JP2019132470A - Heat collecting and radiating tube and geothermal heat pump using the same - Google Patents

Heat collecting and radiating tube and geothermal heat pump using the same Download PDF

Info

Publication number
JP2019132470A
JP2019132470A JP2018013384A JP2018013384A JP2019132470A JP 2019132470 A JP2019132470 A JP 2019132470A JP 2018013384 A JP2018013384 A JP 2018013384A JP 2018013384 A JP2018013384 A JP 2018013384A JP 2019132470 A JP2019132470 A JP 2019132470A
Authority
JP
Japan
Prior art keywords
pipe
heat
tube
insulating material
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018013384A
Other languages
Japanese (ja)
Other versions
JP7124263B2 (en
Inventor
哲明 武田
Tetsuaki Takeda
哲明 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2018013384A priority Critical patent/JP7124263B2/en
Publication of JP2019132470A publication Critical patent/JP2019132470A/en
Application granted granted Critical
Publication of JP7124263B2 publication Critical patent/JP7124263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To more improve heat collecting and radiating effect in a heat collecting and radiating tube of a direct expansion type geothermal heat pump causing refrigerant phase change.SOLUTION: A heat collecting and radiating tube of the present invention is a heat collecting and radiating tube for a direct expansion type geothermal heat pump which is housed in a casing pipe buried in the ground. The heat collecting and radiating tube comprises: a main pipe; and an adiabatic material covering a part of the main pipe. The main pipe comprises: first and second outflow/inflow ports for inflow or outflow of refrigerant; a first pipe from the first outflow/inflow port to the end; and a second pipe from the second outflow/inflow port to the end. The first pipe and the second pipe are connected to communicate with each other at the end, the first and second outflow/inflow ports are provided on the ground surface side of the casing pipe. The ends of the first pipe and the second pipe are located at a deepest position in the heat collecting and radiating tube when the casing pipe is buried, the first pipe is covered with the adiabatic material l at least to the end thereof.SELECTED DRAWING: Figure 1

Description

本発明は、採放熱管およびそれを用いた地中熱ヒートポンプに関し、特に直接膨張方式地中熱ヒートポンプに用いられる採放熱管及びそれを用いた地中熱ヒートポンプに関する。   The present invention relates to a heat collecting / radiating tube and a geothermal heat pump using the same, and more particularly to a heat collecting / radiating tube used for a direct expansion type geothermal heat pump and a geothermal heat pump using the same.

地中熱ヒートポンプには間接方式と直接膨張方式がある。間接方式は、ヒートポンプの室外機内に代替フロン等の冷媒と水または不凍液(ブラインと呼ぶ)との熱交換器を設け、冷媒の熱をブラインに与えることにより、このブラインを地中に設けたボアホール内に設けた樹脂または金属製のパイプに導入して、このブラインを介して間接的に地中との間で採放熱を行うものである。(特許文献1、2)   There are an indirect system and a direct expansion system in the geothermal heat pump. The indirect system is a borehole in which the brine is provided in the ground by providing a heat exchanger between a refrigerant such as CFC substitute and water or antifreeze (referred to as brine) in the outdoor unit of the heat pump and supplying the heat of the coolant to the brine. It is introduced into a resin or metal pipe provided inside, and heat is collected from the ground indirectly through this brine. (Patent Documents 1 and 2)

一方、直接膨張方式は、銅製円管で構成した採放熱管を、間接方式と比べ浅い(深さ30m程度)地中に埋設して地中熱交換器とし、ヒートポンプの冷媒を直接地中熱交換器に導入して、地中との間で採放熱を行う方法である。このため冷媒としては代替フロン系冷媒が用いられている。   On the other hand, in the direct expansion method, a heat-dissipating tube composed of a copper circular tube is embedded in the ground (shallowing about 30m) shallower than the indirect method to form a ground heat exchanger, and the heat pump refrigerant is directly used as the ground heat. It is a method of introducing heat into the exchanger and collecting heat from the ground. For this reason, alternative chlorofluorocarbon refrigerants are used as the refrigerant.

直接膨張方式は、地中熱交換器に直接冷媒を導入することから、地中熱交換器は暖房運転時に蒸発器、冷房運転時には凝縮器となるため、地中熱交換器内で冷媒の相変化を伴う流れとなる。   In the direct expansion method, refrigerant is introduced directly into the underground heat exchanger, so the underground heat exchanger becomes an evaporator during heating operation and a condenser during cooling operation. It becomes a flow with change.

地中熱ヒートポンプにおいては、その採放熱の効率を上げるため、種々の施策が取られている。例えば、特許文献1、2などに示されるように採放熱管などに断熱材を用いて不必要な熱交換が発生することを防ぐ手だてが示されている。   In the geothermal heat pump, various measures are taken in order to increase the efficiency of heat collection and radiation. For example, as shown in Patent Documents 1 and 2 and the like, there is shown a means for preventing unnecessary heat exchange from occurring by using a heat insulating material in a heat-dissipating tube or the like.

また、直接膨張方式の地中熱ヒートポンプの採放熱管においては、冷媒の相変化を生じせしめていることに起因する対処が必要である。このため、例えば非特許文献1にように、U次形状の採放熱管の一部に断熱材を巻いた構成の採放熱管が提案されている。   Further, in the heat collecting and radiating pipe of the direct expansion type underground heat pump, it is necessary to take measures due to the fact that the refrigerant has undergone a phase change. For this reason, for example, as in Non-Patent Document 1, a heat collecting / radiating tube having a configuration in which a heat insulating material is wound around a part of a U-shaped heat collecting / radiating tube has been proposed.

