JPH05118700A - Heat pump type air-conditioner - Google Patents

Heat pump type air-conditioner

Info

Publication number
JPH05118700A
JPH05118700A JP28665691A JP28665691A JPH05118700A JP H05118700 A JPH05118700 A JP H05118700A JP 28665691 A JP28665691 A JP 28665691A JP 28665691 A JP28665691 A JP 28665691A JP H05118700 A JPH05118700 A JP H05118700A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
heat
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28665691A
Other languages
Japanese (ja)
Inventor
Junji Nishioka
岡 純 二 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP28665691A priority Critical patent/JPH05118700A/en
Publication of JPH05118700A publication Critical patent/JPH05118700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve heat exchanging performance and increase a heat collecting amount by a method wherein an underground heat exchanger is buried in the ground while a compressor, an indoor heat exchanger and an expansion valve are connected sequentially to the underground heat exchanger, in the title facility utilizing underground heat. CONSTITUTION:An underground heat exchanger 10 is buried into the ground 20 while a compressor 17, an indoor heat exchanger 21 and an expansion valve 23 are connected to the underground heat exchanger 10 sequentially through a pipeline 25. The underground heat exchanger 10 is constituted of a doubletube type heat exchanger consisting of an outer tube 11 and an inner tube 12 and refrigerant, entered the inner tube 12 from the upper part thereof as shown by a broken line arrow sign in a diagram, is discharged out of the lower end of the inner tube 12, then, ascends between the outer tube 11 and the inner tube 12 and is gasified while absorbing subterranean heat. Then, the refrigerant is pressurized by the compressor 17 and dissipates heat in an indoor heat exchanger 21 whereby heating is effected. The refrigerant, heat is dissipated, is returned into the inner tube 12 through an expansion valve 23. In cooling, the refrigerant is compressed by the compressor 17 and descends through the outer tube 11 as shown by a full line arrow sign in the diagram, then, dissipates the heat thereof into the ground whereby the refrigerant is liquefied and is ascended through the inner tube 12. Then, is choked adiabatically by the expansion valve 23 and enters the indoor heat exchanger 21 to cool the inside of a room whereby the refrigerant is gasified and is returned into the compressor 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ型空調設備
に係り、とりわけ地中熱を利用したヒートポンプ型空調
設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly to a heat pump type air conditioner utilizing underground heat.

【0002】[0002]

【従来の技術】従来から、地中熱を利用したヒートポン
プ型空気設備として、圧縮機、室内熱交換器、膨張弁、
および室外熱交換器を順次接続してヒートポンプを構成
し、このヒートポンプ内に一次冷媒を循環させるととも
に、地中内に地中熱交換器を埋設し、この地中熱交換器
と上述した室外熱交換器内に二次冷媒を循環させたヒー
トポンプ型空調設備が知られている。
2. Description of the Related Art Conventionally, as a heat pump type air facility utilizing underground heat, a compressor, an indoor heat exchanger, an expansion valve,
And the outdoor heat exchangers are sequentially connected to form a heat pump, the primary refrigerant is circulated in the heat pump, and the underground heat exchanger is embedded in the ground, and the underground heat exchanger and the outdoor heat described above are embedded. A heat pump type air conditioner in which a secondary refrigerant is circulated in an exchanger is known.

【0003】しかしながら、このように二次冷媒を循環
させるタイプのヒートポンプ型空調設備では、一次冷媒
と二次冷媒を用いるため、全体としての熱交換性能が悪
いという問題がある。また二次冷媒の循環用として循環
ポンプを用いたり、多数の熱交換器が必要となるため、
設備費および運転費が増大する。
However, in the heat pump type air conditioner of the type in which the secondary refrigerant is circulated as described above, since the primary refrigerant and the secondary refrigerant are used, there is a problem that the heat exchange performance as a whole is poor. In addition, because a circulation pump is used for circulation of the secondary refrigerant, and a large number of heat exchangers are required,
Equipment costs and operating costs increase.

