JP2007024342A - Geothermal heat collecting system - Google Patents

Geothermal heat collecting system Download PDF

Info

Publication number
JP2007024342A
JP2007024342A JP2005203272A JP2005203272A JP2007024342A JP 2007024342 A JP2007024342 A JP 2007024342A JP 2005203272 A JP2005203272 A JP 2005203272A JP 2005203272 A JP2005203272 A JP 2005203272A JP 2007024342 A JP2007024342 A JP 2007024342A
Authority
JP
Japan
Prior art keywords
heat
flow path
pipe
geothermal
collection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005203272A
Other languages
Japanese (ja)
Other versions
JP4642579B2 (en
Inventor
Tadashi Tsunoda
正 角田
Kunio Mizutani
国男 水谷
Tetsuo Kaita
哲男 貝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2005203272A priority Critical patent/JP4642579B2/en
Publication of JP2007024342A publication Critical patent/JP2007024342A/en
Application granted granted Critical
Publication of JP4642579B2 publication Critical patent/JP4642579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/40Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat collecting system capable of saving heat medium transporting power. <P>SOLUTION: This geothermal heat collecting system 1 which comprises an underground vessel 15 mounted under a ground level G and storing a first heat medium M1, and a heat exchanging flow channel 10 having an internal flow channel 11r in which the first heat medium M1 flows, an external flow channel 12r formed to receive the internal flow channel 11r to allow the first heat medium M1 to flow in the direction opposite to the flow in the internal flow channel 11r, at an outer side of the internal flow channel 11r, and in which the heat exchanging flow channel 10 is mounted under the ground level G horizontally or in a state of having a downward gradient when observed from the underground vessel 15, heat exchange is performed between the heat of the first heat medium flowing in the external flow channel and the underground heat, and the first heat medium is convected by the change of concentration of the first heat medium, thus the geothermal heat can be collected without using power. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は地熱採熱システムに関し、特に熱媒体の搬送動力を削減した地熱採熱システムに関するものである。   The present invention relates to a geothermal heat collection system, and more particularly to a geothermal heat collection system with reduced heat medium conveyance power.

いわゆる地球環境問題のうち、炭酸ガスの排出量の増加に伴い、急速な気候変動が降雨パターンの変化や海水面の上昇などを招来して、人類社会に大きな影響を与えることが懸念されている。このような懸念を背景に、連続して放出される地熱を再生可能エネルギーとして利用するシステムが、自然エネルギー活用の一形態として近年採用され始めている。   Among so-called global environmental problems, there is a concern that rapid climate change will cause changes in rainfall patterns and sea level rise as carbon dioxide emissions increase and will have a major impact on human society. . Against this background, systems that use continuously released geothermal heat as renewable energy have begun to be adopted in recent years as a form of natural energy utilization.

地熱を利用するシステムを例示すると、地盤面下に設置された貯留水槽の側壁から地中に向かって地下帯水層と平行に層内を横方向にボーリングして掘削孔を設け、掘削孔端部に配設された熱媒分水筒に向かって熱媒を流す熱媒供給管と熱媒分水筒から導入した熱媒を流しつつ地下水の熱を採熱する採熱管とを備える多管式地中熱交換器をこの掘削孔に挿入して、熱媒循環ポンプで地中熱交換機内を熱媒循環させて地下水熱を採取し、冷暖房や給湯、融雪、消雪、農業用ビニールハウスなどの熱源として利用するシステムがある(例えば特許文献1参照)。
特開2002−147892号公報(図1、図3等)
Exemplifying a system that uses geothermal heat, drilling holes in the horizontal direction parallel to the underground aquifer from the side wall of the storage tank installed under the ground surface into the ground, providing the drill hole, A multi-tube ground comprising a heat medium supply pipe for flowing a heat medium toward a heat medium water pipe arranged in the section and a heat collection pipe for collecting the heat of groundwater while flowing the heat medium introduced from the heat medium water pipe An intermediate heat exchanger is inserted into this excavation hole, the ground heat exchanger is sampled by circulating the heat medium in the underground heat exchanger with a heat medium circulation pump, and air conditioning, hot water supply, snow melting, snow removal, agricultural greenhouses, etc. There is a system used as a heat source (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2002-147892 (FIG. 1, FIG. 3, etc.)

上述のような自然エネルギーを利用した地熱利用システムにおいて、さらに消費エネルギーを削減することができればより地球環境保全に資することとなる。例えば、上述のシステムにおいて、地中熱交換器内に熱媒を循環させる熱媒循環ポンプを省略することができればさらなる省エネルギーに資することとなる。   In the geothermal utilization system using natural energy as described above, if energy consumption can be further reduced, it will contribute to the conservation of the global environment. For example, in the above-described system, if a heat medium circulation pump for circulating the heat medium in the underground heat exchanger can be omitted, it will contribute to further energy saving.

本発明は上述の課題に鑑み、熱媒体の搬送動力を削減した地熱採熱システムを提供することを目的とする。   An object of this invention is to provide the geothermal heat collection system which reduced the conveyance power of the heat medium in view of the above-mentioned subject.

上記目的を達成するために、請求項1に記載の発明に係る地熱採熱システムは、例えば図1に示すように、地盤面下Gに設けられ、第1の熱媒体M1を収容する地中容器15と;第1の熱媒体M1を流す内部流路11rと、内部流路11rを収容するように配設され、内部流路11rの外側を内部流路11r内の流れ方向とは逆向きに第1の熱媒体M1を流す外部流路12rと、を有する熱交換流路10とを備え;熱交換流路10が、水平に又は地中容器15から見て先下り勾配を有するように地盤面下Gに配設されている。   In order to achieve the above object, a geothermal heat collecting system according to the first aspect of the present invention is provided in the ground surface G, for example, as shown in FIG. A container 15; an internal flow path 11r through which the first heat medium M1 flows; and an internal flow path 11r that is disposed so as to accommodate the outside, and the outside of the internal flow path 11r is opposite to the flow direction in the internal flow path 11r A heat exchange flow path 10 having an external flow path 12r through which the first heat medium M1 flows, and so that the heat exchange flow path 10 has a downward slope horizontally or when viewed from the underground container 15 It is disposed below the ground surface G.

このように構成すると、外部流路を流れる第1の熱媒体の熱と地中の熱との間で熱交換が行われ、第1の熱媒体の密度が変化することにより第1の熱媒体が対流する。したがって、動力を用いなくても地熱を採熱することができる。   If comprised in this way, heat exchange will be performed between the heat of the 1st heat carrier which flows through an external channel, and the heat of the ground, and the 1st heat carrier will change because the density of the 1st heat carrier changes. Convection. Therefore, geothermal heat can be collected without using power.

また、請求項2に記載の発明に係る地熱採熱システムは、例えば図2に示すように、請求項1に記載の地熱採熱システムにおいて、熱交換流路10を複数備え;熱交換流路10が、水平投影面上で放射状に配設されている。   Moreover, the geothermal heat collection system which concerns on invention of Claim 2 is provided with multiple heat exchange flow paths 10 in the geothermal heat collection system of Claim 1 as shown, for example in FIG. 2; Heat exchange flow path 10 are arranged radially on the horizontal projection plane.

このように構成すると、外部流路を流れる第1の熱媒体の熱と地中の熱との間で熱交換が行われる際の伝熱面積が増大し、地熱の採熱量が増加する。   If comprised in this way, the heat-transfer area at the time of heat exchange will be increased between the heat of the 1st heat carrier which flows through an external channel, and the heat of the ground, and the amount of heat collection of geothermal heat will increase.

また、請求項3に記載の発明に係る地熱採熱システムは、例えば図9に示すように、請求項1又は請求項2に記載の地熱採熱システムにおいて、熱交換流路10(16、17)よりも下部の地下水Wuを流す揚水流路21と;地下水Wuを揚水する揚水ポンプ22と;揚水した地下水Wuを熱交換流路10よりも上部で散水する散水流路25とを備えている。   In addition, the geothermal heat collecting system according to the invention described in claim 3 is the geothermal heat collecting system according to claim 1 or 2, as shown in FIG. ), A pumping pump 21 for pumping groundwater Wu below; and a pumping pump 22 for pumping groundwater Wu; and a spraying pump 25 for spraying pumped groundwater Wu above the heat exchange channel 10. .

このように構成すると、熱交換流路まわりの地下水が流動して第1の熱媒体と熱交換を行った地下水が置換され、第1の熱媒体の熱と地中の熱との間で行われる熱交換効率が向上する。   With this configuration, the groundwater around the heat exchange channel flows to replace the groundwater that has exchanged heat with the first heat medium, and the heat is exchanged between the heat of the first heat medium and the underground heat. The heat exchange efficiency is improved.

また、請求項4に記載の発明に係る地熱採熱システムは、例えば図1に示すように、請求項1乃至請求項3のいずれか1項に記載の地熱採熱システムにおいて、熱交換流路10が、外部流路12rの断面積が内部流路11rの断面積よりも大きくなるように構成されている。   Moreover, the geothermal heat collection system according to the invention described in claim 4 is the heat exchange flow path in the geothermal heat collection system according to any one of claims 1 to 3, for example, as shown in FIG. 10 is configured such that the cross-sectional area of the external flow path 12r is larger than the cross-sectional area of the internal flow path 11r.

このように構成すると、第1の熱媒体の流速が内部流路内よりも外部流路内の方が遅くなり、外部流路を流れる第1の熱媒体の熱と地中の熱との単位流量当たりの交換熱量を増加させることができる。   With this configuration, the flow rate of the first heat medium is slower in the external flow path than in the internal flow path, and the unit of the heat of the first heat medium flowing in the external flow path and the heat in the ground The amount of heat exchanged per flow rate can be increased.

また、請求項5に記載の発明に係る地熱採熱システムは、例えば図1に示すように、請求項1乃至請求項4のいずれか1項に記載の地熱採熱システムにおいて、内部流路11rの一端11aが、地中容器15内の第1の熱媒体M1の深さの1/2より深い位置で開放され;外部流路12rの一端12aが、内部流路11rの一端11aが開放される位置よりも上方で開放されて構成されている。   Further, the geothermal heat collection system according to the invention described in claim 5 is the geothermal heat collection system according to any one of claims 1 to 4, for example, as shown in FIG. Is opened at a position deeper than ½ of the depth of the first heat medium M1 in the underground container 15; one end 12a of the external flow path 12r is opened at one end 11a of the internal flow path 11r. It is configured to be opened above the position.

このように構成すると、地中容器内で温度成層が形成され、2次側での熱の利用がしやすくなる。ここで、2次側で利用される熱は、温熱又は冷熱である。   If comprised in this way, temperature stratification will be formed in an underground container and it will become easy to utilize the heat by the secondary side. Here, the heat utilized on the secondary side is warm or cold.

また、請求項6に記載の発明に係る地熱採熱システムは、例えば図3及び図4に示すように、請求項1乃至請求項4のいずれか1項に記載の地熱採熱システムにおいて、内部流路11rの一端11a又は外部流路12の一端12aが、第1の熱媒体M1を搬送する搬送機器31、32に接続されている。   Moreover, the geothermal heat collection system according to the invention described in claim 6 is the geothermal heat collection system according to any one of claims 1 to 4, as shown in FIGS. 3 and 4, for example. One end 11a of the flow path 11r or one end 12a of the external flow path 12 is connected to transfer devices 31 and 32 that transfer the first heat medium M1.

このように構成すると、地中との熱交換が行われて間もない第1の熱媒体を2次側で利用することができ、熱損失が少なくなる。   If comprised in this way, the 1st heat medium which has just performed heat exchange with underground can be utilized by the secondary side, and a heat loss will decrease.

また、請求項7に記載の発明に係る地熱採熱システムは、例えば図5に示すように、請求項1乃至請求項4のいずれか1項に記載の地熱採熱システムにおいて、内部流路11rの一端11a及び外部流路12の一端12aが、ヒートポンプチラー34に接続されて構成されている。   In addition, the geothermal heat collection system according to the invention described in claim 7 is the geothermal heat collection system according to any one of claims 1 to 4, for example, as shown in FIG. One end 11a of the external flow path 12 and one end 12a of the external flow path 12 are connected to the heat pump chiller 34.

このように構成すると、採熱した地熱を動力を用いずにヒートポンプチラーに供給して冷水又は温水を製造することが可能になる。   If comprised in this way, it will become possible to supply the heat-collected geothermal heat to a heat pump chiller without using motive power, and to manufacture cold water or warm water.

また、請求項8に記載の発明に係る地熱採熱システムは、例えば図6に示すように、請求項1乃至請求項4のいずれか1項に記載の地熱採熱システムにおいて、第2の熱媒体M2に対し加熱及び冷却の少なくとも一方を行う熱源機器35と;地中容器15の内部に設置された熱源機器35の屋外機36と;屋外機36の上部の地中容器15の内部に設置され、内部流路11rの一端11aが吐出側に接続された送風機38とを備え;外部流路12rの一端12aが、屋外機36に形成された空気導入口36aの高さ以下の地中容器15内で開放されている。   Moreover, the geothermal heat collection system according to the invention described in claim 8 is the geothermal heat collection system according to any one of claims 1 to 4, for example, as shown in FIG. A heat source device 35 that performs at least one of heating and cooling with respect to the medium M2; an outdoor unit 36 of the heat source device 35 installed inside the underground container 15; and an inside of the underground container 15 above the outdoor unit 36 And a blower 38 having one end 11a of the internal flow path 11r connected to the discharge side; one end 12a of the external flow path 12r is an underground container having a height equal to or less than the height of the air inlet 36a formed in the outdoor unit 36 15 is open.

このように構成すると、地中の熱と熱交換した第1の熱媒体を屋外機に供給することができ、熱源機器の効率を向上させることができる。   If comprised in this way, the 1st heat medium which heat-exchanged with the underground heat can be supplied to an outdoor unit, and the efficiency of a heat source apparatus can be improved.

