JP4530174B2 - Thermal storage system for concrete structures - Google Patents

Thermal storage system for concrete structures Download PDF

Info

Publication number
JP4530174B2
JP4530174B2 JP2006150837A JP2006150837A JP4530174B2 JP 4530174 B2 JP4530174 B2 JP 4530174B2 JP 2006150837 A JP2006150837 A JP 2006150837A JP 2006150837 A JP2006150837 A JP 2006150837A JP 4530174 B2 JP4530174 B2 JP 4530174B2
Authority
JP
Japan
Prior art keywords
heat
pipe
heat storage
energy
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006150837A
Other languages
Japanese (ja)
Other versions
JP2007321378A (en
Inventor
茂 松岡
博文 柳
和也 松浦
Original Assignee
鉄建建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鉄建建設株式会社 filed Critical 鉄建建設株式会社
Priority to JP2006150837A priority Critical patent/JP4530174B2/en
Publication of JP2007321378A publication Critical patent/JP2007321378A/en
Application granted granted Critical
Publication of JP4530174B2 publication Critical patent/JP4530174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)
  • Central Heating Systems (AREA)

Description

本発明は、高架橋等のコンクリート構造物に太陽熱や地熱等の自然エネルギーを蓄積する蓄熱体を備え、この蓄熱体からのエネルギーを路面上に於ける積雪を融雪すること又は緊急時の電力並びに厳冬期に於ける暖房等の熱源へ供給可能とするコンクリート構造物の蓄熱システムに関する。 The present invention comprises a heat storage body that accumulates natural energy such as solar heat and geothermal heat in a concrete structure such as a viaduct, and the energy from this heat storage body is used to melt snow on the road surface or to generate electric power in emergency and severe winter. The present invention relates to a heat storage system for a concrete structure that can be supplied to a heat source such as heating in the period.

この種、従来の技術に於ける第1の例として風力利用融雪システムであって、図3に示すような特開2003−35250号公開特許公報に開示された技術がある。これについて説明すれば、このシステムにおいて、風力発電装置Aは、ダリウス型の風車1と同期発電機(交流発電機)2とによって構成されている。風車1が風Wによって回転すると、同期発電機2の回転軸が回転され、この回転によって同期発電機2において交流電力が発生する。この交流電力は電力供給路3によって電気ヒーターに供給される。電力供給路3には、変圧器(電圧調整器)3aが設けられており、供給電圧の調節が行える。電気ヒーター4は電力を得て発熱するものであり、例えば、カーボン(炭素)を含有する面状発熱体を利用して構成する。また、面状発熱体を屋外に設置するので、樹脂等から成る被覆材にて覆い、防水加工を施しておく。この電気ヒーター4上には、これに接するようにして潜熱蓄熱材5が設けられている。潜熱蓄熱材5は、雪Sが融ける温度において潜熱温度が設定されており、図3に示すものは約5℃としている。すなわち、約5℃の温度において与えられた熱を状態変化に費やすことで蓄熱する性質を有する潜熱蓄熱材5を用いている。この潜熱蓄熱材5としては、無機水和塩を樹脂袋(容器)内に封止して成るものを用いる。そして、潜熱蓄熱材5上には、これを覆うための覆い部材6が設けられる構成である。 As a first example of this type of conventional technology, there is a wind-based snow melting system disclosed in Japanese Patent Application Laid-Open No. 2003-35250 as shown in FIG. If it demonstrates about this, in this system, the wind power generator A is comprised by the Darrieus type | mold windmill 1 and the synchronous generator (alternator) 2. FIG. When the windmill 1 is rotated by the wind W, the rotating shaft of the synchronous generator 2 is rotated, and AC power is generated in the synchronous generator 2 by this rotation. The AC power is supplied to the electric heater through the power supply path 3. The power supply path 3 is provided with a transformer (voltage regulator) 3a, which can adjust the supply voltage. The electric heater 4 generates electric power and generates heat. For example, the electric heater 4 is configured using a planar heating element containing carbon. Further, since the planar heating element is installed outdoors, it is covered with a covering material made of resin or the like and waterproofed. A latent heat storage material 5 is provided on the electric heater 4 so as to be in contact therewith. The latent heat storage material 5 has a latent heat temperature set at a temperature at which the snow S melts, and the temperature shown in FIG. That is, the latent heat storage material 5 having the property of storing heat by spending heat applied at a temperature of about 5 ° C. for state change is used. As the latent heat storage material 5, a material obtained by sealing an inorganic hydrate salt in a resin bag (container) is used. And it is the structure by which the cover member 6 for covering this on the latent-heat storage material 5 is provided.

また、この種、従来の技術に於ける第2の例として蓄熱材を格納した舗装道路であって、図4に示すような特開平7−243202号公開特許公報に開示された技術がある。これについて説明すれば、図4は、蓄熱材Bを格納した舗装道路の断面図を示している。図4に於いて、表層7、基層8、路盤9、路床10をそれぞれ示しており、上記蓄熱材Bを格納した格納容器11は基層8に埋設されている。図4はアスファルト舗装道路の場合であるが、コンクリート舗装道路の場合には上記表層7と基層8は同一層を形成することに成る。そして、例えば表層7の厚さは5cm、基層8の厚さも5cmと成っている。勿論、これら各層7、8の厚さを限定することはないが、傷んだり、老化したりした路面を補修する際に削り取られる表層7は充分な厚さが必要とされ、上記格納容器11、11…は補修の際に障害にならない深さに設けられた基層8内に埋設されている。したがって、コンクリート舗装道路の場合には表層7の上面から数cmないし7cm〜8cmの深さに設けられる。そして、上記構成の作用としては格納容器11に格納されている蓄熱材Bが液体の状態にある場合、該蓄熱材Bが冷却されるならば凝固点以下になり、その後蓄熱材Bは液体から固体へ相変化する。該蓄熱材Bによっては過冷却する場合もあるが、液体から固体に相変化する場合には凝固点温度を維持しながら凝固を続ける。したがって、この際に蓄熱材Bは潜熱を放出し、路面Cに熱エネルギーを与え、その結果、路面Cの凍結を防止する。この第2の例では、路面Cが凍結する温度よりも僅かに高い温度で相変化する蓄熱材Bを使用する。場合によっては1℃〜8℃で相変化する蓄熱材Bを使用してもある程度の効果は得られる。上記蓄熱材Bが全て固体に相変化するまでは熱エネルギーを放出し、路面へ熱を与えることになる訳で、一旦固体に相変化した蓄熱材Bは逆に路面から熱エネルギーを与えられて再び液体に戻る。これは、日中気温が上昇して路面温度が高くなり、該路面Cから蓄熱材Bへ熱が伝わって、固体から液体へ相変化する。液体となって潜熱を得た蓄熱材Bは、明け方の気温低下時に再び液体から固体へ相変化して路面Cに熱を与える。この第2の例では蓄熱材Bの相変化を利用して路面の凍結を防止する技術である。
特開2003−35250号公開特許公報 特開平7−243202号公開特許公報
A second example of this type of conventional technology is a paved road storing a heat storage material, and there is a technology disclosed in Japanese Patent Laid-Open No. 7-243202 as shown in FIG. If it demonstrates about this, FIG. 4 has shown sectional drawing of the paved road which stored the thermal storage material B. FIG. In FIG. 4, a surface layer 7, a base layer 8, a roadbed 9, and a roadbed 10 are shown, and a storage container 11 storing the heat storage material B is embedded in the base layer 8. FIG. 4 shows the case of an asphalt paved road, but in the case of a concrete paved road, the surface layer 7 and the base layer 8 form the same layer. For example, the thickness of the surface layer 7 is 5 cm, and the thickness of the base layer 8 is also 5 cm. Of course, the thickness of each of the layers 7 and 8 is not limited, but the surface layer 7 to be scraped off when repairing a damaged or aged road surface is required to have a sufficient thickness. 11 are embedded in a base layer 8 provided at a depth that does not become an obstacle during repair. Therefore, in the case of a concrete paved road, it is provided at a depth of several cm to 7 cm to 8 cm from the upper surface of the surface layer 7. And as an effect | action of the said structure, when the thermal storage material B stored in the storage container 11 exists in a liquid state, if this thermal storage material B is cooled, it will become below a freezing point, and after that, the thermal storage material B is solid from a liquid. Change to phase. Depending on the heat storage material B, it may be supercooled, but when the phase changes from liquid to solid, solidification is continued while maintaining the freezing point temperature. Therefore, at this time, the heat storage material B releases latent heat and gives thermal energy to the road surface C, and as a result, the road surface C is prevented from freezing. In this second example, a heat storage material B that changes phase at a temperature slightly higher than the temperature at which the road surface C freezes is used. In some cases, even if the heat storage material B that changes phase at 1 to 8 ° C. is used, a certain effect can be obtained. Until all the heat storage material B changes to a solid phase, the heat energy is released and heat is applied to the road surface. The heat storage material B once changed into a solid state is given heat energy from the road surface. Return to liquid again. This is because the daytime temperature rises and the road surface temperature rises, and heat is transferred from the road surface C to the heat storage material B, so that the phase changes from solid to liquid. The heat storage material B, which has become latent heat as a liquid, changes the phase from liquid to solid again when the temperature drops at dawn, and heats the road surface C. In the second example, the road surface is prevented from freezing using the phase change of the heat storage material B.
Japanese Patent Laid-Open No. 2003-35250 Japanese Patent Laid-Open No. 7-243202

