JP2008190792A - Compression type heat pump - Google Patents

Compression type heat pump Download PDF

Info

Publication number
JP2008190792A
JP2008190792A JP2007026178A JP2007026178A JP2008190792A JP 2008190792 A JP2008190792 A JP 2008190792A JP 2007026178 A JP2007026178 A JP 2007026178A JP 2007026178 A JP2007026178 A JP 2007026178A JP 2008190792 A JP2008190792 A JP 2008190792A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat pump
refrigerant
heat
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007026178A
Other languages
Japanese (ja)
Inventor
Hiroshi Koyama
弘志 小山
Takahiro Koyama
高弘 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007026178A priority Critical patent/JP2008190792A/en
Publication of JP2008190792A publication Critical patent/JP2008190792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compression type heat pump of high coefficient of performance. <P>SOLUTION: In this compression type heat pump constituted by successively connecting a discharge opening of a compressor, a condenser, an evaporator and a suction opening of the compressor, first, second and third heat exchangers 3, 4, 5 are disposed in series in a refrigerant circulating circuit of the compression type heat pump 1, and the condenser and the evaporator are integrated in the second heat exchanger 4 in the middle of three heat exchangers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧縮機の吐出口と吸入口とにそれぞれ接続された凝縮器と蒸発器の役を果す少なくとも2個の熱交換器の外に、凝縮器と蒸発器の役を果す凝縮器と蒸発器とを一体化した熱交換器を備えた圧縮式ヒートポンプに関するものである。   The present invention provides a condenser and a condenser serving as an evaporator, in addition to at least two heat exchangers serving as a condenser and an evaporator connected to a discharge port and a suction port of the compressor, respectively. The present invention relates to a compression heat pump including a heat exchanger integrated with an evaporator.

圧縮式ヒートポンプは、空気または地中を熱源または冷源としており、空気熱源圧縮式ヒートポンプと地中熱源圧縮式ヒートポンプとのいずれであっても、併用空気調和機に広く用いられるが、この圧縮式空気熱源ヒートポンプを用いた空気調和機では、夏期に冷房用として利用する場合、外気の気温が高く、冬期に暖房用として利用する場合、外気の気温が低いため、外気と室内空気の温度が大きくなり、成績係数が低い。   The compression heat pump uses air or the ground as a heat source or a cold source, and both the air heat source compression heat pump and the ground heat source compression heat pump are widely used in combined air conditioners. In an air conditioner using an air source heat pump, when used for cooling in the summer, the temperature of the outside air is high when the temperature of the outside air is high, and when used for heating in the winter, the temperature of the outside air is low. The coefficient of performance is low.

これに対して圧縮式地中熱源ヒートポンプを用いた空気調和機または暖冷房装置では、地中温度の変化は、外気の温度変化に比べて小さいため、成績係数が高く、この種の圧縮式地中熱源ヒートポンプは、特許文献1に開示されている。   On the other hand, in an air conditioner or heating / cooling device using a compression type ground source heat pump, the change in underground temperature is small compared to the change in temperature of the outside air, so the coefficient of performance is high. An intermediate heat source heat pump is disclosed in Patent Document 1.

特許第2545720号公報Japanese Patent No. 2545720

前記特許文献1記載の圧縮式ヒートポンプでは、上流端が凝縮器に接続された導入管は、地中に埋設された蒸発器の頂壁を貫通し、該導入管の下流端は、該蒸発器の上部内周壁面に向って開口されており、該導入管の下流端から前記蒸発器内に噴出された液化冷媒は、該蒸発器内周壁面に接して流下し、冷媒は、該蒸発器壁を介して地中熱を受け取り、気化されるようになっている。   In the compression heat pump described in Patent Document 1, the introduction pipe whose upstream end is connected to the condenser passes through the top wall of the evaporator embedded in the ground, and the downstream end of the introduction pipe is the evaporator. The liquefied refrigerant jetted into the evaporator from the downstream end of the introduction pipe flows down in contact with the evaporator inner peripheral wall surface, and the refrigerant flows into the evaporator. It receives underground heat through the wall and is vaporized.

また、前記蒸発器頂壁を貫通して蒸発器内底部近く迄延長した吐出管の下端にポンプが付設されるとともに、吐出管には、噴出孔が形成されており、前記導入管の下流端から前記蒸発器内周面に向って噴出された液化冷媒の一部は、該蒸発器内周面に気化するが、気化されずに前記蒸発器内に溜まった液化冷媒は、前記ポンプにより加圧されて、前記噴出孔から前記蒸発器内周面に向って噴出され、液化冷媒の蒸発が促進されるようになっていた。   In addition, a pump is attached to the lower end of the discharge pipe that extends through the top wall of the evaporator to the vicinity of the bottom of the evaporator, and the discharge pipe is formed with an ejection hole, and the downstream end of the introduction pipe Part of the liquefied refrigerant ejected from the evaporator toward the inner peripheral surface of the evaporator is vaporized on the inner peripheral surface of the evaporator, but the liquefied refrigerant accumulated in the evaporator without being evaporated is added by the pump. Thus, the liquid is ejected from the ejection hole toward the inner peripheral surface of the evaporator, and the evaporation of the liquefied refrigerant is promoted.

しかし、前記特許文献1記載の圧縮式ヒートポンプでは、蒸発器内底部にポンプが配設されているため、ポンプの保守・整備を行なうには、蒸発器の頂壁を取り外すとともに導入管を地上に引上げなければならず、これらの作業は煩雑で困難であった。   However, in the compression heat pump described in Patent Document 1, since the pump is disposed at the bottom of the evaporator, in order to perform maintenance and maintenance of the pump, the top wall of the evaporator is removed and the introduction pipe is placed on the ground. These operations were cumbersome and difficult.

また、蒸発器内に溜まった液化冷媒をポンプにより加圧して蒸発器内周面に向って噴射させる必要があるため、動力損失がある。   Further, there is a power loss because the liquefied refrigerant accumulated in the evaporator needs to be pressurized by a pump and injected toward the inner peripheral surface of the evaporator.

さらに、蒸発器内の液化冷媒は、反復して前記ポンプ内を流れるため、冷媒中に混入した潤滑油が蓄積する結果、この潤滑油を冷媒から分離除去するための分離装置が必要となり、ヒートポンプ全体の構造が複雑化して、コストアップが避けられなかった。   Further, since the liquefied refrigerant in the evaporator repeatedly flows in the pump, the lubricating oil mixed in the refrigerant accumulates. As a result, a separation device for separating and removing the lubricating oil from the refrigerant is required, and the heat pump The overall structure has become complicated and cost increases cannot be avoided.

また、冷媒と熱交換される空気を室内に放出する空気調和機では、暖房時に暖気が室内頂部に滞留し、室内に居る者の頭部が加熱され、足部が冷却され易いため、病人や体力が低下した者には、健康上好ましくない。   In addition, in an air conditioner that releases air that is heat-exchanged with the refrigerant into the room, warm air stays at the top of the room during heating, and the head of the person in the room is heated and the feet are easily cooled. It is not preferable from the viewpoint of health to those who are weak.

さらに、前記空気調和機では、冷房時、室内気温より低い気温の冷気が直接吹き付けられる場所に居る者にも、健康上好ましくない。   Furthermore, the air conditioner is not preferable for health even for those who are in a place where cold air having a temperature lower than the room temperature is directly blown during cooling.

本発明は、このような難点を克服した成績係数の高い圧縮式ヒートポンプを提供することを目的としている。   An object of the present invention is to provide a compression heat pump having a high coefficient of performance that overcomes such difficulties.

また、本発明は、熱交換器を介して冷媒と熱交換される流体は、水等の液体であって、床暖冷房装置に利用される圧縮式ヒートポンプを提供することを目的としている。   Another object of the present invention is to provide a compression heat pump used for a floor heating / cooling apparatus, in which the fluid exchanged with the refrigerant through the heat exchanger is a liquid such as water.

請求項1記載の発明は、圧縮機の吐出口、凝縮器、蒸発器および前記圧縮機の吸入口が順次接続されて構成された圧縮式ヒートポンプにおいて、該圧縮式ヒートポンプの冷媒循環回路中には、第1、第2、第3熱交換器が直列に配設され、前記3個の内の真ん中の第2熱交換器では凝縮器と蒸発器とが一体化され、該第2熱交換器は、内側密封容器と、該内側密封容器の外周を所要の間隙を存して密封する外側密封容器とよりなり、前記内側密封容器および外側密封容器で密封された凝縮器の機能を有する外側空間と、前記内側密封容器内の第2熱交換器の機能を有する内側空間とに仕切られ、前記圧縮機により凝縮された冷媒を前記第2熱交換器の外側空間に導く冷媒通路と、前記第2熱交換器の外側空間内の冷媒を内側空間に導く第1膨張弁と、前記第2熱交換器の外側空間内の冷媒を前記圧縮機の吸入口に接続される部分に冷媒を導く可変絞り第2膨張弁とを具備し、前記第2熱交換器の内側空間は前記圧縮機の吸入口に接続されたことを特徴とする圧縮式ヒートポンプである。   The invention according to claim 1 is a compression heat pump in which a discharge port of a compressor, a condenser, an evaporator, and a suction port of the compressor are sequentially connected. In the refrigerant circulation circuit of the compression heat pump, The first, second and third heat exchangers are arranged in series, and the condenser and the evaporator are integrated in the middle second heat exchanger, and the second heat exchanger Is composed of an inner sealed container and an outer sealed container that seals the outer periphery of the inner sealed container with a predetermined gap, and has an outer space having a function of a condenser sealed by the inner sealed container and the outer sealed container. And a refrigerant passage that is partitioned into an inner space having a function of a second heat exchanger in the inner sealed container and guides the refrigerant condensed by the compressor to an outer space of the second heat exchanger, 1st expansion which guides the refrigerant in the outer space of the two heat exchangers to the inner space A valve and a variable throttle second expansion valve that guides the refrigerant in the outer space of the second heat exchanger to a portion connected to the suction port of the compressor, and is provided inside the second heat exchanger. The space is a compression heat pump characterized in that the space is connected to an inlet of the compressor.

請求項2記載の発明は、前記第2熱交換器は地中に埋設されたことを特徴とする請求項1記載の圧縮式ヒートポンプである。   A second aspect of the present invention is the compression heat pump according to the first aspect, wherein the second heat exchanger is embedded in the ground.

