JP7161189B2 - Water storage facility - Google Patents

Water storage facility Download PDF

Info

Publication number
JP7161189B2
JP7161189B2 JP2018219335A JP2018219335A JP7161189B2 JP 7161189 B2 JP7161189 B2 JP 7161189B2 JP 2018219335 A JP2018219335 A JP 2018219335A JP 2018219335 A JP2018219335 A JP 2018219335A JP 7161189 B2 JP7161189 B2 JP 7161189B2
Authority
JP
Japan
Prior art keywords
water
tank
water tank
heat transfer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018219335A
Other languages
Japanese (ja)
Other versions
JP2020084543A (en
Inventor
喜代美 今
修一郎 今
祐治郎 今
Original Assignee
株式会社リビエラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リビエラ filed Critical 株式会社リビエラ
Priority to JP2018219335A priority Critical patent/JP7161189B2/en
Publication of JP2020084543A publication Critical patent/JP2020084543A/en
Application granted granted Critical
Publication of JP7161189B2 publication Critical patent/JP7161189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、貯水槽の水を地下水等の地熱により温度調整して、例えば融雪や冷凍空調設備等に利用できるようにした貯水利用設備に関するものである。 TECHNICAL FIELD The present invention relates to a water storage utilization facility that adjusts the temperature of water in a water storage tank using geothermal heat such as groundwater so that the water can be used, for example, for melting snow or refrigerating and air-conditioning equipment.

従来、消雪を行う場合、道路や駐車場に降雪する雪を積もらせた後では、路面や路盤に冷温が蓄積されるため、その消雪のためのエネルギーが多くなってしまう。そこで、雪が積もる前に、ロードヒーティング装置により路面を昇温したり、路面に融雪のための散水が行われたりする。
また、電気ヒータを用いたロードヒーティング装置では、道路や路盤の温度を上げて間接的に雪を溶かすようにしているため、樹幹状に配設される熱源媒体の温度が15°C以上必要であり、電気消費量が大きくなってしまう。
これに対し、水を積雪に直接散水して溶かす場合には、水温は3~4°C程度で充分である。但し、その水源に、地下水や、湖水・河川水・海水を、そのまま利用するには、法的制限等で実施が困難である。
Conventionally, when snow is melted, after the roads and parking lots are covered with snow, cold temperature accumulates on the road surface and roadbed, so energy for melting the snow is large. Therefore, before the snow piles up, the road surface is heated by a road heating device, or water is sprinkled on the road surface to melt the snow.
In addition, road heating devices using electric heaters raise the temperature of roads and roadbeds to indirectly melt snow, so the temperature of the heat source medium arranged in the shape of a tree trunk must be 15°C or higher. and the electricity consumption will increase.
On the other hand, when water is directly sprayed on the snow to melt it, a water temperature of about 3 to 4°C is sufficient. However, it is difficult to use groundwater, lake water, river water, or seawater as the water source due to legal restrictions.

そこで、例えば特許文献1に記載される発明では、地下に埋設された貯水槽に融雪水や雨水を貯溜し、この水を、地下水等の地熱により温度調整して利用するようにしている。 Therefore, for example, in the invention described in Patent Document 1, snowmelt water and rainwater are stored in a water tank buried underground, and the temperature of this water is adjusted by geothermal heat such as groundwater before being used.

特開2011-38376号公報JP 2011-38376 A

しかしながら、上記従来技術では、二槽式の貯水槽を用いるため構造が複雑になる上、地熱を金属製の集熱材に熱伝導させるようにしており、その集熱効果及び伝熱効果に改善の余地があった。 However, in the above-mentioned prior art, the structure is complicated due to the use of a two-tank type water tank, and the geothermal heat is conducted to a metal heat collecting material, which improves the heat collecting effect and the heat transfer effect. There was room for

このような課題に鑑みて、本発明は、以下の構成を具備するものである。
第1に、地中に埋め込まれる貯水槽と、前記貯水槽の外壁を貫通する伝熱管とを備え、前記貯水槽に貯溜する水を汲み上げて利用するようにした貯水利用設備において、前記伝熱管は、一端側に前記貯水槽内に連通する槽内側通水部を有するとともに、前記貯水槽外に延設された他端側に、地中に対し密閉された地熱吸収管部を有し、前記伝熱管内の水を強制的に攪拌させる攪拌装置を具備したことを特徴とする貯水利用設備とした。
第2に、地中に埋め込まれる貯水槽と、前記貯水槽の外壁を貫通する伝熱管とを備え、前記貯水槽に貯溜する水を汲み上げて利用するようにした貯水利用設備において、前記伝熱管は、一端側に前記貯水槽内に連通する槽内側通水部を有するとともに、前記貯水槽外に延設された他端側に、地中に対し密閉された地熱吸収管部を有し、貯水槽外の水を貯水槽内へ導く還管が設けられ、前記還管の出口を、前記伝熱管内に配置したことを特徴とする貯水利用設備とした。
第3に、地中に埋め込まれる貯水槽と、前記貯水槽の外壁を貫通する伝熱管とを備え、前記貯水槽に貯溜する水を汲み上げて利用するようにした貯水利用設備において、前記伝熱管は、一端側に前記貯水槽内に連通する槽内側通水部を有するとともに、前記貯水槽外に延設された他端側に、地中に対し密閉された地熱吸収管部を有し、前記貯水槽から汲み上げる水を太陽熱吸熱管に流通させ前記貯水槽へ戻す補助吸熱設備を備えたことを特徴とする貯水利用設備とした。

In view of such problems, the present invention comprises the following configurations.
First, a water storage utilization facility that includes a water tank embedded in the ground and a heat transfer pipe that penetrates the outer wall of the water tank, and uses the water that is stored in the water tank by pumping it up, wherein the heat transfer pipe has, on one end side, a tank-inside water-passage section that communicates with the inside of the water tank, and on the other end side that extends outside the water tank, has a geothermal absorption pipe part that is sealed against the ground, The water storage utilization facility is characterized by comprising a stirring device for forcibly stirring the water in the heat transfer tubes .
Secondly, a water storage utilization facility comprising a water tank embedded in the ground and a heat transfer pipe penetrating the outer wall of the water tank, wherein the water stored in the water tank is pumped up and used, wherein the heat transfer pipe has, on one end side, a tank-inside water-passage section that communicates with the inside of the water tank, and on the other end side that extends outside the water tank, has a geothermal absorption pipe part that is sealed against the ground, The stored water utilization equipment is characterized in that a return pipe is provided to guide water from outside the water tank into the water tank, and an outlet of the return pipe is arranged inside the heat transfer pipe.
Thirdly, in a water storage utilization facility comprising a water tank embedded in the ground and a heat transfer pipe penetrating the outer wall of the water tank, the water stored in the water tank is pumped up and used, wherein the heat transfer pipe has, on one end side, a tank-inside water-passage section that communicates with the inside of the water tank, and on the other end side that extends outside the water tank, has a geothermal absorption pipe part that is sealed against the ground, The water storage utilization facility is characterized by comprising auxiliary heat absorption equipment for circulating the water pumped up from the water storage tank to the solar heat absorption pipe and returning it to the water storage tank.