また、請求項9に記載の発明に係る地熱採熱システムは、例えば図7に示すように、請求項1乃至請求項3のいずれか1項に記載の地熱採熱システムにおいて、熱交換流路10に代えて、一部分が地中容器15の内部に配設されたヒートパイプ16を備えている。   A geothermal heat collection system according to the invention described in claim 9 is the geothermal heat collection system according to any one of claims 1 to 3, for example, as shown in FIG. Instead of 10, a heat pipe 16 having a part disposed inside the underground container 15 is provided.

このように構成すると、動力を用いなくても地熱を採熱することができる。特にヒートパイプ内に二相の作動媒体を封入した場合は、潜熱を利用することが可能となり、交換熱量が増大する。   If comprised in this way, geothermal heat can be collected even if it does not use motive power. In particular, when a two-phase working medium is enclosed in a heat pipe, it becomes possible to use latent heat, and the amount of exchange heat increases.

また、請求項10に記載の発明に係る地熱採熱システムは、例えば図8に示すように、請求項9に記載の地熱採熱システムにおいて、前記ヒートパイプが、外部通路19と外部通路19に収容された内部通路18とを有し、内部通路18の一端18aと外部通路19の一端19aとが地中容器15の内部で接続され、外部通路19の他端19bが閉塞され、内部通路18の他端18bが外部通路19の内部で開放されることにより循環流路を形成するように構成されている。   Moreover, the geothermal heat collection system according to the invention described in claim 10 is the geothermal heat collection system according to claim 9, for example, as shown in FIG. 8, wherein the heat pipe is connected to the external passage 19 and the external passage 19. The internal passage 18 is housed, and one end 18a of the internal passage 18 and one end 19a of the external passage 19 are connected inside the underground container 15, and the other end 19b of the external passage 19 is closed. The other end 18b is opened inside the external passage 19 so as to form a circulation channel.

このように構成すると、循環流路を形成するので、密度が異なる作動媒体が混合することがなく、混合損失が生じないため、効率よく地熱を採熱することができる。特に作動媒体を二相とした場合は、作動媒体の蒸発量が多くなれば循環力が増大して採熱効率が向上する。   If comprised in this way, since a circulation flow path is formed, since working media with different densities do not mix and mixing loss does not occur, it is possible to efficiently collect geothermal heat. In particular, when the working medium has two phases, if the amount of evaporation of the working medium increases, the circulation force increases and the heat collection efficiency improves.

本発明に係る地熱採熱システムによれば、第1の熱媒体を流す内部流路と、内部流路の外側を内部流路内の流れ方向とは逆向きに第1の熱媒体を流す外部流路とを有する熱交換流路が、水平に又は地中容器から見て先下り勾配を有するように地盤面下に配設されているので、外部流路を流れる第1の熱媒体の熱と地中の熱との間で熱交換が行われ、第1の熱媒体の密度が変化することにより第1の熱媒体が対流する。したがって、動力を用いなくても地熱を採熱することができる。   According to the geothermal heat collecting system of the present invention, the internal flow path for flowing the first heat medium, and the external flow for flowing the first heat medium on the outside of the internal flow path in the direction opposite to the flow direction in the internal flow path. Since the heat exchange flow path having the flow path is disposed horizontally or below the ground surface so as to have a downward slope when viewed from the underground container, the heat of the first heat medium flowing through the external flow path Is exchanged between the ground and the heat in the ground, and the density of the first heat medium is changed to convect the first heat medium. Therefore, geothermal heat can be collected without using power.

以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。
図1を参照して本発明の第1の実施の形態に係る地熱採熱システムの構成を説明する。図1は、本発明の第1の実施の形態に係る地熱採熱システム1を説明する系統図である。地熱採熱システム1は、地中容器としての採熱水槽15と、熱交換流路としての採熱管10と、搬送機器としての熱利用ポンプ31と、熱利用機器33とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. In each drawing, the same or corresponding members are denoted by the same or similar reference numerals, and redundant description is omitted.
With reference to FIG. 1, the structure of the geothermal heat collection system which concerns on the 1st Embodiment of this invention is demonstrated. FIG. 1 is a system diagram illustrating a geothermal heat collection system 1 according to the first embodiment of the present invention. The geothermal heat collection system 1 includes a heat collection water tank 15 as an underground container, a heat collection pipe 10 as a heat exchange channel, a heat utilization pump 31 as a transfer device, and a heat utilization device 33.

採熱水槽15は、第1の熱媒体としての水M1を貯留する水槽である。ここで、単に「水」というときは、熱の利用形態を考慮しない液体の水を意味し、熱の利用形態を考慮するときは冷水又は温水と表現することとする。採熱水槽15は、典型的にはコンクリート製の円筒形状の部材を積層して形成されている。採熱水槽15は、地盤面GLより下の地中Gに埋設されている。また、採熱水槽15は、その下部(典型的には2m程度)が帯水層Gbに埋設されていることが好ましい。「帯水層」とは、地層を構成する粒子の間隙が大きく、地下水によって飽和されている透水層である。地中Gの帯水層Gbを把握するには、例えば、地熱採熱システム1を利用する建物の基礎杭を打設する際に調査をする地盤のデータを利用してもよい。採熱水槽15は、採熱管10の敷設を考慮すると、直径3m以上の大きさを有することが好ましい。なお、採熱水槽15は、コンクリート製以外の、鋼板製、FRP製等であってもよい。   The heat collection water tank 15 is a water tank that stores water M1 as a first heat medium. Here, when simply referred to as “water”, it means liquid water that does not consider the form of heat utilization, and when considering the form of heat utilization, it is expressed as cold water or hot water. The heat collection water tank 15 is typically formed by stacking cylindrical members made of concrete. The heat collection water tank 15 is embedded in the underground G below the ground surface GL. Moreover, it is preferable that the lower part (typically about 2 m) of the heat-collecting water tank 15 is embedded in the aquifer Gb. The “aquifer” is a permeable layer that has a large gap between the particles forming the formation and is saturated with groundwater. In order to grasp the aquifer Gb of the underground G, for example, ground data to be investigated when a foundation pile of a building that uses the geothermal heat collection system 1 is placed may be used. The heat collection water tank 15 preferably has a diameter of 3 m or more in consideration of the laying of the heat collection pipe 10. Note that the heat collecting water tank 15 may be made of steel plate, FRP, or the like other than concrete.

採熱管10は、水M1と地中Gとの間で熱交換を行わせる管である。採熱管10は、内部流路11rを形成する内管11と、内管11の外側に形成される外部流路12rの外延をなす外管12とを有している。内管11は、典型的には、施工性の観点から、架橋ポリエチレン管やポリブデン管等の可とう性が大きい合成樹脂管が用いられるが、硬質塩化ビニル管や鋼管類、又は断面が円筒形以外の角パイプ等を用いてもよい。外管12は、典型的にはポリエチレンコルゲート管が用いられるが、架橋ポリエチレン管やポリブデン管、硬質塩化ビニル管、鋼管等であってもよく、形状も断面円形以外のものであってもよい。しかしながら、ポリエチレンコルゲート管が、耐食性に優れ、安価であるので好ましい。採熱管10は、内管11が外管12に収容されるように配置されて形成されている。また、内管11と外管12とは、スペーサ(不図示)等を用いて、同軸に配置されるのが好ましい。スペーサは、外部流路12r内の水M1の流れを妨げないように、できる限り抵抗の少ないものを用いるのがよい。簡易的にスペーサを得るには、反発力の大きい合成樹脂製の結束バンドを利用して、複数の結束バンドを余剰部分が四方八方の半径方向に延びるように内管11に結び、余剰部分を所定の長さに切断することにより構成してもよい。   The heat collection pipe 10 is a pipe that exchanges heat between the water M1 and the underground G. The heat collection tube 10 includes an inner tube 11 that forms an internal channel 11r, and an outer tube 12 that extends from an external channel 12r that is formed outside the inner tube 11. The inner pipe 11 is typically a synthetic resin pipe having a high flexibility such as a cross-linked polyethylene pipe or a polybuden pipe from the viewpoint of workability. However, the inner pipe 11 is a rigid polyvinyl chloride pipe, a steel pipe, or a cylindrical section. Other square pipes may be used. The outer tube 12 is typically a polyethylene corrugated tube, but may be a cross-linked polyethylene tube, a polybden tube, a hard vinyl chloride tube, a steel tube, or the like, and may have a shape other than a circular cross section. However, a polyethylene corrugated pipe is preferable because it has excellent corrosion resistance and is inexpensive. The heat collecting tube 10 is arranged and formed so that the inner tube 11 is accommodated in the outer tube 12. Further, it is preferable that the inner tube 11 and the outer tube 12 are arranged coaxially using a spacer (not shown) or the like. It is preferable to use a spacer with as little resistance as possible so as not to disturb the flow of the water M1 in the external flow path 12r. In order to easily obtain a spacer, using a binding band made of a synthetic resin having a large repulsive force, a plurality of binding bands are connected to the inner tube 11 such that the surplus portion extends in the radial direction in all directions. You may comprise by cut | disconnecting to predetermined length.

採熱管10を構成する内管11及び外管12の大きさは、内部流路11rの断面積よりも外部流路12rの断面積の方が大きくなるように決定するとよい。内部流路11rの断面積よりも外部流路12rの断面積の方が大きいと、内部流路11rの流速よりも外部流路12rの流速の方が遅くなるため、外部流路12rを流れる水M1は、内部流路11rを流れる水M1との交換熱量よりも地中Gとの交換熱量の方が多くなるからである。採熱管10の長さは、設置する敷地面積にもよるが、25〜30m程度とするとよい。短すぎると採熱量が少なくなり、長くなると施工コストが増加する。   The size of the inner tube 11 and the outer tube 12 constituting the heat collecting tube 10 may be determined so that the cross-sectional area of the external flow path 12r is larger than the cross-sectional area of the internal flow path 11r. If the cross-sectional area of the external flow path 12r is larger than the cross-sectional area of the internal flow path 11r, the flow speed of the external flow path 12r is slower than the flow speed of the internal flow path 11r. This is because M1 has a larger amount of exchange heat with the underground G than that with water M1 flowing through the internal flow path 11r. Although the length of the heat collection pipe | tube 10 is based also on the site area to install, it is good to set it as about 25-30m. If it is too short, the amount of heat collected decreases, and if it is longer, the construction cost increases.

採熱管10は、地中Gの帯水層Gbに埋設されている。採熱管10は、地下水槽15から水平に延びるように、又は地中容器15から見て先下り勾配をもって延びるように埋設されている。水平又は下り勾配をもって埋設されることにより、水M1が、密度が変化しても採熱管10の末端部分に滞留しないように構成されている。地下水槽15の下部が帯水層Gbに埋設されているときは、採熱管10は、帯水層Gb部分にある地下水槽15の壁面から水平に又は末端が帯水層Gbから外れないように下り勾配をもって敷設される。地下水槽15の下部が帯水層Gbまで到達していないときは、採熱管10は、帯水層Gbに埋設される部分が多くなるように下り勾配をもって敷設される。下り勾配の好ましい角度は水平に対して10°〜40°、より好ましくは15°〜30°である。また、採熱管10を水平に敷設するか下り勾配をもって敷設するかは、帯水層Gb内を流れる地下水の流速を考慮して決定するとよい。地下水の流速が遅い場合、採熱管10内の水M1と熱交換し対流によって上方(地下水の温度が上昇した場合)又は下方(地下水の温度が低下した場合)に移動した地下水の影響を回避するため、水平に敷設するとよい。他方、地下水の流速が速い場合、採熱管10内の水M1と熱交換した地下水が水平方向に移動することによって末端部分の交換熱量が減少するという事態を回避するため、下り勾配をもって敷設するとよい。   The heat collection tube 10 is embedded in the groundwater aquifer Gb. The heat collection pipe 10 is embedded so as to extend horizontally from the underground water tank 15 or to extend with a downward slope as viewed from the underground container 15. By being buried with a horizontal or downward slope, the water M1 is configured not to stay in the end portion of the heat collecting tube 10 even if the density changes. When the lower part of the underground water tank 15 is buried in the aquifer Gb, the heat collecting pipe 10 is arranged horizontally from the wall surface of the underground water tank 15 in the aquifer Gb part or so that the end does not come off from the aquifer Gb. It is laid with a downward slope. When the lower part of the underground water tank 15 does not reach the aquifer Gb, the heat collecting pipe 10 is laid with a downward slope so that a portion embedded in the aquifer Gb increases. A preferable angle of the downward gradient is 10 ° to 40 ° with respect to the horizontal, and more preferably 15 ° to 30 °. Whether the heat collecting pipe 10 is laid horizontally or with a downward slope may be determined in consideration of the flow rate of groundwater flowing in the aquifer Gb. When the groundwater flow rate is slow, heat exchange with the water M1 in the heat collection pipe 10 avoids the influence of groundwater that has moved upward (when the temperature of the groundwater rises) or downward (when the temperature of the groundwater falls) due to convection. Therefore, it is better to lay it horizontally. On the other hand, when the groundwater flow rate is high, the groundwater that has been heat-exchanged with the water M1 in the heat collecting pipe 10 may be laid with a downward slope in order to avoid a situation in which the amount of exchange heat at the end portion decreases due to movement in the horizontal direction. .

