WO2009133708A1 - Heat exchanger and air conditioning system - Google Patents

Heat exchanger and air conditioning system Download PDF

Info

Publication number
WO2009133708A1
WO2009133708A1 PCT/JP2009/001967 JP2009001967W WO2009133708A1 WO 2009133708 A1 WO2009133708 A1 WO 2009133708A1 JP 2009001967 W JP2009001967 W JP 2009001967W WO 2009133708 A1 WO2009133708 A1 WO 2009133708A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat transfer
heat exchanger
cooling
tube
Prior art date
Application number
PCT/JP2009/001967
Other languages
French (fr)
Japanese (ja)
Inventor
川端克宏
谷本啓介
浅井英明
康倫明
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2009133708A1 publication Critical patent/WO2009133708A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a heat exchanger installed in the ground or underwater, and an air conditioning system using the heat exchanger.
  • a geothermal heat exchanger that collects geothermal heat from the ground is used in a heat pump heating system that uses geothermal heat (see, for example, Patent Document 1).
  • a pipe referred to as an embedded pipe in this specification
  • a heat medium secondary medium
  • the pipe is branched from the buried pipe, a heat exchanger is attached to the branch pipe, and the heat recovered by the heat exchanger is used as a heat source of the heat pump heating system.
  • the present invention has been made in view of the present situation related to the present inventor, and an object thereof is to make it possible to use a heat exchanger installed in the ground or in water for both cooling and heating.
  • the first invention is An outer pipe (51) installed vertically or inclined in the ground or in water, A heat medium sealed in the outer tube (51), A heating heat transfer tube (80) that is inserted into the outer tube (51) to evaporate the refrigerant as it is introduced into the interior; A cooling heat transfer tube (52) that is inserted into the outer tube (51) and that radiates heat from the refrigerant while being introduced into the refrigerant, The cooling heat transfer tube (52) and the heating heat transfer tube (80) exchange heat with the outer tube (51) via the heat medium that changes phase.
  • the heat medium evaporates by exchanging heat in the ground or in water via the inner wall of the outer pipe (51).
  • the heating heat transfer tube (80) exchanges heat with the evaporated heat medium.
  • the heat medium condenses and the refrigerant in the heating heat transfer tube (80) evaporates. That is, the heating heat transfer tube (80) performs heat exchange in the ground or in water using the phase change of the heat medium.
  • this heat exchanger functions as an evaporator.
  • the heat medium is condensed through heat exchange in the ground or in water through the inner wall of the outer pipe (51).
  • the cooling heat transfer tube (52) exchanges heat with the condensed heat medium.
  • the heat medium evaporates and the refrigerant in the cooling heat transfer tube (52) condenses. That is, the cooling heat transfer tube (52) performs heat exchange in the ground or in water using the phase change of the heat medium.
  • this heat exchanger functions as a condenser.
  • At least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) is formed in a coil shape.
  • the contact area between the cooling heat transfer tube (52) and the heat medium increases.
  • the heating heat transfer tube (80) is configured in a coil shape, the contact area between the heating heat transfer tube (80) and the heat medium increases.
  • the cooling heat transfer tube (52) is disposed near the lower side of the outer tube (51) in the installed state of the outer tube (51),
  • the heat transfer pipe (80) for heating is arranged near the upper side of the outer pipe (51) when the outer pipe (51) is installed.
  • the heat medium condensed by the heat transfer pipe (80) flows downward, and the heat medium exchanges heat with the outer pipe (51) in the process. Further, during the cooling operation, the refrigerant condensed by the outer pipe (51) flows downward and comes into contact with the cooling heat transfer pipe (52) disposed near the lower side of the outer pipe (51). Then, heat exchange is performed between the contacted heat medium and the cooling heat transfer tube (52). That is, the condensed heat medium efficiently contacts the cooling heat transfer tube (52) or the heating heat transfer tube (80).
  • the fourth invention is in any one of the heat exchangers according to the first to third aspects of the invention,
  • the outer pipe (51) and the cooling heat transfer pipe (52) hold the liquid heat medium between the inner wall of the outer pipe (51) and the outer wall of the cooling heat transfer pipe (52). It is arranged so that it may be.
  • the heat medium holding unit (60) holds the liquid heat medium by surface tension.
  • the outer wall of the cooling heat transfer tube (52) is uniformly wetted with the liquid heat medium.
  • At least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) is in contact with the inner wall of the outer tube (51) to perform heat exchange.
  • the cooling heat transfer tube (52) extends to the lower end of the outer tube (51).
  • This configuration makes it possible to increase the contact area between the cooling heat transfer tube (52) and the heat medium.
  • a wick (100) is provided in the outer pipe (51) along the inner wall of the outer pipe (51).
  • the wick (100) permeates and holds the liquid heat medium in the outer pipe (51) and brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51).
  • the eighth invention is In any one heat exchanger of the first to seventh inventions, A groove (110) that holds the heat medium by surface tension is formed on the inner wall of the outer tube (51).
  • the groove (110) holds the liquid heat medium in the outer pipe (51) and brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51).
  • the ninth invention An air conditioning system that performs cooling and heating by a vapor compression refrigeration cycle, Any one of the first to third invention heat exchangers;
  • the refrigerant flows through the cooling heat transfer pipe (52) during the cooling operation, and the refrigerant flows through the heating heat transfer pipe (80) during the heating operation.
  • a heat exchanger installed in the ground or in water can be used for both cooling and heating.
  • the contact area between at least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) and the heat medium increases. Therefore, in this heat exchanger, it is possible to improve the heat exchange efficiency.
  • the condensed heat medium efficiently contacts the cooling heat transfer pipe (52) or the heating heat transfer pipe (80), so that the efficiency of cooling and heating can be improved. become.
  • the outer wall of the cooling heat transfer tube (52) is evenly wetted with the liquid heat medium, so that the cooling heat transfer tube (52) and the liquid heat medium are efficient. Heat exchange is performed. Therefore, the refrigerant in the cooling heat transfer tube (52) can be efficiently condensed. That is, the heat exchange performance of the heat exchanger is improved, and the heat exchanger can be downsized.
  • At least one of the cooling heat transfer pipe (52) and the heating heat transfer pipe (80) directly exchanges heat with the inner wall of the outer pipe (51). It becomes possible to condense or evaporate more efficiently. That is, the heat exchange performance of the heat exchanger can be improved.
  • the contact area between the cooling heat transfer tube (52) and the heat medium can be increased, so that the refrigerant in the cooling heat transfer tube (52) is more efficiently condensed. It becomes possible. That is, the heat exchange performance of the heat exchanger can be improved.
  • the wick (100) brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51), uniform wetting is ensured with respect to the inner wall of the outer pipe (51). It becomes possible to do. That is, the heat exchange performance of the heat exchanger can be improved.
  • the groove (110) brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51), so that uniform wetting is ensured with respect to the inner wall of the outer pipe (51). It becomes possible to do. That is, the heat exchange performance of the heat exchanger can be improved.
  • the ninth invention it is possible to perform a cooling operation in which heat is dissipated in the ground or underwater, and a heating operation using heat in the ground or underwater as a heat source.
  • FIG. 1 is a system diagram of an air conditioning system (1) including a ground heat exchanger (50) according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the underground heat exchanger (50) of the present embodiment.
  • FIG. 3 is a diagram schematically showing a state in which the underground heat exchanger (50) is installed in the ground.
  • 4A and 4B are diagrams for explaining the movement of the heat medium during the cooling operation.
  • FIG. 4A is a cross-sectional view of the underground heat exchanger
  • FIG. 4B is an enlarged view of the heat medium holding portion.
  • FIG. 5 is a longitudinal sectional view showing the configuration of a modification of the underground heat exchanger (50).
  • FIG. 6 is a diagram schematically showing a state in which the heat exchanger (50) is installed in water.
  • FIG. 7 is a diagram schematically showing a state in which the heat exchanger (50) is installed at an inclination.
  • 8A and 8B are diagrams showing another configuration example of the outer tube 51.
  • FIG. 8A is a cross-sectional view of the outer tube
  • FIG. 8B is a perspective view of a part of the outer tube.
  • FIG. 9 is a cross-sectional view showing still another configuration example of the outer tube (51).
  • Embodiment 1 of the Invention demonstrates the example of the heat exchanger (ground heat exchanger) installed in the ground as an example of the heat exchanger of this invention.
  • the underground heat exchanger according to the embodiment of the present invention is used in, for example, a heat pump type air conditioning system capable of cooling and heating operation. And at the time of air_conditionaing
  • an aquifer containing both earth and sand and water other than what was formed only with earth and sand here is soil. That is, this underground heat exchanger may exchange heat with ground water or both of them in addition to earth and sand, depending on the installation location and depth.
  • the example of the air-conditioning system which uses this underground heat exchanger is demonstrated.
  • FIG. 1 is a system diagram of an air conditioning system (1) including a heat exchanger (50) (ground heat exchanger) according to an embodiment of the present invention. As shown in the figure, the air conditioning system (1) includes a refrigerant circuit (10).
  • the refrigerant circuit (10) includes a compressor (20), an indoor heat exchanger (30), an expansion valve (40), a ground heat exchanger (50), a four-way switching valve (71), and a first switching valve ( 72) and a second switching valve (73).
  • the refrigerant circuit (10) is filled with a refrigerant (working fluid).
  • the compressor (20) sucks and compresses the refrigerant from the suction port, and discharges the compressed refrigerant from the discharge port.
  • various compressors such as a scroll compressor can be adopted as the compressor (20).
  • the indoor heat exchanger (30) is an air heat exchanger for exchanging heat between the refrigerant and room air.
  • the indoor heat exchanger (30) is incorporated in a so-called indoor unit that is disposed in a room that performs air conditioning.
  • this refrigerant circuit (10) one end of the indoor heat exchanger (30) is connected to the expansion valve (40), and the other end is connected to a fourth port (described later) of the four-way switching valve (71). ing.
  • the low-pressure refrigerant flowing from the expansion valve (40) into the indoor heat exchanger (30) absorbs the heat of the room air.
  • the heat of the refrigerant discharged from the compressor (20) is radiated to the room air.
  • a cross fin type fin-and-tube heat exchanger or the like can be employed.
  • An indoor fan (31) is installed in the vicinity of the indoor heat exchanger (30). The indoor fan (31) blows conditioned air into the room.
  • the expansion valve (40) has one end connected to the first switching valve (72) and the other end connected to the indoor heat exchanger (30).
  • the expansion valve (40) expands the refrigerant flowing in from the first switching valve (72) or the indoor heat exchanger (30), reduces the pressure to a predetermined pressure, and then flows it out.
  • the four-way switching valve (71) is provided with four ports from first to fourth ports.
  • the four-way switching valve (71) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate simultaneously with the second port and the fourth port, It is possible to switch to a second state (state indicated by a broken line in FIG. 1) in which the second port and the third port communicate at the same time as the fourth port communicates.
  • the first port is connected to the discharge port of the compressor (20), and the second port is connected to the suction port of the compressor (20).
  • the third port is connected to the second switching valve (73), and the fourth port is connected to one end of the indoor heat exchanger (30).
  • FIG. 2 is a longitudinal sectional view showing the underground heat exchanger (50) of the present embodiment.
  • the underground heat exchanger (50) includes an outer pipe (51), a cooling heat transfer pipe (52), and a heating heat transfer pipe (80).
  • FIG. 3 is a diagram schematically showing a state in which the underground heat exchanger (50) is installed in the ground.
  • the stratum includes a layer mainly composed of earth and sand, a layer containing earth and sand, a layer mainly containing water, and a bedrock where rocks are continuously distributed.
  • This underground heat exchanger (50) may be installed in any formation.
  • FIG. 3 shows a state in which the underground heat exchanger (50) is installed in each of these layers.
  • the underground heat exchanger (50) performs heat exchange only in one of the formations. May be installed to do.
  • a predetermined amount of carbon dioxide (CO 2 ) is enclosed in the outer pipe (51) as a heat medium.
  • CO 2 carbon dioxide
  • this heat medium dissipates heat from the inner wall surface of the outer pipe (51) to the soil and condenses, and absorbs heat on the outer wall surface of the cooling heat transfer pipe (52) and evaporates.
  • the soil heat is absorbed from the inner wall surface of the outer pipe (51), and the heat is dissipated and condensed on the outer wall surface of the heating heat transfer pipe (80).
  • the cooling heat transfer tube (52) is inserted into the outer tube (51) and is disposed closer to the lower side than the heating heat transfer tube (80).
  • the cooling heat transfer tube (52) introduces a refrigerant during the cooling operation and releases heat from the refrigerant.
  • the cooling heat transfer tube (52) of the present embodiment is formed in a tubular shape. Specifically, as shown in FIG. 2, the cooling heat transfer tube (52) includes an introduction portion (52a), a lead-out portion (52b), an introduction-side main body portion (52c), a lead-out-side main body portion (52d), and The connection portion (52e) is formed.
  • a material for the cooling heat transfer tube (52) for example, copper, aluminum, an aluminum alloy, or other composite materials can be employed. However, it is necessary to select the thermal conductivity and corrosion resistance so as to match the use conditions.
  • the introduction part (52a) is inserted into the outer pipe (51) from the upper side of the outer pipe (51) (the side that becomes the ground side when the outer pipe (51) is buried), and one end thereof is the second switching Connected to valve (73).
  • the other end of the introduction part (52a) is connected to one end of the introduction-side main body part (52c) above the outer pipe (51).
  • the lead-out part (52b) is inserted into the outer pipe (51) from the upper side of the outer pipe (51), and one end on the outer side of the outer pipe (51) is connected to the first switching valve (72). It is connected.
  • the other end of the lead-out portion (52b) is connected to one end of the lead-out side main body portion (52d) above the inside of the outer tube (51).
  • Both the introduction-side main body portion (52c) and the lead-out-side main body portion (52d) extend from above the outer tube (51) to the bottom (lower end) along the inner wall of the outer tube (51).
  • the connecting portion (52e) crosses the bottom portion in the radial direction at the bottom portion, and is connected to one end of the introduction side main body portion (52c) and one end of the outlet side main body portion (52d) at the bottom portion. That is, in this refrigerant circuit (10), one end of the cooling heat transfer tube (52) is connected to the first switching valve (72), and the other end is connected to the second switching valve (73). Yes.
  • the outer surface wall of the introduction-side main body portion (52c) and the inner surface wall of the outer tube (51) form a heat medium holding portion (60) that holds the liquid heat medium by surface tension.
  • the outer wall of the lead-out body part (52d) and the inner wall of the outer pipe (51) also form a heat medium holding part (60).
  • the outer wall of each main body (52c, 52d) is disposed in contact with the inner wall of the outer tube (51), and as shown in FIGS.
  • the liquid heat medium adhering to the inner wall of the pipe (51) is held between these walls (for example, the outer wall of the introduction-side main body (52c) and the inner wall of the outer pipe (51)) by surface tension.
  • each main body (52c, 52d) does not necessarily need to be in contact with the inner wall of the outer tube (51) as long as the liquid heat medium can be held by the surface tension in this way.
  • the outer surface walls of the main body portions (52c, 52d) are arranged so as to come into contact with the inner wall of the outer tube (51).
  • each main body (52c, 52d) is arranged so that each outer surface wall of each main body (52c, 52d) is in contact with the inner wall of the outer pipe (51), so that each main body (52c, 52d) Direct heat exchange with 51). That is, this direct heat exchange further improves the heat exchange performance in the underground heat exchanger (50).
  • this direct heat exchange further improves the heat exchange performance in the underground heat exchanger (50).
  • the number of the main body portions (52c, 52d) is an example, and the present invention is limited to this example. Not. For example, three or more main body portions may be provided.
  • each main body (52c, 52d) may have a predetermined gap between the inner wall of the outer pipe (51).
  • the heat medium holding part (60) is not necessarily essential as long as the main body parts (52c, 52d) can be wetted with a liquid heat medium.
  • the heating heat transfer tube (80) is inserted into the outer tube (51).
  • the heating heat transfer tube (80) introduces the refrigerant into the interior and evaporates the refrigerant during the heating operation.
  • the heating heat transfer tube (80) is formed of an introduction part (80a), a main body part (80b), and a lead-out part (80c).
  • a material of the heat transfer tube (80) for heating for example, copper, aluminum, an aluminum alloy, or other composite materials can be adopted. However, it is necessary to select the thermal conductivity and corrosion resistance so as to match the use conditions.
  • the refrigerant is introduced into the interior during the heating operation, absorbs heat from the heat medium, and evaporates the introduced refrigerant.
  • the main body part (80b) is formed in a coil shape, and the upper part in the outer pipe (51) so as to surround the introduction part (52a) and the outlet part (52b) of the cooling heat transfer pipe (52). It is arranged closer. That is, the main body (80b) is disposed above the cooling heat transfer tube (52) in the embedded state of the outer tube (51). In the present embodiment, the main body (80b) is in contact with the inner wall surface of the outer tube (51) on the outer peripheral side. However, a predetermined gap may be provided between the main body portion (80b) and the inner wall of the outer tube (51).
  • the introduction part (80a) is a pipe for introducing the refrigerant into the main body part (80b), and the lead-out part (80c) is a pipe for drawing the refrigerant from the main body part (80b).
  • both the introduction part (80a) and the lead-out part (80c) are formed in a straight shape, and are inserted into the outer pipe (51) from above the outer pipe (51).
  • the first and second switching valves (72, 73) are valves that switch the flow of the refrigerant according to whether the heating operation is performed or the cooling operation is performed.
  • the first and second switching valves (72, 73) are an example of the switching unit of the present invention.
  • the first switching valve (72) includes the expansion valve (40), the lead-out part (52b) of the cooling heat transfer pipe (52), or the introduction part (80a) of the heating heat transfer pipe (80). Connect to.
  • the second switching valve (73) is connected to the third port of the four-way switching valve (71) through the introduction part (52a) of the cooling heat transfer pipe (52) or the outlet part of the heating heat transfer pipe (80) ( Connect to 80c).
  • the cooling operation will be described.
  • the four-way switching valve (71) is switched to the first state. That is, the first port and the third port communicate with each other, and at the same time the second port and the fourth port communicate with each other (a state indicated by a solid line in FIG. 1).
  • the first switching valve (72) is switched so that the expansion valve (40) and the lead-out part (52b) of the cooling heat transfer pipe (52) are connected.
  • the second switching valve (73) is switched so that the introduction part (52a) of the cooling heat transfer tube (52) and the third port of the four-way switching valve (71) are connected.
  • the compressor (20) discharges the compressed refrigerant (gas refrigerant) from the discharge port.
  • the refrigerant discharged from the compressor (20) is sent to the introduction part (52a) of the underground heat exchanger (50) and further introduced into the main body parts (52c, 52d).
  • the inner wall of the outer tube (51) is initially in a state equal to the underground temperature.
  • the heat transfer resistance of the soil is large, and the temperature rises in each main body (52c, 52d). Since the amount of heat transfer between the outer pipe (51) and the soil is limited by the heat transfer resistance of the soil, in general, the temperature gradient between the inner wall of the outer pipe (51) and each main body (52c, 52d) is maintained.
  • the flow rate of the refrigerant is controlled so that heat transfer is performed within a range where the temperature distribution in the underground is also kept constant.
  • a part of the heat medium radiates heat to the soil through the inner wall of the outer pipe (51).
  • a part of the heat medium is condensed to be liquid. This prevents the heat transfer from concentrating on the inner wall of the outer pipe (51) and the contact part of each main body (52c, 52d), and works to distribute heat dissipation over the entire inner wall of the outer pipe (51). To do.
  • This liquid heat medium gradually flows downward along the inner wall of the outer tube (51). Then, as shown in FIG. 4, the surface tension generated by the heat medium holding part (60) is formed between the inner wall of the outer pipe (51) and the outer wall of each main body part (52c, 52d). It is attracted to the heat medium holding part (60).
  • each main body (52c, 52d) extends from the upper part of the outer tube (51) to the bottom (lower end), the liquid heat medium and each main body (52c, 52d) can be more efficiently brought into contact with each other. Is possible.
  • the heat medium condensed in the outer pipe (51) is attracted to the outer wall of each main body (52c, 52d) by the heat medium holding section (60), so that each main body (52c, 52d). ) Of the outer wall uniformly gets wet with the liquid heat medium.
  • the heat medium on the outer wall of each main body (52c, 52d) absorbs heat from each main body (52c, 52d) and evaporates.
  • the heat medium evaporated in this way diffuses into the outer tube (51).
  • the diffused heat medium is condensed again by dissipating heat to the soil through the inner wall of the outer tube (51).
  • each main body (52c, 52d) radiates heat to the contacting heat medium. Furthermore, each main body (52c, 52d) radiates heat to the soil via the inner wall of the outer pipe (51) that is in contact. As described above, the main body portions (52c, 52d) dissipate heat, so that the refrigerant introduced into the main body portions (52c, 52d) is condensed. The condensed refrigerant is introduced into the expansion valve (40) through the lead-out part (52b) and the first switching valve (72). The expansion valve (40) flows into the indoor heat exchanger (30) after flowing in and reducing the pressure of the refrigerant.
  • the refrigerant flowing into the indoor heat exchanger (30) absorbs heat from the indoor air and evaporates. As a result, the indoor air is cooled in the indoor heat exchanger (30), and the cooled indoor air is sent back into the room by the indoor fan (31).
  • the refrigerant evaporated in the indoor heat exchanger (30) is introduced into the suction port of the compressor (20).
  • the compressor (20) sucks and compresses the refrigerant and discharges it to the introduction part (52a) of the underground heat exchanger (50).
  • the cooling heat transfer tube (52) exchanges heat with the soil using the phase change of the heat medium.
  • the above operation is repeated, and a refrigeration cycle (cooling in this example) is performed in which the refrigerant is compressed by the compressor (20) using the underground heat exchanger (50) as a condenser. .
  • the heating operation of the air conditioning system (1) will be described.
  • the four-way selector valve (71) is switched to the second state. That is, the first port and the fourth port communicate with each other, and at the same time the second port and the third port communicate with each other (a state indicated by a broken line in FIG. 1).
  • the first switching valve (72) is switched so that the expansion valve (40) and the introduction part (80a) of the heating heat transfer pipe (80) are connected.
  • the second switching valve (73) is switched so that the lead-out portion (80c) of the heating heat transfer tube (80) and the third port of the four-way switching valve (71) are connected.
  • the compressor (20) discharges the compressed refrigerant (gas refrigerant) from the discharge port.
  • the refrigerant discharged from the compressor (20) is sent to the indoor heat exchanger (30) through the four-way switching valve (71).
  • the refrigerant that has flowed into the indoor heat exchanger (30) radiates heat to the indoor air in the indoor heat exchanger (30).
  • the indoor air is heated, and the heated indoor air is sent back into the room by the indoor fan (31).
  • the refrigerant radiated by the indoor heat exchanger (30) is sent to the expansion valve (40).
  • the expansion valve (40) depressurizes the flowing refrigerant.
  • the decompressed refrigerant is introduced into the introduction part (80a) via the first switching valve (72) and further introduced into the main body part (80b).
  • the inner wall of the outer tube (51) is initially in a state equal to the underground temperature.
  • the heat transfer resistance of the soil is large, so that a temperature gradient proportional to the amount of heat released to the heating heat transfer tube (80) via the heat medium is generated, and the temperature of the soil decreases.
  • the gaseous heat medium absorbs heat in the main body (80b) of the heating heat transfer tube (80). Thereby, the gaseous heat medium is condensed into a liquid.
  • the heat medium that has become a liquid is contained in the outer tube (51). It flows down along the wall. In this way, while the heat medium travels along the inner wall surface of the underground heat exchanger (50), the heat medium again evaporates by absorbing heat from the soil through the inner surface wall.
  • the main body (80b) absorbs heat from the heat medium, so that the introduced refrigerant evaporates and becomes a gas refrigerant. And this gas refrigerant is derived
  • the above operation is repeated, and a refrigeration cycle (heating in this example) is performed in which the refrigerant is compressed by the compressor (20) using the underground heat exchanger (50) as an evaporator.
  • the underground heat exchanger (50) can perform the cooling operation in addition to the heating operation.
  • the heating heat transfer tube (80) of the present embodiment is disposed closer to the upper portion of the outer tube (51) in the embedded state of the outer tube (51), so that it is liquefied in the outer tube (51). It is possible to ensure a sufficient time and area for the flowing down heat medium to contact the inner wall of the outer pipe (51). That is, in this embodiment, it is possible to efficiently perform heat exchange during the heating operation.
  • the heat medium condensed in the outer pipe (51) is drawn to the outer surface wall of the main body (52c, 52d) of the cooling heat transfer pipe (52) by the heat medium holding part (60). Therefore, the outer surface walls of the main body portions (52c, 52d) are uniformly wetted with the liquid heat medium. Therefore, heat exchange is efficiently performed between the outer wall of each main body (52c, 52d) and the liquid heat medium, and the refrigerant in each cooling heat transfer tube (52) can be efficiently condensed. it can. That is, in this embodiment, the heat exchange performance of the underground heat exchanger can be improved even during the cooling operation.
  • FIG. 5 is a longitudinal sectional view showing the structure of the underground heat exchanger (50) according to the modification of the embodiment.
  • the underground heat exchanger (50) includes an outer pipe (51), a heating heat transfer pipe (80), and a cooling heat transfer pipe (90).
  • the cooling heat transfer tube (90) of the present modification includes an introduction part (91), a lead-out part (92), and a main body part (93).
  • the introduction part (91) is inserted into the outer pipe (51) from the upper side of the outer pipe (51) (the side that becomes the ground side when the outer pipe (51) is embedded), and one end thereof is the second switching Connected to valve (73).
  • the other end of the introduction part (91) is connected to one end of the main body part (93) in the lower part of the outer pipe (51).
  • the lead-out section (92) is inserted into the outer pipe (51) from the upper side of the outer pipe (51), and one end outside the outer pipe (51) is connected to the first switching valve (72). ing.
  • the other end of the lead-out portion (92) is connected to the other end of the main body portion (93) below the outer tube (51).
  • the main body portion (93) is formed in a coil shape and is disposed on the lower side of the outer tube (51). In the present embodiment, the main body portion (93) is in contact with the inner wall surface of the outer tube (51) on the outer peripheral side thereof. Also in this modified example, the outer wall of the main body (93) and the inner wall of the outer tube (51) form a heat medium holding part (60) that holds the liquid heat medium by surface tension. .
  • the contact area with the liquid heat medium can be made larger than that of the heating heat transfer tube (80). That is, in this modification, it becomes possible to improve the cooling efficiency.
  • the cooling heat transfer tube (90) is located below the outer tube (51), the liquid heat medium and the main body (93) can be brought into contact more efficiently. That is, the condensed heat medium flows on the inner wall of the outer pipe (51) and flows toward the bottom, so that the heating heat transfer pipe (80) of the present modification uses the heat medium below the outer pipe (51). It can be received efficiently by approaching.
  • FIG. 6 is a diagram schematically showing a state in which the heat exchanger (50) is installed in water.
  • Examples 1 and 2 are shown as installation examples of the heat exchanger (50) (underwater heat exchanger).
  • Example 1 is an example in which a heat exchanger (50) is installed in a water tank or pool.
  • Example 2 is an example in which a heat exchanger (50) is installed in the sea, lake, or pond.
  • “HP” indicates a main part (a part other than the heat exchanger) of the air conditioning system (1) (the same applies hereinafter).
  • FIG. 7 is a diagram schematically showing a state in which the heat exchanger (50) is installed at an inclination.
  • FIG. 7A shows an example in which the heat exchanger (50) is inclined and installed in the ground
  • FIG. 7B shows an example in which the heat exchanger (50) is inclined and installed in the water.
  • FIG. 7B shows an example in which the heat exchanger (50) is inclined and installed in the sea, lake, or pond, similarly, it can be arranged in an inclined manner in a water tank or a pool. .
  • a wick (100) may be provided on the inner wall of the outer tube (51).
  • the wick (100) permeates and holds the liquid heat medium in the outer pipe (51) and brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51).
  • Examples of such wick (100) include metal porous bodies, porous ceramics, fiber aggregates, and the like.
  • a plurality of grooves (110) may be provided on the inner wall of the outer tube (51) as shown in the cross-sectional view of FIG.
  • the groove (110) has a width, a depth, a number, and the like so as to hold a liquid heat medium in the outer pipe (51).
  • the direction of the groove (110) is not limited to a direction parallel to the axial direction of the outer tube (51).
  • the circumferential direction may be sufficient and a spiral shape may be sufficient.
  • the heating heat transfer tube (80) is not limited to the above one as long as it functions as a heating heat exchanger (evaporator).
  • Carbon dioxide used as a heat medium is also an example.
  • a heat medium that changes phase in the temperature range of the refrigerant in the refrigerant circuit (for example, about 10 ° C. to + 40 ° C.) can be used.
  • ammonia can be employed.
  • the heat medium holding part (60) is not essential.
  • the present invention is useful as a heat exchanger installed in the ground or in water and an air conditioning system using the heat exchanger.