特開2014−005981号公報JP 2014-005981 A 特開2014−084857号公報JP 2014-084857 A

村松範彦他、日本機械学会2016年度年次大会、直膨方式地中熱ヒートポンプの交換性能−地中熱交換器の性能―、2016/9/11〜14Norihiko Muramatsu et al., 2016 Annual Meeting of the Japan Society of Mechanical Engineers, Exchange performance of direct expansion type geothermal heat pump-Performance of geothermal heat exchanger, 2016/9 / 11-14

冷媒の相変化を生じせしめている直接膨張方式の地中熱ヒートポンプの採放熱管において、より採放熱効果を上げる施策が求められている。   There is a need for a measure to further improve the heat-dissipating effect in the heat-dissipating pipe of the direct expansion type geothermal heat pump that causes the phase change of the refrigerant.

本発明の採放熱管は、地中内に埋設するケーシング管内に納められる直接膨張方式地中熱ヒートポンプ用の採放熱管であって、該採放熱管は、本管と該本管の一部を覆う断熱材とを具備し、該本管は、冷媒が流入あるいは流出する第1、第2の流出入口と、第1の流出入口から端部までの第1の管と、第2の流出入口から端部までの第2の管とを備え、第1の管と第2の管は端部において互いに連通するように接続され、第1、第2の流出入口はケーシング管の地表面側に備えられ、端部はケーシング管が埋設された場合に採放熱管において最深に位置し、第1の管は断熱材に覆われており、少なくとも端部まで断熱材が第1の管を覆うように構成されたことを特徴とする。   The heat collecting and radiating pipe of the present invention is a heat collecting and radiating pipe for a direct expansion type underground heat pump that is housed in a casing pipe embedded in the ground, and the heat collecting and radiating pipe includes the main pipe and a part of the main pipe. The main pipe includes first and second outlets through which refrigerant flows in and out, a first pipe from the first outlet to the end, and a second outlet. A second pipe from the inlet to the end, the first pipe and the second pipe are connected to communicate with each other at the end, and the first and second outlets are on the ground surface side of the casing pipe When the casing tube is embedded, the end portion is located at the deepest in the heat-radiating / radiating tube, the first tube is covered with the heat insulating material, and the heat insulating material covers at least the end portion of the heat insulating material. It was configured as described above.

本発明の地中熱ヒートポンプは該採放熱管を備えている。   The geothermal heat pump of the present invention includes the heat collecting and radiating pipe.

直接膨張方式の地中熱ヒートポンプの採放熱管の効率を上げることが可能となる。   It is possible to increase the efficiency of the heat collecting and radiating pipe of the direct expansion type geothermal heat pump.

本発明の採放熱管の第1の例を示す図である。It is a figure which shows the 1st example of the heat collecting / radiating tube of this invention. 本発明の採放熱管を用いた地中熱ヒートポンプの一例を示す図である。It is a figure which shows an example of the underground heat pump using the heat collecting / radiating pipe of this invention. 本発明の採放熱管の第2の例を示す図である。It is a figure which shows the 2nd example of the heat collecting and radiating tube of this invention. 本発明の採放熱管の第3の例を示す図である。It is a figure which shows the 3rd example of the heat collecting and radiating tube of this invention.

(実施例1)
(構成)
本発明の採放熱管の第1の例を図1に、本発明の採放熱管11を用いた地中熱ヒートポンプの一例を図2にそれぞれ示す。
Example 1
(Constitution)
FIG. 1 shows a first example of the heat collecting and radiating pipe of the present invention, and FIG. 2 shows an example of a geothermal heat pump using the heat collecting and radiating pipe 11 of the present invention.

図1に示すように、採放熱管11は、本管4とその一部を覆う断熱材5とを有している。本管4は、冷媒の流出入口1、2を備えたU字形状の管であり、冷媒が流れる管の本体である。流出入口1、2は地中熱ヒートポンプの動作モードにより、冷媒の流入口あるいは流出口となる。また、本管4は、第1の流出入口1から端部3までの第1の管41と、第2の流出入口2から端部3までの第2の管42とを備え、第1の管41と第2の管42は端部3において互いに連通するように接続される。また、第1の管41は断熱材(保温材)5に覆われており、少なくとも断熱材5を端部3まで覆うように構成している。ここで端部3は、図2に示したように本管4を地中に設置したときに最深の位置にあたる部分である。したがって端部(あるいは端点)3は本管4の最深部あるいは最下部となる。   As shown in FIG. 1, the heat-dissipating pipe 11 has a main pipe 4 and a heat insulating material 5 covering a part thereof. The main pipe 4 is a U-shaped pipe provided with refrigerant outlets 1 and 2 and is a main body of the pipe through which the refrigerant flows. The outflow inlets 1 and 2 are refrigerant inlets or outlets depending on the operation mode of the geothermal heat pump. Further, the main pipe 4 includes a first pipe 41 from the first outflow inlet 1 to the end 3 and a second pipe 42 from the second outflow inlet 2 to the end 3. The tube 41 and the second tube 42 are connected to communicate with each other at the end 3. Further, the first pipe 41 is covered with a heat insulating material (heat insulating material) 5 and is configured to cover at least the heat insulating material 5 to the end portion 3. Here, the end 3 is a portion corresponding to the deepest position when the main pipe 4 is installed in the ground as shown in FIG. Accordingly, the end (or end point) 3 is the deepest part or the lowest part of the main pipe 4.

図1の例では、第1の管41は、第1の流出入口1から端部3に向かって直線状に延びる直線部41aと、管41が曲げられU字形状の底部を成す曲線部41bとを有している。直線部41aと曲線部41bは、管41が曲がり始めるポイントBで管が互いに連通するように構成される。同様に第2の管42は、第2の流出入口2から端部3に向かって直線状に延びる直線部42aと、管42が曲げられU字形状の底部を成す曲線部42bとを有している。直線部42aと曲線部42bは、管42が曲がり始めるポイントCで管が互いに連通するように構成される。なお、ポイントBとポイントCは、採放熱管11を用いた地中熱ヒートポンプを地中に設置したときに水平面と平行になるように構成してもよい。   In the example of FIG. 1, the first pipe 41 includes a straight part 41 a that extends linearly from the first outflow inlet 1 toward the end part 3, and a curved part 41 b that forms a U-shaped bottom by bending the pipe 41. And have. The straight portion 41a and the curved portion 41b are configured such that the tubes communicate with each other at a point B at which the tube 41 begins to bend. Similarly, the second pipe 42 has a straight part 42a extending linearly from the second outflow inlet 2 toward the end part 3, and a curved part 42b forming a U-shaped bottom by bending the pipe 42. ing. The straight portion 42a and the curved portion 42b are configured such that the tubes communicate with each other at a point C at which the tube 42 begins to bend. In addition, you may comprise the point B and the point C so that it may become parallel to a horizontal surface, when the underground heat pump using the heat collecting / radiating pipe 11 is installed in the ground.