採熱管10は、以下のようにして帯水層Gbに敷設される。採熱水槽15の内部から、ボーリングマシンにより水平に又は下り勾配をもって、帯水層Gbに向けて外管12の外径よりもやや大きい径でボーリングする。ボーリングは、1m程度のケーシングを追加しながら採熱管10の長さ分だけ行う。採熱管10の長さ分ボーリングしたら、採熱管10の外管12を、末端を塞いだ上で掘削孔に挿入する。外管12の挿入が完了したらケーシングを抜き、帯水層Gbに残った外管12に、スペーサ(不図示)等を用いて極力同軸になるように末端が開放された内管11を挿入する。以上のように敷設された採熱管10は、内管11の内部と外管12の内部とが末端部分で連通しており、内管11の内部を流れる水M1の方向と、内管11の外側部分の外管12の内部を流れる水M1の方向とが逆になるように構成されている。   The heat collection tube 10 is laid on the aquifer Gb as follows. Boring from the inside of the heat collecting water tank 15 with a diameter slightly larger than the outer diameter of the outer pipe 12 toward the aquifer Gb in a horizontal or downward gradient by a boring machine. Boring is performed for the length of the heat collecting tube 10 while adding a casing of about 1 m. After boring for the length of the heat collecting tube 10, the outer tube 12 of the heat collecting tube 10 is inserted into the excavation hole after closing the end. When the insertion of the outer tube 12 is completed, the casing is removed, and the inner tube 11 whose end is opened so as to be as coaxial as possible is inserted into the outer tube 12 remaining in the aquifer Gb using a spacer (not shown) or the like. . In the heat collecting pipe 10 laid as described above, the inside of the inner pipe 11 and the inside of the outer pipe 12 communicate with each other at the end portion, and the direction of the water M1 flowing inside the inner pipe 11 and the inner pipe 11 It is comprised so that the direction of the water M1 which flows through the inside of the outer pipe | tube 12 of an outer side part may become reverse.

地熱採熱システム1では、採熱管10の外管12が、採熱水槽15内で鉛直上方に延び、採熱水槽15の内部に貯留された水M1の水面近くの水面下で端部12aが開放されている。他方、内管11は、採熱水槽15内部の下方で、外管12の側部を貫通して末端11aが開放されている。内管11の末端11aは、採熱水槽15内の水M1の深さの1/2よりも深い位置、好ましくは1/5よりも深い位置、より好ましくは1/7より深い位置で開放されている。他方、外管12の末端12aは、採熱水槽15内の水M1の深さの1/2よりも浅い位置、好ましくは4/5よりも浅い位置、より好ましくは6/7より浅い位置で開放されている。なお、上記深さの割合は、採熱水槽15の底部から見たものである。外管12の内管11が貫通する部分は目張りされており、採熱水槽15下部の水M1がそのまま外管12の内部に入り込まないように構成されている。また、採熱管10が貫通する部分の採熱水槽15の壁にはプレート15Aが貼り付けられており、採熱水槽15内の水M1が地中Gに流出しないように構成されている。   In the geothermal heat collecting system 1, the outer pipe 12 of the heat collecting pipe 10 extends vertically upward in the heat collecting water tank 15, and the end 12 a is below the water surface near the water surface of the water M <b> 1 stored in the heat collecting water tank 15. It is open. On the other hand, the inner tube 11 has a distal end 11a opened through the side of the outer tube 12 below the inside of the heat collecting water tank 15. The end 11a of the inner pipe 11 is opened at a position deeper than ½ of the depth of the water M1 in the heat collecting water tank 15, preferably at a position deeper than 1/5, more preferably at a position deeper than 1/7. ing. On the other hand, the end 12a of the outer pipe 12 is at a position shallower than 1/2 of the depth of the water M1 in the heat collecting water tank 15, preferably at a position shallower than 4/5, more preferably at a position shallower than 6/7. It is open. The depth ratio is viewed from the bottom of the heat collecting water tank 15. The portion of the outer tube 12 through which the inner tube 11 passes is stretched so that the water M1 in the lower part of the heat collecting water tank 15 does not enter the outer tube 12 as it is. Moreover, plate 15A is affixed on the wall of the heat collecting water tank 15 of the part which the heat collecting pipe 10 penetrates, and it is comprised so that the water M1 in the heat collecting water tank 15 may not flow out into the underground G.

採熱管10は、採熱水槽15を中心として水平投影面上に放射状に複数敷設されている。
図2に、本実施の形態における採熱管10の敷設状態が示されている。本実施の形態では、採熱管10が20本敷設されているが、これより少なくてもよく、逆に多くして30本、あるいはそれ以上敷設してもよい。つまり、意図する冷熱又は温熱量を地中Gから採熱できるように決定すればよい。複数の採熱管10は、採熱水槽15を中心に等しい角度の間隔をもって放射状に敷設されている。複数の採熱管10は、交互に異なる下り勾配をもって敷設されていてもよい。本実施の形態では、水平に対し15°の下り勾配をもつ採熱管10と、30°の下り勾配をもつ採熱管10とを交互に敷設している。このようにすると、一つの採熱管10と熱交換を行った帯水層Gb内の地下水が、隣接する採熱管10に影響を及ぼさず、交換熱量を減少させることを回避することができる。また、放射状に敷設した複数の採熱管10を、上下方向に2段、あるいはそれ以上の複数段敷設して採熱量を増やしてもよい。
A plurality of the heat collecting tubes 10 are laid radially on the horizontal projection plane with the heat collecting water tank 15 as the center.
FIG. 2 shows the laying state of the heat collecting tube 10 in the present embodiment. In the present embodiment, 20 heat collecting tubes 10 are laid, but the number may be less than this, or conversely, 30 or more may be laid. That is, what is necessary is just to determine so that the intended cold / heat amount can be heat-collected from underground G. The plurality of heat collecting tubes 10 are laid out radially at equal angular intervals around the heat collecting water tank 15. The plurality of heat collecting tubes 10 may be laid with alternating downward gradients. In the present embodiment, the heat collecting tubes 10 having a downward gradient of 15 ° with respect to the horizontal and the heat collecting tubes 10 having a downward gradient of 30 ° are laid alternately. If it does in this way, it can avoid that the groundwater in the aquifer Gb which heat-exchanged with the one heat collection pipe | tube 10 does not affect the adjacent heat collection pipe | tube 10, and reduces a heat exchange amount. Further, the heat collecting amount may be increased by laying a plurality of heat collecting tubes 10 radiated in two or more stages in the vertical direction.

再び図1に戻って、地熱採熱システム1の説明を続ける。採熱水槽15の内部には、その上方に上部ヘッダ41が、下方に下部ヘッダ42が、それぞれ配設されている。典型的には、上部ヘッダ41は外管12の開放端12aと同程度の高さに配設されており、下部ヘッダ42は内管11の開放端11aと同程度の高さに配設されている。各ヘッダ41、42には水M1が流出入する出入孔が形成されている。また、地盤面GLの上には採熱水槽15内の水M1を、熱の利用場所に搬送する熱利用ポンプ31が配設されている。また、熱の利用場所には、水冷ヒートポンプチラー等の熱源機器、エアハンドリングユニットやファンコイルユニット等の熱交換機器などの熱利用機器33が設置されている。   Returning to FIG. 1 again, the explanation of the geothermal heat collection system 1 will be continued. Inside the heat collecting water tank 15, an upper header 41 is disposed above and a lower header 42 is disposed below. Typically, the upper header 41 is disposed at the same height as the open end 12a of the outer tube 12, and the lower header 42 is disposed at the same height as the open end 11a of the inner tube 11. ing. Each header 41, 42 is formed with an access hole through which water M1 flows in and out. Further, a heat utilization pump 31 that conveys the water M1 in the heat collecting water tank 15 to a heat utilization place is disposed on the ground surface GL. Further, heat use devices 33 such as heat source devices such as a water-cooled heat pump chiller and heat exchange devices such as an air handling unit and a fan coil unit are installed at a place where heat is used.

熱利用ポンプ31の吐出側と熱利用機器33とは配管51で接続されている。熱利用ポンプ31の吸い込み側は、配管53a及び配管53bからなる配管53を介して下部ヘッダ42と接続されている。配管53aには開閉バルブ43が配設されている。配管53aと配管53bとの接続部からは、配管54が分岐して上部ヘッダ41に接続されている。配管54には開閉バルブ44が配設されている。熱利用機器33は、配管55a及び配管55bからなる配管55を介して下部ヘッダ42と接続されている。配管55aには開閉バルブ45が配設されている。配管55aと配管55bとの接続部からは、配管56が分岐して上部ヘッダ41に接続されている。配管56には開閉バルブ46が配設されている。   The discharge side of the heat use pump 31 and the heat use device 33 are connected by a pipe 51. The suction side of the heat utilization pump 31 is connected to the lower header 42 via a pipe 53 including a pipe 53a and a pipe 53b. An open / close valve 43 is disposed in the pipe 53a. A pipe 54 branches off from a connection portion between the pipe 53 a and the pipe 53 b and is connected to the upper header 41. An open / close valve 44 is disposed in the pipe 54. The heat utilization device 33 is connected to the lower header 42 via a pipe 55 including a pipe 55a and a pipe 55b. An open / close valve 45 is disposed in the pipe 55a. A pipe 56 branches off from a connection portion between the pipe 55 a and the pipe 55 b and is connected to the upper header 41. An open / close valve 46 is disposed in the pipe 56.

引き続き図1を参照して、地熱採熱システム1の作用を説明する。地熱採熱システム1は、以下に説明するように、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。採熱水槽15には、その深さの3/4程度まで水M1が貯水されている。帯水層Gbの温度は、年間を通じて約15℃程度で安定している。以下、採熱した地熱を建物の冷暖房に利用するものとして、暖房時と冷房時とに分け、それぞれについて典型的な運転状況を説明する。   With continued reference to FIG. 1, the operation of the geothermal heat collection system 1 will be described. As will be described below, the geothermal heat collection system 1 is a system that reduces the conveyance power by applying a so-called thermosiphon so that a pump that circulates the water M1 in the heat collection pipe 10 is unnecessary. The heat collecting water tank 15 stores water M1 up to about 3/4 of the depth. The temperature of the aquifer Gb is stable at about 15 ° C. throughout the year. Hereinafter, assuming that the collected geothermal heat is used for air conditioning of a building, it is divided into a heating time and a cooling time, and a typical operation situation will be described for each.

まず暖房時について説明する。暖房時は開閉バルブ43、46が閉状態、開閉バルブ44、45が開状態となっている。採熱水槽15内は温度成層が形成されており、例えば、上部に約13℃の温かい温水M1が、下部に約7℃の冷たい温水M1が貯留されている。採熱水槽15及び採熱管10内の温水M1の温度は、およそ7℃〜13℃の範囲内にある。この温度は地中Gの温度(約15℃)よりも低い。採熱管10の外管12内の温水M1は、帯水層Gbから受熱して温度が上昇する。温度が上昇した温水は密度が小さくなって上昇するから、外管12内の温水M1は採熱水槽15に向かって移動する。このように、外管12内の温水M1の密度に局所的な差が生じると、いわゆるサーモサイホン現象により対流が生じる。採熱水槽15に向かって外管12の内部を移動する温水M1は、移動過程においても帯水層Gbから受熱して温度が上昇し、さらに密度が減少する。帯水層Gbから受熱して温度が上昇した温水M1は、採熱水槽15内の端部12aから流出し、採熱水槽15の上部に貯留される。他方、外管12内の温水M1が採熱水槽15に向かって移動するのに伴い、内管11内の温水M1が外管12に連通する端部11bの方向に引き寄せられる。内管11を流れる温水は、採熱水槽15内の内管11の端部11aから導入される。   First, heating will be described. During heating, the open / close valves 43 and 46 are closed, and the open / close valves 44 and 45 are open. Temperature stratification is formed in the heat collecting water tank 15, for example, warm hot water M1 of about 13 ° C. is stored in the upper part and cold hot water M1 of about 7 ° C. is stored in the lower part. The temperature of the hot water M1 in the heat collecting water tank 15 and the heat collecting pipe 10 is in the range of approximately 7 ° C to 13 ° C. This temperature is lower than the temperature of underground G (about 15 ° C.). The hot water M1 in the outer tube 12 of the heat collecting tube 10 receives heat from the aquifer Gb and the temperature rises. Since the hot water whose temperature has risen decreases in density and rises, the hot water M1 in the outer pipe 12 moves toward the heat collecting water tank 15. Thus, when a local difference arises in the density of the hot water M1 in the outer tube | pipe 12, a convection will arise by what is called a thermosiphon phenomenon. The hot water M1 that moves inside the outer pipe 12 toward the heat collecting water tank 15 receives heat from the aquifer Gb in the moving process, and the temperature rises and the density further decreases. The hot water M <b> 1 that has received heat from the aquifer Gb and has risen in temperature flows out from the end 12 a in the hot water tank 15 and is stored in the upper part of the hot water tank 15. On the other hand, as the hot water M1 in the outer pipe 12 moves toward the heat collecting water tank 15, the hot water M1 in the inner pipe 11 is drawn toward the end portion 11b communicating with the outer pipe 12. Hot water flowing through the inner pipe 11 is introduced from the end portion 11 a of the inner pipe 11 in the heat collecting water tank 15.

このように、採熱水槽15の下部の約7℃の温水が端部11aから内管11に流入し、内部流路11r内を流れて端部11bで連通する外管12に移り、外管12内を流れつつ帯水層Gbから受熱して、採熱水槽15の上部に約13℃の温水として流出する。このとき、内部流路11rを流れる温水M1の流速の方が外部流路12rを流れる温水M1の流速よりも速い。したがって、内部流路11rを流れる温水M1と外部流路12rを流れる温水M1との間であまり熱交換が行われず、端部11aで約7℃であった温水M1は、端部11bでは約8℃となる。他方、端部11bで約8℃であった温水M1は、外部流路12r内を比較的ゆっくり流れ、帯水層Gbとの間で十分熱交換が行われて約13℃の温水M1となって採熱水槽15の上部に流出する。この間、温水M1は局所的な密度差によって対流するので、地熱を採熱するための動力を必要としない。   Thus, the hot water of about 7 ° C. at the lower part of the heat collecting water tank 15 flows into the inner pipe 11 from the end portion 11a, flows through the inner flow path 11r, and moves to the outer pipe 12 communicating with the end portion 11b. 12, it receives heat from the aquifer Gb while flowing in the water 12, and flows out as hot water of about 13 ° C. to the upper part of the heat collecting water tank 15. At this time, the flow rate of the hot water M1 flowing through the internal flow path 11r is faster than the flow rate of the hot water M1 flowing through the external flow path 12r. Accordingly, heat exchange between the hot water M1 flowing through the internal flow path 11r and the hot water M1 flowing through the external flow path 12r is not so much, and the hot water M1 that is about 7 ° C. at the end 11a is about 8 at the end 11b. It becomes ℃. On the other hand, the hot water M1 that was about 8 ° C. at the end portion 11b flows relatively slowly in the external flow path 12r, and is sufficiently exchanged with the aquifer Gb to become hot water M1 of about 13 ° C. To the upper part of the heat collecting water tank 15. During this time, since the hot water M1 is convected by a local density difference, power for collecting geothermal heat is not required.

