JP7357324B2 - Multi-source heat pump equipment - Google Patents

Multi-source heat pump equipment Download PDF

Info

Publication number
JP7357324B2
JP7357324B2 JP2018183859A JP2018183859A JP7357324B2 JP 7357324 B2 JP7357324 B2 JP 7357324B2 JP 2018183859 A JP2018183859 A JP 2018183859A JP 2018183859 A JP2018183859 A JP 2018183859A JP 7357324 B2 JP7357324 B2 JP 7357324B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
water
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018183859A
Other languages
Japanese (ja)
Other versions
JP2020051715A (en
Inventor
雅久 石井
里美 奥島
英樹 森山
遼太 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2018183859A priority Critical patent/JP7357324B2/en
Publication of JP2020051715A publication Critical patent/JP2020051715A/en
Priority to JP2023150683A priority patent/JP2023171399A/en
Application granted granted Critical
Publication of JP7357324B2 publication Critical patent/JP7357324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気および地下水等の水を採熱・放熱の熱源とするマルチ熱源ヒートポンプ装置に関し、さらに詳しく言えば、施設園芸に好適なマルチ熱源ヒートポンプ装置に関するものである。 The present invention relates to a multi-source heat pump device that uses water such as air and groundwater as a heat source for collecting and dissipating heat, and more specifically, it relates to a multi-source heat pump device suitable for greenhouse horticulture.

近年、化石燃料の埋蔵量が減少するなか、燃油価格が上昇する傾向がある。このような状況のなか、燃油式暖房機の代替技術として空気熱源ヒートポンプの導入が推進されているが、その導入は余り進んでいないのが実情である。 In recent years, fuel prices have tended to rise as fossil fuel reserves have decreased. Under these circumstances, the introduction of air source heat pumps is being promoted as an alternative technology to fuel-based heaters, but the reality is that their introduction has not progressed very much.

その理由の一つとして、外気温が低いときに暖房運転を行うと、室外機の熱交換器に着霜が生じ、採熱効率あるいはCOP(Coefficient Of Performance:成績係数)が低下することが挙げられる。特に、園芸施設の暖房負荷は外気温がもっとも低くなる夜間から明け方にかけて最大となるため、家庭/ビル用や産業用の空気熱源ヒートポンプに比べてCOPが低い。 One of the reasons for this is that when heating operation is performed when the outside temperature is low, frost forms on the heat exchanger of the outdoor unit, reducing the heat extraction efficiency or COP (Coefficient of Performance). . In particular, the heating load on gardening facilities is highest from nighttime to dawn when the outside temperature is lowest, so the COP is lower than that of air source heat pumps for homes/buildings and industrial use.

また、室外熱交換器に着霜が生じた場合、室外熱交換器を凝縮器、室内熱交換器を蒸発器とするデフロスト(霜取り)運転を行うことになるが、デフロスト中は室内への熱供給が停止されるとともに、電力のみが消費され暖房には寄与しない。また、施設園芸用に開発された専用の機器が少なく、初期導入コストが高価ということも普及の妨げになっている。 Additionally, if frost forms on the outdoor heat exchanger, a defrost operation will be performed using the outdoor heat exchanger as a condenser and the indoor heat exchanger as an evaporator. While the supply is stopped, only electricity is consumed and does not contribute to heating. In addition, there are few specialized equipment developed for greenhouse horticulture, and the initial installation cost is high, which is also hindering its widespread use.

一方、水熱源ヒートポンプの一つである地中熱源ヒートポンプは、厳寒のなかでも地中や地下水から効率的に採熱することができる(例えば、特許文献1,2参照)。 On the other hand, a ground source heat pump, which is one type of water source heat pump, can efficiently collect heat from underground or groundwater even in extremely cold weather (see, for example, Patent Documents 1 and 2).

しかしながら、熱交換器を埋設するための掘削、ボーリングが必要であり、その埋設のための工事コストが高いことや、その費用も地域の土質や地下水の状況によって異なることが設備投資を検討するうえでのマイナス要因となり、技術普及、社会実装には至っていない。 However, excavation and boring are required to bury the heat exchanger, and the construction cost for burying the heat exchanger is high, and the cost also varies depending on the soil quality and groundwater situation in the area, which is a consideration when considering capital investment. As a result, the technology has not been disseminated or implemented in society.

また、従来の地中熱源ヒートポンプは、地中や地下水などの熱源とヒートポンプとの間で熱の受け渡しを行うブラインを循環させるためのポンプを駆動する必要があり、ヒートポンプ全体のシステムCOPを低下させる一因となっている。 In addition, conventional ground source heat pumps need to drive a pump to circulate brine, which transfers heat between the heat pump and a heat source such as underground or groundwater, which reduces the overall system COP of the heat pump. This is a contributing factor.

特開2006-145059号公報Japanese Patent Application Publication No. 2006-145059 特開2009-036415号公報Japanese Patent Application Publication No. 2009-036415

したがって、本発明の課題は、空気および地下水等の水を採熱・放熱の熱源とするマルチ熱源ヒートポンプ装置で、外気温や水温等に応じて運転の最適化をはかることができる、特に施設園芸用に好適なマルチ熱源ヒートポンプ装置を提供することにある。 Therefore, an object of the present invention is to provide a multi-heat source heat pump device that uses water such as air and groundwater as a heat source for heat collection and heat radiation, and is capable of optimizing operation according to outside air temperature, water temperature, etc., especially for greenhouse horticulture. The object of the present invention is to provide a multi-source heat pump device suitable for use.

上記課題を解決するため、本発明は、冷媒を圧縮する圧縮機、四方弁、室外熱交換器、膨張弁および室内熱交換器を冷媒配管を介して接続してなる冷凍サイクルを含み、上記四方弁の切り替えにより、冷房運転時には上記室外熱交換器が凝縮器、上記室内熱交換器が蒸発器として作用し、暖房運転時には上記室内熱交換器が凝縮器、上記室外熱交換器が蒸発器として作用する、空気および地下水等の水を採熱・放熱の熱源とする施設園芸に好適なマルチ熱源ヒートポンプ装置において、
上記室外熱交換器として、第1室外熱交換器と第2室外熱交換器の2つの熱交換器を有し、上記第1室外熱交換器が地下水等の水が溜められるオープンループ方式の貯水槽内の水中に浸漬され、上記水と上記冷媒との間で熱交換が行われるオープンループ方式の水-冷媒直接膨張式の熱交換器であり、上記第2室外熱交換器が送風ファンを有する空気-冷媒熱交換器であり、
上記第1室外熱交換器と上記第2室外熱交換器とが上記冷媒配管に対して並列に接続されているとともに、上記第1室外熱交換器と上記第2室外熱交換器のいずれか一方もしくは両方に上記冷媒を流す切替弁を備えており、
上記室内熱交換器を凝縮器、上記第2室外熱交換器を蒸発器とする暖房運転時に上記第2室外熱交換器に付着した霜を除霜する際、上記圧縮機より上記室内熱交換器に供給される高温・高圧のガス冷媒の一部を第1の枝管を介して上記第2室外熱交換器に流して上記第2室外熱交換器を上記室内熱交換器とともに凝縮器とし、
上記第2室外熱交換器にて凝縮(放熱)して液化した冷媒は、第2の枝管を介して上記膨張弁の上流側に至り、そこで上記室内熱交換器で凝縮(放熱)し液化した冷媒と合流して上記膨張弁で圧力が下げられたのち、上記第1室外熱交換器で蒸発して低圧のガス冷媒となり、アキュムレータを経て上記圧縮機に戻され、
上記第2室外熱交換器に代えて上記第1室外熱交換器を蒸発器とすることにより、上記室内熱交換器に供給される高温・高圧のガス冷媒の量は、上記第1の枝管を介して上記第2室外熱交換器に供給される分だけ減るものの、暖房運転を中断することなく、上記第2室外熱交換器に付着した霜を除霜することができる手段を備え、
除霜後には、上記第2室外熱交換器を蒸発器とする除霜開始前の元の暖房運転状態に戻されることを特徴としている。
In order to solve the above problems, the present invention includes a refrigeration cycle in which a compressor for compressing a refrigerant, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected via refrigerant piping, By switching the valves, the outdoor heat exchanger acts as a condenser and the indoor heat exchanger acts as an evaporator during cooling operation, and the indoor heat exchanger acts as a condenser and the outdoor heat exchanger acts as an evaporator during heating operation. In a multi-heat source heat pump device suitable for greenhouse horticulture, which uses water such as air and groundwater as a heat source for heat collection and heat radiation,
The outdoor heat exchanger has two heat exchangers, a first outdoor heat exchanger and a second outdoor heat exchanger, and the first outdoor heat exchanger is an open-loop water storage system in which water such as groundwater is stored. This is an open-loop type water-refrigerant direct expansion type heat exchanger that is immersed in water in a tank and heat exchange is performed between the water and the refrigerant, and the second outdoor heat exchanger has a blower fan. an air-refrigerant heat exchanger having
The first outdoor heat exchanger and the second outdoor heat exchanger are connected in parallel to the refrigerant pipe, and one of the first outdoor heat exchanger and the second outdoor heat exchanger Or, both are equipped with a switching valve that allows the above refrigerant to flow .
When defrosting frost adhering to the second outdoor heat exchanger during heating operation in which the indoor heat exchanger is used as a condenser and the second outdoor heat exchanger is used as an evaporator, the compressor is used as the indoor heat exchanger. A part of the high-temperature, high-pressure gas refrigerant supplied to the second outdoor heat exchanger is caused to flow through the first branch pipe to the second outdoor heat exchanger, and the second outdoor heat exchanger is used as a condenser together with the indoor heat exchanger,
The refrigerant condensed (radiated heat) and liquefied in the second outdoor heat exchanger reaches the upstream side of the expansion valve via the second branch pipe, where it condenses (radiates heat) and liquefies in the indoor heat exchanger. The refrigerant is combined with the refrigerant and the pressure is lowered by the expansion valve, and then evaporated in the first outdoor heat exchanger to become a low-pressure gas refrigerant, which is returned to the compressor via the accumulator,
By using the first outdoor heat exchanger as an evaporator instead of the second outdoor heat exchanger, the amount of high-temperature and high-pressure gas refrigerant supplied to the indoor heat exchanger is controlled by the first branch pipe. Although the amount of frost that is supplied to the second outdoor heat exchanger is reduced by the amount supplied to the second outdoor heat exchanger via the heating operation, the frost that has adhered to the second outdoor heat exchanger can be defrosted without interrupting the heating operation.
After defrosting, the heating operation state is returned to the original state before the start of defrosting using the second outdoor heat exchanger as an evaporator.

また、本発明に外気温や上記貯水槽内の水の水温および/または上記室内熱交換器側の利用側から要求される暖房もしくは冷房能力に応じて上記第1室外熱交換器、上記第2熱交換器の何れか一方を使用する第1運転モードと、上記切替弁の開度を調節して上記第1室外熱交換器と上記第2室外熱交換器とを併用する第2運転モードとを備えている態様も含まれる。
The present invention also includes the first outdoor heat exchanger, the above-mentioned A first operation mode in which either one of the second heat exchangers is used, and a second operation in which the first outdoor heat exchanger and the second outdoor heat exchanger are used together by adjusting the opening degree of the switching valve. This also includes an embodiment having a mode.

本発明によれば、水-冷媒熱交換器(第1室外熱交換器)を貯水槽内に浸漬するオープンループ方式であるため、構築コストがクローズドループ方式よりも低コストであり、また、貯水槽内を流水とすることにより、熱交換効率を高めることができる。 According to the present invention, since the water-refrigerant heat exchanger (first outdoor heat exchanger) is immersed in the water storage tank, the construction cost is lower than that of the closed-loop method. Heat exchange efficiency can be increased by using flowing water inside the tank.

また、水-冷媒熱交換器(第1室外熱交換器)のほかに、送風ファンを有する空気-冷媒熱交換器(第2室外熱交換器)をさらに備え、これら熱交換器を選択的に使用することができるため、水温や外気温等に応じて運転の最適化をはかることができる。 In addition to the water-refrigerant heat exchanger (first outdoor heat exchanger), it is further equipped with an air-refrigerant heat exchanger (second outdoor heat exchanger) having a blower fan, and these heat exchangers can be selectively operated. Since it can be used, it is possible to optimize the operation according to the water temperature, outside temperature, etc.

また、上記除霜手段によれば、暖房運転を継続しながら空気-冷媒熱交換器(第2室外熱交換器)に付着した霜を除霜することができる。 Further, according to the defrosting means, it is possible to defrost the frost attached to the air-refrigerant heat exchanger (second outdoor heat exchanger) while continuing the heating operation.

本発明によるマルチ熱源ヒートポンプ装置の第1実施形態を示す模式図。FIG. 1 is a schematic diagram showing a first embodiment of a multi-source heat pump device according to the present invention. 上記実施形態において、貯水槽と室外熱交換器を示す模式図。The schematic diagram which shows a water storage tank and an outdoor heat exchanger in the said embodiment. 対向流方式とした水-冷媒熱交換器を示す平面図。FIG. 2 is a plan view showing a counter-flow type water-refrigerant heat exchanger. 本発明の第2実施形態として、除霜手段を備えたマルチ熱源ヒートポンプ装置を示す模式図。The schematic diagram which shows the multi-heat source heat pump apparatus provided with the defrosting means as 2nd Embodiment of this invention.

次に、図1および図2を参照して、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。 Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited thereto.

図1に示すように、この実施形態に係るマルチ熱源ヒートポンプ装置1は、熱源側の室外機10と利用側の室内機20とを備えている。この実施形態において、室内機20は、農業等の園芸施設の栽培ハウス内に設置されることを想定しているが、通常の住居家屋やビルもしくは産業用として工場施設等に設置されてもよい。 As shown in FIG. 1, the multi-source heat pump device 1 according to this embodiment includes an outdoor unit 10 on the heat source side and an indoor unit 20 on the usage side. In this embodiment, the indoor unit 20 is assumed to be installed in a cultivation house of a horticultural facility such as an agricultural facility, but it may also be installed in a normal residential house or building, or a factory facility for industrial use. .

室外機10は、基本的な構成として、冷媒を圧縮する圧縮機110、四方弁120、室外熱交換器130、膨張弁140およびアキュムレータ150とを備えている。冷媒には例えばR410A,R32やR452BなどHFO混合冷媒などが用いられてよい。 The outdoor unit 10 basically includes a compressor 110 that compresses refrigerant, a four-way valve 120, an outdoor heat exchanger 130, an expansion valve 140, and an accumulator 150. For example, HFO mixed refrigerants such as R410A, R32, and R452B may be used as the refrigerant.

室内機20には、基本的な構成として、室内熱交換器210と室内送風機211とが設けられている。なお、床暖房等を行う場合には、室内熱交換器210は図示しない温水タンク内に入れられる。室外機10と室内機20は、液側配管2とガス側配管3を介して接続される。 The indoor unit 20 is basically provided with an indoor heat exchanger 210 and an indoor blower 211. Note that when performing floor heating or the like, the indoor heat exchanger 210 is placed in a hot water tank (not shown). The outdoor unit 10 and the indoor unit 20 are connected via a liquid side pipe 2 and a gas side pipe 3.

冷房運転時には、四方弁120が図示実線の状態に切り替えられ、圧縮機110にて生成された高温高圧のガス冷媒が室外熱交換器130に送られ、室外熱交換器130で例えば外気と熱交換して凝縮され、膨張弁140にて所定に減圧されたのち、室内熱交換器210で室内の空気と熱交換して蒸発し、低温低圧のガス冷媒となって四方弁120を経由してアキュムレータ150に至り、再度圧縮機110に吸入される。 During cooling operation, the four-way valve 120 is switched to the state shown by the solid line in the figure, and the high-temperature, high-pressure gas refrigerant generated by the compressor 110 is sent to the outdoor heat exchanger 130, where it exchanges heat with, for example, outside air. After being condensed and reduced in pressure to a predetermined level by the expansion valve 140, it is evaporated by exchanging heat with the indoor air in the indoor heat exchanger 210, becoming a low-temperature, low-pressure gas refrigerant that is sent to the accumulator via the four-way valve 120. 150, and is sucked into the compressor 110 again.

暖房運転時には、四方弁120が図示鎖線の状態に切り替えられ、圧縮機110にて生成された高温高圧のガス冷媒が室内熱交換器210に送られ、室内熱交換器210で室内の空気と熱交換して凝縮され、膨張弁140を経て室外熱交換器130で例えば外気と熱交換して蒸発し、低温低圧のガス冷媒となって四方弁120を経由してアキュムレータ150に至り、再度圧縮機110に吸入される。 During heating operation, the four-way valve 120 is switched to the state shown by the dashed line in the figure, and the high-temperature, high-pressure gas refrigerant generated by the compressor 110 is sent to the indoor heat exchanger 210, where it is exchanged with indoor air and heat. It is exchanged and condensed, passes through the expansion valve 140, exchanges heat with the outside air in the outdoor heat exchanger 130, evaporates, becomes a low-temperature, low-pressure gas refrigerant, passes through the four-way valve 120, reaches the accumulator 150, and is reused in the compressor. 110 is inhaled.

このように、冷房運転時、室外熱交換器130は凝縮器(放熱器)、室内熱交換器210は蒸発器(採熱器)として作用し、これに対して、暖房運転時には、室外熱交換器130は蒸発器(採熱器)、室内熱交換器210は凝縮器(放熱器)として作用する。 In this way, during cooling operation, the outdoor heat exchanger 130 acts as a condenser (radiator) and the indoor heat exchanger 210 acts as an evaporator (heat collector), whereas during heating operation, the outdoor heat exchanger 130 acts as an The vessel 130 acts as an evaporator (heat collector), and the indoor heat exchanger 210 acts as a condenser (radiator).

この実施形態によると、室外熱交換器130として、第1室外熱交換器131と第2室外熱交換器132の2つの室外熱交換器を備えている。 According to this embodiment, the outdoor heat exchanger 130 includes two outdoor heat exchangers, a first outdoor heat exchanger 131 and a second outdoor heat exchanger 132.

第1室外熱交換器131は、オープンループ方式の水-冷媒直接膨張式の熱交換器であり、図2に示すように、貯水槽160内に浸漬される。第2室外熱交換器132は、送風ファン133を有する通常の空気-冷媒熱交換器である。 The first outdoor heat exchanger 131 is an open-loop water-refrigerant direct expansion type heat exchanger, and is immersed in a water storage tank 160, as shown in FIG. The second outdoor heat exchanger 132 is a normal air-refrigerant heat exchanger with a blower fan 133.

第1室外熱交換器131と第2室外熱交換器132は、液側配管(液側の冷媒配管)2に対して並列に接続され、第1室外熱交換器131側の分岐流路2aには開閉弁としての電磁弁135が取り付けられ、第2室外熱交換器132側の分岐流路2bには開閉弁としての電磁弁136が取り付けられている。 The first outdoor heat exchanger 131 and the second outdoor heat exchanger 132 are connected in parallel to the liquid side pipe (liquid side refrigerant pipe) 2, and are connected to the branch flow path 2a on the first outdoor heat exchanger 131 side. A solenoid valve 135 as an on-off valve is attached, and a solenoid valve 136 as an on-off valve is attached to the branch flow path 2b on the second outdoor heat exchanger 132 side.

この実施形態において、貯水槽160は地表に設置された貯水タンクで、揚水ポンプP1を有する給水管161より地下水(井戸水)が汲み上げられる。貯水槽160内で、貯留水が下から上に向けて流れるようにするため、給水管161の先端は貯水槽160の底部にまで引き込まれることが好ましいが、給水管161を貯水槽160の底部から引き込んでもよい。また、貯水槽160には、オーバーフロー水を排水する排水管162が設けられる。 In this embodiment, the water storage tank 160 is a water storage tank installed on the ground surface, and underground water (well water) is pumped up through a water supply pipe 161 having a pump P1. In order for the stored water to flow from the bottom to the top within the water tank 160, it is preferable that the tip of the water supply pipe 161 be drawn into the bottom of the water tank 160. You can also pull it in from Further, the water storage tank 160 is provided with a drain pipe 162 for draining overflow water.

第1室外熱交換器131は、その冷媒配管(パスとも呼ばれる銅管)131aが貯水槽160内に浸漬されることにより、水-冷媒熱交換器として作用する。浸漬される冷媒配管131aにはフィンが取り付けられてもよい。ジグザク状ではなく、例えば螺旋条に巻回された状態で浸漬されてもよい。 The first outdoor heat exchanger 131 functions as a water-refrigerant heat exchanger by having its refrigerant pipe (copper pipe also called path) 131a immersed in the water storage tank 160. Fins may be attached to the refrigerant pipe 131a to be immersed. For example, it may be dipped in a spirally wound state instead of in a zigzag shape.

冷媒配管131aに銅管以外の材質の管が用いられてもよいが、いずれにしても、その冷媒配管131aには、耐腐食性の金属材料製の配管、耐腐食性の塗料(例えば、一般的な金属管内外面のライニング処理に用いられるエポキシ樹脂塗料)が塗布された配管もしくは耐腐食性の例えばポリエチレン樹脂で被覆された配管が用いられることが好ましい。 A pipe made of a material other than copper may be used for the refrigerant pipe 131a, but in any case, the refrigerant pipe 131a may be made of a corrosion-resistant metal material, a corrosion-resistant paint (for example, a general It is preferable to use piping coated with an epoxy resin paint (used for lining the inside and outside surfaces of metal pipes) or piping coated with corrosion-resistant polyethylene resin, for example.

図2に示すように、貯水槽160内に、端部側の管壁に複数の空気噴出孔166を有する空気供給パイプ165を配置して、ブロワーP2より空気供給パイプ165内に空気を送り込んで空気噴出孔166から空気を噴出させて貯留水の対流を促進させることが好ましい。この場合、空気供給パイプ165の空気噴出孔166が設けられている端部側を貯水槽160の底部に沿って配置するとよい。 As shown in FIG. 2, an air supply pipe 165 having a plurality of air jet holes 166 is arranged in the pipe wall on the end side in the water storage tank 160, and air is sent into the air supply pipe 165 from the blower P2. It is preferable to eject air from the air ejection holes 166 to promote convection of the stored water. In this case, it is preferable that the end side of the air supply pipe 165 where the air jet hole 166 is provided is arranged along the bottom of the water tank 160.

空気供給パイプ165に代えて、もしくは空気供給パイプ165とともに貯水槽160内に、例えばプロペラ状の撹拌羽根が設けられてもよい。 For example, a propeller-shaped stirring blade may be provided in the water tank 160 instead of the air supply pipe 165 or together with the air supply pipe 165.

別の態様として、図3(貯水槽160の平面図)に示すように、貯水槽160内に仕切板167(この例では3枚の仕切板)によりジグザグ状の水路を形成し、その水路に沿って第1室外熱交換器131の冷媒配管131aをジグザグ状に配管し、水路内の水の流れ方向(実線矢印)と、冷媒配管131a内の冷媒の流れ方向(鎖線矢印)とを逆方向の対向流とすることにより、水-冷媒の熱交換効率を高めることもできる。 As another aspect, as shown in FIG. 3 (a plan view of the water tank 160), a zigzag waterway is formed in the water tank 160 by partition plates 167 (three partition plates in this example), and the waterway is The refrigerant pipes 131a of the first outdoor heat exchanger 131 are arranged in a zigzag pattern along the line, so that the flow direction of water in the water channel (solid line arrow) and the flow direction of the refrigerant in the refrigerant pipe 131a (chain line arrow) are opposite to each other. The water-refrigerant heat exchange efficiency can also be increased by creating counter-flows.

また、水温センサーを設け水温が所定温度内に収まるように揚水ポンプP1を駆動することもできる。貯水槽160は掘削による貯水池等であってもよく、熱交換用の水は井戸水のほかに、河川水、工業用の排水や農業用水等であってもよい。 Alternatively, a water temperature sensor may be provided to drive the water pump P1 so that the water temperature falls within a predetermined temperature range. The water tank 160 may be an excavated reservoir or the like, and the water for heat exchange may be well water, river water, industrial wastewater, agricultural water, or the like.

圧縮機110は、好ましくはインバータ制御による可変速型の圧縮機で、貯水槽160内での第1室外熱交換器(水-冷媒熱交換器)131の熱交換量に応じてその回転数が制御されるとよい。 The compressor 110 is preferably a variable speed compressor controlled by an inverter, and its rotational speed is adjusted according to the amount of heat exchanged by the first outdoor heat exchanger (water-refrigerant heat exchanger) 131 in the water storage tank 160. It's good to be controlled.

冷房運転時もしくは暖房運転時において、第1室外熱交換器131を使用する場合には電磁弁135を開き、電磁弁136を閉じる。これに対して、第2室外熱交換器132を使用する場合には電磁弁136を開き、電磁弁135を閉じる。 When using the first outdoor heat exchanger 131 during cooling or heating operation, the solenoid valve 135 is opened and the solenoid valve 136 is closed. On the other hand, when using the second outdoor heat exchanger 132, the solenoid valve 136 is opened and the solenoid valve 135 is closed.

第1室外熱交換器131、第2室外熱交換器132のいずれを使用するかは外気温や水温それに利用側から要求される暖房もしくは冷房能力等によって決められるが、場合によっては、電磁弁135,136の弁開度を調節して、第1室外熱交換器131と第2室外熱交換器132を併用することもできる。 Whether to use the first outdoor heat exchanger 131 or the second outdoor heat exchanger 132 is determined by the outside air temperature, water temperature, heating or cooling capacity required by the user, etc. , 136 can be adjusted to use the first outdoor heat exchanger 131 and the second outdoor heat exchanger 132 together.

次に、第2実施形態によれば、第1室外熱交換器(水-冷媒熱交換器)131と第2室外熱交換器(空気-冷媒熱交換器)132とを有する態様において、暖房運転時に第2室外熱交換器132に着霜(霜付き)が生じた場合、暖房運転を停止することなく、デフロスト(除霜)することができる。 Next, according to the second embodiment, in an embodiment including the first outdoor heat exchanger (water-refrigerant heat exchanger) 131 and the second outdoor heat exchanger (air-refrigerant heat exchanger) 132, heating operation is performed. When frosting occurs on the second outdoor heat exchanger 132, defrosting can be performed without stopping the heating operation.

そのため、図4に示すように、上記の構成(図1の構成)に加えて、第1および第2の2本の枝管4,5と3つの電磁弁137,138,139が用いられる。なお、以下の説明において、上流,下流は、暖房運転時の冷媒の流れ方向を基準にしている。 Therefore, as shown in FIG. 4, in addition to the above configuration (the configuration in FIG. 1), two first and second branch pipes 4, 5 and three electromagnetic valves 137, 138, 139 are used. In the following description, upstream and downstream are based on the flow direction of the refrigerant during heating operation.

まず、第1の枝管4の一端は、ガス側配管3に接続される。第1の枝管4の他端は、第2室外熱交換器132側の分岐流路2bのうちの第2室外熱交換器132の上流側の一端132a側に接続される。その接続点をPとする。第1の枝管4には、電磁弁137が設けられる。 First, one end of the first branch pipe 4 is connected to the gas side pipe 3. The other end of the first branch pipe 4 is connected to one end 132a of the branch flow path 2b on the second outdoor heat exchanger 132 side on the upstream side of the second outdoor heat exchanger 132. Let P be the connection point. The first branch pipe 4 is provided with a solenoid valve 137.

次に、第2の枝管5の一端は、第2室外熱交換器132側の分岐流路2b内において、第2室外熱交換器132の下流側の他端132bと電磁弁136との間に接続される。その接続点をQとする。第2の枝管5の他端は、液側配管2のうちの膨張弁140の上流側の配管部分に接続される。その接続点をRとする。第1の枝管5には、電磁弁138が設けられる。 Next, one end of the second branch pipe 5 is connected between the other downstream end 132b of the second outdoor heat exchanger 132 and the solenoid valve 136 in the branch flow path 2b on the second outdoor heat exchanger 132 side. connected to. Let Q be the connection point. The other end of the second branch pipe 5 is connected to a piping portion of the liquid side piping 2 on the upstream side of the expansion valve 140. Let R be the connection point. The first branch pipe 5 is provided with a solenoid valve 138 .

また、第2室外熱交換器132側の分岐流路2b内において、上記接続点Pと膨張弁140との間には、電磁弁139が設けられる。 Further, in the branch flow path 2b on the second outdoor heat exchanger 132 side, a solenoid valve 139 is provided between the connection point P and the expansion valve 140.

第2室外熱交換器(空気-冷媒熱交換器)132を使用しての暖房運転時には、四方弁120が図示鎖線の状態に切り替えられるとともに、電磁弁136,139が開、電磁弁135,137,138が閉とされる。 During heating operation using the second outdoor heat exchanger (air-refrigerant heat exchanger) 132, the four-way valve 120 is switched to the state shown by the chain line in the figure, the solenoid valves 136 and 139 are opened, and the solenoid valves 135 and 137 are opened. , 138 are closed.

この暖房運転時には、上記したように、室内熱交換器210が凝縮器(放熱器)となり、第2室外熱交換器132が蒸発器(採熱器)となるため、特に低外気温下では第2室外熱交換器132に着霜(霜付き)が生じやすい。着霜が増えると、空気-冷媒の熱交換効率が低下する。 During this heating operation, as described above, the indoor heat exchanger 210 serves as a condenser (radiator) and the second outdoor heat exchanger 132 serves as an evaporator (heat collector). Frost formation (frosting) is likely to occur on the second outdoor heat exchanger 132. As frost builds up, the air-refrigerant heat exchange efficiency decreases.

そこで、デフロスト(霜取り)することになるが、この実施形態では、電磁弁135~139のうち、電磁弁135,137,138が開、残りの電磁弁136,139が閉とされる。 Therefore, defrosting is performed, and in this embodiment, among the solenoid valves 135 to 139, solenoid valves 135, 137, and 138 are opened, and the remaining solenoid valves 136 and 139 are closed.

これにより、圧縮機110にて生成され室内熱交換器210に向かう高温・高圧のガス冷媒の一部が第1の枝管4を介して第2室外熱交換器132に流れることから除霜が行われる。 As a result, a portion of the high-temperature, high-pressure gas refrigerant generated in the compressor 110 and directed to the indoor heat exchanger 210 flows to the second outdoor heat exchanger 132 via the first branch pipe 4, so that defrosting is performed. It will be done.

第2室外熱交換器132にて凝縮(放熱)して液化した冷媒は、第2の枝管5を介して膨張弁140の上流側の上記接続点Rに至り、そこで室内熱交換器210で凝縮(放熱)し液化した冷媒と合流し、膨張弁140で圧力が下げられたのち、第1室外熱交換器(水-冷媒熱交換器)131で蒸発して低圧のガス冷媒となり、アキュムレータ150を経て圧縮機110に戻される。 The refrigerant condensed (radiated heat) and liquefied in the second outdoor heat exchanger 132 reaches the connection point R on the upstream side of the expansion valve 140 via the second branch pipe 5, and there, it is transferred to the indoor heat exchanger 210. It condenses (radiates heat) and joins with the liquefied refrigerant, and after the pressure is lowered by the expansion valve 140, it evaporates in the first outdoor heat exchanger (water-refrigerant heat exchanger) 131 and becomes a low-pressure gas refrigerant, which is then transferred to the accumulator 150. is returned to the compressor 110.

このように、図4に示す実施形態によれば、室内熱交換器210に供給される高温・高圧のガス冷媒の量は、第1の枝管4を介して第2室外熱交換器132に供給される分だけ減るものの、暖房運転を中断することなく、第2室外熱交換器132に付着した霜を除霜することができる。 As described above, according to the embodiment shown in FIG. Although the amount is reduced by the amount supplied, the frost adhering to the second outdoor heat exchanger 132 can be defrosted without interrupting the heating operation.

除霜後には、電磁弁135,137,138が閉、電磁弁136,139が開とされて第2室外熱交換器132を蒸発器とする除霜開始前の元の暖房運転状態に戻されるが、場合によっては、電磁弁135のみを開とし、残りの電磁弁136,137,138,139を閉として、第1室外熱交換器131を蒸発器として暖房運転を継続してもよい。 After defrosting, the solenoid valves 135, 137, and 138 are closed and the solenoid valves 136 and 139 are opened to return to the original heating operation state before the start of defrosting using the second outdoor heat exchanger 132 as an evaporator. However, depending on the case, only the solenoid valve 135 may be opened, the remaining solenoid valves 136, 137, 138, and 139 may be closed, and the heating operation may be continued using the first outdoor heat exchanger 131 as an evaporator.

冷房運転時には、電磁弁137,138は閉、電磁弁139は開とされ、第1室外熱交換器131もしくは第2室外熱交換器132のいずれを使用するかに応じて電磁弁135,136が開閉制御される。なお、これら電磁弁の開閉は、図示しない制御部により制御される。 During cooling operation, the solenoid valves 137 and 138 are closed and the solenoid valve 139 is open, and the solenoid valves 135 and 136 are closed depending on whether the first outdoor heat exchanger 131 or the second outdoor heat exchanger 132 is used. Opening/closing controlled. Note that opening and closing of these solenoid valves is controlled by a control section (not shown).

以上説明したところから、温室や太陽光利用型植物工場等の園芸施設においては、本発明のマルチ熱源ヒートポンプ装置を導入することにより、空気熱源ヒートポンプの長所を活かしつつ、外気温が低下したときに生ずる室外熱交換器への着霜という短所を、オープンループ方式の直接膨張式ヒートポンプに切り替えることにより、安定的に採熱することができる。 From the above explanation, by introducing the multi-source heat pump device of the present invention in horticultural facilities such as greenhouses and solar-based plant factories, it is possible to take advantage of the advantages of air-source heat pumps while also providing a By switching to an open-loop direct expansion type heat pump, it is possible to stably collect heat to overcome the disadvantage of frost formation on the outdoor heat exchanger.

また、水熱源ヒートポンプの設備・運転コストの大幅な削減とCOPの最大化をはかることができる。また、農業分野だけでなく、家庭やビル、産業分野等への普及も期待することができる。 In addition, it is possible to significantly reduce the equipment and operating costs of the water source heat pump and to maximize the COP. Furthermore, it can be expected to spread not only to the agricultural field but also to homes, buildings, industrial fields, etc.