【0004】また、地中熱交換器としてヒートパイプ方
式の熱交換器を用いたものもあるが、ヒートパイプ方式
の熱交換器は密閉型となっており、中に封入されている
冷媒は自然対流をしている。このため、地中からの採熱
量は非常に少なく、容量の大きい機器では多数のヒート
パイプを必要とする。
There is also a heat pipe type heat exchanger used as an underground heat exchanger, but the heat pipe type heat exchanger is of a hermetically sealed type, and the refrigerant enclosed therein is natural. You are convection. Therefore, the amount of heat taken from the ground is very small, and a large capacity device requires a large number of heat pipes.

【0005】[0005]

【発明が解決しようとする課題】上述のように、従来の
ヒートポンプ型空調設備は、地中熱交換器と室外熱交換
器との間に二次冷媒を循環させるタイプの空調設備なの
で、全体として熱交換性能が悪い。また循環ポンプを用
いたり多数の熱交換器が必要となるため、設備費および
運転費が増大する。また地中熱交換器としてヒートパイ
プ方式の熱交換器を用いたものでは、中に封入されてい
る冷媒が自然対流を行なうため、地中からの採熱量が小
さくなる。
As described above, the conventional heat pump type air conditioning equipment is an air conditioning equipment of the type in which the secondary refrigerant is circulated between the underground heat exchanger and the outdoor heat exchanger, and therefore, as a whole. Poor heat exchange performance. Further, since a circulation pump is used and a large number of heat exchangers are required, equipment costs and operating costs increase. Further, in the case where a heat pipe type heat exchanger is used as the underground heat exchanger, the amount of heat taken from the ground is small because the refrigerant enclosed therein performs natural convection.

【0006】本発明はこのような点を考慮してなされた
ものであり、熱交換性能が高くかつ設備費および運転費
を低く抑えることができるとともに、地中からの採熱量
を大きくとることができるヒートポンプ型空調設備を提
供することを目的とする。
The present invention has been made in consideration of the above points, and has a high heat exchange performance and can suppress the equipment cost and the operation cost at a low level, and can take a large amount of heat from the ground. An object is to provide a heat pump type air conditioning equipment that can be used.

【0007】[0007]

【課題を解決するための手段】本発明は、地中に地中熱
交換器を埋設するとともに、前記地中熱交換器に圧縮
機、室内熱交換器、および膨張弁を順次接続してなるヒ
ートポンプ型空調設備である。
According to the present invention, an underground heat exchanger is buried in the ground, and a compressor, an indoor heat exchanger, and an expansion valve are sequentially connected to the underground heat exchanger. It is a heat pump type air conditioner.

【0008】[0008]

【作用】暖房時、圧縮機により圧縮された冷媒は、室内
熱交換器、膨張弁および地中熱交換器に流入し、地中熱
交換器で地中から採熱して圧縮機に戻る。
During heating, the refrigerant compressed by the compressor flows into the indoor heat exchanger, the expansion valve and the underground heat exchanger, where the underground heat exchanger takes heat from the ground and returns to the compressor.

【0009】冷房時、圧縮機により圧縮された冷媒は、
地中熱交換器内で放熱し、その後膨張弁および室内熱交
換器を経て圧縮機に戻る。
During cooling, the refrigerant compressed by the compressor is
Heat is dissipated in the underground heat exchanger, and then returns to the compressor via the expansion valve and the indoor heat exchanger.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1および図2は本発明によるヒートポン
プ型空調設備の一実施例を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views showing an embodiment of a heat pump type air conditioning equipment according to the present invention.

【0011】図1において、地中20内に外管11と内
管12とを有する地中熱交換器10が埋設され、地中熱
交換器10の外管11に連結管13を介して圧縮機17
が接続されている。また圧縮機17には室内熱交換器2
1が配管25を介して接続され、さらに室内熱交換器2
1には膨張弁23が配管25を介して接続されている。
また膨張弁23は地中熱交換器10の内管12に接続さ
れている。このようにして、地中熱交換器10を直接組
込んだヒートポンプ式の空調設備が構成されている。
In FIG. 1, an underground heat exchanger 10 having an outer pipe 11 and an inner pipe 12 is buried in a ground 20, and compressed to the outer pipe 11 of the underground heat exchanger 10 via a connecting pipe 13. Machine 17
Are connected. Further, the compressor 17 has an indoor heat exchanger 2
1 is connected via a pipe 25, and an indoor heat exchanger 2
An expansion valve 23 is connected to 1 via a pipe 25.
Further, the expansion valve 23 is connected to the inner pipe 12 of the underground heat exchanger 10. In this way, a heat pump type air conditioner in which the underground heat exchanger 10 is directly incorporated is constructed.