採熱水槽15の上部の温かい温水M1は、熱利用ポンプ31が起動されることにより上部ヘッダ41の出入孔から吸い込まれ、配管54、53b、51を流れて熱利用機器機33に流入し、ここで暖房に利用され温度が低下して冷たい温水M1となる。温度が低下した冷たい温水M1は、配管55b、55aを流れて下部ヘッダ42に至り、出入孔から採熱水槽15の下部に流出される。採熱水槽15の下部の冷たい温水M1は再び端部11aから採熱管10に導入され、地熱を採熱した後に採熱水槽15に流出される。このように、循環する温水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。   The warm hot water M1 in the upper part of the heat collecting water tank 15 is sucked from the entrance / exit hole of the upper header 41 when the heat utilization pump 31 is activated, flows through the pipes 54, 53b, 51 and flows into the heat utilization apparatus 33, Here, the temperature is reduced to become cold hot water M1 used for heating. The cold hot water M1 having a lowered temperature flows through the pipes 55b and 55a, reaches the lower header 42, and flows out from the inlet / outlet hole to the lower part of the heat collecting water tank 15. The cold hot water M1 at the lower part of the heat collecting water tank 15 is again introduced into the heat collecting pipe 10 from the end portion 11a, and is discharged to the heat collecting water tank 15 after collecting the geothermal heat. Thus, geothermal heat is utilized using the circulating hot water M1 as a medium. Moreover, the utilization state of heat is monitored with a thermometer (not shown) or the like, and the heat utilization pump 31 is stopped until the heat collection water tank 15 has no available heat until it is stored.

次に冷房時について説明する。冷房時は開閉バルブ43、46が開状態、開閉バルブ44、45が閉状態となっている。採熱水槽15内は温度成層が形成されており、例えば、上部に約25℃の温かい冷水M1が、下部に約21℃の冷たい冷水M1が貯留されている。採熱水槽15及び採熱管10内の冷水M1の温度は、後述する熱ロスを考慮すると、およそ20℃〜25℃の範囲内にあることとなる。この温度は地中Gの温度(約15℃)よりも高い。採熱管10の外部流路12r内の冷水M1は、帯水層Gbへ放熱して温度が低下する。なお、以降、「冷水M1の熱を帯水層Gbへ放熱する」ような現象を「冷水M1が帯水層Gbから冷熱を受熱する」と表現する場合もある。温度が低下した冷水M1は4℃(密度が最も小さい温度)まで低下することがなく、密度が減少していって採熱水槽15から離れる方向(端部11bの方向)へ移動する。この冷水M1の移動に伴い、内管11内の冷水M1は採熱水槽15内に押し遣られる。また、外管12内の冷水M1が移動するのに伴い、採熱水槽15の上部の冷水M1が端部12aから外部流路12rに流入する。以上から分かるように、採熱管10の内部流路11rと外部流路12rとの水M1の流れる方向は、暖房時と冷房時とでは逆になる。   Next, the cooling operation will be described. During cooling, the open / close valves 43 and 46 are open, and the open / close valves 44 and 45 are closed. Temperature stratification is formed in the heat collecting water tank 15, for example, warm cold water M1 of about 25 ° C. is stored in the upper part, and cold cold water M1 of about 21 ° C. is stored in the lower part. The temperature of the cold water M1 in the heat collecting water tank 15 and the heat collecting pipe 10 is in a range of about 20 ° C. to 25 ° C. in consideration of heat loss described later. This temperature is higher than the temperature of underground G (about 15 ° C.). The cold water M1 in the external flow path 12r of the heat collecting tube 10 dissipates heat to the aquifer Gb and the temperature decreases. Hereinafter, the phenomenon of “dissipating the heat of the cold water M1 to the aquifer Gb” may be expressed as “the cold water M1 receives the cold heat from the aquifer Gb”. The cold water M1 whose temperature has decreased does not decrease to 4 ° C. (the temperature at which the density is the lowest), and moves in a direction in which the density decreases and moves away from the hot water tank 15 (the direction of the end portion 11b). Along with the movement of the cold water M1, the cold water M1 in the inner pipe 11 is pushed into the heat collecting water tank 15. Further, as the cold water M1 in the outer pipe 12 moves, the cold water M1 in the upper part of the heat collecting water tank 15 flows into the external flow path 12r from the end 12a. As can be seen from the above, the direction in which the water M1 flows through the internal flow path 11r and the external flow path 12r of the heat collecting pipe 10 is reversed between the heating time and the cooling time.

このように、採熱水槽15の上部の約25℃の冷水が端部12aから外部流路12rに流入し、外部流路12r内を流れつつ帯水層Gbから冷熱を受熱して端部11bで連通する内部流路11rに移り、内部流路11r内を採熱水槽15に向かって流れ、採熱水槽15の下部に約21℃の冷水として流出する。このとき、内部流路11rを流れる冷水M1の流速の方が外部流路12rを流れる冷水M1の流速よりも速い。したがって、内部流路11rを流れる冷水M1と外部流路12rを流れる冷水M1との間であまり熱交換が行われず、端部11bで約20℃であった冷水M1は、端部11aでは約21℃となる程度しか温度が上昇しない。他方、採熱水槽15の上部で約25℃であった冷水M1は、外部流路12r内を比較的ゆっくり流れ、帯水層Gbとの間で十分熱交換が行われて約20℃の冷水M1となって端部11bに至る。なお、内部流路11rを流れる冷水M1が、端部11bから採熱水槽15に達するまでに温度が20℃から21℃に上昇して冷熱量をロスすることになるが、温度が上昇することにより冷水M1の密度小さくなって対流が生じるという利点が生じる。このように、冷水M1は局所的な密度差によって対流するので、地熱を採熱するための動力を必要としない。   In this way, about 25 ° C. cold water in the upper part of the heat collecting water tank 15 flows into the external flow path 12r from the end 12a, receives the cold heat from the aquifer Gb while flowing in the external flow path 12r, and receives the end 11b. It moves to the internal flow path 11r that communicates with the flow path, flows in the internal flow path 11r toward the heat collecting water tank 15, and flows out to the lower part of the heat collecting water tank 15 as cold water of about 21 ° C. At this time, the flow rate of the cold water M1 flowing through the internal flow path 11r is faster than the flow rate of the cold water M1 flowing through the external flow path 12r. Therefore, heat exchange is not performed between the cold water M1 flowing through the internal flow path 11r and the cold water M1 flowing through the external flow path 12r, and the cold water M1 that has been about 20 ° C. at the end 11b is about 21 at the end 11a. The temperature rises only to the extent that it becomes ℃. On the other hand, the cold water M1 that was about 25 ° C. in the upper part of the heat collecting water tank 15 flows relatively slowly in the external flow path 12r, and is sufficiently exchanged with the aquifer Gb to be about 20 ° C. cold water. It becomes M1 and reaches the end 11b. In addition, although the temperature rises from 20 ° C. to 21 ° C. until the cold water M1 flowing through the internal flow path 11r reaches the heat collecting water tank 15 from the end portion 11b, the amount of cold heat is lost, but the temperature rises. This has the advantage that the density of the cold water M1 is reduced and convection occurs. Thus, since the cold water M1 is convected by a local density difference, it does not require power for collecting geothermal heat.

採熱水槽15の下部の冷たい冷水M1は、熱利用ポンプ31が起動されることにより下部ヘッダ42の出入孔から吸い込まれ、配管53a、53b、51を流れて熱利用機器機33に流入し、ここで冷房に利用され温度が上昇して温かい冷水M1となる。温度が上昇した温かい冷水M1は、配管55b、56を流れて上部ヘッダ41に至り、出入孔から採熱水槽15の上部に流出される。採熱水槽15の上部の温かい冷水M1は再び端部12aから採熱管10に導入され、地熱(冷熱)を採熱した後に採熱水槽15に流出される。このように、循環する冷水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。   The cold cold water M1 at the lower part of the heat collecting water tank 15 is sucked from the entrance / exit hole of the lower header 42 when the heat utilization pump 31 is activated, flows through the pipes 53a, 53b, 51 and flows into the heat utilization apparatus 33, Here, the temperature is increased for cooling and becomes warm cold water M1. The warm cold water M1 whose temperature has risen flows through the pipes 55b and 56, reaches the upper header 41, and flows out from the inlet / outlet hole to the upper portion of the heat collecting water tank 15. The warm cold water M1 in the upper part of the heat collecting water tank 15 is again introduced into the heat collecting pipe 10 from the end portion 12a, and after collecting geothermal heat (cold heat), it flows out to the heat collecting water tank 15. Thus, geothermal heat is utilized using the circulating cold water M1 as a medium. Moreover, the utilization state of heat is monitored with a thermometer (not shown) or the like, and the heat utilization pump 31 is stopped until the heat collection water tank 15 has no available heat until it is stored.

次に図3を参照して、本発明の第2の実施の形態に係る地熱採熱システムを説明する。図3は、本発明の第2の実施の形態に係る地熱採熱システム2を説明する系統図である。地熱採熱システム2の、地熱採熱システム1との相違点は、配管53a、54、55a、56及び開閉バルブ43〜46並びに上部ヘッダ41を備えておらず、採熱管10の外管12が採熱水槽15の上部の水面下で開放されずに採熱水槽15の下部の壁際で開放されており、内管11が採熱水槽15内で開放されずに配管53bに接続されている点である。その他の構成は、地熱採熱システム1の構成と同様である。   Next, with reference to FIG. 3, the geothermal heat collection system which concerns on the 2nd Embodiment of this invention is demonstrated. FIG. 3 is a system diagram illustrating the geothermal heat collection system 2 according to the second embodiment of the present invention. The difference between the geothermal heat collection system 2 and the geothermal heat collection system 1 is that the pipes 53a, 54, 55a, 56, the open / close valves 43 to 46, and the upper header 41 are not provided, and the outer pipe 12 of the heat collection pipe 10 is provided. It is not opened under the surface of the water in the upper part of the hot water tank 15 but is opened near the wall of the lower part of the hot water tank 15, and the inner pipe 11 is connected to the pipe 53b without being opened in the hot water tank 15. It is. Other configurations are the same as those of the geothermal heat collection system 1.

地熱採熱システム2では、冷房時及び暖房時共に、第1の熱媒体としての水M1の流れ方向は同じである。地熱採熱システム2では、熱利用ポンプ31が起動すると、採熱管10の内部流路11r内の水M1が熱利用ポンプ31によって吸い上げられる。これに伴い採熱水槽15の下部の壁際に設けられた外管12の端部12aから採熱水槽15内の水M1が外部流路12rへ流入する。外部流路12rに流入した水M1は内管11の端部11bの方向に流れながら、帯水層Gbから冷熱又は温熱を受熱する。受熱した水M1は、内部流路11rに流入して内部流路11r内を流れ、配管53bを経由して熱利用ポンプ31により配管51内を圧送され、熱利用機器33に至る。熱利用機器33にて帯水層Gbから採取した熱を利用し、冷熱又は温熱が奪われた水M1は配管55bを流れて下部ヘッダ42に至り、出入孔から採熱水槽15に流出される。採熱水槽15へ流出された水M1は、再び採熱管10の外部流路12rへ流入し、以後同様に採熱サイクルを循環する。このように、地熱採熱システム2は、採熱水槽15内の水M1を熱利用機器33に送水する熱利用ポンプ31が、採熱管10内に水M1を流すポンプを兼ねるからポンプを削減することができ、これに伴ってエネルギーロスを減少することができ、搬送動力を削減することができる。   In the geothermal heat collection system 2, the flow direction of the water M1 as the first heat medium is the same during both cooling and heating. In the geothermal heat collection system 2, when the heat utilization pump 31 is activated, the water M1 in the internal flow path 11 r of the heat collection pipe 10 is sucked up by the heat utilization pump 31. Along with this, water M1 in the heat collecting water tank 15 flows into the external flow path 12r from the end 12a of the outer tube 12 provided at the lower wall of the heat collecting water tank 15. The water M1 flowing into the external flow path 12r receives cold or warm heat from the aquifer Gb while flowing in the direction of the end portion 11b of the inner pipe 11. The received water M1 flows into the internal flow path 11r, flows through the internal flow path 11r, is pumped through the pipe 51 by the heat use pump 31 via the pipe 53b, and reaches the heat use device 33. The water M1 from which the heat or heat is taken by using the heat collected from the aquifer Gb by the heat utilization device 33 flows through the pipe 55b to the lower header 42 and flows out from the inlet / outlet hole to the heat collecting water tank 15. . The water M1 that has flowed out into the heat collecting water tank 15 flows into the external flow path 12r of the heat collecting pipe 10 again, and thereafter circulates through the heat collecting cycle in the same manner. Thus, the geothermal heat collection system 2 reduces the number of pumps because the heat utilization pump 31 that supplies the water M1 in the heat collection water tank 15 to the heat utilization device 33 also serves as a pump that causes the water M1 to flow into the heat collection pipe 10. As a result, energy loss can be reduced, and conveyance power can be reduced.