Abstract

A heat exchanger is provided with an outer tube (51) mounted in the ground or under water in a vertical or a tilted position, and a heat medium is sealed in the outer tube (51).  A heat transfer tube (80) for heating is inserted in the outer tube (51), and the heat transfer tube (80) for heating allows a refrigerant to be introduced therein and evaporates the refrigerant.  Also, a heat transfer tube (52) for cooling is inserted in the outer tube (51), and the heat transfer tube (52) for cooling allows the refrigerant to be introduced therein and dissipates heat of the refrigerant.  The heat transfer tube (52) for cooling and the heat transfer tube (80) for heating are caused to exchange heat with the outer tube (51) through the heat medium the phase of which changes.

Description

熱交換器及び空調システムHeat exchanger and air conditioning system
 本発明は、地中又は水中に設置される熱交換器、及びそれを利用した空調システムに関するものである。 The present invention relates to a heat exchanger installed in the ground or underwater, and an air conditioning system using the heat exchanger.
 冷凍サイクルによって暖房を行ういわゆるヒートポンプ式暖房システムには、熱源として地熱や水中の熱を用いて冷媒を蒸発させるようにしたものがある。例えば、地熱を利用したヒートポンプ式暖房システムには、地中から地熱の回収を行う地中熱交換器が用いられる(例えば特許文献1を参照)。特許文献1の地中熱交換器では、熱媒体(2次媒体)を内部に有したパイプ(本明細書では埋設パイプと呼ぶ)を地中に埋設し、埋設パイプ内の熱媒体を地熱によって蒸発させる。そして、その埋設パイプからパイプを分岐させてその分岐パイプに熱交換器を取り付け、その熱交換器で回収した熱をヒートポンプ式暖房システムの熱源として使用している。 There is a so-called heat pump heating system that performs heating by a refrigeration cycle in which refrigerant is evaporated using geothermal heat or heat in water as a heat source. For example, a geothermal heat exchanger that collects geothermal heat from the ground is used in a heat pump heating system that uses geothermal heat (see, for example, Patent Document 1). In the underground heat exchanger of Patent Document 1, a pipe (referred to as an embedded pipe in this specification) having a heat medium (secondary medium) is embedded in the ground, and the heat medium in the embedded pipe is generated by geothermal heat. Evaporate. Then, the pipe is branched from the buried pipe, a heat exchanger is attached to the branch pipe, and the heat recovered by the heat exchanger is used as a heat source of the heat pump heating system.
国際公開第WO2004/111559号パンフレットInternational Publication No. WO2004 / 111559 Pamphlet
 しかしながら、例えば地中で用いられる従来の熱交換器は、暖房用に使用できるのみであり、冷房及び暖房の両方に使用できるものはなかった。 However, for example, conventional heat exchangers used in the ground can only be used for heating, and none can be used for both cooling and heating.
 本発明は、本願発明者が係る現状に鑑みてなされたものであり、地中又は水中に設置される熱交換器を冷房及び暖房の両方に使用できるようにすることを目的としている。 The present invention has been made in view of the present situation related to the present inventor, and an object thereof is to make it possible to use a heat exchanger installed in the ground or in water for both cooling and heating.
 上記の課題を解決するため、第1の発明は、
 縦向き又は傾斜して地中又は水中に設置される外管(51)と、
 前記外管(51)内に封入された熱媒体と、
 前記外管(51)内に挿入され、冷媒が内部に導入されるとともに該冷媒を蒸発させる暖房用伝熱管(80)と、
 前記外管(51)内に挿入され、前記冷媒が内部に導入されるとともに該冷媒から放熱させる冷房用伝熱管(52)を備え、
 前記冷房用伝熱管(52)及び暖房用伝熱管(80)は、相変化する前記熱媒体を介して、前記外管(51)と熱交換を行うことを特徴とする。
In order to solve the above problems, the first invention is
An outer pipe (51) installed vertically or inclined in the ground or in water,
A heat medium sealed in the outer tube (51),
A heating heat transfer tube (80) that is inserted into the outer tube (51) to evaporate the refrigerant as it is introduced into the interior;
A cooling heat transfer tube (52) that is inserted into the outer tube (51) and that radiates heat from the refrigerant while being introduced into the refrigerant,
The cooling heat transfer tube (52) and the heating heat transfer tube (80) exchange heat with the outer tube (51) via the heat medium that changes phase.
 この構成により、暖房運転時には、熱媒体は、外管(51)の内面壁を介して、地中又は水中で熱交換を行って蒸発する。そして、暖房用伝熱管(80)は、蒸発した熱媒体と熱交換を行う。これにより熱媒体は凝縮し、暖房用伝熱管(80)内の冷媒は蒸発する。すなわち、暖房用伝熱管(80)は、熱媒体の相変化を利用して地中又は水中において熱交換を行う。これにより、この熱交換器は蒸発器として機能する。 With this configuration, during the heating operation, the heat medium evaporates by exchanging heat in the ground or in water via the inner wall of the outer pipe (51). The heating heat transfer tube (80) exchanges heat with the evaporated heat medium. As a result, the heat medium condenses and the refrigerant in the heating heat transfer tube (80) evaporates. That is, the heating heat transfer tube (80) performs heat exchange in the ground or in water using the phase change of the heat medium. Thereby, this heat exchanger functions as an evaporator.
 また、冷房運転時には、熱媒体は、外管(51)の内面壁を介して、地中又は水中で熱交換を行って凝縮する。そして、冷房用伝熱管(52)は、凝縮した熱媒体と熱交換を行う。これにより熱媒体は蒸発し、冷房用伝熱管(52)内の冷媒は凝縮する。すなわち、冷房用伝熱管(52)は、熱媒体の相変化を利用して地中又は水中において熱交換を行う。これにより、この熱交換器は凝縮器として機能する。 In the cooling operation, the heat medium is condensed through heat exchange in the ground or in water through the inner wall of the outer pipe (51). The cooling heat transfer tube (52) exchanges heat with the condensed heat medium. As a result, the heat medium evaporates and the refrigerant in the cooling heat transfer tube (52) condenses. That is, the cooling heat transfer tube (52) performs heat exchange in the ground or in water using the phase change of the heat medium. Thereby, this heat exchanger functions as a condenser.
 また、第2の発明は、
 第1の発明の熱交換器において、
 前記冷房用伝熱管(52)、及び前記暖房用伝熱管(80)の少なくとも一方は、コイル状に形成されていることを特徴とする。
In addition, the second invention,
In the heat exchanger of the first invention,
At least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) is formed in a coil shape.
 例えば、冷房用伝熱管(52)がコイル状に構成されていると、冷房用伝熱管(52)と熱媒体との接触面積が増大する。また、暖房用伝熱管(80)がコイル状に構成されていると、暖房用伝熱管(80)と熱媒体との接触面積が増大する。 For example, when the cooling heat transfer tube (52) is configured in a coil shape, the contact area between the cooling heat transfer tube (52) and the heat medium increases. Further, when the heating heat transfer tube (80) is configured in a coil shape, the contact area between the heating heat transfer tube (80) and the heat medium increases.
 また、第3の発明は、
 第1又は第2の発明の熱交換器において、
 前記冷房用伝熱管(52)は、前記外管(51)の設置状態において、前記外管(51)の下方寄りに配置され、
 前記暖房用伝熱管(80)は、前記外管(51)の設置状態において、前記外管(51)の上方寄りに配置されていることを特徴とする。
In addition, the third invention,
In the heat exchanger of the first or second invention,
The cooling heat transfer tube (52) is disposed near the lower side of the outer tube (51) in the installed state of the outer tube (51),
The heat transfer pipe (80) for heating is arranged near the upper side of the outer pipe (51) when the outer pipe (51) is installed.
 この構成により、暖房運転時には、暖房用伝熱管(80)によって凝縮させられた熱媒体が下方に流れて、熱媒体はその過程で外管(51)と熱交換を行う。また、冷房運転時には、外管(51)によって凝縮させられた冷媒が下方に流れて、外管(51)の下方寄りに配置された冷房用伝熱管(52)と接触する。そして、接触した熱媒体と冷房用伝熱管(52)との間で熱交換が行われる。すなわち、凝縮した熱媒体が、冷房用伝熱管(52)又は暖房用伝熱管(80)に効率的に接触する。 With this configuration, during the heating operation, the heat medium condensed by the heat transfer pipe (80) flows downward, and the heat medium exchanges heat with the outer pipe (51) in the process. Further, during the cooling operation, the refrigerant condensed by the outer pipe (51) flows downward and comes into contact with the cooling heat transfer pipe (52) disposed near the lower side of the outer pipe (51). Then, heat exchange is performed between the contacted heat medium and the cooling heat transfer tube (52). That is, the condensed heat medium efficiently contacts the cooling heat transfer tube (52) or the heating heat transfer tube (80).
 また、第4の発明は、
 第1から第3の発明のうちの何れか1つの熱交換器において、
 前記外管(51)と前記冷房用伝熱管(52)とは、該外管(51)の内面壁と該冷房用伝熱管(52)の外面壁の間で液状の前記熱媒体が保持されるように配置されていることを特徴とする。
In addition, the fourth invention is
In any one of the heat exchangers according to the first to third aspects of the invention,
The outer pipe (51) and the cooling heat transfer pipe (52) hold the liquid heat medium between the inner wall of the outer pipe (51) and the outer wall of the cooling heat transfer pipe (52). It is arranged so that it may be.
 この構成により、熱媒体保持部(60)が、表面張力によって液状の熱媒体を保持する。それにより、冷房用伝熱管(52)の外面壁が液状の熱媒体で均一に濡れる。 With this configuration, the heat medium holding unit (60) holds the liquid heat medium by surface tension. As a result, the outer wall of the cooling heat transfer tube (52) is uniformly wetted with the liquid heat medium.
 また、第5の発明は、
 第1から第4の発明のうちの何れか1つの熱交換器において、
 前記冷房用伝熱管(52)、及び前記暖房用伝熱管(80)の少なくとも一方は、前記外管(51)の内面壁と接して熱交換を行うことを特徴とする。
In addition, the fifth invention,
In any one of the heat exchangers according to the first to fourth aspects of the invention,
At least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) is in contact with the inner wall of the outer tube (51) to perform heat exchange.
 例えば、冷房用伝熱管(52)と、外管(51)が接していると、冷房用伝熱管(52)と外管(51)の内面壁との間で直接的に熱交換が行われる。また、暖房用伝熱管(80)と、外管(51)が接していると、暖房用伝熱管(80)と外管(51)の内面壁との間で直接的に熱交換が行われる。 For example, when the cooling heat transfer tube (52) and the outer tube (51) are in contact, heat exchange is directly performed between the cooling heat transfer tube (52) and the inner wall of the outer tube (51). . In addition, when the heating heat transfer tube (80) and the outer tube (51) are in contact, heat exchange is directly performed between the heating heat transfer tube (80) and the inner wall of the outer tube (51). .
 また、第6の発明は、
 第1から第5の発明のうちの何れか1つの熱交換器において、
 前記冷房用伝熱管(52)は、前記外管(51)の下端まで延在していることを特徴とする。
In addition, the sixth invention,
In any one heat exchanger according to the first to fifth inventions,
The cooling heat transfer tube (52) extends to the lower end of the outer tube (51).
 この構成により、冷房用伝熱管(52)と熱媒体との接触面積を増大させることが可能になる。 This configuration makes it possible to increase the contact area between the cooling heat transfer tube (52) and the heat medium.
 また、第7の発明は、
 第1から第6の発明のうちの何れか1つの熱交換器において、
 前記外管(51)内には、該外管(51)の内面壁に沿ってウイック(100)が設けられていることを特徴とする。
In addition, the seventh invention,
In any one heat exchanger of the first to sixth inventions,
A wick (100) is provided in the outer pipe (51) along the inner wall of the outer pipe (51).
 この構成により、ウイック(100)が、外管(51)内の液状の熱媒体を浸透させて保持するとともに、保持した液冷媒を外管(51)の内面壁に接触させる。 With this configuration, the wick (100) permeates and holds the liquid heat medium in the outer pipe (51) and brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51).
 また、第8の発明は、
 第1から第7の発明のうちの何れか1つの熱交換器において、
 前記外管(51)の内面壁には、表面張力により前記熱媒体を保持するグルーブ(110)が形成されていることを特徴とする。
Further, the eighth invention is
In any one heat exchanger of the first to seventh inventions,
A groove (110) that holds the heat medium by surface tension is formed on the inner wall of the outer tube (51).
 この構成により、グルーブ(110)が、外管(51)内の液状の熱媒体を保持するとともに、保持した液冷媒を外管(51)の内面壁に接触させる。 With this configuration, the groove (110) holds the liquid heat medium in the outer pipe (51) and brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51).
 また、第9の発明は、
 蒸気圧縮式の冷凍サイクルにより冷房及び暖房を行う空調システムであって、
 第1から第3の発明のうちの何れか1つの熱交換器と、
 冷房運転時に前記冷房用伝熱管(52)に前記冷媒が流れ、暖房運転時に前記暖房用伝熱管(80)に前記冷媒が流れるように前記冷媒の流れを切り替える切替部(72,73)と、
 を備えていることを特徴とする。
In addition, the ninth invention,
An air conditioning system that performs cooling and heating by a vapor compression refrigeration cycle,
Any one of the first to third invention heat exchangers;
A switching unit (72, 73) for switching the flow of the refrigerant so that the refrigerant flows through the cooling heat transfer pipe (52) during the cooling operation and the refrigerant flows through the heating heat transfer pipe (80) during the heating operation;
It is characterized by having.
 この構成により、冷房運転時には冷房用伝熱管(52)に冷媒が流れ、暖房運転時には暖房用伝熱管(80)に冷媒が流れる。 With this configuration, the refrigerant flows through the cooling heat transfer pipe (52) during the cooling operation, and the refrigerant flows through the heating heat transfer pipe (80) during the heating operation.
 第1の発明によれば、地中又は水中に設置される熱交換器を冷房及び暖房の両方に使用することが可能になる。 According to the first invention, a heat exchanger installed in the ground or in water can be used for both cooling and heating.
