JP4868579B2 - Ramp system - Google Patents

Ramp system Download PDF

Info

Publication number
JP4868579B2
JP4868579B2 JP2006150839A JP2006150839A JP4868579B2 JP 4868579 B2 JP4868579 B2 JP 4868579B2 JP 2006150839 A JP2006150839 A JP 2006150839A JP 2006150839 A JP2006150839 A JP 2006150839A JP 4868579 B2 JP4868579 B2 JP 4868579B2
Authority
JP
Japan
Prior art keywords
heat
geothermal
road surface
road
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006150839A
Other languages
Japanese (ja)
Other versions
JP2007321380A (en
Inventor
茂 松岡
博文 柳
和也 松浦
Original Assignee
鉄建建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鉄建建設株式会社 filed Critical 鉄建建設株式会社
Priority to JP2006150839A priority Critical patent/JP4868579B2/en
Publication of JP2007321380A publication Critical patent/JP2007321380A/en
Application granted granted Critical
Publication of JP4868579B2 publication Critical patent/JP4868579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Road Paving Structures (AREA)

Description

本発明は、各種の道路等の傾斜路面上に積雪し又は凍結された雪を融雪し、該傾斜路面を緩勾配にすることなく適正な勾配を確保すると共に路面のアプローチ部分の長さを短く設定し、工事納期の短縮化及び工事費の削減を図るべくした傾斜路システムに関する。 The present invention melts snow that has accumulated or frozen on an inclined road surface such as various roads, ensures an appropriate gradient without making the inclined road surface gentle, and shortens the length of the approach portion of the road surface. The present invention relates to a ramp system designed to shorten the construction delivery time and reduce the construction cost.

この種、従来の技術に於ける第1の例として風力利用融雪システムであって、図2に示すような特開2003−35250号公開特許公報に開示された技術がある。これについて説明すれば、このシステムにおいて、風力発電装置Aは、ダリウス型の風車1と同期発電機(交流発電機)2とによって構成されている。風車1が風Wによって回転すると、同期発電機2の回転軸が回転され、この回転によって同期発電機2において交流電力が発生する。この交流電力は電力供給路3によって電気ヒーターに供給される。電力供給路3には、変圧器(電圧調整器)3aが設けられており、供給電圧の調節が行える。電気ヒーター4は電力を得て発熱するものであり、例えば、カーボン(炭素)を含有する面状発熱体を利用して構成する。また、面状発熱体を屋外に設置するので、樹脂等から成る被覆材にて覆い、防水加工を施しておく。この電気ヒーター4上には、これに接するようにして潜熱蓄熱材5が設けられている。潜熱蓄熱材5は、雪Sが融ける温度において潜熱温度が設定されており、図3に示すものは約5℃としている。すなわち、約5℃の温度において与えられた熱を状態変化に費やすことで蓄熱する性質を有する潜熱蓄熱材5を用いている。この潜熱蓄熱材5としては、無機水和塩を樹脂袋(容器)内に封止して成るものを用いる。そして、潜熱蓄熱材5上には、これを覆うための覆い部材6が設けられる構成である。 As a first example of this type of conventional technology, there is a wind-based snow melting system disclosed in Japanese Patent Application Laid-Open No. 2003-35250 as shown in FIG. If it demonstrates about this, in this system, the wind power generator A is comprised by the Darrieus type | mold windmill 1 and the synchronous generator (alternator) 2. FIG. When the windmill 1 is rotated by the wind W, the rotating shaft of the synchronous generator 2 is rotated, and AC power is generated in the synchronous generator 2 by this rotation. The AC power is supplied to the electric heater through the power supply path 3. The power supply path 3 is provided with a transformer (voltage regulator) 3a, which can adjust the supply voltage. The electric heater 4 generates electric power and generates heat. For example, the electric heater 4 is configured using a planar heating element containing carbon. Further, since the planar heating element is installed outdoors, it is covered with a covering material made of resin or the like and waterproofed. A latent heat storage material 5 is provided on the electric heater 4 so as to be in contact therewith. The latent heat storage material 5 has a latent heat temperature set at a temperature at which the snow S melts, and the temperature shown in FIG. That is, the latent heat storage material 5 having the property of storing heat by spending heat applied at a temperature of about 5 ° C. for state change is used. As the latent heat storage material 5, a material obtained by sealing an inorganic hydrate salt in a resin bag (container) is used. And it is the structure by which the cover member 6 for covering this on the latent-heat storage material 5 is provided.