請求項3記載の発明は、前記可変絞り第2膨張弁は、前記第2熱交換器より上方または前記内側空間頂部に配設されるとともに、前記第2熱交換器の内側空間から前記圧縮機の吸入側に接続する管路に対し並列に設けられたことを特徴とする請求項1または請求項2記載の圧縮式ヒートポンプである。   According to a third aspect of the present invention, the variable throttle second expansion valve is disposed above the second heat exchanger or at the top of the inner space, and the compressor from the inner space of the second heat exchanger. The compression heat pump according to claim 1 or 2, wherein the compression heat pump is provided in parallel to a pipe line connected to the suction side of the pipe.

請求項4記載の発明は、前記第1膨張弁は、細管で構成されるとともに、前記内側密封容器の底壁部を貫通して、該第1膨張弁の下端は前記外側空間に開口し、かつ該第1膨張弁の上端は前記内側空間に開口し、該内側空間内でコイル状に巻回形成されたことを特徴とする前記請求項1ないし請求項3いずれか記載の圧縮式ヒートポンプである。   According to a fourth aspect of the present invention, the first expansion valve is constituted by a thin tube, penetrates the bottom wall portion of the inner sealed container, and the lower end of the first expansion valve opens into the outer space, 4. The compression heat pump according to claim 1, wherein an upper end of the first expansion valve opens into the inner space, and is wound in a coil shape in the inner space. 5. is there.

請求項5記載の発明は、前記可変絞り第2膨張弁は、圧縮式ヒートポンプの熱負荷に対応して絞りが自動的に制御されることを特徴とする請求項1ないし請求項4いずれか記載の圧縮式ヒートポンプである。   The invention according to claim 5 is characterized in that the throttle of the variable expansion second expansion valve is automatically controlled in accordance with the heat load of the compression heat pump. This is a compression heat pump.

請求項6記載の発明は、前記第2熱交換器の外側密封容器を貫通したヒートパイプの内端部は、該外側密封容器の内面または前記内側密封容器の外面に一体に接合され、該ヒートパイプの外端部は前記第2熱交換器外部に露出したことを特徴とする請求項2ないし請求項5いずれか記載の圧縮式ヒートポンプである。   According to a sixth aspect of the present invention, the inner end of the heat pipe penetrating the outer sealed container of the second heat exchanger is integrally joined to the inner surface of the outer sealed container or the outer surface of the inner sealed container, and the heat 6. The compression heat pump according to claim 2, wherein an outer end portion of the pipe is exposed to the outside of the second heat exchanger.

請求項7記載の発明は、前記第2熱交換器の外周部に地中散水ノズルが設けられたことを特徴とする請求項2ないし請求項6記載の圧縮式ヒートポンプである。   A seventh aspect of the present invention is the compression heat pump according to any one of the second to sixth aspects, wherein an underground sprinkling nozzle is provided on an outer peripheral portion of the second heat exchanger.

請求項8記載の発明は、前記第2熱交換器の外部が、熱伝導率の高い吸水性ゲル物質のスラリーで被覆されたことを特徴とする請求項2または請求項7記載の圧縮式ヒートポンプである。   The invention according to claim 8 is the compression heat pump according to claim 2 or 7, wherein the outside of the second heat exchanger is coated with a slurry of a water-absorbing gel substance having a high thermal conductivity. It is.

請求項9記載の発明は、前記吸水性ゲル物質のスラリーが蓋で被われたことを特徴とする請求項8記載の圧縮式ヒートポンプである。   The invention according to claim 9 is the compression heat pump according to claim 8, wherein the slurry of the water-absorbing gel substance is covered with a lid.

請求項10記載の発明は、前記圧縮機の吐出口に接続された熱交換器を凝縮器とし、該凝縮器を熱源とした暖房装置または給湯装置として用いられることを特徴とする請求項1ないし請求項9いずれか記載の圧縮式ヒートポンプある。   The invention according to claim 10 is used as a heating device or a hot water supply device using a heat exchanger connected to a discharge port of the compressor as a condenser and using the condenser as a heat source. A compression heat pump according to claim 9.

請求項11記載の発明は、前記第2熱交換器から圧縮機の吸入口に接続された熱交換器を蒸発器とし、該蒸発器を冷源とした冷房装置として用いられることを特徴とする請求項1ないし請求項9いずれか記載の圧縮式ヒートポンプである。   The invention according to claim 11 is used as a cooling device in which the heat exchanger connected from the second heat exchanger to the suction port of the compressor is an evaporator, and the evaporator is a cold source. A compression heat pump according to any one of claims 1 to 9.

請求項12記載の発明は、前記熱交換器を介して前記冷媒と熱交換される流体は、液体であって、床冷房・暖房装置に利用されることを特徴とする請求項1ないし請求項11いずれか記載の圧縮式ヒートポンプである。   According to a twelfth aspect of the present invention, the fluid that exchanges heat with the refrigerant through the heat exchanger is a liquid and is used in a floor cooling / heating device. The compression heat pump according to any one of 11.

請求項13記載の発明は、前記請求項8記載の圧縮式ヒートポンプの第2熱交換器を地中に埋設する方法であって、前記第2熱交換器の外側密封容器を円筒状に形成し、該円筒状外側密封容器の外周面に螺旋状のフィンを一体に設け、前記円筒状外側密封容器を、下方へ圧下しつつ、前記螺旋状フィンの下り傾斜方向に沿って旋回させることによってスラリーの中に前記第2熱交換器を地中に埋設することを特徴とする圧縮式ヒートポンプの地中埋設方法である。   A thirteenth aspect of the present invention is a method of embedding the second heat exchanger of the compression heat pump according to the eighth aspect of the invention, wherein an outer sealed container of the second heat exchanger is formed in a cylindrical shape. A spiral fin is integrally provided on the outer peripheral surface of the cylindrical outer sealed container, and the cylindrical outer sealed container is swung down along the downwardly inclined direction of the spiral fin while being pressed downward. A method of burying the second heat exchanger in the ground of the compression heat pump, wherein the second heat exchanger is buried in the ground.

請求項1記載の発明によれば、圧縮機の吐出口から出た冷媒を最初に受け入れた交換器が凝縮器の役を果し、この熱交換器では、高温の冷媒が通過するため、この熱交換器で高温の冷媒と熱交換される流体が加熱され、この流体は暖房に供せられる。   According to the first aspect of the present invention, the exchanger that first receives the refrigerant discharged from the discharge port of the compressor serves as a condenser. In this heat exchanger, since the high-temperature refrigerant passes, The fluid that is heat-exchanged with the high-temperature refrigerant in the heat exchanger is heated, and this fluid is used for heating.

圧縮機から最初の熱交換器を介して第2熱交換器における凝縮器機能を有する外側空間に流入した気液混合の冷媒は、該第2熱交換器の外側密封容器に接する土また水等と熱交換されてさらに冷却されるとともに、第2熱交換器の内側密封容器内における過冷却の冷媒と熱交換されてさらに一段と冷却され、この外側密封容器で一段と過冷却された冷媒は、第1膨張弁を介して前記内側密封容器へ放出され、この際に前記外側密封容器内から該内側密封容器へ放出された冷媒は断熱膨張してさらに一段と過冷却に冷却され、該内側密封容器内の過冷却された低温の冷媒は、熱交換器を通過して圧縮機の吸入口に通ずる熱交換器を通過し、圧縮機の吸入口に戻る。   The gas-liquid mixed refrigerant that has flowed from the compressor into the outer space having the condenser function in the second heat exchanger via the first heat exchanger is in contact with the outer sealed container of the second heat exchanger, such as earth or water The refrigerant is further cooled by the heat exchange with the supercooled refrigerant in the inner sealed container of the second heat exchanger and further cooled, and the refrigerant further subcooled in the outer sealed container The refrigerant discharged to the inner sealed container through the one expansion valve, and the refrigerant released from the outer sealed container to the inner sealed container at this time is adiabatically expanded and further cooled to supercooling, The supercooled low-temperature refrigerant passes through the heat exchanger, passes through the heat exchanger connected to the compressor inlet, and returns to the compressor inlet.

圧縮機の吸入口に通ずる前記熱交換器を過冷却の低温冷媒が通過する際に、貯湯タンク内の温水が供給される場合には、過冷却の低温冷媒は、温水と熱交換されて加熱され、圧縮機の吸入口に吸入される冷媒の温度が上昇するので、圧縮機の吐出口に通ずる前記熱交換器を通過する冷媒温度が高温となり、該熱交換器で冷媒と熱交換されて加熱される流体温度が高水準となり、強力な暖房運転状態となる。   When hot water in the hot water storage tank is supplied when supercooled low-temperature refrigerant passes through the heat exchanger leading to the compressor inlet, the supercooled low-temperature refrigerant is heated by heat exchange with hot water. Since the temperature of the refrigerant sucked into the compressor inlet increases, the temperature of the refrigerant passing through the heat exchanger leading to the compressor outlet becomes high, and heat is exchanged with the refrigerant in the heat exchanger. The fluid temperature to be heated becomes a high level, and a powerful heating operation state is obtained.

そして圧縮機から最初の熱交換器を介して、第2熱交換器に流入した気液混合の冷媒は、第2熱交換器の外側空間内で凝縮されるとともに、内側空間内で断熱膨張されて過冷却に温度低下し、圧縮機の吸入口に接続される熱交換器内を通過する過冷却の冷媒によって所要の冷房運転状態となる。   The gas-liquid mixed refrigerant that has flowed into the second heat exchanger from the compressor through the first heat exchanger is condensed in the outer space of the second heat exchanger and is adiabatically expanded in the inner space. Thus, the temperature is lowered to supercooling, and the required cooling operation state is obtained by the supercooled refrigerant passing through the heat exchanger connected to the suction port of the compressor.

請求項2記載の発明によれば、第2熱交換器が夏期と冬期との温度変化の小さな地中に埋設されているため、暖房状態および冷房状態のいずれであっても、地中と室内空気との温度差が小さく、成績係数が高い。   According to invention of Claim 2, since the 2nd heat exchanger is embed | buried under the ground with the small temperature change of the summer and winter, it is underground and indoors in any of a heating state and a cooling state Small temperature difference from air and high coefficient of performance.