なお、本管4は、例えば銅管を用いることができる。またその径は例えば3/8インチ程度のものが利用できる。   For example, a copper pipe can be used as the main pipe 4. Further, for example, a diameter of about 3/8 inch can be used.

図1に示す例では、断熱材5は第1の管41の直線部41aを覆う断熱材51と、第1の管41の曲線部41bを覆う断熱材52とから構成されている。なお、断熱材5は、第1の流収入口1を含むまで覆ってもよい。あるいは、本管4がケーシング管6内の充填された水7の水面部分まで覆うようにしてもよい。よい好ましくは第1の流出入口から冷暖房機までの配管全てを断熱材5で覆うようにすればよい。また、性能がでれば図2示すように若干水7につかる部分までであってもよい。   In the example illustrated in FIG. 1, the heat insulating material 5 includes a heat insulating material 51 that covers the straight portion 41 a of the first pipe 41 and a heat insulating material 52 that covers the curved portion 41 b of the first pipe 41. The heat insulating material 5 may be covered until it includes the first flow revenue port 1. Alternatively, the main pipe 4 may cover the water surface portion of the filled water 7 in the casing pipe 6. Preferably, all the piping from the first outlet to the air conditioner may be covered with the heat insulating material 5. In addition, as long as the performance is achieved, it may be up to a portion that is slightly immersed in water 7 as shown in FIG.

本例における地中熱ヒートポンプは、地面に形成されたボアホール9にケーシング管6を納め、そのケーシング管6に水7を充填するとともに上述した採放熱管11をケーシング管6内に設置する。ここで、ケーシング管6とボアホール9との間は硅砂8を充填するとよい。   In the geothermal heat pump in this example, a casing pipe 6 is placed in a bore hole 9 formed on the ground, and the casing pipe 6 is filled with water 7 and the above-described heat-dissipating pipe 11 is installed in the casing pipe 6. Here, the space between the casing tube 6 and the bore hole 9 may be filled with the sand 8.

冷媒は、例えば、R410AやR32などの代替フロン等を利用することができる。   As the refrigerant, for example, alternative chlorofluorocarbons such as R410A and R32 can be used.

本例では、地中内に埋設するケーシング管6内に納められる直接膨張方式地中熱ヒートポンプ用の採放熱管11であって、採放熱管11は本管4とその一部を覆う断熱材5とを具備し、本管4は、冷媒が流入あるいは流出する第1、第2の流出入口(1,2)と、第1の流出入口1から端部3までの第1の管41と、第2の流出入口2から端部3までの第2の管42とを備え、第1の管41と第2の管42は端部3において互いに連通するように接続され、第1、第2の流出入口はケーシング管の地表面側に備えられ、端部3は、ケーシング管が埋設された場合に採放熱管において最深に位置し、第1の管41は断熱材(保温材)5に覆われており、少なくとも端部3まで断熱材5が第1の管41を覆うように、採放熱管11を構成する。   In this example, it is a heat collecting / radiating pipe 11 for a direct expansion type underground heat pump which is housed in a casing pipe 6 embedded in the ground, and the heat collecting / radiating pipe 11 is a heat insulating material covering the main pipe 4 and a part thereof. 5 and the main pipe 4 includes first and second outlets (1, 2) through which the refrigerant flows in or out, and a first pipe 41 from the first outlet 1 to the end 3; A second pipe 42 from the second outflow inlet 2 to the end 3, and the first pipe 41 and the second pipe 42 are connected to communicate with each other at the end 3, and the first and second 2 is provided on the ground surface side of the casing tube, the end 3 is located at the deepest in the heat-radiating / radiating tube when the casing tube is buried, and the first tube 41 is a heat insulating material (heat insulating material) 5. The heat-dissipating tube 11 is configured so that the heat insulating material 5 covers the first tube 41 up to at least the end 3.

(動作)
暖房運転においては、採放熱管11の本管4の流出入口1(第1の流出入口)から液状の冷媒を流入させる。ここで、本管4の第1の管41は端部(最下部)3までを断熱材5で覆っている。このため、液状の冷媒が地上から本管4の第1の管41を流れる際に地中から熱をもらって蒸発(気化)しない。
(Operation)
In the heating operation, liquid refrigerant is caused to flow from the outlet 1 (first outlet) of the main pipe 4 of the heat collection and discharge pipe 11. Here, the first pipe 41 of the main pipe 4 covers up to the end (lowermost part) 3 with the heat insulating material 5. For this reason, when the liquid refrigerant flows through the first pipe 41 of the main pipe 4 from the ground, it receives heat from the ground and does not evaporate (evaporate).