【0012】次に図2により地中熱交換器10について
詳述する。
Next, the underground heat exchanger 10 will be described in detail with reference to FIG.

【0013】図2において、地中熱交換器10は外管1
1と、外管11内に設けられた内管12とからなる二重
管式熱交換器となっている。この地中熱交換器10にお
いて、上方から内管12内に流入した冷媒30は、内管
12の下端から外管11と内管12との間を上昇する。
その後、冷媒30は外管11の上部に取付けられた連結
管13を通って圧縮機17内に入り、圧縮機17によっ
て加圧された後、再び内管12に戻るようになってい
る。
In FIG. 2, the underground heat exchanger 10 is an outer pipe 1.
1 and an inner tube 12 provided in an outer tube 11 to form a double tube heat exchanger. In this underground heat exchanger 10, the refrigerant 30 flowing into the inner pipe 12 from above rises from the lower end of the inner pipe 12 between the outer pipe 11 and the inner pipe 12.
After that, the refrigerant 30 enters the compressor 17 through the connecting pipe 13 attached to the upper portion of the outer pipe 11, is pressurized by the compressor 17, and then returns to the inner pipe 12 again.

【0014】次にこのような構成からなる本実施例の作
用について説明する。
Next, the operation of this embodiment having such a configuration will be described.

【0015】暖房時、図1の破線に示すように、圧縮機
17によって加圧されたフロンガス等の冷媒は、室内熱
交換器21内に入り室内を暖房して液化する。その後冷
媒は膨張弁23によって断熱的に絞られ、地中熱交換器
10の内管12に入る。続いて内管12から外管11内
に流入した冷媒は、地中熱によって加熱され、気体とな
って圧縮機17に戻る。
During heating, as shown by the broken line in FIG. 1, the refrigerant such as CFC gas pressurized by the compressor 17 enters the indoor heat exchanger 21 to heat and liquefy the room. Thereafter, the refrigerant is adiabatically throttled by the expansion valve 23 and enters the inner pipe 12 of the underground heat exchanger 10. Subsequently, the refrigerant flowing from the inner pipe 12 into the outer pipe 11 is heated by the underground heat, becomes a gas, and returns to the compressor 17.

【0016】外管11内において冷媒は次のような相変
化を行なう。すなわち、外管11内下部の液体領域14
において、冷媒は当初液体状態となっている。その後冷
媒は、蒸発面31を有する沸騰領域15において、地中
熱により加熱されて沸騰しながら上昇する。続いて冷媒
は、気体領域16において気化され、連結管13に送ら
れる。
The refrigerant in the outer tube 11 undergoes the following phase change. That is, the liquid region 14 in the lower portion inside the outer tube 11
In, the refrigerant is initially in a liquid state. Thereafter, the refrigerant is heated by the underground heat in the boiling region 15 having the evaporation surface 31, and rises while boiling. Subsequently, the refrigerant is vaporized in the gas region 16 and sent to the connecting pipe 13.

【0017】この場合、地中熱交換器10の内管12か
ら外管11に流入する冷媒30は、強制的に外管11内
に流入するので、自然対流に比べて熱伝達率を向上させ
ることができる。また外管11内の沸騰領域15におい
て、冷媒30は大きな熱伝達率で地中熱により加熱され
るので、地中熱により効率的に冷媒を加熱することがで
きる。
In this case, the refrigerant 30 flowing from the inner pipe 12 of the underground heat exchanger 10 into the outer pipe 11 is forced to flow into the outer pipe 11, so that the heat transfer coefficient is improved as compared with natural convection. be able to. In the boiling region 15 in the outer tube 11, the refrigerant 30 is heated by the underground heat with a large heat transfer coefficient, so that the refrigerant can be efficiently heated by the underground heat.