 また、第2の発明によれば、冷房用伝熱管(52)及び暖房用伝熱管(80)の少なくとも一方と、熱媒体との接触面積が増大する。それゆえ、この熱交換器では、熱交換効率を向上させることが可能になる。 Further, according to the second invention, the contact area between at least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) and the heat medium increases. Therefore, in this heat exchanger, it is possible to improve the heat exchange efficiency.
 また、第3の発明によれば、凝縮した熱媒体が、冷房用伝熱管(52)又は暖房用伝熱管(80)に効率的に接触するので、冷房及び暖房の効率を向上させることが可能になる。 According to the third invention, the condensed heat medium efficiently contacts the cooling heat transfer pipe (52) or the heating heat transfer pipe (80), so that the efficiency of cooling and heating can be improved. become.
 また、第4の発明によれば、冷房用伝熱管(52)の外面壁が液状の熱媒体で均一に濡れるので、冷房用伝熱管(52)と、液状の熱媒体との間で効率的に熱交換が行われる。それゆえ、冷房用伝熱管(52)内の冷媒を効率よく凝縮させることが可能になる。すなわち、熱交換器の熱交換性能が向上し、熱交換器の小型化が可能になる。 Further, according to the fourth aspect of the invention, the outer wall of the cooling heat transfer tube (52) is evenly wetted with the liquid heat medium, so that the cooling heat transfer tube (52) and the liquid heat medium are efficient. Heat exchange is performed. Therefore, the refrigerant in the cooling heat transfer tube (52) can be efficiently condensed. That is, the heat exchange performance of the heat exchanger is improved, and the heat exchanger can be downsized.
 また、第5の発明によれば、冷房用伝熱管(52)及び暖房用伝熱管(80)の少なくとも一方が、外管(51)の内面壁と直接的に熱交換を行うので、冷媒をより効率よく凝縮又は蒸発させることが可能になる。すなわち、熱交換器の熱交換性能の向上が可能になる。 According to the fifth invention, at least one of the cooling heat transfer pipe (52) and the heating heat transfer pipe (80) directly exchanges heat with the inner wall of the outer pipe (51). It becomes possible to condense or evaporate more efficiently. That is, the heat exchange performance of the heat exchanger can be improved.
 また、第6の発明によれば、冷房用伝熱管(52)と熱媒体との接触面積を増大させることが可能になるので、冷房用伝熱管(52)内の冷媒をより効率よく凝縮させることが可能になる。すなわち、熱交換器の熱交換性能の向上が可能になる。 Further, according to the sixth aspect of the present invention, the contact area between the cooling heat transfer tube (52) and the heat medium can be increased, so that the refrigerant in the cooling heat transfer tube (52) is more efficiently condensed. It becomes possible. That is, the heat exchange performance of the heat exchanger can be improved.
 また、第7の発明によれば、ウイック(100)が、保持した液冷媒を外管(51)の内面壁に接触させるので、外管(51)の内面壁に対し、均一な濡れを確保することが可能になる。すなわち、熱交換器の熱交換性能の向上が可能になる。 Further, according to the seventh invention, since the wick (100) brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51), uniform wetting is ensured with respect to the inner wall of the outer pipe (51). It becomes possible to do. That is, the heat exchange performance of the heat exchanger can be improved.
 また、第8の発明によれば、グルーブ(110)が、保持した液冷媒を外管(51)の内面壁に接触させるので、外管(51)の内面壁に対し、均一な濡れを確保することが可能になる。すなわち、熱交換器の熱交換性能の向上が可能になる。 According to the eighth aspect of the invention, the groove (110) brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51), so that uniform wetting is ensured with respect to the inner wall of the outer pipe (51). It becomes possible to do. That is, the heat exchange performance of the heat exchanger can be improved.
 また、第9の発明によれば、地中又は水中で熱を放熱する冷房運転、及び地中又は水中の熱を熱源とした暖房運転が可能になる。 Further, according to the ninth invention, it is possible to perform a cooling operation in which heat is dissipated in the ground or underwater, and a heating operation using heat in the ground or underwater as a heat source.
図1は、本発明の実施形態に係る地中熱交換器(50)を含んだ空調システム(1)のシステム図である。FIG. 1 is a system diagram of an air conditioning system (1) including a ground heat exchanger (50) according to an embodiment of the present invention. 図2は、本実施形態の地中熱交換器(50)を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the underground heat exchanger (50) of the present embodiment. 図3は、地中熱交換器(50)を地中に設置した状態を模式的に示す図である。FIG. 3 is a diagram schematically showing a state in which the underground heat exchanger (50) is installed in the ground. 図4は、冷房運転時の熱媒体の動きを説明する図であり、図4(A)が地中熱交換器の断面図、図4(B)が熱媒体保持部部分の拡大図である。4A and 4B are diagrams for explaining the movement of the heat medium during the cooling operation. FIG. 4A is a cross-sectional view of the underground heat exchanger, and FIG. 4B is an enlarged view of the heat medium holding portion. . 図5は、地中熱交換器(50)の変形例の構成を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing the configuration of a modification of the underground heat exchanger (50). 図6は、熱交換器(50)を水中に設置した状態を模式的に示す図である。FIG. 6 is a diagram schematically showing a state in which the heat exchanger (50) is installed in water. 図7は、熱交換器(50)を傾斜して設置した状態を模式的に示す図である。FIG. 7 is a diagram schematically showing a state in which the heat exchanger (50) is installed at an inclination. 図8は、外管(51)の他の構成例を示す図であり、図8(A)が外管の横断面、図8(B)が外管の一部を切り取った斜視図である。8A and 8B are diagrams showing another configuration example of the outer tube 51. FIG. 8A is a cross-sectional view of the outer tube, and FIG. 8B is a perspective view of a part of the outer tube. . 図9は、外管(51)のさらに他の構成例を示す横断面図である。FIG. 9 is a cross-sectional view showing still another configuration example of the outer tube (51).
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 《発明の実施形態1》
 実施形態1では、本発明の熱交換器の一例として、地中に設置される熱交換器(地中熱交換器)の例を説明する。本発明の実施形態に係る地中熱交換器は、例えば、冷房及び暖房運転が可能なヒートポンプ式の空調システムに用いられる。そして、冷房運転時には凝縮器として機能して土壌に対して熱を放熱する。また、暖房運転時には、蒸発器として機能して土壌から熱を吸熱する。なお、ここで土壌とは、土砂のみで形成されたものの他に、土砂と水の両方を含んだいわゆる帯水層も含まれる。すなわち、この地中熱交換器は、設置される場所や深さによっては、土砂の他にも地中の水、或いはそれらの両方とも熱交換を行う場合がある。以下では、この地中熱交換器を使用した空調システムの例を説明する。
Embodiment 1 of the Invention
Embodiment 1 demonstrates the example of the heat exchanger (ground heat exchanger) installed in the ground as an example of the heat exchanger of this invention. The underground heat exchanger according to the embodiment of the present invention is used in, for example, a heat pump type air conditioning system capable of cooling and heating operation. And at the time of air_conditionaing | cooling operation, it functions as a condenser and radiates heat with respect to soil. Moreover, during heating operation, it functions as an evaporator and absorbs heat from the soil. In addition, what is called an aquifer containing both earth and sand and water other than what was formed only with earth and sand here is soil. That is, this underground heat exchanger may exchange heat with ground water or both of them in addition to earth and sand, depending on the installation location and depth. Below, the example of the air-conditioning system which uses this underground heat exchanger is demonstrated.
 《空調システムの全体構成》
 図1は、本発明の実施形態に係る熱交換器(50)(地中熱交換器)を含んだ空調システム(1)のシステム図である。同図に示すように、空調システム(1)は、冷媒回路(10)を備えている。
<< Overall configuration of air conditioning system >>
FIG. 1 is a system diagram of an air conditioning system (1) including a heat exchanger (50) (ground heat exchanger) according to an embodiment of the present invention. As shown in the figure, the air conditioning system (1) includes a refrigerant circuit (10).
 この冷媒回路(10)は、圧縮機(20)、室内熱交換器(30)、膨張弁(40)、地中熱交換器(50)、四方切換弁(71)、第1の切り替えバルブ(72)、及び第2の切り替えバルブ(73)を含んでいる。そして、この冷媒回路(10)には、冷媒(作動流体)が充填されている。 The refrigerant circuit (10) includes a compressor (20), an indoor heat exchanger (30), an expansion valve (40), a ground heat exchanger (50), a four-way switching valve (71), and a first switching valve ( 72) and a second switching valve (73). The refrigerant circuit (10) is filled with a refrigerant (working fluid).
 圧縮機(20)は、冷媒を吸入ポートから吸入して圧縮し、圧縮した冷媒を吐出ポートから吐出する。具体的には、この圧縮機(20)には、例えばスクロール圧縮機などの種々の圧縮機を採用できる。 The compressor (20) sucks and compresses the refrigerant from the suction port, and discharges the compressed refrigerant from the discharge port. Specifically, various compressors such as a scroll compressor can be adopted as the compressor (20).
 室内熱交換器(30)は、冷媒を室内空気と熱交換させるための空気熱交換器である。この空調システム(1)では、室内熱交換器(30)は、空気調和を行う室内に配置された、いわゆる室内機に組み込まれる。この冷媒回路(10)においては、室内熱交換器(30)の一端は、膨張弁(40)に接続され、他の一端は、四方切換弁(71)の第4ポート(後述)に接続されている。そして、冷房運転時には膨張弁(40)から室内熱交換器(30)へ流入した低圧冷媒に室内空気の熱を吸熱させる。また、暖房運転時には、圧縮機(20)から吐出された冷媒の熱を室内空気に放熱させる。この室内熱交換器(30)には、例えば、クロスフィン型のフィン・アンド・チューブ熱交換器などを採用することができる。なお、この室内熱交換器(30)の近傍には、室内ファン(31)が設置されている。室内ファン(31)は、調和空気を室内へ送風する。 The indoor heat exchanger (30) is an air heat exchanger for exchanging heat between the refrigerant and room air. In the air conditioning system (1), the indoor heat exchanger (30) is incorporated in a so-called indoor unit that is disposed in a room that performs air conditioning. In this refrigerant circuit (10), one end of the indoor heat exchanger (30) is connected to the expansion valve (40), and the other end is connected to a fourth port (described later) of the four-way switching valve (71). ing. During the cooling operation, the low-pressure refrigerant flowing from the expansion valve (40) into the indoor heat exchanger (30) absorbs the heat of the room air. Further, during the heating operation, the heat of the refrigerant discharged from the compressor (20) is radiated to the room air. For the indoor heat exchanger (30), for example, a cross fin type fin-and-tube heat exchanger or the like can be employed. An indoor fan (31) is installed in the vicinity of the indoor heat exchanger (30). The indoor fan (31) blows conditioned air into the room.
 膨張弁(40)は、一端が第1の切り替えバルブ(72)に接続され、他端が室内熱交換器(30)に接続されている。そして、膨張弁(40)は、第1の切り替えバルブ(72)又は室内熱交換器(30)から流入した冷媒を膨張させて、所定の圧力まで減圧させてから流出させる。 The expansion valve (40) has one end connected to the first switching valve (72) and the other end connected to the indoor heat exchanger (30). The expansion valve (40) expands the refrigerant flowing in from the first switching valve (72) or the indoor heat exchanger (30), reduces the pressure to a predetermined pressure, and then flows it out.
 四方切換弁(71)は、第1から第4ポートの4つのポートが設けられている。そして、この四方切換弁(71)は、第1ポートと第3ポートが連通すると同時に第2ポートと第4ポートが連通する第1状態(図1に実線で示す状態)と、第1ポートと第4ポートが連通すると同時に第2ポートと第3ポートが連通する第2状態(図1に破線で示す状態)とに切り換え可能となっている。この冷媒回路(10)では、第1ポートが圧縮機(20)の吐出ポートに接続され、第2ポートが圧縮機(20)の吸入ポートに接続されている。また、第3ポートは、第2の切り替えバルブ(73)に接続され、第4ポートは室内熱交換器(30)の一端に接続されている。 The four-way switching valve (71) is provided with four ports from first to fourth ports. The four-way switching valve (71) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate simultaneously with the second port and the fourth port, It is possible to switch to a second state (state indicated by a broken line in FIG. 1) in which the second port and the third port communicate at the same time as the fourth port communicates. In the refrigerant circuit (10), the first port is connected to the discharge port of the compressor (20), and the second port is connected to the suction port of the compressor (20). The third port is connected to the second switching valve (73), and the fourth port is connected to one end of the indoor heat exchanger (30).
 《地中熱交換器(50)の構成》
 地中熱交換器(50)は、地中に埋設されて、冷房運転時及び暖房運転時に、土壌と熱交換を行う。具体的には、この地中熱交換器(50)は、冷房運転時に凝縮器として機能して、土壌に対して放熱する。また、暖房運転時には、蒸発器として機能して土壌から熱を吸熱する。図2は、本実施形態の地中熱交換器(50)を示す縦断面図である。この地中熱交換器(50)は、図2に示すように、外管(51)、冷房用伝熱管(52)、及び暖房用伝熱管(80)を備えている。
《Configuration of underground heat exchanger (50)》
The underground heat exchanger (50) is buried in the ground and exchanges heat with the soil during the cooling operation and the heating operation. Specifically, the underground heat exchanger (50) functions as a condenser during cooling operation and dissipates heat to the soil. Moreover, during heating operation, it functions as an evaporator and absorbs heat from the soil. FIG. 2 is a longitudinal sectional view showing the underground heat exchanger (50) of the present embodiment. As shown in FIG. 2, the underground heat exchanger (50) includes an outer pipe (51), a cooling heat transfer pipe (52), and a heating heat transfer pipe (80).
 〈外管(51)〉