請求項3記載の発明によれば、前記暖房運転状態、強力暖房運転状態、冷房運転状態の如何を問わず、第2熱交換器の内側空間内での冷媒の蒸発量が不足した場合には、前記可変絞り第2膨張弁を開放またはその開度を増大させることにより、冷媒の蒸発量が補充され、所要の暖房状態または冷房状態が得られる。   According to the third aspect of the present invention, when the refrigerant evaporation amount in the inner space of the second heat exchanger is insufficient regardless of the heating operation state, the strong heating operation state, or the cooling operation state. By opening the variable throttle second expansion valve or increasing its opening, the evaporation amount of the refrigerant is replenished, and a required heating state or cooling state is obtained.

請求項4記載の発明によれば、第1膨張弁は、細管をコイル状に巻回して形成されたため、該コイル状細管内を流れる冷媒は前記内側空間内の低温冷媒と熱交換される結果、内側空間内に充分に冷却された冷媒が放出され、該内側空間内の冷媒の温度が一段と低下する。   According to the fourth aspect of the present invention, the first expansion valve is formed by winding the narrow tube in a coil shape, and as a result, the refrigerant flowing in the coiled narrow tube is heat-exchanged with the low-temperature refrigerant in the inner space. The sufficiently cooled refrigerant is released into the inner space, and the temperature of the refrigerant in the inner space further decreases.

請求項5記載の発明によれば、圧縮式ヒートポンプの熱負荷に対応して前記可変絞り第2膨張弁が自動的に制御されるため、所要の暖房運転状態または冷房運転状態が得られる。   According to the fifth aspect of the present invention, since the variable throttle second expansion valve is automatically controlled in accordance with the heat load of the compression heat pump, a required heating operation state or cooling operation state can be obtained.

請求項6記載の発明によれば、ヒートパイプにより、地中の熱が前記第2熱交換器の外側空間内の冷媒に効果的に伝達されうる。   According to the sixth aspect of the present invention, heat in the ground can be effectively transferred to the refrigerant in the outer space of the second heat exchanger by the heat pipe.

請求項7記載の発明によれば、地中散水ノズルより水が地中に散水されるため、冷房運連状態時に、冷媒が効果的に土中と熱交換され、冷暖房効果が高い。   According to the seventh aspect of the invention, since water is sprinkled into the ground from the ground sprinkling nozzle, the refrigerant is effectively exchanged with the ground during the cooling operation state, and the air conditioning effect is high.

請求項8記載の発明によれば、第2熱交換器内の冷媒が、熱容量が大きく熱伝導率の高い吸水性ゲル物質のスラリーによって、充分に熱交換される。   According to the eighth aspect of the present invention, the refrigerant in the second heat exchanger is sufficiently heat-exchanged with the slurry of the water-absorbing gel material having a large heat capacity and high thermal conductivity.

請求項9記載の発明によれば、前記蓋でもって、前記第2熱交換器の外周の前記吸水性ゲル物質のスラリーが雨、風等により流出、飛散されずに保護される。   According to the ninth aspect of the invention, with the lid, the slurry of the water-absorbing gel substance on the outer periphery of the second heat exchanger is protected without being discharged or scattered by rain, wind or the like.

請求項10記載の発明によれば、凝縮器で得られた熱源でもって、所要の暖房または給湯が可能となる。   According to the tenth aspect of the present invention, the required heating or hot water supply can be performed with the heat source obtained by the condenser.

請求項11記載の発明によれば、蒸発器で得られた冷源でもって所要の冷房が可能となる。   According to the eleventh aspect of the invention, the required cooling can be performed with the cold source obtained by the evaporator.

請求項12記載の発明によれば、床冷房または床暖房が実施されるため、室内に居る者には、快適な雰囲気で過すことができる。   According to the twelfth aspect of the present invention, floor cooling or floor heating is performed, so that a person in the room can have a comfortable atmosphere.

請求項13記載の発明によれば、地中埋設型圧縮式ヒートポンプを容易でかつ低コストで得ることができる。   According to the thirteenth aspect of the present invention, the underground buried type compression heat pump can be obtained easily and at low cost.

以下、本願発明に係る図1ないし図7に図示された実施形態について説明する。   Hereinafter, the embodiment shown in FIGS. 1 to 7 according to the present invention will be described.

図1ないし図4に図示された圧縮式ヒートポンプ1は、冷媒を断熱圧縮する圧縮機2と、該圧縮機2により高温高圧に圧縮されて圧縮機2の吐出口2aから吐出した冷媒を冷却して凝縮させる第1熱交換器3または第3熱交換器5と、凝縮して液化された高圧冷媒を断熱膨張させて得られた低温低圧の湿り冷媒蒸気冷却する凝縮機能と、地中熱でもって加熱する蒸発機能とを具備した第2熱交換器4とよりなり、該第2熱交換器4では、凝縮した気液混合の高圧冷媒は地中熱で過冷却された後、断勢膨張して低温ガスとなった冷媒は第3熱交換器5または第1熱交換器3を介して圧縮機2の吸入口2bに吸入されるようになっている。   The compression heat pump 1 shown in FIGS. 1 to 4 cools the compressor 2 that adiabatically compresses the refrigerant, and the refrigerant that is compressed to a high temperature and high pressure by the compressor 2 and discharged from the discharge port 2a of the compressor 2. The first heat exchanger 3 or the third heat exchanger 5 to be condensed, a condensing function to cool the low-temperature and low-pressure wet refrigerant vapor obtained by adiabatic expansion of the condensed and liquefied high-pressure refrigerant, and underground heat And a second heat exchanger 4 having an evaporating function for heating. In the second heat exchanger 4, the condensed high-pressure refrigerant in the gas-liquid mixture is supercooled by underground heat and then energized. The refrigerant that has become low-temperature gas is sucked into the suction port 2b of the compressor 2 via the third heat exchanger 5 or the first heat exchanger 3.

そして、圧縮機2の回転軸に連結された図示されない電動モータでは、インバータによって回転数が制御されるようになっている。   And in the electric motor which is not illustrated connected with the rotating shaft of the compressor 2, the rotation speed is controlled by the inverter.

また、前記圧縮機2の吐出口2aおよび吸入口2bと、第1熱交換器3の冷媒出入口3aおよび第3熱交換器5の冷媒出入口5aとを接続する管路6に四方弁7が介装されており、該四方弁7を一方または他方へ切換操作することにより、圧縮機2の吐出口2aが第1熱交換器3の冷媒出入口3aまたは第3熱交換器5の冷媒出入口5aに連通されるとともに、圧縮機2の吸入口2bが第3熱交換器5の冷媒出入口5aまたは第1熱交換器3の冷媒出入口3aに連通されるようになっている。   In addition, a four-way valve 7 is interposed in a pipe line 6 that connects the discharge port 2a and the suction port 2b of the compressor 2 with the refrigerant inlet / outlet port 3a of the first heat exchanger 3 and the refrigerant inlet / outlet port 5a of the third heat exchanger 5. By switching the four-way valve 7 to one or the other, the discharge port 2a of the compressor 2 is connected to the refrigerant inlet / outlet 3a of the first heat exchanger 3 or the refrigerant inlet / outlet 5a of the third heat exchanger 5. In addition, the suction port 2 b of the compressor 2 is communicated with the refrigerant inlet / outlet port 5 a of the third heat exchanger 5 or the refrigerant inlet / outlet port 3 a of the first heat exchanger 3.

さらに、図1ないし図3に図示される暖房運転、または給湯運転状態において、第1熱交換器3の冷媒出入口3bと第2熱交換器4の冷媒入口4aとを接続する管路8、管路9、管路10における管路8、管路9間に、逆止弁13が介装されるとともに、第3熱交換器5の冷媒出入口5bと第2熱交換器4の冷媒出口4bとを接続する管路11、管路12における管路11、管路12間に、逆止弁14が介装され、前記逆止弁13は管路8より管路9へ、前記逆止弁14は管路12より管路11へのみそれぞれ冷媒を通過させるようになっている。   Furthermore, in the heating operation or hot water supply operation state illustrated in FIGS. 1 to 3, a pipe line 8 connecting the refrigerant inlet / outlet 3 b of the first heat exchanger 3 and the refrigerant inlet 4 a of the second heat exchanger 4, a pipe A check valve 13 is interposed between the pipe 9 and the pipe 9 in the pipe 9 and the pipe 10, and the refrigerant outlet 5b of the third heat exchanger 5 and the refrigerant outlet 4b of the second heat exchanger 4 A check valve 14 is interposed between the pipe line 11 and the pipe line 12 in the pipe line 12, and the check valve 13 is connected from the pipe line 8 to the pipe line 9. The refrigerant is allowed to pass through the pipeline 12 only to the pipeline 11 respectively.

さらにまた、第1熱交換器3の冷媒出入口3bと第2熱交換器4の冷媒出口4bとを接続する管路8、管路12における管路8、管路12間に逆止弁15が介装されるとともに、第3熱交換器5の冷媒出入口5bと第2熱交換器4の冷媒入口4aとを接続する管路11、管路10における管路11、管路10間に逆止弁16が介装され、前記逆止弁15は管路12から管路8へ、前記逆止弁16は管路11から管路10へのみそれぞれ冷媒を通過させるようになっている。   Furthermore, a check valve 15 is provided between the pipe 8 connecting the refrigerant inlet / outlet 3b of the first heat exchanger 3 and the refrigerant outlet 4b of the second heat exchanger 4, the pipe 8 in the pipe 12, and the pipe 12. In addition, the pipe 11 connecting the refrigerant inlet / outlet 5 b of the third heat exchanger 5 and the refrigerant inlet 4 a of the second heat exchanger 4, a non-return between the pipe 11 in the pipe 10, and the pipe 10 A valve 16 is interposed so that the check valve 15 allows the refrigerant to pass from the pipe 12 to the pipe 8 and the check valve 16 allows the refrigerant to pass only from the pipe 11 to the pipe 10.

また、図示されない建物内においては、図示されない床内に室内熱交換器17が設けられるとともに、所要個所に貯湯タンク18が配設されている。   In a building (not shown), an indoor heat exchanger 17 is provided in a floor (not shown), and a hot water storage tank 18 is disposed at a required location.

