JP2006071134A - Pile type heat exchanging device and heat storage system using the same - Google Patents

Pile type heat exchanging device and heat storage system using the same Download PDF

Info

Publication number
JP2006071134A
JP2006071134A JP2004252350A JP2004252350A JP2006071134A JP 2006071134 A JP2006071134 A JP 2006071134A JP 2004252350 A JP2004252350 A JP 2004252350A JP 2004252350 A JP2004252350 A JP 2004252350A JP 2006071134 A JP2006071134 A JP 2006071134A
Authority
JP
Japan
Prior art keywords
heat
pile
heat storage
heat exchange
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004252350A
Other languages
Japanese (ja)
Inventor
Atsushi Hatanaka
淳 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKKEI KOBO FLEX KK
Original Assignee
SEKKEI KOBO FLEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKKEI KOBO FLEX KK filed Critical SEKKEI KOBO FLEX KK
Priority to JP2004252350A priority Critical patent/JP2006071134A/en
Publication of JP2006071134A publication Critical patent/JP2006071134A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pile type heat exchanging device filled with latent heat storage material for improving heat exchanging efficiency and heat storage efficiency, and to provide a heat storage system using the same in combination with a heat exchanger pipe for a solar collector for maintaining a good heat energy giving-receiving balance throughout the year. <P>SOLUTION: The pile type heat exchanging device 5 utilizes underground heat in the state that a heat exchanger pipe body 2 is arranged in a hollow portion of a pile 1 embedded in the ground of a predetermined depth for circulating and distributing heat medium and the latent heat storage material 3 filled in the hollow portion of the pile 1. The heat storage system uses the same in the state that heat medium circulating and distributing part of the solar collector 10 utilizing solar heat is inserted and embedded as a heat exchange portion 22 into the latent heat storage material 3 filled in the pile type heat exchanging device 5 and combined therewith to form an integrated heat storage region F including the pile type heat exchanging device 5 embedded in the ground and surrounding soil. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、年間を通じて温度変化の少ない地中熱を利用する杭型熱交換装置及び杭型熱交換装置を用いた蓄熱システムに関する。   The present invention relates to a pile-type heat exchange device that uses geothermal heat with little temperature change throughout the year and a heat storage system using the pile-type heat exchange device.

近年、地中熱を利用した建物の冷暖房設備、融雪設備等の地熱エネルギー利用システムが話題を呼んでいる。   In recent years, geothermal energy utilization systems such as building air-conditioning facilities and snow-melting facilities using geothermal heat have attracted attention.

地中熱利用システムには、建築物を建設する際に打つ基礎杭を熱交換の場として利用する方法が知られ、この基礎杭を利用するシステムでは、新たに熱交換用の井戸などを必要としないため、敷地や工事費の削減、工事期間の短縮が可能となる。コンクリート基礎杭を用いる方式と鋼管基礎杭を用いる方式、更には場所打ち杭方式があり、例えば、コンクリート基礎杭や鋼管基礎杭の場合、内部にU字管(Uチューブ)を挿入し、熱媒体がUチューブ内を循環し、地中熱を吸(放)熱して利用するシステムが知られる。   In the geothermal heat utilization system, there is known a method of using a foundation pile to be used as a place for heat exchange when constructing a building. In the system using this foundation pile, a new heat exchange well is required. Therefore, the site and construction costs can be reduced and the construction period can be shortened. There are a method using a concrete foundation pile, a method using a steel pipe foundation pile, and a cast-in-place pile method. For example, in the case of a concrete foundation pile or a steel pipe foundation pile, a U-shaped tube (U tube) is inserted inside, and the heat medium Is a system that circulates in the U-tube and absorbs (releases) underground heat for use.

また、「地中の熱をより効率的に杭の内部に伝えることができ、且つ施工性に優れた熱交換用鋼管杭として、杭本体外径の1.5〜3倍の外形を有する翼幅の杭ねじ込み用螺旋翼を、杭本体の外周面に1巻き以上突設し、かつ杭の下端に少なくとも掘削爪を備えた鋼管杭であって、杭中空内部に熱交換用配管を有することを特徴とする地熱利用の熱交換用鋼管杭」という公報が開示されている(例えば、特許文献1参照。)。
特開2004−177012号公報
In addition, as a steel tube pile for heat exchange that can transmit the underground heat more efficiently to the inside of the pile and has excellent workability, the blade has an outer shape 1.5 to 3 times the outer diameter of the pile body. A steel pipe pile with one or more turns of a spiral wing for screwing a pile projecting on the outer peripheral surface of the pile body and having at least a drilling claw at the lower end of the pile, and having a heat exchange pipe inside the pile hollow Has been disclosed (for example, see Patent Document 1).
Japanese Patent Application Laid-Open No. 2004-177012

然しながら、上述の特許文献1に係る従来例では、熱交換装置を構成する杭の空間部に充填する充填材について、蓄熱材としての発想がなく、充填材としてのみ限定して記載されており、更に太陽熱利用システムとの組合せ技術について何も記載が無く、課題が残る。   However, in the conventional example according to the above-mentioned Patent Document 1, there is no idea as a heat storage material, and the filler filled in the space portion of the pile constituting the heat exchange device is described only as a filler, Furthermore, there is no description about the combination technology with the solar heat utilization system, and there remains a problem.