また、この種、従来の技術に於ける第2の例として蓄熱材を格納した舗装道路であって、図3に示すような特開平7−243202号公開特許公報に開示された技術がある。これについて説明すれば、図3は、蓄熱材Bを格納した舗装道路の断面図を示している。図3に於いて、表層7、基層8、路盤9、路床10をそれぞれ示しており、上記蓄熱材Bを格納した格納容器11は基層8に埋設されている。図3はアスファルト舗装道路の場合であるが、コンクリート舗装道路の場合には上記表層7と基層8は同一層を形成することに成る。そして、例えば表層7の厚さは5cm、基層8の厚さも5cmと成っている。勿論、これら各層7、8の厚さを限定することはないが、傷んだり、老化したりした路面を補修する際に削り取られる表層7は充分な厚さが必要とされ、上記格納容器11、11…は補修の際に障害にならない深さに設けられた基層8内に埋設されている。したがって、コンクリート舗装道路の場合には表層7の上面から数cmないし7cm〜8cmの深さに設けられる。そして、上記構成の作用としては格納容器11に格納されている蓄熱材Bが液体の状態にある場合、該蓄熱材Bが冷却されるならば凝固点以下になり、その後蓄熱材Bは液体から固体へ相変化する。該蓄熱材Bによっては過冷却する場合もあるが、液体から固体に相変化する場合には凝固点温度を維持しながら凝固を続ける。したがって、この際に蓄熱材Bは潜熱を放出し、路面Cに熱エネルギーを与え、その結果、路面Cの凍結を防止する。この第2の例では、路面Cが凍結する温度よりも僅かに高い温度で相変化する蓄熱材Bを使用する。場合によっては1℃〜8℃で相変化する蓄熱材Bを使用してもある程度の効果は得られる。上記蓄熱材Bが全て固体に相変化するまでは熱エネルギーを放出し、路面へ熱を与えることになる訳で、一旦固体に相変化した蓄熱材Bは逆に路面から熱エネルギーを与えられて再び液体に戻る。これは、日中気温が上昇して路面温度が高くなり、該路面Cから蓄熱材Bへ熱が伝わって、固体から液体へ相変化する。液体となって潜熱を得た蓄熱材Bは、明け方の気温低下時に再び液体から固体へ相変化して路面Cに熱を与える。この第2の例では蓄熱材Bの相変化を利用して路面の凍結を防止する技術である。
特開2003−35250号公開特許公報 特開平7−243202号公開特許公報
A second example of this type of conventional technology is a paved road storing a heat storage material, and there is a technology disclosed in Japanese Patent Laid-Open No. 7-243202 as shown in FIG. If it demonstrates about this, FIG. 3 has shown sectional drawing of the paved road which stored the thermal storage material B. FIG. In FIG. 3, the surface layer 7, the base layer 8, the roadbed 9, and the roadbed 10 are shown, and the storage container 11 storing the heat storage material B is embedded in the base layer 8. FIG. 3 shows the case of an asphalt paved road. In the case of a concrete paved road, the surface layer 7 and the base layer 8 form the same layer. For example, the thickness of the surface layer 7 is 5 cm, and the thickness of the base layer 8 is also 5 cm. Of course, the thickness of each of the layers 7 and 8 is not limited, but the surface layer 7 to be scraped off when repairing a damaged or aged road surface is required to have a sufficient thickness. 11 are embedded in a base layer 8 provided at a depth that does not become an obstacle during repair. Therefore, in the case of a concrete paved road, it is provided at a depth of several cm to 7 cm to 8 cm from the upper surface of the surface layer 7. And as an effect | action of the said structure, when the thermal storage material B stored in the storage container 11 exists in a liquid state, if this thermal storage material B is cooled, it will become below a freezing point, and after that, the thermal storage material B will be solid from a liquid. Change to phase. Depending on the heat storage material B, it may be supercooled, but when the phase changes from liquid to solid, solidification is continued while maintaining the freezing point temperature. Therefore, at this time, the heat storage material B releases latent heat and gives thermal energy to the road surface C, and as a result, the road surface C is prevented from freezing. In this second example, a heat storage material B that changes phase at a temperature slightly higher than the temperature at which the road surface C freezes is used. In some cases, even if the heat storage material B that changes phase at 1 to 8 ° C. is used, a certain effect can be obtained. Until all the heat storage material B changes to a solid phase, the heat energy is released and heat is applied to the road surface. The heat storage material B once changed into a solid state is given heat energy from the road surface. Return to liquid again. This is because the daytime temperature rises and the road surface temperature rises, and heat is transferred from the road surface C to the heat storage material B, so that the phase changes from solid to liquid. The heat storage material B that has obtained latent heat in the form of liquid again changes phase from liquid to solid when the air temperature drops at dawn, and heats the road surface C. In the second example, the road surface is prevented from freezing using the phase change of the heat storage material B.
Japanese Patent Laid-Open No. 2003-35250 Japanese Patent Laid-Open No. 7-243202