 外管(51)は、両端が閉じた管状に形成され、この例では、地中に縦向きに埋設される。具体的に、本実施形態の外管(51)は5m程度の長さを有し、その全体が例えば、5mから10m程度の深さの地中に埋設される。ただし、この深さは例示である。例えば、図3は、地中熱交換器(50)を地中に設置した状態を模式的に示す図である。地層には、主に土砂のみで形成された層、土砂と水を含んだ層、主に水を含んだ層、さらには岩石が連続して分布している岩盤等がある。この地中熱交換器(50)は何れの地層に設置してもよい。また、図3では、これらの各層に渡り地中熱交換器(50)が設置された状態を示しているが、例えば、何れかの地層のみにおいて地中熱交換器(50)が熱交換を行うように設置してもよい。
<Outer tube (51)>
The outer pipe (51) is formed in a tubular shape whose both ends are closed, and in this example, it is buried vertically in the ground. Specifically, the outer pipe (51) of this embodiment has a length of about 5 m, and the whole is buried in the ground at a depth of about 5 m to 10 m, for example. However, this depth is an example. For example, FIG. 3 is a diagram schematically showing a state in which the underground heat exchanger (50) is installed in the ground. The stratum includes a layer mainly composed of earth and sand, a layer containing earth and sand, a layer mainly containing water, and a bedrock where rocks are continuously distributed. This underground heat exchanger (50) may be installed in any formation. FIG. 3 shows a state in which the underground heat exchanger (50) is installed in each of these layers. For example, the underground heat exchanger (50) performs heat exchange only in one of the formations. May be installed to do.
 また、この外管(51)内には、熱媒体として、所定の量の二酸化炭素(CO)が封入されている。この熱媒体は後に詳述するように、冷房運転時には、外管(51)の内壁面から土壌に放熱して凝縮するとともに、冷房用伝熱管(52)の外壁面において吸熱して蒸発する。また、暖房運転時には、外管(51)の内壁面から土壌の熱を吸熱するとともに、暖房用伝熱管(80)の外壁面に放熱して凝縮する。 In addition, a predetermined amount of carbon dioxide (CO 2 ) is enclosed in the outer pipe (51) as a heat medium. As will be described in detail later, during the cooling operation, this heat medium dissipates heat from the inner wall surface of the outer pipe (51) to the soil and condenses, and absorbs heat on the outer wall surface of the cooling heat transfer pipe (52) and evaporates. Further, during heating operation, the soil heat is absorbed from the inner wall surface of the outer pipe (51), and the heat is dissipated and condensed on the outer wall surface of the heating heat transfer pipe (80).
 〈冷房用伝熱管(52)〉
 冷房用伝熱管(52)は、外管(51)内に挿入されて、暖房用伝熱管(80)よりも下方寄りに配置されている。そして、この冷房用伝熱管(52)には、冷房運転時に冷媒が導入されるとともに、該冷媒から放熱させる。
<Cooling heat transfer tube (52)>
The cooling heat transfer tube (52) is inserted into the outer tube (51) and is disposed closer to the lower side than the heating heat transfer tube (80). The cooling heat transfer tube (52) introduces a refrigerant during the cooling operation and releases heat from the refrigerant.
 本実施形態の冷房用伝熱管(52)は、管状に形成されている。具体的には、冷房用伝熱管(52)は、図2に示すように、導入部(52a)、導出部(52b)、導入側本体部(52c)、導出側本体部(52d)、及び接続部(52e)から形成されている。この冷房用伝熱管(52)の材料としては、例えば、銅、アルミニウム、アルミニウム合金、或いはその他の複合材料を採用できる。ただし、熱伝導率や耐食性が使用条件に合致するように選択する必要がある。 The cooling heat transfer tube (52) of the present embodiment is formed in a tubular shape. Specifically, as shown in FIG. 2, the cooling heat transfer tube (52) includes an introduction portion (52a), a lead-out portion (52b), an introduction-side main body portion (52c), a lead-out-side main body portion (52d), and The connection portion (52e) is formed. As a material for the cooling heat transfer tube (52), for example, copper, aluminum, an aluminum alloy, or other composite materials can be employed. However, it is necessary to select the thermal conductivity and corrosion resistance so as to match the use conditions.
 導入部(52a)は、外管(51)の上方側(外管(51)を埋設した状態で地表側となる側)から該外管(51)内に挿入され、一端が第2の切り替えバルブ(73)に接続されている。また、導入部(52a)の他の一端は、外管(51)内の上方において、導入側本体部(52c)の一端と接続されている。また、導出部(52b)は、外管(51)の上方側から、該外管(51)内に挿入され、外管(51)の外側の一端が、第1の切り替えバルブ(72)に接続されている。導出部(52b)の他の一端は、外管(51)内の上方において、導出側本体部(52d)の一端と接続されている。 The introduction part (52a) is inserted into the outer pipe (51) from the upper side of the outer pipe (51) (the side that becomes the ground side when the outer pipe (51) is buried), and one end thereof is the second switching Connected to valve (73). The other end of the introduction part (52a) is connected to one end of the introduction-side main body part (52c) above the outer pipe (51). The lead-out part (52b) is inserted into the outer pipe (51) from the upper side of the outer pipe (51), and one end on the outer side of the outer pipe (51) is connected to the first switching valve (72). It is connected. The other end of the lead-out portion (52b) is connected to one end of the lead-out side main body portion (52d) above the inside of the outer tube (51).
 導入側本体部(52c)及び導出側本体部(52d)は何れも、外管(51)の内面壁に沿って、該外管(51)の上方から底部(下端)まで延びている。接続部(52e)は、この底部において、該底部を径方向に横断し、該底部において、導入側本体部(52c)の一端と導出側本体部(52d)の一端と接続している。すなわち、この冷媒回路(10)では、冷房用伝熱管(52)は、一端が第1の切り替えバルブ(72)に接続され、他の一端が、第2の切り替えバルブ(73)に接続されている。 Both the introduction-side main body portion (52c) and the lead-out-side main body portion (52d) extend from above the outer tube (51) to the bottom (lower end) along the inner wall of the outer tube (51). The connecting portion (52e) crosses the bottom portion in the radial direction at the bottom portion, and is connected to one end of the introduction side main body portion (52c) and one end of the outlet side main body portion (52d) at the bottom portion. That is, in this refrigerant circuit (10), one end of the cooling heat transfer tube (52) is connected to the first switching valve (72), and the other end is connected to the second switching valve (73). Yes.
 本実施形態では、導入側本体部(52c)の外面壁と外管(51)の内面壁とは、液状の熱媒体を表面張力によって保持する熱媒体保持部(60)を形成している。また、同様に、導出側本体部(52d)の外面壁と外管(51)の内面壁とも、熱媒体保持部(60)を形成している。具体的には、各本体部(52c,52d)のそれぞれの外面壁は、外管(51)の内面壁と接して配置され、図4の(A)及び(B)に示すように、外管(51)の内面壁に付着している液状の熱媒体を、表面張力によってこれらの壁(例えば導入側本体部(52c)の外面壁と外管(51)の内面壁)の間に保持する。各本体部(52c,52d)の外面壁は、このように表面張力で液状の熱媒体を保持できれば、必ずしも外管(51)の内面壁と接触している必要はないが、本実施形態では、各本体部(52c,52d)のそれぞれの外面壁は、外管(51)の内面壁と接触するように配置している。 In this embodiment, the outer surface wall of the introduction-side main body portion (52c) and the inner surface wall of the outer tube (51) form a heat medium holding portion (60) that holds the liquid heat medium by surface tension. Similarly, the outer wall of the lead-out body part (52d) and the inner wall of the outer pipe (51) also form a heat medium holding part (60). Specifically, the outer wall of each main body (52c, 52d) is disposed in contact with the inner wall of the outer tube (51), and as shown in FIGS. The liquid heat medium adhering to the inner wall of the pipe (51) is held between these walls (for example, the outer wall of the introduction-side main body (52c) and the inner wall of the outer pipe (51)) by surface tension. To do. The outer wall of each main body (52c, 52d) does not necessarily need to be in contact with the inner wall of the outer tube (51) as long as the liquid heat medium can be held by the surface tension in this way. The outer surface walls of the main body portions (52c, 52d) are arranged so as to come into contact with the inner wall of the outer tube (51).
 このように、各本体部(52c,52d)のそれぞれの外面壁が、外管(51)の内面壁と接触するように配置することで、各本体部(52c,52d)は、外管(51)と直接的に熱交換ができる。すなわち、この直接的な熱交換により、地中熱交換器(50)における熱交換性能がより向上する。なお、上記の冷房用伝熱管(52)では、2つの本体部(52c,52d)で熱交換を行っていたが、本体部(52c,52d)の本数は例示であり、この例には限定されない。例えば、3本以上の本体部を設けてもよい。 Thus, each main body (52c, 52d) is arranged so that each outer surface wall of each main body (52c, 52d) is in contact with the inner wall of the outer pipe (51), so that each main body (52c, 52d) Direct heat exchange with 51). That is, this direct heat exchange further improves the heat exchange performance in the underground heat exchanger (50). In the above-described cooling heat transfer tube (52), heat is exchanged between the two main body portions (52c, 52d), but the number of the main body portions (52c, 52d) is an example, and the present invention is limited to this example. Not. For example, three or more main body portions may be provided.
 また、各本体部(52c,52d)は、外管(51)の内面壁との間に所定の隙間があってもよい。また、各本体部(52c,52d)を液状の熱媒体で濡らすことができれば、熱媒体保持部(60)は必ずしも必須ではない。 Further, each main body (52c, 52d) may have a predetermined gap between the inner wall of the outer pipe (51). Further, the heat medium holding part (60) is not necessarily essential as long as the main body parts (52c, 52d) can be wetted with a liquid heat medium.
 〈暖房用伝熱管(80)〉
 暖房用伝熱管(80)は、外管(51)内に挿入されている。そして、暖房用伝熱管(80)は、暖房運転時に、冷媒が内部に導入されるとともに該冷媒を蒸発させる。この例では暖房用伝熱管(80)は、導入部(80a)、本体部(80b)、導出部(80c)から形成されている。この暖房用伝熱管(80)の材料としては、例えば、銅、アルミニウム、アルミニウム合金、或いはその他の複合材料を採用できる。ただし、熱伝導率や耐食性が使用条件に合致するように選択する必要がある。
<Heat transfer tube (80)>
The heating heat transfer tube (80) is inserted into the outer tube (51). The heating heat transfer tube (80) introduces the refrigerant into the interior and evaporates the refrigerant during the heating operation. In this example, the heating heat transfer tube (80) is formed of an introduction part (80a), a main body part (80b), and a lead-out part (80c). As a material of the heat transfer tube (80) for heating, for example, copper, aluminum, an aluminum alloy, or other composite materials can be adopted. However, it is necessary to select the thermal conductivity and corrosion resistance so as to match the use conditions.
 本体部(80b)は、暖房運転時に冷媒が内部に導入され、熱媒体から吸熱して、導入された冷媒を蒸発させる。本実施形態では、本体部(80b)は、コイル状に形成され、冷房用伝熱管(52)の導入部(52a)及び導出部(52b)を取り囲むように、外管(51)内の上方寄りに配置されている。すなわち、本体部(80b)は、外管(51)の埋設状態において、冷房用伝熱管(52)よりも上方に配置されている。また、本実施形態では、この本体部(80b)は、その外周側で、外管(51)の内壁面に接触している。ただし、本体部(80b)と外管(51)の内面壁との間に、所定の隙間を設けておくことも可能である。 In the main body (80b), the refrigerant is introduced into the interior during the heating operation, absorbs heat from the heat medium, and evaporates the introduced refrigerant. In the present embodiment, the main body part (80b) is formed in a coil shape, and the upper part in the outer pipe (51) so as to surround the introduction part (52a) and the outlet part (52b) of the cooling heat transfer pipe (52). It is arranged closer. That is, the main body (80b) is disposed above the cooling heat transfer tube (52) in the embedded state of the outer tube (51). In the present embodiment, the main body (80b) is in contact with the inner wall surface of the outer tube (51) on the outer peripheral side. However, a predetermined gap may be provided between the main body portion (80b) and the inner wall of the outer tube (51).
 また、導入部(80a)は、本体部(80b)に対して冷媒を導入するための配管であり、導出部(80c)は本体部(80b)から冷媒を導出する配管である。本実施形態では、導入部(80a)及び導出部(80c)は、何れも直状に形成され、外管(51)の上方から該外管(51)内に挿入されている。 The introduction part (80a) is a pipe for introducing the refrigerant into the main body part (80b), and the lead-out part (80c) is a pipe for drawing the refrigerant from the main body part (80b). In the present embodiment, both the introduction part (80a) and the lead-out part (80c) are formed in a straight shape, and are inserted into the outer pipe (51) from above the outer pipe (51).
 〈第1及び第2の切り替えバルブ(72,73)〉
 第1及び第2の切り替えバルブ(72,73)は、暖房運転を行うか、冷房運転を行うかに応じて冷媒の流れを切り替えるバルブである。この第1及び第2の切り替えバルブ(72,73)は、本発明の切替部の一例である。本実施形態では、第1の切り替えバルブ(72)は、膨張弁(40)を、冷房用伝熱管(52)の導出部(52b)、又は暖房用伝熱管(80)の導入部(80a)に接続する。また、第2の切り替えバルブ(73)は、四方切換弁(71)の第3ポートを、冷房用伝熱管(52)の導入部(52a)、又は暖房用伝熱管(80)の導出部(80c)に接続する。
<First and second switching valves (72, 73)>
The first and second switching valves (72, 73) are valves that switch the flow of the refrigerant according to whether the heating operation is performed or the cooling operation is performed. The first and second switching valves (72, 73) are an example of the switching unit of the present invention. In the present embodiment, the first switching valve (72) includes the expansion valve (40), the lead-out part (52b) of the cooling heat transfer pipe (52), or the introduction part (80a) of the heating heat transfer pipe (80). Connect to. The second switching valve (73) is connected to the third port of the four-way switching valve (71) through the introduction part (52a) of the cooling heat transfer pipe (52) or the outlet part of the heating heat transfer pipe (80) ( Connect to 80c).
 《運転動作》
 次に、空調システム(1)における運転動作について説明する。
《Driving operation》