本発明は、上述の状況に鑑みて成されたもので、杭の中空部内に熱交換部を配すると共に、潜熱蓄熱材を充填して熱交換効率及び蓄熱効率を高めた杭型熱交換装置を提供すると共に、この杭型熱交換装置を地中所定深さに埋設し、ソーラーコレクターの熱交換部と組合せ、総合熱効率を高め、年間を通じて熱エネルギーの授受バランスを良好に維持することが可能な杭型熱交換装置及び該杭型熱交換装置を用いた蓄熱システムを提供することを目的とする。   The present invention has been made in view of the above-described situation. A pile-type heat exchange device in which a heat exchange part is arranged in a hollow part of a pile and the heat exchange efficiency and the heat storage efficiency are increased by filling a latent heat storage material. This pile-type heat exchange device is embedded at a predetermined depth in the ground and combined with the heat exchanging part of the solar collector to increase the overall thermal efficiency and maintain a good balance of heat energy exchange throughout the year. An object of the present invention is to provide a simple pile-type heat exchange device and a heat storage system using the pile-type heat exchange device.

本発明は、下記構成を備えることにより上記課題を解決できるものである。   This invention can solve the said subject by providing the following structure.

(1)所定深さ地中に埋設した杭の中空部内に熱媒体を循環流通する熱交換用管状体を配し、且つ前記杭の中空部内に潜熱蓄熱材を充填して地中熱を利用する杭型熱交換装置。   (1) A heat exchanging tubular body that circulates and circulates a heat medium is arranged in a hollow portion of a pile buried in the ground at a predetermined depth, and a latent heat storage material is filled in the hollow portion of the pile to use ground heat. Pile-type heat exchange device.

(2)前項(1)記載の杭の内部に充填した潜熱蓄熱材中に太陽熱利用のソーラーコレクターの熱媒体を循環流通する配管の一部を熱交換部として挿入埋設し、地中に埋設した前記杭及び周囲の土壌をも含めて一体の蓄熱領域を構成した杭型熱交換装置を用いた蓄熱システム。   (2) A portion of the piping that circulates and circulates the heat medium of the solar collector using solar heat is inserted and embedded in the latent heat storage material filled in the pile described in (1) above, and embedded in the ground. A heat storage system using a pile-type heat exchange device that forms an integrated heat storage region including the pile and surrounding soil.

本発明は、杭の中空部内に熱交換部を配すると共に、潜熱蓄熱材を充填して熱交換効率及び蓄熱効率を高めた杭型熱交換装置を提供し、更にこの杭型熱交換装置を地中所定深さに埋設し、ソーラーコレクターの熱交換部と組合せ、総合熱効率を高め、年間を通じて熱エネルギーの授受バランスを良好に維持することが可能な杭型熱交換装置及び該杭型熱交換装置を用いた蓄熱システムを提供することができる。   The present invention provides a pile-type heat exchange device in which a heat exchange part is arranged in a hollow part of a pile and the latent heat storage material is filled to increase heat exchange efficiency and heat storage efficiency. A pile-type heat exchange device that is buried at a predetermined depth in the ground, combined with the heat exchange part of the solar collector, increases the overall thermal efficiency, and can maintain a good balance of thermal energy throughout the year, and the pile-type heat exchange A heat storage system using the device can be provided.

以下、本発明に係る杭型熱交換装置及び該杭型熱交換装置を用いた蓄熱システムの実施の形態について説明する。   Hereinafter, embodiments of a pile type heat exchange device according to the present invention and a heat storage system using the pile type heat exchange device will be described.

図1は、本発明に係る杭型熱交換装置の要部構成断面図、図2は、本発明に係る杭型熱交換装置を用いた蓄熱システムにおいて、ソーラーコレクターを組み込んだ場合の一例を示す模式的全体構成図である。   FIG. 1 is a cross-sectional view of a main part of a pile-type heat exchange device according to the present invention, and FIG. 2 shows an example in which a solar collector is incorporated in a heat storage system using the pile-type heat exchange device according to the present invention. It is a typical whole block diagram.