従来の技術は、前述した構成、作用であるので次の課題が存在した。すなわち、従来の技術に於ける第1の例としての風力利用融雪システムによれば、採取したエネルギーを直接的に融雪に利用する技術であって、風Wのエネルギーが風車1を回転し、この回転力を同期発電機2で電気信号に変換し、この電気信号を直接に電気ヒータ4に導入し路面下の該電気ヒータ4を発熱させ、潜熱蓄熱材5を介して、路面上の雪Sを融雪する技術であり、融雪機能を路面の部位毎に上記電気ヒータ4や潜熱蓄熱材5を備える必要があり、融雪装置や融雪システムが複雑かつ大規模化して高価となり、また融雪効果は直接生み出されるエネルギーの大、小によって大きく影響を受け、融雪効率が悪く、実用に適さないという問題点があった。
また、従来の技術に於ける第2例としての蓄熱材を格納した舗装道路によれば、蓄熱材Bが数℃前・後にて液体から個体に相変化する性質を有し、この相変化する際に生じる凝固熱を利用した凍結防止技術であって、該蓄熱材Bから熱エネルギーを採取しかつ導出し、これを利用する技術ではなく、積極的に路面上に於ける融雪技術に適しないという問題点があった。
The conventional technique has the following problems because of the configuration and operation described above. That is, according to the wind-powered snow melting system as a first example in the prior art, the collected energy is directly used for snow melting, and the energy of the wind W rotates the windmill 1, The rotational force is converted into an electric signal by the synchronous generator 2, and this electric signal is directly introduced into the electric heater 4 to cause the electric heater 4 below the road surface to generate heat, and the snow S on the road surface through the latent heat storage material 5. It is necessary to provide the above-mentioned electric heater 4 and latent heat storage material 5 for each part of the road surface, and the snow melting device and the snow melting system become complicated, large-scale and expensive, and the snow melting effect is directly There was a problem that it was greatly affected by the large and small amounts of energy produced, and the snow melting efficiency was poor and not suitable for practical use.
Further, according to the paved road storing the heat storage material as the second example in the prior art, the heat storage material B has the property of changing phase from liquid to solid before and after several degrees Celsius. Freezing prevention technology that uses solidification heat generated at the time, which is not a technology that collects and derives thermal energy from the heat storage material B and uses it, but is not suitable for snow melting technology on the road surface positively There was a problem.

本発明に係るコンクリート構造物の蓄熱システムは、風力、太陽熱、地熱、微生物による有機物の分解熱、振動力等の運動エネルギー等の自然エネルギーを、熱もしくは電気エネルギーとしてコンクリート構造物の内部に設けられた蓄熱体又はコンデンサー等に積極的に蓄積する蓄熱システムであって、コンクリート構造物の蓄熱体等に蓄えられた熱又は電気エネルギーは例えば融雪システムに利用し、路面上の積雪や凍結の防止に利用し、コンクリート構造物に蓄熱体等を備えることでシステム全体の省スペース化が図れ、都市部や設置スペースを確保できないような箇所への適用が可能となり、施工費用の低減が可能となり、加えて、地中熱利用などの初期費用が高くなるようなシステムに対して、蓄熱された熱又は電気エネルギーを補助的に利用することで当該システムを小規模化し、初期費用を縮少した技術であって、次の構成・手段から成立する。
すなわち、請求項1記載の発明によれば、コンクリート構造物の所定部位に埋設し又は固定されかつ地盤からの熱エネルギーを採取・蓄熱する蓄熱部材であって、該蓄熱部材が閉ループを構成した第1、第2配管からの熱エネルギーを吸収及び蓄えると共に該第1配管に隣接・配置した第2配管を有し、該第1、第2配管内に充填・封入した熱伝導媒体を負荷に圧送・流送することを特徴とする。
The heat storage system for a concrete structure according to the present invention is provided inside a concrete structure as natural energy such as wind energy, solar heat, geothermal heat, heat of decomposition of organic matter by microorganisms, kinetic energy such as vibration force, etc. as heat or electric energy. This is a heat storage system that actively accumulates in a heat storage body or condenser, etc., and the heat or electrical energy stored in the heat storage body of a concrete structure is used for, for example, a snow melting system to prevent snow accumulation and freezing on the road surface. By using a heat storage body etc. in the concrete structure, the space of the entire system can be saved, and it can be applied to urban areas and places where installation space cannot be secured, and construction costs can be reduced. Therefore, the stored heat or electrical energy is supplemented for systems that have high initial costs such as the use of underground heat. To the system to scale reduction by utilizing the initial cost to a reduced a little technique, holds the following configuration or means.
That is, according to the first aspect of the present invention, there is provided a heat storage member that is embedded or fixed in a predetermined portion of a concrete structure and collects and stores heat energy from the ground, and the heat storage member forms a closed loop. 1. Absorbs and stores heat energy from the second pipe and has a second pipe adjacent to and arranged in the first pipe, and pumps the heat conduction medium filled and sealed in the first and second pipes to the load.・ Characterized by flow.