Next, the operation of the air conditioning system (1) will be described.
 〈冷房運転〉
 まず、冷房運転について説明する。冷房運転時には、四方切換弁(71)が第1状態に切り替えられる。すなわち、第1ポートと第3ポートが連通すると同時に第2ポートと第4ポートが連通する(図1に実線で示す状態)。第1の切り替えバルブ(72)は、膨張弁(40)と、冷房用伝熱管(52)の導出部(52b)とが接続されるように切り替えられる。また、第2の切り替えバルブ(73)は、冷房用伝熱管(52)の導入部(52a)と、四方切換弁(71)の第3ポートとが接続されるように切り替えられる。
<Cooling operation>
First, the cooling operation will be described. During the cooling operation, the four-way switching valve (71) is switched to the first state. That is, the first port and the third port communicate with each other, and at the same time the second port and the fourth port communicate with each other (a state indicated by a solid line in FIG. 1). The first switching valve (72) is switched so that the expansion valve (40) and the lead-out part (52b) of the cooling heat transfer pipe (52) are connected. The second switching valve (73) is switched so that the introduction part (52a) of the cooling heat transfer tube (52) and the third port of the four-way switching valve (71) are connected.
 そして、圧縮機(20)が運転状態にされると、圧縮機(20)は、圧縮した冷媒(ガス冷媒)を吐出ポートから吐出する。圧縮機(20)から吐出されたこの冷媒は、地中熱交換器(50)の導入部(52a)へ送られ、さらに各本体部(52c,52d)に導入される。 Then, when the compressor (20) is put into an operating state, the compressor (20) discharges the compressed refrigerant (gas refrigerant) from the discharge port. The refrigerant discharged from the compressor (20) is sent to the introduction part (52a) of the underground heat exchanger (50) and further introduced into the main body parts (52c, 52d).
 このとき、外管(51)の内面壁は、はじめは地中温度と等しい状態である。その状態から所定時間が経過すると、土壌の伝熱抵抗が大きいため、各本体部(52c,52d)では温度が上昇する。外管(51)と土壌の間の伝熱量は土壌の伝熱抵抗に制約されるので、一般には、外管(51)の内面壁と各本体部(52c,52d)と温度勾配を維持し、地中内の温度分布も一定を保たれる範囲で伝熱がおこなわれるように冷媒の流量を操作する。 At this time, the inner wall of the outer tube (51) is initially in a state equal to the underground temperature. When a predetermined time elapses from this state, the heat transfer resistance of the soil is large, and the temperature rises in each main body (52c, 52d). Since the amount of heat transfer between the outer pipe (51) and the soil is limited by the heat transfer resistance of the soil, in general, the temperature gradient between the inner wall of the outer pipe (51) and each main body (52c, 52d) is maintained. The flow rate of the refrigerant is controlled so that heat transfer is performed within a range where the temperature distribution in the underground is also kept constant.
 一方、熱媒体の一部は、外管(51)の内面壁を介して土壌に放熱する。これにより、熱媒体の一部は、凝縮して液状になっている。これは、外管(51)の内面壁と各本体部(52c,52d)の接触部に伝熱が集中することを回避し、外管(51)の内面壁全面へ放熱を分散させる働きをする。この液状の熱媒体は、外管(51)の内面壁を伝って、下方に徐々に流れる。そして、熱媒体保持部(60)によって生じた表面張力によって、図4に示すように、外管(51)の内面壁と、各本体部(52c,52d)の外面壁との間に形成された熱媒体保持部(60)に引き寄せられてゆく。すなわち、各本体部(52c,52d)が外管(51)の上方から底部(下端)まで延びているので、液状の熱媒体と各本体部(52c,52d)とをより効率よく接触させることが可能になる。 On the other hand, a part of the heat medium radiates heat to the soil through the inner wall of the outer pipe (51). As a result, a part of the heat medium is condensed to be liquid. This prevents the heat transfer from concentrating on the inner wall of the outer pipe (51) and the contact part of each main body (52c, 52d), and works to distribute heat dissipation over the entire inner wall of the outer pipe (51). To do. This liquid heat medium gradually flows downward along the inner wall of the outer tube (51). Then, as shown in FIG. 4, the surface tension generated by the heat medium holding part (60) is formed between the inner wall of the outer pipe (51) and the outer wall of each main body part (52c, 52d). It is attracted to the heat medium holding part (60). That is, since each main body (52c, 52d) extends from the upper part of the outer tube (51) to the bottom (lower end), the liquid heat medium and each main body (52c, 52d) can be more efficiently brought into contact with each other. Is possible.
 このように、外管(51)内で凝縮した熱媒体が、熱媒体保持部(60)によって、各本体部(52c,52d)の外面壁に引き寄せられることにより、各本体部(52c,52d)の外面壁が液状の熱媒体で均一に濡れる。そして、各本体部(52c,52d)外面壁上の熱媒体は、各本体部(52c,52d)から吸熱して蒸発する。このように蒸発した熱媒体は、外管(51)内に拡散する。拡散した熱媒体は、外管(51)の内面壁を介して土壌に放熱することによって、再び凝縮する。 As described above, the heat medium condensed in the outer pipe (51) is attracted to the outer wall of each main body (52c, 52d) by the heat medium holding section (60), so that each main body (52c, 52d). ) Of the outer wall uniformly gets wet with the liquid heat medium. The heat medium on the outer wall of each main body (52c, 52d) absorbs heat from each main body (52c, 52d) and evaporates. The heat medium evaporated in this way diffuses into the outer tube (51). The diffused heat medium is condensed again by dissipating heat to the soil through the inner wall of the outer tube (51).
 一方、各本体部(52c,52d)は、接触している熱媒体に放熱する。さらに、各本体部(52c,52d)は、接触している外管(51)の内面壁を介して土壌に放熱する。このように、各本体部(52c,52d)が放熱したことによって、各本体部(52c,52d)内では、それぞれの内部に導入された冷媒が凝縮する。凝縮した冷媒は、導出部(52b)と第1の切り替えバルブ(72)を介して膨張弁(40)に導入される。膨張弁(40)は、流入して冷媒を減圧されてから室内熱交換器(30)に導入する。室内熱交換器(30)に流入した冷媒は、室内空気から吸熱して蒸発する。これにより、室内熱交換器(30)では室内空気が冷却され、冷却された室内空気が室内ファン(31)によって室内へ送り返される。室内熱交換器(30)で蒸発した冷媒は、圧縮機(20)の吸入ポートに導入される。圧縮機(20)は、この冷媒を吸入して圧縮し地中熱交換器(50)の導入部(52a)へ吐出する。以上のように、この地中熱交換器(50)では、冷房用伝熱管(52)が、熱媒体の相変化を利用して土壌と熱交換を行う。 On the other hand, each main body (52c, 52d) radiates heat to the contacting heat medium. Furthermore, each main body (52c, 52d) radiates heat to the soil via the inner wall of the outer pipe (51) that is in contact. As described above, the main body portions (52c, 52d) dissipate heat, so that the refrigerant introduced into the main body portions (52c, 52d) is condensed. The condensed refrigerant is introduced into the expansion valve (40) through the lead-out part (52b) and the first switching valve (72). The expansion valve (40) flows into the indoor heat exchanger (30) after flowing in and reducing the pressure of the refrigerant. The refrigerant flowing into the indoor heat exchanger (30) absorbs heat from the indoor air and evaporates. As a result, the indoor air is cooled in the indoor heat exchanger (30), and the cooled indoor air is sent back into the room by the indoor fan (31). The refrigerant evaporated in the indoor heat exchanger (30) is introduced into the suction port of the compressor (20). The compressor (20) sucks and compresses the refrigerant and discharges it to the introduction part (52a) of the underground heat exchanger (50). As described above, in the underground heat exchanger (50), the cooling heat transfer tube (52) exchanges heat with the soil using the phase change of the heat medium.
 そして、この空調システム(1)では、以上の動作が繰り返され、地中熱交換器(50)を凝縮器として圧縮機(20)で冷媒を圧縮する冷凍サイクル(この例では冷房)が行われる。 In the air conditioning system (1), the above operation is repeated, and a refrigeration cycle (cooling in this example) is performed in which the refrigerant is compressed by the compressor (20) using the underground heat exchanger (50) as a condenser. .
 〈暖房運転〉
 次に、空調システム(1)の暖房運転について説明する。暖房運転時には、四方切換弁(71)が第2状態に切り替えられる。すなわち、第1ポートと第4ポートが連通すると同時に第2ポートと第3ポートが連通する(図1に破線で示す状態)。第1の切り替えバルブ(72)は、膨張弁(40)と暖房用伝熱管(80)の導入部(80a)とが接続されるように切り替えられる。また、第2の切り替えバルブ(73)は、暖房用伝熱管(80)の導出部(80c)と、四方切換弁(71)の第3ポートとが接続されるように切り替えられる。
<Heating operation>
Next, the heating operation of the air conditioning system (1) will be described. During the heating operation, the four-way selector valve (71) is switched to the second state. That is, the first port and the fourth port communicate with each other, and at the same time the second port and the third port communicate with each other (a state indicated by a broken line in FIG. 1). The first switching valve (72) is switched so that the expansion valve (40) and the introduction part (80a) of the heating heat transfer pipe (80) are connected. The second switching valve (73) is switched so that the lead-out portion (80c) of the heating heat transfer tube (80) and the third port of the four-way switching valve (71) are connected.
 そして、圧縮機(20)が運転状態にされると、圧縮機(20)は、圧縮した冷媒(ガス冷媒)を吐出ポートから吐出する。圧縮機(20)から吐出された冷媒は、四方切換弁(71)を介して室内熱交換器(30)へ送られる。室内熱交換器(30)に流入した冷媒は、室内熱交換器(30)で室内空気へ放熱する。室内熱交換器(30)では室内空気が加熱され、加熱された室内空気が室内ファン(31)によって室内へ送り返される。 Then, when the compressor (20) is put into an operating state, the compressor (20) discharges the compressed refrigerant (gas refrigerant) from the discharge port. The refrigerant discharged from the compressor (20) is sent to the indoor heat exchanger (30) through the four-way switching valve (71). The refrigerant that has flowed into the indoor heat exchanger (30) radiates heat to the indoor air in the indoor heat exchanger (30). In the indoor heat exchanger (30), the indoor air is heated, and the heated indoor air is sent back into the room by the indoor fan (31).
 室内熱交換器(30)で放熱した冷媒は、膨張弁(40)へ送られる。膨張弁(40)は、流入した冷媒を減圧させる。減圧させられた冷媒は、第1の切り替えバルブ(72)を介して導入部(80a)に導入され、さらに本体部(80b)に導入される。 The refrigerant radiated by the indoor heat exchanger (30) is sent to the expansion valve (40). The expansion valve (40) depressurizes the flowing refrigerant. The decompressed refrigerant is introduced into the introduction part (80a) via the first switching valve (72) and further introduced into the main body part (80b).
 このとき、外管(51)の内面壁は、はじめは地中温度と等しい状態である。その状態から所定時間が経過すると、土壌の伝熱抵抗が大きいため、熱媒体を介した暖房用伝熱管(80)への放熱量に比例した温度勾配が発生し、土壌の温度は低下する。外管(51)の内面壁と暖房用伝熱管(80)と温度勾配を維持し、地中内の温度分布も一定を保たれる範囲で伝熱がおこなわれるように熱輸送を操作する。これにより、熱媒体の一部は、外管(51)の内面壁を介して土壌から吸熱することによって、蒸発してガス状になる。このガス状の熱媒体は、暖房用伝熱管(80)の本体部(80b)において吸熱される。これにより、ガス状の熱媒体は凝縮して液体となる。本実施形態では、暖房用伝熱管(80)の本体部(80b)は、外管(51)の上方寄りに配置されているので、液体となった熱媒体は、外管(51)の内壁面を伝って下方に流れ落ちてゆく。このように熱媒体が地中熱交換器(50)の内壁面を伝っている間に、該熱媒体は再び内面壁を介して土壌から吸熱することによって蒸発する。 At this time, the inner wall of the outer tube (51) is initially in a state equal to the underground temperature. When a predetermined time elapses from this state, the heat transfer resistance of the soil is large, so that a temperature gradient proportional to the amount of heat released to the heating heat transfer tube (80) via the heat medium is generated, and the temperature of the soil decreases. Maintaining a temperature gradient with the inner wall of the outer pipe (51) and the heat transfer pipe (80) for heating, heat transfer is operated so that heat transfer is performed within a range where the temperature distribution in the ground is kept constant. Thereby, a part of the heat medium is evaporated and becomes gaseous by absorbing heat from the soil via the inner wall of the outer tube (51). The gaseous heat medium absorbs heat in the main body (80b) of the heating heat transfer tube (80). Thereby, the gaseous heat medium is condensed into a liquid. In the present embodiment, since the main body (80b) of the heating heat transfer tube (80) is disposed near the upper side of the outer tube (51), the heat medium that has become a liquid is contained in the outer tube (51). It flows down along the wall. In this way, while the heat medium travels along the inner wall surface of the underground heat exchanger (50), the heat medium again evaporates by absorbing heat from the soil through the inner surface wall.
 一方、本体部(80b)内においては、該本体部(80b)が熱媒体から吸熱したことにより、導入された冷媒が蒸発してガス冷媒となる。そして、このガス冷媒は、暖房用伝熱管(80)の導出部(80c)から導出されて、第2の切り替えバルブ(73)と四方切換弁(71)とを介して圧縮機(20)の吸入ポートに導入される。圧縮機(20)は、この冷媒を吸入して圧縮し、四方切換弁(71)を介して室内熱交換器(30)へ吐出する。以上のように、この地中熱交換器(50)では、暖房用伝熱管(80)が、熱媒体の相変化を利用して土壌と熱交換を行う。 On the other hand, in the main body (80b), the main body (80b) absorbs heat from the heat medium, so that the introduced refrigerant evaporates and becomes a gas refrigerant. And this gas refrigerant is derived | led-out from the derivation | leading-out part (80c) of the heat exchanger tube (80) for a heating, and passes through the 2nd switching valve (73) and the four-way switching valve (71) of a compressor (20). Introduced into the suction port. The compressor (20) sucks and compresses the refrigerant, and discharges it to the indoor heat exchanger (30) through the four-way switching valve (71). As described above, in the underground heat exchanger (50), the heating heat transfer tube (80) exchanges heat with the soil using the phase change of the heat medium.
 そして、空調システム(1)では、以上の動作が繰り返され、地中熱交換器(50)を蒸発器として圧縮機(20)で冷媒を圧縮する冷凍サイクル(この例では暖房)が行われる。 In the air conditioning system (1), the above operation is repeated, and a refrigeration cycle (heating in this example) is performed in which the refrigerant is compressed by the compressor (20) using the underground heat exchanger (50) as an evaporator.
 《本実施形態における効果》
 以上のように、本実施形態によれば、地中熱交換器(50)によって、暖房運転に加え冷房運転を行うことも可能になる。
<< Effect in this embodiment >>
As described above, according to the present embodiment, the underground heat exchanger (50) can perform the cooling operation in addition to the heating operation.
 しかも、本実施形態の暖房用伝熱管(80)は、外管(51)の埋設状態において、外管(51)の上方寄りに配置されているので、外管(51)内で液化して流れ落ちる熱媒体が、外管(51)の内壁と接触する時間及び面積を、十分に確保することが可能になる。すなわち、本実施形態では、暖房運転時に効率的に熱交換を行うことが可能になる。 In addition, the heating heat transfer tube (80) of the present embodiment is disposed closer to the upper portion of the outer tube (51) in the embedded state of the outer tube (51), so that it is liquefied in the outer tube (51). It is possible to ensure a sufficient time and area for the flowing down heat medium to contact the inner wall of the outer pipe (51). That is, in this embodiment, it is possible to efficiently perform heat exchange during the heating operation.
 さらに、本実施形態では、外管(51)内で凝縮した熱媒体が、熱媒体保持部(60)によって、冷房用伝熱管(52)の本体部(52c,52d)の外面壁に引き寄せられるので、各本体部(52c,52d)の外面壁が液状の熱媒体で均一に濡れる。そのため、各本体部(52c,52d)の外面壁と、液状の熱媒体との間で効率的に熱交換が行われ、各冷房用伝熱管(52)内の冷媒を効率よく凝縮させることができる。すなわち、本実施形態では、冷房運転時においても地中熱交換器の熱交換性能の向上が可能になる。 Furthermore, in the present embodiment, the heat medium condensed in the outer pipe (51) is drawn to the outer surface wall of the main body (52c, 52d) of the cooling heat transfer pipe (52) by the heat medium holding part (60). Therefore, the outer surface walls of the main body portions (52c, 52d) are uniformly wetted with the liquid heat medium. Therefore, heat exchange is efficiently performed between the outer wall of each main body (52c, 52d) and the liquid heat medium, and the refrigerant in each cooling heat transfer tube (52) can be efficiently condensed. it can. That is, in this embodiment, the heat exchange performance of the underground heat exchanger can be improved even during the cooling operation.
 そして、冷暖房運転時の熱交換性能の向上により、地中熱交換器の小型化が可能になる。この小型化により、空調システムの低コスト化も期待できる。 And, by improving the heat exchange performance during air conditioning operation, it is possible to reduce the size of the underground heat exchanger. This miniaturization can be expected to reduce the cost of the air conditioning system.
 《本実施形態の変形例》
 次に、上記の空調システム(1)において、冷房用伝熱管の構成を変更した例を説明する。
<< Modification of this embodiment >>
Next, an example in which the configuration of the cooling heat transfer tube in the air conditioning system (1) is changed will be described.
 図5は上記実施形態の変形例に係る地中熱交換器(50)の構成を示す縦断面図である。この地中熱交換器(50)は、外管(51)、暖房用伝熱管(80)、及び冷房用伝熱管(90)を備えている。そして、本変形例の冷房用伝熱管(90)は、導入部(91)、導出部(92)、及び本体部(93)を備えている。 FIG. 5 is a longitudinal sectional view showing the structure of the underground heat exchanger (50) according to the modification of the embodiment. The underground heat exchanger (50) includes an outer pipe (51), a heating heat transfer pipe (80), and a cooling heat transfer pipe (90). The cooling heat transfer tube (90) of the present modification includes an introduction part (91), a lead-out part (92), and a main body part (93).
 導入部(91)は、外管(51)の上方側(外管(51)を埋設した状態で地表側となる側)から該外管(51)内に挿入され、一端が第2の切り替えバルブ(73)に接続されている。また、導入部(91)の他の一端は、外管(51)内の下方において、本体部(93)の一端と接続されている。導出部(92)は、外管(51)の上方側から、該外管(51)内に挿入され、外管(51)の外側の一端が、第1の切り替えバルブ(72)に接続されている。導出部(92)の他の一端は、外管(51)内の下方において本体部(93)の他の一端と接続されている。 The introduction part (91) is inserted into the outer pipe (51) from the upper side of the outer pipe (51) (the side that becomes the ground side when the outer pipe (51) is embedded), and one end thereof is the second switching Connected to valve (73). The other end of the introduction part (91) is connected to one end of the main body part (93) in the lower part of the outer pipe (51). The lead-out section (92) is inserted into the outer pipe (51) from the upper side of the outer pipe (51), and one end outside the outer pipe (51) is connected to the first switching valve (72). ing. The other end of the lead-out portion (92) is connected to the other end of the main body portion (93) below the outer tube (51).
 また、本体部(93)は、コイル状に形成されて、外管(51)の下方寄りに配置されている。本実施形態では、この本体部(93)は、その外周側で、外管(51)の内壁面に接触している。また、この変形例においても、本体部(93)の外面壁と外管(51)の内面壁とは、液状の熱媒体を表面張力によって保持する熱媒体保持部(60)を形成している。 Further, the main body portion (93) is formed in a coil shape and is disposed on the lower side of the outer tube (51). In the present embodiment, the main body portion (93) is in contact with the inner wall surface of the outer tube (51) on the outer peripheral side thereof. Also in this modified example, the outer wall of the main body (93) and the inner wall of the outer tube (51) form a heat medium holding part (60) that holds the liquid heat medium by surface tension. .
 このように本体部(93)をコイル状にすることで、液状の熱媒体との接触面積を上記暖房用伝熱管(80)よりも増大させることが可能になる。すなわち、この変形例では、冷房効率を向上させることが可能になる。 Thus, by making the main body portion (93) in a coil shape, the contact area with the liquid heat medium can be made larger than that of the heating heat transfer tube (80). That is, in this modification, it becomes possible to improve the cooling efficiency.
 しかも、この冷房用伝熱管(90)は、外管(51)の下方寄りにあるので、液状の熱媒体と本体部(93)をより効率よく接触させることも可能になる。すなわち、凝縮した熱媒体は、外管(51)の内面壁を流れて底部に向かって流れるので、本変形例の暖房用伝熱管(80)は、その熱媒体を外管(51)の下方寄りで効率よく受け止めることができるのである。 In addition, since the cooling heat transfer tube (90) is located below the outer tube (51), the liquid heat medium and the main body (93) can be brought into contact more efficiently. That is, the condensed heat medium flows on the inner wall of the outer pipe (51) and flows toward the bottom, so that the heating heat transfer pipe (80) of the present modification uses the heat medium below the outer pipe (51). It can be received efficiently by approaching.
 《発明の実施形態2》
 なお、上記の熱交換器(50)は、地中に設置するほかに、水中に設置することも可能である。具体的な設置場所としては、例えば、海、湖、池、プール、貯水槽、河川、下水道などが上げられる。図6は、熱交換器(50)を水中に設置した状態を模式的に示す図である。この図では、熱交換器(50)(水中熱交換器)の設置例として2つの例(例1~2)を記載している。例1は、貯水槽又はプールに熱交換器(50)を設置した例である。また、例2は、海、湖、又は池に熱交換器(50)を設置した例である。なお、同図において、「HP」と記載されているのは、空調システム(1)の本体部分(熱交換器以外の部分)を示している(以下同様)。
<< Embodiment 2 of the Invention >>
The heat exchanger (50) can be installed in water in addition to being installed in the ground. As specific installation locations, for example, the sea, lakes, ponds, pools, water tanks, rivers, sewers, etc. can be raised. FIG. 6 is a diagram schematically showing a state in which the heat exchanger (50) is installed in water. In this figure, two examples (Examples 1 and 2) are shown as installation examples of the heat exchanger (50) (underwater heat exchanger). Example 1 is an example in which a heat exchanger (50) is installed in a water tank or pool. Example 2 is an example in which a heat exchanger (50) is installed in the sea, lake, or pond. In the figure, “HP” indicates a main part (a part other than the heat exchanger) of the air conditioning system (1) (the same applies hereinafter).
 上記のように熱交換器(50)を水中に設置した場合にも、上記の実施形態と同様のメカニズムで熱交換が行われる。 Even when the heat exchanger (50) is installed in water as described above, heat exchange is performed by the same mechanism as in the above embodiment.
 《その他の変形例》
 〈1〉なお、各実施形態の熱交換器(50)、すなわち外管(51)は、傾斜して地中や水中に設置してもよい。図7は、熱交換器(50)を傾斜して設置した状態を模式的に示す図である。図7(A)は、熱交換器(50)を傾斜して地中に設置した例を示し、図7(B)は、熱交換器(50)を傾斜して水中に設置した例を示している。図7(B)では、 海、湖、又は池に熱交換器(50)を傾斜して設置した例を示しているが、同様に、貯水槽やプールなどにも傾斜して配置可能である。
<< Other modifications >>
<1> The heat exchanger (50) of each embodiment, that is, the outer pipe (51) may be inclined and installed in the ground or in water. FIG. 7 is a diagram schematically showing a state in which the heat exchanger (50) is installed at an inclination. FIG. 7A shows an example in which the heat exchanger (50) is inclined and installed in the ground, and FIG. 7B shows an example in which the heat exchanger (50) is inclined and installed in the water. ing. Although FIG. 7B shows an example in which the heat exchanger (50) is inclined and installed in the sea, lake, or pond, similarly, it can be arranged in an inclined manner in a water tank or a pool. .
 〈2〉また、外管(51)の内面壁には、図8(A)及び(B)に示すように、ウイック(100)を設けてもよい。このウイック(100)は、外管(51)内の液状の熱媒体を浸透させて保持するとともに、保持した液冷媒を外管(51)の内面壁に接触させる。このようなウイック(100)としては、例えば、金属多孔質体、多孔質セラミック、繊維の集合体などが挙げられる。このように、外管(51)の内面壁にウイック(100)を設けることで、外管(51)の内面壁に対し、均一な濡れを確保することができ、特に暖房運転時における熱交換性能が向上する。 <2> Further, as shown in FIGS. 8A and 8B, a wick (100) may be provided on the inner wall of the outer tube (51). The wick (100) permeates and holds the liquid heat medium in the outer pipe (51) and brings the held liquid refrigerant into contact with the inner wall of the outer pipe (51). Examples of such wick (100) include metal porous bodies, porous ceramics, fiber aggregates, and the like. Thus, by providing the wick (100) on the inner wall of the outer pipe (51), it is possible to ensure uniform wetting with respect to the inner wall of the outer pipe (51), particularly heat exchange during heating operation. Performance is improved.
 〈3〉また、外管(51)の内面壁には、図9の断面図に示すように、複数のグルーブ(110)を設けてもよい。具体的には、このグルーブ(110)は、外管(51)内の液状の熱媒体を保持するように、幅、深さ、数などを定める。なお、グルーブ(110)の方向は、外管(51)の軸方向に平行なものには限定されない。例えば、円周方向であってもよいし、らせん状であってもよい。このようなグルーブ(110)を外管(51)の内面壁に設けることで、外管(51)の内面壁に対し、やはり均一な濡れを確保することができ、特に暖房運転時における熱交換性能が向上する。 <3> In addition, a plurality of grooves (110) may be provided on the inner wall of the outer tube (51) as shown in the cross-sectional view of FIG. Specifically, the groove (110) has a width, a depth, a number, and the like so as to hold a liquid heat medium in the outer pipe (51). The direction of the groove (110) is not limited to a direction parallel to the axial direction of the outer tube (51). For example, the circumferential direction may be sufficient and a spiral shape may be sufficient. By providing such a groove (110) on the inner wall of the outer tube (51), the inner wall of the outer tube (51) can still be evenly wetted, and in particular heat exchange during heating operation. Performance is improved.
 〈4〉また、暖房用伝熱管(80)は、暖房用の熱交換器(蒸発器)として機能するものであれば、上記の方式のものに限定されない。 <4> Further, the heating heat transfer tube (80) is not limited to the above one as long as it functions as a heating heat exchanger (evaporator).
 〈5〉また、熱媒体として使用した二酸化炭素も例示である。熱媒体には、冷媒回路の冷媒の温度範囲(例えば10℃から+40℃程度)で相変化するものを採用できる。具体的には、例えばアンモニアなどを採用できる。 <5> Carbon dioxide used as a heat medium is also an example. A heat medium that changes phase in the temperature range of the refrigerant in the refrigerant circuit (for example, about 10 ° C. to + 40 ° C.) can be used. Specifically, for example, ammonia can be employed.
 〈6〉また、所望の熱交換効率を得られるのであれば、熱媒体保持部(60)は必須ではない。 <6> In addition, if the desired heat exchange efficiency can be obtained, the heat medium holding part (60) is not essential.
 本発明は、地中又は水中に設置される熱交換器、及びそれを利用した空調システムとして有用である。 The present invention is useful as a heat exchanger installed in the ground or in water and an air conditioning system using the heat exchanger.
   1   空調システム
  50   熱交換器
  51   外管
  52   冷房用伝熱管
  60   熱媒体保持部
  72   第1の切り替えバルブ(切替部)
  73   第2の切り替えバルブ(切替部)
  80   暖房用伝熱管
 100   ウイック
 110   グルーブ
DESCRIPTION OF SYMBOLS 1 Air conditioning system 50 Heat exchanger 51 Outer pipe 52 Heat transfer pipe for cooling 60 Heat medium holding part 72 1st switching valve (switching part)
73 Second switching valve (switching section)
80 Heat Transfer Tube 100 Heating Wick 110 Groove