所定深さHを例えば、地表面Eより1〜3mとし、外径Dがほぼ150〜200mm、長さ6〜7mの杭1(鋼管杭)を地中に埋設し、この杭1の中空部内に水、不凍液等の熱媒体を循環流通するための例えば、螺旋状に巻回した熱交換用管状体(パイプ)2からなる熱交換部を配し、前記杭1の中空部内に例えば、有機系の潜熱蓄熱素材をカプセル化した潜熱蓄熱材3を充填して地中熱利用の杭型熱交換装置5を形成したことを特徴とする。   A predetermined depth H is set to 1 to 3 m from the ground surface E, for example, and a pile 1 (steel pipe pile) having an outer diameter D of approximately 150 to 200 mm and a length of 6 to 7 m is buried in the ground. For example, a heat exchange section composed of a heat exchange tubular body (pipe) 2 wound in a spiral shape for circulating a heat medium such as water or an antifreeze liquid is arranged, A latent heat storage material 3 encapsulating the latent heat storage material of the system is filled to form a pile-type heat exchange device 5 using underground heat.

螺旋状に巻回した熱交換用管状体(パイプ)2の上部には、負荷設備8とポンプ9を介して送出配管6と戻り配管7と接続するための接続部6a、7aを設けてある。尚、杭は、基礎杭に用いられる既存の鋼管杭を利用可能である。   Connection portions 6 a and 7 a for connecting the delivery pipe 6 and the return pipe 7 through the load equipment 8 and the pump 9 are provided on the upper part of the spirally wound heat exchange tubular body (pipe) 2. . In addition, the existing steel pipe pile used for a foundation pile can be used for a pile.

熱を運ぶ熱媒体としては、水、及び地域の環境特性を考慮して濃度調節した不凍液、並びに粘性の低目な流動性の良い油類等の媒体が挙げられる。   Examples of the heat medium for carrying heat include water, antifreeze liquid whose concentration is adjusted in consideration of local environmental characteristics, and medium such as oil having low viscosity and good fluidity.

潜熱蓄熱材3は、例えば有機系の潜熱蓄熱素材を耐熱性が大きく、且つ丈夫な合成樹脂製のカプセルに収めた潜熱蓄熱材であり、カプセルの大きさは自由に選定でき、例えば50μm以下1μm程度まで微粒化が可能である。然しこのカプセルの大きさは限定するものではない。   The latent heat storage material 3 is a latent heat storage material in which, for example, an organic latent heat storage material is housed in a capsule made of a synthetic resin that has high heat resistance and is strong, and the size of the capsule can be freely selected, for example, 50 μm or less and 1 μm. Atomization is possible to the extent. However, the size of the capsule is not limited.

樹脂製のカプセル被膜は、耐熱性及び耐久性に優れ、カプセル内の蓄熱素材は70℃以下の条件で自由にその融点を選定でき、カプセル内で蓄熱素材が融解と凝固を繰り返して潜熱の蓄熱と放熱が行われる。   The capsule capsule made of resin is excellent in heat resistance and durability, the heat storage material in the capsule can be freely selected at a melting point of 70 ° C or less, and the heat storage material repeatedly melts and solidifies in the capsule to store latent heat. And heat dissipation.

例えば、この潜熱蓄熱材3を防錆剤を含んだ不凍液(濃度調節した)中に分散させ液状化し、鋼管杭の中空部内に充填して用いることができる。   For example, the latent heat storage material 3 can be dispersed and liquefied in an antifreeze solution (concentration adjusted) containing a rust preventive agent, and filled into a hollow portion of a steel pipe pile.

尚、潜熱蓄熱材として、アイスノン(登録商標)を用いることもできる。   Note that Icenon (registered trademark) can also be used as the latent heat storage material.

杭型熱交換装置5の先端部は円錐形状5aを呈し、その先端の円錐形状5aの両側にパイプの先端を潰して捻って出来たような翼形状を呈し且つドリル先端類似形状の掘削刃5bが設けられ、地中に埋設する際に回転しながら掘削し、埋設し易い形状になっている。   The tip portion of the pile-type heat exchange device 5 has a conical shape 5a, and has a blade shape formed by crushing and twisting the tip of the pipe on both sides of the conical shape 5a at the tip, and a drilling blade 5b having a similar shape to the drill tip. It has a shape that is easy to embed by excavating while rotating when buried in the ground.

5cは、キャップ部であり、杭型熱交換装置5内に異物が混入するのを防止するため、杭の頂部に被嵌して使用する。   5c is a cap part, and in order to prevent that a foreign material mixes in the pile-type heat exchange apparatus 5, it is fitted and used for the top part of a pile.

杭の太さや長さは、設置条件や地域の特性、更には規模に応じて適宜決めることが出来る。   The thickness and length of the pile can be appropriately determined according to installation conditions, regional characteristics, and scale.

実施例2は、杭1の内部に充填した潜熱蓄熱材3中に太陽熱利用のソーラーコレクター10の熱媒体を循環流通する配管の一部を熱交換部22として挿入埋設し、地中に埋設した杭1及び周囲の土壌をも含めて一体の蓄熱領域Fを構成したことを特徴とする。   In Example 2, a part of a pipe for circulating the heat medium of the solar collector 10 using solar heat was inserted and buried in the latent heat storage material 3 filled in the pile 1 as a heat exchanging portion 22 and buried in the ground. An integral heat storage region F is configured including the pile 1 and the surrounding soil.

即ち、地中熱利用の杭型熱交換装置5を構成する杭1の中空部内に充填した潜熱蓄熱材3中に、例えば太陽熱S利用のソーラーコレクター10の熱媒体を送出する一次側送出配管11の負荷設備13(この場合、給湯設備)との熱交換後の二次側戻り配管12a、12bの途中配管部分を形成する熱交換部(この場合、U字管)22を挿入埋設して組合せ、更に地中に埋設した杭型熱交換装置5と周囲の土壌の蓄熱容量を付加し、この土壌も含めて一体の蓄熱領域Fを構成したものである。   That is, for example, a primary-side delivery pipe 11 for delivering a heat medium of a solar collector 10 using solar heat S into a latent heat storage material 3 filled in a hollow portion of a pile 1 constituting a pile-type heat exchange device 5 using geothermal heat. A heat exchange section (in this case, a U-shaped pipe) 22 that forms a middle pipe portion of the secondary return pipes 12a, 12b after heat exchange with the load equipment 13 (in this case, hot water supply equipment) Furthermore, the pile-type heat exchange device 5 buried in the ground and the heat storage capacity of the surrounding soil are added, and an integrated heat storage region F is configured including this soil.

負荷設備13を形成する給湯設備は給水部15、給湯部16を有し、ソーラーコレクター10の送出配管接続部10aから一次側送出配管11を通って送出される熱媒体と熱交換部14を介して熱交換され、給水を昇温して給湯することになる。この時熱交換後の熱媒体はポンプ19を介し二次側戻り配管12aと12bの途中配管部分22を形成する熱交換部を経由してソーラーコレクター10に、戻り配管接続部10bを経て戻される。   The hot water supply facility forming the load facility 13 includes a water supply unit 15 and a hot water supply unit 16, and is connected to the heat medium and the heat exchange unit 14 that are sent from the delivery pipe connection part 10 a of the solar collector 10 through the primary delivery pipe 11. Heat is exchanged, and the temperature of the water supply is raised to supply hot water. At this time, the heat medium after the heat exchange is returned to the solar collector 10 via the pump 19 via the heat exchange part that forms the intermediate pipe part 22 of the secondary return pipes 12a and 12b via the return pipe connection part 10b. .

給湯設備は、給湯温度が所定温度に達した時、ソーラーコレクターから送給される熱媒体を切換弁及びポンプを介して直接杭型熱交換装置に送給するためのバイパス回路(配管)を設けてある。   The hot water supply equipment is provided with a bypass circuit (pipe) for supplying the heat medium supplied from the solar collector directly to the pile-type heat exchange device via the switching valve and pump when the hot water supply temperature reaches a predetermined temperature. It is.

即ち、給湯温度が例えば45℃に達した場合、熱媒体をバイパスするように制御手段20で設定しておくことで、余分な熱媒体はバイパス配管21を通って杭型熱交換装置5のU字管を形成する熱交換部22で潜熱蓄熱材3に蓄熱して戻り配管12bを経て戻り配管接続部10bからソーラーコレクター10に戻る。   That is, when the hot water supply temperature reaches, for example, 45 ° C., by setting the control means 20 so as to bypass the heat medium, the excess heat medium passes through the bypass pipe 21 and the U of the pile-type heat exchange device 5. Heat is stored in the latent heat storage material 3 at the heat exchanging part 22 forming the character pipe and returns to the solar collector 10 from the return pipe connecting part 10b via the return pipe 12b.

給湯温度が所定温度例えば45℃に達してバイパス配管に切換わる場合は、通常矢印イ、ロ、ハ、ニ、ホ、ヘの順の流れが、第1切換弁(3方弁)17と第2切換弁(3方弁)18の切換動作により、熱媒体の流れはイ、ト、ニ、ホ、ヘのバイパス配管を経由した流路に切換わる構成となっている。外気温の高い夏季の動作は上記のような態様を示し、外気温が低い冬季や天候の良くない時は、杭型熱交換装置5及び蓄熱領域Fに蓄熱された熱を、例えば負荷設備8を形成する床暖房等の暖房パネルに利用し、また、太陽熱を利用するソーラーコレクター10へはU字管を形成する熱交換部22が予熱部の役目をして、給湯設備等の負荷設備の加温用熱媒体として機能することになる。9は熱媒体循環用のポンプである。   When the hot water supply temperature reaches a predetermined temperature, for example, 45 ° C. and is switched to the bypass pipe, the normal flow in the order of arrows A, B, C, D, E, F is the first switching valve (three-way valve) 17 and the first flow. By the switching operation of the 2-switch valve (3-way valve) 18, the flow of the heat medium is switched to the flow path via the bypass pipes A, G, D, E, F. The operation in the summer when the outside air temperature is high shows the above-described mode. When the outside air temperature is low or the weather is not good, the heat stored in the pile heat exchanger 5 and the heat storage region F is used as, for example, the load facility 8. The heat exchange unit 22 that forms a U-shaped tube serves as a preheating unit for the solar collector 10 that uses solar heat, and is used for heating equipment such as hot water supply facilities. It will function as a heating medium for heating. Reference numeral 9 denotes a heat medium circulation pump.

U字管を形成する熱交換部22は、螺旋状に巻回したコイル形状としても良い。   The heat exchanging part 22 forming the U-shaped tube may have a coil shape wound spirally.

尚、規模の大きさや環境条件に応じて、杭型熱交換装置5の本数は2本以上複数本適宜選定することが出来る。   In addition, according to the magnitude | size of a scale and environmental conditions, the number of the pile-type heat exchange apparatuses 5 can select two or more pieces suitably.

尚また、杭型熱交換装置5と周囲の土壌をも含めて一体の蓄熱領域Fの周囲には該蓄熱領域Fを区別するため例えば、杭型熱交換装置5の周囲に適正距離を置いてコンクリート壁で囲繞しても良い。こうすることで、周囲の土壌温度より昇温した蓄熱領域Fから周囲の土壌中に放熱されるのを防ぎ、蓄熱効率を向上させることが出来る。   In addition, in order to distinguish the heat storage region F around the integral heat storage region F including the pile type heat exchange device 5 and surrounding soil, for example, an appropriate distance is placed around the pile type heat exchange device 5. It may be surrounded by a concrete wall. By carrying out like this, it can prevent that heat is radiated in the surrounding soil from the thermal storage area | region F heated up from the surrounding soil temperature, and can improve thermal storage efficiency.

即ち、本発明は、潜熱蓄熱材を充填した熱効率の良い杭型熱交換装置を提供すると共に、地中熱と太陽熱を組合せて効率良く蓄熱する蓄熱システムを提供し、ソーラーコレクターで昇温した熱媒体を給湯設備に送給して熱交換し、熱交換後の熱媒体をポンプを介して杭型熱交換装置の前記U字管を形成する熱交換部に送給して熱の授受を行い熱交換後の熱媒体を前記ソーラーコレクターに戻してソーラー熱循環閉回路を形成する一方、床暖房パネル等の暖房パネルと地中に埋設された杭型熱交換装置とをポンプを介し接続して地中熱循環閉回路を形成し、夏季の蓄熱の多い時期と冬季の利用熱の多い時期とを相殺して年間を通じ熱授受のバランスを良好に維持可能とする杭型熱交換装置を用いた蓄熱システムを提供することが出来る。   That is, the present invention provides a heat efficient pile-type heat exchange device filled with a latent heat storage material, and also provides a heat storage system that efficiently stores heat by combining underground heat and solar heat. The medium is sent to a hot water supply facility to exchange heat, and the heat medium after the heat exchange is sent to the heat exchange section forming the U-shaped tube of the pile-type heat exchange device via a pump to exchange heat. The heat medium after heat exchange is returned to the solar collector to form a solar heat circulation closed circuit, while a heating panel such as a floor heating panel and a pile-type heat exchange device buried in the ground are connected via a pump. A pile-type heat exchanger that forms a closed circuit for underground heat circulation and can maintain a good balance of heat transfer throughout the year by offsetting a period of high heat storage in summer and a period of high heat utilization in winter A heat storage system can be provided.

更に尚、本発明に係る杭型熱交換装置は、建物の基礎杭と兼用する場合、杭型熱交換装置本体部分が地中に1〜3m以上埋没し外気温に影響されない条件で使用する必要があり、更にメンテナンス時を考慮して建物の外壁に沿った基礎杭を利用することが望ましい。   Furthermore, when the pile-type heat exchange device according to the present invention is also used as a foundation pile of a building, it is necessary to use the pile-type heat exchange device main body part under the condition that the main part of the pile-type heat exchange device is buried in the ground by 1 to 3 m and is not affected by the outside temperature. In addition, it is desirable to use foundation piles along the outer wall of the building in consideration of maintenance.

本発明に係る杭型熱交換装置の要部構成断面図Main part structure sectional drawing of the pile type heat exchange apparatus which concerns on this invention 本発明に係る杭型熱交換装置を用いた蓄熱システムにおいて、ソーラーコレクターを組み込んだ場合の一例を示す模式的全体構成図Schematic general configuration diagram showing an example when a solar collector is incorporated in a heat storage system using a pile heat exchanger according to the present invention

符号の説明Explanation of symbols

1 杭(杭本体)
2 熱交換用管状体(パイプ)
3 潜熱蓄熱材
5 杭型熱交換装置
5a 円錐形状
5b 掘削刃
5c キャップ部
6、11 送出配管(一次側送出配管)
7、12a、12b 戻り配管(二次側戻り配管)
8、 負荷設備(暖房パネル)
9、19 ポンプ
10 ソーラーコレクター
10a 送出配管接続部
10b 戻り配管接続部
13 負荷設備(給湯設備)
14 熱交換部
15 給水部
16 給湯部
17 第1切換弁(3方弁)
18 第2切換弁(3方弁)
20 制御手段
21 バイパス配管(バイパス回路)
22 熱交換部
E 地表面
F 蓄熱領域
S 太陽熱
1 Pile (pile body)
2 Tubular body for heat exchange (pipe)
3 Latent heat storage material 5 Pile type heat exchange device 5a Conical shape 5b Excavation blade 5c Cap parts 6, 11 Delivery pipe (primary side delivery pipe)
7, 12a, 12b Return piping (secondary return piping)
8. Load equipment (heating panel)
9, 19 Pump 10 Solar collector 10a Sending pipe connection 10b Return piping connection 13 Load equipment (hot water supply equipment)
14 Heat exchange part 15 Water supply part 16 Hot water supply part 17 1st switching valve (3-way valve)
18 Second switching valve (3-way valve)
20 Control means 21 Bypass piping (bypass circuit)
22 heat exchange part E ground surface F heat storage area S solar heat

Claims (2)

所定深さ地中に埋設した杭の中空部内に熱媒体を循環流通する熱交換用管状体を配し、且つ前記杭の中空部内に潜熱蓄熱材を充填して地中熱を利用することを特徴とする杭型熱交換装置。   A heat exchanging tubular body for circulating and circulating a heat medium is arranged in a hollow portion of a pile buried in the ground at a predetermined depth, and a latent heat storage material is filled in the hollow portion of the pile to use ground heat. Pile-type heat exchange device. 請求項1記載の杭の中空部内に充填した潜熱蓄熱材中に太陽熱利用のソーラーコレクターの熱媒体を循環流通する配管の一部を熱交換部として挿入埋設し、地中に埋設した前記杭及び周囲の土壌をも含めて一体の蓄熱領域を構成したことを特徴とする杭型熱交換装置を用いた蓄熱システム。   A pile of pipes that circulate and circulate the heat medium of a solar collector using solar heat in the latent heat storage material filled in the hollow part of the pile according to claim 1 as a heat exchange part, and the pile embedded in the ground A heat storage system using a pile-type heat exchange device, characterized in that an integrated heat storage region including the surrounding soil is constructed.
JP2004252350A 2004-08-31 2004-08-31 Pile type heat exchanging device and heat storage system using the same Pending JP2006071134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252350A JP2006071134A (en) 2004-08-31 2004-08-31 Pile type heat exchanging device and heat storage system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252350A JP2006071134A (en) 2004-08-31 2004-08-31 Pile type heat exchanging device and heat storage system using the same

Publications (1)

Publication Number Publication Date
JP2006071134A true JP2006071134A (en) 2006-03-16

Family

ID=36151958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252350A Pending JP2006071134A (en) 2004-08-31 2004-08-31 Pile type heat exchanging device and heat storage system using the same

Country Status (1)

Country Link
JP (1) JP2006071134A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096063A (en) * 2006-10-13 2008-04-24 Hokuryo Sangyo Kk Foundation pile serving also as underground heat exchanger, installing method for underground heat exchanger, and underground heat exchanger
JP2009257737A (en) * 2008-03-24 2009-11-05 Mitsubishi Materials Techno Corp Underground heat utilization heat pump system
JP2010145022A (en) * 2008-12-19 2010-07-01 Daikin Ind Ltd Underground heat exchanger and air conditioning system including the same
JP4511624B1 (en) * 2009-06-18 2010-07-28 健司 福宮 Underground heat storage device construction method, underground heat storage device and underground heat storage method
GB2470400A (en) * 2009-05-21 2010-11-24 Geoheat Ltd Heat energy collection and storage device comprising a phase change material
JP2011149640A (en) * 2010-01-22 2011-08-04 Asahi Kasei Homes Co Geothermal utilization system
KR101126026B1 (en) 2010-07-01 2012-03-20 대림산업 주식회사 Geothermal Exchanging Apparatus and System with Heat Recovery
KR101166684B1 (en) * 2012-02-06 2012-07-19 (주)비엔텍아이엔씨 Thermal storage of underground rock using heat utilizing system
JP2013036694A (en) * 2011-08-09 2013-02-21 Nakamura Bussan Kk Geothermal utilization structure and geothermal heat exchanger burying structure
KR101239773B1 (en) * 2012-10-17 2013-03-06 한국지질자원연구원 Geothermal power generation system and method using heat exchange of working gas and molten salt
CN103423799A (en) * 2012-05-23 2013-12-04 新疆太阳能科技开发公司 Solar heating system for geological trans-seasonal heat accumulation
CN103423798A (en) * 2012-05-23 2013-12-04 新疆太阳能科技开发公司 Underground heat reservoir special for solar heating system for geological trans-seasonal heat accumulation
JP2014025654A (en) * 2012-07-27 2014-02-06 Seikosha:Kk Heat accumulation and radiation unit pipe
CN103697734A (en) * 2013-12-06 2014-04-02 中铁建设集团有限公司 Phase-change energy storage system of PHC (Prestressed High-strength Concrete) pipe pile and construction method thereof
US20140321921A1 (en) * 2013-03-15 2014-10-30 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
JP2015113645A (en) * 2013-12-12 2015-06-22 東京瓦斯株式会社 Steel sheet pile
JP2017015364A (en) * 2015-07-06 2017-01-19 株式会社 トラストプラン Solar heat underground heat storage snow-melting system and its control method
CN107062666A (en) * 2017-05-10 2017-08-18 安徽新富地能源科技有限公司 A kind of heat energy converting electrical energy storing apparatus
JP2017227416A (en) * 2016-06-24 2017-12-28 株式会社ダイワテック Cooling/heating system
WO2023213746A1 (en) * 2022-05-03 2023-11-09 National And Kapodistrian University Of Athens Integration of particulated encapsulated phase change materials in a conventional flat-plate solar collector for the production of domestic hot water
NL2033314B1 (en) * 2022-10-14 2024-05-02 Optisolar Holding B V Heat source and combination of a bottom layer and such a heat source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818087A (en) * 1981-07-26 1983-02-02 Natl House Ind Co Ltd Structure of heat exchanger pipe used for air conditioning system
JPH09250130A (en) * 1996-03-15 1997-09-22 Geotop Corp Hollow pile for heat-accumulation and air-conditioning system by use thereof
JPH10274444A (en) * 1997-01-30 1998-10-13 Kazuo Kuroiwa Underground heat-exchange system with heat-reservoir and manufacture thereof
JP2003222346A (en) * 2002-01-30 2003-08-08 Asahi Kasei Corp Heat accumulation type cooling and heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818087A (en) * 1981-07-26 1983-02-02 Natl House Ind Co Ltd Structure of heat exchanger pipe used for air conditioning system
JPH09250130A (en) * 1996-03-15 1997-09-22 Geotop Corp Hollow pile for heat-accumulation and air-conditioning system by use thereof
JPH10274444A (en) * 1997-01-30 1998-10-13 Kazuo Kuroiwa Underground heat-exchange system with heat-reservoir and manufacture thereof
JP2003222346A (en) * 2002-01-30 2003-08-08 Asahi Kasei Corp Heat accumulation type cooling and heating device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096063A (en) * 2006-10-13 2008-04-24 Hokuryo Sangyo Kk Foundation pile serving also as underground heat exchanger, installing method for underground heat exchanger, and underground heat exchanger
JP2009257737A (en) * 2008-03-24 2009-11-05 Mitsubishi Materials Techno Corp Underground heat utilization heat pump system
JP2010145022A (en) * 2008-12-19 2010-07-01 Daikin Ind Ltd Underground heat exchanger and air conditioning system including the same
GB2470400A (en) * 2009-05-21 2010-11-24 Geoheat Ltd Heat energy collection and storage device comprising a phase change material
JP4511624B1 (en) * 2009-06-18 2010-07-28 健司 福宮 Underground heat storage device construction method, underground heat storage device and underground heat storage method
JP2011001732A (en) * 2009-06-18 2011-01-06 Kenji Fukumiya Construction method of underground heat storage device, underground heat storage device, and underground heat storage method
JP2011149640A (en) * 2010-01-22 2011-08-04 Asahi Kasei Homes Co Geothermal utilization system
KR101126026B1 (en) 2010-07-01 2012-03-20 대림산업 주식회사 Geothermal Exchanging Apparatus and System with Heat Recovery
JP2013036694A (en) * 2011-08-09 2013-02-21 Nakamura Bussan Kk Geothermal utilization structure and geothermal heat exchanger burying structure
KR101166684B1 (en) * 2012-02-06 2012-07-19 (주)비엔텍아이엔씨 Thermal storage of underground rock using heat utilizing system
CN103423798A (en) * 2012-05-23 2013-12-04 新疆太阳能科技开发公司 Underground heat reservoir special for solar heating system for geological trans-seasonal heat accumulation
CN103423799A (en) * 2012-05-23 2013-12-04 新疆太阳能科技开发公司 Solar heating system for geological trans-seasonal heat accumulation
JP2014025654A (en) * 2012-07-27 2014-02-06 Seikosha:Kk Heat accumulation and radiation unit pipe
KR101239773B1 (en) * 2012-10-17 2013-03-06 한국지질자원연구원 Geothermal power generation system and method using heat exchange of working gas and molten salt
US11892201B2 (en) * 2013-03-15 2024-02-06 Thomas Scott Breidenbach Installation apparatus/tool for tubular geothermal heat exchanger systems and methods
US20140321921A1 (en) * 2013-03-15 2014-10-30 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
US9897347B2 (en) * 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
CN103697734B (en) * 2013-12-06 2016-01-20 中铁建设集团有限公司 A kind of PHC pile tube phase-changing energy-storing system and construction method thereof
CN103697734A (en) * 2013-12-06 2014-04-02 中铁建设集团有限公司 Phase-change energy storage system of PHC (Prestressed High-strength Concrete) pipe pile and construction method thereof
JP2015113645A (en) * 2013-12-12 2015-06-22 東京瓦斯株式会社 Steel sheet pile
JP2017015364A (en) * 2015-07-06 2017-01-19 株式会社 トラストプラン Solar heat underground heat storage snow-melting system and its control method
JP2017227416A (en) * 2016-06-24 2017-12-28 株式会社ダイワテック Cooling/heating system
CN107062666A (en) * 2017-05-10 2017-08-18 安徽新富地能源科技有限公司 A kind of heat energy converting electrical energy storing apparatus
WO2023213746A1 (en) * 2022-05-03 2023-11-09 National And Kapodistrian University Of Athens Integration of particulated encapsulated phase change materials in a conventional flat-plate solar collector for the production of domestic hot water
NL2033314B1 (en) * 2022-10-14 2024-05-02 Optisolar Holding B V Heat source and combination of a bottom layer and such a heat source

Similar Documents

Publication Publication Date Title
JP2006071134A (en) Pile type heat exchanging device and heat storage system using the same
US20100200192A1 (en) Buried vertical threaded exchanger for heating or cooling apparatus
CN106223312B (en) A kind of novel steel tube energy stake and preparation method thereof improving shallow layer geothermal energy utilization efficiency
CN106168418B (en) A kind of CCHP diaphram wall device and its construction method
CN106225268B (en) A kind of CCHP bored concrete pile device and its construction method
CN106225269B (en) A kind of CCHP PCC stake devices and preparation method thereof
JP2009257737A (en) Underground heat utilization heat pump system
KR101166684B1 (en) Thermal storage of underground rock using heat utilizing system
CN105937861B (en) A kind of overlength flexible heat pipe and its underground heat snow melt de-icing method
WO2018014609A1 (en) Jet grouting soil-cement-pile strengthened pile system for combined cooling, heat and power generation and construction method therefor
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP2007139370A (en) Underground heat exchanger
CN106225270B (en) A kind of CCHP pile for prestressed pipe device and preparation method thereof
KR101299826B1 (en) Depth geothermal system unit
JP2008308963A (en) Ground surface snow melting system
JP2008304141A (en) Heat storage snow melting system using solar heat
JP2003307353A (en) Antifreeze circulation-type device for utilizing underground heat
JP4530174B2 (en) Thermal storage system for concrete structures
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
Morais et al. Energy pile and ground temperature response to heating test: a case study in Brazil
JP2004177012A (en) Steel pipe pile for heat exchange
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
JP2005273235A (en) Building using underground heat
CN105651093A (en) Underground heat exchange tube for energy exchange system of ground-source deep well
JP5786014B2 (en) Closed loop underground heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308