【0018】一方、冷房時、図1の実線に示すように、
圧縮機17によって加圧された冷媒は地中熱交換器10
の外管11内に入り、地中に放熱して液体となり内管1
2内に入る。その後冷媒は膨張弁23によって断熱的に
絞られる。続いて冷媒は室内熱交換器21内に入り、室
内を冷却して気化し圧縮機17に戻る。
On the other hand, during cooling, as shown by the solid line in FIG.
The refrigerant pressurized by the compressor 17 is the underground heat exchanger 10
Enters the outer pipe 11 of the inner pipe, radiates heat to the ground and becomes a liquid, and the inner pipe 1
Enter within 2. After that, the refrigerant is adiabatically throttled by the expansion valve 23. Subsequently, the refrigerant enters the indoor heat exchanger 21, cools the room to be vaporized, and returns to the compressor 17.

【0019】外管11内における相変化は、次とおりで
ある。すなわち、外管11の気体領域16に流入した気
体冷媒30は、地中に放熱しながら沸騰領域15におい
て徐々に凝縮し、液体領域14において完全に液化す
る。この場合も、外管11内に冷媒30を強制的に流入
させるとともに、沸騰領域15において気体冷媒30を
凝縮させるので、地中内に効率的に放熱することができ
る。
The phase change in the outer tube 11 is as follows. That is, the gas refrigerant 30 flowing into the gas region 16 of the outer tube 11 gradually condenses in the boiling region 15 while radiating heat to the ground, and is completely liquefied in the liquid region 14. Also in this case, since the refrigerant 30 is forced to flow into the outer pipe 11 and the gas refrigerant 30 is condensed in the boiling region 15, heat can be efficiently radiated into the ground.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
地中熱交換器を直接、ヒートポンプ型空調設備内に組込
んだので、二次冷媒を用いる場合に比較して全体の熱交
換性能を向上させることができる。また二次冷媒の循環
用として、循環ポンプを用いたり、多数の熱交換器を設
ける必要がないので、設備費および運転費の増大を防止
できる。さらに、地中熱交換器内に冷媒を強制的に送る
ので、自然対流に比べて熱伝達率が増加し、熱交換性能
を更に向上させることができる。
As described above, according to the present invention,
Since the underground heat exchanger is directly incorporated in the heat pump type air conditioning equipment, it is possible to improve the overall heat exchange performance as compared with the case where the secondary refrigerant is used. Further, since it is not necessary to use a circulation pump or provide a large number of heat exchangers for circulating the secondary refrigerant, it is possible to prevent an increase in equipment costs and operating costs. Further, since the refrigerant is forcibly sent into the underground heat exchanger, the heat transfer coefficient is increased as compared with natural convection, and the heat exchange performance can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるヒートポンプ型空調設備の一実施
例を示す概略図
FIG. 1 is a schematic view showing an embodiment of a heat pump type air conditioning equipment according to the present invention.

【図2】ヒートポンプ型空調設備の地中熱交換器を示す
斜視図
FIG. 2 is a perspective view showing an underground heat exchanger of a heat pump type air conditioning equipment.

【符号の説明】[Explanation of symbols]

10 地中熱交換器 11 外管 12 内管 17 圧縮機 20 地中 21 室内熱交換器 23 膨張弁 10 underground heat exchanger 11 outer pipe 12 inner pipe 17 compressor 20 underground 21 indoor heat exchanger 23 expansion valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】地中に地中熱交換器を埋設するとともに、
前記地中熱交換器に圧縮機、室内熱交換器、および膨張
弁を順次接続してなるヒートポンプ型空調設備。
1. A ground heat exchanger is buried in the ground, and
A heat pump type air conditioner in which a compressor, an indoor heat exchanger, and an expansion valve are sequentially connected to the underground heat exchanger.
JP28665691A 1991-10-31 1991-10-31 Heat pump type air-conditioner Pending JPH05118700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28665691A JPH05118700A (en) 1991-10-31 1991-10-31 Heat pump type air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28665691A JPH05118700A (en) 1991-10-31 1991-10-31 Heat pump type air-conditioner

Publications (1)

Publication Number Publication Date
JPH05118700A true JPH05118700A (en) 1993-05-14

Family

ID=17707256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28665691A Pending JPH05118700A (en) 1991-10-31 1991-10-31 Heat pump type air-conditioner

Country Status (1)