Claims (9)

  1.  縦向き又は傾斜して地中又は水中に設置される外管(51)と、
     前記外管(51)内に封入された熱媒体と、
     前記外管(51)内に挿入され、冷媒が内部に導入されるとともに該冷媒を蒸発させる暖房用伝熱管(80)と、
     前記外管(51)内に挿入され、前記冷媒が内部に導入されるとともに該冷媒から放熱させる冷房用伝熱管(52)を備え、
     前記冷房用伝熱管(52)及び暖房用伝熱管(80)は、相変化する前記熱媒体を介して、前記外管(51)と熱交換を行うことを特徴とする熱交換器。
    An outer pipe (51) installed vertically or inclined in the ground or in water,
    A heat medium sealed in the outer tube (51),
    A heating heat transfer tube (80) that is inserted into the outer tube (51) to evaporate the refrigerant as it is introduced into the interior;
    A cooling heat transfer tube (52) that is inserted into the outer tube (51) and that radiates heat from the refrigerant while being introduced into the refrigerant,
    The heat exchanger according to claim 1, wherein the cooling heat transfer tube (52) and the heating heat transfer tube (80) exchange heat with the outer tube (51) through the heat medium changing in phase.
  2.  請求項1の熱交換器において、
     前記冷房用伝熱管(52)、及び前記暖房用伝熱管(80)の少なくとも一方は、コイル状に形成されていることを特徴とする熱交換器。
    The heat exchanger of claim 1,
    At least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) is formed in a coil shape.
  3.  請求項1の熱交換器において、
     前記冷房用伝熱管(52)は、前記外管(51)の設置状態において、前記外管(51)の下方寄りに配置され、
     前記暖房用伝熱管(80)は、前記外管(51)の設置状態において、前記外管(51)の上方寄りに配置されていることを特徴とする熱交換器。
    The heat exchanger of claim 1,
    The cooling heat transfer tube (52) is disposed near the lower side of the outer tube (51) in the installed state of the outer tube (51),
    The heat exchanger tube (80) is arranged near the upper side of the outer tube (51) when the outer tube (51) is installed.
  4.  請求項1の熱交換器において、
     前記外管(51)と前記冷房用伝熱管(52)とは、該外管(51)の内面壁と該冷房用伝熱管(52)の外面壁の間で液状の前記熱媒体が保持されるように配置されていることを特徴とする熱交換器。
    The heat exchanger of claim 1,
    The outer pipe (51) and the cooling heat transfer pipe (52) hold the liquid heat medium between the inner wall of the outer pipe (51) and the outer wall of the cooling heat transfer pipe (52). It is arranged so that it may be arranged.
  5.  請求項1の熱交換器において、
     前記冷房用伝熱管(52)、及び前記暖房用伝熱管(80)の少なくとも一方は、前記外管(51)の内面壁と接して熱交換を行うことを特徴とする熱交換器。
    The heat exchanger of claim 1,
    At least one of the cooling heat transfer tube (52) and the heating heat transfer tube (80) is in contact with the inner wall of the outer tube (51) to perform heat exchange.
  6.  請求項1の熱交換器において、
     前記冷房用伝熱管(52)は、前記外管(51)の下端まで延在していることを特徴とする熱交換器。
    The heat exchanger of claim 1,
    The heat exchanger (52), wherein the cooling heat transfer tube (52) extends to a lower end of the outer tube (51).
  7.  請求項1の熱交換器において、
     前記外管(51)内には、該外管(51)の内面壁に沿ってウイック(100)が設けられていることを特徴とする熱交換器。
    The heat exchanger of claim 1,
    In the outer pipe (51), a wick (100) is provided along the inner wall of the outer pipe (51).
  8.  請求項1の熱交換器において、
     前記外管(51)の内面壁には、表面張力により前記熱媒体を保持するグルーブ(110)が形成されていることを特徴とする熱交換器。
    The heat exchanger of claim 1,
    A heat exchanger, wherein a groove (110) for holding the heat medium by surface tension is formed on an inner wall of the outer tube (51).
  9.  蒸気圧縮式の冷凍サイクルにより冷房及び暖房を行う空調システムであって、
     請求項1の熱交換器と、
     冷房運転時に前記冷房用伝熱管(52)に前記冷媒が流れ、暖房運転時に前記暖房用伝熱管(80)に前記冷媒が流れるように前記冷媒の流れを切り替える切替部(72,73)と、
     を備えていることを特徴とする空調システム。
    An air conditioning system that performs cooling and heating by a vapor compression refrigeration cycle,
    A heat exchanger according to claim 1;
    A switching unit (72, 73) for switching the flow of the refrigerant so that the refrigerant flows through the cooling heat transfer pipe (52) during the cooling operation and the refrigerant flows through the heating heat transfer pipe (80) during the heating operation;
    An air conditioning system characterized by comprising:
PCT/JP2009/001967 2008-04-30 2009-04-30 Heat exchanger and air conditioning system WO2009133708A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-118186 2008-04-30
JP2008118186 2008-04-30
JP2008323746 2008-12-19
JP2008-323746 2008-12-19