つまり、本管4内での冷媒の流れが下向き流れから上向き流れに反転する部分まで(少なくとも端部3を含む部分まで)断熱材(保温材)5で覆うことにより地中熱を遮断している。この結果、本管4内の液状冷媒が流下する間に蒸発による気泡を発生させず、液状冷媒が上向き流れに反転するまで気泡の発生を排除する。換言すると断熱材5の無い第2の管42が蒸発器として動作し、断熱材5で覆われた第1の管41は気泡排除装置とみなすことができる。端部3を通過した冷媒は本管4の第2の管42を上向きに流れ、ここで地中から熱をもらって蒸発(気化)する。蒸発(気化)した暖かい冷媒は、本管4の流出入口2(第2の流出入口)から流出され、暖房に利用される。   In other words, the heat of the refrigerant in the main pipe 4 is covered with the heat insulating material (heat insulating material) 5 up to the portion where the flow of the refrigerant is reversed from the downward flow to the upward flow (up to the portion including the end portion 3). Yes. As a result, bubbles are not generated by evaporation while the liquid refrigerant in the main pipe 4 flows down, and generation of bubbles is eliminated until the liquid refrigerant is reversed to an upward flow. In other words, the 2nd pipe | tube 42 without the heat insulating material 5 operate | moves as an evaporator, and the 1st pipe | tube 41 covered with the heat insulating material 5 can be considered as a bubble removal apparatus. The refrigerant that has passed through the end portion 3 flows upward through the second pipe 42 of the main pipe 4 and evaporates (vaporizes) by receiving heat from the ground. The evaporated (vaporized) warm refrigerant flows out from the outflow port 2 (second outflow port) of the main pipe 4 and is used for heating.

一方、冷房運転においては、採放熱管11の本管4の流出入口2(第2の流出入口)から気体状の冷媒を流入させる。ここで、本管4の第1の管41は端部(最下部)3までを断熱材5で覆っている。このため、気体状の冷媒が地上から本管4の第2の管42を流下する間に地中に放熱して凝縮し液状冷媒となったのち、端部(最下部)3で反転して、本管4の第1の管41を経て地上まで上昇する間に液状冷媒が地中から熱をもらって再び蒸発(気化)しないように動作する。換言すると断熱材5の無い第2の管42が凝縮器として動作し、断熱材5で覆われた第1の管41は気泡排除装置とみなすことができる。端部3を通過した冷媒は本管4の第1の管41を上向きに流れ、ここで再度蒸発(気化)することなく本管4の流出入口1から液状に冷却された冷媒として取り出され、冷房に利用される。   On the other hand, in the cooling operation, gaseous refrigerant is caused to flow from the outflow inlet 2 (second outflow inlet) of the main pipe 4 of the heat collection and discharge pipe 11. Here, the first pipe 41 of the main pipe 4 covers up to the end (lowermost part) 3 with the heat insulating material 5. For this reason, after the gaseous refrigerant flows from the ground down the second pipe 42 of the main pipe 4 to the ground, it dissipates heat and condenses to become a liquid refrigerant, and then reverses at the end (lowermost part) 3. The liquid refrigerant operates so that it does not evaporate (evaporate) again by receiving heat from the ground while it rises to the ground via the first pipe 41 of the main pipe 4. In other words, the second tube 42 without the heat insulating material 5 operates as a condenser, and the first tube 41 covered with the heat insulating material 5 can be regarded as a bubble eliminator. The refrigerant that has passed through the end portion 3 flows upward through the first pipe 41 of the main pipe 4, and is taken out as a refrigerant cooled in liquid form from the outlet 1 of the main pipe 4 without evaporating (vaporizing) again. Used for cooling.

(実施例2)
図3に、本発明の第2の例を示す。図3は、図1の採放熱管11を採放熱管11'に置き換えた例である。具体的には図3は、端部3を超えて採放熱管11’の本管4の第2の管42の曲線部42bまで断熱材5で覆った場合を示す図であり、その他は図1に示す例と同じである。断熱材5は、第1の管41の直線部41aを覆う断熱材51と、第1の管41の曲線部41bおよび第2の管42の曲線部42bとを覆う断熱材52’とから構成されており、断熱材52’が端部3を完全に含むように構成されている。そしてこのように構成することにより、冷媒の流れる方向が完全に切り替わる部分まで覆うようにしたものである。言い換えると、端部3から、第2の管42が地表面に対し垂直方向に形成された部分まで、第2の管42が断熱材5でさらに覆われるようにしている。この結果、冷暖房時に第1の管41での気泡発生や発生した気泡の逆流をより完全に防ぎより効率を上げることが可能となる。この例では、第2の管42において断熱材5が無い部分が蒸発器(暖房運転時)あるいは凝縮器(冷房運転時)として機能する。
(Example 2)
FIG. 3 shows a second example of the present invention. FIG. 3 shows an example in which the heat-radiating / radiating tube 11 of FIG. 1 is replaced with a heat-radiating / radiating tube 11 ′. 3 is a figure which shows the case where it covers with the heat insulating material 5 from the edge part 3 to the curved part 42b of the 2nd pipe | tube 42 of the main pipe 4 of the heat-dissipation pipe | tube 11 '. This is the same as the example shown in FIG. The heat insulating material 5 includes a heat insulating material 51 that covers the straight portion 41 a of the first pipe 41 and a heat insulating material 52 ′ that covers the curved portion 41 b of the first tube 41 and the curved portion 42 b of the second tube 42. The heat insulating material 52 ′ is configured to completely include the end 3. And by comprising in this way, it has covered even the part which the direction which a refrigerant | coolant flows completely switches. In other words, the second tube 42 is further covered with the heat insulating material 5 from the end portion 3 to a portion where the second tube 42 is formed in a direction perpendicular to the ground surface. As a result, it is possible to more completely prevent the generation of bubbles in the first pipe 41 and the backflow of the generated bubbles during cooling and heating, and increase efficiency. In this example, the portion without the heat insulating material 5 in the second pipe 42 functions as an evaporator (during heating operation) or a condenser (during cooling operation).

なお、ポイントBとポイントCは、採放熱管11’を用いた地中熱ヒートポンプを地中に設置したときに水平面と平行になるように構成してある場合は、端部3を超えてポイントCまで断熱材5で覆うとよい。さらに好ましくは、採放熱管11’の本管4の第2の管42は、端部3から100mm以上高い位置までの断熱材52’で覆われるようにするとよい。   In addition, when it is comprised so that it may become parallel to a horizontal surface when the geothermal heat pump using the heat extraction pipe | tube 11 'is installed in the ground, the point B and the point C are points beyond the edge part 3. It is good to cover up to C with the heat insulating material 5. More preferably, the second pipe 42 of the main pipe 4 of the heat collecting and radiating pipe 11 ′ is covered with a heat insulating material 52 ′ up to a position higher than the end 3 by 100 mm or more.