室内熱交換器17の出口17aは、管路19を介して循環ポンプ20の給水口20aに接続され、循環ポンプ20の吐出口20bは管路21を介して第1熱交換器3の循環水入口3cに接続され、第1熱交換器3の循環水出口3dは管路22、三方弁23、管路24を介して室内熱交換器17の入口17bに接続され、管路19には戻り管ヘッダー25が介装されるとともに管路24には往管ヘッダー26が介装されている。   The outlet 17a of the indoor heat exchanger 17 is connected to the water supply port 20a of the circulation pump 20 via the pipe line 19, and the discharge port 20b of the circulation pump 20 is connected to the circulating water of the first heat exchanger 3 via the pipe line 21. Connected to the inlet 3c, the circulating water outlet 3d of the first heat exchanger 3 is connected to the inlet 17b of the indoor heat exchanger 17 via the conduit 22, the three-way valve 23, and the conduit 24, and returns to the conduit 19. A pipe header 25 is interposed, and an outgoing pipe header 26 is interposed in the pipe line 24.

さらに、貯湯タンク18内の底部には給湯熱交換器27が配設されるとともに貯湯タンク18内の頂部には風呂沸し熱交換器28が配設され、給湯熱交換器27の出口27aは管路29、三方弁30、管路31を介して循環ポンプ32の吸入口32aに接続され、循環ポンプ32の吐出口32bは管路33を介して第3熱交換器5の循環水入口5cに接続され、第3熱交換器5の循環水出口5dは管路34を介して給湯熱交換器27の入口27bに接続されている。   Furthermore, a hot water supply heat exchanger 27 is disposed at the bottom of the hot water storage tank 18, and a bath boiling heat exchanger 28 is disposed at the top of the hot water storage tank 18. An outlet 27 a of the hot water supply heat exchanger 27 is The pipe 29, the three-way valve 30, and the pipe 31 are connected to the suction port 32a of the circulation pump 32. The discharge port 32b of the circulation pump 32 is connected to the circulation water inlet 5c of the third heat exchanger 5 through the pipe 33. The circulating water outlet 5d of the third heat exchanger 5 is connected to the inlet 27b of the hot water supply heat exchanger 27 via a pipe 34.

さらにまた、貯湯タンク18内頂部の風呂沸し熱交換器28の出口28aは管路35を介して風呂36の吐出口36aに接続されるとともに、風呂36の吸入口36bは管路37を介して風呂沸し循環ポンプ38の吸入口38aに接続され、風呂沸し循環ポンプ38の吐出口38bは管路39を介して風呂沸し熱交換器28の入口28bに接続されている。   Furthermore, the outlet 28 a of the bath boiling heat exchanger 28 at the top of the hot water storage tank 18 is connected to the discharge port 36 a of the bath 36 via the conduit 35, and the inlet 36 b of the bath 36 is connected via the conduit 37. The bath boiling circulation pump 38 is connected to the suction port 38 a, and the bath boiling circulation pump 38 discharge port 38 b is connected to the bath boiling heat exchanger 28 via the pipe 39.

貯湯タンク18の底部に水道管40の端部が接続されるとともに、貯湯タンク18の頂部に温水管41の端部が接続され、該温水管41にはシャワー42、蛇口43が設けられている。   The end of the water pipe 40 is connected to the bottom of the hot water storage tank 18, and the end of the hot water pipe 41 is connected to the top of the hot water storage tank 18. The hot water pipe 41 is provided with a shower 42 and a faucet 43. .

次に、第2熱交換器4の詳細構造について説明する。   Next, the detailed structure of the second heat exchanger 4 will be described.

第2熱交換器4は、図5に詳細に図示されるように、外径が約10cm、長さが5〜10mの円筒状有底外筒50と、該有底外筒50に対し図示されないスペーサ等を介して略同芯状に配設され、かつ底部が底板52により形成された有底内筒51と、該有底外筒50および有底内筒51の各頂縁に密接して、該有底内筒51の内部空間55と、該有底内筒51および有底外筒50間の外部空間54を密閉しうる蓋53とで構成されており、前記第2熱交換器4は、後で詳細に説明されるように地中0に埋設されている。   As shown in detail in FIG. 5, the second heat exchanger 4 is illustrated with respect to a cylindrical bottomed outer cylinder 50 having an outer diameter of about 10 cm and a length of 5 to 10 m, and the bottomed outer cylinder 50. A bottomed inner cylinder 51 that is arranged substantially concentrically through a spacer, etc. and whose bottom is formed by a bottom plate 52, and is in close contact with the top edges of the bottomed outer cylinder 50 and the bottomed inner cylinder 51. The second heat exchanger includes an inner space 55 of the bottomed inner cylinder 51 and a lid 53 capable of sealing the outer space 54 between the bottomed inner cylinder 51 and the bottomed outer cylinder 50. 4 is buried in the ground 0 as will be described in detail later.

また、前記外部空間54の頂部には、図6に図示されるように、リング状の仕切板56が、有底外筒50の内周壁面と有底内筒51の外周壁面とに気密に密着され、該仕切板56を貫通して下方へ延長する冷媒通路の役を果す細管状のノズル57は、図6および図7に図示されるように外部空間54の周方向に指向して先端部が下方へ傾斜した形状に形成されている。   Further, as shown in FIG. 6, a ring-shaped partition plate 56 is hermetically sealed between the inner peripheral wall surface of the bottomed outer cylinder 50 and the outer peripheral wall surface of the bottomed inner cylinder 51 at the top of the outer space 54. A narrow tubular nozzle 57 that is in close contact and serves as a refrigerant passage extending downward through the partition plate 56 is oriented in the circumferential direction of the external space 54 as shown in FIGS. The part is formed in a shape inclined downward.

さらに、底板52の中心を貫通して内部空間55内を上方へ延び、さらに蓋53を貫通する管58の上端に可変絞り第2膨張弁59の入口が接続されるとともに、該可変絞り第2膨張弁59の出口は前記管路12に接続され、該可変絞り第2膨張弁59の絞り開度は管路10管路11の近くに配設された温度センサー60の検出信号に対応して開閉制御されるようになっている。   Further, the inlet of the variable throttle second expansion valve 59 is connected to the upper end of the pipe 58 that passes through the center of the bottom plate 52 and extends upward in the internal space 55 and passes through the lid 53, and the variable throttle second The outlet of the expansion valve 59 is connected to the pipe 12, and the opening degree of the variable expansion second expansion valve 59 corresponds to the detection signal of the temperature sensor 60 disposed near the pipe 10 pipe 11. Opening and closing is controlled.

さらにまた、底板52を貫通して内部空間55を上方へ延長した第1膨張弁61は1本また複数本設けられ、該第1膨張弁61はコイル状に巻回形成されている。   Furthermore, one or a plurality of first expansion valves 61 that penetrate the bottom plate 52 and extend the internal space 55 upward are provided, and the first expansion valves 61 are wound in a coil shape.

しかも、蓋53を貫通したバイパス管62の下端は内部空間55に連通されるとともに、バイパス管62の上端は管路12に連通されている。   In addition, the lower end of the bypass pipe 62 penetrating the lid 53 is communicated with the internal space 55, and the upper end of the bypass pipe 62 is communicated with the pipe line 12.

そして、第2熱交換器4における前記外部空間54は、第1熱交換器3または第3熱交換器5において冷却されて凝縮した気液混合の高圧冷媒を地中熱によって過冷却する凝縮器の機能を有し、第2熱交換器4における内部空間55は、第1膨張弁61から冷媒を断熱膨張させて低温ガスにする蒸発器の機能を有している。   The external space 54 in the second heat exchanger 4 is a condenser that supercools the gas-liquid mixed high-pressure refrigerant cooled and condensed in the first heat exchanger 3 or the third heat exchanger 5 by underground heat. The internal space 55 in the second heat exchanger 4 has the function of an evaporator that adiabatically expands the refrigerant from the first expansion valve 61 into a low-temperature gas.

また、有底外筒50を貫通したヒートパイプ63の下端は有底外筒50の内周面(または有底内筒51の外周面)に一体に接合され、有底外筒50より外部へ露出したヒートパイプ63の上部は斜上方へ指向している。   In addition, the lower end of the heat pipe 63 that penetrates the bottomed outer cylinder 50 is integrally joined to the inner peripheral surface of the bottomed outer cylinder 50 (or the outer peripheral surface of the bottomed inner cylinder 51), and from the bottomed outer cylinder 50 to the outside. The exposed upper portion of the heat pipe 63 is directed obliquely upward.

さらに、有底外筒50の外周面に上下へ所要間隙を存して散水管64が複数本付設され、これら散水管64は地上に設置された電磁弁65に水道管66を介して接続されており、電磁弁65の開放によって散水管64から有底外筒50の全周に亘り水が散水されるようになっている。   Further, a plurality of watering pipes 64 are provided on the outer peripheral surface of the bottomed outer cylinder 50 with a required gap in the vertical direction, and these watering pipes 64 are connected to an electromagnetic valve 65 installed on the ground via a water pipe 66. The water is sprayed from the sprinkling pipe 64 over the entire circumference of the bottomed outer cylinder 50 by opening the electromagnetic valve 65.

地中0には、図1ないし図4に図示されるように、第2熱交換器4の有底外筒50よりも径の大きな竪穴70が掘られ、この竪穴70の中心に第2熱交換器4が保持された状態で、木炭の如き吸水性物質に、銅粉の如き熱伝導性の高い粉体を混合し、この混合物に水を加えた吸水性ゲル物質71が竪穴70内に充填され、竪穴70の頂部が直径約60cmのコンクリート製蓋72で覆われている。   As shown in FIGS. 1 to 4, a pit 70 having a diameter larger than that of the bottomed outer cylinder 50 of the second heat exchanger 4 is dug in the ground 0, and a second heat is formed in the center of the pit 70. In a state where the exchanger 4 is held, a water-absorbing gel substance 71 is obtained by mixing a water-absorbing substance such as charcoal with a powder having high thermal conductivity such as copper powder, and adding water to the mixture. Filled and the top of the pit 70 is covered with a concrete lid 72 having a diameter of about 60 cm.