Publications (1)

Publication Number Publication Date
WO2009133708A1 true WO2009133708A1 (en) 2009-11-05

Family

ID=41254932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001967 WO2009133708A1 (en) 2008-04-30 2009-04-30 Heat exchanger and air conditioning system

Country Status (1)

Country Link
WO (1) WO2009133708A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220603A (en) * 2010-04-09 2011-11-04 Chemical Grouting Co Ltd Geothermal utilization system
JP2012198015A (en) * 2011-03-22 2012-10-18 Tai-Her Yang Heat insulation system of u-shaped pipeline

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118700A (en) * 1991-10-31 1993-05-14 Hokkaido Electric Power Co Inc:The Heat pump type air-conditioner
JP2000227289A (en) * 1999-02-01 2000-08-15 Behr Gmbh & Co Integral header and heat exchanger assembly
JP2000356433A (en) * 1999-06-17 2000-12-26 Kubota Corp Underground heat exchanger and heat source equipment, and operation method for heat source equipment
JP2006313034A (en) * 2005-05-06 2006-11-16 Nippon Steel Engineering Co Ltd Geothermal unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118700A (en) * 1991-10-31 1993-05-14 Hokkaido Electric Power Co Inc:The Heat pump type air-conditioner
JP2000227289A (en) * 1999-02-01 2000-08-15 Behr Gmbh & Co Integral header and heat exchanger assembly
JP2000356433A (en) * 1999-06-17 2000-12-26 Kubota Corp Underground heat exchanger and heat source equipment, and operation method for heat source equipment
JP2006313034A (en) * 2005-05-06 2006-11-16 Nippon Steel Engineering Co Ltd Geothermal unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220603A (en) * 2010-04-09 2011-11-04 Chemical Grouting Co Ltd Geothermal utilization system
JP2012198015A (en) * 2011-03-22 2012-10-18 Tai-Her Yang Heat insulation system of u-shaped pipeline

Similar Documents

Publication Publication Date Title
JP4636204B2 (en) Geothermal heat exchanger and air conditioning system including the same
WO2009133709A1 (en) Heat exchanger and air conditioning system
JP4636205B2 (en) Geothermal heat exchanger and air conditioning system including the same
JP2009287914A (en) Heat exchanger and air-conditioning system
JP5381325B2 (en) Heat exchanger and air conditioning system
JP2010156468A (en) Underground heat exchanger and air conditioning system
JP2014219165A (en) Underground heat exchanger
WO2009133708A1 (en) Heat exchanger and air conditioning system
JP2012057836A (en) Underground heat exchanger and heat pump using the same
JP5510316B2 (en) Heat exchanger and air conditioning system
JP2013007550A (en) Heat pump
JP2012078080A (en) Underground heat exchanger and heat pump utilizing the same
JP2013249974A (en) Heat pump
JP7124263B2 (en) Sampling heat pipe and geothermal heat pump using it
JP2013249978A (en) Underground heat exchanger and heat pump
JP2010145041A (en) Air conditioning system
JP5793992B2 (en) heat pump
JP2013249982A (en) Underground heat exchanger and heat pump
JP2010145022A (en) Underground heat exchanger and air conditioning system including the same
JP2010145033A (en) Underground heat exchanger and air conditioning system
JP2015190746A (en) Ground heat utilization heat pump device
JP2010145021A (en) Underground heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09738645

Country of ref document: EP

Kind code of ref document: A1