(実施例3)
図4に、本発明の第3の例を示す。図4は、図1の採放熱管11を採放熱管11''に置き換えた例である。具体的には図4は、図1における採放熱管11の本管4の第2の管42を複数本の並行した管を備える第2の管42’に置き換えたものである。あるいは第2の管42が、分岐管部(分岐部)10を介して接続され互いに並行して配置された複数の管を備えるように構成している。図4において断熱材は、図1の例と同じように第1の管41を端部3まで覆うようにしている。これに代えて、図3の例のように端部3を超えて採放熱管4の第2の管42の曲線部42bまで断熱材5で覆うようにしてもよい。あるいはさらに複数本の並行した管への分岐管部10まで覆うようにしてもよい。
Example 3
FIG. 4 shows a third example of the present invention. FIG. 4 shows an example in which the heat-radiating / radiating tube 11 shown in FIG. 1 is replaced with a heat-radiating / radiating tube 11 ″. Specifically, FIG. 4 is obtained by replacing the second pipe 42 of the main pipe 4 of the heat-dissipating pipe 11 in FIG. 1 with a second pipe 42 ′ having a plurality of parallel pipes. Alternatively, the second pipe 42 is configured to include a plurality of pipes connected via the branch pipe part (branch part) 10 and arranged in parallel to each other. In FIG. 4, the heat insulating material covers the first pipe 41 to the end 3 as in the example of FIG. 1. Instead of this, the heat insulating material 5 may cover the curved portion 42b of the second tube 42 of the heat-dissipating tube 4 beyond the end portion 3 as in the example of FIG. Or you may make it cover to the branch pipe part 10 to a further several parallel pipe | tube.

このような構成を取ることにより、第2の管42の一部分であって冷房運転時には凝縮器となる断熱材5を巻いていない部分において、伝熱面積を増大させることができより効率化が図られる。さらには、複数本の管それぞれの直径を、第1の管よりも小さくした銅製円管を複数本用いて凝縮部を構成すると効果的である。なお、後述する理由により並行した管の本数は奇数本で構成される(1を除く)のが好ましく、さらにその本数が3であるものがより好ましい。   By adopting such a configuration, the heat transfer area can be increased in a portion of the second pipe 42 that is not wound with the heat insulating material 5 serving as a condenser during the cooling operation, thereby further improving efficiency. It is done. Furthermore, it is effective to configure the condensing unit using a plurality of copper circular tubes each having a diameter smaller than that of the first tube. For the reasons described later, the number of parallel pipes is preferably an odd number (excluding 1), and more preferably 3.

(実験・考察)
暖房運転時は、採放熱管が蒸発器となるため、液相冷媒が採放熱管の流入口から採放熱管の管内を流下する部分において地中から採熱して蒸発すると、流下する液相冷媒中に採放熱管表面から蒸発気泡が生じうる。このためを流下する冷媒中に蒸発による気泡生成のため浮力が発生し、冷媒流の流動抵抗が増大して、圧縮機の負荷が増大するため、その結果として消費電力が増大する。一方、冷房運転時には気相冷媒が採放熱管を流下する際に地中に放熱して凝縮し、液相の冷媒が熱交換器の最下部で反転して上昇するが、この時、ケーシング管内の水や気相冷媒が流下する部分にあたる採放熱管から凝縮時の放熱分の一部が、液状化した冷媒が上昇する部分にあたる採放熱管に伝わり、再び熱をもらって冷媒が蒸発すると地中熱交換器からの全放熱量が減少し、これにより成績係数が減少し性能が低下する。
(Experiment / Discussion)
During heating operation, the heat collecting / radiating tube becomes an evaporator, so the liquid-phase refrigerant that flows down when the liquid-phase refrigerant collects heat from the ground and evaporates at the portion where it flows down from the inlet of the heat / radiating tube. Evaporated bubbles can be generated from the surface of the heat collection and discharge tube. For this reason, buoyancy occurs due to bubble generation by evaporation in the refrigerant flowing down, the flow resistance of the refrigerant flow increases, and the load on the compressor increases, resulting in an increase in power consumption. On the other hand, during the cooling operation, when the gas-phase refrigerant flows down the heat collecting and radiating pipe, it dissipates heat into the ground and condenses, and the liquid-phase refrigerant reverses and rises at the bottom of the heat exchanger. When a part of the heat radiated from the heat collecting / radiating pipe corresponding to the part where the water or gas-phase refrigerant flows down is transferred to the heat collecting / radiating pipe corresponding to the part where the liquefied refrigerant rises, the heat evaporates again and the refrigerant evaporates. The total heat dissipation from the heat exchanger is reduced, which reduces the coefficient of performance and degrades performance.

これらによる性能低下を防ぐため、市販の空気熱ヒートポンプの室外機と室内機の接続銅管の断熱に使用されている微小な空気層を持つ断熱材を用いて、図1の管41aにあたる部分を覆ったところ、暖房運転時に冷媒が流下する部分にあたる採放熱管での液相冷媒の蒸発や、冷房運転時に冷媒が上昇する部分にあたる採放熱管での液相冷媒の再蒸発を抑えることができ性能は向上した。   In order to prevent performance degradation due to these, a portion corresponding to the pipe 41a in FIG. 1 is used by using a heat insulating material having a minute air layer that is used for heat insulation of a connection copper pipe of the outdoor unit of the commercially available air heat heat pump and the indoor unit. When covered, it can suppress the evaporation of the liquid phase refrigerant in the heat collection / radiation tube where the refrigerant flows down during heating operation and the re-evaporation of the liquid phase refrigerant in the heat collection / radiation tube where the refrigerant rises during cooling operation. Performance improved.

しかしながら、地下10mより深いところでは水を充填したケーシング管内の水圧により断熱材が潰されていることを目視により確認した。このことから、断熱性能は低下していることが考えられ、ある程度性能は向上したものの、最適設計とするためには、以下の施工が必須であるとの知見を得た。   However, it was visually confirmed that the heat insulating material was crushed by the water pressure in the casing tube filled with water at a depth deeper than 10 m underground. From this, it was considered that the heat insulation performance was lowered, and although the performance was improved to some extent, the following construction was indispensable for the optimum design.

まず、U字型採放熱管において凝縮器や蒸発器として機能させる部分では、冷媒の凝縮や蒸発は極力防ぐ必要がある。特に暖房、あるいは給湯運転時に液冷媒がU字型採放熱管において冷媒が流下する部分では採放熱管壁からの受熱により蒸発気泡が液冷媒の流下中で生じると圧縮機の負荷が増大し、消費電力の増大とともに成績係数が大きく低下する可能性がある。このため、実施例1のように、採放熱管11は、少なくとも端部3まで断熱材5で覆う必要がある。好ましくは、実施例2のように採放熱管11’の本管4の第2の管42の曲線部42aまでも断熱材52’で覆うようにするとよい。さらに実施例2において、採放熱管4の第2の管42は、端部3から100mm以上高い位置までの区間を断熱するとより好ましい。   First, it is necessary to prevent the refrigerant from condensing and evaporating as much as possible in a portion that functions as a condenser or an evaporator in the U-shaped heat radiation pipe. In particular, at the part where the liquid refrigerant flows down in the U-shaped heat collecting / radiating pipe during heating or hot water supply operation, the load on the compressor increases when evaporating bubbles are generated in the flow of the liquid refrigerant due to heat received from the heat collecting / radiating pipe wall, As the power consumption increases, the coefficient of performance may drop significantly. For this reason, as in Example 1, the heat-dissipating tube 11 needs to be covered with the heat insulating material 5 up to at least the end 3. Preferably, as in the second embodiment, the curved portion 42a of the second pipe 42 of the main pipe 4 of the heat collection and discharge pipe 11 'may be covered with the heat insulating material 52'. Furthermore, in Example 2, it is more preferable that the second pipe 42 of the heat collecting and radiating pipe 4 insulates a section from the end 3 to a position higher by 100 mm or more.

また、液冷媒として円管直径をDとした場合のレイノルズ数から流れは乱流であることを確認する必要があり、この時本管4の端部3から複数管への分岐管部までの直管部距離として約20D以上は必要である。   Moreover, it is necessary to confirm that the flow is turbulent from the Reynolds number when the circular pipe diameter is D as the liquid refrigerant. At this time, the flow from the end 3 of the main pipe 4 to the branch pipe to the plurality of pipes is required. The straight pipe portion distance is required to be about 20D or more.

これにより、確実に液冷媒の流下中に蒸発した気相冷媒の混入を確実に防ぐことができるため、結果として圧縮機の消費電力の増大を大きく抑えることができ、大きく成績係数が低下することを防ぐことができ省エネ性能を維持することが可能となる。   As a result, it is possible to reliably prevent the vapor phase refrigerant that has evaporated during the flow of the liquid refrigerant from being mixed, and as a result, the increase in power consumption of the compressor can be greatly suppressed, and the coefficient of performance is greatly reduced. Can be prevented and energy saving performance can be maintained.

冷房運転時には採放熱管(11、11’、11’’)の一部を凝縮器として機能させる。気相冷媒が採放熱管(11、11’、11’’)を流下する際に地中に放熱して凝縮するため、冷媒量を増やさずに凝縮器にあたる採放熱管(11、11’、11’’)の伝熱面積を増大させるよう、採放熱管の本管4の第2の管42を直径を小さくした銅製円管を複数本用いたものとした。そして、この複数本の銅製円管を凝縮部となるよう構成した。   During the cooling operation, a part of the heat collecting and radiating pipe (11, 11 ', 11 ") is caused to function as a condenser. When the gas-phase refrigerant flows down the heat collecting / radiating pipe (11, 11 ′, 11 ″), it dissipates heat into the ground and condenses, so that the heat collecting / radiating pipe (11, 11 ′, 11 ″), a plurality of copper circular pipes having a reduced diameter were used for the second pipe 42 of the main pipe 4 of the heat collecting and radiating pipe so as to increase the heat transfer area. The plurality of copper circular tubes were configured to be a condensing part.

この時複数管の本数を2本、または4本で行った実験結果では、特に暖房運転である蒸発器として機能する際に複数本の円管流路内で冷媒流れに振動が見られ、安定に冷媒の蒸発が行えないことを確認した。さらに熱交換器を収めたボアホールを2本とした並列ボアホールの場合も暖房運転時の性能が安定しない場合を確認したことから、2本の組合せでは安定に流量配分を行うことが容易ではないことが分かった。したがって、採放熱管の本管4の第2の管42における凝縮部に相当する部分は奇数本(1本または3本ないしは5本)の銅製円管がよい。特に複数管の本数は3本が最適である。これは分岐管部(分岐部)を製作する際に正三角形配置とすることにより、各円管の距離を等しくすることができるため、流量配分を等しくすることが容易であることによる。実施例3にしめすようなこの構成をとることによりさらに圧縮機の消費電力の増大抑え、効率を上げることが可能となる。   In this experiment, the number of the plurality of tubes was two or four. In particular, when functioning as an evaporator for heating operation, vibrations were observed in the refrigerant flow in the plurality of circular tube passages, and stable It was confirmed that the refrigerant could not evaporate. Furthermore, in the case of a parallel borehole with two boreholes containing heat exchangers, it was confirmed that the performance at the time of heating operation is not stable, so it is not easy to stably distribute the flow rate with the combination of two boreholes. I understood. Therefore, an odd number (1 or 3 or 5) of copper circular pipes is preferable as the portion corresponding to the condensing part in the second pipe 42 of the main pipe 4 of the heat collecting and discharging pipe. In particular, the optimum number of tubes is three. This is because it is easy to equalize the flow rate distribution because the distance between the circular pipes can be made equal by arranging them in equilateral triangles when manufacturing the branch pipe part (branch part). By adopting this configuration as shown in the third embodiment, it is possible to further suppress the increase in power consumption of the compressor and increase the efficiency.

この他にもさらに、断熱材には熱伝導率の低い物質、例えばポリエチレン管やVP管を銅管の外側に施工することで断熱性能を保持しつつ、水圧による断熱材の変形を防ぎ断熱性能を維持させることで省エネ性能の低下を防ぐことができる。   In addition to this, the heat insulating material can be prevented from being deformed by water pressure while maintaining the heat insulating performance by installing a material having low thermal conductivity, such as polyethylene pipe or VP pipe, outside the copper pipe. By maintaining the above, it is possible to prevent a decrease in energy saving performance.

ボアホール内に収めた複数管部分の距離は最小で20m、最大で30mあれば、冷房運転時の凝縮過程が終了することがボアホール内温度変化の考察から確認しており、また、端部3から100mm以上高い位置にあたる採放熱管の本管4の第2の管42のところから地上配管部まで断熱するとより圧縮機の消費電力の増大抑え、効率を上げることが可能となる。   It is confirmed from the consideration of the temperature change in the borehole that the condensation process during the cooling operation is completed if the distance between the plurality of pipe portions accommodated in the borehole is 20 m at the minimum and 30 m at the maximum. If heat insulation is performed from the second pipe 42 of the main pipe 4 of the heat collecting / radiating pipe, which is at a position higher than 100 mm, to the ground pipe section, it is possible to further suppress the increase in power consumption of the compressor and increase the efficiency.

なお、説明の都合上、実施の形態において採放熱管はU字形状としたが、本発明はその他の形状にも適応できる。例えば第2の管をスパイラル構造の管としてもよい。また管の断面は円形に限らず楕円や矩形等であってもよい。   For convenience of explanation, the heat-dissipating tube is U-shaped in the embodiment, but the present invention can be applied to other shapes. For example, the second tube may be a spiral tube. The cross section of the tube is not limited to a circle, but may be an ellipse or a rectangle.

1、2 流出入口
3 端部
4 本管
5 断熱材
6 ケーシング管
7 水
8 硅砂
9 ボアホール
10 分岐管部
11、11’、11’’ 採放熱管
1, 2 Outlet 3 End 4 Main pipe 5 Heat insulating material 6 Casing pipe 7 Water 8 Silica sand 9 Bore hole 10 Branch pipe section 11, 11 ′, 11 ″ Heat collecting / radiating pipe

Claims (12)

地中内に埋設するケーシング管内に納められる直接膨張方式地中熱ヒートポンプ用の採放熱管であって、
前記採放熱管は、本管と前記本管の一部を覆う断熱材とを具備し、
前記本管は、
冷媒が流入あるいは流出する第1、第2の流出入口と、
前記第1の流出入口から端部までの第1の管と、
前記第2の流出入口から前記端部までの第2の管とを備え、
前記第1の管と前記第2の管は前記端部において互いに連通するように接続され、
前記第1、第2の流出入口は前記ケーシング管の地表面側に備えられ、
前記端部は、前記ケーシング管が埋設された場合に前記採放熱管において最深に位置し、
前記第1の管は前記断熱材に覆われており、少なくとも前記端部まで前記断熱材が前記第1の管を覆う採放熱管。
It is a heat-dissipating pipe for a direct expansion type underground heat pump that is housed in a casing pipe buried in the ground,
The heat collecting and radiating pipe includes a main pipe and a heat insulating material covering a part of the main pipe,
The main
First and second outlets through which refrigerant flows in and out;
A first tube from the first outlet to the end;
A second pipe from the second outlet to the end,
The first tube and the second tube are connected to communicate with each other at the end;
The first and second outlets are provided on the ground surface side of the casing pipe,
The end portion is located at the deepest in the heat collecting and radiating pipe when the casing pipe is buried,
The said 1st pipe | tube is covered with the said heat insulating material, and the said heat insulating material covers the said 1st pipe | tube with the said heat insulating material at least to the said edge part.
前記端部から、前記第2の管が前記地表面に対し垂直方向に形成された部分まで、前記第2の管が前記断熱材でさらに覆われた請求項1に記載の採放熱管。   The heat-radiating tube according to claim 1, wherein the second tube is further covered with the heat insulating material from the end portion to a portion where the second tube is formed in a direction perpendicular to the ground surface. 前記第2の管が、前記端部から100mm以上高い位置まで前記断熱材でさらに覆われた請求項1または2のいずれかに記載の採放熱管。   3. The heat-dissipating tube according to claim 1, wherein the second tube is further covered with the heat insulating material to a position higher than the end by 100 mm or more. 前記第2の管が、分岐管部を介して接続され互いに並行して配置された複数の管を有することを特徴とする請求項1乃至請求項3のいずれか一つに記載の採放熱管。   The said 2nd pipe | tube has several pipe | tubes connected through the branch pipe part and arrange | positioned in parallel with each other, The heat collecting / radiating pipe | tube as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned. . 前記端部から前記分岐管部まで第2の管が前記断熱材で覆われた請求項4に記載の採放熱管。   The heat collecting / radiating pipe according to claim 4, wherein a second pipe is covered with the heat insulating material from the end to the branch pipe. 前記複数の管は1を除く奇数本である請求項4に記載の採放熱管。   The heat-radiating tube according to claim 4, wherein the plurality of tubes is an odd number excluding 1. 前記複数の管は3本である請求項4に記載の採放熱管。   The heat collecting / radiating tube according to claim 4, wherein the plurality of tubes are three. 前記複数の管の径は、前記第1の管の径よりも小さい請求項4乃至7のいずれか一つに記載の採放熱管。   The diameter of the said some pipe | tube is a heat collecting / radiating pipe as described in any one of Claims 4 thru | or 7 smaller than the diameter of a said 1st pipe | tube. 前記第1の流出入口から液相の前記冷媒を流した際に前記断熱材に覆われていない箇所から前記冷媒の蒸発が開始される請求項1乃至8のいずれか一つに記載の採放熱管。   The heat dissipation according to any one of claims 1 to 8, wherein evaporation of the refrigerant is started from a portion not covered with the heat insulating material when the liquid refrigerant flows from the first outlet / inlet. tube. 前記第1の流出入口から気相の前記冷媒を流した際に前記断熱材に覆われていない箇所に到達するまでに前記冷媒が凝縮して液相の前記冷媒になり、前記断熱材に覆われた採放熱管を流れる際に再び前記冷媒が蒸発しない請求項1乃至9のいずれか一つに記載の採放熱管。   When the gas-phase refrigerant flows from the first inlet / outlet, the refrigerant condenses into the liquid-phase refrigerant before reaching the location not covered by the heat-insulating material, and covers the heat-insulating material. The heat collecting / radiating tube according to claim 1, wherein the refrigerant does not evaporate again when flowing through the broken heat collecting / radiating tube. 前記断熱材は水圧で変形しない部材であることを特徴とする請求項1乃至10のいずれか一つに記載の採放熱管。   The heat-radiating tube according to claim 1, wherein the heat insulating material is a member that is not deformed by water pressure. 請求項1乃至11のいずれか一つに記載の採放熱管を備えた地中熱ヒートポンプ。   A geothermal heat pump comprising the heat-dissipating tube according to any one of claims 1 to 11.
JP2018013384A 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it Active JP7124263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018013384A JP7124263B2 (en) 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018013384A JP7124263B2 (en) 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it

Publications (2)

Publication Number Publication Date
JP2019132470A true JP2019132470A (en) 2019-08-08
JP7124263B2 JP7124263B2 (en) 2022-08-24

Family

ID=67544815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018013384A Active JP7124263B2 (en) 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it

Country Status (1)

Country Link
JP (1) JP7124263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705063A (en) * 2022-03-29 2022-07-05 张家港氢云新能源研究院有限公司 High-efficient heat transfer vaporizer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300266A (en) * 1997-04-24 1998-11-13 Shinryo Corp Vertical type earth heat pump
US20040129408A1 (en) * 2002-09-20 2004-07-08 Wiggs B. Ryland Insulated sub-surface liquid line direct expansion heat exchange unit with liquid trap
US20040206103A1 (en) * 2002-12-31 2004-10-21 Wiggs B. Ryland Alternate sub-surface and optionally accessible direct expansion refrigerant flow regulating device
JP2009092350A (en) * 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
US7578140B1 (en) * 2003-03-20 2009-08-25 Earth To Air Systems, Llc Deep well/long trench direct expansion heating/cooling system
US20090272137A1 (en) * 2008-05-02 2009-11-05 Earth To Air Systems, Llc Oil Return, Superheat and Insulation Design
JP2012083021A (en) * 2010-10-12 2012-04-26 National Institute Of Advanced Industrial Science & Technology Underground heat exchanger
US20150316296A1 (en) * 2009-10-28 2015-11-05 Tai-Her Yang Thermal conductive cylinder installed with u-type core piping and loop piping
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300266A (en) * 1997-04-24 1998-11-13 Shinryo Corp Vertical type earth heat pump
US20040129408A1 (en) * 2002-09-20 2004-07-08 Wiggs B. Ryland Insulated sub-surface liquid line direct expansion heat exchange unit with liquid trap
US20040206103A1 (en) * 2002-12-31 2004-10-21 Wiggs B. Ryland Alternate sub-surface and optionally accessible direct expansion refrigerant flow regulating device
US7578140B1 (en) * 2003-03-20 2009-08-25 Earth To Air Systems, Llc Deep well/long trench direct expansion heating/cooling system
JP2009092350A (en) * 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
US20090272137A1 (en) * 2008-05-02 2009-11-05 Earth To Air Systems, Llc Oil Return, Superheat and Insulation Design
US20150316296A1 (en) * 2009-10-28 2015-11-05 Tai-Her Yang Thermal conductive cylinder installed with u-type core piping and loop piping
JP2012083021A (en) * 2010-10-12 2012-04-26 National Institute Of Advanced Industrial Science & Technology Underground heat exchanger
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705063A (en) * 2022-03-29 2022-07-05 张家港氢云新能源研究院有限公司 High-efficient heat transfer vaporizer
CN114705063B (en) * 2022-03-29 2024-04-02 张家港氢云新能源研究院有限公司 High-efficiency heat exchange vaporizer

Also Published As

Publication number Publication date
JP7124263B2 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
US10302343B2 (en) Defrost system for refrigeration apparatus, and cooling unit
JP5275929B2 (en) Cooling system
JP4636204B2 (en) Geothermal heat exchanger and air conditioning system including the same
US20110048049A1 (en) Heat exchanger and air conditioning system
EP2733437B1 (en) Heat pump water heater
WO2006137269A1 (en) Sterling cooling chamber
EP2770277B1 (en) Water heater
EP2770278B1 (en) Water heater
KR101265114B1 (en) loop heat pipe for defrost of heat pump using air heat source
JP2007010269A (en) Outdoor unit for air conditioner
JP7124263B2 (en) Sampling heat pipe and geothermal heat pump using it
JP2012057836A (en) Underground heat exchanger and heat pump using the same
JP2011142298A (en) Boiling cooler
JP2002013841A (en) Evaporator and freezer
JP2007178081A (en) Refrigerator
JP2012237518A (en) Air conditioner
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
JP5510316B2 (en) Heat exchanger and air conditioning system
CN103765127A (en) A method for chilling a building
JP6007455B1 (en) Cold heat supply apparatus and cold heat supply method
JP4930376B2 (en) Heat exchanger
WO2009133708A1 (en) Heat exchanger and air conditioning system
JP2013249974A (en) Heat pump
JP4001607B2 (en) Stirling refrigerator
KR101021642B1 (en) Heating and cooling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R150 Certificate of patent or registration of utility model

Ref document number: 7124263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150