図1ないし図7に図示の実施形態は、前述されたように構成されているので、暖房運転を行なおうとする場合には、図1に図示されるように圧縮機2の吐出口2aを第1熱交換器3の冷媒出入口3aに接続するとともに、圧縮機2の吸入口2bを第3熱交換器5の冷媒入口4aに接続するように四方弁7を操作し、かつ管路22と管路24とを相互に接続するように三方弁23を切換えるとともに、管路19と管路31とを遮断するように三方弁30を切換え、圧縮機2と循環ポンプ20とを運転すると、圧縮機2で断熱加圧された高温冷媒は第1熱交換器3に導かれて、第1熱交換器3内の水と熱交換されて冷却された冷媒は気液混合の高圧冷媒となって管路8、逆止弁13、管路9、管路10を介してノズル57より外部空間54に噴出される。   Since the embodiment shown in FIGS. 1 to 7 is configured as described above, when the heating operation is performed, the discharge port 2a of the compressor 2 is set as shown in FIG. The four-way valve 7 is operated to connect the refrigerant inlet / outlet 3a of the first heat exchanger 3 and the inlet 2b of the compressor 2 to the refrigerant inlet 4a of the third heat exchanger 5, and When the three-way valve 23 is switched so as to connect the pipe line 24 and the three-way valve 30 is switched so as to shut off the pipe line 19 and the pipe line 31 and the compressor 2 and the circulation pump 20 are operated, the compression is performed. The high-temperature refrigerant adiabatically pressurized in the machine 2 is guided to the first heat exchanger 3, and the refrigerant cooled by heat exchange with water in the first heat exchanger 3 becomes a high-pressure refrigerant of gas-liquid mixing. It is ejected from the nozzle 57 to the external space 54 through the pipe 8, the check valve 13, the pipe 9 and the pipe 10.

ノズル57は上方から見て有底外筒50、有底内筒51の周方向に沿って時計方向へ曲げられるとともに下方へ曲げられているため、気液混合の高圧冷媒は外部空間54内で旋回しながら下降し、地中0の吸水性ゲル物質71と熱交換されるとともに内部空間55内の低温冷媒と熱交換されて冷却され、さらに凝縮され、外部空間54の底部に溜った液状冷媒は第1膨張弁61を介して内部空間55内へ排出され、第1膨張弁61を通過する際に液状冷媒は内部空間55内の低温冷媒と熱交換されて冷却され、第1膨張弁61の出口を出たときに断熱膨張して低温低圧の湿り蒸気となる。   Since the nozzle 57 is bent in the clockwise direction along the circumferential direction of the bottomed outer cylinder 50 and the bottomed inner cylinder 51 as viewed from above, and is bent downward, the high-pressure refrigerant in the gas-liquid mixture is contained in the outer space 54. Liquid refrigerant that descends while turning, exchanges heat with the water-absorbing gel substance 71 in the ground, cools and exchanges heat with the low-temperature refrigerant in the internal space 55, and further condenses and accumulates at the bottom of the external space 54 Is discharged into the internal space 55 via the first expansion valve 61, and when passing through the first expansion valve 61, the liquid refrigerant is cooled by heat exchange with the low-temperature refrigerant in the internal space 55. When it exits, it adiabatically expands to become low-temperature and low-pressure wet steam.

内部空間55内の低温低圧の湿り蒸気は内部空間55内を上昇し、バイパス管62から管路12、逆止弁14、管路11、第3熱交換器5および管路6の四方弁7を介して圧縮機2の吸入口2bに送られ、圧縮機2内で再び断熱加圧される。   The low-temperature and low-pressure wet steam in the internal space 55 rises in the internal space 55, and from the bypass pipe 62 to the pipe 12, the check valve 14, the pipe 11, the third heat exchanger 5, and the four-way valve 7 in the pipe 6. Is sent to the suction port 2b of the compressor 2 and is adiabatically pressurized again in the compressor 2.

そして、室内熱交換器17、管路19、戻り管ヘッダー25内の水は、循環ポンプ20によって、管路21を介して第1熱交換器3内に流入し、第1熱交換器3内に流入した水は、圧縮機2によって断熱加圧された高温冷媒と熱交換され、加熱された高温の水は、管路22、三方弁23、管路24、往管ヘッダー26を介して室内熱交換器17に流入し、室内熱交換器17内にて図示されない床と熱交換され、再び循環ポンプ20によって第1熱交換器3内に流入するが、床は室内熱交換器17内を通過する高温の水によって加熱され、図示されない室内は加熱された床でもって暖房される。   Then, the water in the indoor heat exchanger 17, the pipe line 19, and the return pipe header 25 flows into the first heat exchanger 3 through the pipe line 21 by the circulation pump 20, and enters the first heat exchanger 3. The water that has flowed into the chamber is heat-exchanged with the high-temperature refrigerant that is adiabatic and pressurized by the compressor 2, and the heated high-temperature water passes through the pipeline 22, the three-way valve 23, the pipeline 24, and the forward pipe header 26. The heat flows into the heat exchanger 17 and is exchanged with a floor (not shown) in the indoor heat exchanger 17 and again flows into the first heat exchanger 3 by the circulation pump 20, but the floor passes through the indoor heat exchanger 17. Heated by the passing hot water, the room (not shown) is heated with a heated floor.

このように、気液混合の高圧冷媒は、ノズル57より勢い良く外部空間54内を螺旋状に噴射されて、有底外筒50を介して吸水性ゲル物質71と熱交換されるとともに、有底内筒51を介して内部空間55内の低温冷媒と熱交換されるため、外部空間54内にて充分に冷却されて凝縮が促進されるとともに、内部空間55内にて冷媒は加熱されて蒸発が促進される結果、圧縮機2を回転させるに必要な動力が節減されて、圧縮式ヒートポンプ1の成績係数が向上する。   As described above, the high-pressure refrigerant mixed with gas and liquid is ejected spirally in the external space 54 from the nozzle 57, exchanges heat with the water-absorbing gel substance 71 through the bottomed outer cylinder 50, and Since heat is exchanged with the low-temperature refrigerant in the inner space 55 via the bottom inner cylinder 51, the refrigerant is sufficiently cooled in the outer space 54 to promote condensation, and the refrigerant is heated in the inner space 55. As a result of the promotion of evaporation, the power necessary to rotate the compressor 2 is saved, and the coefficient of performance of the compression heat pump 1 is improved.

この暖房運転中に、室内熱交換器17の放熱量が不足している場合には、インバータによって圧縮機2の回転数が増大されるとともに温度センサー60により可変絞り第2膨張弁59が開放され、圧縮機2に送られる冷媒供給量が増加し、室内熱交換器17の放熱量が増大する。   During the heating operation, when the heat radiation amount of the indoor heat exchanger 17 is insufficient, the rotation speed of the compressor 2 is increased by the inverter and the variable throttle second expansion valve 59 is opened by the temperature sensor 60. The amount of refrigerant supplied to the compressor 2 increases, and the amount of heat released from the indoor heat exchanger 17 increases.

さらに、室内を強力に暖房したい場合には、図1に図示された運転状態において、管路29と管路33とが連通するように三方弁30を設定してから循環ポンプ32の運転を開始すると、図2に図示されるように、予め貯湯タンク18内で加熱された熱湯でもって加熱された給湯熱交換器27の温水は管路29、三方弁30、管路33を介して循環ポンプ32に吸入され、循環ポンプ32より吐出された温水は管路33を介して第3熱交換器5に流入し、第3熱交換器5内を流れる冷媒蒸気は、管路33より第3熱交換器5に流入した温水によって加熱されて冷媒が昇温するため、圧縮機2により断熱加圧される冷媒蒸気高温に加熱され、第1熱交換器3内で高温冷媒と熱交換されて室内熱交換器17に送られる温水の温度が上昇し、室内熱交換器17からの放熱量が増大して室内は強力に暖房される。   Furthermore, when the room is to be heated strongly, the operation of the circulation pump 32 is started after setting the three-way valve 30 so that the pipe line 29 and the pipe line 33 communicate with each other in the operation state shown in FIG. Then, as shown in FIG. 2, the hot water of the hot water supply heat exchanger 27 heated by the hot water previously heated in the hot water storage tank 18 is supplied to the circulation pump via the pipe line 29, the three-way valve 30 and the pipe line 33. The hot water sucked into 32 and discharged from the circulation pump 32 flows into the third heat exchanger 5 through the pipe line 33, and the refrigerant vapor flowing in the third heat exchanger 5 passes through the pipe 33 with the third heat. Since the refrigerant is heated by the hot water flowing into the exchanger 5 and the temperature of the refrigerant is increased, the refrigerant vapor is heated to a high temperature by the compressor 2 and is heat-exchanged with the high-temperature refrigerant in the first heat exchanger 3. The temperature of the hot water sent to the heat exchanger 17 rises, the amount of heat released from the indoor heat exchanger 17 increases, and the room is strong. It is heating to.

次に、電力料金の安い夜間に貯湯タンク18内の水を加熱したい場合には、図3に図示するように、循環ポンプ20の運転を行なうが、その反面、循環ポンプ32の運転を停止し、管路22と管路34とが連通するように三方弁23を設定するとともに、管路19と管路29とが連通するように三方弁30を設定すれば、循環ポンプ20により管路21を介して第1熱交換器3に送られた水は、第1熱交換器3において、高温の冷媒と熱交換されて加熱された熱水は、図1に図示の暖房の場合で室内熱交換器17に送られる代りに、管路22、三方弁23、管路34を介して貯湯タンク18内の給湯熱交換器27に送られ、貯湯タンク18内の温水と熱交換された後、管路29、三方弁30、管路19を介して循環ポンプ20に戻り、第1熱交換器3で加熱された熱水は循環する。   Next, when it is desired to heat the water in the hot water storage tank 18 at night when the electricity rate is low, the circulation pump 20 is operated as shown in FIG. 3, but on the other hand, the operation of the circulation pump 32 is stopped. If the three-way valve 23 is set so that the pipe line 22 and the pipe line 34 communicate with each other, and if the three-way valve 30 is set so that the pipe line 19 and the pipe line 29 communicate with each other, the circulation pump 20 sets the pipe 21 The water sent to the first heat exchanger 3 through the first heat exchanger 3 is heated in the first heat exchanger 3 by exchanging heat with a high-temperature refrigerant. Instead of being sent to the exchanger 17, it is sent to the hot water supply heat exchanger 27 in the hot water storage tank 18 via the pipe line 22, the three-way valve 23, and the pipe line 34, and after heat exchange with the hot water in the hot water storage tank 18, It returns to the circulation pump 20 through the pipe line 29, the three-way valve 30, and the pipe line 19, and the hot water heated by the 1st heat exchanger 3 circulates.

