connected is connected to another condensing path (50) to constitute one natural circulation circuit (62) as a whole,
Each of the evaporation pipes (56) is formed by being bent in a meandering manner so that a linear portion (56a) extends in a transverse direction intersecting a flow direction of air flowing through the evaporation pipe (56) group,
The liquid pipe (44) is connected to a part of the evaporation pipe (56) on the downstream side in the air flow direction, and the gas pipe (56) is connected to a part of the evaporation pipe (56) on the upstream side in the air flow direction. 46) is connected,
The cooling device, wherein the plurality of evaporation pipes (56) are arranged in a layered relationship in an up-down relationship in a state of being separated from each other.
前記蒸発経路(52)の液配管(44)が接続する流入端(52a)は、ガス配管(46)が接続する流出端(52b)より下方に位置している請求項1または2記載の冷却装置。   The cooling according to claim 1 or 2, wherein the inflow end (52a) to which the liquid pipe (44) of the evaporation path (52) is connected is located below the outflow end (52b) to which the gas pipe (46) is connected. apparatus. 前記各蒸発管(56)は、前記直線部分(56a)が少なくとも一部を上下に重なるよう配置された段差部(56C)によって蒸発管(56)群を流通する空気の流れ方向において階段状に形成され、該階段状に形成された複数の蒸発管(56)は、各段が上下の関係となるよう層状に配置される請求項1〜3の何れか一項に記載の冷却装置。   Each of the evaporation pipes (56) is stepped in the flow direction of the air flowing through the evaporation pipe (56) group by a step portion (56C) in which the linear portion (56a) is arranged so that at least a part thereof overlaps vertically. The cooling device according to any one of claims 1 to 3, wherein the plurality of evaporation pipes (56) formed in a stepped manner are arranged in layers so that the respective stages are in a vertical relationship. 前記蒸発管(56)の外周囲に伝熱促進部材(58,74,76,78,80,82,84,86,88)が配設されると共に、蛇行状に折り曲げられている該蒸発管(56)における隣り合う直線部分(56a)の伝熱促進部材(58,74,76,78,80,82,84,86,88)は相互に離間するよう構成され、
前記複数の蒸発管(56)は、前記伝熱促進部材(58,74,76,78,80,82,84,86,88)が相互に離間する状態で上下の関係で層状に配置される請求項1〜4の何れか一項に記載の冷却装置。
A heat transfer promoting member (58, 74, 76, 78, 80, 82, 84, 86, 88) is disposed around the outer periphery of the evaporation tube (56), and the evaporation tube is bent in a meandering manner. The heat transfer promoting members (58, 74, 76, 78, 80, 82, 84, 86, 88) of the adjacent straight portions (56a) in (56) are configured to be separated from each other,
The plurality of evaporation tubes (56) are arranged in layers in a vertical relationship with the heat transfer promoting members (58, 74, 76, 78, 80, 82, 84, 86, 88) being separated from each other. The cooling device as described in any one of Claims 1-4.
冷媒を強制循環させる機械圧縮式の一次側の回路(34)に対して、前記自然循環回路(48,62)が前記熱交換部(42)を介して熱的に接続される請求項1〜5の何れか一項に記載の冷却装置。   The natural circulation circuit (48, 62) is thermally connected to the mechanical compression primary circuit (34) for forcedly circulating the refrigerant through the heat exchange section (42). The cooling device according to any one of 5.
JP2009161054A 2008-08-26 2009-07-07 Cooling system Expired - Fee Related JP5275929B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009161054A JP5275929B2 (en) 2008-08-26 2009-07-07 Cooling system
US13/058,820 US20110138849A1 (en) 2008-08-26 2009-07-28 Cooling Device
PCT/JP2009/063418 WO2010024080A1 (en) 2008-08-26 2009-07-28 Cooling device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008217101 2008-08-26
JP2008217101 2008-08-26
JP2009161054A JP5275929B2 (en) 2008-08-26 2009-07-07 Cooling system

Publications (2)

Publication Number Publication Date
JP2010078309A true JP2010078309A (en) 2010-04-08
JP5275929B2 JP5275929B2 (en) 2013-08-28

Family

ID=41721252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161054A Expired - Fee Related JP5275929B2 (en) 2008-08-26 2009-07-07 Cooling system

Country Status (3)

Country Link
US (1) US20110138849A1 (en)
JP (1) JP5275929B2 (en)
WO (1) WO2010024080A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262314A (en) * 1985-09-13 1987-03-19 Hitachi Ltd Large aperture reflecting mirror having temperature adjusting function
JP2011247501A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric Corp Cold air circulation type showcase
WO2012103009A2 (en) * 2011-01-25 2012-08-02 Heat-Pipe Technology, Inc. Heat pipe system having common vapor rail
JPWO2012066763A1 (en) * 2010-11-15 2014-05-12 三菱電機株式会社 Refrigeration equipment
JP2017089991A (en) * 2015-11-12 2017-05-25 日本フリーザー株式会社 Parallel distribution type cooling system
KR101855101B1 (en) 2011-11-02 2018-05-08 에스케이이노베이션 주식회사 Device for closed-loop cooling battery
JPWO2017154093A1 (en) * 2016-03-08 2018-08-09 三菱電機株式会社 Air conditioner for vehicles