本発明は、以上説明したように構成されているので、簡素な構造でもって貯水槽内に貯溜した水を効率的に温度調整することができる。 Since the present invention is configured as described above, it is possible to efficiently adjust the temperature of water stored in the water tank with a simple structure.

本発明に係る貯水利用設備の第一の実施態様について、概略構造を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows a schematic structure about the 1st embodiment of the water storage utilization installation which concerns on this invention. 本発明に係る貯水利用設備の第二の実施態様について、概略構造を示す断面斜視である。It is a cross-sectional perspective view which shows a schematic structure about the 2nd embodiment of the water storage utilization facility which concerns on this invention. 本発明に係る貯水利用設備の第三の実施態様について、概略構造を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a schematic structure of a third embodiment of water storage utilization equipment according to the present invention. 図3の貯水利用設備を左方側から視た図であり、要部を縦断面図で示している。It is the figure which looked the water storage utilization facility of FIG. 3 from the left side, and has shown the principal part in the longitudinal cross-sectional view.

本実施の形態では、以下の特徴を開示している。
第1の特徴は、地中に埋め込まれる貯水槽と、前記貯水槽の外壁を貫通する伝熱管とを備え、前記貯水槽に貯溜する水を汲み上げて利用するようにした貯水利用設備において、前記伝熱管は、一端側に前記貯水槽内に連通する槽内側通水部を有するとともに、前記貯水槽外に延設された他端側に、地中に対し密閉された地熱吸収管部を有する(図1参照)。
ここで、前記「外壁」には、前記貯水槽の側方側に位置する側壁部や、前記貯水槽の底側に位置する底壁部等を含む。
上記構成によれば、伝熱管内には、槽内側通水部を介して貯水槽内の水が流れ込む。この状態で、地熱吸収管部に地中の熱が伝達すると、その熱は管壁を介して地熱吸収管部の内部の水に伝達する。そして、水は、温度差に起因する対流現象等により、伝熱管内から貯水槽内にわたる範囲を流動する。よって、貯水槽内の水が、貯水槽外の地下水等による地熱によって温度調整される。
The present embodiment discloses the following features.
A first feature is a water storage utilization facility that includes a water tank embedded in the ground and a heat transfer pipe that penetrates the outer wall of the water tank, and uses the water stored in the water tank by pumping it up. The heat transfer pipe has a tank-inside water passage communicating with the inside of the water tank on one end side, and a geothermal absorption pipe sealed against the ground on the other end side extending outside the water tank. (See Figure 1).
Here, the "outer wall" includes a side wall portion positioned on the lateral side of the water tank, a bottom wall portion positioned on the bottom side of the water tank, and the like.
According to the above configuration, the water in the water storage tank flows into the heat transfer tube via the tank inner water passage portion. In this state, when underground heat is transmitted to the geothermal absorption pipe, the heat is transmitted to the water inside the geothermal absorption pipe through the pipe wall. Water flows in a range from inside the heat transfer tube to inside the water tank due to a convection phenomenon or the like caused by a temperature difference. Therefore, the temperature of the water in the water tank is adjusted by the geothermal heat generated by the groundwater outside the water tank.

第2の特徴として、地熱を効果的に吸収するために、前記伝熱管は、前記貯水槽の底壁部を貫通して鉛直状に設けられている(図1~図3参照)。 As a second feature, in order to effectively absorb geothermal heat, the heat transfer tubes are provided vertically through the bottom wall of the water tank (see FIGS. 1 to 3).

第3の特徴として、地熱吸収効率及び施工性を向上するために、前記地熱吸収管部の外周部には、らせん状にネジ部が設けられている(図2参照)。 As a third feature, in order to improve the geothermal absorption efficiency and workability, a helical threaded portion is provided on the outer peripheral portion of the geothermal absorption pipe (see FIG. 2).

第4の特徴は、地上水を効果的に集水するために、地表の水を流し込む第一の集水槽と、第一の集水槽と仕切られて並設された第二の集水槽と、第一の集水槽内の上層水を第二の集水槽内へ導く通水路とを備え、第二の集水槽内の水を前記貯水槽内へ導くようにした(図2及び図3参照)。 A fourth feature is that, in order to effectively collect surface water, a first collection tank into which surface water is poured, a second collection tank partitioned from the first collection tank and installed in parallel, A water passage for guiding the upper layer water in the first collection tank into the second collection tank, and the water in the second collection tank is guided into the water storage tank (see FIGS. 2 and 3). .

第5の特徴は、貯溜水の温度をムラなく均一にするために、前記伝熱管内の水を強制的に攪拌させる攪拌装置を具備した(図1参照)。 A fifth feature is that a stirrer for forcibly stirring the water in the heat transfer tubes is provided in order to make the temperature of the stored water even and uniform (see FIG. 1).

第6の特徴は、伝熱管内の対流を促進するために、貯水槽外の水を貯水槽内へ導く還管が設けられ、前記還管の出口を、前記伝熱管内に配置した(図3及び図4参照)。 The sixth feature is that in order to promote convection in the heat transfer tube, a return pipe is provided to guide water outside the water tank into the water tank, and the outlet of the return pipe is arranged inside the heat transfer tube (Fig. 3 and FIG. 4).

第7の特徴は、補助的に貯溜水に熱を伝達するために、前記貯水槽から汲み上げる水を太陽熱吸熱管に流通させ前記貯水槽へ戻す補助吸熱設備を備えた(図3及び図4参照)。 A seventh feature is that the water pumped from the water tank is circulated through the solar heat absorption pipes and returned to the water tank in order to transfer heat to the water tank (see FIGS. 3 and 4). ).

<第一の実施態様>
次に、上記特徴を有する具体的な実施態様について、図面に基づいて詳細に説明する。
この貯水利用設備1は、貯水槽10と、貯水槽10の底壁部11及び側壁部12を貫通する複数の第一の伝熱管20及び第二の伝熱管30とを備え、帯水層A1,A2を有する地中に埋め込まれて、貯水槽10内に貯溜する水を汲み上げ、融雪や冷凍空調等に利用される。
<First Embodiment>
Next, specific embodiments having the above characteristics will be described in detail with reference to the drawings.
This water storage utilization facility 1 includes a water storage tank 10, and a plurality of first heat transfer tubes 20 and second heat transfer tubes 30 penetrating through a bottom wall portion 11 and a side wall portion 12 of the water storage tank 10, and an aquifer A1. , A2, pumps up water stored in the water tank 10, and is used for snow melting, refrigeration and air conditioning.

貯水槽10は、上方を開口した直方体箱状の槽本体10aと、この槽本体10aの開口を塞ぐ蓋部10bとを有する。 The water tank 10 has a rectangular parallelepiped box-shaped tank main body 10a with an upper opening, and a lid portion 10b that closes the opening of the tank main body 10a.

槽本体10aは、平面視矩形状の底壁部11と、この底壁部11の四隅側から上方へ立ち上がった側壁部12とから一体に構成され、底壁部11に複数の第一の伝熱管20を貫通し、側壁部12には第二の伝熱管30を貫通している。
そして、この槽本体10aは、図1に例示するように、伏流水が浸透した比較的浅い帯水層A1に側壁部12及び第二の伝熱管30を接触させ、地下水が浸透した比較的深い帯水層A2に第一の伝熱管20を接触させて、地中に埋め込まれる。
The tank main body 10a is integrally composed of a bottom wall portion 11 having a rectangular shape in plan view and side wall portions 12 rising upward from the four corner sides of the bottom wall portion 11. The bottom wall portion 11 has a plurality of first transmissions. It penetrates the heat tube 20 and penetrates the side wall portion 12 through the second heat transfer tube 30 .
Then, as shown in FIG. 1, the tank main body 10a is arranged such that the side wall portion 12 and the second heat transfer tube 30 are brought into contact with a relatively shallow aquifer A1 in which subsoil water permeates, and a relatively deep aquifer A1 in which groundwater permeates is brought into contact. The first heat transfer tube 20 is brought into contact with the aquifer A2 and buried in the ground.

貯水槽10には、例えば蓋部10bを貫通するようにして、雨水及び融雪水等を補給する補水管10cや、図示しないポンプにより汲み上げた水を利用機器へ移送する往管10d、利用機器側で熱交換した水を槽本体10a内へ戻す還管10e、槽本体10a内でオーバーフローした水を外部へ排水する排水管(図示せず)等が、蓋部10b又は側壁部12を貫通するようにして配設される。 The water tank 10 includes, for example, a water supply pipe 10c that penetrates the lid portion 10b to supply rainwater, snowmelt water, etc., a forward pipe 10d that transfers water pumped up by a pump (not shown) to the utilization equipment, and the utilization equipment side. A return pipe 10e for returning heat-exchanged water to the tank main body 10a, a drain pipe (not shown) for draining water overflowing in the tank main body 10a to the outside, etc. It is arranged as follows.

第一の伝熱管20は、一端側に槽本体10a内に連通する槽内側通水部21を有するとともに、槽本体10a外に延設された他端側に地熱吸収管部22を有する。この第一の伝熱管20は、図示例によれば貯水槽10の底壁部11を貫通する鉛直状に設けられ、水平方向へ間隔を置いて複数配設される。
各第一の伝熱管20は、上端側で開口した槽内側通水部21を槽本体10a内の水中に配置し、下端側の地熱吸収管部22を帯水層A2内に配置している。
この第一の伝熱管20は、熱伝導率の比較的高い金属材料によって形成される。
The first heat transfer pipe 20 has a tank inner water passage portion 21 communicating with the inside of the tank main body 10a on one end side, and a geothermal absorption pipe portion 22 on the other end side extending outside the tank main body 10a. According to the illustrated example, the first heat transfer pipes 20 are provided in a vertical shape penetrating the bottom wall portion 11 of the water tank 10, and a plurality of them are arranged at intervals in the horizontal direction.
Each first heat transfer pipe 20 has a tank inner water passage part 21 opened at the upper end side arranged in the water in the tank main body 10a, and a geothermal absorption pipe part 22 at the lower end side arranged in the aquifer A2. .
This first heat transfer tube 20 is made of a metal material with a relatively high thermal conductivity.

地熱吸収管部22は、底壁部11よりも下方へ延設され、地中に対し密閉されるように、厚み方向の貫通部(孔やスリット等)のない有底筒状に形成される。この地熱吸収管部22の外周面は、帯水層A2の地下水に接する。 The geothermal heat absorption pipe portion 22 extends downward from the bottom wall portion 11 and is formed in a bottomed tubular shape without through-holes (holes, slits, etc.) in the thickness direction so as to be sealed against the ground. . The outer peripheral surface of this geothermal absorption pipe portion 22 is in contact with the groundwater of the aquifer A2.

また、本実施の形態の好ましい一例によれば、第一の伝熱管20内には、該伝熱管内の水を強制的に流動させる攪拌装置23が設けられる。
すなわち、第一の伝熱管20内の水は、上下の温度差等により自然対流するが、この対流を促進するようにて、攪拌装置23が設けられる。
Further, according to a preferred example of the present embodiment, a stirrer 23 is provided in the first heat transfer tube 20 to force the water in the heat transfer tube to flow.
That is, the water in the first heat transfer tube 20 undergoes natural convection due to the difference in temperature between the top and bottom, and the stirring device 23 is provided to promote this convection.

攪拌装置23の好ましい一例としては、気泡ポンプを用いればよい。この気泡ポンプは、図示しないエアーポンプ及び配管等により供給されるエアーを、地熱吸収管部22内の底部側で噴出し、地熱吸収管部22内の水中に多数の気泡を発生されせる。したがって、地熱吸収管部22内の底側の水は、気泡の浮力によって上方へ移送され、地熱吸収管部22と槽本体10aにわたって水の対流が発生する。この対流によって、地熱吸収管部22及び槽本体10a内の水が攪拌される。 A preferred example of the stirring device 23 is a bubble pump. The bubble pump blows out air supplied from an air pump and piping (not shown) from the bottom side of the geothermal absorption pipe 22 to generate a large number of bubbles in the water inside the geothermal absorption pipe 22 . Therefore, the water on the bottom side of the geothermal absorption pipe portion 22 is moved upward by the buoyancy of the air bubbles, and water convection occurs between the geothermal absorption pipe portion 22 and the tank main body 10a. This convection agitates the water in the geothermal absorption pipe portion 22 and the tank main body 10a.

攪拌装置23の他例としては、一方側から吸い込んだ水を他方側へ吐出する軸流式の水中ポンプや、貯水槽10内又は貯水槽10外の水を地熱吸収管部22内へ勢いよく噴出するようにした装置、水中で羽を回転させるようにした装置等、適宜構造のものを用いることが可能である。 Other examples of the agitator 23 include an axial-flow submersible pump that sucks water from one side and discharges it to the other side, and a water pump that vigorously pushes water inside or outside the water tank 10 into the geothermal absorption pipe portion 22 . Appropriate structures such as a device that ejects water, a device that rotates wings in water, and the like can be used.

また、第二の伝熱管30は、貯水槽10全体を略水平方向へ貫通する連続管状に形成され、その一端側と他端側にそれぞれ地中側通水部31を有するとともに、これら一端側と他端側の地中側通水部31の間を槽内側放熱管部32にしている。
この第二の伝熱管30は、図示例によれば、上下方向に間隔を置いて複数設けられ、必要に応じて、水平方向(図1の奥行方向)にも複数設けられる。
この第二の伝熱管30は、熱伝導率の比較的高い金属材料によって形成される。
In addition, the second heat transfer pipe 30 is formed in a continuous tubular shape that penetrates the entire water tank 10 in a substantially horizontal direction, and has an underground water passage portion 31 on one end side and the other end side thereof. and the underground side water passage portion 31 on the other end side is used as the tank inner heat radiation pipe portion 32 .
According to the illustrated example, a plurality of the second heat transfer tubes 30 are provided at intervals in the vertical direction, and if necessary, a plurality of the second heat transfer tubes 30 are also provided in the horizontal direction (the depth direction in FIG. 1).
This second heat transfer tube 30 is made of a metal material with a relatively high thermal conductivity.

各地中側通水部31は、貯水槽10の側壁部12から突出して、地中の帯水層A1内に延設される。この地中側通水部31の端部および/または周壁部には、帯水層A1の地下水(伏流水)を通過可能な開口が設けられ、この開口には、礫(小石)等の侵入を阻みながら地下水を流通するように、例えば、スリットや小孔、繊維状物等からなるストレーナ(図示せず)が設けられる。 Each center-side water passage portion 31 protrudes from the side wall portion 12 of the water tank 10 and extends into the underground aquifer A1. The end portion and/or peripheral wall portion of the underground water passage portion 31 is provided with an opening through which the groundwater (subsoil water) of the aquifer A1 can pass. A strainer (not shown) made of, for example, a slit, a small hole, a fibrous material, or the like is provided so as to block the flow of groundwater.

槽内側放熱管部32は、槽本体10aの側壁部12,12間にわたる略水平状に延設され、周壁を貫通部のない筒状に形成している。この槽内側放熱管部32の外周面は、貯水槽10内の貯溜水に接する。 The tank inner radiator pipe part 32 extends substantially horizontally between the side wall parts 12, 12 of the tank main body 10a, and the peripheral wall is formed into a cylindrical shape without a penetrating part. The outer peripheral surface of the tank inner radiator pipe portion 32 is in contact with the water stored in the water tank 10 .

次に、上記構成の貯水利用設備1について、その特徴的な作用効果を詳細に説明する。
貯水槽10内には、補水管10cによって、例えば雨水や融雪水等の外部の水が供給される。この水は、複数の第二の伝熱管30及び第一の伝熱管20を水没させるように、貯水槽10内に貯溜される。そして、この貯溜水は、往管10d及び還管10e等によって利用側設備を循環する。また、貯水槽10内でオーバーフローした水は、図示しない排水管により外部へ排出される。
Next, the characteristic functions and effects of the water storage utilization facility 1 having the above configuration will be described in detail.
Outside water such as rain water or snowmelt water is supplied into the water tank 10 through a replenishment pipe 10c. This water is stored in the water tank 10 so as to submerge the plurality of second heat transfer tubes 30 and the first heat transfer tubes 20 . Then, this stored water circulates through the user-side equipment through the forward pipe 10d, the return pipe 10e, and the like. Moreover, the water overflowing in the water tank 10 is discharged to the outside through a drain pipe (not shown).

第一の伝熱管20は、地熱吸収管部22の外面を帯水層A2に接触させて、帯水層A2の地下水熱を吸収する。そして、この熱は、第一の伝熱管20内の水に伝達する。第一の伝熱管20内の水には、上下の温度差および攪拌装置23等の作用によって対流が生じ、この対流により、槽本体10a内から第一の伝熱管20内への水の流れ、および第一の伝熱管20内から槽本体10a内への水の流れが形成される。 The first heat transfer pipe 20 absorbs the groundwater heat of the aquifer A2 by bringing the outer surface of the geothermal absorption pipe portion 22 into contact with the aquifer A2. This heat is then transferred to the water in the first heat transfer tube 20 . Convection occurs in the water in the first heat transfer tube 20 due to the temperature difference between the top and bottom and the action of the stirring device 23, etc. This convection causes the water to flow from the tank main body 10a into the first heat transfer tube 20, And a flow of water from inside the first heat transfer tube 20 to inside the tank main body 10a is formed.

一方、第二の伝熱管30は、槽内側放熱管部32を貯水槽10内の水に接触させるとともに、両側の地中側通水部31をそれぞれ帯水層A1に接触させる。
地中側通水部31には、図示しないストレーナを介して地下水が侵入し、この水は槽内側放熱管部32内へ達する。そして、この水の熱は、槽内側放熱管部32の管壁を介して貯水槽10内の貯溜水に伝達される。
On the other hand, the second heat transfer pipe 30 brings the tank inner heat radiation pipe portion 32 into contact with the water in the water tank 10, and brings the underground water passage portions 31 on both sides into contact with the aquifer A1.
Groundwater intrudes into the underground water passage portion 31 through a strainer (not shown), and this water reaches the inside of the tank inner radiator pipe portion 32 . Then, the heat of this water is transmitted to the stored water in the water tank 10 via the tube wall of the tank inner radiator tube portion 32 .

よって、貯水槽10内の貯溜水と帯水層A1,A2の地下水の間の熱交換と、貯溜水の対流及び攪拌により、貯水槽10内の水をムラなく略均一な温度に調整することができる。そして、貯水槽10内の安定した温度の貯溜水を、地上の利用側設備に供給することができる。
しかも、貯水槽10内の貯溜水は、地下水に対し密閉されているため、この貯溜水に、地下水成分(例えば、鉄やマンガン等)が混入するのを防ぐことができ、ひいては、地下水成分によって各機器に目詰まりや故障を生じるのを防ぐことができる。
Therefore, the water in the water tank 10 can be adjusted to a substantially uniform temperature by heat exchange between the water in the water tank 10 and the ground water in the aquifers A1 and A2, and by convection and agitation of the water. can be done. Then, the stored water at a stable temperature in the water tank 10 can be supplied to the user-side facilities on the ground.
Moreover, since the stored water in the water tank 10 is sealed against the groundwater, it is possible to prevent groundwater components (for example, iron, manganese, etc.) from being mixed into this stored water. It is possible to prevent clogging and failure of each device.

<第二の実施態様>
次に、本発明に係る他の実施態様について説明する。なお、以下に説明する実施態様において、上記貯水利用設備1と略同様に作用する部分は、同一の符号を付けて重複する詳細説明を省略する。
<Second embodiment>
Next, other embodiments according to the present invention will be described. In addition, in the embodiments described below, portions that operate in substantially the same manner as the water storage utilization facility 1 are denoted by the same reference numerals, and overlapping detailed descriptions are omitted.

図2に示す貯水利用設備2は、上記貯水利用設備1に対し、第一の伝熱管20を第一の伝熱管40に置換し、第二の伝熱管30を省き、地上に利用側設備50を構成したものである。 The water storage utilization facility 2 shown in FIG. is configured.

第一の伝熱管40は、熱伝導率の比較的高い金属材料によって鉛直方向へわたる長尺管状に形成され、水平方向に間隔を置いて複数設けられる。
各第一の伝熱管40は、底壁部11に貫通しており、底壁部11よりも上側に槽本体10a内に連通する槽内側通水部41を有するとともに、同底壁部11よりも下側に地熱吸収管部42を有する。
The first heat transfer tubes 40 are made of a metal material having a relatively high thermal conductivity and are formed in a vertically elongated tubular shape, and are provided in plurality at intervals in the horizontal direction.
Each first heat transfer tube 40 penetrates through the bottom wall portion 11 and has a tank inner water passage portion 41 that communicates with the tank main body 10 a above the bottom wall portion 11 . also has a geothermal absorption pipe section 42 on the lower side.

第一の伝熱管40における底壁部11よりも上側の部分は、地表に至るまで筒状に延設され、その上端の開口部が、着脱可能な円盤状の蓋部材43により閉鎖されている。
槽内側通水部41は、貯水槽10内で水没する高さ位置にあり、第一の伝熱管40周壁を貫通するスリット状に形成される。この槽内側通水部41の他例としては、多数の孔や、その他の形状の貫通部とすることが可能である。
A portion of the first heat transfer tube 40 above the bottom wall portion 11 is cylindrically extended to the ground surface, and an opening at the upper end thereof is closed by a detachable disk-shaped lid member 43. .
The tank-inside water passage part 41 is at a height position submerged in the water tank 10 and is formed in a slit-like shape penetrating the peripheral wall of the first heat transfer tube 40 . Other examples of the tank-inside water-conducting portion 41 may include a large number of holes or penetrating portions of other shapes.

地熱吸収管部42は、地中に対し密閉されるように、壁部に厚み方向の貫通部のない略有底筒状に形成され、少なくともその一部分を帯水層A2内に配置している。
この地熱吸収管部42の外周部には、らせん雄ネジ状にネジ部42aが設けられている。このネジ部42aは、第一の伝熱管40の下端側を、貯水槽10の底壁部11に挿通して地中にドリル状に回転させながら埋設するのに用いられる。さらに、このネジ部42aは、地熱吸収管部42の外表面の面積を広く確保して、熱伝達効率を向上する。
The geothermal absorption pipe part 42 is formed in a substantially bottomed tubular shape without a through-hole in the wall part in the thickness direction so as to be sealed against the ground, and at least a part thereof is arranged in the aquifer A2. .
A threaded portion 42a is provided on the outer peripheral portion of the geothermal absorption pipe portion 42 in the form of a helical male screw. This screw portion 42a is used to insert the lower end side of the first heat transfer tube 40 into the bottom wall portion 11 of the water tank 10 and bury it in the ground while rotating it like a drill. Furthermore, the screw portion 42a secures a large outer surface area of the geothermal heat absorption pipe portion 42, thereby improving the heat transfer efficiency.

利用側設備50は、貯水槽10から汲み上げた水を降雪や積雪に散水して、雪を溶かす融雪設備を構成している。
この利用側設備50は、貯水槽10の貯水を汲み上げるポンプ51a及び往管51bと、往管51bから分岐された配管の下流側に接続された複数の散水装置52aと、雪の降雪状態を感知する降雪センサー52bと、降雪センサー52bの感知信号に応じてポンプ51aを制御する制御盤52cと、地表の水を流し込む第一の集水槽53aと、第一の集水槽53aと仕切られて設けられた第二の集水槽53bと、第一の集水槽53a内の上層水を第二の集水槽53b内へ導く通水路53cと、第二の集水槽53b内の水を貯水槽10内へ導く還管54と、貯水槽10内でオーバーフローする水を排水する排水管55a及び排水槽55bとを具備する。
The user-side equipment 50 constitutes a snow melting equipment that melts the snow by sprinkling the water pumped up from the water tank 10 on falling snow and accumulated snow.
This user-side equipment 50 includes a pump 51a and a forward pipe 51b for pumping up the water stored in the water tank 10, a plurality of sprinklers 52a connected to the downstream side of the pipe branched from the forward pipe 51b, and a snowfall state. a snowfall sensor 52b, a control panel 52c for controlling the pump 51a in response to a detection signal from the snowfall sensor 52b, a first collection tank 53a into which surface water is poured, and a first collection tank 53a. A second water collection tank 53b, a water passage 53c that guides the upper layer water in the first water collection tank 53a into the second water collection tank 53b, and a water flow path 53c that guides the water in the second water collection tank 53b into the water tank 10. A return pipe 54 and a drain pipe 55a and a drain tank 55b for draining water overflowing in the water tank 10 are provided.

ポンプ51aは、貯水槽10内に水没するようにした水中ポンプである。
往管51bは、ポンプ51aの吐出口から上方へ延設され、貯水槽10外側の地表近傍で多方向へ分岐される。これら分岐された配管には、それぞれ散水装置52aが接続される。
The pump 51 a is a submersible pump that is submerged in the water tank 10 .
The forward pipe 51b extends upward from the discharge port of the pump 51a and branches in multiple directions near the ground surface outside the water tank 10 . A sprinkler device 52a is connected to each of these branched pipes.

散水装置52aには、例えば周知のスプリンクラーを用いることができる。
降雪センサー52bは、赤外線により降雪を検知して、その検知信号を出力するように構成される。この降雪センサーの他例として水分検知式のものや、その他の方式のものを用いることも可能である。
制御盤52cは、降雪センサー52bの検知信号に応じて、ポンプ51aをON/OFF制御する。すなわち、降雪センサー52bによって降雪が感知されると、制御盤52cがポンプ51aを駆動し、ポンプ51aによって汲み上げられた水が複数の散水装置52aから吐出する。
A known sprinkler, for example, can be used for the sprinkler device 52a.
The snowfall sensor 52b is configured to detect snowfall with infrared rays and output a detection signal. As another example of this snowfall sensor, it is also possible to use a moisture detection type or other types.
The control panel 52c controls ON/OFF of the pump 51a according to the detection signal of the snowfall sensor 52b. That is, when snowfall is detected by the snowfall sensor 52b, the control panel 52c drives the pump 51a, and the water pumped up by the pump 51a is discharged from the plurality of sprinklers 52a.

第一の集水槽53aは、傾斜面によって流れる水の下流側に位置するように配置され、図示例によれば、道路面の幅方向の両側にそれぞれ溝状に設けられる。
第二の集水槽53bは、第一の集水槽53aに並設された溝である(図2参照)。
The first water collection tank 53a is arranged so as to be located on the downstream side of the flowing water on the inclined surface, and according to the illustrated example, is provided in the form of grooves on both sides in the width direction of the road surface.
The second water collection tank 53b is a groove arranged in parallel with the first water collection tank 53a (see FIG. 2).

これら第一の集水槽53aと第二の集水槽53bの間には、第一の集水槽53a側の上層水を第二の集水槽53bに流すように通水路53cが設けられる。
そして、第二の集水槽53bには、還管54の吸込口が接続される。この還管54は、第二の集水槽53bから第一の伝熱管40へ向かって下り傾斜状に設けられる。還管54の下流側部分は、第一の伝熱管40内に挿通され、その下端側の出口54aを地熱吸収管部42内に配置している。
A water passage 53c is provided between the first water collection tank 53a and the second water collection tank 53b so that upper layer water on the first water collection tank 53a side flows to the second water collection tank 53b.
A suction port of the return pipe 54 is connected to the second collection tank 53b. The return pipe 54 is provided with a downward slope from the second water collection tank 53 b toward the first heat transfer pipe 40 . A downstream portion of the return pipe 54 is inserted through the first heat transfer pipe 40 , and an outlet 54 a on the lower end side thereof is arranged within the geothermal heat absorption pipe portion 42 .

排水管55aは、その吸入口を貯水槽10内に配置するとともに、貯水槽10の側壁部12を貫通して貯水槽10外へ下り傾斜状に延設され、その下流側の吐出口が排水槽55b内に位置する。排水槽55bは、図示例によれば溝状に形成され、貯溜する排水を図示しない排水設備へ流す。 The drain pipe 55a has its suction port arranged in the water tank 10, and extends downwardly to the outside of the water tank 10 through the side wall portion 12 of the water tank 10, and has a discharge port on the downstream side thereof. It is located inside the water tank 55b. According to the illustrated example, the drainage tank 55b is formed in a groove shape, and drains the stored drainage to a drainage facility (not illustrated).

次に、上記構成の貯水利用設備2について、その特徴的な作用効果を詳細に説明する。
降雪が降雪センサー52bによって感知されると、制御盤52cからの指令によりポンプ51aが駆動し、貯水槽10内の水が汲み上げられて往管51bを流れる。そして、この水は、往管51bから分岐された配管の下流側で、それぞれ、散水装置52aによって路面等に散水され、雪を溶かす。
Next, the characteristic functions and effects of the water storage utilization facility 2 having the above configuration will be described in detail.
When snowfall is detected by the snowfall sensor 52b, the pump 51a is driven by a command from the control panel 52c, and the water in the water tank 10 is pumped up and flows through the forward pipe 51b. Then, this water is sprinkled on the road surface and the like by the sprinklers 52a on the downstream side of the pipes branched from the forward pipe 51b, respectively, to melt the snow.

前記散水による残水や、融雪水等は、路面の傾斜を流れて第一の集水槽53aへ侵入する。第一の集水槽53a内では、泥や異物等が底部に溜まり、その上層の水が、通水路53cによって隣接する第二の集水槽53bへ流される。
そして、第二の集水槽53bの水は、還管54によって第一の伝熱管40内へ導かれ、第一の伝熱管40下端側の地熱吸収管部42内にて、出口54aから噴出する。
Residual water from the water sprinkling, snowmelt water, and the like flow down the slope of the road surface and enter the first collection tank 53a. In the first water collection tank 53a, mud, foreign substances, etc. accumulate at the bottom, and the water in the upper layer is flowed to the adjacent second water collection tank 53b through the water passage 53c.
Then, the water in the second collection tank 53b is guided into the first heat transfer pipe 40 by the return pipe 54, and jets out from the outlet 54a in the geothermal heat absorption pipe portion 42 on the lower end side of the first heat transfer pipe 40. .

したがって、還管54の出口54aからの噴出水に押されるようにして、第一の伝熱管40内の水が移動し、第一の伝熱管40及び貯水槽10内の貯水が攪拌される。 Therefore, the water in the first heat transfer tube 40 moves as if pushed by the jetted water from the outlet 54a of the return pipe 54, and the water stored in the first heat transfer tube 40 and the water tank 10 is agitated.

一方、地熱吸収管部42の外面及びネジ部42aには、帯水層A2の熱が伝達し、この熱は、さらに地熱吸収管部42内の水へ伝達する
また、帯水層A1の熱は、貯水槽10の側壁部12を介して、貯水槽10内の貯溜水に伝達する。
On the other hand, the heat of the aquifer A2 is transferred to the outer surface and the threaded portion 42a of the geothermal absorption pipe portion 42, and this heat is further transferred to the water in the geothermal absorption pipe portion 42. Also, the heat of the aquifer A1 is transmitted to the stored water in the water tank 10 via the side wall portion 12 of the water tank 10 .

よって、貯水槽10内の貯溜水と帯水層A1,A2の地下水との間での熱交換や、第一の伝熱管40及び貯水槽10内の水の対流及び攪拌により、貯溜水をムラなく略均一な温度に調整することができる。
そして、安定した温度(例えば、3~4°C程度)の貯溜水を、地上の利用側設備50を介して路面に散布し、路面の積雪や降雪を効果的に融かすことができる。
Therefore, the heat exchange between the water stored in the water tank 10 and the groundwater of the aquifers A1 and A2, and the convection and agitation of the water in the first heat transfer tube 40 and the water tank 10 make the water uneven. can be adjusted to a substantially uniform temperature.
Then, the stored water at a stable temperature (for example, about 3 to 4° C.) can be sprayed on the road surface via the user-side equipment 50 on the ground to effectively melt the accumulated snow and snowfall on the road surface.

<第三の実施態様>
図3及び図4に示す貯水利用設備3は、底壁部11に第一の伝熱管20’を有する貯水槽10’と、この貯水槽10’から汲み上げられる水を、太陽熱吸収管61に流通させて貯水槽10’へ戻す補助吸熱設備60(太陽熱吸熱設備)とを備える。
<Third embodiment>
The water storage utilization equipment 3 shown in FIGS. and an auxiliary heat absorption facility 60 (solar heat absorption facility) for returning the heat to the water tank 10'.

貯水槽10’は、上記貯水槽10の槽本体10aを槽本体10a’に置換したものである。
槽本体10a’は、下部側が地中に埋め込まれ、上部側が地上に露出した建屋状に構成される。この槽本体10a’の上端部は、傾斜状に形成され、補助吸熱設備60が装着される。
The water tank 10' is obtained by replacing the tank body 10a of the water tank 10 with a tank body 10a'.
The tank main body 10a' is constructed in the shape of a building whose lower side is buried in the ground and whose upper side is exposed above the ground. The upper end of the tank main body 10a' is formed in a slanted shape, and an auxiliary endothermic device 60 is mounted thereon.

槽本体10a’内には、ポンプ51aが設けられ、このポンプ51aの吐出口には、往管51bが接続される。往管51bの下流側は、槽本体10a’外に延設され、複数に分岐されるとともにその分岐された配管の下流側にそれぞれ散水装置52aが接続される。
ポンプ51a及び散水装置52aは、上記貯水利用設備2と略同様に外部の降雪センサー及び制御盤等(図示せず)により制御され、降雪状態に応じて散水を行う。
A pump 51a is provided in the tank main body 10a', and a forward pipe 51b is connected to the discharge port of the pump 51a. The downstream side of the forward pipe 51b extends outside the tank main body 10a' and is branched into a plurality of branches.
The pump 51a and the water sprinkler 52a are controlled by an external snowfall sensor, a control panel, etc. (not shown) in substantially the same manner as the water storage utilization facility 2, and sprinkle water according to snowfall conditions.

また、槽本体10a’には、貯溜水の水面よりも下側に吐出口56cを配置するようにして還管56aが挿通されている。この還管56の上流側は、第二の集水槽53b内の水を汲み上げるように構成される。
すなわち、槽本体10a’の外部には、上記貯水利用設備2と略同様にして、第一の集水槽53a、第二の集水槽53bおよび通水路53cが設けられる。そして、第二の集水槽53b内にはポンプ56bが設けられ、このポンプ56bの吐出口が還管56aの入口に接続されている。
Further, a return pipe 56a is inserted through the tank main body 10a' so that a discharge port 56c is arranged below the surface of the stored water. The upstream side of this return pipe 56 is configured to pump up the water in the second collection tank 53b.
That is, a first collection tank 53a, a second collection tank 53b and a water passage 53c are provided outside the tank main body 10a' in substantially the same manner as the water storage utilization facility 2 described above. A pump 56b is provided in the second collection tank 53b, and the discharge port of the pump 56b is connected to the inlet of the return pipe 56a.

第一の伝熱管20’は、上記第一の伝熱管20(図1参照)から気泡ポンプとしての攪拌装置23を省いたものであり、貯水槽10’の底壁部11に、間隔を置いて複数設けられる。 The first heat transfer tube 20' is the first heat transfer tube 20 (see FIG. 1) from which the stirring device 23 as a bubble pump is omitted, and is spaced from the bottom wall portion 11 of the water tank 10'. can be provided multiple times.

また、補助吸熱設備60は、槽本体10a’の上端部に傾斜屋根状に設けられる。この補助吸熱設備60は、蛇行状の太陽熱吸収管61を、太陽光に晒すように蛇行状に配設している。 In addition, the auxiliary heat absorption equipment 60 is provided in the shape of a sloping roof at the upper end of the tank body 10a'. The auxiliary heat absorption equipment 60 has meandering solar heat absorption pipes 61 arranged in a meandering manner so as to be exposed to sunlight.

太陽熱吸収管61の吸入部には、貯水槽10’内のポンプ63により汲み上げられた水を導入するように往管62が接続される(図4参照)。ポンプ63は、貯水槽10’内の貯溜水の温度に応じて適宜に制御される。
すなわち、貯溜水の温度が、予め設定された閾値よりも低い場合には、ポンプ63がONにされ、補助吸熱設備60による温水が貯水槽10’内へ供給される。また、貯溜水の温度が、前記閾値以上の場合は、ポンプ63がOFFにされて、温水の供給が停止する。
A forward pipe 62 is connected to the suction portion of the solar heat absorption pipe 61 so as to introduce water pumped up by a pump 63 in the water tank 10' (see FIG. 4). The pump 63 is appropriately controlled according to the temperature of the water stored in the water tank 10'.
That is, when the temperature of the stored water is lower than a preset threshold value, the pump 63 is turned on, and hot water from the auxiliary heat absorption equipment 60 is supplied into the water tank 10'. Further, when the temperature of the stored water is equal to or higher than the threshold value, the pump 63 is turned off and the supply of hot water is stopped.

また、太陽熱吸収管61の吐出口には、還管54(図3参照)が接続される。この還管54は、上記貯水利用設備2(図2参照)と略同様に第一の伝熱管20’内へ導かれ、その出口54aを地熱吸収管部22内に配置している。 A return pipe 54 (see FIG. 3) is connected to the discharge port of the solar heat absorption pipe 61 . This return pipe 54 is guided into the first heat transfer pipe 20 ′ in substantially the same manner as the water storage utilization facility 2 (see FIG. 2), and its outlet 54 a is arranged within the geothermal absorption pipe section 22 .

なお、図3中、符号53dは、第二の集水槽53b内でオーバーフローする水を外部へ排水する排水管、符号57は、貯水槽10’内でオーバーフローする水を外部へ排水する排水管である。 In FIG. 3, reference numeral 53d denotes a drain pipe for draining the water overflowing in the second collection tank 53b to the outside, and reference numeral 57 denotes a drain pipe for draining the water overflowing in the water storage tank 10' to the outside. be.

よって、上記構成の貯水利用設備3によれば、上記貯水利用設備1,2と略同様にして、貯水槽10’内の貯溜水と、帯水層A1の地下水との熱交換を行い、これによって貯水槽10’内の貯溜水を好適な温度に維持することができる。
しかも、外気温が低すぎて、貯水槽10’内の水温が上昇し難い場合等には、ポンプ51aを運転し、補助吸熱設備60を介して太陽熱により暖められた水を、貯水槽10’内へ供給することができる。
また、貯水槽10’内の水は、補助吸熱設備60から第一の伝熱管20’内へわたる還管54の噴出流や、第二の集水槽53bから槽本体10a’内へわたる還管56aの噴出流等により攪拌され、ムラの少ない略均一な水温に保持される。
Therefore, according to the water storage utilization facility 3 configured as described above, heat exchange is performed between the stored water in the water storage tank 10' and the groundwater of the aquifer A1 in substantially the same manner as the water storage utilization facilities 1 and 2. can maintain the water in the water tank 10' at a suitable temperature.
Moreover, when the outside air temperature is too low and the water temperature in the water tank 10' is difficult to rise, the pump 51a is operated to pump water heated by solar heat through the auxiliary heat absorption equipment 60 into the water tank 10'. can be fed into
In addition, the water in the water tank 10' is discharged from the auxiliary heat absorption equipment 60 into the first heat transfer tube 20' by the jet flow of the return pipe 54, or from the second water collection tank 53b to the tank main body 10a'. The water is agitated by the jet flow of 56a or the like, and kept at a substantially uniform water temperature with little unevenness.

なお、上記実施の形態によれば、貯水利用設備1,2,3を融雪設備としたが、本発明に係る貯水利用設備は、貯水槽の水を汲み上げて利用する他の設備や装置とすることが可能であり、例えば、貯水槽の水を汲み上げて冷凍空調設備(エアコンや、チラー、コールドチェーン機器等を含む)の冷却水として利用することも可能である。 According to the above embodiment, the water storage utilization facilities 1, 2, and 3 are the snow melting facilities, but the water storage utilization facilities according to the present invention may be other facilities or devices that draw up and use the water in the water storage tank. For example, the water in the water tank can be pumped up and used as cooling water for refrigerating and air-conditioning equipment (including air conditioners, chillers, cold chain equipment, etc.).

本発明は上述した実施態様に限定されず、本発明の要旨を変更しない範囲で適宜変更可能である。 The present invention is not limited to the embodiments described above, and can be modified as appropriate without changing the gist of the present invention.

1,2,3:貯水利用設備
10:貯水槽
10a:槽本体
10d,51b,62:往管
10e,54,56a:還管
11:底壁部
12:側壁部
20,40:第一の伝熱管
21,41:槽内側通水部
22,42:地熱吸収管部
23:攪拌装置
30:第二の伝熱管
31:地中側通水部
32:槽内側放熱管部
42a:ネジ部
50:利用側設備
52a:散水装置
53a:第一の集水槽
53b:第二の集水槽
53c:通水路
60:補助吸熱設備(太陽熱吸収設備)
61:太陽熱吸収管
A1:帯水層
A2:帯水層
1, 2, 3: Water storage utilization equipment 10: Water storage tank 10a: Tank main body 10d, 51b, 62: Outgoing pipe 10e, 54, 56a: Return pipe 11: Bottom wall part 12: Side wall part 20, 40: First transmission Heat pipes 21, 41: Tank inner water passage part 22, 42: Geothermal absorption pipe part 23: Stirrer 30: Second heat transfer pipe 31: Underground side water passage part 32: Tank inner heat radiation pipe part 42a: Screw part 50: User side equipment 52a: Sprinkler 53a: First collection tank 53b: Second collection tank 53c: Water passage 60: Auxiliary heat absorption equipment (solar heat absorption equipment)
61: Solar heat absorption tube A1: Aquifer A2: Aquifer

Claims (3)

地中に埋め込まれる貯水槽と、前記貯水槽の外壁を貫通する伝熱管とを備え、前記貯水槽に貯溜する水を汲み上げて利用するようにした貯水利用設備において、
前記伝熱管は、一端側に前記貯水槽内に連通する槽内側通水部を有するとともに、前記貯水槽外に延設された他端側に、地中に対し密閉された地熱吸収管部を有し、
前記伝熱管内の水を強制的に攪拌させる攪拌装置を具備したことを特徴とする貯水利用設備。
A water storage utilization facility comprising a water tank embedded in the ground and a heat transfer pipe penetrating the outer wall of the water tank, wherein the water stored in the water tank is pumped up and used,
The heat transfer pipe has, on one end side thereof, a tank-inside water-passage portion communicating with the inside of the water tank, and on the other end side extending outside the water tank, a geothermal absorption pipe portion sealed against the ground. have
A water storage utilization facility comprising a stirring device for forcibly stirring the water in the heat transfer tubes .
地中に埋め込まれる貯水槽と、前記貯水槽の外壁を貫通する伝熱管とを備え、前記貯水槽に貯溜する水を汲み上げて利用するようにした貯水利用設備において、
前記伝熱管は、一端側に前記貯水槽内に連通する槽内側通水部を有するとともに、前記貯水槽外に延設された他端側に、地中に対し密閉された地熱吸収管部を有し、
貯水槽外の水を貯水槽内へ導く還管が設けられ、前記還管の出口を、前記伝熱管内に配置したことを特徴とする貯水利用設備。
A water storage utilization facility comprising a water tank embedded in the ground and a heat transfer pipe penetrating the outer wall of the water tank, wherein the water stored in the water tank is pumped up and used,
The heat transfer pipe has, on one end side thereof, a tank-inside water-passage portion communicating with the inside of the water tank, and on the other end side extending outside the water tank, a geothermal absorption pipe portion sealed against the ground. have
A stored water utilization facility , comprising: a return pipe for introducing water from outside the water tank into the water tank, and an outlet of the return pipe being disposed within the heat transfer pipe .
地中に埋め込まれる貯水槽と、前記貯水槽の外壁を貫通する伝熱管とを備え、前記貯水槽に貯溜する水を汲み上げて利用するようにした貯水利用設備において、
前記伝熱管は、一端側に前記貯水槽内に連通する槽内側通水部を有するとともに、前記貯水槽外に延設された他端側に、地中に対し密閉された地熱吸収管部を有し、
前記貯水槽から汲み上げる水を太陽熱吸熱管に流通させ前記貯水槽へ戻す補助吸熱設備を備えたことを特徴とする貯水利用設備。
A water storage utilization facility comprising a water tank embedded in the ground and a heat transfer pipe penetrating the outer wall of the water tank, wherein the water stored in the water tank is pumped up and used,
The heat transfer pipe has, on one end side thereof, a tank-inside water-passage portion communicating with the inside of the water tank, and on the other end side extending outside the water tank, a geothermal absorption pipe portion sealed against the ground. have
A water storage utilization facility comprising auxiliary heat absorption equipment for circulating water pumped up from the water storage tank through a solar heat absorption tube and returning the water to the water storage tank .
JP2018219335A 2018-11-22 2018-11-22 Water storage facility Active JP7161189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018219335A JP7161189B2 (en) 2018-11-22 2018-11-22 Water storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219335A JP7161189B2 (en) 2018-11-22 2018-11-22 Water storage facility

Publications (2)

Publication Number Publication Date
JP2020084543A JP2020084543A (en) 2020-06-04
JP7161189B2 true JP7161189B2 (en) 2022-10-26

Family

ID=70906932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219335A Active JP7161189B2 (en) 2018-11-22 2018-11-22 Water storage facility

Country Status (1)

Country Link
JP (1) JP7161189B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179276A (en) 1998-12-16 2000-06-27 Tadashi Tsunoda Underground aquifer heat utilizing system
JP2005054560A (en) 2003-08-06 2005-03-03 Hirotada Nanjo Thawing/air conditioning system utilizing heat exchange well
JP2007024342A (en) 2005-07-12 2007-02-01 Tadashi Tsunoda Geothermal heat collecting system
JP2011038376A (en) 2009-08-18 2011-02-24 Takaaki Endo Circulating snow melting system utilizing ground heat and underground water heat
JP3194187U (en) 2014-08-29 2014-11-06 弘星テクノ株式会社 Snow melting tank
JP2015025612A (en) 2013-07-26 2015-02-05 国立大学法人山梨大学 Geothermal heat pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184005A (en) * 1994-12-27 1996-07-16 Yukiguni Kagaku Kk Underground buried article for heating ground surface section

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179276A (en) 1998-12-16 2000-06-27 Tadashi Tsunoda Underground aquifer heat utilizing system
JP2005054560A (en) 2003-08-06 2005-03-03 Hirotada Nanjo Thawing/air conditioning system utilizing heat exchange well
JP2007024342A (en) 2005-07-12 2007-02-01 Tadashi Tsunoda Geothermal heat collecting system
JP2011038376A (en) 2009-08-18 2011-02-24 Takaaki Endo Circulating snow melting system utilizing ground heat and underground water heat
JP2015025612A (en) 2013-07-26 2015-02-05 国立大学法人山梨大学 Geothermal heat pump
JP3194187U (en) 2014-08-29 2014-11-06 弘星テクノ株式会社 Snow melting tank

Also Published As

Publication number Publication date
JP2020084543A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US4257239A (en) Earth coil heating and cooling system
US20080128108A1 (en) Convective earrh coil
JP2011214362A (en) Water sprinkling system for panel-type equipment
US9551535B2 (en) Apparatus and method for cooling selected portions of swimming pool water
JP7161189B2 (en) Water storage facility
JP6524571B2 (en) Control method of heat exchange device, heat exchange device, water-cooled heat pump cooling and heating device, water-cooled heat pump device
KR100991075B1 (en) Temperature control apparatus of road surface using convection of heat transfer medium in dual pipe by subterranean heat
KR20160065502A (en) Geothermal heat exchange system using heat storage-tank of vertical pipe
KR20180133579A (en) Heat pump system using geothermal energy and controlling apparatus contrl
US9366046B1 (en) Apparatus and method for cooling swimming pool water
JP2689400B2 (en) Solar heat storage type road surface snow melting device
KR200275414Y1 (en) A vinyl plastic hothouse air conditioning system
JP2020084544A (en) Water storage and utilization facility
JP5892304B2 (en) Groundwater heat utilization system
JP2016023914A (en) Multistage type ground water heat utilization system
KR101606830B1 (en) Tube Well-type Heat Exchanger for Heat Pump System
KR101220897B1 (en) equipment for exchanging terrestrial heat
CH650069A5 (en) Device for heating rooms with use of earth heat
JP6907596B2 (en) How to use groundwater
JPS62237249A (en) Method of thawing snow utilizing terrestrial heat
JP3928085B2 (en) Non-watering snow melting system and method of operating the system
JPS6320913Y2 (en)
KR102460634B1 (en) Open-type geothermal heat pump system without return pipe in the well
JPH061606Y2 (en) Underground heat exchanger
JPH0137070Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7161189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150