次に図4を参照して、本発明の第3の実施の形態に係る地熱採熱システムを説明する。図4は、本発明の第3の実施の形態に係る地熱採熱システム3を説明する系統図である。地熱採熱システム3では、第1の熱媒体として空気M1を用いている。採熱水槽15及び採熱管10の構成は、地熱採熱システム1における採熱水槽及び採熱管の構成と同様である。地熱採熱システム3は、地熱を採熱した空気M1を熱利用機器33へと送気する熱利用ファン32を採熱水槽15内に備えている。熱利用ファン32の吸込側は採熱管10の外管と接続されている。採熱管10の内管11は端部11aが採熱水槽15内で開放されている。熱利用ファン32の吐出側は、ダクト59を介して熱利用機器33と接続されている。地熱採熱システム3における熱利用機器33として、空冷ヒートポンプパッケージ型空調機や空気熱源ヒートポンプチラーが用いられる。また、採熱水槽15は外気導入ダクト60を介して地盤面GL上の大気と連通しており、採熱水槽15内に外気を導入することができるように構成されている。   Next, with reference to FIG. 4, a geothermal heat collection system according to the third embodiment of the present invention will be described. FIG. 4 is a system diagram illustrating a geothermal heat collection system 3 according to the third embodiment of the present invention. In the geothermal heat collection system 3, air M1 is used as the first heat medium. The configurations of the heat collecting water tank 15 and the heat collecting pipe 10 are the same as the structures of the heat collecting water tank and the heat collecting pipe in the geothermal heat collecting system 1. The geothermal heat collection system 3 includes a heat utilization fan 32 in the heat collection water tank 15 that sends air M <b> 1 obtained from geothermal heat to the heat utilization device 33. The suction side of the heat utilization fan 32 is connected to the outer tube of the heat collecting tube 10. An end 11 a of the inner pipe 11 of the heat collecting pipe 10 is opened in the heat collecting water tank 15. The discharge side of the heat utilization fan 32 is connected to the heat utilization device 33 through a duct 59. As the heat utilization device 33 in the geothermal heat collection system 3, an air-cooled heat pump package type air conditioner or an air heat source heat pump chiller is used. Further, the heat collecting water tank 15 communicates with the atmosphere on the ground surface GL via the outside air introduction duct 60 and is configured so that the outside air can be introduced into the heat collecting water tank 15.

地熱採熱システム3は、熱利用ファン32が起動すると、採熱管10の外部流路12r内の空気M1が熱利用ファン32に吸い込まれる。これに伴い内部流路11r内の空気M1が外部流路12rと連通している端部11bに引き寄せられ、さらに内部流路11rには外気導入ダクト60を通じて採熱水槽15内に取り入れられた外気が端部11aから導入される。熱利用ファン32に吸い込まれた地熱を採熱した空気M1は、ダクト59を流れて熱利用機器33へと送気され、熱が利用された後に大気に放出される。地熱採熱システム3は、採熱管10内に空気M1を流すファンを削減することができ、これに伴ってエネルギーロスを減少することができ、搬送動力を削減することができる。なお、地熱採熱システム3は、熱利用機器33を設けずに、地熱を採熱した空気M1を熱利用ファン32で直接熱の利用場所へと搬送し、例えば空調の換気や農業用ビニールハウス等の熱源として単独で利用してもよい。   In the geothermal heat collection system 3, when the heat utilization fan 32 is activated, the air M <b> 1 in the external flow path 12 r of the heat collection pipe 10 is sucked into the heat utilization fan 32. Accordingly, the air M1 in the internal flow path 11r is attracted to the end portion 11b that communicates with the external flow path 12r, and the outside air taken into the heat collecting water tank 15 through the external air introduction duct 60 into the internal flow path 11r. Is introduced from the end 11a. The air M1 that has collected the geothermal heat sucked into the heat utilization fan 32 flows through the duct 59 and is sent to the heat utilization device 33, and is released to the atmosphere after the heat is utilized. The geothermal heat collection system 3 can reduce the number of fans that cause the air M1 to flow into the heat collection pipe 10, and accordingly, can reduce energy loss and reduce conveyance power. In addition, the geothermal heat collection system 3 conveys the air M1 obtained by collecting geothermal heat directly to the heat utilization place by the heat utilization fan 32 without providing the heat utilization device 33, for example, air conditioning ventilation or agricultural vinyl house. It may be used alone as a heat source.

次に図5を参照して、本発明の第4の実施の形態に係る地熱採熱システムを説明する。図5は、本発明の第4の実施の形態に係る地熱採熱システム4を説明する系統図である。地熱採熱システム4では、第1の熱媒体として水M1を用いている。地熱採熱システム4における採熱水槽15及び採熱管10の構成は、地熱採熱システム1における採熱水槽及び採熱管の構成と同様である。地熱採熱システム4では、地盤面GLの上に水熱源のヒートポンプチラー34が設置されている。採熱管10の内管11及び外管12は、採熱水槽15内で複数の同種の管と連合した後、それぞれヒートポンプチラー34に接続されている。地熱採熱システム4では水M1が直接採熱水槽15に貯められていないが、水M1を流す採熱管10が採熱水槽15に収容されているので、採熱水槽15は水M1を収容していることとなる。ヒートポンプチラー34の2次側には、第2の熱媒体としての冷媒ガスM2が流れる循環流路52が配設されており、循環流路52には熱利用ポンプ31及び熱利用機器33がこの順番で配設されている。   Next, with reference to FIG. 5, the geothermal heat collection system which concerns on the 4th Embodiment of this invention is demonstrated. FIG. 5 is a system diagram illustrating a geothermal heat collection system 4 according to the fourth embodiment of the present invention. In the geothermal heat collection system 4, water M1 is used as the first heat medium. The configurations of the heat collecting water tank 15 and the heat collecting pipe 10 in the geothermal heat collecting system 4 are the same as the structures of the heat collecting water tank and the heat collecting pipe in the geothermal heat collecting system 1. In the geothermal heat collection system 4, a heat pump chiller 34 as a water heat source is installed on the ground surface GL. The inner tube 11 and the outer tube 12 of the heat collecting tube 10 are connected to a plurality of the same type of tubes in the heat collecting water tank 15 and then connected to the heat pump chiller 34, respectively. In the geothermal heat collecting system 4, the water M1 is not directly stored in the heat collecting water tank 15. However, since the heat collecting pipe 10 for flowing the water M1 is accommodated in the heat collecting water tank 15, the heat collecting water tank 15 contains the water M1. Will be. On the secondary side of the heat pump chiller 34, a circulation passage 52 through which a refrigerant gas M2 as a second heat medium flows is disposed, and the heat utilization pump 31 and the heat utilization device 33 are provided in the circulation passage 52. Arranged in order.

地熱採熱システム4では、水M1が、採熱管10とヒートポンプチラー34との間をサーモサイホンによる対流で循環する。冬季は採熱管10の外部流路12r内の温水M1が帯水層Gbと熱交換して温度が上昇し、密度が減少して上方へと移動していく。地熱を採熱して上昇した温水M1はヒートポンプチラー34に導入され、冷媒ガスM2に熱を与えた後導出される。ヒートポンプチラー34で熱を与え温度が低下して導出された温水M1は、採熱管10の内部流路11rに導入され、内部流路11r内の温水M1を押し出すようにして循環させる。ヒートポンプチラー34で温水M1から受熱した冷媒ガスM2は熱利用機器33に導入され、ここで熱が利用される。他方、夏季は採熱管10の外部流路12r内の冷水M1が帯水層Gbと熱交換して温度が低下し、密度が増加して下方へと移動していく。冷熱を受熱して下方に移動した冷水M1は、内部流路11r内の冷水M1を押し出すように流れて循環し、ヒートポンプチラー34に導入され、冷媒ガスM2に冷熱を与えた後導出される。ヒートポンプチラー34で冷熱を与え温度が上昇して導出された冷水M1は、採熱管10の外部流路12rの冷水M1が密度差により下方に移動するのに伴って下方に引き寄せられ、再び外部流路12r内に導入されて帯水層Gbから冷熱を受熱する。ヒートポンプチラー34で冷水M1から冷熱を受熱した冷媒ガスM2は熱利用機器33に導入され、ここで冷熱が利用される。地熱採熱システム4は、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。   In the geothermal heat collection system 4, the water M1 circulates between the heat collection pipe 10 and the heat pump chiller 34 by convection using a thermosiphon. In winter, the hot water M1 in the external flow path 12r of the heat collecting pipe 10 exchanges heat with the aquifer Gb, the temperature rises, the density decreases, and moves upward. The hot water M1 that has risen as a result of collecting geothermal heat is introduced into the heat pump chiller 34, and is supplied after heat is applied to the refrigerant gas M2. The hot water M1 derived by applying heat by the heat pump chiller 34 and decreasing in temperature is introduced into the internal flow path 11r of the heat collecting pipe 10, and circulates so as to push out the hot water M1 in the internal flow path 11r. The refrigerant gas M2 received from the hot water M1 by the heat pump chiller 34 is introduced into the heat utilization device 33, where heat is utilized. On the other hand, in the summer, the cold water M1 in the external flow path 12r of the heat collecting tube 10 exchanges heat with the aquifer Gb, the temperature decreases, the density increases, and moves downward. The cold water M1 that has received the cold and moved downward flows and circulates so as to push out the cold water M1 in the internal flow path 11r, is introduced into the heat pump chiller 34, and is supplied after the cold is given to the refrigerant gas M2. The chilled water M1 derived from the heat pump chiller 34 that has been supplied with cold and rises in temperature is drawn downward as the chilled water M1 in the external flow path 12r of the heat collecting pipe 10 moves downward due to the density difference. It is introduced into the passage 12r and receives cold from the aquifer Gb. The refrigerant gas M2 that has received the cold heat from the cold water M1 by the heat pump chiller 34 is introduced into the heat utilization device 33, where the cold heat is utilized. The geothermal heat collection system 4 is a system that reduces the conveyance power by applying a so-called thermosiphon, eliminating the need for a pump for circulating the water M1 in the heat collection pipe 10.

次に図6を参照して、本発明の第5の実施の形態に係る地熱採熱システムを説明する。図6は、本発明の第5の実施の形態に係る地熱採熱システム5を説明する系統図である。地熱採熱システム5では、第1の熱媒体として空気M1を用いている。採熱水槽15及び採熱管10の構成は、地熱採熱システム1における採熱水槽及び採熱管の構成と同様である。地熱採熱システム5は、地盤面GLの上に熱源機器としての空気熱源のヒートポンプチラー35が設置され、採熱水槽15内にヒートポンプチラー35の屋外機36が配置されている。また、採熱水槽15内の屋外機36の上部には送風機38が設けられている。送風機38の吐出側は採熱管10の内管11に接続されている。外管12の端部12aは、採熱水槽15内に設置された屋外機36の空気導入口36aの近傍で開放されている。ヒートポンプチラー35の2次側には、第2の熱媒体としての冷媒ガスM2が流れる循環流路52が配設されており、循環流路52には熱利用ポンプ31及び熱利用機器33がこの順番で配設されている。   Next, a geothermal heat collection system according to the fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a system diagram illustrating a geothermal heat collection system 5 according to the fifth embodiment of the present invention. In the geothermal heat collection system 5, air M1 is used as the first heat medium. The configurations of the heat collecting water tank 15 and the heat collecting pipe 10 are the same as the structures of the heat collecting water tank and the heat collecting pipe in the geothermal heat collecting system 1. In the geothermal heat collection system 5, an air heat source heat pump chiller 35 as a heat source device is installed on the ground surface GL, and an outdoor unit 36 of the heat pump chiller 35 is arranged in the heat collection water tank 15. In addition, a blower 38 is provided above the outdoor unit 36 in the heat collecting water tank 15. The discharge side of the blower 38 is connected to the inner tube 11 of the heat collecting tube 10. The end 12 a of the outer tube 12 is opened in the vicinity of the air inlet 36 a of the outdoor unit 36 installed in the heat collecting water tank 15. On the secondary side of the heat pump chiller 35, a circulation passage 52 through which a refrigerant gas M2 as a second heat medium flows is disposed, and the heat utilization pump 31 and the heat utilization device 33 are provided in the circulation passage 52. Arranged in order.

地熱採熱システム5は、送風機38が起動すると、採熱管10の内部流路11r内の空気M1が端部11bに向かって移動し、端部11bで折り返して外部流路12r内に流入する。外部流路12rを流れる空気M1は、帯水層Gbの熱と熱交換して冷熱又は温熱を受熱して採熱水槽15の下部に吹き出される。地熱を採熱した空気M1は空気導入口36aから屋外機36に導入され、屋外機36の熱源としてヒートポンプチラー35を運転するのに利用される。屋外機36で熱交換した空気M1は屋外機36の頂部から排出され、その上部に配設された送風機38に吸い込まれて、再び内部流路11rに向けて吐出される。運転されたヒートポンプチラー35は、冷水又は温水を造り、これを熱利用ポンプ31で循環流路52内を循環させて、冷水又は温水が保有する冷熱又は温熱が熱利用機器33で利用される。地熱採熱システム5は、屋外機36に地熱を採熱した空気M1を供給することにより空気熱源のヒートポンプチラー35の効率を向上させることができる。   In the geothermal heat collection system 5, when the blower 38 is activated, the air M1 in the internal flow path 11r of the heat collection pipe 10 moves toward the end portion 11b, turns back at the end portion 11b, and flows into the external flow path 12r. The air M1 flowing through the external flow path 12r exchanges heat with the heat of the aquifer Gb, receives cold or warm heat, and is blown out to the lower part of the heat collecting water tank 15. The air M1 obtained by collecting geothermal heat is introduced into the outdoor unit 36 from the air inlet 36a, and is used to operate the heat pump chiller 35 as a heat source of the outdoor unit 36. The air M1 heat-exchanged by the outdoor unit 36 is discharged from the top of the outdoor unit 36, is sucked into the blower 38 disposed on the top, and is discharged again toward the internal flow path 11r. The operated heat pump chiller 35 produces cold water or hot water, and circulates the inside of the circulation flow path 52 with the heat utilization pump 31, and the cold energy or the heat stored in the cold water or the hot water is used in the heat utilization device 33. The geothermal heat collection system 5 can improve the efficiency of the heat pump chiller 35 as an air heat source by supplying the outdoor unit 36 with air M1 obtained by collecting geothermal heat.

次に図7を参照して、本発明の第6の実施の形態に係る地熱採熱システムを説明する。図7は、本発明の第6の実施の形態に係る地熱採熱システム6を説明する系統図である。地熱採熱システム6は、地熱採熱システム1における採熱管10に代えてヒートパイプ16を設けている。また、地熱採熱システム6では、地熱採熱システム1で備えていた開閉バルブ43〜46、及び配管53a、55a、56を備えていない。これらの相違以外は、地熱採熱システム1と同様に構成されている。ヒートパイプ16は、いわゆる密閉形サーモサイホンであり、内部には作動媒体Mwが封入されている。作動媒体Mwは、典型的には水等の単相の液体が用いられる。また、作動媒体Mwとして、例えば水とエタノールを混合した二成分混合の二相の流体を用いてもよい。作動媒体Mwを、単相の液体とすると構成が単純になり、二相の流体とすると蒸発潜熱の利用が可能となって地熱の採熱量を増加することができる。ヒートパイプ16は、帯水層Gbに埋設された部分から採熱水槽15の下部の壁を貫通し、採熱水槽15の内部で上方に延びている。その上方に延びている部分には、熱交換を促進するためのフィン16fが設けられている。   Next, a geothermal heat collection system according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a system diagram illustrating a geothermal heat collection system 6 according to the sixth embodiment of the present invention. The geothermal heat collection system 6 is provided with a heat pipe 16 instead of the heat collection pipe 10 in the geothermal heat collection system 1. Further, the geothermal heat collection system 6 does not include the on-off valves 43 to 46 and the pipes 53a, 55a, 56 provided in the geothermal heat collection system 1. Except for these differences, the configuration is the same as the geothermal heat collection system 1. The heat pipe 16 is a so-called hermetic thermosiphon, in which a working medium Mw is enclosed. As the working medium Mw, a single-phase liquid such as water is typically used. Further, as the working medium Mw, for example, a two-phase mixed fluid in which water and ethanol are mixed may be used. If the working medium Mw is a single-phase liquid, the configuration is simple. If the working medium Mw is a two-phase fluid, the latent heat of vaporization can be used, and the amount of geothermal heat collected can be increased. The heat pipe 16 penetrates the lower wall of the heat collecting water tank 15 from the portion embedded in the aquifer Gb and extends upward in the heat collecting water tank 15. A fin 16f for promoting heat exchange is provided in a portion extending upward.

上記のように構成された地熱採熱システム6は、専ら暖房に用いられる。地熱採熱システム6の運転状況は以下のようになる。帯水層Gbに埋設された部分のヒートパイプ16内の作動媒体Mwは、帯水層Gbから受熱して温度が上昇し、密度が小さくなる。密度が小さくなった作動媒体Mwは、ヒートパイプ16内を上昇し、相対的に密度が大きくなった作動媒体Mwが下降してくる。このようにしてヒートパイプ16内に自然対流現象が発生する。密度が小さくなってヒートパイプ16内を上昇した作動媒体Mwは、採熱水槽15内で第1の熱媒体としての温水M1との間で熱交換を行う。採熱水槽15下部の約7℃の温水M1は、作動媒体Mwから受熱して密度が小さくなり、採熱水槽15の上部へと移動していく。採熱水槽15上部の温水M1は、約13℃となっている。   The geothermal heat collection system 6 configured as described above is exclusively used for heating. The operation status of the geothermal heat collection system 6 is as follows. The working medium Mw in the portion of the heat pipe 16 embedded in the aquifer Gb receives heat from the aquifer Gb, increases in temperature, and decreases in density. The working medium Mw having a reduced density moves up in the heat pipe 16, and the working medium Mw having a relatively higher density moves down. In this way, a natural convection phenomenon occurs in the heat pipe 16. The working medium Mw whose density has decreased and has risen in the heat pipe 16 exchanges heat with the hot water M1 as the first heat medium in the heat collecting water tank 15. The hot water M <b> 1 having a temperature of about 7 ° C. at the lower part of the heat collecting water tank 15 receives heat from the working medium Mw, decreases in density, and moves to the upper part of the heat collecting water tank 15. The hot water M1 in the upper part of the heat collecting water tank 15 is about 13 ° C.

採熱水槽15の上部の温かい温水M1は、熱利用ポンプ31が起動されることにより上部ヘッダ41の出入孔から吸い込まれ、配管53b、51を流れて熱利用機器機33に流入し、ここで暖房に利用され温度が低下して冷たい温水M1となる。温度が低下した冷たい温水M1は、配管55bを流れて下部ヘッダ42に至り、出入孔から採熱水槽15の下部に流出される。採熱水槽15の下部の冷たい温水M1は再びヒートパイプ16内の作動媒体Mwとの間で熱交換を行い、密度が小さくなって採熱水槽15の上部へと移動していく。このように、循環する温水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。以上のように、地熱採熱システム6は、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。   The warm hot water M1 in the upper part of the heat collecting water tank 15 is sucked from the inlet / outlet hole of the upper header 41 when the heat utilization pump 31 is activated, flows through the pipes 53b and 51, and flows into the heat utilization apparatus 33, where It is used for heating and the temperature is lowered to become cold hot water M1. The cold hot water M1 having a lowered temperature flows through the pipe 55b to the lower header 42 and flows out from the inlet / outlet hole to the lower portion of the heat collecting water tank 15. The cold hot water M1 in the lower part of the heat collecting water tank 15 exchanges heat with the working medium Mw in the heat pipe 16 again, and the density decreases and moves to the upper part of the heat collecting water tank 15. Thus, geothermal heat is utilized using the circulating hot water M1 as a medium. Moreover, the utilization state of heat is monitored with a thermometer (not shown) or the like, and the heat utilization pump 31 is stopped until the heat collection water tank 15 has no available heat until it is stored. As described above, the geothermal heat collection system 6 is a system that reduces the conveyance power by applying a so-called thermosiphon so that a pump for circulating the water M1 in the heat collection pipe 10 is not necessary.

次に図8を参照して、本発明の第7の実施の形態に係る地熱採熱システムを説明する。図8は、本発明の第7の実施の形態に係る地熱採熱システム7を説明する系統図である。地熱採熱システム7は、地熱採熱システム1における採熱管10を、帯水層Gbに埋設された部分が二重管で形成されて採熱水槽15内の部分がループ状に形成されたヒートパイプ17に置換したものであり、作動媒体Mwのヒートパイプ17内での循環を可能にして冷暖房のいずれにも利用できるように構成したものである。作動媒体Mwは、典型的には水等の単相の液体が用いられる。また、暖房時においては、作動媒体Mwとして、例えば水とエタノールを混合した二成分混合の二相の流体を用いてもよい。作動媒体Mwを、単相の液体とすると構成が単純になり、二相の流体とすると蒸発潜熱の利用が可能となって地熱の採熱量を増やすことができる。ただし、作動媒体を二相の流体とした場合、上述した地熱採熱システム7の構成では、作動媒体Mwを帯水層Gb内で蒸発させ、採熱水槽15内で凝縮させる必要があるため、冷熱を採熱する冷房に利用することはできない。ヒートパイプ17の帯水層Gbに埋設された部分は、地熱採熱システム1で用いられる採熱管10と同様の構成を有している。すなわち、ヒートパイプ17は、採熱管10の内部流路11rに相当する、内管11で形成された内部通路18と、外部流路12rに相当する、内管11の外側に形成された外部通路19とを有し、内部通路18の端部18bがヒートパイプ17の帯水層Gb側の末端付近で開放されている。また、外部通路19の末端19bは閉塞されている。他方、内部通路18及び外部通路19は、採熱水槽15内で、共に上方へ延びており、内部通路18の端部18aと外部通路19の端部19aとは接続管20を介して接続されている。接続管20には、熱交換を促進するためのフィン20fが設けられている。また、採熱水槽15内の内部通路18の上方へと角度を変える部分には、液溜部18dが形成されている。地熱採熱システム7は、上記の相違以外は、地熱採熱システム1と同様に構成されている。   Next, a geothermal heat collection system according to the seventh embodiment of the present invention will be described with reference to FIG. FIG. 8 is a system diagram illustrating a geothermal heat collection system 7 according to the seventh embodiment of the present invention. The geothermal heat collection system 7 is a heat in which the heat pipe 10 in the geothermal heat collection system 1 is formed by a double pipe in a portion embedded in the aquifer Gb and a portion in the heat collection water tank 15 is formed in a loop shape. The pipe 17 is replaced, and the working medium Mw can be circulated in the heat pipe 17 to be used for both cooling and heating. As the working medium Mw, a single-phase liquid such as water is typically used. Further, at the time of heating, as the working medium Mw, for example, a two-phase mixed fluid in which water and ethanol are mixed may be used. If the working medium Mw is a single-phase liquid, the configuration is simple. If the working medium Mw is a two-phase fluid, the latent heat of evaporation can be used, and the amount of heat collected from the geothermal heat can be increased. However, when the working medium is a two-phase fluid, it is necessary to evaporate the working medium Mw in the aquifer Gb and condense it in the collecting water tank 15 in the configuration of the geothermal heat collecting system 7 described above. It cannot be used for cooling to collect cold heat. The portion embedded in the aquifer Gb of the heat pipe 17 has the same configuration as the heat collection pipe 10 used in the geothermal heat collection system 1. That is, the heat pipe 17 includes an internal passage 18 formed by the inner tube 11 corresponding to the internal flow passage 11r of the heat collecting tube 10, and an external passage formed outside the inner tube 11 corresponding to the external flow passage 12r. 19 and the end 18b of the internal passage 18 is open near the end of the heat pipe 17 on the aquifer Gb side. Further, the end 19b of the external passage 19 is closed. On the other hand, the internal passage 18 and the external passage 19 both extend upward in the heat collecting water tank 15, and the end portion 18 a of the internal passage 18 and the end portion 19 a of the external passage 19 are connected via a connecting pipe 20. ing. The connecting pipe 20 is provided with fins 20f for promoting heat exchange. Further, a liquid reservoir 18d is formed at a portion where the angle is changed upward of the internal passage 18 in the heat collecting water tank 15. The geothermal heat collection system 7 is configured in the same manner as the geothermal heat collection system 1 except for the above differences.

上記のように構成された地熱採熱システム7について、まず暖房時の運転状況を説明する。暖房時は開閉バルブ43、46が閉状態、開閉バルブ44、45が開状態となっている。ヒートパイプ17の外部通路19内の作動媒体Mwは、帯水層Gbから受熱して温度が上昇し、密度が小さくなる。密度が小さくなった作動媒体Mwは、外部通路19内を上昇し、これに伴って相対的に密度が大きくなった作動媒体Mwが接続管20及び連通している内部通路18を下降する。このようにしてヒートパイプ17内に自然対流現象が発生し、作動媒体Mwが外部通路19、接続管20、内部通路18内を循環する。密度が小さくなって接続管20内に移動した作動媒体Mwは、採熱水槽15内で第1の熱媒体としての温水M1との間で熱交換を行う。採熱水槽15下部の約7℃の温水M1は、作動媒体Mwから受熱して密度が小さくなり、採熱水槽15の上部へと移動していく。採熱水槽15上部の温水M1は、約13℃となっている。   About the geothermal heat collection system 7 comprised as mentioned above, the driving | running state at the time of heating is demonstrated first. During heating, the open / close valves 43 and 46 are closed, and the open / close valves 44 and 45 are open. The working medium Mw in the external passage 19 of the heat pipe 17 receives heat from the aquifer Gb, increases in temperature, and decreases in density. The working medium Mw having a reduced density moves up in the external passage 19, and accordingly, the working medium Mw having a relatively higher density moves down the internal passage 18 that communicates with the connection pipe 20. In this way, a natural convection phenomenon occurs in the heat pipe 17, and the working medium Mw circulates in the external passage 19, the connecting pipe 20, and the internal passage 18. The working medium Mw having a reduced density and moved into the connection pipe 20 exchanges heat with the hot water M1 as the first heat medium in the heat collecting water tank 15. The hot water M <b> 1 having a temperature of about 7 ° C. at the lower part of the heat collecting water tank 15 receives heat from the working medium Mw, decreases in density, and moves to the upper part of the heat collecting water tank 15. The hot water M1 in the upper part of the heat collecting water tank 15 is about 13 ° C.

採熱水槽15の上部の温かい温水M1は、熱利用ポンプ31が起動されることにより上部ヘッダ41の出入孔から吸い込まれ、配管54、53b、51を流れて熱利用機器機33に流入し、ここで暖房に利用され温度が低下して冷たい温水M1となる。温度が低下した冷たい温水M1は、配管55b、55aを流れて下部ヘッダ42に至り、出入孔から採熱水槽15の下部に流出される。採熱水槽15の下部の冷たい温水M1は再びヒートパイプ17の接続管20内の作動媒体Mwとの間で熱交換を行い、密度が小さくなって採熱水槽15の上部へと移動していく。このように、循環する温水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。   The warm hot water M1 in the upper part of the heat collecting water tank 15 is sucked from the entrance / exit hole of the upper header 41 when the heat utilization pump 31 is activated, flows through the pipes 54, 53b, 51 and flows into the heat utilization apparatus 33, Here, the temperature is reduced to become cold hot water M1 used for heating. The cold hot water M1 having a lowered temperature flows through the pipes 55b and 55a, reaches the lower header 42, and flows out from the inlet / outlet hole to the lower part of the heat collecting water tank 15. The cold hot water M1 in the lower part of the heat collecting water tank 15 exchanges heat with the working medium Mw in the connecting pipe 20 of the heat pipe 17 again, and the density decreases and moves to the upper part of the heat collecting water tank 15. . Thus, geothermal heat is utilized using the circulating hot water M1 as a medium. Moreover, the utilization state of heat is monitored with a thermometer (not shown) or the like, and the heat utilization pump 31 is stopped until the heat collection water tank 15 has no available heat until it is stored.

次に冷房時の運転状況について説明する。冷房時は開閉バルブ43、46が開状態、開閉バルブ44、45が閉状態となっている。ヒートパイプ17の外部通路19内の作動媒体Mwは、帯水層Gbから冷熱を受熱して温度が低下し、密度が大きくなる。密度が大きくなった作動媒体Mwは、外部通路19内を下降し、これに伴って内部通路18内の作動媒体Mwを上方へ押し遣ると共に、相対的に密度が小さくなった作動媒体Mwが内部通路18内を接続管20の方に向かって上昇する。このようにしてヒートパイプ17内に自然対流現象が発生し、作動媒体Mwが外部通路19、内部通路18、接続管20内を循環する。密度が小さくなって接続管20内に移動した作動媒体Mwは、採熱水槽15内で第1の熱媒体としての冷水M1との間で熱交換を行う。採熱水槽15内は、冷水M1が作動媒体Mwとの間で熱交換を行うことにより、下部に約20℃の冷水が、上部に約25℃の冷水が貯留されている。   Next, the operation status during cooling will be described. During cooling, the open / close valves 43 and 46 are open, and the open / close valves 44 and 45 are closed. The working medium Mw in the external passage 19 of the heat pipe 17 receives cold from the aquifer Gb, decreases in temperature, and increases in density. The working medium Mw having a high density descends in the external passage 19 and pushes the working medium Mw in the internal passage 18 upward along with this, while the working medium Mw having a relatively low density is inside. It rises in the passage 18 toward the connecting pipe 20. In this way, a natural convection phenomenon occurs in the heat pipe 17, and the working medium Mw circulates in the external passage 19, the internal passage 18, and the connection pipe 20. The working medium Mw having a reduced density and moved into the connecting pipe 20 exchanges heat with the cold water M1 as the first heat medium in the heat collecting water tank 15. In the hot water collection tank 15, the cold water M1 exchanges heat with the working medium Mw, whereby cold water of about 20 ° C. is stored in the lower part and cold water of about 25 ° C. is stored in the upper part.

採熱水槽15の下部の冷たい冷水M1は、熱利用ポンプ31が起動されることにより下部ヘッダ42の出入孔から吸い込まれ、配管53a、53b、51を流れて熱利用機器機33に流入し、ここで冷房に利用され温度が上昇して温かい冷水M1となる。温度が上昇した温かい冷水M1は、配管55b、56を流れて上部ヘッダ41に至り、出入孔から採熱水槽15の上部に流出される。採熱水槽15内は、下部から冷たい冷水M1が熱利用機器33に送水され、上部に温かい冷水M1が還されるので、上部から下部への冷水M1の移動が生じる。この移動により、ヒートパイプ17の接続管20付近に温度が高い冷水M1が流れ込む。接続管20付近に流れ込んだ温度の高い冷水M1は、作動媒体Mwとの間で熱交換が行われて冷却され、冷たい冷水M1となって熱利用機器33に送水される。このように、循環する冷水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。
以上のように、地熱採熱システム7は、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。
The cold cold water M1 at the lower part of the heat collecting water tank 15 is sucked from the entrance / exit hole of the lower header 42 when the heat utilization pump 31 is activated, flows through the pipes 53a, 53b, 51 and flows into the heat utilization apparatus 33, Here, the temperature is increased for cooling and becomes warm cold water M1. The warm cold water M1 whose temperature has risen flows through the pipes 55b and 56, reaches the upper header 41, and flows out from the inlet / outlet hole to the upper portion of the heat collecting water tank 15. In the heat collecting water tank 15, cold cold water M1 is sent from the lower part to the heat utilization device 33, and warm cold water M1 is returned to the upper part, so that the cold water M1 moves from the upper part to the lower part. By this movement, the cold water M1 having a high temperature flows near the connection pipe 20 of the heat pipe 17. The cold water M1 having a high temperature flowing into the vicinity of the connecting pipe 20 is cooled by exchanging heat with the working medium Mw, and is sent to the heat utilization device 33 as the cold cold water M1. Thus, geothermal heat is utilized using the circulating cold water M1 as a medium. Moreover, the utilization status of heat is monitored with a thermometer (not shown) or the like, and when there is no available heat in the heat collecting water tank 15, the heat utilization pump 31 is stopped until the heat is stored.
As described above, the geothermal heat collection system 7 is a system that reduces the conveyance power by applying a so-called thermosiphon so that a pump for circulating the water M1 in the heat collection pipe 10 is unnecessary.

次に図9を参照して、地熱採熱システム1〜7に付加して採熱効率を向上させる地熱採熱システムの変形例(採熱効率向上システム9)について説明する。図9は地熱採熱システム1〜7の採熱効率を向上させるシステム9の系統図である。採熱効率向上システム9は、既述の地熱採熱システム1〜7において、揚水ポンプ22と、揚水流路としての揚水管21と、散水流路としての散水管25とが付加されている。   Next, with reference to FIG. 9, the modification (heat collection efficiency improvement system 9) of the geothermal heat collection system which adds to the geothermal heat collection systems 1-7 and improves heat collection efficiency is demonstrated. FIG. 9 is a system diagram of the system 9 for improving the heat collection efficiency of the geothermal heat collection systems 1 to 7. The heat collection efficiency improvement system 9 includes a pumping pump 22, a pumping pipe 21 as a pumping flow path, and a water spraying pipe 25 as a sprinkling flow path in the above-described geothermal heat collecting systems 1 to 7.

揚水ポンプ22は、採熱水槽15の底部のほぼ中心から鉛直下方に掘削された揚水井戸62の底部に配設されている。揚水井戸62は、採熱水槽15の底部から約7m以内の深さであり、揚水ポンプ22が帯水層Gb内に配設されるように形成されている。揚水ポンプ22は、採熱水槽15の下部に存在する地下水Wuを揚水することができるように構成されている。
揚水管21は、一端が揚水ポンプ22に接続され、他端が採熱水槽15内まで到達するように、揚水井戸62の内部に配設されている。揚水管21には、典型的には硬質塩化ビニル管が用いられるが、外部が被覆やコーティングされた鋼管等、地中埋設に適した材料を用いてもよい。
散水管25は、揚水ポンプ22で汲み上げた地下水Wuを地中Gに散水するための管である。散水管25は、採熱管10やヒートパイプ16、17よりも上部に、採熱管10やヒートパイプ16、17とほぼ同様の長さで、同様に放射状(図2参照)に配設されている。散水管25は、採熱管10等と同様の手順で地中に埋設される。散水管25は、典型的には硬質塩化ビニル管であり、一端が分岐管23を介して揚水管21に接続されており、他端が閉塞されている。散水管25には、外部が被覆やコーティングされた鋼管等、地中埋設に適した材料を用いてもよい。散水管25には、揚水ポンプ22で汲み上げた地下水Wuを地中に向けて散水する多数の散水孔が側面に形成されている。
The pumping pump 22 is disposed at the bottom of a pumping well 62 excavated vertically downward from substantially the center of the bottom of the heat collecting water tank 15. The pumping well 62 has a depth within about 7 m from the bottom of the heat collecting water tank 15 and is formed so that the pumping pump 22 is disposed in the aquifer Gb. The pumping pump 22 is configured to pump up the ground water Wu existing in the lower part of the heat collecting water tank 15.
The pumping pipe 21 is arranged inside the pumping well 62 so that one end is connected to the pumping pump 22 and the other end reaches the inside of the heat collecting water tank 15. A hard polyvinyl chloride pipe is typically used for the pumping pipe 21, but a material suitable for underground burial, such as a steel pipe coated or coated on the outside, may be used.
The sprinkling pipe 25 is a pipe for sprinkling the underground water Wu pumped up by the pumping pump 22 into the underground G. The water sprinkling pipe 25 is disposed above the heat collecting pipe 10 and the heat pipes 16 and 17 in substantially the same length as the heat collecting pipe 10 and the heat pipes 16 and 17 in the same manner (see FIG. 2). . The water spray pipe 25 is embedded in the ground in the same procedure as the heat collection pipe 10 and the like. The water spray pipe 25 is typically a hard polyvinyl chloride pipe, one end of which is connected to the pumping pipe 21 via the branch pipe 23 and the other end is closed. The water sprinkling pipe 25 may be made of a material suitable for underground burial, such as a steel pipe whose exterior is coated or coated. The sprinkling pipe 25 has a number of sprinkling holes formed on the side surface for sprinkling groundwater Wu pumped up by the pumping pump 22 into the ground.

次に、採熱効率向上システム9の作用を説明する。揚水ポンプ22を起動すると、採熱水槽15の下部の地下水Wuが揚水ポンプ22によって揚水される。揚水された地下水Wuは、揚水管21を流れて分岐管23に到達し、分岐管23で複数の散水管25に分配される。散水管25内の地下水Wuは、揚水ポンプ22によって加圧されており、末端に向かって流れると共に、多数の散水孔から帯水層Gbへと散水される。帯水層Gbに散水された地下水Wuは、採熱管10(ヒートパイプ16、17)の周辺を通過して帯水層Gb内を流れ、一部は再び揚水ポンプ22に吸い込まれて揚水される。採熱管10(ヒートパイプ16、17)の周辺を地下水Wuが流れることにより、第1の熱媒体M1や作動媒体Mwと熱交換した、採熱管10(ヒートパイプ16、17)周辺の地下水Wuは、定常水温(約15℃)の地下水Wuと置換されるため、採熱管10(ヒートパイプ16、17)周辺の帯水層Wbが熱飽和することがなく、帯水層Wbと第1の熱媒体M1や作動媒体Mwとの熱交換が促進され、地熱採熱システム1〜7の採熱効率が向上する。また、揚水ポンプ22で汲み上げた地下水Wu自体を利用するのではなく、地下水Wuを循環させて地下水Wuの熱だけを利用するので、地盤沈下等の不具合が生じることがない。   Next, the operation of the heat collection efficiency improvement system 9 will be described. When the pumping pump 22 is activated, the groundwater Wu below the heat collecting water tank 15 is pumped by the pumping pump 22. The pumped ground water Wu flows through the pumping pipe 21 and reaches the branch pipe 23, and is distributed to the plurality of water spray pipes 25 by the branch pipe 23. The groundwater Wu in the sprinkling pipe 25 is pressurized by the pumping pump 22, flows toward the end, and is sprinkled from a large number of sprinkling holes to the aquifer Gb. The groundwater Wu sprayed in the aquifer Gb flows through the aquifer Gb through the heat collecting pipe 10 (heat pipes 16 and 17), and part of the groundwater Wu is pumped by the pumping pump 22 again. . The groundwater Wu around the heat collecting pipe 10 (heat pipes 16 and 17), which exchanges heat with the first heat medium M1 and the working medium Mw, is obtained by flowing the groundwater Wu around the heat collecting pipe 10 (heat pipes 16 and 17). Therefore, the aquifer Wb around the heat collecting pipe 10 (heat pipes 16 and 17) is not thermally saturated, and the aquifer Wb and the first heat are replaced with the groundwater Wu having a steady water temperature (about 15 ° C.). Heat exchange with the medium M1 and the working medium Mw is promoted, and the heat collection efficiency of the geothermal heat collection systems 1 to 7 is improved. Further, since the groundwater Wu pumped up by the pumping pump 22 is not used but the groundwater Wu is circulated and only the heat of the groundwater Wu is used, problems such as ground subsidence do not occur.

以上の説明では、採熱管10やヒートパイプ16、17を直接帯水層Gbに埋設することとして説明したが、地下水Wuを流通し砕石を通さない程度の多数の小孔が形成された保護管を、採熱管10やヒートパイプ16、17を覆うようにして設け、これらを外傷から保護するようにしてもよい。   In the above description, the heat collecting pipe 10 and the heat pipes 16 and 17 have been described as being directly embedded in the aquifer Gb. However, the protective pipe is formed with a large number of small holes that pass through the groundwater Wu and do not pass crushed stone. May be provided so as to cover the heat collecting tube 10 and the heat pipes 16 and 17 so as to protect them from injury.

本発明の第1の実施の形態に係る地熱採熱システムの系統図である。It is a systematic diagram of the geothermal heat collection system which concerns on the 1st Embodiment of this invention. 採熱管の敷設状態を示す平面図である。It is a top view which shows the laying state of a heat collecting pipe. 本発明の第2の実施の形態に係る地熱採熱システムの系統図である。It is a systematic diagram of the geothermal heat collection system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る地熱採熱システムの系統図である。It is a systematic diagram of the geothermal heat collection system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る地熱採熱システムの系統図である。It is a systematic diagram of the geothermal heat collection system which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る地熱採熱システムの系統図である。It is a systematic diagram of the geothermal heat collection system which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る地熱採熱システムの系統図である。It is a systematic diagram of the geothermal heat collection system which concerns on the 6th Embodiment of this invention. 本発明の第7の実施の形態に係る地熱採熱システムの系統図である。It is a systematic diagram of the geothermal heat collection system which concerns on the 7th Embodiment of this invention. 地熱採熱システムの採熱効率を向上させるシステムの系統図である。It is a systematic diagram of the system which improves the heat collection efficiency of a geothermal heat collection system.

符号の説明Explanation of symbols

1〜7 地熱採熱システム
10 採熱管(熱交換流路)
11a 内部流路の一端
11r 内部流路
12a 外部流路の一端
12r 外部流路
15 採熱水槽(地中容器)
16 ヒートパイプ
18 内部通路
18a 内部通路の一端
19 外部通路
19a 外部通路の一端
21 揚水流路
22 揚水ポンプ
25 散水流路
31 ポンプ(搬送機器)
32 ファン(搬送機器)
35 熱源機器
36 屋外機
36a 空気導入口
38 送風機
G 地盤面下
M1 第1の熱媒体
Wu 地下水
1-7 Geothermal heat collection system 10 Heat collection pipe (heat exchange flow path)
11a One end of the internal flow path 11r Internal flow path 12a One end of the external flow path 12r External flow path 15 Heat collection water tank (underground container)
16 heat pipe 18 internal passage 18a one end 19 of internal passage external passage 19a one end of external passage 21 pumping channel 22 pumping pump 25 sprinkling channel 31 pump (conveying device)
32 fans (transport equipment)
35 Heat source equipment 36 Outdoor unit 36a Air inlet 38 Blower G Ground level M1 First heat medium Wu Groundwater

Claims (10)

地盤面下に設けられ、第1の熱媒体を収容する地中容器と;
前記第1の熱媒体を流す内部流路と、
該内部流路を収容するように配設され、前記内部流路の外側を前記内部流路内の流れ方向とは逆向きに前記第1の熱媒体を流す外部流路と、を有する熱交換流路とを備え;
前記熱交換流路が、水平に又は前記地中容器から見て先下り勾配を有するように前記地盤面下に配設された;
地熱採熱システム。
An underground container provided under the ground surface and containing a first heat medium;
An internal flow path for flowing the first heat medium;
A heat exchange having an external flow path disposed so as to accommodate the internal flow path and flowing the first heat medium in a direction opposite to a flow direction in the internal flow path outside the internal flow path A flow path;
The heat exchange channel is disposed horizontally or below the ground surface so as to have a downward slope when viewed from the underground container;
Geothermal heat collection system.
前記熱交換流路を複数備え;
前記熱交換流路が、水平投影面上で放射状に配設された;
請求項1に記載の地熱採熱システム。
A plurality of the heat exchange channels;
The heat exchange channels are arranged radially on a horizontal projection plane;
The geothermal heat collection system according to claim 1.
前記熱交換流路よりも下部の地下水を流す揚水流路と;
前記地下水を揚水する揚水ポンプと;
前記揚水した地下水を前記熱交換流路よりも上部で散水する散水流路とを備えた;
請求項1又は請求項2に記載の地熱採熱システム。
A pumping flow channel for flowing groundwater below the heat exchange channel;
A pump for pumping the groundwater;
A sprinkling flow path for sprinkling the pumped ground water above the heat exchange flow path;
The geothermal heat collection system according to claim 1 or 2.
前記熱交換流路が、前記外部流路の断面積が前記内部流路の断面積よりも大きくなるように構成された;
請求項1乃至請求項3のいずれか1項に記載の地熱採熱システム。
The heat exchange flow path is configured such that the cross-sectional area of the external flow path is larger than the cross-sectional area of the internal flow path;
The geothermal heat collection system according to any one of claims 1 to 3.
前記内部流路の一端が、前記地中容器内の前記第1の熱媒体の深さの1/2より深い位置で開放され;
前記外部流路の一端が、前記内部流路の一端が開放される位置よりも上方で開放されて構成された;
請求項1乃至請求項4のいずれか1項に記載の地熱採熱システム。
One end of the internal flow path is opened at a position deeper than ½ of the depth of the first heat medium in the underground container;
One end of the external channel is configured to be opened above a position where one end of the internal channel is opened;
The geothermal heat collection system according to any one of claims 1 to 4.
前記内部流路の一端又は前記外部流路の一端が、前記第1の熱媒体を搬送する搬送機器に接続された;
請求項1乃至請求項4のいずれか1項に記載の地熱採熱システム。
One end of the internal flow path or one end of the external flow path is connected to a transfer device for transferring the first heat medium;
The geothermal heat collection system according to any one of claims 1 to 4.
前記内部流路の一端及び前記外部流路の一端が、ヒートポンプチラーに接続されて構成された;
請求項1乃至請求項4のいずれか1項に記載の地熱採熱システム。
One end of the internal flow path and one end of the external flow path are connected to a heat pump chiller;
The geothermal heat collection system according to any one of claims 1 to 4.
第2の熱媒体に対し加熱及び冷却の少なくとも一方を行う熱源機器と;
前記地中容器の内部に設置された前記熱源機器の屋外機と;
前記屋外機の上部の前記地中容器の内部に設置され、前記内部流路の一端が吐出側に接続された送風機とを備え;
前記外部流路の一端が、前記屋外機に形成された空気導入口の高さ以下の前記地中容器内で開放された;
請求項1乃至請求項4のいずれか1項に記載の地熱採熱システム。
A heat source device that performs at least one of heating and cooling with respect to the second heat medium;
An outdoor unit of the heat source device installed inside the underground container;
A blower installed inside the underground container above the outdoor unit and having one end of the internal flow path connected to the discharge side;
One end of the external channel is opened in the underground container below the height of the air inlet formed in the outdoor unit;
The geothermal heat collection system according to any one of claims 1 to 4.
前記熱交換流路に代えて、一部分が前記地中容器の内部に配設されたヒートパイプを備えた;
請求項1乃至請求項3のいずれか1項に記載の地熱採熱システム。
In place of the heat exchange flow path, a part of the pipe is provided with a heat pipe disposed inside the underground container;
The geothermal heat collection system according to any one of claims 1 to 3.
前記ヒートパイプが、外部通路と該外部通路に収容された内部通路とを有し、前記内部通路の一端と前記外部通路の一端とが前記地中容器の内部で接続され、前記外部通路の他端が閉塞され、前記内部通路の他端が前記外部通路の内部で開放されることにより循環流路を形成するように構成された;
請求項9に記載の地熱採熱システム。
The heat pipe has an external passage and an internal passage accommodated in the external passage, and one end of the internal passage and one end of the external passage are connected inside the underground container, and the other of the external passage The end is closed and the other end of the internal passage is opened inside the external passage to form a circulation channel;
The geothermal heat collection system according to claim 9.
JP2005203272A 2005-07-12 2005-07-12 Geothermal heat collection system Expired - Fee Related JP4642579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203272A JP4642579B2 (en) 2005-07-12 2005-07-12 Geothermal heat collection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203272A JP4642579B2 (en) 2005-07-12 2005-07-12 Geothermal heat collection system

Publications (2)

Publication Number Publication Date
JP2007024342A true JP2007024342A (en) 2007-02-01
JP4642579B2 JP4642579B2 (en) 2011-03-02

Family

ID=37785342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203272A Expired - Fee Related JP4642579B2 (en) 2005-07-12 2005-07-12 Geothermal heat collection system

Country Status (1)

Country Link
JP (1) JP4642579B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190792A (en) * 2007-02-05 2008-08-21 Hiroshi Koyama Compression type heat pump
JP2008292107A (en) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2009014260A (en) * 2007-07-04 2009-01-22 Eco Power:Kk Geothermal heat collecting tank
JP2009109072A (en) * 2007-10-30 2009-05-21 Eco Power:Kk Subterranean heat collecting system
JP2009162011A (en) * 2008-01-09 2009-07-23 Wataru Adachi Heat exchanging pile having blades openable in ground, heat exchanging system doubling as well, and soil improvement agent pouring pile
JP2010532842A (en) * 2007-07-06 2010-10-14 グリーンフィールド エネジー リミテッド Geothermal energy system and method of operation
JP2011007446A (en) * 2009-06-26 2011-01-13 Ohbayashi Corp Underground heat exchanger
JP2011038376A (en) * 2009-08-18 2011-02-24 Takaaki Endo Circulating snow melting system utilizing ground heat and underground water heat
JP2012057836A (en) * 2010-09-07 2012-03-22 Daikin Industries Ltd Underground heat exchanger and heat pump using the same
JP5067956B1 (en) * 2012-02-28 2012-11-07 秀之 黒臼 Heat exchange system
RU2483255C1 (en) * 2011-10-20 2013-05-27 Открытое акционерное общество "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ОАО "НПЦ "Недра") Method of seasonal use of low-potential heat of surface soil, and downhole heat exchangers for implementation of method's versions
JP2013524142A (en) * 2010-04-01 2013-06-17 エスピーエス エナジー ゲーエムベーハー Apparatus and method for recovering heat from the environment
JP2013137176A (en) * 2011-11-28 2013-07-11 Geo System Kk Underground heat exchanging system
RU2499197C1 (en) * 2012-06-05 2013-11-20 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Method for using soil heat accumulation properties
WO2015129041A1 (en) * 2014-02-28 2015-09-03 中国電力株式会社 Heat exchanging structure for power generating equipment
US9360236B2 (en) 2008-06-16 2016-06-07 Greenfield Master Ipco Limited Thermal energy system and method of operation
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation
JP2020084544A (en) * 2018-11-22 2020-06-04 株式会社リビエラ Water storage and utilization facility
JP2020084543A (en) * 2018-11-22 2020-06-04 株式会社リビエラ Water storage and utilization facility
JP7295714B2 (en) 2019-06-13 2023-06-21 株式会社東芝 Heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803227B1 (en) * 2017-04-05 2017-12-28 주식회사 지지케이 High-capacity geothermal exchange device using river side underground water
KR102093411B1 (en) * 2019-03-26 2020-03-25 주식회사 지앤지테크놀러지 Geothermal System of Large Smart Farm and Building Using Radial collecting well

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134264A (en) * 1979-03-30 1980-10-18 Schmidt Paul Heat pump facility
JPS60113458U (en) * 1984-01-09 1985-07-31 サンデン株式会社 Heat exchange equipment for underground heat exchange
JPS6155668U (en) * 1984-09-18 1986-04-14

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134264A (en) * 1979-03-30 1980-10-18 Schmidt Paul Heat pump facility
JPS60113458U (en) * 1984-01-09 1985-07-31 サンデン株式会社 Heat exchange equipment for underground heat exchange
JPS6155668U (en) * 1984-09-18 1986-04-14

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190792A (en) * 2007-02-05 2008-08-21 Hiroshi Koyama Compression type heat pump
JP2008292107A (en) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2009014260A (en) * 2007-07-04 2009-01-22 Eco Power:Kk Geothermal heat collecting tank
US9556856B2 (en) 2007-07-06 2017-01-31 Greenfield Master Ipco Limited Geothermal energy system and method of operation
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
JP2010532842A (en) * 2007-07-06 2010-10-14 グリーンフィールド エネジー リミテッド Geothermal energy system and method of operation
JP2009109072A (en) * 2007-10-30 2009-05-21 Eco Power:Kk Subterranean heat collecting system
JP4609953B2 (en) * 2008-01-09 2011-01-12 亘 安達 Underground opening type heat exchange pile, well combined heat exchange system and soil conditioner injection pile
JP2009162011A (en) * 2008-01-09 2009-07-23 Wataru Adachi Heat exchanging pile having blades openable in ground, heat exchanging system doubling as well, and soil improvement agent pouring pile
US9360236B2 (en) 2008-06-16 2016-06-07 Greenfield Master Ipco Limited Thermal energy system and method of operation
JP2011007446A (en) * 2009-06-26 2011-01-13 Ohbayashi Corp Underground heat exchanger
JP2011038376A (en) * 2009-08-18 2011-02-24 Takaaki Endo Circulating snow melting system utilizing ground heat and underground water heat
JP2013524142A (en) * 2010-04-01 2013-06-17 エスピーエス エナジー ゲーエムベーハー Apparatus and method for recovering heat from the environment
JP2012057836A (en) * 2010-09-07 2012-03-22 Daikin Industries Ltd Underground heat exchanger and heat pump using the same
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation
US10921030B2 (en) 2011-03-08 2021-02-16 Erda Master Ipco Limited Thermal energy system and method of operation
RU2483255C1 (en) * 2011-10-20 2013-05-27 Открытое акционерное общество "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ОАО "НПЦ "Недра") Method of seasonal use of low-potential heat of surface soil, and downhole heat exchangers for implementation of method's versions
JP2013137176A (en) * 2011-11-28 2013-07-11 Geo System Kk Underground heat exchanging system
JP5067956B1 (en) * 2012-02-28 2012-11-07 秀之 黒臼 Heat exchange system
RU2499197C1 (en) * 2012-06-05 2013-11-20 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Method for using soil heat accumulation properties
WO2015129041A1 (en) * 2014-02-28 2015-09-03 中国電力株式会社 Heat exchanging structure for power generating equipment
JP5848490B1 (en) * 2014-02-28 2016-01-27 中国電力株式会社 Heat exchange structure of power generation equipment
JP2020084544A (en) * 2018-11-22 2020-06-04 株式会社リビエラ Water storage and utilization facility
JP2020084543A (en) * 2018-11-22 2020-06-04 株式会社リビエラ Water storage and utilization facility
JP7161189B2 (en) 2018-11-22 2022-10-26 株式会社リビエラ Water storage facility
JP7295714B2 (en) 2019-06-13 2023-06-21 株式会社東芝 Heat exchanger

Also Published As

Publication number Publication date
JP4642579B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4642579B2 (en) Geothermal heat collection system
US7363769B2 (en) Electromagnetic signal transmission/reception tower and accompanying base station employing system of coaxial-flow heat exchanging structures installed in well bores to thermally control the environment housing electronic equipment within the base station
RU2421666C2 (en) Tube and system for using low-temperature energy
US7617697B2 (en) In-ground geothermal heat pump system
EP2116784B1 (en) Energy storage and temperature change type air conditioning method with underground reservoir and water source heat pump, and the dedicated device thereof
US8820394B2 (en) Convection enhanced closed loop geothermal heat pump well
US20120211210A1 (en) Coaxial-flow heat transfer structure
JP2011524967A (en) Thermal energy system and operating method thereof
US20080128108A1 (en) Convective earrh coil
JP2010038507A (en) Heat pump utilizing underground heat reserve
US20220018577A1 (en) Groundwater enhanced geothermal heat pump
JP4764796B2 (en) Geothermal heat extraction and heating system
JP2003262430A (en) Heat pump using underground heat
JP2012057836A (en) Underground heat exchanger and heat pump using the same
JP2014185822A (en) Geothermal heat utilization heat exchanger and heat pump system using the same
JP6674335B2 (en) Heat pipe type air conditioner utilizing underground heat, unit for its configuration, and air conditioning method
JP2014040989A (en) Underground heat utilization system
KR20190063698A (en) Energy System having Underground Storage
JP7359361B2 (en) heat pump equipment
KR102269496B1 (en) Geothermal heat pump system with mixed form of vertically closed type and horizontal type
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
KR20130059828A (en) Heating exchange system using the geothermal
JP2017101867A (en) Geothermal heat exchanger and heat pump system using the same
JP2005098545A (en) Underground heat storage device utilizing effect of pile group
KR20130079065A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees