JP2010145022A - Underground heat exchanger and air conditioning system including the same - Google Patents

Underground heat exchanger and air conditioning system including the same Download PDF

Info

Publication number
JP2010145022A
JP2010145022A JP2008323381A JP2008323381A JP2010145022A JP 2010145022 A JP2010145022 A JP 2010145022A JP 2008323381 A JP2008323381 A JP 2008323381A JP 2008323381 A JP2008323381 A JP 2008323381A JP 2010145022 A JP2010145022 A JP 2010145022A
Authority
JP
Japan
Prior art keywords
heat exchanger
ground
heat
underground
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008323381A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kawabata
克宏 川端
Keisuke Tanimoto
啓介 谷本
Hideaki Asai
英明 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008323381A priority Critical patent/JP2010145022A/en
Publication of JP2010145022A publication Critical patent/JP2010145022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a configuration capable of reducing installation cost without largely lowering heat exchange efficiency, in an underground heat exchanger having a heat transfer pipe where fluid subject to heat exchange is made to flow and which is inserted to inside of an outer pipe and having a heating medium filled in the outer pipe. <P>SOLUTION: The underground heat exchanger (10) is embedded in the ground so that the outer pipe (11) to which the heat transfer pipe (12) where a refrigerant is made to flow is inserted and in which carbon dioxide is filled is not exposed to the ground surface and the entire outer surface is covered with soil. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、被熱交換流体と地中の土壌との間で熱交換を行う地中熱交換器に関するものである。   The present invention relates to a ground heat exchanger that performs heat exchange between a heat exchange fluid and soil in the ground.

従来より、被熱交換流体と地中の土壌との間で熱交換を行うように構成された地中熱交換器が知られている。このような地中熱交換器としては、相変化する熱媒体を介して被熱交換流体と土壌との間で熱交換を行う構成などが知られている。   2. Description of the Related Art Conventionally, underground heat exchangers configured to perform heat exchange between a heat exchange fluid and underground soil are known. As such a ground heat exchanger, a configuration is known in which heat is exchanged between a heat exchange fluid and soil via a heat medium that changes phase.

具体的には、例えば特許文献1に開示されるように、熱媒体が収容されたパイプが地中に埋設されているとともに、地熱によって蒸発するパイプ内の熱媒体と熱交換するように、被熱交換流体の流れる熱交換器が設けられている。これにより、地中に埋設された上記パイプ内で蒸発した熱媒体の熱は、上記熱交換器によって被熱交換流体に伝わり、該被熱交換流体の流れる回路で暖房の熱源として利用される。   Specifically, as disclosed in, for example, Patent Document 1, a pipe in which a heat medium is accommodated is buried in the ground, and heat is exchanged with a heat medium in a pipe that is evaporated by geothermal heat. A heat exchanger through which the heat exchange fluid flows is provided. Thereby, the heat of the heat medium evaporated in the pipe embedded in the ground is transmitted to the heat exchange fluid by the heat exchanger, and is used as a heat source for heating in a circuit through which the heat exchange fluid flows.

また、上述の構成以外にも、地中熱交換器の構成として、地中深くに縦向きに埋設されたチューブ内に被熱交換流体を流して地中の土壌と熱交換を行うチューブ方式や、チューブを地表面近くにループ状に埋設する水平方式などが考えられている。
国際公開第WO2004/111559号パンフレット
In addition to the above-described configuration, as a configuration of the underground heat exchanger, a tube method for exchanging heat with the soil in the ground by flowing a heat exchange fluid into a tube buried vertically in the deep underground, A horizontal method in which a tube is embedded in a loop shape near the ground surface is considered.
International Publication No. WO2004 / 111559 Pamphlet

ところで、上記特許文献1に開示される構成では、地中に埋設されるパイプの上部が地表から露出していて、該上部で熱交換器内を流れる被熱交換流体と熱交換するように構成されているため、上記パイプを地中の比較的浅い部分に埋設する必要があり、気温の変化や地表面の温度の変化などの影響を受けやすい。したがって、冷房運転時に地中熱交換器によって地中の土壌へ放熱する夏期では、地表近くの土壌の温度が高くなる一方、暖房運転時に地中熱交換器によって地中の土壌から吸熱する冬期では、地表近くの土壌の温度が低くなり、効率良く熱交換できなくなる可能性がある。   By the way, in the structure disclosed by the said patent document 1, the upper part of the pipe embed | buried under the ground is exposed from the ground surface, and it is comprised so that it may heat-exchange with the heat exchange fluid which flows through the inside of a heat exchanger in this upper part. Therefore, it is necessary to embed the pipe in a relatively shallow portion of the ground, and it is easily affected by changes in temperature and temperature on the ground surface. Therefore, in the summer when the ground heat exchanger dissipates heat to the soil in the ground during cooling operation, the temperature of the soil near the ground surface increases, while in the winter when heat is absorbed from the soil in the ground by the ground heat exchanger during heating operation. The temperature of the soil near the surface of the earth may be lowered, and heat exchange may not be performed efficiently.

また、細長いチューブを用いる上記チューブ方式では、熱交換性能を確保するためにチューブの長さを長くする必要があり、通常、地中100mぐらいの掘削が必要になるため、設置費用が高くなる一方、上記水平方式では、上記特許文献1の構成と同様、地表面の近くにチューブが埋設され、気温や地表面の温度の影響を大きく受けるため、あまり熱交換効率の良くない構成であった。   In addition, in the above-mentioned tube method using a long and narrow tube, it is necessary to increase the length of the tube in order to ensure heat exchange performance. Usually, excavation of about 100 m in the ground is required, which increases the installation cost. As in the configuration of Patent Document 1, the horizontal method has a configuration in which the tube is embedded near the ground surface and is greatly affected by the temperature and the temperature of the ground surface, so that the heat exchange efficiency is not so good.

本発明は斯かる諸点に鑑みてなされたものであり、その目的とするところは、外管内に、被熱交換流体の流れる伝熱管が挿入され且つ熱媒体が封入された地中熱交換器において、熱交換効率を大きく低下させることなく、設置費用の低減を図れるような構成を得ることにある。   The present invention has been made in view of the above points, and an object of the present invention is an underground heat exchanger in which a heat transfer tube through which a heat exchange fluid flows is inserted and a heat medium is enclosed in an outer tube. An object of the present invention is to obtain a configuration capable of reducing the installation cost without greatly reducing the heat exchange efficiency.

上記目的を達成するために、本発明に係る地中熱交換器(10)では、伝熱管(12)が挿入され且つ熱媒体が封入される外筒(11)を、地表面に露出することなく外表面全体が土壌によって覆われるように、地中に配置した。   In order to achieve the above object, in the underground heat exchanger (10) according to the present invention, the outer cylinder (11) into which the heat transfer tube (12) is inserted and the heat medium is enclosed is exposed to the ground surface. Instead, it was placed in the ground so that the entire outer surface was covered with soil.

具体的には、第1の発明では、地中に縦向きに埋設される外管(11)と、該外管(11)内に挿入されて内部を被熱交換流体が流れる伝熱管(12)と、上記外管(11)内に封入される熱媒体(13)とを備え、該熱媒体(13)の相変化を利用して土壌と熱交換を行うように構成された地中熱交換器を対象とする。そして、上記外管(11)は、地表面に露出しないように地中に埋設されていて、外表面全体が土壌によって覆われているものとする。   Specifically, in the first invention, the outer pipe (11) buried vertically in the ground and the heat transfer pipe (12) inserted into the outer pipe (11) and through which the heat exchange fluid flows. ) And a heat medium (13) enclosed in the outer tube (11), and is configured to exchange heat with soil using the phase change of the heat medium (13). Intended for exchangers. The outer pipe (11) is embedded in the ground so as not to be exposed on the ground surface, and the entire outer surface is covered with soil.

以上の構成により、外管(11)が地中に縦向きに埋設され、該外管(11)に挿入される伝熱管(12)内を流れる被熱交換流体が該外管(11)内に封入された熱媒体の相変化を利用して土壌と熱交換を行うように構成された地中熱交換器(10)において、上記外管(11)が地表に露出することなく、その外表面が土壌によって覆われるため、上記伝熱管(12)内の被熱交換流体と土壌との間で熱交換を確実に行うことができる。   With the above configuration, the outer pipe (11) is buried vertically in the ground, and the heat exchange fluid flowing in the heat transfer pipe (12) inserted into the outer pipe (11) is transferred into the outer pipe (11). In the underground heat exchanger (10) configured to exchange heat with the soil using the phase change of the heat medium sealed in the outer wall, the outer pipe (11) is not exposed to the ground surface. Since the surface is covered with soil, heat exchange can be reliably performed between the heat exchange fluid in the heat transfer tube (12) and the soil.

しかも、上述のような構成を有する地中熱交換器(10)では、上記熱媒体の相変化を用いて熱交換を行うため、従来のチューブ式に比べて熱交換効率が良く、該チューブ式のように長いチューブを地中の奥深くに埋設する必要もないことから、設置費用を大幅に低減することができる。   Moreover, in the underground heat exchanger (10) having the above-described configuration, heat exchange is performed using the phase change of the heat medium, so that the heat exchange efficiency is better than the conventional tube type, and the tube type Since it is not necessary to embed a long tube deep in the ground like this, the installation cost can be greatly reduced.

また、上記地中熱交換器(10)は、地中に縦向きに埋設されるため、地表面の近くにループ状にチューブを配置する水平式に比べて温度が安定した土壌と熱交換を行うことができ、気温の変化や地表面の温度の変化の影響も受けにくい。   In addition, since the underground heat exchanger (10) is buried vertically in the ground, it exchanges heat with soil with a stable temperature compared to the horizontal type in which tubes are placed in a loop near the ground surface. It can be performed and is not easily affected by changes in temperature or the temperature of the ground surface.

上述の構成において、上記外管(11)は、熱交換器として要求される能力を発揮できるような所定深さに埋設されているのが好ましい(第2の発明)。これにより、気温の変化や地表面の温度の変化などの影響を受けにくく、地中の土壌と熱交換して所定の能力を発揮可能な地中熱交換器(10)を得ることができる。   In the above-described configuration, it is preferable that the outer tube (11) is embedded at a predetermined depth so as to exhibit a capability required as a heat exchanger (second invention). As a result, it is possible to obtain an underground heat exchanger (10) that is not easily affected by a change in temperature or a change in temperature on the ground surface, and that can exchange heat with the soil in the ground to exhibit a predetermined ability.

第3の発明は、上記第1または第2の発明に記載の地中熱交換器(10)を備えていて、冷凍サイクルを行う空調システムを対象とする。そして、上記地中熱交換器(10)を複数、備えていて、上記複数の地中熱交換器(10)は、並列に接続されているものとする。   3rd invention is equipped with the underground heat exchanger (10) as described in the said 1st or 2nd invention, and targets air-conditioning system which performs a refrigerating cycle. A plurality of the underground heat exchangers (10) are provided, and the plurality of underground heat exchangers (10) are connected in parallel.

この構成により、複数の地中熱交換器(10)によって必要な熱交換の性能を得ることができるため、従来の地中熱交換器に比べて地中熱交換器の長さを短くすることが可能になる。したがって、従来のように、地中熱交換器を地中に埋設するために地中深くまで掘削する必要がなくなるので、設置費用の低減を図れる。   With this configuration, it is possible to obtain the required heat exchange performance with multiple underground heat exchangers (10), so the length of the underground heat exchanger is shortened compared to conventional underground heat exchangers. Is possible. Therefore, unlike the prior art, it is not necessary to excavate deeply into the ground in order to embed the underground heat exchanger in the ground, so that the installation cost can be reduced.

以上より、第1の発明に係る地中熱交換器(10)において、被熱交換流体が流れる伝熱管(12)が挿入され且つ熱媒体が封入された外管(11)は、地表面に露出することなく、外表面が土壌によって覆われているため、上記被熱交換流体と土壌との熱交換を確実に行うことができる。したがって、熱交換性能が大きく低下することなく、従来の構成に比べて設置費用を低減可能な構成を有する地中熱交換器(10)を実現することができる。   As described above, in the underground heat exchanger (10) according to the first invention, the outer pipe (11) into which the heat transfer pipe (12) through which the heat exchange fluid flows is inserted and the heat medium is sealed is formed on the ground surface. Since the outer surface is covered with the soil without being exposed, the heat exchange between the heat exchange fluid and the soil can be reliably performed. Therefore, it is possible to realize the underground heat exchanger (10) having a configuration capable of reducing the installation cost as compared with the conventional configuration without greatly reducing the heat exchange performance.

また、第2の発明によれば、上記外管(11)は、熱交換器として要求される能力を発揮できるような所定の深さに配置されているため、熱交換器としての性能を安定して発揮することができる地中熱交換器(10)を得ることができる。   In addition, according to the second invention, the outer tube (11) is disposed at a predetermined depth so as to exhibit the ability required as a heat exchanger, so that the performance as a heat exchanger is stabilized. An underground heat exchanger (10) can be obtained that can be exhibited.

第3の発明に係る空調システムによれば、上記第1または第2の発明に記載の地中熱交換器(10)を複数、備えていて、それらの地中熱交換器(10)は並列に接続されているため、要求される熱交換能力を確保しつつ、設置費用の低減を図れる。   According to the air conditioning system according to the third aspect of the invention, a plurality of the underground heat exchangers (10) according to the first or second aspect of the invention are provided, and the underground heat exchangers (10) are arranged in parallel. Therefore, the installation cost can be reduced while ensuring the required heat exchange capacity.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature and is not intended to limit the present invention, its application, or its use.

本発明の実施形態に係る地中熱交換器は、暖房運転及び冷房運転が可能な空調システムに用いられ、暖房運転時に蒸発器として機能して地中の土壌から熱を回収する一方、冷房運転時に凝縮器として機能して地中の土壌に放熱するように構成されている。   An underground heat exchanger according to an embodiment of the present invention is used in an air conditioning system capable of heating operation and cooling operation, and functions as an evaporator during heating operation to recover heat from soil in the ground, while cooling operation It is sometimes configured to function as a condenser and dissipate heat to the soil in the ground.

<空調システムの全体構成>
図1は、本発明の実施形態に係る地中熱交換器(10)を備えた空調システム(1)の概略構成図である。この空調システム(1)は、圧縮機(3)、四路切換弁(4)、室内熱交換器(5)、膨張弁(6)、及び地中に埋設される複数の地中熱交換器(10)が冷媒配管によって順に接続されてなる冷媒回路(2)を備えている。また、上記冷媒回路(2)には、冷媒(被熱交換流体)が封入されており、該冷媒が冷媒回路(2)内を循環することにより、暖房運転時には上記室内熱交換器(5)が凝縮器になり且つ上記地中熱交換器(10)が蒸発器になる一方、冷房運転時には上記室内熱交換器(5)が蒸発器になり且つ上記地中熱交換器(10)が凝縮器になって、蒸気圧縮式の冷凍サイクルが行われる。なお、本実施形態では、上記複数の地中熱交換器(10)は、冷媒回路(2)に対して並列に接続されていて、それぞれの熱交換器(10)で地中の土壌と熱交換するように構成されている。
<Overall configuration of air conditioning system>
Drawing 1 is a schematic structure figure of an air-conditioning system (1) provided with a geothermal heat exchanger (10) concerning an embodiment of the present invention. The air conditioning system (1) includes a compressor (3), a four-way switching valve (4), an indoor heat exchanger (5), an expansion valve (6), and a plurality of underground heat exchangers embedded in the ground. (10) is provided with a refrigerant circuit (2) connected in order by refrigerant piping. The refrigerant circuit (2) contains a refrigerant (heat exchange fluid), and the refrigerant circulates in the refrigerant circuit (2), so that the indoor heat exchanger (5) is heated during heating operation. Becomes the condenser and the underground heat exchanger (10) becomes the evaporator, while the indoor heat exchanger (5) becomes the evaporator and the underground heat exchanger (10) condenses during the cooling operation. A vapor compression refrigeration cycle is performed. In the present embodiment, the plurality of underground heat exchangers (10) are connected in parallel to the refrigerant circuit (2), and in each of the heat exchangers (10), the soil and heat in the ground are heated. Configured to replace.

上記圧縮機(3)は、例えばスクロール圧縮機からなり、冷媒を吸入ポートから吸入して圧縮し、該圧縮した冷媒を吐出ポートから吐出するように構成されている。上記冷媒回路(2)において、上記圧縮機(3)の吐出ポートが上記四路切換弁(4)の第2ポート(P2)に接続され、該圧縮機(3)の吸入ポートが上記四路器切換弁(4)の第4ポート(P4)に接続されている。   The compressor (3) is composed of, for example, a scroll compressor, and is configured to suck and compress the refrigerant from the suction port and discharge the compressed refrigerant from the discharge port. In the refrigerant circuit (2), the discharge port of the compressor (3) is connected to the second port (P2) of the four-way switching valve (4), and the suction port of the compressor (3) is connected to the four-way Connected to the fourth port (P4) of the switch valve (4).

上記四路切換弁(4)は、第1ポート(P1)が上記室内熱交換器(5)に接続され、第2ポート(P2)が上記圧縮機(3)の吐出ポートに接続され、第3ポート(P3)が上記地中熱交換器(10)に接続され、第4ポート(P4)が上記圧縮機(3)の吸入ポートに接続されている。上記四路切換弁(4)は、第1ポート(P1)と第2ポート(P2)とが互いに連通し且つ第3ポート(P3)と第4ポート(P4)とが互いに連通する第1状態(図1に実線で示す状態)と、第1ポート(P1)と第4ポート(P4)とが互いに連通し且つ第2ポート(P2)と第3ポート(P3)とが互いに連通する第2状態(図1に破線で示す状態)とが切り換え可能になっている。   The four-way switching valve (4) has a first port (P1) connected to the indoor heat exchanger (5), a second port (P2) connected to the discharge port of the compressor (3), Three ports (P3) are connected to the underground heat exchanger (10), and a fourth port (P4) is connected to the suction port of the compressor (3). The four-way selector valve (4) is in a first state in which the first port (P1) and the second port (P2) communicate with each other and the third port (P3) and the fourth port (P4) communicate with each other. (The state indicated by the solid line in FIG. 1), the second port (P1) and the fourth port (P4) communicate with each other, and the second port (P2) and the third port (P3) communicate with each other. The state (state indicated by a broken line in FIG. 1) can be switched.

上記室内熱交換器(5)は、例えばクロスフィン型のフィン・アンド・チューブ熱交換器であり、冷媒を室内空気と熱交換させるための空気熱交換器である。この空調システム(1)において、上記室内熱交換器(5)は、空気調和を行う室内に配置された室内機に組み込まれている。また、上記冷媒回路(2)において、上記室内熱交換器(5)の一端は、膨張弁(6)に接続され、他の一端は、上記四路切換弁(4)の第1ポート(P1)に接続されている。さらに、上記室内熱交換器(5)の近傍には、該室内熱交換器(5)と熱交換した空気を室内へ流すための室内ファン(7)が設けられている。   The indoor heat exchanger (5) is, for example, a cross fin type fin-and-tube heat exchanger, and is an air heat exchanger for exchanging heat between the refrigerant and room air. In the air conditioning system (1), the indoor heat exchanger (5) is incorporated in an indoor unit disposed in a room that performs air conditioning. In the refrigerant circuit (2), one end of the indoor heat exchanger (5) is connected to the expansion valve (6), and the other end is the first port (P1) of the four-way switching valve (4). )It is connected to the. Furthermore, an indoor fan (7) is provided in the vicinity of the indoor heat exchanger (5) for flowing air exchanged with the indoor heat exchanger (5) into the room.

上記膨張弁(6)は、開度可変の電子膨張弁によって構成されている。この膨張弁(6)の開度を変更することで、上記室内熱交換器(5)または地中熱交換器(10)から流入した冷媒を膨張させて、所定の圧力まで減圧させることができる。   The expansion valve (6) is an electronic expansion valve with a variable opening. By changing the opening of the expansion valve (6), the refrigerant flowing from the indoor heat exchanger (5) or the underground heat exchanger (10) can be expanded and depressurized to a predetermined pressure. .

上記地中熱交換器(10)は、概略円柱状の外形を有しており、縦方向(鉛直方向)に延びるように地中に埋設されて内部を流れる冷媒と土壌とが熱交換を行うように構成されている。詳しくは後述するが、上記地中熱交換器(10)は、有底筒状の外管(11)と、該外管(11)内に収容されて上記冷媒が流れる伝熱管(12)と、上記外管(11)内に封入される熱媒体(13)とを備えている。上記地中熱交換器(10)では、伝熱管(12)内を流れる冷媒と外管(11)の外方の土壌とが熱媒体(13)を介して熱交換するように構成されている。   The above-mentioned underground heat exchanger (10) has a substantially cylindrical outer shape, and heat is exchanged between the refrigerant embedded in the ground so as to extend in the vertical direction (vertical direction) and the soil flowing inside. It is configured as follows. As will be described in detail later, the underground heat exchanger (10) includes a bottomed cylindrical outer tube (11), and a heat transfer tube (12) that is housed in the outer tube (11) and through which the refrigerant flows. And a heat medium (13) enclosed in the outer tube (11). The underground heat exchanger (10) is configured to exchange heat between the refrigerant flowing in the heat transfer tube (12) and the soil outside the outer tube (11) via the heat medium (13). .

以上のような構成を有する空調システム(1)では、四路切換弁(4)が第1状態の場合、暖房運転が行われ、四路切換弁(4)が第2状態の場合、冷房運転が行われる。すなわち、暖房運転では、冷媒回路(2)において、地中熱交換器(10)が蒸発器として機能し且つ室内熱交換器(5)が凝縮器として機能する蒸気圧縮式冷凍サイクルが行われる。一方、冷房運転では、冷媒回路(2)において、地中熱交換器(10)が凝縮器として機能し且つ室内熱交換器(5)が蒸発器として機能する蒸気圧縮式冷凍サイクルが行われる。   In the air conditioning system (1) having the above-described configuration, the heating operation is performed when the four-way switching valve (4) is in the first state, and the cooling operation is performed when the four-way switching valve (4) is in the second state. Is done. That is, in the heating operation, a vapor compression refrigeration cycle in which the underground heat exchanger (10) functions as an evaporator and the indoor heat exchanger (5) functions as a condenser is performed in the refrigerant circuit (2). On the other hand, in the cooling operation, in the refrigerant circuit (2), a vapor compression refrigeration cycle is performed in which the underground heat exchanger (10) functions as a condenser and the indoor heat exchanger (5) functions as an evaporator.

<地中熱交換器の構成>
以下で、地中熱交換器(10)の構成について図2に基づいて詳細に説明する。
<Configuration of underground heat exchanger>
Below, the structure of a underground heat exchanger (10) is demonstrated in detail based on FIG.

上述のとおり、上記地中熱交換器(10)は、外管(11)と、その内部に収容される伝熱管(12)と、上記外管(11)内に封入される熱媒体(13)とを備えている。また、上記地中熱交換器(10)は、外管(11)が地表面に露出しないように地中に埋設されていて、該外管(11)の外表面全体が土壌によって覆われている。具体的には、上記地中熱交換器(10)は、地表面から約5m〜10mの範囲に埋設されている。この深さは、例えば図6に示すように、地表面(図中の地中深さ0m)での温度が大きく変動した場合でも、該地表面の温度変化の影響を受けにくく、熱交換器として要求される能力を発揮できるような深さ(所定深さ)である。したがって、上記地中熱交換器(10)を上記深さに埋設することにより、内部の伝熱管(12)を流れる冷媒と地中の土壌との熱交換を安定して且つ効率良く行うことができる。しかも、従来の構成(チューブ方式)に比べて掘削する深さが浅くなるため、設置費用を低減することができる。なお、上記図6は、地中の土壌の温度変化を計算式によって求めた一例を示したものであり、夏(図の右側)及び冬(図の左側)の場合に、土壌の状態(実線:平均的な水分を含む土壌、破線:湿った土壌、一点鎖線:やや乾燥した土壌)に応じて地中深さによって土壌の温度がどのように変わるのかを示している。   As described above, the underground heat exchanger (10) includes the outer pipe (11), the heat transfer pipe (12) accommodated therein, and the heat medium (13) enclosed in the outer pipe (11). ). The underground heat exchanger (10) is embedded in the ground so that the outer pipe (11) is not exposed to the ground surface, and the entire outer surface of the outer pipe (11) is covered with soil. Yes. Specifically, the underground heat exchanger (10) is embedded in a range of about 5 m to 10 m from the ground surface. For example, as shown in FIG. 6, this depth is hardly affected by the temperature change of the ground surface even when the temperature on the ground surface (the depth of the ground in the figure is 0 m) greatly fluctuates. It is a depth (predetermined depth) that can exhibit the ability required as. Therefore, by burying the underground heat exchanger (10) at the depth, heat exchange between the refrigerant flowing through the internal heat transfer tube (12) and the soil in the ground can be performed stably and efficiently. it can. And since the depth which excavates becomes shallow compared with the conventional structure (tube system), installation cost can be reduced. In addition, the said FIG. 6 shows the example which calculated | required the temperature change of the soil in the ground by the calculation formula, and the state of the soil (solid line) in summer (right side of the figure) and winter (left side of the figure) : Soil with average moisture, broken line: damp soil, alternate long and short dash line: slightly dry soil).

上記外管(11)は、金属製の筒状部材の両端が金属製の板部材によって閉塞されたものであり、その内部に空間(S)が形成されている。また、上記外管(11)は、空間(S)内に上記熱媒体(13)として所定量の二酸化炭素(CO)を封入可能な密閉構造を有している。さらに、上記外管(11)の空間(S)内には、内部を冷媒が流れる上記伝熱管(12)が収容されている。この伝熱管(12)は、上記外管(11)の一方の端面(地表側の端面)を構成する板部材を貫通して上記冷媒回路(2)の冷媒配管に接続されている。ここで、上記外管(11)は、地中に筒軸方向が略鉛直方向になるように縦向きに埋設される。なお、地中に略鉛直方向に外管(11)を埋設するのが理想であるが、ある程度の傾斜は許容される。 The outer tube (11) is one in which both ends of a metallic cylindrical member are closed by a metallic plate member, and a space (S) is formed inside thereof. The outer pipe (11) has a sealed structure capable of enclosing a predetermined amount of carbon dioxide (CO 2 ) as the heat medium (13) in the space (S). Further, the heat transfer pipe (12) through which the refrigerant flows is housed in the space (S) of the outer pipe (11). The heat transfer pipe (12) passes through a plate member constituting one end face (the end face on the ground surface side) of the outer pipe (11) and is connected to the refrigerant pipe of the refrigerant circuit (2). Here, the outer pipe (11) is embedded vertically in the ground so that the cylinder axis direction is substantially vertical. Although it is ideal to embed the outer pipe (11) substantially vertically in the ground, a certain degree of inclination is allowed.

上記伝熱管(12)は、銅製であり、上記冷媒回路(2)の流路の一部を構成するように内部を冷媒が流れる管状の部材からなる。この実施形態では、上記伝熱管(12)は、上記外管(11)の頂部から底部へ延びて該底部で折曲して頂部へ戻るように形成されていて、両端部が上記外管(11)の一方の端面を構成する板部材を貫通して外部へ突出するように上記外管(11)内に収容されている。具体的には、上記伝熱管(12)は、上記膨張弁(6)に一端側で繋がる第1接続部(12a)と、該第1接続部(12a)の他端側に接続される本体部(12c)と、該本体部(12c)に一端側で接続され且つ上記四路切換弁(4)の第3ポート(P3)に他端側で繋がる第2接続部(12b)とを備えている。これらの接続部(12a,12b)は、上記外管(11)の一方の端面(地表側の端面)を構成する板部材を貫通するように設けられている一方、上記本体部(12c)は、上記外管(11)の内面に沿うように配設されている。   The heat transfer tube (12) is made of copper and is made of a tubular member through which the refrigerant flows so as to constitute a part of the flow path of the refrigerant circuit (2). In this embodiment, the heat transfer tube (12) is formed so as to extend from the top of the outer tube (11) to the bottom, bend at the bottom, and return to the top. 11) is accommodated in the outer pipe (11) so as to penetrate the plate member constituting one end face and project outside. Specifically, the heat transfer tube (12) includes a first connection part (12a) connected to the expansion valve (6) on one end side, and a main body connected to the other end side of the first connection part (12a). And a second connection portion (12b) connected to the main body portion (12c) on one end side and connected to the third port (P3) of the four-way switching valve (4) on the other end side. ing. These connecting portions (12a, 12b) are provided so as to penetrate through a plate member constituting one end surface (end surface on the ground surface side) of the outer pipe (11), while the main body portion (12c) These are arranged along the inner surface of the outer tube (11).

上記本体部(12c)は、上記第1接続部(12a)の他端側に接続されて上記外管(11)の底部まで延びる直線状の第1本体部(12d)と、該第1本体部(12d)に接続されて上記外管(11)の頂部まで延びる螺旋状の第2本体部(12e)とからなる。このように、上記第2本体部(12e)を螺旋状に形成することで、該第2本体部(12e)内を流れる冷媒が上記外管(11)内に封入された二酸化炭素(13)と熱交換する部分の表面積を拡大することができ、該冷媒と二酸化炭素(13)との間で効率良く熱交換を行うことができる。   The main body (12c) includes a linear first main body (12d) connected to the other end of the first connecting portion (12a) and extending to the bottom of the outer tube (11), and the first main body It comprises a spiral second main body portion (12e) connected to the portion (12d) and extending to the top of the outer tube (11). Thus, by forming the second main body portion (12e) in a spiral shape, the carbon dioxide (13) in which the refrigerant flowing in the second main body portion (12e) is sealed in the outer pipe (11). The surface area of the portion that exchanges heat with can be increased, and heat exchange can be performed efficiently between the refrigerant and carbon dioxide (13).

上記螺旋状の第2本体部(12e)は、上記外管(11)の内周面に接触するように配置されていて、螺旋状の第2本体部(12e)の内方に該第2本体部(12e)と接するように上記第1本体部(12d)が配置されている。このように、上記第2本体部(12e)を外管(11)の内周面に接触させることで、後述するように、上記第2本体部(12e)の外周面若しくは外管(11)の内周面で凝縮した二酸化炭素(13)が該外管(11)の内周面若しくは第2本体部(12e)の外周面へ移動することができ、それらの表面で二酸化炭素(13)の蒸発が可能となる。   The spiral second main body portion (12e) is disposed so as to come into contact with the inner peripheral surface of the outer tube (11), and the second inner body portion (12e) is inward of the second main body portion (12e). The first main body portion (12d) is disposed so as to be in contact with the main body portion (12e). In this way, by bringing the second main body portion (12e) into contact with the inner peripheral surface of the outer tube (11), as described later, the outer peripheral surface of the second main body portion (12e) or the outer tube (11). The carbon dioxide (13) condensed on the inner peripheral surface of the gas can move to the inner peripheral surface of the outer pipe (11) or the outer peripheral surface of the second main body (12e), and carbon dioxide (13) Can be evaporated.

すなわち、図4に示すように、上記空調システム(1)の暖房運転時には、地中熱交換器(10)の伝熱管(12)内を、地中の土壌の温度よりも飽和温度の低い低圧冷媒が流れるため、上記土壌の温度よりも低く且つ上記低圧冷媒の温度よりも高い飽和温度を有する外管(11)内の二酸化炭素(13)が上記伝熱管(12)の外表面で凝縮する。このとき、上記伝熱管(12)の第2本体部(12e)内を流れる冷媒は、二酸化炭素(13)の凝縮熱によって蒸発し、圧縮機(3)の吸入ポートから吸入される。   That is, as shown in FIG. 4, during the heating operation of the air conditioning system (1), the inside of the heat transfer pipe (12) of the underground heat exchanger (10) is a low pressure whose saturation temperature is lower than the temperature of the soil in the ground. Since the refrigerant flows, carbon dioxide (13) in the outer pipe (11) having a saturation temperature lower than that of the soil and higher than that of the low-pressure refrigerant condenses on the outer surface of the heat transfer pipe (12). . At this time, the refrigerant flowing in the second main body (12e) of the heat transfer tube (12) evaporates due to the heat of condensation of the carbon dioxide (13) and is sucked from the suction port of the compressor (3).

上述のように、上記第2本体部(12e)と外管(11)の内周面とは接触しているため、上記凝縮した二酸化炭素(13)は、上記第2本体部(12e)の外周面から上記外管(11)の内周面上へ移動し、該内周面上で地中の土壌の熱によって蒸発(気化)する。気化した二酸化炭素(13)は、上記伝熱管(12)の第2本体部(12e)によって冷却されると再び凝縮する。   As described above, since the second main body portion (12e) and the inner peripheral surface of the outer pipe (11) are in contact with each other, the condensed carbon dioxide (13) is absorbed by the second main body portion (12e). It moves from the outer peripheral surface onto the inner peripheral surface of the outer pipe (11), and evaporates (vaporizes) on the inner peripheral surface by the heat of the soil in the ground. The vaporized carbon dioxide (13) condenses again when cooled by the second main body (12e) of the heat transfer tube (12).

一方、図5に示すように、上記空調システム(1)の冷房運転時には、地中熱交換器(10)の伝熱管(12)内を、地中の土壌の温度よりも飽和温度の高い高圧冷媒が流れる。上記外管(11)内の二酸化炭素(13)は、上記土壌の温度よりも高く且つ上記高圧冷媒の温度よりも低い飽和温度を有するため、上記伝熱管(12)の外表面上で気化する一方、上記外管(11)の内周面上では凝縮する。   On the other hand, as shown in FIG. 5, during the cooling operation of the air conditioning system (1), the inside of the heat transfer pipe (12) of the underground heat exchanger (10) is a high pressure whose saturation temperature is higher than the temperature of the soil in the ground. The refrigerant flows. Since the carbon dioxide (13) in the outer pipe (11) has a saturation temperature higher than the temperature of the soil and lower than the temperature of the high-pressure refrigerant, it vaporizes on the outer surface of the heat transfer pipe (12). On the other hand, it condenses on the inner peripheral surface of the outer pipe (11).

すなわち、上述のように、上記第2本体部(12e)と外管(11)の内周面とは接触しているため、該外管(11)の内周面上で凝縮した二酸化炭素(13)は、上記第2本体部(12e)の外周面へ移動し、該外周面上で冷媒の熱によって気化する。気化した二酸化炭素(13)は、上記外管(11)の内周面によって冷却されると再び凝縮する。上記伝熱管(12)の第2本体部(12e)の外表面上で二酸化炭素(13)が気化する際、該第2本体部(12e)内を流れる冷媒は、二酸化炭素(13)の蒸発により熱を奪われて凝縮し、膨張弁(6)へ流れる。   That is, as described above, since the second main body portion (12e) and the inner peripheral surface of the outer tube (11) are in contact with each other, carbon dioxide condensed on the inner peripheral surface of the outer tube (11) ( 13) moves to the outer peripheral surface of the second main body portion (12e) and is vaporized by the heat of the refrigerant on the outer peripheral surface. The vaporized carbon dioxide (13) is condensed again when cooled by the inner peripheral surface of the outer pipe (11). When carbon dioxide (13) is vaporized on the outer surface of the second main body (12e) of the heat transfer tube (12), the refrigerant flowing in the second main body (12e) is evaporated of carbon dioxide (13). Deprived of heat and condensed, and flows to the expansion valve (6).

また、本実施形態では、図3に示すように、上記外管(11)の内周面に、該外管(11)の周方向に水平に延びる溝(11a)が長手方向に並んで複数、形成されている。また、上記伝熱管(12)の第2本体部(12e)の外周面にも、上記外管(11)の内周面の溝(11a)に対して平行に、且つ、上記伝熱管(12)の周方向に水平に延びる溝(12f)が長手方向に並んで複数、形成されている。   In the present embodiment, as shown in FIG. 3, a plurality of grooves (11a) extending horizontally in the circumferential direction of the outer tube (11) are arranged in the longitudinal direction on the inner circumferential surface of the outer tube (11). Is formed. Further, the heat transfer tube (12) is parallel to the outer peripheral surface of the second main body portion (12e) of the heat transfer tube (12) with respect to the groove (11a) of the inner peripheral surface of the outer tube (11). ), A plurality of grooves (12f) extending horizontally in the circumferential direction are formed side by side in the longitudinal direction.

このように、上記外管(11)の内周面及び上記伝熱管(12)の第2本体部(12e)の外周面に、それぞれ溝(11a,12f)を形成することにより、暖房運転時に上記第2本体部(12e)の外周面上で凝縮した二酸化炭素(13)、及び、冷房運転時に上記外管(11)の内周面上で凝縮した二酸化炭素(13)を、それぞれ、上記溝(11a,12f)内で保持することができ、外管(11)の下部に流れ落ちるのを防止することができる。しかも、上述のように、上記溝(11a,12f)は、外管(11)の内周面及び伝熱管(12)の第2本体部(12e)の外周面に周方向且つ水平方向に延びるように設けられているため、上記伝熱管(12)の第2本体部(12e)の外周面上や上記外管(11)内周面上で、凝縮した二酸化炭素(13)を該外管(11)の周方向(水平方向)に拡げることができ(上記図4及び図5参照)、冷媒及び土壌と該二酸化炭素(13)との熱交換を効率良く行うことができる。したがって、上記溝(11a,12f)を設けることによって、二酸化炭素(13)を介して伝熱管(12)内の冷媒と外管(11)の外方の土壌との熱交換を効率良く行うことができる。   Thus, by forming the grooves (11a, 12f) on the inner peripheral surface of the outer tube (11) and the outer peripheral surface of the second main body (12e) of the heat transfer tube (12), respectively, during heating operation Carbon dioxide (13) condensed on the outer peripheral surface of the second main body (12e) and carbon dioxide (13) condensed on the inner peripheral surface of the outer pipe (11) during cooling operation are respectively It can hold | maintain in a groove | channel (11a, 12f), and it can prevent flowing down to the lower part of an outer tube | pipe (11). Moreover, as described above, the grooves (11a, 12f) extend in the circumferential direction and in the horizontal direction on the inner peripheral surface of the outer tube (11) and the outer peripheral surface of the second main body portion (12e) of the heat transfer tube (12). Therefore, the carbon dioxide (13) condensed on the outer peripheral surface of the second main body portion (12e) of the heat transfer tube (12) and the inner peripheral surface of the outer tube (11) is removed from the outer tube. (11) can be expanded in the circumferential direction (horizontal direction) (see FIGS. 4 and 5), and heat exchange between the refrigerant and the soil and the carbon dioxide (13) can be performed efficiently. Therefore, by providing the groove (11a, 12f), heat exchange between the refrigerant in the heat transfer tube (12) and the soil outside the outer tube (11) can be efficiently performed via carbon dioxide (13). Can do.

なお、本実施形態では、上記外管(11)の内周面に形成された溝(11a)と上記伝熱管(12)の外周面に形成された溝(12f)とが略平行になるように形成されているが、この限りではなく、溝(11a,12f)同士が交差していてもよく、該溝(11a,12f)が水平方向に対して若干、上下に傾いていてもよい。   In this embodiment, the groove (11a) formed on the inner peripheral surface of the outer tube (11) and the groove (12f) formed on the outer peripheral surface of the heat transfer tube (12) are substantially parallel. However, the present invention is not limited to this, and the grooves (11a, 12f) may intersect with each other, and the grooves (11a, 12f) may be slightly inclined up and down with respect to the horizontal direction.

−運転動作−
次に、上述のような構成を有する空調システム(1)の動作について図1、図4及び図5に基づいて説明する。
-Driving action-
Next, operation | movement of the air conditioning system (1) which has the above structures is demonstrated based on FIG.1, FIG4 and FIG.5.

(暖房運転)
図1に示すように、暖房運転の開始時には、まず、四路切換弁(4)を第1状態に切り換える。そして、圧縮機(3)が運転状態になると、圧縮された高圧の冷媒(ガス冷媒)が圧縮機(3)の吐出ポートから吐出され、上記四路切換弁(4)を介して室内熱交換器(5)内に流入する。この室内熱交換器(5)において、上記高圧冷媒は室内空気へ放熱し凝縮する。この凝縮熱によって室内空気は暖められ、室内の暖房が行われる。上記室内熱交換器(5)で凝縮した冷媒は、該室内熱交換器(5)から流出して、膨張弁(6)で減圧され、地中熱交換器(10)へ導入される(図1中の実線矢印)。なお、上記膨張弁(6)では、地中の土壌の温度よりも飽和温度が低くなるように、冷媒を減圧する。
(Heating operation)
As shown in FIG. 1, when the heating operation is started, first, the four-way switching valve (4) is switched to the first state. When the compressor (3) is in an operating state, the compressed high-pressure refrigerant (gas refrigerant) is discharged from the discharge port of the compressor (3), and indoor heat exchange is performed via the four-way switching valve (4). Flows into the vessel (5). In the indoor heat exchanger (5), the high-pressure refrigerant dissipates heat to the indoor air and condenses. The indoor air is warmed by this condensation heat, and the room is heated. The refrigerant condensed in the indoor heat exchanger (5) flows out of the indoor heat exchanger (5), is decompressed by the expansion valve (6), and is introduced into the underground heat exchanger (10) (see FIG. (Solid arrow in 1). In the expansion valve (6), the refrigerant is decompressed so that the saturation temperature is lower than the temperature of the soil in the ground.

上記地中熱交換器(10)へ流入した低圧冷媒は、外管(11)内の二酸化炭素(13)を介して地中の熱を吸収し、蒸発する。このとき、上記地中熱交換器(10)は、外管(11)の外表面全体が土壌に覆われており且つ周囲の土壌の温度が安定した深さに埋設されているため、地中の土壌との間で熱交換を効率良く行うことができる。上記地中熱交換器(10)で蒸発した冷媒は地中熱交換器(10)を流出し、上記四路切換弁(4)を介して上記圧縮機(3)に再度吸入され、所定圧力まで圧縮されて吐出される。   The low-pressure refrigerant flowing into the underground heat exchanger (10) absorbs underground heat through the carbon dioxide (13) in the outer pipe (11) and evaporates. At this time, the underground heat exchanger (10) has the entire outer surface of the outer pipe (11) covered with soil and is buried at a stable depth in the surrounding soil. Heat exchange with other soils. The refrigerant evaporated in the underground heat exchanger (10) flows out of the underground heat exchanger (10), and is sucked again into the compressor (3) through the four-way switching valve (4). Until compressed.

このように、冷媒回路(2)内を冷媒が循環して、蒸気圧縮式の冷凍サイクルを行うことで、室内の暖房が行われる。   As described above, the refrigerant circulates in the refrigerant circuit (2) and performs a vapor compression refrigeration cycle, thereby heating the room.

次に、上記地中熱交換器(10)内での冷媒及び二酸化炭素(13)の状態変化について説明する。   Next, the state change of the refrigerant and carbon dioxide (13) in the underground heat exchanger (10) will be described.

上述のように、地中の土壌の温度よりも飽和温度が低い低圧の冷媒が、地中に埋設された地中熱交換器(10)内の伝熱管(12)の本体部(12c)内に流入すると、図4に示すように、該地中熱交換器(10)の外管(11)内に封入され且つ上記冷媒よりも飽和温度の高い二酸化炭素(13)が、上記伝熱管(12)の本体部(12c)上で凝縮する。この二酸化炭素(13)の凝縮熱によって、上記伝熱管(12)内の冷媒が蒸発し、上記地中熱交換器(10)から流出した後、上記圧縮機(3)に吸入される。   As mentioned above, the low-pressure refrigerant whose saturation temperature is lower than the temperature of the soil in the ground is in the body (12c) of the heat transfer tube (12) in the underground heat exchanger (10) buried in the ground. 4, as shown in FIG. 4, carbon dioxide (13) enclosed in the outer pipe (11) of the underground heat exchanger (10) and having a saturation temperature higher than that of the refrigerant is transferred to the heat transfer pipe ( 12) Condensate on the body (12c). Due to the heat of condensation of the carbon dioxide (13), the refrigerant in the heat transfer tube (12) evaporates and flows out of the underground heat exchanger (10), and is then sucked into the compressor (3).

一方、上記地中熱交換器(10)の外管(11)内では、凝縮した二酸化炭素(13)が上記伝熱管(12)の螺旋状の第2本体部(12e)の外周面に形成された溝(12f)を伝って、該第2本体部(12e)と接触する外管(11)の内周面に移動する。該外管(11)の内周面上では、上記二酸化炭素(13)が該外管(11)の内周面上に形成された溝(11a)内に保持されるとともに、地中の土壌の熱によってに二酸化炭素(13)が気化し、該気化した二酸化炭素(13)は、上記伝熱管(12)の第2本体部(12e)を流れる冷媒によって再び凝縮される。   On the other hand, in the outer pipe (11) of the underground heat exchanger (10), condensed carbon dioxide (13) is formed on the outer peripheral surface of the spiral second main body (12e) of the heat transfer pipe (12). It moves to the inner peripheral surface of the outer tube (11) that comes into contact with the second main body (12e) through the groove (12f). On the inner peripheral surface of the outer tube (11), the carbon dioxide (13) is held in a groove (11a) formed on the inner peripheral surface of the outer tube (11), and the soil in the ground Carbon dioxide (13) is vaporized by the heat of the gas, and the vaporized carbon dioxide (13) is condensed again by the refrigerant flowing through the second main body portion (12e) of the heat transfer tube (12).

(冷房運転)
冷房運転の開始時には、まず、四路切換弁(4)を第2状態に切り換える。そして、圧縮機(3)が運転状態になると、圧縮された高圧冷媒が圧縮機(3)の吐出ポートから吐出され、上記四路切換弁(4)を介して地中熱交換器(10)に流入する(図1中の破線矢印)。この地中熱交換器(10)へ流入した高圧冷媒は、外管(11)内の二酸化炭素(13)を介して地中の土壌に放熱し、凝縮する。このときも、外管(11)の外表面全体が土壌に覆われていて且つ周囲の土壌の温度が安定した深さに埋設された地中熱交換器(10)は、地中の土壌との間で効率良く熱交換を行うことができる。該地中熱交換器(10)で凝縮した冷媒は、地中熱交換器(10)から流出して、膨張弁(6)で減圧され、室内熱交換器(5)へ導入される。なお、上記膨張弁(6)では、室内の温度よりも飽和温度が低くなるように、冷媒を減圧する。
(Cooling operation)
At the start of the cooling operation, first, the four-way switching valve (4) is switched to the second state. When the compressor (3) is in an operating state, the compressed high-pressure refrigerant is discharged from the discharge port of the compressor (3), and the underground heat exchanger (10) is passed through the four-way switching valve (4). (Broken arrows in FIG. 1). The high-pressure refrigerant that has flowed into the underground heat exchanger (10) dissipates heat to the underground soil via the carbon dioxide (13) in the outer pipe (11) and condenses. At this time, the underground heat exchanger (10), in which the entire outer surface of the outer pipe (11) is covered with soil and buried at a stable depth of the surrounding soil, Heat can be efficiently exchanged between the two. The refrigerant condensed in the underground heat exchanger (10) flows out of the underground heat exchanger (10), is decompressed by the expansion valve (6), and is introduced into the indoor heat exchanger (5). In the expansion valve (6), the refrigerant is decompressed so that the saturation temperature is lower than the indoor temperature.

上記室内熱交換器(4)へ流入した低圧冷媒は、室内の空気の熱を吸収し、蒸発する。蒸発した冷媒は室内熱交換器(4)を流出し、上記四路切換弁(4)を介して上記圧縮機(3)に再度吸入され、所定圧力まで圧縮されて吐出される。   The low-pressure refrigerant that has flowed into the indoor heat exchanger (4) absorbs the heat of indoor air and evaporates. The evaporated refrigerant flows out of the indoor heat exchanger (4), is again sucked into the compressor (3) through the four-way switching valve (4), is compressed to a predetermined pressure, and is discharged.

このように、冷媒回路(2)内を冷媒が循環して、蒸気圧縮式の冷凍サイクルを行うことで、室内の冷房が行われる。   As described above, the refrigerant circulates in the refrigerant circuit (2) to perform the vapor compression refrigeration cycle, thereby cooling the room.

次に、上記地中熱交換器(10)内での冷媒及び二酸化炭素(13)の状態変化について説明する。   Next, the state change of the refrigerant and carbon dioxide (13) in the underground heat exchanger (10) will be described.

図5に示すように、上述のような冷房運転では、上記地中熱交換器(10)の外管(11)内に封入され、上記冷媒の温度よりも飽和温度が低く且つ地中の土壌の温度よりも飽和温度が高い二酸化炭素(13)が、外管(11)の内周面上で地熱によって凝縮する。凝縮した二酸化炭素(13)は、上記外管(11)の内周面に形成された溝(11a)を伝って、該外管(11)の内周面と接触する伝熱管(12)の第2本体部(12e)の外周面に移動し、その表面に形成された溝(12f)によって保持される。この伝熱管(12)内には、上記二酸化炭素(13)の飽和温度よりも温度の高い高圧冷媒が流れているため、該伝熱管(12)の第2本体部(12e)の外周面上で二酸化炭素(13)が気化する。このとき、上記伝熱管(12)内の冷媒は、二酸化炭素(13)に熱を奪われて凝縮し、地中熱交換器(10)から膨張弁(6)へ流出する。   As shown in FIG. 5, in the cooling operation as described above, it is enclosed in the outer pipe (11) of the underground heat exchanger (10), has a saturation temperature lower than the temperature of the refrigerant, and underground soil. Carbon dioxide (13), whose saturation temperature is higher than the temperature of, is condensed by geothermal heat on the inner peripheral surface of the outer pipe (11). The condensed carbon dioxide (13) passes through the groove (11a) formed on the inner peripheral surface of the outer tube (11), and then contacts the inner peripheral surface of the outer tube (11). It moves to the outer peripheral surface of the second main body (12e) and is held by a groove (12f) formed on the surface. Since a high-pressure refrigerant having a temperature higher than the saturation temperature of the carbon dioxide (13) flows in the heat transfer tube (12), the heat transfer tube (12) has an outer peripheral surface on the second main body portion (12e). Carbon dioxide (13) vaporizes. At this time, the refrigerant in the heat transfer tube (12) is deprived of heat by the carbon dioxide (13), condenses, and flows out from the underground heat exchanger (10) to the expansion valve (6).

一方、上記伝熱管(12)の第2本体部(12e)の外周面上で蒸発した二酸化炭素(13)は、外管(11)の内周面上で再び凝縮される。   On the other hand, the carbon dioxide (13) evaporated on the outer peripheral surface of the second main body portion (12e) of the heat transfer tube (12) is condensed again on the inner peripheral surface of the outer tube (11).

−実施形態の効果−
以上より、この実施形態によれば、地中に縦向きに埋設される外管(11)内に、内部を冷媒が流れる伝熱管(12)が挿入され、且つ、熱媒体としての二酸化炭素(13)が封入されてなる地中熱交換器(10)において、該地中熱交換器(10)を、上記外管(11)が地表面に露出することなく該外管(11)の外表面全体を土壌で覆うように地中に埋設したため、上記外管(11)の外表面全体に土壌が接して、該外管(11)内に封入された二酸化炭素(13)と該外管(11)の周囲の土壌との間で効率良く熱交換を行うことができる。
-Effect of the embodiment-
As described above, according to this embodiment, the heat transfer pipe (12) through which the refrigerant flows is inserted into the outer pipe (11) buried vertically in the ground, and carbon dioxide ( 13) In the underground heat exchanger (10) in which the outer tube (11) is enclosed, the underground heat exchanger (10) is placed outside the outer tube (11) without exposing the outer tube (11) to the ground surface. Since the entire surface is buried in the ground so as to cover with soil, the soil is in contact with the entire outer surface of the outer pipe (11), and carbon dioxide (13) enclosed in the outer pipe (11) and the outer pipe Heat exchange can be performed efficiently with the surrounding soil of (11).

しかも、上記地中熱交換器(10)は、上記外管(11)の外表面全体が土壌によって覆われているため、熱交換器の一部が地表に露出している場合に比べて地表面の温度の影響を受けにくく、熱交換器としてより高い能力を発揮することができる。   Moreover, since the entire underground heat exchanger (10) is covered with soil on the entire outer surface of the outer pipe (11), the ground heat exchanger (10) can be compared to the case where a part of the heat exchanger is exposed to the ground. It is difficult to be affected by the temperature of the surface and can exhibit a higher ability as a heat exchanger.

また、上記地中熱交換器(10)を、熱交換器として要求される能力を発揮できるような所定の地中深さに埋設することで、上記地中熱交換器(10)に要求される能力を安定して発揮させることができ、地熱を用いた空調システム(1)をより確実に実現することができる。   Further, the underground heat exchanger (10) is required to be buried in a predetermined underground depth so as to exhibit the capability required as a heat exchanger. The air-conditioning system (1) using geothermal heat can be realized more reliably.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

上記実施形態では、地中に埋設された地中熱交換器(10)に対して、冷媒回路(2)を構成する各機器(3,4,6)を地上に設置するようにしているが、この限りではなく、これらの機器(3,4,6)を家の地下室内に設置してもよい。すなわち、図7に示すように、家(21)などの建物の地下室(22)内に、冷媒回路(2)を構成する各機器(3,4,6)を配置して、その地下室(22)を基準にしてそれよりも深い位置に上記地中熱交換器(10)を埋設してもよい。なお、この場合には、上記図7に示すように、上記地中熱交換器(10)の上部を冷媒配管を介して上記各機器(3,4,6)と接続できるように、該上部を地下空間(23)内に露出させるのが好ましい。   In the above embodiment, the devices (3,4,6) constituting the refrigerant circuit (2) are installed on the ground with respect to the underground heat exchanger (10) buried in the ground. Not limited to this, these devices (3,4,6) may be installed in the basement of the house. That is, as shown in FIG. 7, in the basement (22) of a building such as a house (21), the devices (3,4,6) constituting the refrigerant circuit (2) are arranged and the basement (22 The above-mentioned underground heat exchanger (10) may be embedded at a position deeper than that. In this case, as shown in FIG. 7, the upper portion of the underground heat exchanger (10) is connected to the devices (3,4, 6) via the refrigerant pipe. Is preferably exposed in the underground space (23).

また、上記実施形態では、外管(11)内の熱媒体として二酸化炭素(13)を用いているが、この限りではなく、−10度から40度の間で相変化する媒体であれば、どのようなものであってもよい。   Moreover, in the said embodiment, although the carbon dioxide (13) is used as a thermal medium in an outer tube | pipe (11), it is not this limitation, If it is a medium which changes a phase between -10 degree | times and 40 degree | times, Any thing is acceptable.

また、上記実施形態では、伝熱管(12)の第2本体部(12e)のみを螺旋状に形成し、その外表面に溝(12f)を形成しているが、この限りではなく、第1本体部(12d)も螺旋状に形成して、その外周面に溝を形成してもよい。なお、この場合には、螺旋状の第1本体部(12d)も外管(11)の内周面に接触するように配置する。また、上記第1本体部(12d)及び第2本体部(12e)の一部を螺旋状に形成してもよい。さらに、伝熱管(12)の螺旋状以外の部分が上記外管(11)の内周面に接触していて、該外管(11)の内周面と接触している伝熱管(12)の外周面上に溝を形成してもよい。さらにまた、外管(11)の内周面や伝熱管(12)の外周面に溝を設けない構成であってもよい。   Moreover, in the said embodiment, although only the 2nd main-body part (12e) of the heat exchanger tube (12) is formed in a helix, and the groove | channel (12f) is formed in the outer surface, it is not restricted to this, 1st The main body portion (12d) may also be formed in a spiral shape and grooves may be formed on the outer peripheral surface thereof. In this case, the spiral first main body portion (12d) is also arranged so as to contact the inner peripheral surface of the outer tube (11). Moreover, you may form a part of said 1st main-body part (12d) and 2nd main-body part (12e) helically. Further, the heat transfer tube (12) is in contact with the inner peripheral surface of the outer tube (11), and the heat transfer tube (12) is in contact with the inner peripheral surface of the outer tube (11). You may form a groove | channel on the outer peripheral surface. Furthermore, the structure which does not provide a groove | channel in the inner peripheral surface of an outer tube | pipe (11) and the outer peripheral surface of a heat exchanger tube (12) may be sufficient.

また、上記実施形態では、伝熱管(12)の第2本体部(12e)を螺旋状に形成しているが、この限りではなく、該伝熱管(12)の入口側と出口側との間の圧損が熱交換効率に影響を与えないような形状であれば、どのような形状であってもよい。   Moreover, in the said embodiment, although the 2nd main-body part (12e) of the heat exchanger tube (12) is formed helically, it is not this limitation, Between the inlet side and outlet side of this heat exchanger tube (12) Any shape may be used as long as the pressure loss does not affect the heat exchange efficiency.

また、上記実施形態では、一つの外管(11)内に1本の伝熱管(12)を収容することによって地中熱交換器(10)を構成しているが、この限りではなく、上記外管を長さ方向に分割するとともに、それに合わせて上記伝熱管も分割し、それらを組み合わせる構成であってもよい。また、上記実施形態では、複数の地中熱交換器(10)を並列に接続しているが、この限りではなく、一部若しくは全部を直列に接続してもよい。   Moreover, in the said embodiment, although the underground heat exchanger (10) is comprised by accommodating one heat exchanger tube (12) in one outer tube (11), it is not restricted to this, The outer tube may be divided in the length direction, the heat transfer tube may be divided in accordance with the outer tube, and the two may be combined. Moreover, although the several underground heat exchanger (10) is connected in parallel in the said embodiment, you may connect a part or all in series.

また、上記実施形態では、外管(11)内に挿入される伝熱管(12)を銅製としているが、この限りではなく、アルミ、アルミ合金、鉄、あるいは複合材料など、熱伝導率や耐食性に優れた材料であればどのような材料であってもよい。   Moreover, in the said embodiment, although the heat exchanger tube (12) inserted in an outer tube (11) is made from copper, it is not restricted to this, Thermal conductivity and corrosion resistance, such as aluminum, aluminum alloy, iron, or a composite material Any material may be used as long as it is excellent in material.

また、上記実施形態では、空調システム(1)における冷媒回路(2)内の冷媒の流れ方向を四路切換弁(4)を用いて切り換えるように構成されているが、この限りではなく、冷媒の流れ方向を切り換え可能な構成であればどのような構成であってもよい。   Moreover, in the said embodiment, although it is comprised so that the flow direction of the refrigerant | coolant in the refrigerant circuit (2) in an air-conditioning system (1) may be switched using a four-way switching valve (4), it is not restricted to this. Any configuration may be used as long as the flow direction can be switched.

本発明は、冷媒と地中の土壌との間で熱交換を行う地中熱交換器に特に有用である。   The present invention is particularly useful for an underground heat exchanger that performs heat exchange between a refrigerant and underground soil.

図1は、本発明の実施形態に係る地中熱交換器を備えた空調システムの概略構成図である。Drawing 1 is a schematic structure figure of an air-conditioning system provided with the underground heat exchanger concerning the embodiment of the present invention. 図2は、地中熱交換器の概略構成を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a schematic configuration of the underground heat exchanger. 図3は、地中熱交換器の外管及び伝熱管の概略構成を部分的に拡大して示す斜視図である。FIG. 3 is a partially enlarged perspective view of the schematic configuration of the outer tube and the heat transfer tube of the underground heat exchanger. 図4は、暖房運転時における地中熱交換器内部での二酸化炭素の相変化を示す部分拡大断面図である。FIG. 4 is a partial enlarged cross-sectional view showing the phase change of carbon dioxide inside the underground heat exchanger during heating operation. 図5は、冷房運転時における地中熱交換器内部での二酸化炭素の相変化を示す図4相当図である。FIG. 5 is a diagram corresponding to FIG. 4 showing the phase change of carbon dioxide inside the underground heat exchanger during cooling operation. 図6は、土壌の温度と地中深さとの関係の一例を示す図である。FIG. 6 is a diagram illustrating an example of a relationship between soil temperature and underground depth. 図7は、その他の実施形態に係る地中熱交換器の設置例を示す模式図である。Drawing 7 is a mimetic diagram showing the example of installation of the underground heat exchanger concerning other embodiments.

符号の説明Explanation of symbols

1 空調システム
2 冷媒回路
3 圧縮機
4 四路切換弁
5 室内熱交換器
6 膨張弁
7 室内ファン
10 地中熱交換器
11 外管
11a 溝
12 伝熱管
12a 第1接続部
12b 第2接続部
12c 本体部
12d 第1本体部
12e 第2本体部
12f 溝
13 二酸化炭素(熱媒体)
21 家
22 地下室
23 地下空間
S 空間
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2 Refrigerant circuit 3 Compressor 4 Four-way switching valve 5 Indoor heat exchanger 6 Expansion valve 7 Indoor fan 10 Ground heat exchanger 11 Outer pipe 11a Groove 12 Heat transfer pipe 12a First connection part 12b Second connection part 12c Main body 12d First main body 12e Second main body 12f Groove 13 Carbon dioxide (heat medium)
21 house 22 basement 23 basement space S space

Claims (3)

地中に縦向きに埋設される外管(11)と、該外管(11)内に挿入されて内部を被熱交換流体が流れる伝熱管(12)と、上記外管(11)内に封入される熱媒体(13)とを備え、該熱媒体(13)の相変化を利用して土壌と熱交換を行うように構成された地中熱交換器であって、
上記外管(11)は、地表面に露出しないように地中に埋設されていて、外表面全体が土壌によって覆われていることを特徴とする地中熱交換器。
An outer pipe (11) buried vertically in the ground, a heat transfer pipe (12) inserted into the outer pipe (11) and through which the heat exchange fluid flows, and the outer pipe (11) An underground heat exchanger configured to perform heat exchange with soil using a phase change of the heat medium (13),
The outer pipe (11) is embedded in the ground so as not to be exposed to the ground surface, and the entire outer surface is covered with soil.
請求項1に記載の地中熱交換器において、
上記外管(11)は、熱交換器として要求される能力を発揮できるような所定深さに埋設されていることを特徴とする地中熱交換器。
The underground heat exchanger according to claim 1,
The underground heat exchanger is characterized in that the outer pipe (11) is buried at a predetermined depth so as to exhibit the ability required as a heat exchanger.
請求項1または2に記載の地中熱交換器(10)を備えていて、冷凍サイクルを行う空調システムにおいて、
上記地中熱交換器(10)を複数、備えていて、
上記複数の地中熱交換器(10)は、並列に接続されていることを特徴とする空調システム。
An air conditioning system comprising the underground heat exchanger (10) according to claim 1 or 2 and performing a refrigeration cycle,
A plurality of the above-mentioned underground heat exchangers (10),
The air conditioner characterized in that the plurality of underground heat exchangers (10) are connected in parallel.
JP2008323381A 2008-12-19 2008-12-19 Underground heat exchanger and air conditioning system including the same Pending JP2010145022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323381A JP2010145022A (en) 2008-12-19 2008-12-19 Underground heat exchanger and air conditioning system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323381A JP2010145022A (en) 2008-12-19 2008-12-19 Underground heat exchanger and air conditioning system including the same

Publications (1)

Publication Number Publication Date
JP2010145022A true JP2010145022A (en) 2010-07-01

Family

ID=42565632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323381A Pending JP2010145022A (en) 2008-12-19 2008-12-19 Underground heat exchanger and air conditioning system including the same

Country Status (1)

Country Link
JP (1) JP2010145022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318124A (en) * 2014-11-11 2015-01-28 合肥天地源节能技术开发有限公司 Heat exchange capability computing method of ground source heat pump underground heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116253A (en) * 1984-11-13 1986-06-03 株式会社 前川製作所 Heat pump or cooling device
JPH10300266A (en) * 1997-04-24 1998-11-13 Shinryo Corp Vertical type earth heat pump
JP2000292082A (en) * 1999-04-07 2000-10-20 Hitachi Plant Eng & Constr Co Ltd Underground heat storage system
JP2005090902A (en) * 2003-09-19 2005-04-07 Chubu Electric Power Co Inc Geothermal heat pump structure
JP2006071134A (en) * 2004-08-31 2006-03-16 Sekkei Kobo Flex:Kk Pile type heat exchanging device and heat storage system using the same
JP2007032910A (en) * 2005-07-26 2007-02-08 Masahiro Mikami Ground heat exchanger and air conditioner
JP2008292044A (en) * 2007-05-23 2008-12-04 Sekisui Chem Co Ltd Natural heat hybrid soil thermal storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116253A (en) * 1984-11-13 1986-06-03 株式会社 前川製作所 Heat pump or cooling device
JPH10300266A (en) * 1997-04-24 1998-11-13 Shinryo Corp Vertical type earth heat pump
JP2000292082A (en) * 1999-04-07 2000-10-20 Hitachi Plant Eng & Constr Co Ltd Underground heat storage system
JP2005090902A (en) * 2003-09-19 2005-04-07 Chubu Electric Power Co Inc Geothermal heat pump structure
JP2006071134A (en) * 2004-08-31 2006-03-16 Sekkei Kobo Flex:Kk Pile type heat exchanging device and heat storage system using the same
JP2007032910A (en) * 2005-07-26 2007-02-08 Masahiro Mikami Ground heat exchanger and air conditioner
JP2008292044A (en) * 2007-05-23 2008-12-04 Sekisui Chem Co Ltd Natural heat hybrid soil thermal storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318124A (en) * 2014-11-11 2015-01-28 合肥天地源节能技术开发有限公司 Heat exchange capability computing method of ground source heat pump underground heat exchanger

Similar Documents

Publication Publication Date Title
JP4636205B2 (en) Geothermal heat exchanger and air conditioning system including the same
JP4636204B2 (en) Geothermal heat exchanger and air conditioning system including the same
US20110048049A1 (en) Heat exchanger and air conditioning system
JP2010156468A (en) Underground heat exchanger and air conditioning system
JP2009287914A (en) Heat exchanger and air-conditioning system
JP2012057836A (en) Underground heat exchanger and heat pump using the same
JP6298992B2 (en) Air conditioner
JP2010145022A (en) Underground heat exchanger and air conditioning system including the same
JP2013007550A (en) Heat pump
JP2012078080A (en) Underground heat exchanger and heat pump utilizing the same
WO2008050587A1 (en) Heat exchanger and refrigeration device
JP2010145032A (en) Underground heat exchanger and air conditioning system
WO2020202492A1 (en) Heat exchanger and air conditioner
JP2010145041A (en) Air conditioning system
US20110024077A1 (en) Heat exchanger and air conditioning system
WO2009133708A1 (en) Heat exchanger and air conditioning system
JP2008309442A (en) Heat transfer pipe and heat exchanger
JP2013249974A (en) Heat pump
JP2011163568A (en) In-ground heat exchanger
JP2013249978A (en) Underground heat exchanger and heat pump
JP2008170134A (en) Refrigerating device
JP5793992B2 (en) heat pump
JP2010145021A (en) Underground heat exchanger
JP2013249982A (en) Underground heat exchanger and heat pump
JP2010145033A (en) Underground heat exchanger and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Effective date: 20130315

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130910

Free format text: JAPANESE INTERMEDIATE CODE: A02