Country Link
JP (1) JPH05118700A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467298B2 (en) * 1996-12-10 2002-10-22 Edward R. Schulak Energy transfer systems for refrigerator/freezer components
JP2008190792A (en) * 2007-02-05 2008-08-21 Hiroshi Koyama Compression type heat pump
WO2009133712A1 (en) * 2008-04-30 2009-11-05 ダイキン工業株式会社 Heat exchanger and air conditioning system
WO2009133708A1 (en) * 2008-04-30 2009-11-05 ダイキン工業株式会社 Heat exchanger and air conditioning system
JP2010002174A (en) * 2008-05-23 2010-01-07 Daikin Ind Ltd Heat exchanger, and air conditioning system
JPWO2009133709A1 (en) * 2008-04-30 2011-08-25 ダイキン工業株式会社 Heat exchanger and air conditioning system
CN102364290A (en) * 2011-10-13 2012-02-29 北京德能恒信科技有限公司 Ground source heat exchanger with super-cooling device
JP2012522960A (en) * 2009-04-01 2012-09-27 サー ジオサーマル,インコーポレイテッド Geothermal energy system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202942A (en) * 1986-03-03 1987-09-07 Fujita Corp Air conditioner utilizing geothermal energy
JPS6414862U (en) * 1987-07-17 1989-01-25
JPS645058B2 (en) * 1984-09-13 1989-01-27 Hitachi Chemical Co Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645058B2 (en) * 1984-09-13 1989-01-27 Hitachi Chemical Co Ltd
JPS62202942A (en) * 1986-03-03 1987-09-07 Fujita Corp Air conditioner utilizing geothermal energy
JPS6414862U (en) * 1987-07-17 1989-01-25

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467298B2 (en) * 1996-12-10 2002-10-22 Edward R. Schulak Energy transfer systems for refrigerator/freezer components
JP2008190792A (en) * 2007-02-05 2008-08-21 Hiroshi Koyama Compression type heat pump
WO2009133712A1 (en) * 2008-04-30 2009-11-05 ダイキン工業株式会社 Heat exchanger and air conditioning system
WO2009133708A1 (en) * 2008-04-30 2009-11-05 ダイキン工業株式会社 Heat exchanger and air conditioning system
JPWO2009133709A1 (en) * 2008-04-30 2011-08-25 ダイキン工業株式会社 Heat exchanger and air conditioning system
AU2009241162B2 (en) * 2008-04-30 2011-11-17 Daikin Industries, Ltd. Heat exchanger and air conditioning system
JP5510316B2 (en) * 2008-04-30 2014-06-04 ダイキン工業株式会社 Heat exchanger and air conditioning system
JP2010002174A (en) * 2008-05-23 2010-01-07 Daikin Ind Ltd Heat exchanger, and air conditioning system
JP2012522960A (en) * 2009-04-01 2012-09-27 サー ジオサーマル,インコーポレイテッド Geothermal energy system
CN102364290A (en) * 2011-10-13 2012-02-29 北京德能恒信科技有限公司 Ground source heat exchanger with super-cooling device

Similar Documents

Publication Publication Date Title
CN105180490B (en) Integrated natural cooling computer-room air conditioning system
US4373346A (en) Precool/subcool system and condenser therefor
JP2001330382A (en) Cooling/boiling apparatus
JPH09145187A (en) Air conditioner
US6578629B1 (en) Application of heat pipe science to heating, refrigeration and air conditioning systems
CN108369015A (en) Air conditioner
JPH09273876A (en) Cooler with natural circulation loop
JP3774844B2 (en) Air conditioner, refrigeration cycle apparatus, refrigerant charging method
JPH05118700A (en) Heat pump type air-conditioner
US6915658B2 (en) Accumulator and air conditioning system using the same
US7069740B2 (en) Accumulator and air conditioning system using the same
US3398785A (en) Combination heating and cooling unit
JP3063348B2 (en) Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method
US2269701A (en) Refrigeration
US2750762A (en) Refrigeration system for air conditioning apparatus
Oerder et al. Effectiveness of a municipal ground-coupled reversible heat pump system compared to an air-source system
JPS581345B2 (en) Air conditioning/heating/hot water equipment
KR200351613Y1 (en) Heat pump for liquid preheater
JPS6213574B2 (en)
CN215336763U (en) Frequency conversion air conditioner
JPS5924930Y2 (en) air conditioner
JP2644874B2 (en) Multi-room air conditioner
JPS59176528A (en) Floor heating device
JP2730606B2 (en) Underground heat sampling method
KR0110360Y1 (en) Heat pump type air-conditioner