1 マルチ熱源ヒートポンプ装置
2 液側配管
2a,2b 分岐流路
3 ガス側配管
10 室外機
110 圧縮機
120 四方弁
130 室外熱交換器
131 第1室外熱交換器(水-冷媒直接膨張式熱交換器)
132 第2室外熱交換器(空気-冷媒熱交換器)
135,136,137,138,139 電磁弁
140 膨張弁
150 アキュムレータ
160 貯水槽
20 室内機
210 室内熱交換器
1 Multi-heat source heat pump device 2 Liquid side piping 2a, 2b Branch flow path 3 Gas side piping 10 Outdoor unit 110 Compressor 120 Four-way valve 130 Outdoor heat exchanger 131 First outdoor heat exchanger (water-refrigerant direct expansion heat exchanger )
132 Second outdoor heat exchanger (air-refrigerant heat exchanger)
135, 136, 137, 138, 139 Solenoid valve 140 Expansion valve 150 Accumulator 160 Water tank 20 Indoor unit 210 Indoor heat exchanger

Claims (2)

冷媒を圧縮する圧縮機、四方弁、室外熱交換器、膨張弁および室内熱交換器を冷媒配管を介して接続してなる冷凍サイクルを含み、上記四方弁の切り替えにより、冷房運転時には上記室外熱交換器が凝縮器、上記室内熱交換器が蒸発器として作用し、暖房運転時には上記室内熱交換器が凝縮器、上記室外熱交換器が蒸発器として作用する、空気および地下水等の水を採熱・放熱の熱源とする施設園芸に好適なマルチ熱源ヒートポンプ装置において、
上記室外熱交換器として、第1室外熱交換器と第2室外熱交換器の2つの熱交換器を有し、上記第1室外熱交換器が地下水等の水が溜められるオープンループ方式の貯水槽内の水中に浸漬され、上記水と上記冷媒との間で熱交換が行われるオープンループ方式の水-冷媒直接膨張式の熱交換器であり、上記第2室外熱交換器が送風ファンを有する空気-冷媒熱交換器であり、
上記第1室外熱交換器と上記第2室外熱交換器とが上記冷媒配管に対して並列に接続されているとともに、上記第1室外熱交換器と上記第2室外熱交換器のいずれか一方もしくは両方に上記冷媒を流す切替弁を備えており、
上記室内熱交換器を凝縮器、上記第2室外熱交換器を蒸発器とする暖房運転時に上記第2室外熱交換器に付着した霜を除霜する際、上記圧縮機より上記室内熱交換器に供給される高温・高圧のガス冷媒の一部を第1の枝管を介して上記第2室外熱交換器に流して上記第2室外熱交換器を上記室内熱交換器とともに凝縮器とし、
上記第2室外熱交換器にて凝縮(放熱)して液化した冷媒は、第2の枝管を介して上記膨張弁の上流側に至り、そこで上記室内熱交換器で凝縮(放熱)し液化した冷媒と合流して上記膨張弁で圧力が下げられたのち、上記第1室外熱交換器で蒸発して低圧のガス冷媒となり、アキュムレータを経て上記圧縮機に戻され、
上記第2室外熱交換器に代えて上記第1室外熱交換器を蒸発器とすることにより、上記室内熱交換器に供給される高温・高圧のガス冷媒の量は、上記第1の枝管を介して上記第2室外熱交換器に供給される分だけ減るものの、暖房運転を中断することなく、上記第2室外熱交換器に付着した霜を除霜することができる手段を備え、
除霜後には、上記第2室外熱交換器を蒸発器とする除霜開始前の元の暖房運転状態に戻されることを特徴とするマルチ熱源ヒートポンプ装置。
The refrigeration cycle includes a compressor that compresses refrigerant, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger connected via refrigerant piping.By switching the four-way valve, the outdoor heat is transferred during cooling operation. The exchanger acts as a condenser and the indoor heat exchanger acts as an evaporator, and during heating operation, the indoor heat exchanger acts as a condenser and the outdoor heat exchanger acts as an evaporator. In a multi-source heat pump device suitable for greenhouse horticulture as a heat source for heat and heat radiation,
The outdoor heat exchanger has two heat exchangers, a first outdoor heat exchanger and a second outdoor heat exchanger, and the first outdoor heat exchanger is an open-loop water storage system in which water such as groundwater is stored. This is an open-loop type water-refrigerant direct expansion type heat exchanger that is immersed in water in a tank and heat exchange is performed between the water and the refrigerant, and the second outdoor heat exchanger has a blower fan. an air-refrigerant heat exchanger having
The first outdoor heat exchanger and the second outdoor heat exchanger are connected in parallel to the refrigerant pipe, and one of the first outdoor heat exchanger and the second outdoor heat exchanger Or, both are equipped with a switching valve that allows the above refrigerant to flow .
When defrosting frost adhering to the second outdoor heat exchanger during heating operation in which the indoor heat exchanger is used as a condenser and the second outdoor heat exchanger is used as an evaporator, the compressor is used as the indoor heat exchanger. A part of the high-temperature, high-pressure gas refrigerant supplied to the second outdoor heat exchanger is caused to flow through the first branch pipe to the second outdoor heat exchanger, and the second outdoor heat exchanger is used as a condenser together with the indoor heat exchanger,
The refrigerant condensed (radiated heat) and liquefied in the second outdoor heat exchanger reaches the upstream side of the expansion valve via the second branch pipe, where it condenses (radiates heat) and liquefies in the indoor heat exchanger. The refrigerant is combined with the refrigerant and the pressure is lowered by the expansion valve, and then evaporated in the first outdoor heat exchanger to become a low-pressure gas refrigerant, which is returned to the compressor via the accumulator,
By using the first outdoor heat exchanger as an evaporator instead of the second outdoor heat exchanger, the amount of high-temperature and high-pressure gas refrigerant supplied to the indoor heat exchanger is controlled by the first branch pipe. Although the amount of frost that is supplied to the second outdoor heat exchanger is reduced by the amount supplied to the second outdoor heat exchanger via the heating operation, the frost that has adhered to the second outdoor heat exchanger can be defrosted without interrupting the heating operation.
After defrosting, the multi-heat source heat pump device is returned to the original heating operation state before the start of defrosting, using the second outdoor heat exchanger as an evaporator.
外気温や上記貯水槽内の水の水温および/または上記室内熱交換器側の利用側から要求される暖房もしくは冷房能力に応じて上記第1室外熱交換器、上記第2熱交換器の何れか一方を使用する第1運転モードと、上記切替弁の開度を調節して上記第1室外熱交換器と上記第2室外熱交換器とを併用する第2運転モードとを備えていることを特徴とする請求項1に記載のマルチ熱源ヒートポンプ装置。 Depending on the outside temperature, the water temperature of the water in the water storage tank, and/or the heating or cooling capacity requested by the user of the indoor heat exchanger, either the first outdoor heat exchanger or the second heat exchanger is selected. a first operation mode in which one of the switching valves is used; and a second operation mode in which the first outdoor heat exchanger and the second outdoor heat exchanger are used together by adjusting the opening degree of the switching valve. The multi-source heat pump device according to claim 1 , characterized in that:
JP2018183859A 2018-09-28 2018-09-28 Multi-source heat pump equipment Active JP7357324B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018183859A JP7357324B2 (en) 2018-09-28 2018-09-28 Multi-source heat pump equipment
JP2023150683A JP2023171399A (en) 2018-09-28 2023-09-19 Multi heat source-heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018183859A JP7357324B2 (en) 2018-09-28 2018-09-28 Multi-source heat pump equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023150683A Division JP2023171399A (en) 2018-09-28 2023-09-19 Multi heat source-heat pump device

Publications (2)

Publication Number Publication Date
JP2020051715A JP2020051715A (en) 2020-04-02
JP7357324B2 true JP7357324B2 (en) 2023-10-06

Family

ID=69996580

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018183859A Active JP7357324B2 (en) 2018-09-28 2018-09-28 Multi-source heat pump equipment
JP2023150683A Pending JP2023171399A (en) 2018-09-28 2023-09-19 Multi heat source-heat pump device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023150683A Pending JP2023171399A (en) 2018-09-28 2023-09-19 Multi heat source-heat pump device

Country Status (1)

Country Link
JP (2) JP7357324B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765596B (en) * 2020-07-14 2021-07-16 宁波奥克斯电气股份有限公司 Air conditioner defrosting method and device and air conditioning system
KR102478147B1 (en) * 2020-08-07 2022-12-19 한국생산기술연구원 Apparatus for air-conditioning control with ultra-compact heat pump and method for air-conditioning control using the same
CN112066583A (en) * 2020-09-14 2020-12-11 珠海格力电器股份有限公司 Air conditioning unit with double heat sources and control method thereof
KR102334024B1 (en) * 2020-11-02 2021-12-02 주식회사 에너지컨설팅 Regenerative heat pump system comprising geothermal exchanger
KR102428913B1 (en) * 2021-09-15 2022-08-04 주식회사 에너지컨설팅 Regenerative heat pump system comprising geothermal exchanger
CN115076802B (en) * 2022-07-26 2022-11-01 蘑菇物联技术(深圳)有限公司 Cryogenic freeze protection method, computing device and medium for refrigeration system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496895B1 (en) 2004-12-01 2005-06-23 주식회사 삼영 Heat pump type cooling and heating by subterranean heat
JP2008164237A (en) 2006-12-28 2008-07-17 Jfe Steel Kk Heat pump system
JP2009210221A (en) 2008-03-05 2009-09-17 Kimura Kohki Co Ltd Ground heat using heat pump system
JP2013024457A (en) 2011-07-19 2013-02-04 Onishi Kensetsu Kk Geothermal utilization heat exchange system
WO2013172166A1 (en) 2012-05-18 2013-11-21 三菱電機株式会社 Heat pump device
WO2014054310A1 (en) 2012-10-05 2014-04-10 三菱電機株式会社 Heat pump device
JP2016133232A (en) 2015-01-16 2016-07-25 ジオシステム株式会社 Water pumping type heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496895B1 (en) 2004-12-01 2005-06-23 주식회사 삼영 Heat pump type cooling and heating by subterranean heat
JP2008164237A (en) 2006-12-28 2008-07-17 Jfe Steel Kk Heat pump system
JP2009210221A (en) 2008-03-05 2009-09-17 Kimura Kohki Co Ltd Ground heat using heat pump system
JP2013024457A (en) 2011-07-19 2013-02-04 Onishi Kensetsu Kk Geothermal utilization heat exchange system
WO2013172166A1 (en) 2012-05-18 2013-11-21 三菱電機株式会社 Heat pump device
WO2014054310A1 (en) 2012-10-05 2014-04-10 三菱電機株式会社 Heat pump device
JP2016133232A (en) 2015-01-16 2016-07-25 ジオシステム株式会社 Water pumping type heat exchanger

Also Published As

Publication number Publication date
JP2020051715A (en) 2020-04-02
JP2023171399A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7357324B2 (en) Multi-source heat pump equipment
US7617697B2 (en) In-ground geothermal heat pump system
CN103890503B (en) Refrigerant charge management in Teat pump boiler
US11092360B2 (en) Intelligent heat pump system having dual heat exchanger structure
CN104704303B (en) Heat pump assembly
KR101041745B1 (en) Solar sync geothermal heatpump system and the control method thereof
EP2320163A2 (en) Heat pump system
CN102393049B (en) Ground-source heat-pipe/heat-pump air conditioner
CN202675964U (en) Heat superconductor water source heat exchanger
CN201028893Y (en) Ground source heat pump air conditioning system
CN100523650C (en) Straight-expanded geo-source hot-pump air-conditioner water heater
KR100812316B1 (en) Heat pump system for using heat of rainwater heat source and geothermal
JP2008190792A (en) Compression type heat pump
JP2012057836A (en) Underground heat exchanger and heat pump using the same
KR101186883B1 (en) Cooling and heating system for subway station building
CN202419820U (en) Ground-source heat pipe and heat pump air-conditioner
CN101532743B (en) Heat pump unit of air and water source double-condenser
CN207196995U (en) A kind of earth-source hot-pump system
JP7359361B2 (en) heat pump equipment
EP3594588B1 (en) Geothermal heat pump device
JP2012078080A (en) Underground heat exchanger and heat pump utilizing the same
JP6164537B2 (en) Cold / heat generator
KR101104362B1 (en) heat-pump system
ES2912129T3 (en) Multisource Reversible Cycle Heat Pump Type Thermodynamic Machine and Operating Procedure
CN111998581B (en) Self-defrosting air source heat collection device and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R150 Certificate of patent or registration of utility model

Ref document number: 7357324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150