請求項2記載の発明によれば、コンクリート構造物の所定部位に埋設し又は固定されかつ地盤又は太陽光からの地中熱エネルギー又は太陽熱エネルギーを採取・蓄熱する第1及び第2蓄熱部材であって、一方では前記第1蓄熱部材が閉ループを構成した第1配管及び該第1配管から熱エネルギーを吸収及び蓄えると共に該第1配管に隣接・配置した第2配管を有し、該第1、第2配管内に充填・封入した熱伝導媒体を負荷に圧送し、並びに他方では前記第2蓄熱部材が前記コンクリート構造物に設置した太陽熱吸収板から太陽熱エネルギーを伝導・蓄熱する閉ループを構成した第1、第2ヒートパイプから太陽熱エネルギーを吸収すると共に第1ヒートパイプに隣接・配置した第2ヒートパイプを有し、該第1、第2ヒートパイプ内に充填・封入した熱伝導媒体を前記負荷に流送することを特徴とする。 According to invention of Claim 2, it is the 1st and 2nd thermal storage member which is embed | buried or fixed to the predetermined site | part of a concrete structure, and extract | collects and stores the underground thermal energy or solar thermal energy from the ground or sunlight. On the other hand, the first heat storage member has a first pipe constituting a closed loop and a second pipe that absorbs and stores thermal energy from the first pipe and is adjacent to and arranged in the first pipe. The heat conduction medium filled / encapsulated in the second pipe is pumped to the load, and on the other hand, the second heat storage member constitutes a closed loop for conducting and storing solar heat energy from the solar heat absorbing plate installed in the concrete structure. 1. It has a second heat pipe that absorbs solar thermal energy from the second heat pipe and is adjacent to / disposed to the first heat pipe, and is filled in the first and second heat pipes. The input and heat transfer medium, characterized in that Nagareoku to the load.

請求項3記載の発明によれば、コンクリート構造物の所定部位に埋設し又は固定されかつ地盤からの地中熱を採取・蓄熱する蓄熱部材であって、該蓄熱部材が閉ループを構成した第1、第2配管からの熱エネルギーを吸収及び蓄えると共に該第1配管に隣接・配置した第2配管を有し、該第1、第2配管内に充填・封入した熱伝導媒体を負荷に圧送・流送し並びに前記地盤に前記地中熱を温水に熱変換させる熱交換杭を埋設し、前記負荷に該温水を流送することを特徴とする。 According to invention of Claim 3, it is a heat storage member which is embed | buried or fixed to the predetermined site | part of a concrete structure, and extract | collects and accumulate | stores the underground heat from the ground, Comprising: This heat storage member comprised the closed loop. The second pipe has a second pipe that is adjacent to and arranged in the first pipe and absorbs and stores heat energy from the second pipe, and the heat conduction medium filled and sealed in the first and second pipes is pumped to the load. A heat exchanging pile for burying the heat and converting the underground heat into warm water is buried in the ground, and the warm water is flowed to the load.

請求項4記載の発明によれば、請求項2記載の発明に於いて、前記第2蓄熱部材は太陽熱エネルギーを電気エネルギーに変換しかつ蓄電するコンデンサ手段で構成したことを特徴とする。 According to a fourth aspect of the present invention, in the second aspect of the present invention, the second heat storage member is constituted by capacitor means for converting solar thermal energy into electric energy and storing the energy.

本発明に係るコンクリート構造物の蓄熱システムは、上述した構成、作用を有するので次の効果がある。
すなわち、請求項1ないし4記載の本発明によれば、コンクリート構造物に蓄熱体等を設置することで、エネルギーを融雪システム以外に2次的に利用することが可能となり、その用途としては、緊急時の電力並びに厳冬期における暖房などの熱源への供給が可能となり、蓄熱体等は熱エネルギーの場合、潜熱又は顕熱であり、該蓄熱体等の設置対象としては、コンクリート構造物の杭、地中梁、均しコンクリート又は柱などのコンクリート構造物、貯水槽、浄化槽等が好適であり、エネルギー貯蓄機能を持つ複合構造物内にエネルギーを平素より蓄えて置くことで、融雪システムのほかに電源及び熱源として多目的な用途例えば、照明、暖房などへのエネルギーの活用が可能となり、コンクリート構造物と蓄熱体等を一体とすることで、システムの省スペース化と施工費の削減が可能となり、併せて初期費用が大きいような従来の掘削杭利用などの融雪システムと併用することで、従来の融雪システムのエネルギー負担分が軽減され、当該システムの初期費用が削減されるという効果がある。
Since the heat storage system for a concrete structure according to the present invention has the above-described configuration and action, the following effects can be obtained.
That is, according to the present invention described in claims 1 to 4, by installing a heat storage body or the like in a concrete structure, energy can be used secondarily other than the snow melting system. It is possible to supply electric power in emergency and heat sources such as heating in the severe winter season, and in the case of heat energy, the heat storage body is latent heat or sensible heat. Concrete structures such as underground beams, leveled concrete or pillars, water storage tanks, septic tanks, etc. are suitable. In addition to the snow melting system, energy is stored and stored in a complex structure with an energy storage function. In addition, energy can be used for multipurpose applications such as lighting and heating, etc. as a power source and heat source. System space saving and construction costs can be reduced, and combined with a conventional snow melting system such as the use of excavated piles, which has a large initial cost, reduces the energy burden of the conventional snow melting system. The initial cost of the system is reduced.

以下、本発明に係るコンクリート構造物の蓄熱システムに於ける実施の形態について添付図面に基づき詳細に説明する。
図1は、本発明に係るコンクリート構造物の蓄熱システムに於ける実施の形態の一例を示す垂直断面図である。
図2は、図1に示す本発明に係るコンクリート構造物の蓄熱システムの熱又は電気エネルギーの伝導経路を示すシステム構成図である。
Embodiments of a concrete structure heat storage system according to the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a vertical sectional view showing an example of an embodiment in a heat storage system for a concrete structure according to the present invention.
FIG. 2 is a system configuration diagram showing a heat or electric energy conduction path of the concrete structure heat storage system according to the present invention shown in FIG. 1.

12は高架橋、道路橋又はコンクリート床版等のコンクリート構造物である。該コンクリート構造物12は例えば高架橋の場合には、図1に示すようにコンクリート床版13と、該コンクリート床版13の下面に固定された複数本の橋脚又は柱14と、該橋脚又は柱14を固定すると共にその下面に杭15を固定してあって、地盤Rに埋設された梁16とで構成している。該梁16はフーチングで構成してもよい。 Reference numeral 12 denotes a concrete structure such as a viaduct, a road bridge or a concrete slab. For example, when the concrete structure 12 is a viaduct, as shown in FIG. 1, a concrete slab 13, a plurality of piers or columns 14 fixed to the lower surface of the concrete slab 13, and the piers or columns 14 , And a pile 15 is fixed to the lower surface thereof, and the beam 16 is embedded in the ground R. The beam 16 may be constituted by footing.

上記梁16には、第1蓄熱部材17を所定部位に埋設し又は固定している。該第1蓄熱部材17は全体が例えば、箱状ケースや矩形板状部材等で構成され、その材料は電気エネルギー又は熱エネルギーが伝導する金属製材料で作成されている。該第1蓄熱部材17の内部又は表面には往復路(閉ループ)を形成した第1配管17Aと、該第1配管17Aから発散された熱エネルギーを吸収しかつ蓄熱すると共に往復路(閉ループ)を形成した第2配管17Bとを有している。この第2配管17Bの出力側には第4配管17Dを接続し必要に応じて熱伝導媒体を該第4配管17Dを介して負荷24にポンプ手段23で圧送する。また、第2配管17Bは第1配管17Aに隣接配置している。 A first heat storage member 17 is embedded in or fixed to the beam 16 at a predetermined site. The entire first heat storage member 17 is formed of, for example, a box-shaped case or a rectangular plate member, and the material thereof is made of a metal material that conducts electrical energy or heat energy. A first pipe 17A in which a reciprocating path (closed loop) is formed in or on the surface of the first heat storage member 17, and heat energy emitted from the first pipe 17A is absorbed and stored, and a reciprocating path (closed loop) is formed. It has the formed 2nd piping 17B. A fourth pipe 17D is connected to the output side of the second pipe 17B, and a heat conduction medium is pumped by the pump means 23 to the load 24 through the fourth pipe 17D as necessary. Further, the second pipe 17B is disposed adjacent to the first pipe 17A.

上記第1及び第2配管17A及び17Bはパイプで構成され、地盤Rより熱エネルギーを採取する機能を有しており、金属製鋼管、ポリエチレン、塩化ビニール等で構成され、その内部に熱伝導液体又は気体若しくは循環水等熱伝導媒体(図示せず)が充填・封入されている。該熱伝導媒体は、顕熱の場合には水等の熱容量が大きいもの、潜熱の場合にはパラフィン、硫酸ナトリウム、その他水溶液が採用される。この熱伝導媒体が上記第1及び第2配管17A及び17B内を移動することにより熱エネルギーの受け渡しが行なわれる。
尚、第1及び第2配管17A及び17Bに於ける熱伝導媒体としての循環水の循環作用は、例えばポンプや送風機を利用して行なう。
The first and second pipes 17A and 17B are constituted by pipes and have a function of collecting thermal energy from the ground R, and are constituted by metal steel pipes, polyethylene, vinyl chloride, etc. Alternatively, a heat conduction medium (not shown) such as gas or circulating water is filled and enclosed. As the heat conduction medium, one having a large heat capacity such as water in the case of sensible heat, paraffin, sodium sulfate or other aqueous solution is adopted in the case of latent heat. The heat conduction medium moves in the first and second pipes 17A and 17B, so that heat energy is transferred.
The circulating action of the circulating water as the heat conduction medium in the first and second pipes 17A and 17B is performed using, for example, a pump or a blower.

上記第1配管17Aは上記杭15の表面又は内部に引き廻された第3配管17Cを接続し、閉ループを構成し、その一部にポンプ手段18を介設し、このポンプ手段18により該杭15からの熱エネルギーを吸収した該第3配管17C内の熱伝導媒体を上記第1配管17A内へ圧送する。
尚、上記第1配管17Aと上記第3配管17Cは図1に示すように一体形成してもよく、該第1配管17Aを杭15の部分まで伸張させ該第1配管17Aで第3配管17Cも代用することも可能である。
上記第2配管17B、上記第4配管17D及び負荷24への配管経路は通常時に於ける熱利用経路を意味する。
The first pipe 17A connects the third pipe 17C routed to the surface or inside of the pile 15 to form a closed loop, and a pump means 18 is interposed in a part of the first pipe 17A. The heat conduction medium in the third pipe 17C that has absorbed the heat energy from 15 is pumped into the first pipe 17A.
The first piping 17A and the third piping 17C may be integrally formed as shown in FIG. 1, and the first piping 17A is extended to the portion of the pile 15, and the first piping 17A is used as the third piping 17C. Can also be substituted.
The piping route to the second piping 17B, the fourth piping 17D and the load 24 means a heat utilization route in a normal time.

19は太陽熱吸収板であって、例えば、上記コンクリート構造物12のコンクリート床版13の側面13aに固定されている。20は入力側ヒートパイプであって、その一端は上記太陽熱吸収板19に、その他端は第2蓄熱部材21に接続されている。ここで、該第2蓄熱部材21は、上記第1蓄熱部材17と同一の形状・構成であり、コンクリート構造物12の上記橋脚又は柱14の所定部位に埋設又は固定されている。該第2蓄熱部材21の内部又は表面には第1ヒートパイプ21Aと、この第1ヒートパイプ21Aから発散する熱エネルギーを吸収しかつ蓄熱すると共に第2ヒートパイプ21Bとを有している。尚、上記太陽熱吸収板19はコンクリート床版13以外の部位に固定してもよい。 Reference numeral 19 denotes a solar heat absorbing plate, which is fixed to the side surface 13a of the concrete floor slab 13 of the concrete structure 12, for example. An input side heat pipe 20 has one end connected to the solar heat absorbing plate 19 and the other end connected to the second heat storage member 21. Here, the second heat storage member 21 has the same shape and configuration as the first heat storage member 17, and is embedded or fixed in a predetermined portion of the pier or column 14 of the concrete structure 12. Inside or on the surface of the second heat storage member 21, there is a first heat pipe 21A, a second heat pipe 21B that absorbs and stores heat energy that is diffused from the first heat pipe 21A. The solar heat absorbing plate 19 may be fixed to a part other than the concrete slab 13.

上記第1ヒートパイプ21A及び上記第2ヒートパイプ21Bは太陽光Lによる太陽熱エネルギーを吸収した上記太陽熱吸収板19から該太陽熱エネルギーを入力側ヒートパイプ20で伝導して蓄熱する働きをする。該第2ヒートパイプ21Bは蓄熱した太陽熱エネルギーを出力側ヒートパイプ22に流送又は伝導する。該出力側ヒートパイプ22は、必要に応じて負荷24に出力側ヒートパイプ22内の熱伝導媒体を流送する。
ここで、上記第1及び第2ヒートパイプ21A、21Bは例えば金属管の中にウイックという特殊繊維製の中空の筒が内装され、常温付近の温度で液化又は気化する熱伝導媒体が充填・封入されているものであって、該第1及び第2ヒートパイプ21A、21Bを傾けて設置し、下部を加熱すると該熱伝導体は蒸発し該第1及び第2ヒートパイプ21A、21Bの上部に移動する。そして、上記第1及び第2ヒートパイプ21A、21Bの上部を冷却すると、気体状の熱伝導媒体は凝縮し液化して上記ウイック中を流れて下部に移行する機能を備えている。
尚、非常時や必要時に応じて上記融雪機構付き舗装道路以外の負荷24例えば屋根や床等にも熱伝導媒体を伝導させることもできる。また、前記した第1蓄熱部材17の内部又は表面には往復路(閉ループ)を形成した第1配管17Aと、該第1配管17Aから発散された熱エネルギーを吸収しかつ蓄熱すると共に往復路(閉ループ)を形成した第2配管17Bとを有し、この第2配管17Bの出力側には第4配管17Dを接続し必要に応じて熱伝導媒体を該第4配管17Dを介して負荷24にポンプ手段23で圧送する構成としてもよい。
The first heat pipe 21 </ b> A and the second heat pipe 21 </ b> B serve to store the heat by conducting the solar heat energy from the solar heat absorbing plate 19 that has absorbed the solar heat energy from sunlight L through the input side heat pipe 20. The second heat pipe 21 </ b> B flows or conducts the stored solar thermal energy to the output side heat pipe 22. The output side heat pipe 22 sends the heat conduction medium in the output side heat pipe 22 to the load 24 as necessary.
Here, the first and second heat pipes 21A and 21B are, for example, a hollow tube made of a special fiber called wick in a metal tube, and filled with a heat conduction medium that is liquefied or vaporized at a temperature near room temperature. When the first and second heat pipes 21A and 21B are installed at an incline and the lower part is heated, the heat conductor evaporates to the upper part of the first and second heat pipes 21A and 21B. Moving. And if the upper part of said 1st and 2nd heat pipe 21A, 21B is cooled, the gaseous heat conductive medium will condense and liquefy, and has a function which flows in the said wick and moves to the lower part.
It should be noted that the heat conduction medium can be conducted to a load 24 other than the paved road with the snow melting mechanism, such as a roof or a floor, in an emergency or when necessary. The first heat storage member 17 has a first pipe 17A in which a reciprocating path (closed loop) is formed in or on the surface, and absorbs and stores heat energy emitted from the first pipe 17A and also stores the reciprocating path ( A second pipe 17B having a closed loop). A fourth pipe 17D is connected to the output side of the second pipe 17B, and a heat conduction medium is supplied to the load 24 through the fourth pipe 17D as necessary. It is good also as a structure pumped by the pump means 23. FIG.

上記負荷24は例えば図1に示すものは、地盤Rの上面R1に設置した融雪機構付き舗装道路であり、上記第4配管17D及び/又は上記出力側ヒートパイプ22から圧送し又は流送された熱伝導媒体により、該融雪機構付き舗装道路の表面に積雪した雪S1を融解する。 For example, the load 24 shown in FIG. 1 is a paved road with a snow melting mechanism installed on the upper surface R <b> 1 of the ground R, and is pumped or sent from the fourth pipe 17 </ b> D and / or the output side heat pipe 22. The snow S1 accumulated on the surface of the paved road with a snow melting mechanism is melted by the heat conduction medium.

尚、上記した第1及び第2蓄熱部材17及び21は梁(フーチング)16並びに橋脚又は柱14に埋設する場合に代えて杭15や貯水槽、浄化槽又は基礎コンクリート(図示せず)等に埋設しても本発明の目的を達成できる。 The first and second heat storage members 17 and 21 described above are buried in piles 15, water storage tanks, septic tanks or foundation concrete (not shown) instead of being embedded in the beams (footings) 16 and the piers or pillars 14. Even so, the object of the present invention can be achieved.

次に、本発明に係るコンクリート構造物の蓄熱システムに於ける実施の形態について、その動作等を説明する。 Next, operation | movement etc. are demonstrated about embodiment in the thermal storage system of the concrete structure which concerns on this invention.

地盤Rからの地中熱を杭15の表面等に設けた上記第3配管17C又は上記第1蓄熱部材17の第1配管17Aが温度差により採取する。この地中熱は、地盤R内の微生物や有機物質による分解熱の場合や生活排水等の余熱の場合もある。上記第1蓄熱部材17の第3配管17C内及び第1配管17A内に於ける充填・封入された水やパラフィン、硫酸ナトリウムその他水溶液等の液体又は気体でなる熱伝導媒体が上記地中熱や分解熱を該第3及び第1配管17C、17Aから受け、該第3配管17Cの経路に存在するポンプ18で図2に示す矢印A1方向に圧送される。この第3及び第1配管17C、17A内の熱伝導媒体は管内を循環流送すると共に該第1配管17Aから隣接した上記第2配管17Bに熱エネルギーを伝導し、該第1配管17Aと第2配管17B間で熱エネルギーの受け渡しが行なわれる。かくして、上記第1配管17A及び上記第2配管17Bを有した第1蓄熱部材17は熱エネルギーを蓄える。 The third pipe 17C provided with ground heat from the ground R on the surface of the pile 15 or the like, or the first pipe 17A of the first heat storage member 17 is collected by a temperature difference. This underground heat may be heat of decomposition due to microorganisms or organic substances in the ground R, or may be residual heat such as domestic wastewater. A heat conduction medium made of liquid or gas such as water, paraffin, sodium sulfate, or an aqueous solution filled and sealed in the third piping 17C and the first piping 17A of the first heat storage member 17 is The decomposition heat is received from the third and first pipes 17C and 17A, and is pumped in the direction of the arrow A1 shown in FIG. 2 by the pump 18 existing in the path of the third pipe 17C. The heat conduction medium in the third and first pipes 17C and 17A circulates in the pipe and conducts thermal energy from the first pipe 17A to the adjacent second pipe 17B. Thermal energy is transferred between the two pipes 17B. Thus, the first heat storage member 17 having the first pipe 17A and the second pipe 17B stores thermal energy.

そして、負荷24が図2に示すように融雪機構付き舗装道路での場合、この表面に雪S1が積雪されているとき上記第4配管17D内の熱伝導媒体が図2に示す矢印A2方向からポンプ手段23により該負荷24に圧送され融雪動作を行なう。
また、当該負荷24を暖房装置として家屋の屋根や床に配置したとき、本発明の蓄熱システムは家屋の暖房システムとして機能する。
When the load 24 is a paved road with a snow melting mechanism as shown in FIG. 2, when the snow S1 is snowed on this surface, the heat conduction medium in the fourth pipe 17D is from the direction of the arrow A2 shown in FIG. It is pumped to the load 24 by the pump means 23 to perform a snow melting operation.
Moreover, when the load 24 is arranged as a heating device on the roof or floor of a house, the heat storage system of the present invention functions as a heating system for the house.

一方、コンクリート構造物12の所定部位に固定された太陽熱吸収板19に太陽光Lが照射されると該太陽熱吸収板19は太陽熱エネルギーを吸収する。そして、吸収された太陽熱エネルギーは、熱伝導媒体に化体され、図2の矢印B1方向で示すように入力側ヒートパイプ20内及び第1ヒートパイプ21A内の熱伝導媒体が流送される。該第1ヒートパイプ21A内を循環流送した熱伝導媒体の働きにより熱エネルギーは上記第2ヒートパイプ21Bに吸収される。而して、上記第1及び第2ヒートパイプ21A、21Bを備えた第2蓄熱部材21は太陽熱エネルギーを蓄熱する。 On the other hand, when the solar heat absorbing plate 19 fixed to a predetermined part of the concrete structure 12 is irradiated with sunlight L, the solar heat absorbing plate 19 absorbs solar heat energy. Then, the absorbed solar thermal energy is converted into a heat conduction medium, and the heat conduction medium in the input side heat pipe 20 and the first heat pipe 21A is flowed as shown by the arrow B1 direction in FIG. The heat energy is absorbed by the second heat pipe 21B by the action of the heat conduction medium circulating in the first heat pipe 21A. Thus, the second heat storage member 21 including the first and second heat pipes 21A, 21B stores solar thermal energy.

そして、負荷24が図2に示すように融雪機構付き舗装道路での場合、この表面に雪S1が積雪されているとき上記出力側ヒートパイプ22内の熱伝導媒体が図2に示す矢印B2方向から該負荷24に圧送され融雪動作を行なう。
また、当該負荷24を暖房装置として家屋の屋根や床に配置したとき、本発明の蓄熱システムは家屋の暖房システムとして機能する。
When the load 24 is a paved road with a snow melting mechanism as shown in FIG. 2, when the snow S1 is snowed on this surface, the heat conduction medium in the output side heat pipe 22 is in the direction of the arrow B2 shown in FIG. To the load 24 to perform a snow melting operation.
Moreover, when the load 24 is arranged as a heating device on the roof or floor of a house, the heat storage system of the present invention functions as a heating system for the house.

尚、上述した太陽熱吸収板19からの太陽熱エネルギーは本蓄熱システムに於いて、非常時や必要に応じて負荷24としての融雪機構付き舗装道路の表面に積雪した雪S1を融雪するときや家屋の暖房等に利用する。 The solar heat energy from the solar heat absorbing plate 19 described above is used in the present heat storage system when the snow S1 accumulated on the surface of the paved road with a snow melting mechanism as a load 24 is melted in an emergency or when necessary. Used for heating.

次に、本発明に係るコンクリート構造物の蓄熱システムに於ける実施例1について説明する。 Next, Example 1 in the heat storage system for a concrete structure according to the present invention will be described.

当該実施例1は、上述した本発明に係るコンクリート構造物の蓄熱システムに於ける実施の形態の例に於ける構成要素に新たに加えた構成又は一部を変更した構成で成立する。すなわち、上記図1及び上記図2に於いて、特に、地盤Rに熱交換杭25を埋設した点である。この熱交換杭25は例えば、所定長さを有し、鉄等の金属製や硬質の樹脂製等で成形され、外筒及び内筒の二重筒で構成される。また、該熱交換杭25は分離したそれぞれを単一管で構成し、熱交換機能を備えたものであってもよく、該内筒はコンクリート床版や舗装道路等の負荷24で加熱された温水を第1配管内を流過させて取り入れ地盤Rの所定深さまで流送し、地盤R内の冷却温度で熱気が吸収され、冷水にする。そして、該外筒はこの冷水を押し上げ第2配管内を流送し、コンクリート床版や舗装道路等の負荷24を冷却する。而して、夏期に於ける舗装道路等の負荷24のヒートアイランド現象を防止する。また、この実施例1の構成は、上述した実施の形態の例に於ける構成要素のうち、第1蓄熱部材17又は第2蓄熱部材21のいずれかを省略した構成としてもよい。
当実施例1に於ける他の構成部材は上述した実施の形態に於ける構成部材と略同一であり、同一番号及び同一符号を付し、その機能及び動作等の説明を省略する。
The Example 1 is established by a configuration newly added to the components in the example of the embodiment in the above-described heat storage system for a concrete structure according to the present invention or a configuration obtained by changing a part thereof. In other words, in FIG. 1 and FIG. 2, the heat exchange pile 25 is embedded in the ground R in particular. The heat exchange pile 25 has, for example, a predetermined length, is formed of a metal such as iron or a hard resin, and includes a double cylinder of an outer cylinder and an inner cylinder. The heat exchanging piles 25 may be separated from each other by a single tube and provided with a heat exchanging function. The inner cylinder is heated by a load 24 such as a concrete floor slab or a paved road. The hot water is caused to flow through the first pipe and flowed to a predetermined depth of the ground R, and hot air is absorbed at the cooling temperature in the ground R to make cold water. And this outer cylinder pushes up this cold water, and flows in the inside of 2nd piping, and cools loads 24, such as a concrete floor slab and a paved road. Thus, the heat island phenomenon of the load 24 such as a paved road in the summer is prevented. In addition, the configuration of Example 1 may be a configuration in which either the first heat storage member 17 or the second heat storage member 21 is omitted from the components in the above-described embodiment.
The other constituent members in the first embodiment are substantially the same as the constituent members in the above-described embodiment, and are assigned the same reference numerals and symbols, and descriptions of their functions and operations are omitted.

次に、本発明に係るコンクリート構造物の蓄熱システムに於ける実施例2について説明する。 Next, a second embodiment of the heat storage system for a concrete structure according to the present invention will be described.

当該実施例2は上述した本発明に係るコンクリート構造物の蓄熱システムに於ける実施の形態の例に於ける構成要素に於いて上記図1及び上記図2に示す第2蓄熱部材21を蓄熱機能を果すコンデンサに変えると共に該第2蓄熱部材21に備えた第1及び第2ヒートパイプ21A、21Bや入力側ヒートパイプ20、出力側ヒートパイプ22を電線に置換える。かかる構成としてすれば、太陽熱エネルギーを電気エネルギーに変換してこの電気エネルギーをコンデンサ(図示せず)手段で蓄電して非常時や必要時に融雪機構付き舗装道路等の負荷24に通電し、雪S1を融解する。このように実施例2は本蓄熱システムに於ける補助熱源として利用することができる。
当実施例2に於ける他の構成部材は上述した実施の形態に於ける構成部材と略同一であり、同一番号及び同一符号を付し、その機能及び動作等の説明を省略する。
また、本実施例2は太陽熱吸収板19に代えて別の風力エネルギーや振動による運動エネルギーを生み出す装置を設け、これを電気エネルギーに変換して利用することも可能である。
In Example 2, the second heat storage member 21 shown in FIG. 1 and FIG. 2 is used as a heat storage function in the constituent elements in the embodiment of the heat storage system for a concrete structure according to the present invention described above. The first and second heat pipes 21A and 21B, the input side heat pipe 20 and the output side heat pipe 22 provided in the second heat storage member 21 are replaced with electric wires. With such a configuration, the solar thermal energy is converted into electric energy, the electric energy is stored by a capacitor (not shown), and is supplied to a load 24 such as a paved road with a snow melting mechanism in an emergency or when necessary, and snow S1 To melt. Thus, Example 2 can be used as an auxiliary heat source in this heat storage system.
The other constituent members in Example 2 are substantially the same as the constituent members in the above-described embodiment, and are given the same reference numerals and symbols, and descriptions of their functions and operations are omitted.
In the second embodiment, instead of the solar heat absorbing plate 19, another device for generating kinetic energy by wind energy or vibration can be provided, which can be converted into electric energy and used.

本発明に係るコンクリート構造物の蓄熱システムに於ける実施の形態の一例を示す垂直断面図である。It is a vertical sectional view showing an example of an embodiment in a heat storage system for a concrete structure according to the present invention. 図1に示す本発明に係るコンクリート構造物の蓄熱システムの熱又は電気エネルギーの伝導経路を示すシステム構成図である。It is a system block diagram which shows the conduction path | route of the heat | fever or electric energy of the thermal storage system of the concrete structure based on this invention shown in FIG. 従来の技術に於ける第1の例として風力利用融雪システムを示す図である。It is a figure which shows a wind-powered snow melting system as a 1st example in a prior art. 従来の技術に於ける第2の例として蓄熱材を格納した舗装道路を示す垂直断面図である。It is a vertical sectional view which shows the paved road which stored the thermal storage material as a 2nd example in a prior art.

符号の説明Explanation of symbols

12 コンクリート構造物
13 コンクリート構造物のコンクリート床版
13a コンクリート構造物のコンクリート床版の側面
14 橋脚(柱)
15 杭
16 梁
17 第1蓄熱部材
17A 第1蓄熱部材の第1配管
17B 第1蓄熱部材の第2配管
17C 第1蓄熱部材の第3配管
17D 第1蓄熱部材の第4配管
18 ポンプ手段
19 太陽熱吸収板
20 入力側ヒートパイプ
21 第2蓄熱部材
21A 第2蓄熱部材の第1ヒートパイプ
21B 第2蓄熱部材の第2ヒートパイプ
22 出力側ヒートパイプ
23 ポンプ手段
24 負荷
25 熱交換杭
S1 雪
L 太陽光
R 地盤
R1 地盤の上面
12 Concrete structure 13 Concrete floor slab of concrete structure 13a Side of concrete floor slab of concrete structure 14 Bridge pier (column)
15 Pile 16 Beam 17 First heat storage member 17A First heat storage member first pipe 17B First heat storage member second pipe 17C First heat storage member third pipe 17D First heat storage member fourth pipe 18 Pump means 19 Solar heat Absorption plate 20 Input side heat pipe 21 Second heat storage member 21A First heat pipe 21B of second heat storage member Second heat pipe 22 of second heat storage member Output side heat pipe 23 Pump means 24 Load 25 Heat exchange pile S1 Snow L Sun Light R Ground R1 Top surface of ground

Claims (4)

コンクリート構造物の所定部位に埋設し又は固定されかつ地盤からの熱エネルギーを採取・蓄熱する蓄熱部材であって、該蓄熱部材が閉ループを構成した第1、第2配管からの熱エネルギーを吸収及び蓄えると共に該第1配管に隣接・配置した第2配管を有し、該第1、第2配管内に充填・封入した熱伝導媒体を負荷に圧送・流送することを特徴とするコンクリート構造物の蓄熱システム。 A heat storage member that is buried or fixed in a predetermined part of a concrete structure and collects and stores heat energy from the ground, and the heat storage member absorbs heat energy from the first and second pipes constituting a closed loop and A concrete structure characterized by storing and having a second pipe adjacent to and arranged in the first pipe, and pumping / flowing a heat conduction medium filled and sealed in the first and second pipes to a load Heat storage system. コンクリート構造物の所定部位に埋設し又は固定されかつ地盤又は太陽光からの地中熱エネルギー又は太陽熱エネルギーを採取・蓄熱する第1及び第2蓄熱部材であって、一方では前記第1蓄熱部材が閉ループを構成した第1配管及び該第1配管から熱エネルギーを吸収及び蓄えると共に該第1配管に隣接・配置した第2配管を有し、該第1、第2配管内に充填・封入した熱伝導媒体を負荷に圧送し、並びに他方では前記第2蓄熱部材が前記コンクリート構造物に設置した太陽熱吸収板から太陽熱エネルギーを伝導・蓄熱する閉ループを構成した第1、第2ヒートパイプから太陽熱エネルギーを吸収すると共に第1ヒートパイプに隣接・配置した第2ヒートパイプを有し、該第1、第2ヒートパイプ内に充填・封入した熱伝導媒体を前記負荷に流送することを特徴とするコンクリート構造物の蓄熱システム。 First and second heat storage members that are buried or fixed in a predetermined part of a concrete structure and collect and store ground heat energy or solar heat energy from the ground or sunlight, on the one hand, the first heat storage member The first pipe constituting the closed loop and the second pipe that absorbs and stores heat energy from the first pipe and is adjacent to and arranged in the first pipe, and the heat filled and sealed in the first and second pipes The conductive medium is pumped to the load, and on the other hand, the second heat storage member transmits solar thermal energy from the first and second heat pipes that form a closed loop that conducts and stores solar thermal energy from the solar heat absorbing plate installed in the concrete structure. A second heat pipe that absorbs the first heat pipe and is disposed adjacent to the first heat pipe, and the heat conductive medium filled and enclosed in the first and second heat pipes is the load Heat storage system of the concrete structure, characterized by Nagareoku. コンクリート構造物の所定部位に埋設し又は固定されかつ地盤からの地中熱を採取・蓄熱する蓄熱部材であって、該蓄熱部材が閉ループを構成した第1、第2配管からの熱エネルギーを吸収及び蓄えると共に該第1配管に隣接・配置した第2配管を有し、該第1、第2配管内に充填・封入した熱伝導媒体を負荷に圧送・流送し並びに前記地盤に前記地中熱を温水に熱変換させる熱交換杭を埋設し、前記負荷に該温水を流送することを特徴とするコンクリート構造物の蓄熱システム。 A heat storage member that is buried or fixed in a specific part of a concrete structure and collects and stores underground heat from the ground, and the heat storage member absorbs heat energy from the first and second pipes constituting a closed loop. And storing and storing a second pipe adjacent to and disposed in the first pipe, the heat conduction medium filled and sealed in the first and second pipes being pumped / flowed to a load, and the ground to the ground A heat storage system for a concrete structure, wherein a heat exchange pile for converting heat into hot water is buried, and the hot water is flowed to the load. 前記第2蓄熱部材は太陽熱エネルギーを電気エネルギーに変換しかつ蓄電するコンデンサ手段で構成したことを特徴とする請求項2記載のコンクリート構造物の蓄熱システム。 The heat storage system for a concrete structure according to claim 2, wherein the second heat storage member is constituted by capacitor means for converting solar heat energy into electric energy and storing the energy.
JP2006150837A 2006-05-31 2006-05-31 Thermal storage system for concrete structures Active JP4530174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150837A JP4530174B2 (en) 2006-05-31 2006-05-31 Thermal storage system for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150837A JP4530174B2 (en) 2006-05-31 2006-05-31 Thermal storage system for concrete structures

Publications (2)

Publication Number Publication Date
JP2007321378A JP2007321378A (en) 2007-12-13
JP4530174B2 true JP4530174B2 (en) 2010-08-25

Family

ID=38854435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150837A Active JP4530174B2 (en) 2006-05-31 2006-05-31 Thermal storage system for concrete structures

Country Status (1)

Country Link
JP (1) JP4530174B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109248B2 (en) * 2015-07-06 2017-04-05 株式会社 トラストプラン Solar heat storage snow melting system and control method thereof.
CN108049284B (en) * 2018-01-19 2024-04-30 山东省交通规划设计院集团有限公司 Road snow melting system with ground temperature and solar inorganic medium heat pipe and use method thereof
CN112554120A (en) * 2020-12-10 2021-03-26 湖北工业大学 Bridge deck automatic snow melting and ice melting system and method based on terrestrial heat
CN114687282B (en) * 2022-04-08 2023-04-07 山东大学 Bridge pier column snow melting system based on ettringite phase change energy storage

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161204U (en) * 1987-10-14 1989-04-19
JPH01178602A (en) * 1988-01-11 1989-07-14 Toshiba Eng & Constr Co Ltd Snow melting method
JPH0412507U (en) * 1990-05-17 1992-01-31
JPH05272106A (en) * 1992-03-25 1993-10-19 Fujikura Ltd Solar energy storage type road surface snow melting device
JPH05272105A (en) * 1992-03-25 1993-10-19 Kowa:Kk Road snow melting device provided with solar device on slope face
JPH07279114A (en) * 1994-04-11 1995-10-24 Kensetsusho Hokurikuchihou Kensetsukyoku Solar heat regerative snow-melting device
JPH085162A (en) * 1994-06-17 1996-01-12 Fujikura Ltd Geothermal energy extractor
JPH10185221A (en) * 1996-12-20 1998-07-14 Tsuchiya Kogyo Kk Skeleton heat storage structure
JP2000091608A (en) * 1998-09-14 2000-03-31 Omron Corp Power source controller and solar light generation system using the same
JP2001107307A (en) * 1999-10-05 2001-04-17 Maeda Seikan Kk Snow melting antifreezer
JP2001323429A (en) * 2000-05-12 2001-11-22 Kubota Corp Geothermal show melting facility and its operating method
JP2002026356A (en) * 2000-07-04 2002-01-25 Nissin Electric Co Ltd Snow melting device
JP2002047626A (en) * 2000-07-31 2002-02-15 Takiron Co Ltd Snow melting system of road
JP2002173905A (en) * 2000-12-06 2002-06-21 Akimi Suzawa Snow melter
JP2002235956A (en) * 2001-02-09 2002-08-23 Kubota Corp Sewage utilization heat source equipment
JP2002348828A (en) * 2001-05-29 2002-12-04 Kubota Corp Snow melting facility
JP2003279193A (en) * 2002-03-26 2003-10-02 Kubota Corp Heat source appliance
JP2003306918A (en) * 2002-04-16 2003-10-31 Misawa Kankyo Gijutsu Kk Method for controlling underground-heat utilizing snow- melting device
JP2003307046A (en) * 2002-04-15 2003-10-31 Misawa Kankyo Gijutsu Kk Heat accumulation type snow melting equipment
JP2005336815A (en) * 2004-05-26 2005-12-08 Nippon Steel Corp Underground snow melting tank by hollow pipe body buried by rotary press-in construction method, snow melting facility having this tank and operation method of snow melting facility

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161204U (en) * 1987-10-14 1989-04-19
JPH01178602A (en) * 1988-01-11 1989-07-14 Toshiba Eng & Constr Co Ltd Snow melting method
JPH0412507U (en) * 1990-05-17 1992-01-31
JPH05272106A (en) * 1992-03-25 1993-10-19 Fujikura Ltd Solar energy storage type road surface snow melting device
JPH05272105A (en) * 1992-03-25 1993-10-19 Kowa:Kk Road snow melting device provided with solar device on slope face
JPH07279114A (en) * 1994-04-11 1995-10-24 Kensetsusho Hokurikuchihou Kensetsukyoku Solar heat regerative snow-melting device
JPH085162A (en) * 1994-06-17 1996-01-12 Fujikura Ltd Geothermal energy extractor
JPH10185221A (en) * 1996-12-20 1998-07-14 Tsuchiya Kogyo Kk Skeleton heat storage structure
JP2000091608A (en) * 1998-09-14 2000-03-31 Omron Corp Power source controller and solar light generation system using the same
JP2001107307A (en) * 1999-10-05 2001-04-17 Maeda Seikan Kk Snow melting antifreezer
JP2001323429A (en) * 2000-05-12 2001-11-22 Kubota Corp Geothermal show melting facility and its operating method
JP2002026356A (en) * 2000-07-04 2002-01-25 Nissin Electric Co Ltd Snow melting device
JP2002047626A (en) * 2000-07-31 2002-02-15 Takiron Co Ltd Snow melting system of road
JP2002173905A (en) * 2000-12-06 2002-06-21 Akimi Suzawa Snow melter
JP2002235956A (en) * 2001-02-09 2002-08-23 Kubota Corp Sewage utilization heat source equipment
JP2002348828A (en) * 2001-05-29 2002-12-04 Kubota Corp Snow melting facility
JP2003279193A (en) * 2002-03-26 2003-10-02 Kubota Corp Heat source appliance
JP2003307046A (en) * 2002-04-15 2003-10-31 Misawa Kankyo Gijutsu Kk Heat accumulation type snow melting equipment
JP2003306918A (en) * 2002-04-16 2003-10-31 Misawa Kankyo Gijutsu Kk Method for controlling underground-heat utilizing snow- melting device
JP2005336815A (en) * 2004-05-26 2005-12-08 Nippon Steel Corp Underground snow melting tank by hollow pipe body buried by rotary press-in construction method, snow melting facility having this tank and operation method of snow melting facility

Also Published As

Publication number Publication date
JP2007321378A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US20130299123A1 (en) Geothermal System
US8443794B2 (en) Systems and methods for operating environmental equipment utilizing energy obtained from manufactured surface coverings
RU2578385C1 (en) Method for operation of heat energy accumulation system
CN103124845B (en) For the method and apparatus producing electric energy supplement
US8931276B2 (en) Hybrid renewable energy system having underground heat storage apparatus
US20180112930A1 (en) Energy Store, Power Plant having an Energy Store, and Method for Operating the Energy Store
BRPI0709837B1 (en) method, device and system for energy conversion
JP2007333295A (en) Heat storage system
Dawson et al. Energy harvesting from pavements
JP4530174B2 (en) Thermal storage system for concrete structures
WO2018014605A1 (en) Prestressed pipe pile apparatus for combined cooling, heat and power generation and manufacturing method therefor
JP2019210595A (en) Underground storage, compressed gas power generation system provided therewith, heat pump system, power storage system, fuel power generation system and underground storage system
US10145365B2 (en) Integrated thermal storage, heat exchange, and steam generation
Hu et al. Design and experimental study of a solar compression refrigeration apparatus (SCRA) for embankment engineering in permafrost regions
JP2008308963A (en) Ground surface snow melting system
Dincer et al. Thermal Energy Storage (TES)
Jaiswal et al. Harvesting heat energy using geothermal and hydronic pavements for sustainable cities: A comprehensive review of an emerging idea
JP5389565B2 (en) Geothermal air conditioning system
JP2689400B2 (en) Solar heat storage type road surface snow melting device
JP4868579B2 (en) Ramp system
Duarte et al. Waynergy vehicles: System prototype demonstration in an operational environment
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
GB2490125A (en) Hydronic radiant heating and cooling system comprising a phase change material
JP2000329413A (en) Shallow geothermal heat collecting unit with heat storing tank
JP3156451U (en) Circulating snow melting system using geothermal and groundwater heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

R150 Certificate of patent or registration of utility model

Ref document number: 4530174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250