第1熱交換器3で加熱された熱水が貯湯タンク18内の給湯熱交換器27を通過して貯湯タンク18内の温水と熱交換され、貯湯タンク18内の温水は高い温度になる迄加熱される。   The hot water heated by the first heat exchanger 3 passes through the hot water supply heat exchanger 27 in the hot water storage tank 18 and exchanges heat with the hot water in the hot water storage tank 18 until the hot water in the hot water storage tank 18 reaches a high temperature. Heated.

また、冷房運転を行なおうとする場合には、図4に図示されるように、室内熱交換器17でもって室内空気の熱を、第2熱交換器4によって吸水性ゲル物質71を介して地中0に放散させるとともに、第1熱交換器を介して冷媒に伝達させ、熱の伝導を受けた冷媒を第3熱交換器5において、給湯熱交換器27、管路29、三方弁30、管路31、循環ポンプ32、管路33、管路34および給湯熱交換器27で接続される水回路でもって、貯湯タンク18の水を加熱するようになっている。   Further, when the cooling operation is to be performed, as shown in FIG. 4, the heat of the room air is transferred by the second heat exchanger 4 through the water-absorbing gel substance 71 as shown in FIG. 4. In the third heat exchanger 5, the hot water supply heat exchanger 27, the pipe line 29, and the three-way valve 30 are diffused to the ground 0 and transmitted to the refrigerant through the first heat exchanger. The water in the hot water storage tank 18 is heated by a water circuit connected by the pipe 31, the circulation pump 32, the pipe 33, the pipe 34 and the hot water supply heat exchanger 27.

すなわち、前記の暖房運転や給湯運転の四方弁7の設定状態を切換え、圧縮機2の吐出口2aを第3熱交換器5の冷媒出入口5aに接続するとともに、圧縮機2の吸入口2bを第1熱交換器3の冷媒出入口3aに接続し、管路22と管路24とが連通するように三方弁23を切換設定するとともに、管路29と管路31とが連通するように三方弁30を切換設定した後、循環ポンプ20および循環ポンプ32を運転すればよい。   That is, the setting state of the four-way valve 7 in the heating operation or the hot water supply operation is switched, the discharge port 2a of the compressor 2 is connected to the refrigerant inlet / outlet 5a of the third heat exchanger 5, and the suction port 2b of the compressor 2 is connected. Connected to the refrigerant inlet / outlet port 3a of the first heat exchanger 3, the three-way valve 23 is switched and set so that the pipe line 22 and the pipe line 24 communicate with each other, and the pipe 29 and the pipe line 31 communicate with each other. After the valve 30 is switched and set, the circulation pump 20 and the circulation pump 32 may be operated.

この冷房運転状態では、図4に図示されるように、圧縮機2で断熱加熱された高温の冷媒は、圧縮機2の吐出口2aから第3熱交換器5の冷媒出入口5aに達する。そして高温冷媒は、貯湯タンク18の給湯熱交換器27に連通する管路29、三方弁30、管路31、循環ポンプ32、管路33、第3熱交換器5、管路34に連通する温水回路中の温水と第3熱交換器5内において熱交換されて、冷却凝縮され、気液混合の冷媒は、管路11、逆止弁16、管路10を介してノズル57を通過し、外部空間54内で螺旋状に旋回しながら下降し、有底外筒50外の吸水性ゲル物質71および内部空間55内の低温の冷媒との熱交換でさらに冷却凝縮されて外部空間54内底部に溜まる。   In this cooling operation state, as shown in FIG. 4, the high-temperature refrigerant adiabatically heated by the compressor 2 reaches the refrigerant inlet / outlet 5 a of the third heat exchanger 5 from the discharge port 2 a of the compressor 2. The high-temperature refrigerant communicates with the pipe 29, the three-way valve 30, the pipe 31, the circulation pump 32, the pipe 33, the third heat exchanger 5, and the pipe 34 that communicate with the hot water supply heat exchanger 27 of the hot water storage tank 18. Heat is exchanged with the hot water in the hot water circuit in the third heat exchanger 5 to cool and condense, and the gas-liquid mixed refrigerant passes through the nozzle 57 through the pipe 11, the check valve 16, and the pipe 10. The outer space 54 descends while spirally turning, and is further cooled and condensed by heat exchange with the water-absorbing gel substance 71 outside the bottomed outer cylinder 50 and the low-temperature refrigerant in the inner space 55, and is then condensed in the outer space 54. Accumulate at the bottom.

外部空間54内に溜められた冷媒は、第1膨張弁61内を通過する間に、内部空間55内の低温冷媒蒸気によって冷却された後、第1膨張弁61上端から放出されて、断熱膨張し、低温冷媒蒸気はバイパス管62、管路12、逆止弁15、管路8を介して第1熱交換器3内に流入する。そして低温冷媒は、第1熱交換器3の循環水出口3dから管路22、三方弁23、管路24、往管ヘッダー26、室内熱交換器17、管路19、戻り管ヘッダー25、循環ポンプ20、管路21を介して第1熱交換器3の3eに通ずる水回路中の水と、熱交換され、第1熱交換器3の冷媒出入口3aから管路6、四方弁7を介して圧縮機2の吸入口2bに戻される。   The refrigerant stored in the external space 54 is cooled by the low-temperature refrigerant vapor in the internal space 55 while passing through the first expansion valve 61, and then discharged from the upper end of the first expansion valve 61 to adiabatic expansion. The low-temperature refrigerant vapor flows into the first heat exchanger 3 through the bypass pipe 62, the pipe line 12, the check valve 15, and the pipe line 8. The low-temperature refrigerant is supplied from the circulating water outlet 3d of the first heat exchanger 3 to the pipe 22, the three-way valve 23, the pipe 24, the outgoing pipe header 26, the indoor heat exchanger 17, the pipe 19, the return pipe header 25, the circulation Heat is exchanged with the water in the water circuit leading to 3e of the first heat exchanger 3 through the pump 20 and the pipe line 21, and from the refrigerant inlet / outlet 3a of the first heat exchanger 3 through the pipe line 6 and the four-way valve 7. And returned to the suction port 2b of the compressor 2.

第2熱交換器4において、低温に冷却された冷媒と第1熱交換器3内において熱交換されて冷却された水は、前記水回路中を循環し、この冷却水は室内熱交換器17において図示されない床を介して室内空気と熱交換され、室内空気が冷却される。   In the second heat exchanger 4, the refrigerant cooled to a low temperature and the water cooled by the heat exchange in the first heat exchanger 3 circulate in the water circuit, and this cooling water is the indoor heat exchanger 17. Then, heat is exchanged with room air through a floor (not shown) to cool the room air.

また、電磁弁65が開放されて水道管66から散水管64に達した水道水は、散水管64より吸水性ゲル物質71に散水されるため、吸水性ゲル物質71は充分に冷却される。   Moreover, since the electromagnetic valve 65 is opened and the tap water that has reached the sprinkling pipe 64 from the water pipe 66 is sprinkled from the sprinkling pipe 64 to the water-absorbing gel substance 71, the water-absorbing gel substance 71 is sufficiently cooled.

さらに、吸水性ゲル物質71は水分を多く含んでいるため、熱伝導性が良好であるので、地中0にも熱が良く伝達され、第2熱交換器4は充分に冷却される。   Furthermore, since the water-absorbing gel substance 71 contains a lot of moisture, its heat conductivity is good, so that heat is well transferred to the ground 0, and the second heat exchanger 4 is sufficiently cooled.

さらにまた、ヒートパイプ63の一端部が外部空間54内に露出して有底外筒50に一体に接合されるとともに、ヒートパイプ63の他端部が吸水性ゲル物質71中に突出しているため、外部空間54内の熱が吸水性ゲル物質71に良く伝達される。   Furthermore, one end of the heat pipe 63 is exposed in the outer space 54 and is integrally joined to the bottomed outer cylinder 50, and the other end of the heat pipe 63 protrudes into the water-absorbing gel substance 71. The heat in the external space 54 is well transmitted to the water-absorbing gel substance 71.

図1ないし図7の実施形態の第2熱交換器4では、管58が蓋53を上方へ貫通していたが、第2熱交換器4を図8に図示するように構成してもよい。   In the second heat exchanger 4 of the embodiment of FIGS. 1 to 7, the tube 58 penetrates the lid 53 upward, but the second heat exchanger 4 may be configured as shown in FIG. .

図8に図示の第2熱交換器4では、管58の頂端は内部空間55の頂部近くで開口し、この開口部に可変絞り第2膨張弁59を設けても、図5の第2熱交換器4と略同様な効果を奏することができる。   In the second heat exchanger 4 shown in FIG. 8, the top end of the pipe 58 opens near the top of the internal space 55, and even if the variable throttle second expansion valve 59 is provided in this opening, the second heat exchanger shown in FIG. The same effect as the exchanger 4 can be obtained.

次に、有底外筒50を地中0に埋設する方法の実施形態について説明する。   Next, an embodiment of a method for embedding the bottomed outer cylinder 50 in the ground 0 will be described.

図9に図示されるように、第2熱交換器4の円筒状有底外筒50の外周面に、有底外筒50の上端から下端に向って螺旋状に巻回形成された放熱フィン67の内周縁が溶接等で一体に固着され、該放熱フィン67の内周縁に沿って図示されない下端が開口されたスラリー供給管が一体に取り付けられており、スラリー供給管の上端から吸水性ゲル物質71のスラリーを供給しながら、上方から見て、有底外筒50を時計方向に旋回させると、有底外筒50は地中0中にネジ込まれるとともに、地中0内において有底外筒50の外周に吸水性ゲル物質71が充填されるので、第2熱交換器4の地中0への埋設作業を短時間内に容易に遂行することができる。   As shown in FIG. 9, the heat radiation fin spirally wound around the outer peripheral surface of the cylindrical bottomed outer cylinder 50 of the second heat exchanger 4 from the upper end to the lower end of the bottomed outer cylinder 50. The inner peripheral edge of 67 is integrally fixed by welding or the like, and a slurry supply pipe having a lower end (not shown) opened along the inner peripheral edge of the heat radiating fin 67 is integrally attached. When the bottomed outer cylinder 50 is swung clockwise as viewed from above while supplying the slurry of the substance 71, the bottomed outer cylinder 50 is screwed into the underground 0 and the bottomed inside the underground 0 Since the water-absorbing gel substance 71 is filled in the outer periphery of the outer cylinder 50, the operation of burying the second heat exchanger 4 in the ground 0 can be easily performed within a short time.

本願発明に係る圧縮式ヒートポンプにおける暖房運転状態を図示した図面である。It is drawing which illustrated the heating operation state in the compression heat pump which concerns on this invention. 図1における圧縮式ヒートポンプの強力暖房運転状態を図示した図面である。It is drawing which illustrated the powerful heating operation state of the compression heat pump in FIG. 図1における圧縮式ヒートポンプの深間給湯運転状態を図示した図面である。It is drawing which illustrated the deep hot-water supply driving | running state of the compression heat pump in FIG. 図1における圧縮式ヒートポンプの冷房運転状態を図示した図面である。2 is a diagram illustrating a cooling operation state of the compression heat pump in FIG. 1. 前記圧縮式ヒートポンプにおける凝縮器と蒸発器とを一体化した第3熱交換器の縦断図面である。It is a longitudinal drawing of the 3rd heat exchanger which integrated the condenser and evaporator in the said compression heat pump. 図5の第3熱交換器の要部拡大平面図である。It is a principal part enlarged plan view of the 3rd heat exchanger of FIG. 図6のVI矢視図である。FIG. 7 is a view taken along arrow VI in FIG. 6. 他の実施形態における第3熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the 3rd heat exchanger in other embodiment. 本願発明に係る圧縮式ヒートポンプの第2熱交換器の地中埋設方法において、用いられる該熱交換器の正面図である。It is a front view of this heat exchanger used in the underground embedding method of the 2nd heat exchanger of the compression heat pump concerning the present invention.

符号の説明Explanation of symbols

0…地中、1…圧縮式ヒートポンプ、
2…圧縮機、2a…吐出口、2b…吸入口、
3…第1熱交換器、3a…冷媒出入口、3b…冷媒出入口、3c…循環水入口、3d…循環水出口、
4…第2熱交換器、4a…冷媒入口、4b…冷媒出口
5…第3熱交換器、5a…冷媒出入口、5b…冷媒出入口、5c…循環水入口、5d…循環水出口、
6…管路、7…四方弁、8…管路、9…管路、10…管路、11…管路、12…管路、
13…逆止弁、14…逆止弁、15…逆止弁、16…逆止弁、
17…室内熱交換器、17a…出口、17b…入口、
18…貯湯タンク、19…管路、
20…循環ポンプ、20a…吸入口、20b…吐出口、
21…管路、22…管路、23…三方弁、24…管路、25…戻り管ヘッダー、26…往管ヘッダー、
27…給湯熱交換器、27a…出口、27b…入口、
28…風呂沸し熱交換器、28a…出口、28b…入口、
29…管路、30…三方弁、31…管路、
32…循環ポンプ、32a…吸入口、32b…吐出口、
33…管路、34…管路、35…管路、36…風呂、36a…吐出口、36b…吸入口
37…管路、38…風呂沸し循環ポンプ、38a…吸入口、38b…吐出口、
39…管路、40…水道管、41…温水管、42…シャワー、43…蛇口、
50…有底外筒、51…有底内筒、52…底板、53…蓋、54…外部空間、55…内部空間、
56…仕切板、57…ノズル、58…管、59…可変絞り第2膨張弁、60…温度センサー、
61…第1膨張弁、62…バイパス管、63…ヒートパイプ、64…散水管、65…電磁弁、
66…水道管、67…放熱フィン
70…竪穴、71…吸水性ゲル物質、72…コンクリート製蓋。
0 ... Underground, 1 ... Compression heat pump,
2 ... compressor, 2a ... discharge port, 2b ... suction port,
3 ... 1st heat exchanger, 3a ... Refrigerant inlet / outlet, 3b ... Refrigerant inlet / outlet, 3c ... Circulating water inlet, 3d ... Circulating water outlet,
4 ... 2nd heat exchanger, 4a ... refrigerant inlet, 4b ... refrigerant outlet 5 ... 3rd heat exchanger, 5a ... refrigerant inlet, 5b ... refrigerant inlet, 5c ... circulating water inlet, 5d ... circulating water outlet,
6 ... Pipe line, 7 ... Four-way valve, 8 ... Pipe line, 9 ... Pipe line, 10 ... Pipe line, 11 ... Pipe line, 12 ... Pipe line,
13 ... Check valve, 14 ... Check valve, 15 ... Check valve, 16 ... Check valve,
17 ... Indoor heat exchanger, 17a ... Outlet, 17b ... Inlet,
18 ... Hot water storage tank, 19 ... Pipe line,
20 ... circulation pump, 20a ... suction port, 20b ... discharge port,
21 ... Pipe line, 22 ... Pipe line, 23 ... Three-way valve, 24 ... Pipe line, 25 ... Return pipe header, 26 ... Out pipe header,
27 ... Hot-water heat exchanger, 27a ... Exit, 27b ... Inlet,
28 ... bath heat exchanger, 28a ... exit, 28b ... inlet,
29 ... pipeline, 30 ... three-way valve, 31 ... pipeline,
32 ... circulation pump, 32a ... suction port, 32b ... discharge port,
33 ... Pipe line, 34 ... Pipe line, 35 ... Pipe line, 36 ... Bath, 36a ... Discharge port, 36b ... Suction port
37 ... Pipe line, 38 ... Bath boiling circulation pump, 38a ... Suction port, 38b ... Discharge port,
39 ... Pipe line, 40 ... Water pipe, 41 ... Hot water pipe, 42 ... Shower, 43 ... Faucet,
50 ... Bottomed outer cylinder, 51 ... Bottomed inner cylinder, 52 ... Bottom plate, 53 ... Lid, 54 ... External space, 55 ... Internal space,
56 ... Partition plate, 57 ... Nozzle, 58 ... Pipe, 59 ... Variable expansion second expansion valve, 60 ... Temperature sensor,
61 ... 1st expansion valve, 62 ... Bypass pipe, 63 ... Heat pipe, 64 ... Sprinkling pipe, 65 ... Solenoid valve,
66 ... Water pipe, 67 ... Heat radiation fin
70… Hot hole, 71… Water-absorbing gel substance, 72… Concrete lid.

Claims (13)