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405015B2 (en) * 2007-12-19 2014-02-05 ホシザキ電機株式会社 Cooling system
US9605887B2 (en) 2011-07-29 2017-03-28 Hdt Expeditionary Systems, Inc. Transportable packaged ice supply system for high temperature environments
US9328934B2 (en) * 2013-08-05 2016-05-03 Trane International Inc. HVAC system subcooler
KR101754337B1 (en) * 2015-06-16 2017-07-07 동부대우전자 주식회사 Ice making duct of refrigerator and ice making method thereof
KR101696893B1 (en) * 2015-06-17 2017-01-16 동부대우전자 주식회사 Refrigerator and ice making method thereof
WO2018066206A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Machine temperature control device
US9976782B1 (en) * 2016-12-18 2018-05-22 Frostime LLC Portable instant cooling system with controlled temperature obtained through timed-release liquid or gaseous CO2 coolant for general refrigeration use in mobile and stationary containers
US10718558B2 (en) * 2017-12-11 2020-07-21 Global Cooling, Inc. Independent auxiliary thermosiphon for inexpensively extending active cooling to additional freezer interior walls
DE102019207726A1 (en) * 2019-05-27 2020-12-03 Mahle International Gmbh Temperature control system
JP7072547B2 (en) * 2019-09-10 2022-05-20 古河電気工業株式会社 Cooling device and cooling system using cooling device
AU2022357257A1 (en) * 2021-09-30 2024-04-11 ECOOLTEC Grosskopf GmbH Method and device for controlling the temperature of a space to be temperature-controlled
CN117440671B (en) * 2023-12-21 2024-03-08 福建省江南冷却科技有限公司 Control method of cooling system of intelligent mining equipment unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307226A (en) * 1994-05-11 1995-11-21 Akutoronikusu Kk Cooling of stationary induction machine coil
JPH11257720A (en) * 1998-03-10 1999-09-24 Takenaka Komuten Co Ltd Building frame regenerative air conditioning system
JP2005098603A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Air conditioner of natural circulation method
JP2008096085A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Cooling apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322341A (en) * 1940-01-27 1943-06-22 Morris F Booth Heat exchange unit
JPS6396463A (en) * 1986-10-08 1988-04-27 株式会社東芝 Refrigerator
JP2007071519A (en) * 2005-09-09 2007-03-22 Sanden Corp Cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307226A (en) * 1994-05-11 1995-11-21 Akutoronikusu Kk Cooling of stationary induction machine coil
JPH11257720A (en) * 1998-03-10 1999-09-24 Takenaka Komuten Co Ltd Building frame regenerative air conditioning system
JP2005098603A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Air conditioner of natural circulation method
JP2008096085A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Cooling apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262314A (en) * 1985-09-13 1987-03-19 Hitachi Ltd Large aperture reflecting mirror having temperature adjusting function
JP2011247501A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric Corp Cold air circulation type showcase
JPWO2012066763A1 (en) * 2010-11-15 2014-05-12 三菱電機株式会社 Refrigeration equipment
US9599395B2 (en) 2010-11-15 2017-03-21 Mitsubishi Electric Corporation Refrigerating apparatus
WO2012103009A2 (en) * 2011-01-25 2012-08-02 Heat-Pipe Technology, Inc. Heat pipe system having common vapor rail
WO2012103009A3 (en) * 2011-01-25 2012-11-22 Heat-Pipe Technology, Inc. Heat pipe system having common vapor rail
KR101855101B1 (en) 2011-11-02 2018-05-08 에스케이이노베이션 주식회사 Device for closed-loop cooling battery
JP2017089991A (en) * 2015-11-12 2017-05-25 日本フリーザー株式会社 Parallel distribution type cooling system
JPWO2017154093A1 (en) * 2016-03-08 2018-08-09 三菱電機株式会社 Air conditioner for vehicles

Also Published As

Publication number Publication date
US20110138849A1 (en) 2011-06-16
WO2010024080A1 (en) 2010-03-04
JP5275929B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5275929B2 (en) Cooling system
JP5405015B2 (en) Cooling system
JP2005326138A (en) Cooling device and vending machine with it
JP2008261615A (en) Heat exchanger, heat exchange device, refrigerator and air conditioner
CN100549560C (en) Stirling cooling storage
JP2011038729A (en) Refrigeration apparatus
JP2008096085A (en) Cooling apparatus
WO2010001643A1 (en) Cooling device and method for manufacturing the same
JP4945712B2 (en) Thermosiphon
US11262117B2 (en) Refrigerator
JP4609316B2 (en) refrigerator
CN106969574B (en) Refrigerator
JP5219657B2 (en) Cooling device and manufacturing method thereof
JP5139093B2 (en) Cooling system
JP5701572B2 (en) CO2 brine cooling method and cooling equipment
JP2007278541A (en) Cooling system
JP5139019B2 (en) Cooling system
WO2009157318A1 (en) Cooling device
JP2019132470A (en) Heat collecting and radiating tube and geothermal heat pump using the same
JP4001607B2 (en) Stirling refrigerator
JP2005115824A (en) Warming system and vending machine using same
JP2009270787A (en) Heat exchanger, refrigerator and air conditioner
JP2002340441A (en) Heat exchanger and cooling system
JP2024013118A (en) Cooling device
JP2010007985A (en) Cooling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees