JP2011007446A - Underground heat exchanger - Google Patents

Underground heat exchanger Download PDF

Info

Publication number
JP2011007446A
JP2011007446A JP2009152775A JP2009152775A JP2011007446A JP 2011007446 A JP2011007446 A JP 2011007446A JP 2009152775 A JP2009152775 A JP 2009152775A JP 2009152775 A JP2009152775 A JP 2009152775A JP 2011007446 A JP2011007446 A JP 2011007446A
Authority
JP
Japan
Prior art keywords
corrugated
corrugated pipe
pipe
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009152775A
Other languages
Japanese (ja)
Other versions
JP5471074B2 (en
Inventor
Tadashi Kaneko
正 金子
Kenji Mikota
憲司 三小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009152775A priority Critical patent/JP5471074B2/en
Publication of JP2011007446A publication Critical patent/JP2011007446A/en
Application granted granted Critical
Publication of JP5471074B2 publication Critical patent/JP5471074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground heat exchanger for improving performance of execution of installation work of the underground heat exchanger and reducing installation cost.SOLUTION: The underground heat exchanger performing heat exchange with a ground includes: a flexible resin corrugated pipe arranged within an excavation on the ground; a discharge port for discharging a heating medium to inside of the corrugated pipe; an emission port for emitting the heating medium which has undergone heat exchange with the ground from the corrugated pipe; and a filler filled between the excavation and the corrugated pipe. The corrugated shape of the corrugated pipe is set to be a spiral shape using a pipe axis of the corrugated pipe as a central axis. One pipe end of the corrugated pipe is sealed by a cap member screwed to a part of the corrugated shape at the pipe end serving as a screw part.

Description

本発明は、地盤との間で熱交換を行う地中熱交換器に関する。   The present invention relates to an underground heat exchanger that exchanges heat with the ground.

通年の温度変動の小さい地中熱を利用して建物の冷暖房等を行う地中熱利用システムが注目されている。この地中熱利用システムでは、地盤との間で採・放熱を行うべく地中に地中熱交換器が設置される。そして、地中熱交換器は、例えば、夏場には地盤に放熱し、冬場には地盤から採熱する。   A geothermal heat utilization system that heats and cools buildings using geothermal heat with small year-round temperature fluctuations is attracting attention. In this geothermal heat utilization system, a geothermal heat exchanger is installed in the ground to collect and radiate heat with the ground. The underground heat exchanger, for example, radiates heat to the ground in summer and collects heat from the ground in winter.

その一例として、特許文献1には二重管構造の地中熱交換器が示されている。すなわち、図1Aの縦断面図に示すように、この地中熱交換器121は、地盤Gに鉛直に埋設される外筒としての鋼管131と、鋼管131内に配置された内筒としてのポリエチレン管141(以下、PE管と言う)と、を有している。そして、鋼管131の上端部に設けられた流入口131aから鋼管131内に流入された熱媒体26を、PE管141の下端部の流出口141aから取り出すことにより、地盤Gとの間で熱交換後の熱媒体26をヒートポンプ等へ送出するようになっている。   As an example, Patent Document 1 discloses a double-pipe underground heat exchanger. That is, as shown in the longitudinal sectional view of FIG. 1A, the underground heat exchanger 121 includes a steel pipe 131 as an outer cylinder vertically embedded in the ground G, and a polyethylene as an inner cylinder disposed in the steel pipe 131. And a pipe 141 (hereinafter referred to as a PE pipe). Then, the heat medium 26 that has flowed into the steel pipe 131 from the inlet 131a provided at the upper end of the steel pipe 131 is taken out from the outlet 141a at the lower end of the PE pipe 141, thereby exchanging heat with the ground G. The subsequent heat medium 26 is sent to a heat pump or the like.

ところで、この特許文献1には、鋼管131の下側の管端開口131bの封止構造として、図1Bに示すような構造が示されている。すなわち、鋼管131の内周面から内方に突出させて環状部132を設けるとともに、PE管141の下端面に突き合わし固定されたフランジ板142を、前記環状部132の全周に亘って当接させることにより封止することが示されている。また、この密封性を高めるべく、前記環状部132と前記フランジ板141との間にニクロム線145を配線し、その通電によりフランジ板141を溶融させて環状部132に溶着することも示されている。   By the way, this patent document 1 shows a structure as shown in FIG. 1B as a sealing structure of the pipe end opening 131b on the lower side of the steel pipe 131. That is, the annular portion 132 is provided so as to protrude inward from the inner peripheral surface of the steel pipe 131, and the flange plate 142 that is abutted and fixed to the lower end surface of the PE pipe 141 is applied to the entire circumference of the annular portion 132. It is shown that sealing is achieved by contact. Further, it is also shown that a nichrome wire 145 is wired between the annular portion 132 and the flange plate 141 in order to improve the sealing performance, and the flange plate 141 is melted and welded to the annular portion 132 by energization. Yes.

特開2002−13828号公報Japanese Patent Laid-Open No. 2002-13828

しかしながら、このような封止構造は、上述のように複雑であり、また、鋼管131毎に前記環状部132を設けねばならず、作業工数が増えて作業コストが高くなる。   However, such a sealing structure is complicated as described above, and the annular portion 132 must be provided for each steel pipe 131, which increases the number of work steps and increases the work cost.

また、外筒に鋼管131を用いているので、材料コストが高くなり、また、鋼管重量が重いことから、地盤Gの竪孔123へ建て込み難いと共に、重量物用の揚重機を使用せざるをえず、工事規模が大きくなってしまう。更には、施工現場へ搬送する際に鋼管131をコイル状に巻き取ることは不可能であることからコンパクト化が難しく、結果、搬送性に劣り、それに起因する搬送コスト増も施工費高騰の一因となっていた。   Moreover, since the steel pipe 131 is used for the outer cylinder, the material cost is high, and the weight of the steel pipe is heavy, so that it is difficult to build it into the borehole 123 of the ground G, and a heavy lifting machine is not used. However, the construction scale becomes large. Furthermore, since it is impossible to wind the steel pipe 131 in a coil shape when it is transported to the construction site, it is difficult to make it compact. As a result, the transportability is inferior. It was a cause.

本発明は、上記のような従来の問題に鑑みなされたものであって、地中熱交換器の設置工事の施工性を向上し、設置コストを低減可能な地中熱交換器を提供することを目的とする。   The present invention has been made in view of the conventional problems as described above, and provides a ground heat exchanger capable of improving the workability of the installation work of the underground heat exchanger and reducing the installation cost. With the goal.

かかる目的を達成するために請求項1に示す発明は、
地盤との間で熱交換を行う地中熱交換器であって、
地盤の掘削孔内に配される可撓性の樹脂製コルゲート管と、
前記コルゲート管内に熱媒体を吐出する吐出口と、
前記地盤と熱交換した前記熱媒体を前記コルゲート管から排出する排出口と、
前記掘削孔と前記コルゲート管との間に充填される充填材と、を有し、
前記コルゲート管の管壁部の波形形状は、前記コルゲート管の管軸を中心軸とする螺旋形状に形成されており、
前記コルゲート管の一方の管端部は、該管端部における前記波形形状の部分をねじ部として螺合するキャップ部材によって封止されていることを特徴とする。
In order to achieve this object, the invention shown in claim 1
An underground heat exchanger that exchanges heat with the ground,
A flexible resin corrugated pipe disposed in the excavation hole of the ground;
A discharge port for discharging a heat medium into the corrugated tube;
A discharge port for discharging the heat medium exchanged with the ground from the corrugated pipe;
A filler filled between the excavation hole and the corrugated pipe,
The corrugated shape of the tube wall portion of the corrugated tube is formed in a spiral shape with the tube axis of the corrugated tube as the central axis,
One end of the corrugated tube is sealed by a cap member that is screwed with the corrugated portion at the end of the tube as a threaded portion.

上記請求項1に示す発明によれば、キャップ部材は、前記管端部を封止する際に螺合すべきねじ部として、コルゲート管(corrugated pipe:波形管)の波形形状の部分を利用する。よって、キャップ部材を管端部に固定するための固定構造を、別途管端部に設けずに済み、コルゲート管の構成の簡素化を図れる。また、キャップ部材を管端部にねじ込めば管端部を封止できるので、封止作業も容易となる。   According to the first aspect of the present invention, the cap member uses a corrugated pipe (corrugated pipe) as a threaded portion to be screwed when sealing the pipe end. . Therefore, it is not necessary to separately provide a fixing structure for fixing the cap member to the pipe end portion, and the configuration of the corrugated pipe can be simplified. Further, since the tube end can be sealed by screwing the cap member into the tube end, the sealing operation is facilitated.

また、コルゲート管は樹脂製であり軽量なので、当該コルゲート管を掘削孔へ建て込む際に重量物用の揚重機を用いずに済む等、建て込み易いものとなる。
更には、コルゲート管は可撓性を有している。よって、その全長が数十m〜数百mの場合であっても、コルゲート管をリールに巻き取る等してコンパクトなサイズに収めることができて、施工現場へ搬送し易くなる。
また、コルゲート管であるので、その管壁部の形状は波形形状となっており、これにより、管壁部の内周面及び外周面の表面積が拡大されている。よって、その拡大された表面積により、地盤とコルゲート管内の熱媒体との間の熱交換効率を格段に向上することができる。
Further, since the corrugated pipe is made of resin and light in weight, it is easy to install the corrugated pipe, for example, without using a heavy lifting machine when installing the corrugated pipe into the excavation hole.
Furthermore, the corrugated tube has flexibility. Therefore, even if the total length is several tens of meters to several hundreds of meters, the corrugated tube can be wound into a compact size and stored in a compact size, and can be easily transported to the construction site.
Moreover, since it is a corrugated pipe | tube, the shape of the pipe wall part becomes a waveform shape, and, thereby, the surface area of the internal peripheral surface of a pipe wall part and an outer peripheral surface is expanded. Therefore, the heat exchange efficiency between the ground and the heat medium in the corrugated pipe can be remarkably improved by the enlarged surface area.

請求項2に示す発明は、請求項1に記載の地中熱交換器であって、
前記キャップ部材で封止される前記管端部には、セメント系素材又は樹脂系素材のグラウト材が、前記キャップ部材と前記管端部とを跨ぐように充填されていることを特徴とする。
上記請求項2に示す発明によれば、キャップ部材と管端部とが螺合する螺合範囲に噛み合い隙間がある場合でも、当該噛み合い隙間を前記グラウト材によって塞ぐことができて、その結果、コルゲート管の管端部からの熱媒体の外部漏出を確実に防ぐことができる。
The invention shown in claim 2 is the underground heat exchanger according to claim 1,
The pipe end portion sealed with the cap member is filled with a grout material of a cement-based material or a resin-based material so as to straddle the cap member and the tube end portion.
According to the second aspect of the present invention, even when there is a meshing gap in the screwing range in which the cap member and the pipe end are screwed, the meshing gap can be closed by the grout material. The external leakage of the heat medium from the pipe end of the corrugated pipe can be reliably prevented.

請求項3に示す発明は、請求項2に記載の地中熱交換器であって、
前記掘削孔として前記地盤に鉛直方向に掘削された竪孔に、前記コルゲート管は、その管軸を鉛直方向に沿わせて挿入されており、
前記コルゲート管の鉛直方向の下側の管端部が前記キャップ部材により封止されているとともに、前記管端部に前記グラウト材が充填されていることを特徴とする。
The invention shown in claim 3 is the underground heat exchanger according to claim 2,
The corrugated pipe is inserted along the vertical axis of the corrugated pipe into the borehole drilled in the vertical direction on the ground as the excavation hole,
The pipe end part on the lower side in the vertical direction of the corrugated pipe is sealed by the cap member, and the grout material is filled in the pipe end part.

上記請求項3に示す発明によれば、コルゲート管を竪孔に挿入する際に挿入し易くなる。詳しくは次の通りである。コルゲート管の竪孔への建て込み深さは、一般に数十m〜数百mに達する。また、コルゲート管は樹脂製であり、その可撓性に起因して曲がる等して建て込み姿勢が不安定になり易い。そのため、竪孔にコルゲート管を挿入する際に、コルゲート管の下側の管端部が、竪孔の孔壁に引っ掛かって詰まる等して、竪孔の底部まで速やかに挿入できない虞がある。   According to the third aspect of the present invention, the corrugated tube can be easily inserted when inserted into the fistula. Details are as follows. The depth of the corrugated tube built into the fistula generally reaches several tens of meters to several hundreds of meters. Further, the corrugated tube is made of resin, and the built-in posture tends to become unstable due to bending due to its flexibility. For this reason, when the corrugated tube is inserted into the fistula, there is a possibility that the lower end of the corrugated tube is caught by the hole wall of the fistula and clogged, so that it cannot be quickly inserted to the bottom of the fistula.

この点につき、上述の構成によれば、コルゲート管の下側の管端部に充填されたグラウト材が錘となり、つまり当該錘がコルゲート管を下方に引っ張って真っ直ぐに延ばした状態する。よって、コルゲート管の下側の管端部が竪孔の孔壁に引っ掛かる等のトラブルを有効に防止できて、コルゲート管を竪孔に建て込み易くなる。   In this regard, according to the above-described configuration, the grout material filled in the lower pipe end portion of the corrugated pipe becomes a weight, that is, the weight pulls the corrugated pipe downward and extends straight. Therefore, it is possible to effectively prevent troubles such as the pipe end on the lower side of the corrugated pipe being caught by the hole wall of the fistula, and the corrugated pipe can be easily built into the fistula.

請求項4に示す発明は、請求項1乃至3の何れかに記載の地中熱交換器であって、
前記キャップ部材の内周面には、前記管端部の外周面における前記波形形状の部分を雄ねじとして螺合する雌ねじが形成されており、
前記キャップ部材は、前記管端部を外から覆いつつ前記管端部を封止することを特徴とする。
上記請求項4に示す発明によれば、キャップ部材は、管端部の外周面を覆いつつ同外周面に螺合する。よって、キャップ部材は、管端部を確実に封止することができる。
Invention of Claim 4 is the underground heat exchanger in any one of Claims 1 thru | or 3, Comprising:
On the inner peripheral surface of the cap member, a female screw is formed which is screwed with the corrugated portion on the outer peripheral surface of the tube end as a male screw,
The cap member seals the tube end portion while covering the tube end portion from the outside.
According to the fourth aspect of the present invention, the cap member is screwed onto the outer peripheral surface while covering the outer peripheral surface of the pipe end portion. Therefore, the cap member can reliably seal the tube end.

請求項5に示す発明は、請求項1乃至4の何れかに記載の地中熱交換器であって、
前記掘削孔と前記コルゲート管との間に充填される前記充填材は、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物を所定の容積含有率で含んでいることを特徴とする。
Invention of Claim 5 is the underground heat exchanger in any one of Claims 1 thru | or 4, Comprising:
The filler filled between the excavation hole and the corrugated pipe contains a long particle made of at least one of silicon carbide, alumina, and blast furnace slag at a predetermined volume content. It is characterized by that.

上記請求項5に示す発明によれば、充填材が含む長粒物は、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れかを素材とするが、何れの素材も高い熱伝導性を有している。また、その形状は長粒形であるので、充填材内において、互い隣り合う長粒物同士が接触する確率は高くなり、これにより、前記充填材内に熱の通り道が形成され易くなる。つまり、長粒物の含有率をあまり高めずとも、前記充填材内に高熱伝導率の伝熱経路を確実に形成可能となる。よって、充填材として一般に使用される砂等よりも前記長粒物が高価な場合であっても、地中熱交換器の製造コストを低く抑えつつ、充填材の熱伝導性を確実に高めることができる。   According to the fifth aspect of the present invention, the long particles contained in the filler are made of at least one of silicon carbide, alumina, and blast furnace slag, and all of the materials have high thermal conductivity. is doing. Moreover, since the shape is a long grain shape, the probability that the long grain objects which adjoin each other in a filler will become high, and, thereby, it becomes easy to form a heat path in the said filler. That is, it is possible to reliably form a heat transfer path with high thermal conductivity in the filler without increasing the content of the long particles. Therefore, even if the above-mentioned long particles are more expensive than sand or the like generally used as a filler, the thermal conductivity of the filler is reliably increased while keeping the manufacturing cost of the underground heat exchanger low. Can do.

請求項6に示す発明は、請求項5に記載の地中熱交換器であって、
前記長粒物の長手方向の寸法が、10〜50mmであり、
前記長手方向と直交する方向の寸法が1〜3mmであることを特徴とする。
The invention shown in claim 6 is the underground heat exchanger according to claim 5,
The longitudinal dimension of the long particles is 10 to 50 mm,
The dimension in a direction orthogonal to the longitudinal direction is 1 to 3 mm.

上記請求項6に示す発明によれば、長粒物の長手方向の寸法が10mm以上であるので、互いに隣り合う長粒物同士が接触する確率は高くなり、これにより、充填材内に高熱伝導率の伝熱経路を確実に形成可能となる。また、50mm以下であるので、長粒物の製造はさほど困難ではなく、製造コストの高騰を抑制できる。更には、50mmよりも長くすると前記掘削孔への充填時に折れ易くなり、製造コストの割には充填後の長粒物の長尺化を図れないという費用対効果悪化の問題が起きる虞があるが、50mm以下にすれば、この問題も有効に回避することができる。   According to the invention described in claim 6 above, since the longitudinal dimension of the long grains is 10 mm or more, the probability that the long grains adjacent to each other will be in contact with each other increases. The rate of heat transfer path can be reliably formed. Moreover, since it is 50 mm or less, manufacture of a long grain thing is not so difficult and the rise in manufacturing cost can be suppressed. Furthermore, if it is longer than 50 mm, it tends to be broken when filling the excavation hole, and there is a possibility that a problem of cost-effectiveness deterioration that a long particle after filling cannot be lengthened for the manufacturing cost may occur. However, if it is 50 mm or less, this problem can be effectively avoided.

また、長粒物の長手方向と直交する方向の寸法たる1〜3mmは、一般に充填材の基材として用いられる砂等の粒状物の粒径とほぼ同サイズである。よって、当該長粒物は、充填材の基材内に偏在すること無く均一に混在し易くなり、結果、充填材の全域に亘り高い熱伝導性を確保することができる。   Moreover, 1-3 mm which is the dimension of the direction orthogonal to the longitudinal direction of a long grain is generally the same size as the grain size of granular materials, such as sand, generally used as a base material of a filler. Therefore, the long particles are easily mixed uniformly without being unevenly distributed in the base material of the filler, and as a result, high thermal conductivity can be ensured over the entire area of the filler.

ちなみに、上述の粒状物の寸法範囲によれば、長粒物の最小サイズは、10mm×1mmとなる。よって、その粒径がミクロンオーダーの微粉の場合に起こりがちな、地下水に混ざって充填材から長粒物が流出するという不具合も確実に防止できて、充填材は長期に亘り高い熱伝導性を維持可能となる。   Incidentally, according to the dimension range of the granular material described above, the minimum size of the long granular material is 10 mm × 1 mm. Therefore, it is possible to surely prevent the problem that long particles flow out of the filler when mixed with groundwater, which tends to occur when the particle size is micron-order fine powder, and the filler has a high thermal conductivity over a long period of time. Can be maintained.

本発明によれば、地中熱交換器の設置工事の施工性を向上し、設置コストを低減可能な地中熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the construction property of the installation work of a ground heat exchanger can be improved, and the ground heat exchanger which can reduce installation cost can be provided.

図1Aは、従来の二重管構造の地中熱交換器121の縦断面図であり、図1Bは、二重管構造の外筒たる鋼管131の管端開口131bの封止構造の説明図である。FIG. 1A is a longitudinal sectional view of a conventional underground heat exchanger 121 having a double-pipe structure, and FIG. 1B is an explanatory diagram of a sealing structure of a tube end opening 131b of a steel pipe 131 which is an outer tube of the double-pipe structure. It is. 本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。It is explanatory drawing of the underground heat utilization system 11 using the underground heat exchanger 21 which concerns on this embodiment. 本実施形態に係る地中熱交換器21の縦断面図であり、その一部を側面視で示している。It is a longitudinal cross-sectional view of the underground heat exchanger 21 which concerns on this embodiment, and has shown the one part by side view. 図4A及び図4Bは、それぞれ、冬場及び夏場での使用例の説明図であり、何れも、地中熱交換器21を縦断面視で示している。4A and 4B are explanatory diagrams of examples of use in winter and summer, respectively, and both show the underground heat exchanger 21 in a longitudinal sectional view. 地中熱交換器21の外筒に用いるコルゲート管31の斜視図である。It is a perspective view of the corrugated pipe | tube 31 used for the outer cylinder of the underground heat exchanger 21. FIG. 本実施形態に係る望ましい例の説明図である。It is explanatory drawing of the desirable example which concerns on this embodiment. 本実施形態に係るその他の望ましい例の説明図である。It is explanatory drawing of the other desirable example which concerns on this embodiment. 図7Aは、炭化ケイ素の長粒物27aを含有した充填材27の説明図であり、図7Bは、その比較例たる球形状の炭化ケイ素を含有した充填材27の説明図であり、図7Cは、図7Aの長粒物27aが充填材27内に形成する高熱伝導率の伝熱経路(ヒートブリッジ)の説明図である。FIG. 7A is an explanatory view of the filler 27 containing long particles 27a of silicon carbide, and FIG. 7B is an explanatory view of the filler 27 containing spherical silicon carbide as a comparative example. These are explanatory drawings of the heat transfer path (heat bridge) of the high thermal conductivity which the long grain 27a of FIG. 7A forms in the filler 27. FIG. 図8A乃至図8Fは、本実施形態に係る地中熱交換器21の設置工法の説明図である。FIG. 8A thru | or FIG. 8F are explanatory drawings of the installation method of the underground heat exchanger 21 which concerns on this embodiment. コルゲート管31の外周面31cに生じ得る充填材27の未充填部分の説明図である。It is explanatory drawing of the unfilled part of the filler 27 which may arise in the outer peripheral surface 31c of the corrugated pipe | tube 31. FIG.

===本実施形態===
<<<地中熱交換器21について>>>
図2は、本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。図3は、一部を側面視で示す地中熱交換器21の縦断面図である。また、図4A及び図4Bは、それぞれ、冬場及び夏場での使用例を示す地中熱交換器21の縦断面図である。図5は、地中熱交換器21の外筒に用いるコルゲート管31の斜視図である。なお、図3乃至図4Bについては、図の錯綜を防ぐべく、断面部位に付与すべき断面線を省略している。
=== This Embodiment ===
<<< About the underground heat exchanger 21 >>>
FIG. 2 is an explanatory diagram of the underground heat utilization system 11 using the underground heat exchanger 21 according to the present embodiment. FIG. 3 is a longitudinal sectional view of the underground heat exchanger 21 partially shown in a side view. 4A and 4B are longitudinal sectional views of the underground heat exchanger 21 showing usage examples in winter and summer, respectively. FIG. 5 is a perspective view of the corrugated pipe 31 used for the outer cylinder of the underground heat exchanger 21. In addition, about FIG. 3 thru | or FIG. 4B, in order to prevent the confusion of a figure, the cross section line which should be provided to a cross-sectional site | part is abbreviate | omitted.

図2に示すように、この地中熱利用システム11は、地盤Gとの間で熱交換を行う地中熱交換器21と、地中熱交換器21の熱媒体26からの熱を利用して建物1の暖房のための温水や冷房のための冷水を生成するヒートポンプ15と、を有する。なお、ヒートポンプ15の構成は周知なので、その説明は省略する。   As shown in FIG. 2, the geothermal heat utilization system 11 utilizes the heat from the underground heat exchanger 21 that performs heat exchange with the ground G and the heat medium 26 of the underground heat exchanger 21. And a heat pump 15 that generates hot water for heating the building 1 and cold water for cooling. In addition, since the structure of the heat pump 15 is known, the description is abbreviate | omitted.

図3に示すように、この地中熱交換器21は、ボアホール方式の二重管型である。すなわち、地盤Gに鉛直に形成された掘削孔としての竪孔23と、竪孔23に鉛直方向に沿って挿入された外筒としてのコルゲート管31と、コルゲート管31内に配置された第1内筒としての第1ホース部材41と、同コルゲート管31内に配置された第2内筒としての第2ホース部材45と、竪孔23とコルゲート管31との間の空間SP23に充填される充填材27と、を有している。   As shown in FIG. 3, the underground heat exchanger 21 is a borehole type double pipe type. That is, a borehole 23 as an excavation hole formed vertically in the ground G, a corrugated pipe 31 as an outer cylinder inserted along the vertical direction into the borehole 23, and a first disposed in the corrugated pipe 31. The first hose member 41 as the inner cylinder, the second hose member 45 as the second inner cylinder arranged in the corrugated pipe 31, and the space SP23 between the bore 23 and the corrugated pipe 31 are filled. And a filler 27.

そして、例えば、冬場には、図4Aに示すように、ヒートポンプ15から第1ホース部材41を経由して、水又は不凍液等の熱媒体26が送られて、当該熱媒体26は、コルゲート管31の下端部31aに配された第1ホース部材41の管端開口41e(「吐出口」に相当)から、コルゲート管31内に吐出される。すると、当該熱媒体26は、コルゲート管31内において地盤Gの地中熱により暖められて自然対流に基づきコルゲート管31内を上方へ移動し、しかる後に、コルゲート管31の上端部31bに設けられた第2ホース部材45の管端開口45e(「排出口」に相当)から該第2ホース部材45内へ流入しヒートポンプ15へ向けて送出される。そして、ヒートポンプ15にて温水生成に供される。   For example, in winter, as shown in FIG. 4A, a heat medium 26 such as water or antifreeze is sent from the heat pump 15 via the first hose member 41, and the heat medium 26 is a corrugated pipe 31. Is discharged into the corrugated pipe 31 from a pipe end opening 41e (corresponding to a “discharge port”) of the first hose member 41 arranged at the lower end 31a of the first hose member 41. Then, the heat medium 26 is heated by the underground heat of the ground G in the corrugated pipe 31 and moves upward in the corrugated pipe 31 based on natural convection, and thereafter, provided in the upper end portion 31 b of the corrugated pipe 31. The second hose member 45 flows into the second hose member 45 from the tube end opening 45e (corresponding to the “discharge port”) and is sent out toward the heat pump 15. Then, the heat pump 15 is used to generate hot water.

他方、夏場の熱媒体26の流れ方向は、上述の逆となる。すなわち、図4Bに示すように、ヒートポンプ15から第2ホース部材45を経由して熱媒体26が送られて、当該熱媒体26は、第2ホース部材45の前記管端開口45e(「吐出口」に相当)からコルゲート管31内に吐出される。そして、当該熱媒体26は、コルゲート管31内において地盤Gの地中熱により冷やされて自然対流に基づきコルゲート管31内を下方へ移動し、しかる後に、コルゲート管31の下端部31aに設けられた第1ホース部材41の前記管端開口41e(「排出口」に相当)から第1ホース部材41内へ流入しヒートポンプ15へ向けて送出される。そして、ヒートポンプ15にて冷水生成に供される。   On the other hand, the flow direction of the heat medium 26 in the summer is reversed as described above. That is, as shown in FIG. 4B, the heat medium 26 is sent from the heat pump 15 via the second hose member 45, and the heat medium 26 passes through the tube end opening 45 e (“discharge port” of the second hose member 45. To the corrugated pipe 31. Then, the heat medium 26 is cooled by the ground heat of the ground G in the corrugated pipe 31 and moves downward in the corrugated pipe 31 based on natural convection, and then provided at the lower end portion 31 a of the corrugated pipe 31. The first hose member 41 flows into the first hose member 41 from the pipe end opening 41e (corresponding to the “discharge port”) and is sent out toward the heat pump 15. Then, the heat pump 15 is used for cold water generation.

以下、地中熱交換器21に係る各構成要素23,31,41,45,27について詳細に説明する。   Hereinafter, each component 23,31,41,45,27 which concerns on the underground heat exchanger 21 is demonstrated in detail.

(1)竪孔23
図3に示すように、竪孔23は、オーガ等の掘削機により地面にほぼ垂直に掘削された孔であり、その直径は100〜200mm、深さは30〜150mである。
(1) Fist hole 23
As shown in FIG. 3, the hole 23 is a hole excavated almost perpendicularly to the ground by an excavator such as an auger, and has a diameter of 100 to 200 mm and a depth of 30 to 150 m.

(2)コルゲート管31
図5及び図3に示すように、コルゲート管31は、その管壁部が波形形状の管部材である。この波形形状は、コルゲート管31の管軸C31を中心軸とする螺旋形であり、また、管壁部の厚み(壁厚)は全長に亘りほぼ一定厚みである。よって、コルゲート管31の外周面31c及び内周面31dのどちらの面も、略同形の螺旋波形形状になっている。より詳しくは、図3に示すように、外周面31cの螺旋波形形状に係る山部と内周面31dの螺旋波形形状に係る谷部、若しくは外周面31cの螺旋波形形状に係る谷部と内周面31dの螺旋波形形状に係る山部とは、互いに壁厚方向に隣り合わせで位置している。
(2) Corrugated pipe 31
As shown in FIGS. 5 and 3, the corrugated tube 31 is a tube member having a corrugated tube wall. This corrugated shape is a spiral shape with the tube axis C31 of the corrugated tube 31 as the central axis, and the thickness (wall thickness) of the tube wall portion is substantially constant over the entire length. Therefore, both the outer peripheral surface 31c and the inner peripheral surface 31d of the corrugated pipe 31 have substantially the same spiral waveform. More specifically, as shown in FIG. 3, the crest portion related to the spiral waveform shape of the outer peripheral surface 31 c and the trough portion related to the spiral waveform shape of the inner peripheral surface 31 d, or the trough portion related to the spiral waveform shape of the outer peripheral surface 31 c The crests related to the helical corrugated shape of the peripheral surface 31d are located next to each other in the wall thickness direction.

そして、このような螺旋波形形状により、管壁部の外周面31c及び内周面31dの表面積は拡大されているので、地盤Gとコルゲート管31内の熱媒体26との間の熱交換効率は格段に高められている。   And since the surface area of the outer peripheral surface 31c and inner peripheral surface 31d of a pipe wall part is expanded by such a spiral waveform shape, the heat exchange efficiency between the ground G and the heat medium 26 in the corrugated pipe 31 is It is greatly improved.

また、かかる螺旋波形形状を規定する各種パラメータ(例えば、山部と山部の管軸C31方向のピッチP(若しくは谷部と谷部の管軸C31方向のピッチP)、山部の外径D1、谷部の外径D2等)は、それぞれ、コルゲート管31の全長に亘り同仕様になっている。よって、コルゲート管31の管壁部のどの部位も、必要に応じて、雄ねじ又は雌ねじとして機能することができる。この雄ねじ又は雌ねじとしての使用例については、後述する。   Further, various parameters that define the helical waveform shape (for example, the pitch P between the crests and the crests in the direction of the tube axis C31 (or the pitch P between the troughs and the crevices in the direction of the tube axis C31), the outer diameter D1 of the crests. , The outer diameter D2 of the valleys, etc.) are the same specification over the entire length of the corrugated pipe 31. Therefore, any part of the tube wall portion of the corrugated tube 31 can function as a male screw or a female screw as necessary. Examples of use as the male screw or the female screw will be described later.

コルゲート管31の下端部31a(「一方の管端部」又は「下側の管端部」に相当)には、この下端部31aの管端開口31edを封止するキャップ部材33が設けられている。これにより、コルゲート管31内の熱媒体26の前記管端開口31edから地盤Gへの漏出が防止される。   A cap member 33 is provided at the lower end 31a of the corrugated pipe 31 (corresponding to “one pipe end” or “lower pipe end”) to seal the pipe end opening 31ed of the lower end 31a. Yes. This prevents the heat medium 26 in the corrugated pipe 31 from leaking from the pipe end opening 31ed to the ground G.

詳しくは、キャップ部材33は、円筒部33aと、この円筒部33aから同軸且つ一体に筒軸方向に延出した略円錐部33bと、を有する。そして、円筒部33aはその内周面33cに、コルゲート管31の螺旋波形形状と対応した螺旋波形形状の部分を有し、この螺旋波形形状の部分を雌ねじとし、コルゲート管31の下端部31aの螺旋波形形状の部分を雄ねじ(「ねじ部」に相当)として、キャップ部材33はコルゲート管31の下端部31aに螺合し、これにより、コルゲート管31の下端部31aの管端開口31edを封止する。つまり、コルゲート管31の螺旋波形形状を利用してキャップ部材33をコルゲート管31にねじ込み固定する。よって、キャップ部材33を固定するための特別な固定構造を、コルゲート管31の下端部31aに追設せずに済み、コルゲート管31の構成を簡素化できる。また、キャップ部材33をコルゲート管31の下端部31aにねじ込めば当該下端部31aを封止できるので、封止作業も容易になる。   Specifically, the cap member 33 includes a cylindrical portion 33a and a substantially conical portion 33b that extends coaxially and integrally from the cylindrical portion 33a in the tube axis direction. The cylindrical portion 33a has a spiral waveform portion corresponding to the spiral waveform shape of the corrugated tube 31 on its inner peripheral surface 33c. The spiral waveform portion is an internal thread, and the lower end portion 31a of the corrugated tube 31 The cap-shaped member 33 is screwed into the lower end portion 31a of the corrugated tube 31, and the tube end opening 31ed of the lower end portion 31a of the corrugated tube 31 is sealed. Stop. That is, the cap member 33 is screwed and fixed to the corrugated pipe 31 using the spiral waveform shape of the corrugated pipe 31. Therefore, it is not necessary to add a special fixing structure for fixing the cap member 33 to the lower end portion 31a of the corrugated pipe 31, and the configuration of the corrugated pipe 31 can be simplified. Further, if the cap member 33 is screwed into the lower end portion 31a of the corrugated pipe 31, the lower end portion 31a can be sealed, so that the sealing work is facilitated.

一方、コルゲート管31の上端部31bにも、この上端部31bの管端開口31euを封止すべくキャップ部材35が設けられている。このキャップ部材35は、例えば中実の円柱体であり、その外周面35cには雄ねじが形成されている。そして、コルゲート管31上端部31bの内周面31dの螺旋波形形状の部分を雌ねじとして、キャップ部材35の前記雄ねじが螺合し、これにより、前記上端部31bの管端開口31euを封止するようになっている。なお、このキャップ部材35には、上述の第1ホース部材41及び第2ホース部材45をコルゲート管31内に導くための貫通孔35h,35hが形成されており、これら貫通孔35h,35hには、それぞれ、第1ホース部材41及び第2ホース部材45が通される。   On the other hand, a cap member 35 is also provided at the upper end 31b of the corrugated pipe 31 so as to seal the pipe end opening 31eu of the upper end 31b. The cap member 35 is, for example, a solid cylindrical body, and a male screw is formed on the outer peripheral surface 35c. And the part of the inner peripheral surface 31d of the upper end part 31b of the corrugated pipe 31 is a female screw, and the male screw of the cap member 35 is screwed together, thereby sealing the pipe end opening 31eu of the upper end part 31b. It is like that. The cap member 35 is formed with through holes 35h and 35h for guiding the first hose member 41 and the second hose member 45 described above into the corrugated pipe 31, and these through holes 35h and 35h The first hose member 41 and the second hose member 45 are passed through, respectively.

このようなコルゲート管31は、高密度ポリエチレン等の樹脂製であり、鋼管と比較して格段に軽量である。よって、当該コルゲート管31を地盤Gの竪孔23へ建て込む際に重量物用の揚重機を用いずに済む等、建て込み易いものとなる。
また、可撓性を有しているので、その全長が数十m〜数百mの場合であっても、当該コルゲート管31をリールに巻き取る等してコンパクトなサイズに収めることができて、これにより、施工現場へ搬送し易くなる。
Such a corrugated pipe 31 is made of a resin such as high-density polyethylene and is much lighter than a steel pipe. Therefore, when the corrugated pipe 31 is built into the borehole 23 of the ground G, it is not necessary to use a heavy lifting machine.
Moreover, since it has flexibility, even if the total length is several tens of meters to several hundreds of meters, the corrugated tube 31 can be wound into a reel and stored in a compact size. This makes it easy to transport to the construction site.

ここで望ましくは、図6Aに示すように、キャップ部材33で封止されるコルゲート管31の下端部31aには、セメント系素材又は樹脂系素材のグラウト材37が、キャップ部材33と前記下端部31aとを跨ぐように充填されていると良い。このようにしていれば、キャップ部材33の雌ねじとコルゲート管31の下端部31aの雄ねじとの間に若干の噛み合い隙間S1が存在する場合でも、当該噛み合い隙間S1にグラウト材37が入り込んで、当該隙間S1をグラウト材37により確実に塞ぐことができて、その結果、コルゲート管31の下端部31aからの熱媒体26の外部漏出を確実に防止可能となる。   Desirably, as shown in FIG. 6A, a grout material 37 made of a cement-based material or a resin-based material is connected to the lower end portion 31 a of the corrugated pipe 31 sealed with the cap member 33. It is good to be filled so as to straddle 31a. In this case, even when a slight meshing gap S1 exists between the female thread of the cap member 33 and the male thread of the lower end portion 31a of the corrugated pipe 31, the grout material 37 enters the meshing gap S1, The gap S <b> 1 can be reliably closed by the grout material 37, and as a result, the external leakage of the heat medium 26 from the lower end portion 31 a of the corrugated pipe 31 can be reliably prevented.

また、このようなグラウト材37の充填部分をコルゲート管31の下端部31aに設ければ、地中熱交換器21の設置工事においてコルゲート管31を竪孔23に挿入する際に、当該グラウト材37が錘となって挿入し易くなる。詳しくは次の通りである。   Further, if such a filling portion of the grout material 37 is provided at the lower end portion 31 a of the corrugated pipe 31, the grout material 31 is inserted when the corrugated pipe 31 is inserted into the fistula 23 in the installation work of the underground heat exchanger 21. It becomes easy to insert 37 as a weight. Details are as follows.

コルゲート管31の竪孔23への建て込み深さは、一般に数十m〜数百mに達する。他方、コルゲート管31は樹脂製であり、その可撓性に起因して曲がったり小刻みに揺れる等、建て込み姿勢が不安定になり易い。その結果、竪孔23にコルゲート管31を挿入する際に、コルゲート管31の下端部31aが、竪孔23の孔壁23aに引っ掛かって詰まる等して、竪孔23の底部近傍まで速やかに到達しない虞がある。   The depth of the corrugated pipe 31 built into the fistula 23 generally reaches several tens of meters to several hundreds of meters. On the other hand, the corrugated pipe 31 is made of resin, and its built-up posture tends to be unstable, such as bending or swaying in small increments due to its flexibility. As a result, when the corrugated pipe 31 is inserted into the borehole 23, the lower end portion 31a of the corrugated pipe 31 is caught by the hole wall 23a of the borehole 23 and clogged, so that it quickly reaches the vicinity of the bottom portion of the borehole 23. There is a risk of not.

この点につき、上述の構成によれば、コルゲート管31の下端部31aに充填されたグラウト材37が錘となり、これにより、コルゲート管31を下方に引っ張って真っ直ぐに延ばした状態する。よって、コルゲート管31の下端部31aが竪孔23の孔壁23aに引っ掛かり難くなって、竪孔23に建て込み易くなる。   About this point, according to the above-mentioned structure, the grout material 37 with which the lower end part 31a of the corrugated pipe | tube 31 was filled becomes a weight, and, thereby, the corrugated pipe | tube 31 is pulled down and it is in the state extended straightly. Therefore, the lower end portion 31 a of the corrugated pipe 31 is not easily caught by the hole wall 23 a of the hole 23, and is easily built into the hole 23.

また、地中熱交換器21の設置工法の種類によっては、地盤Gの竪孔23にコルゲート管31を挿入する際、又は挿入した後に、竪孔23内に液状物が充満しているケースもある。そして、その場合には、コルゲート管31は、液状物からの浮力によって浮き上がってしまい、竪孔23にうまく挿入できない虞があるが、そのような場合にも、上述のグラウト材37が、コルゲート管31の浮力に抗する錘として有効に機能して、これにより、コルゲート管31の下端部31aは竪孔23の液状物中へ速やか且つ真っ直ぐに沈降される。ちなみに、このような浮力に確実に対抗すべく、コルゲート管31内に水等の液体を入れて当該液体を錘としながらコルゲート管31を竪孔23に挿入しても良い。   Moreover, depending on the kind of installation method of the underground heat exchanger 21, there is a case where the liquid material is filled in the borehole 23 when or after the corrugated pipe 31 is inserted into the borehole 23 of the ground G. is there. In such a case, the corrugated pipe 31 is lifted by buoyancy from the liquid material, and may not be inserted into the fistula 23. In such a case, the grout material 37 described above may be corrugated pipe. It effectively functions as a weight that resists the buoyancy of 31, whereby the lower end portion 31 a of the corrugated pipe 31 is quickly and straightly settled into the liquid material in the fistula 23. Incidentally, in order to reliably counter such buoyancy, a liquid such as water may be put into the corrugated pipe 31 and the corrugated pipe 31 may be inserted into the fistula 23 while using the liquid as a weight.

このようなグラウト材37としては、充填時に流動性を有し、充填後には固化するようなセメント系素材又は樹脂系素材が使用される。セメント系素材の具体例としては、セメントやモルタル等を例示でき、樹脂系素材の具体例としては、エポキシ樹脂やアクリル樹脂、シリコン樹脂等を例示できる。ちなみに、錘として用いる場合には、固化後の比重の高い材料が好ましく、例えば、上述のように竪孔23に液状物が充満している場合には、この液状物よりも比重の高いものをグラウト材37として用いると良い。   As such a grout material 37, a cement-based material or a resin-based material that has fluidity at the time of filling and solidifies after filling is used. Specific examples of the cement-based material include cement and mortar. Specific examples of the resin-based material include epoxy resin, acrylic resin, and silicon resin. Incidentally, when used as a weight, a material having a high specific gravity after solidification is preferable. For example, when the pores 23 are filled with a liquid material as described above, a material having a higher specific gravity than the liquid material is used. It is good to use as the grout material 37.

グラウト材37の充填処理は、コルゲート管31を竪孔23に建て込む前の地上において、次のようにして行われる。先ず、キャップ部材33をコルゲート管31に螺合して管端開口31edを封止した状態において、キャップ部材33の底部33fが下に位置するようにコルゲート管31を配置する。そして、キャップ部材33とコルゲート管31との螺合部分又は螺合部分よりも上方の管壁部の部位に、コルゲート管31内と外部空間とを連通する二つの貫通孔h1,h2を形成する。これらのうちの一方の貫通孔h1は、コルゲート管31内にグラウト材37を注入する注入孔として使用され、もう一方の貫通孔h2は、グラウト材37の充填高さの目視確認用の孔として使用される。つまり、後者の孔h2は、グラウト材37の充填目標高さに相当する位置に形成される。そして、孔h1からグラウト材37を注入し、孔h2からグラウト材37が漏出したら、グラウト材37の注入を止め、グラウト材37が固化するまで、これら孔h1,h2を外側から板で押さえる等して塞ぎ、固化後に板を取り外す。   The filling process of the grouting material 37 is performed as follows on the ground before the corrugated pipe 31 is built in the fistula 23. First, in a state where the cap member 33 is screwed into the corrugated tube 31 and the tube end opening 31ed is sealed, the corrugated tube 31 is disposed so that the bottom 33f of the cap member 33 is positioned below. And two through-holes h1 and h2 which connect the inside of the corrugated pipe 31 and external space are formed in the site | part of the pipe wall part above the screwing part of the cap member 33 and the corrugated pipe 31, or a screwing part. . One of these through holes h 1 is used as an injection hole for injecting the grout material 37 into the corrugated pipe 31, and the other through hole h 2 is a hole for visual confirmation of the filling height of the grout material 37. used. That is, the latter hole h <b> 2 is formed at a position corresponding to the target filling height of the grout material 37. Then, when the grout material 37 is injected from the hole h1 and the grout material 37 leaks from the hole h2, the injection of the grout material 37 is stopped, and the holes h1 and h2 are pressed from the outside by a plate until the grout material 37 is solidified. And then remove the plate after solidification.

ちなみに、コルゲート管31の下端部31aを密閉するグラウト材37の充填構造としては、上述の図6A以外に、例えば図6Bに示すような構造も例示できる。すなわち、この図6Bの例では、コルゲート管31の下端部31aにのみグラウト材37としての樹脂等を充填して下端部31aの管端開口31edを閉塞し、キャップ部材33の方にはグラウト材37を充填していないが、このようにしても良い。   Incidentally, as a filling structure of the grout material 37 that seals the lower end portion 31a of the corrugated pipe 31, for example, a structure as shown in FIG. That is, in the example of FIG. 6B, only the lower end portion 31a of the corrugated pipe 31 is filled with resin or the like as the grout material 37 to close the pipe end opening 31ed of the lower end portion 31a. 37 is not filled, but this may be used.

(3)第1ホース部材41及び第2ホース部材45
図3に示すように、第1ホース部材41及び第2ホース部材45は、例えばポリエチレン等の樹脂製の管部材である。そして、第1ホース部材41の下端部の管端開口41eは、コルゲート管31の下端部31aに配置されている一方、第2ホース部材45の下端部の管端開口45eは、コルゲート管31の上端部31bに配置されている。これにより、熱媒体26は、冬場には前述した図4Aのルートで、また夏場には前述した図4Bのルートで、コルゲート管31内を自然対流等に基づき上昇又は下降しながら地盤Gと熱交換する。
(3) First hose member 41 and second hose member 45
As shown in FIG. 3, the 1st hose member 41 and the 2nd hose member 45 are resin-made pipe members, such as polyethylene, for example. And the pipe end opening 41e at the lower end of the first hose member 41 is arranged at the lower end 31a of the corrugated pipe 31, while the pipe end opening 45e at the lower end of the second hose member 45 is It arrange | positions at the upper end part 31b. As a result, the heat medium 26 rises or descends in the corrugated pipe 31 based on natural convection or the like through the route of FIG. 4A described above in winter and the route of FIG. 4B described above in summer. Exchange.

(4)充填材27
充填材27は、例えば、川砂や山砂、珪砂等を基材27bとし、コルゲート管31と竪孔23との間の空間SP23に密実に充填される。これにより、充填材27を介して、コルゲート管31内の熱媒体26と地盤Gとの間で熱交換が行われる。
(4) Filler 27
The filler 27 is, for example, river sand, mountain sand, quartz sand, or the like as a base material 27b, and is densely filled into the space SP23 between the corrugated pipe 31 and the fistula 23. Thereby, heat exchange is performed between the heat medium 26 in the corrugated pipe 31 and the ground G through the filler 27.

この熱交換効率を高めるべく、図7Aに示すように、充填材27には、1〜20%の容積含有率(=長粒物27aの総容積/充填材27の総容積)で、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物27aが混入され、この例では、炭化ケイ素27aが混入されている。そして、当該炭化ケイ素27aの熱伝導率は、168(W/mK)という具合に高い。よって、当該炭化ケイ素27aの混入により充填材27の熱伝導率は飛躍的に高められている。   In order to increase this heat exchange efficiency, as shown in FIG. 7A, the filler 27 has a volume content of 1 to 20% (= total volume of the long granules 27a / total volume of the filler 27). , Alumina, and long grain 27a made of at least one of blast furnace slag is mixed. In this example, silicon carbide 27a is mixed. And the thermal conductivity of the silicon carbide 27a is as high as 168 (W / mK). Therefore, the thermal conductivity of the filler 27 is drastically increased by the inclusion of the silicon carbide 27a.

また、炭化ケイ素27aの形状は、長粒形状(針状形状、棒状)である。よって、図7Aに示すように充填材27内において互い隣り合う炭化ケイ素27a,27a同士が接触する確率は、図7Bに示す球形状の場合と比べて格段に高くなり、これにより、充填材27内には、図7Cに示すような熱の通り道(ヒートブリッジ)が形成され易くなる。つまり、炭化ケイ素27aの含有率をあまり高めずとも、充填材27内に高熱伝導率の伝熱経路を確実に形成可能となる。よって、砂よりも高価な炭化ケイ素27aの含有率を低くすることができて、その結果、地中熱交換器21の製造コストを低く抑えながらも、充填材27の熱伝導性を確実に高めることができる。   The shape of the silicon carbide 27a is a long grain shape (needle shape, rod shape). Therefore, as shown in FIG. 7A, the probability that the silicon carbides 27a and 27a adjacent to each other in the filler 27 are in contact with each other is significantly higher than that of the spherical shape shown in FIG. 7B. Inside, a heat path (heat bridge) as shown in FIG. 7C is easily formed. That is, a heat transfer path having a high thermal conductivity can be reliably formed in the filler 27 without increasing the content of the silicon carbide 27a so much. Therefore, the content rate of the silicon carbide 27a more expensive than sand can be reduced, and as a result, the thermal conductivity of the filler 27 is reliably increased while the manufacturing cost of the underground heat exchanger 21 is kept low. be able to.

ここで望ましくは、炭化ケイ素の長粒物27aの長手方向の寸法を10〜50mmにし、また、長手方向と直交する方向の寸法を1〜3mmにすると良い。そして、長手方向の寸法を10mm以上にすれば、互いに隣り合う長粒物27a,27a同士の接触確率を高めることができる。また、同寸法を50mm以下にすれば、長粒物27aの製造はさほど困難にならず、製造コストの抑制を図れ、更には、竪孔23への充填時の長粒物27aの折損等も有効に防止できて、つまり、製造コストに見合った寸法長さの長粒物27aを、竪孔23内に確実に配することができる。   Desirably, the longitudinal dimension of the long grain 27a of silicon carbide is 10 to 50 mm, and the dimension perpendicular to the longitudinal direction is 1 to 3 mm. And if the dimension of a longitudinal direction shall be 10 mm or more, the contact probability of the long grain objects 27a and 27a adjacent to each other can be raised. Further, if the same dimension is set to 50 mm or less, the production of the long granules 27a is not so difficult, the production cost can be reduced, and the breakage of the long granules 27a at the time of filling the fistula 23 is also caused. It can be effectively prevented, that is, the long grain 27a having a length corresponding to the manufacturing cost can be reliably disposed in the fistula 23.

また、長粒物27aの長手方向と直交する方向の寸法たる1〜3mmは、一般に充填材27の基材27bとして用いられる砂等の粒状物の粒径とほぼ同サイズである。よって、当該長粒物27aは、充填材27の基材27b内に偏在すること無く均一に混入され易く、その結果、充填材27の全域に亘り高い熱伝導性を確保することができる。   Further, 1 to 3 mm, which is a dimension in a direction perpendicular to the longitudinal direction of the long-grained material 27a, is substantially the same as the particle size of a granular material such as sand generally used as the base material 27b of the filler 27. Therefore, the long particles 27 a are easily mixed uniformly without being unevenly distributed in the base material 27 b of the filler 27, and as a result, high thermal conductivity can be ensured over the entire area of the filler 27.

ちなみに、上述の寸法範囲によれば、長粒物27aの最小サイズは、10mm×1mmとなる。よって、その粒径がミクロンオーダーの微粉の場合に起こりがちな、地下水に混ざって充填材27から長粒物27aが流出するという不具合も確実に防止できて、充填材27は長期に亘り高い熱伝導性を維持可能となる。   Incidentally, according to the above-mentioned dimensional range, the minimum size of the long grain 27a is 10 mm × 1 mm. Therefore, it is possible to surely prevent the problem that the long particles 27a flow out of the filler 27 mixed with the ground water, which tends to occur when the particle size is fine powder of micron order, and the filler 27 has a high heat for a long time. Conductivity can be maintained.

<<<地中熱交換器21の設置工法について>>>
図8A乃至図8Fは、地中熱交換器21の設置工法の説明図である。
先ず、図8Aに示すように、対象地盤Gに、孔径100〜200mm、深さ30〜150mの竪孔23をボーリングマシン等の掘削機により掘削する。
<<< About the installation method of the underground heat exchanger 21 >>>
8A to 8F are explanatory diagrams of the installation method of the underground heat exchanger 21. FIG.
First, as shown in FIG. 8A, a hole 23 having a hole diameter of 100 to 200 mm and a depth of 30 to 150 m is excavated in the target ground G using an excavator such as a boring machine.

また、これと同時並行又は前後して、コルゲート管31、及び第1ホース部材41をそれぞれリール31R,41Rに巻き取った状態で現場搬入する。なお、第2ホース部材45は短尺なので、巻き取り状態で搬入しなくて良い。そして、リール31Rからコルゲート管31を少しだけ繰り出し、そのコルゲート管31の先端部の外周面における螺旋波形形状を雄ねじとして、キャップ部材33を螺合して管端開口31edを封止する。そうしたら、コルゲート管31の先端部にグラウト材37を注入して螺合部分の前記噛み合い隙間S1を埋める。   Simultaneously or in parallel with this, the corrugated pipe 31 and the first hose member 41 are carried on-site in a state of being wound around the reels 31R and 41R, respectively. In addition, since the 2nd hose member 45 is short, it does not need to carry in in a winding state. Then, the corrugated tube 31 is slightly extended from the reel 31R, and the cap member 33 is screwed together with the helical corrugated shape on the outer peripheral surface of the tip of the corrugated tube 31 as a male screw, thereby sealing the tube end opening 31ed. If it does so, grout material 37 will be poured into the tip part of corrugated pipe 31, and the above-mentioned meshing crevice S1 of a screwing part will be filled up.

次に、竪孔23にコルゲート管31を建て込む。すなわち、図8Aに示すように、リール31Rの繰り出し端を竪孔23の上方に配置し、そして、図8Bに示すように、コルゲート管31の前記先端部が下端部となるようにコルゲート管31をリール31Rから繰り出すことにより、順次、コルゲート管31を竪孔23内に建て込んでいく。なお、この建て込み中にあっては、コルゲート管31の下端部のグラウト材37が錘として機能し、コルゲート管31は全体として真っ直ぐな安定した建て込み姿勢を維持する。そして、コルゲート管31の下端部が竪孔23の底部近傍に到達したら、コルゲート管31の繰り出しを停止する。そして、コルゲート管31をリール31Rから分離すべくコルゲート管31を切断し、これによりコルゲート管31の上端部31bが形成される(図8Cを参照)。   Next, the corrugated pipe 31 is built in the fistula 23. That is, as shown in FIG. 8A, the feeding end of the reel 31R is arranged above the hole 23, and as shown in FIG. 8B, the corrugated pipe 31 is arranged such that the tip end portion of the corrugated pipe 31 becomes the lower end part. Are fed out from the reel 31 </ b> R, so that the corrugated pipe 31 is sequentially built into the fistula 23. During the erection, the grouting material 37 at the lower end of the corrugated pipe 31 functions as a weight, and the corrugated pipe 31 as a whole maintains a straight and stable erected posture. Then, when the lower end portion of the corrugated pipe 31 reaches the vicinity of the bottom of the hole 23, the feeding of the corrugated pipe 31 is stopped. Then, the corrugated tube 31 is cut to separate the corrugated tube 31 from the reel 31R, thereby forming the upper end portion 31b of the corrugated tube 31 (see FIG. 8C).

そうしたら、図8Cに示すように竪孔23とコルゲート管31との間の空間SP23に漏斗等を用いて充填材27を注入する。   If it does so, as shown to FIG. 8C, the filler 27 will be inject | poured into space SP23 between the hole 23 and the corrugated pipe | tube 31 using a funnel.

但し、図9の拡大縦断面図に示すように、コルゲート管31の外周面31cは螺旋波形形状になっている。そのため、単に充填材27を上方から落下充填させるだけだと、螺旋波形形状の谷部及びその近傍空間が山部の影となって、そこには充填材27が回り難くなり、未充填部分、つまり空隙が生じてしまう。そして、このような空隙は、地盤Gからコルゲート管31内の熱媒体26への熱伝導を阻害する。   However, as shown in the enlarged vertical sectional view of FIG. 9, the outer peripheral surface 31 c of the corrugated pipe 31 has a spiral waveform shape. Therefore, if the filling material 27 is simply dropped and filled from above, the valley portion of the spiral waveform shape and the space in the vicinity thereof become a shadow of the mountain portion, and it becomes difficult for the filling material 27 to turn there, That is, voids are generated. Such voids inhibit heat conduction from the ground G to the heat medium 26 in the corrugated pipe 31.

そこで、このような空隙を潰すべく、図8Dに示すように、充填材27の充填後にコルゲート管31内にバイブレーター81を入れてコルゲート管31を振動させることにより、前記空隙の周囲の充填材27を順次落下させて空隙を埋めるようにしている。そして、空隙が埋まったら、その分だけ充填材27の充填高さが低くなるので、その分量の充填材27を竪孔23内に追加投入する。   Therefore, in order to crush such a gap, as shown in FIG. 8D, after filling the filler 27, a vibrator 81 is placed in the corrugated pipe 31 to vibrate the corrugated pipe 31, thereby filling the filler 27 around the gap 27. Are gradually dropped to fill the gap. Then, when the gap is filled, the filling height of the filler 27 is lowered accordingly, so that the amount of filler 27 is additionally charged into the fistula 23.

但し、コルゲート管31の全長は、数十m〜数百mであるところ、バイブレーター81の振動子81aの全長は精々数十cmである。そのため、例えば、バイブレーター81の振動子81aをコルゲート管31の上端部31bの内周面に当接させたところで、その振動を、数十m〜数百mもあるコルゲート管31の全長に亘って伝えることはできない。   However, the total length of the corrugated pipe 31 is several tens of meters to several hundreds of meters, and the total length of the vibrator 81a of the vibrator 81 is several tens of centimeters. Therefore, for example, when the vibrator 81a of the vibrator 81 is brought into contact with the inner peripheral surface of the upper end portion 31b of the corrugated pipe 31, the vibration is caused over the entire length of the corrugated pipe 31 that is several tens to several hundreds of meters. I can't tell you.

そこで、図8Dに示すように、コルゲート管31内に前記振動子81aをワイヤー等の吊り具81bで吊下し、吊り具81bを操作して、振動子81aをコルゲート管31の全長に亘って上下方向に移動するようにしている。そして、これにより、コルゲート管31の内周面31dにおいて振動子81aの当接により振動する部位を、コルゲート管31の全長に亘って順次移動させて、ほぼ全ての空隙を潰すようにしている。   Therefore, as shown in FIG. 8D, the vibrator 81 a is suspended in the corrugated pipe 31 by a hanger 81 b such as a wire, and the hanger 81 b is operated so that the vibrator 81 a extends over the entire length of the corrugated pipe 31. It moves up and down. As a result, the portion of the inner peripheral surface 31d of the corrugated tube 31 that vibrates due to the contact of the vibrator 81a is sequentially moved over the entire length of the corrugated tube 31 so that almost all the gaps are crushed.

なお、この充填作業を効率良く短時間で終える観点からは、望ましくは、最初に振動子81aを当接させる位置をコルゲート管31の下端部とし、以降、この当接位置を上方へずらしていくと良い。これは、空隙が埋まる際には、その空隙分の分量の充填材27が上方から落下しており、つまり、空隙が埋まる代わりに、その上方に新たな空隙が生じるからである。よって、下方の空隙から先に潰した方が、作業の無駄が無いのである。   From the viewpoint of efficiently completing this filling operation in a short time, preferably, the position where the vibrator 81a is first brought into contact is the lower end portion of the corrugated pipe 31, and thereafter, this contact position is shifted upward. And good. This is because when the gap is filled, the amount of filler 27 corresponding to the gap falls from above, that is, instead of filling the gap, a new gap is formed above the gap. Therefore, there is no waste of work by squashing first from the lower gap.

そして、このようにして竪孔23とコルゲート管31との間の空間SP23に密実に充填材27が充填されたら、図8Eに示すようにコルゲート管31の上端部31bの上方に第1ホース部材41のリール41Rを配置して、このリール41Rから第1ホース部材41を繰り出してコルゲート管31内に第1ホース部材41を挿入する。そして、挿入が完了したら、図8Fに示すように、コルゲート管31の上端部31bにキャップ部材35をねじ込んで上端部31bの管端開口31euを封止する。なお、この時、キャップ部材35の二つの貫通孔35h,35hには、それぞれ、第1ホース部材41及び第2ホース部材45が通される。   When the filler 27 is densely filled in the space SP23 between the stoma 23 and the corrugated pipe 31 in this way, the first hose member is disposed above the upper end portion 31b of the corrugated pipe 31 as shown in FIG. 8E. Forty-one reels 41 </ b> R are arranged, the first hose member 41 is fed out from the reel 41 </ b> R, and the first hose member 41 is inserted into the corrugated pipe 31. When the insertion is completed, as shown in FIG. 8F, the cap member 35 is screwed into the upper end portion 31b of the corrugated pipe 31 to seal the pipe end opening 31eu of the upper end portion 31b. At this time, the first hose member 41 and the second hose member 45 are passed through the two through holes 35h and 35h of the cap member 35, respectively.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、コルゲート管31内の熱媒体26の流れ方向を鉛直方向にした垂直方式の地中熱交換器21を例示したが、何等これに限るものではなく、水平方式でも良い。すなわち、水平方向に広い掘削孔内に、コルゲート管31の管軸C31を水平にしながら収容し、これにより、コルゲート管31内の熱媒体26の流れ方向を水平方向にしても良い。なお、掘削孔に収容後は、充填材27により埋め戻されるのは言うまでもない。   In the above-described embodiment, the vertical type underground heat exchanger 21 in which the flow direction of the heat medium 26 in the corrugated pipe 31 is set to the vertical direction is illustrated, but the invention is not limited to this, and a horizontal method may be used. That is, the tube axis C31 of the corrugated pipe 31 may be accommodated in a horizontal excavation hole while being horizontal, whereby the flow direction of the heat medium 26 in the corrugated pipe 31 may be horizontal. Needless to say, the material is backfilled with the filler 27 after being accommodated in the excavation hole.

上述の実施形態では、図3に示すように、コルゲート管31の下端部31aに螺合するキャップ部材33として、雌ねじを有した構成を例示し、つまり、キャップ部材33が前記下端部31aを外から覆いつつ当該下端部31aを封止していたが、何等これに限るものではない。例えば、雄ねじと雌ねじの関係を逆にしても良い。すなわち、コルゲート管31の下端部31aの内周面31dにおける螺旋波形形状の部分を雌ねじとして、この雌ねじに螺合する雄ねじを、キャップ部材33における円筒部33aの外周面に設けても良い。   In the above-described embodiment, as shown in FIG. 3, the cap member 33 that is screwed into the lower end portion 31a of the corrugated pipe 31 is exemplified as having a female screw, that is, the cap member 33 is configured to remove the lower end portion 31a. Although the lower end portion 31a is sealed while covering, the present invention is not limited to this. For example, the relationship between the male screw and the female screw may be reversed. In other words, a helically wavy shape portion on the inner peripheral surface 31 d of the lower end portion 31 a of the corrugated pipe 31 may be used as a female screw, and a male screw that engages with this female screw may be provided on the outer peripheral surface of the cylindrical portion 33 a of the cap member 33.

1 建物、11 地中熱交換システム、15 ヒートポンプ、
21 地中熱交換器、23 竪孔(掘削孔)、23a 孔壁、
26 熱媒体、27 充填材、27a 長粒物、27b 基材、
31 コルゲート管、31a 下端部(管端部)、31b 上端部、
31c 外周面、31d 内周面、31ed 管端開口、31eu 管端開口、
31R リール、33 キャップ部材、33a 円筒部、33b 略円錐部、
33c 内周面、33f 底部、35 キャップ部材、
35c 外周面、35h 貫通孔、37 グラウト材、
41 第1ホース部材、41e 管端開口、41R リール、
45 第2ホース部材、45e 管端開口、
81 バイブレーター、81a 振動子、81b 吊り具、
G 地盤、S1 隙間、h1 貫通孔、h2 貫通孔、SP23 空間
1 building, 11 underground heat exchange system, 15 heat pump,
21 underground heat exchanger, 23 borehole (excavation hole), 23a hole wall,
26 heat medium, 27 filler, 27a long grain, 27b substrate,
31 corrugated pipe, 31a lower end (pipe end), 31b upper end,
31c outer peripheral surface, 31d inner peripheral surface, 31ed tube end opening, 31eu tube end opening,
31R reel, 33 cap member, 33a cylindrical portion, 33b substantially conical portion,
33c inner peripheral surface, 33f bottom, 35 cap member,
35c outer peripheral surface, 35h through hole, 37 grout material,
41 first hose member, 41e pipe end opening, 41R reel,
45 second hose member, 45e pipe end opening,
81 vibrator, 81a vibrator, 81b hanger,
G ground, S1 gap, h1 through hole, h2 through hole, SP23 space

Claims (6)

地盤との間で熱交換を行う地中熱交換器であって、
地盤の掘削孔内に配される可撓性の樹脂製コルゲート管と、
前記コルゲート管内に熱媒体を吐出する吐出口と、
前記地盤と熱交換した前記熱媒体を前記コルゲート管から排出する排出口と、
前記掘削孔と前記コルゲート管との間に充填される充填材と、を有し、
前記コルゲート管の管壁部の波形形状は、前記コルゲート管の管軸を中心軸とする螺旋形状に形成されており、
前記コルゲート管の一方の管端部は、該管端部における前記波形形状の部分をねじ部として螺合するキャップ部材によって封止されていることを特徴とする地中熱交換器。
An underground heat exchanger that exchanges heat with the ground,
A flexible resin corrugated pipe disposed in the excavation hole of the ground;
A discharge port for discharging a heat medium into the corrugated tube;
A discharge port for discharging the heat medium exchanged with the ground from the corrugated pipe;
A filler filled between the excavation hole and the corrugated pipe,
The corrugated shape of the tube wall portion of the corrugated tube is formed in a spiral shape with the tube axis of the corrugated tube as the central axis,
One underground end of the corrugated tube is sealed with a cap member that is screwed with the corrugated portion at the end of the tube as a threaded portion.
請求項1に記載の地中熱交換器であって、
前記キャップ部材で封止される前記管端部には、セメント系素材又は樹脂系素材のグラウト材が、前記キャップ部材と前記管端部とを跨ぐように充填されていることを特徴とする地中熱交換器。
The underground heat exchanger according to claim 1,
The pipe end sealed with the cap member is filled with a cement-based material or a resin-based grout material so as to straddle the cap member and the pipe end. Medium heat exchanger.
請求項2に記載の地中熱交換器であって、
前記掘削孔として前記地盤に鉛直方向に掘削された竪孔に、前記コルゲート管は、その管軸を鉛直方向に沿わせて挿入されており、
前記コルゲート管の鉛直方向の下側の管端部が前記キャップ部材により封止されているとともに、前記管端部に前記グラウト材が充填されていることを特徴とする地中熱交換器。
The underground heat exchanger according to claim 2,
The corrugated pipe is inserted along the vertical axis of the corrugated pipe into the borehole drilled in the vertical direction on the ground as the excavation hole,
A subterranean heat exchanger characterized in that a pipe end on the lower side in the vertical direction of the corrugated pipe is sealed by the cap member, and the grout material is filled in the pipe end.
請求項1乃至3の何れかに記載の地中熱交換器であって、
前記キャップ部材の内周面には、前記管端部の外周面における前記波形形状の部分を雄ねじとして螺合する雌ねじが形成されており、
前記キャップ部材は、前記管端部を外から覆いつつ前記管端部を封止することを特徴とする地中熱交換器。
The underground heat exchanger according to any one of claims 1 to 3,
On the inner peripheral surface of the cap member, a female screw is formed which is screwed with the corrugated portion on the outer peripheral surface of the tube end as a male screw,
The cap member seals the tube end portion while covering the tube end portion from the outside.
請求項1乃至4の何れかに記載の地中熱交換器であって、
前記掘削孔と前記コルゲート管との間に充填される前記充填材は、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物を所定の容積含有率で含んでいることを特徴とする地中熱交換器。
The underground heat exchanger according to any one of claims 1 to 4,
The filler filled between the excavation hole and the corrugated pipe contains a long particle made of at least one of silicon carbide, alumina, and blast furnace slag at a predetermined volume content. An underground heat exchanger characterized by that.
請求項5に記載の地中熱交換器であって、
前記長粒物の長手方向の寸法が、10〜50mmであり、
前記長手方向と直交する方向の寸法が1〜3mmであることを特徴とする地中熱交換器。
The underground heat exchanger according to claim 5,
The longitudinal dimension of the long particles is 10 to 50 mm,
The underground heat exchanger characterized in that a dimension in a direction orthogonal to the longitudinal direction is 1 to 3 mm.
JP2009152775A 2009-06-26 2009-06-26 Underground heat exchanger Active JP5471074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152775A JP5471074B2 (en) 2009-06-26 2009-06-26 Underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152775A JP5471074B2 (en) 2009-06-26 2009-06-26 Underground heat exchanger

Publications (2)

Publication Number Publication Date
JP2011007446A true JP2011007446A (en) 2011-01-13
JP5471074B2 JP5471074B2 (en) 2014-04-16

Family

ID=43564315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152775A Active JP5471074B2 (en) 2009-06-26 2009-06-26 Underground heat exchanger

Country Status (1)

Country Link
JP (1) JP5471074B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759222A (en) * 2012-08-02 2012-10-31 斯航 Irregular heat exchanging pipe of ground source heat pump heat exchanger
JP2013108657A (en) * 2011-11-18 2013-06-06 Ohbayashi Corp Method for manufacturing underground heat exchanger of double pipe structure
JP2013108656A (en) * 2011-11-18 2013-06-06 Ohbayashi Corp Method for manufacturing underground heat exchanger of double pipe structure
JP2014005985A (en) * 2012-06-22 2014-01-16 Kajima Corp Heat exchanger installation method, heat exchange structure, and heat exchange installation unit
JP2015010821A (en) * 2013-06-26 2015-01-19 楊 泰和 Heat radiator
FR3018600A1 (en) * 2014-03-14 2015-09-18 Brgm DIFFUSIVE THERMAL STORAGE DEVICE USING SILICON CARBIDE
US9897347B2 (en) 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
CN108387018A (en) * 2018-04-08 2018-08-10 山东达尔玛新能源科技有限公司 A kind of long helical pitch rotational flow heat exchanger acquiring hot dry rock thermal energy using individual well

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331233A (en) * 1994-06-15 1995-12-19 Nippondenso Co Ltd Thermal storage material and thermal storage apparatus using the same
JPH10274444A (en) * 1997-01-30 1998-10-13 Kazuo Kuroiwa Underground heat-exchange system with heat-reservoir and manufacture thereof
JPH1151407A (en) * 1997-07-31 1999-02-26 Mitsubishi Cable Ind Ltd Temperature-controlling structure of building
JP2002054850A (en) * 2000-08-08 2002-02-20 Nippon Steel Corp Underground heat exchange system
JP2004169985A (en) * 2002-11-19 2004-06-17 Mitsubishi Materials Natural Resources Development Corp Geothermal exchange system
JP2004177013A (en) * 2002-11-27 2004-06-24 Asahi Kasei Homes Kk Underground heat exchange pile
JP2004309124A (en) * 2003-03-25 2004-11-04 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
JP2006070439A (en) * 2004-08-31 2006-03-16 Totaku Industries Inc Permeable pipe for being buried in ground
JP2007024342A (en) * 2005-07-12 2007-02-01 Tadashi Tsunoda Geothermal heat collecting system
JP2008256329A (en) * 2007-04-09 2008-10-23 Ohbayashi Corp Underground heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331233A (en) * 1994-06-15 1995-12-19 Nippondenso Co Ltd Thermal storage material and thermal storage apparatus using the same
JPH10274444A (en) * 1997-01-30 1998-10-13 Kazuo Kuroiwa Underground heat-exchange system with heat-reservoir and manufacture thereof
JPH1151407A (en) * 1997-07-31 1999-02-26 Mitsubishi Cable Ind Ltd Temperature-controlling structure of building
JP2002054850A (en) * 2000-08-08 2002-02-20 Nippon Steel Corp Underground heat exchange system
JP2004169985A (en) * 2002-11-19 2004-06-17 Mitsubishi Materials Natural Resources Development Corp Geothermal exchange system
JP2004177013A (en) * 2002-11-27 2004-06-24 Asahi Kasei Homes Kk Underground heat exchange pile
JP2004309124A (en) * 2003-03-25 2004-11-04 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
JP2006070439A (en) * 2004-08-31 2006-03-16 Totaku Industries Inc Permeable pipe for being buried in ground
JP2007024342A (en) * 2005-07-12 2007-02-01 Tadashi Tsunoda Geothermal heat collecting system
JP2008256329A (en) * 2007-04-09 2008-10-23 Ohbayashi Corp Underground heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108657A (en) * 2011-11-18 2013-06-06 Ohbayashi Corp Method for manufacturing underground heat exchanger of double pipe structure
JP2013108656A (en) * 2011-11-18 2013-06-06 Ohbayashi Corp Method for manufacturing underground heat exchanger of double pipe structure
JP2014005985A (en) * 2012-06-22 2014-01-16 Kajima Corp Heat exchanger installation method, heat exchange structure, and heat exchange installation unit
CN102759222A (en) * 2012-08-02 2012-10-31 斯航 Irregular heat exchanging pipe of ground source heat pump heat exchanger
US9897347B2 (en) 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
US11892201B2 (en) 2013-03-15 2024-02-06 Thomas Scott Breidenbach Installation apparatus/tool for tubular geothermal heat exchanger systems and methods
JP2015010821A (en) * 2013-06-26 2015-01-19 楊 泰和 Heat radiator
FR3018600A1 (en) * 2014-03-14 2015-09-18 Brgm DIFFUSIVE THERMAL STORAGE DEVICE USING SILICON CARBIDE
CN108387018A (en) * 2018-04-08 2018-08-10 山东达尔玛新能源科技有限公司 A kind of long helical pitch rotational flow heat exchanger acquiring hot dry rock thermal energy using individual well

Also Published As

Publication number Publication date
JP5471074B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5471074B2 (en) Underground heat exchanger
JP5397044B2 (en) Installation method of underground heat exchanger
US10301528B1 (en) Method, apparatus, header, and composition for ground heat exchange
JP5621218B2 (en) Underground heat exchanger and filler
JP2012524235A (en) Underground continuous loop heat exchanger, its manufacturing method and heating, cooling or energy storage method
KR20130133990A (en) Underground Heat Exchanger Coil Weighing Device and Installation Method for High Precision
JP2014533332A (en) Casing of coaxial heat exchanger for geothermal well, and orientation and support method of the casing
GB2467280A (en) Geothermiesystem
JP2009121063A (en) Service well, method of constructing service well, and structure of service well
KR101299826B1 (en) Depth geothermal system unit
JP2004271129A (en) Underground heat exchange system
JP5659767B2 (en) Method of installing pipe member related to underground heat exchanger in excavation hole
JP2010014359A (en) Method and structure for burying ground heat exchanger tube
JP5659766B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
KR101499768B1 (en) Construction method of vertical type geothermal exchanger using safety guide
JP2005069538A (en) Buried pipe for heat exchange
JP5712597B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
JP5678637B2 (en) Method of installing pipe member related to underground heat exchanger in excavation hole
CN105698437B (en) A kind of U-joint used for geothermal heat pump, earth source heat pump and earth source heat pump construction method
EP3086055A1 (en) Ground heat exchanger
CN104278670A (en) Prefabricated reinforced concrete pipe pile with ground source heat pump spiral tubular heat exchanger
JP4859871B2 (en) Buried pipe for heat exchange
CN101922167B (en) Method for taking water by explosively enlarging spiral filter tube
JP6232962B2 (en) How to build pipe members
JP6099889B2 (en) Heat exchanger construction method and heat exchange construction unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150