圧縮機の吐出口、凝縮器、蒸発器および前記圧縮機の吸入口が順次接続されて構成された圧縮式ヒートポンプにおいて、
該圧縮式ヒートポンプの冷媒循環回路中には、第1、第2、第3熱交換器が直列に配設され、
前記3個の内の真ん中の第2熱交換器では凝縮器と蒸発器とが一体化され、
該第2熱交換器は、内側密封容器と、該内側密封容器の外周を所要の間隙を存して密封する外側密封容器とよりなり、前記内側密封容器および外側密封容器で密封された凝縮器の機能を有する外側空間と、前記内側密封容器内の第2熱交換器の機能を有する内側空間とに仕切られ、
前記圧縮機により凝縮された冷媒を前記第2熱交換器の外側空間に導く冷媒通路と、
前記第2熱交換器の外側空間内の冷媒を内側空間に導く第1膨張弁と、
前記第2熱交換器の外側空間内の冷媒を前記圧縮機の吸入口に接続される部分に冷媒を導く可変絞り第2膨張弁とを具備し、
前記第2熱交換器の内側空間は前記圧縮機の吸入口に接続されたことを特徴とする圧縮式ヒートポンプ。
In a compression heat pump configured by sequentially connecting a discharge port of a compressor, a condenser, an evaporator, and a suction port of the compressor,
In the refrigerant circuit of the compression heat pump, first, second, and third heat exchangers are arranged in series,
In the second heat exchanger in the middle of the three, the condenser and the evaporator are integrated,
The second heat exchanger includes an inner sealed container and an outer sealed container that seals the outer periphery of the inner sealed container with a predetermined gap, and is a condenser sealed by the inner sealed container and the outer sealed container. Partitioned into an outer space having the function of and an inner space having the function of the second heat exchanger in the inner sealed container,
A refrigerant passage for guiding the refrigerant condensed by the compressor to the outer space of the second heat exchanger;
A first expansion valve for guiding the refrigerant in the outer space of the second heat exchanger to the inner space;
A variable throttle second expansion valve for guiding the refrigerant in the outer space of the second heat exchanger to a portion connected to the suction port of the compressor;
An internal space of the second heat exchanger is connected to a suction port of the compressor.
前記第2熱交換器は地中に埋設されたことを特徴とする請求項1記載の圧縮式ヒートポンプ。
The compression heat pump according to claim 1, wherein the second heat exchanger is embedded in the ground.
前記可変絞り第2膨張弁は、前記第2熱交換器より上方または前記内側空間頂部に配設されるとともに、前記第2熱交換器の内側空間から前記圧縮機の吸入側に接続する管路に対し並列に設けられたことを特徴とする請求項1または請求項2記載の圧縮式ヒートポンプ。
The variable throttle second expansion valve is disposed above the second heat exchanger or at the top of the inner space, and is connected to the suction side of the compressor from the inner space of the second heat exchanger. The compression heat pump according to claim 1 or 2, wherein the compression heat pump is provided in parallel with the heat pump.
前記第1膨張弁は、細管で構成されるとともに、前記内側密封容器の底壁部を貫通して、該第1膨張弁の下端は前記外側空間に開口し、かつ該第1膨張弁の上端は前記内側空間に開口し、該内側空間内でコイル状に巻回形成されたことを特徴とする前記請求項1ないし請求項3いずれか記載の圧縮式ヒートポンプ。
The first expansion valve is constituted by a thin tube, penetrates the bottom wall portion of the inner sealed container, the lower end of the first expansion valve opens into the outer space, and the upper end of the first expansion valve 4. The compression heat pump according to claim 1, wherein the compression heat pump is opened in the inner space and is wound in a coil shape in the inner space.
前記可変絞り第2膨張弁は、圧縮式ヒートポンプの熱負荷に対応して絞りが自動的に制御されることを特徴とする請求項1ないし請求項4いずれか記載の圧縮式ヒートポンプ。
The compression type heat pump according to any one of claims 1 to 4, wherein the variable expansion second expansion valve is automatically controlled in accordance with a heat load of the compression type heat pump.
前記第2熱交換器の外側密封容器を貫通したヒートパイプの内端部は、該外側密封容器の内面または前記内側密封容器の外面に一体に接合され、該ヒートパイプの外端部は前記第2熱交換器外部に露出したことを特徴とする請求項2ないし請求項5いずれか記載の圧縮式ヒートポンプ。
An inner end portion of the heat pipe penetrating the outer sealed container of the second heat exchanger is integrally joined to an inner surface of the outer sealed container or an outer surface of the inner sealed container, and the outer end portion of the heat pipe is 6. The compression heat pump according to claim 2, wherein the compression heat pump is exposed to the outside of the heat exchanger.
前記第2熱交換器の外周部に地中散水ノズルが設けられたことを特徴とする請求項2ないし請求項6記載の圧縮式ヒートポンプ。
The compression heat pump according to any one of claims 2 to 6, wherein an underground sprinkling nozzle is provided on an outer peripheral portion of the second heat exchanger.
前記第2熱交換器の外部が、熱伝導率の高い吸水性ゲル物質のスラリーで被覆されたことを特徴とする請求項2または請求項7記載の圧縮式ヒートポンプ。
The compression heat pump according to claim 2 or 7, wherein the outside of the second heat exchanger is coated with a slurry of a water-absorbing gel substance having a high thermal conductivity.
前記吸水性ゲル物質のスラリーが蓋で被われたことを特徴とする請求項8記載の圧縮式ヒートポンプ。
The compression heat pump according to claim 8, wherein the slurry of the water-absorbing gel substance is covered with a lid.
前記圧縮機の吐出口に接続された熱交換器を凝縮器とし、該凝縮器を熱源とした暖房装置または給湯装置として用いられることを特徴とする請求項1ないし請求項9いずれか記載の圧縮式ヒートポンプ。
The compression according to any one of claims 1 to 9, wherein the compressor is used as a heating device or a hot water supply device using a heat exchanger connected to a discharge port of the compressor as a condenser and using the condenser as a heat source. Type heat pump.
前記第2熱交換器から圧縮機の吸入口に接続された熱交換器が蒸発器とし、
該蒸発器を冷源とした冷房装置として用いられることを特徴とする請求項1ないし請求項9いずれか記載の圧縮式ヒートポンプ。
A heat exchanger connected from the second heat exchanger to the suction port of the compressor serves as an evaporator,
The compression heat pump according to any one of claims 1 to 9, wherein the compression heat pump is used as a cooling device using the evaporator as a cold source.
前記熱交換器を介して前記冷媒と熱交換される流体は、液体であって、床冷房・暖房装置に利用されることを特徴とする請求項1ないし請求項11いずれか記載の圧縮式ヒートポンプ。
12. The compression heat pump according to claim 1, wherein the fluid that exchanges heat with the refrigerant through the heat exchanger is a liquid and is used in a floor cooling / heating device. .
前記請求項8記載の圧縮式ヒートポンプの第2熱交換器を地中に埋設する方法であって、
前記第2熱交換器の外側密封容器を円筒状に形成し、
該円筒状外側密封容器の外周面に螺旋状のフィンを一体に設け、前記円筒状外側密封容器を、下方へ圧下しつつ、前記螺旋状フィンの下り傾斜方向に沿って旋回させることによってスラリーの中に前記第2熱交換器を地中に埋設することを特徴とする圧縮式ヒートポンプの地中埋設方法。
A method of embedding the second heat exchanger of the compression heat pump according to claim 8 in the ground,
Forming an outer sealed container of the second heat exchanger in a cylindrical shape;
A spiral fin is integrally provided on the outer peripheral surface of the cylindrical outer sealed container, and the cylindrical outer sealed container is swung downward while swirling along the downward inclined direction of the spiral fin. A method for embedding a compression heat pump in the ground, wherein the second heat exchanger is buried in the ground.
JP2007026178A 2007-02-05 2007-02-05 Compression type heat pump Pending JP2008190792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026178A JP2008190792A (en) 2007-02-05 2007-02-05 Compression type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026178A JP2008190792A (en) 2007-02-05 2007-02-05 Compression type heat pump

Publications (1)

Publication Number Publication Date
JP2008190792A true JP2008190792A (en) 2008-08-21

Family

ID=39751056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026178A Pending JP2008190792A (en) 2007-02-05 2007-02-05 Compression type heat pump

Country Status (1)

Country Link
JP (1) JP2008190792A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007476A (en) * 2009-05-28 2011-01-13 Fujishima Kensetsu:Kk Cold type, warming type, cold-warming type heat pump system
CN103175323A (en) * 2011-12-23 2013-06-26 东普雷股份有限公司 Refrigeration device using ternary pipe-type heat exchanger
JP2013142507A (en) * 2012-01-11 2013-07-22 Kanai Educational Institution Heat pump and hot water supply system
CN103629848A (en) * 2012-08-27 2014-03-12 昆山开思拓节能技术有限公司 Geotherm cooling device
CN104344603A (en) * 2014-09-30 2015-02-11 山东中瑞新能源科技有限公司 Ground-source heat pump system for supplying heat/cold under under the assistance of valley electricity and method thereof
JP6007455B1 (en) * 2015-03-30 2016-10-12 中村物産有限会社 Cold heat supply apparatus and cold heat supply method
WO2019218838A1 (en) * 2018-05-17 2019-11-21 中机十院国际工程有限公司 Flow-state ice heat pump system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118700A (en) * 1991-10-31 1993-05-14 Hokkaido Electric Power Co Inc:The Heat pump type air-conditioner
JPH06159821A (en) * 1992-11-19 1994-06-07 Nippondenso Co Ltd Indoor cooling device
JP2545720B2 (en) * 1991-09-18 1996-10-23 工業技術院長 Heat pump equipment
JPH10300266A (en) * 1997-04-24 1998-11-13 Shinryo Corp Vertical type earth heat pump
JPH11304338A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Refrigerator
JP2001074316A (en) * 1999-09-01 2001-03-23 Kubota Corp Underground heat utilizing facility
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP2005207718A (en) * 2004-01-22 2005-08-04 Sakamoto Kazuhiko Snow melting device utilizing soil heat
JP2007024342A (en) * 2005-07-12 2007-02-01 Tadashi Tsunoda Geothermal heat collecting system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545720B2 (en) * 1991-09-18 1996-10-23 工業技術院長 Heat pump equipment
JPH05118700A (en) * 1991-10-31 1993-05-14 Hokkaido Electric Power Co Inc:The Heat pump type air-conditioner
JPH06159821A (en) * 1992-11-19 1994-06-07 Nippondenso Co Ltd Indoor cooling device
JPH10300266A (en) * 1997-04-24 1998-11-13 Shinryo Corp Vertical type earth heat pump
JPH11304338A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Refrigerator
JP2001074316A (en) * 1999-09-01 2001-03-23 Kubota Corp Underground heat utilizing facility
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP2005207718A (en) * 2004-01-22 2005-08-04 Sakamoto Kazuhiko Snow melting device utilizing soil heat
JP2007024342A (en) * 2005-07-12 2007-02-01 Tadashi Tsunoda Geothermal heat collecting system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007476A (en) * 2009-05-28 2011-01-13 Fujishima Kensetsu:Kk Cold type, warming type, cold-warming type heat pump system
CN103175323A (en) * 2011-12-23 2013-06-26 东普雷股份有限公司 Refrigeration device using ternary pipe-type heat exchanger
JP2013142507A (en) * 2012-01-11 2013-07-22 Kanai Educational Institution Heat pump and hot water supply system
CN103629848A (en) * 2012-08-27 2014-03-12 昆山开思拓节能技术有限公司 Geotherm cooling device
CN104344603A (en) * 2014-09-30 2015-02-11 山东中瑞新能源科技有限公司 Ground-source heat pump system for supplying heat/cold under under the assistance of valley electricity and method thereof
CN104344603B (en) * 2014-09-30 2016-06-01 山东中瑞新能源科技有限公司 Utilize buried pipe ground-source heat pump system and the method for paddy electricity auxiliary heat supplying/cooling
JP6007455B1 (en) * 2015-03-30 2016-10-12 中村物産有限会社 Cold heat supply apparatus and cold heat supply method
JP2016191480A (en) * 2015-03-30 2016-11-10 中村物産有限会社 Cold heat supply device and cold heat supply method
WO2019218838A1 (en) * 2018-05-17 2019-11-21 中机十院国际工程有限公司 Flow-state ice heat pump system

Similar Documents

Publication Publication Date Title
US7617697B2 (en) In-ground geothermal heat pump system
US4257239A (en) Earth coil heating and cooling system
JP2008190792A (en) Compression type heat pump
CN105526727B (en) Refrigerating plant
JP7357324B2 (en) Multi-source heat pump equipment
CN102393049B (en) Ground-source heat-pipe/heat-pump air conditioner
CN202675964U (en) Heat superconductor water source heat exchanger
US20110048049A1 (en) Heat exchanger and air conditioning system
KR20220030206A (en) Valve systems and methods
CN109340920A (en) Air conditioner indoor unit and air-conditioning
CN109219722A (en) Air-conditioning system
CN101852457A (en) Hot water circulation system associated with heat pump
CN101818969A (en) Water circulation system with cold-producing medium circulation interlock
CN105020815B (en) A kind of evaporating condensation type air conditioner
CN105509354B (en) Handpiece Water Chilling Units and heat pump unit
CN104879939A (en) Air-conditioning system
CN209399491U (en) Air conditioner indoor unit and air-conditioning
RU2359183C1 (en) Heat accumulator
CN102445098A (en) Hot superconductor water source heat exchanger
CN105333641B (en) Air-source air conditioning and water heating system
US6966196B2 (en) Refrigeration unit using ammonia
CN104697245B (en) Coupling heat pump system
JP2007024488A (en) Cooler
US3485057A (en) Ice rink
JP2020051714A (en) Heat pump device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403