従来の技術は、前述した構成、作用であるので次の課題が存在した。すなわち、従来の技術に於ける第1の例としての風力利用融雪システムによれば、採取したエネルギーを直接的に融雪に利用する技術であって、風Wのエネルギーが風車1を回転し、この回転力を同期発電機2で電気信号に変換し、この電気信号を直接に電気ヒータ4に導入し路面下の該電気ヒータ4を発熱させ、潜熱蓄熱材5を介して、路面上の雪Sを融雪する技術であり、傾斜路面上に積雪された雪を融雪する技術ではない。そして、融雪機能を路面の部位毎に上記電気ヒータ4や潜熱蓄熱材5を備える必要があり、融雪装置や融雪システムが複雑かつ大規模化して高価となり、また融雪効果は直接生み出されるエネルギーの大、小によって大きく影響を受け、融雪効率が悪く、実用に適さないという問題点があった。
また、従来の技術に於ける第2例としての蓄熱材を格納した舗装道路によれば、蓄熱材Bが数℃前・後にて液体から個体に相変化する性質を有し、この相変化する際に生じる凝固熱を利用した凍結防止技術であって、傾斜路面上に積雪された雪による路面の凍結現象を防止する技術ではないと共に積極的に傾斜路面上に於ける融雪技術に適しないという問題点があった。
The conventional technique has the following problems because of the configuration and operation described above. That is, according to the wind-powered snow melting system as a first example in the prior art, the collected energy is directly used for snow melting, and the energy of the wind W rotates the windmill 1, The rotational force is converted into an electric signal by the synchronous generator 2, and this electric signal is directly introduced into the electric heater 4 to cause the electric heater 4 below the road surface to generate heat, and the snow S on the road surface through the latent heat storage material 5. It is not a technology to melt snow that has accumulated on the slope. Further, it is necessary to provide the snow melting function with the electric heater 4 and the latent heat storage material 5 for each part of the road surface, and the snow melting device and the snow melting system become complicated and large-scale and expensive, and the snow melting effect is a large amount of energy directly generated. There was a problem that it was greatly affected by small, snow melting efficiency was poor and not suitable for practical use.
Further, according to the paved road storing the heat storage material as the second example in the prior art, the heat storage material B has the property of changing phase from liquid to solid before and after several degrees Celsius. It is a freezing prevention technology that uses the heat of solidification that occurs at the time, and it is not a technology that prevents the freezing phenomenon of the road surface due to snow accumulated on the inclined road surface, and it is not suitable for the snow melting technology positively on the inclined road surface There was a problem.

本発明に係る傾斜路システムは、風力、太陽熱、地熱、微生物による有機物の分解熱、振動力等の運動エネルギー等の自然エネルギーを、熱もしくは電気エネルギーに変換し、この熱又は電気エネルギーを傾斜路面の内部に設けられた舗装体に供給する融雪システムであって、例えば、大地又は路盤に蓄えられた地中熱を融雪システムに利用し、傾斜路面上の積雪防止や凍結の防止に利用し、傾斜路面を必要以上に緩やかに設計することなく、傾斜路面のアプローチ部分の長さを短く設定し、施工納期の短縮化と施工費用の低減を可能とした技術であって、次の構成・手段から成立する。
すなわち、請求項1記載の発明によれば、土木・建築構造物に備えた路盤(大地)上面に所定の合成勾配を形成した傾斜路面と、該傾斜路面に埋設又は敷設しかつ該傾斜路面の上面に積雪した雪を融雪する舗装体と、上記路盤(大地)の所定深さに埋設して地中熱を採取しかつ上記舗装体に地中熱エネルギーを伝導する地熱採取杭とでなる構成に於いて、前記地熱採取杭は左側、右側地熱採取杭であってそれぞれ前記路盤内の所定深さまで埋込まれ、かつ内管と外管から成るポリエチレン袋の二重同軸管でなることを特徴とする。
The ramp system according to the present invention converts natural energy such as wind energy, solar heat, geothermal heat, heat of decomposition of organic matter by microorganisms, kinetic energy such as vibration force into heat or electric energy, and this heat or electric energy is converted into the ramp surface. A snow melting system that supplies to the pavement provided inside the ground, for example, using the ground heat stored in the ground or the roadbed for the snow melting system, used to prevent snow accumulation and freezing on the sloped road surface, A technology that shortens the construction delivery time and reduces construction costs by setting the length of the approach portion of the sloped road surface short without designing the sloped road more gently than necessary. It is established from.
That is, according to the first aspect of the present invention, an inclined road surface in which a predetermined composite gradient is formed on the upper surface of a roadbed (ground) provided in a civil engineering / building structure, and an embedded or laid underground surface of the inclined road surface. a pavement for snow melting snow and snow on the upper surface, consisting of a geothermal collected pile of conducting geothermal heat energy in a predetermined embedded depth was GHP were collected and the pavement of the road bed (ground) configuration The geothermal sampling piles are left and right geothermal sampling piles, each of which is embedded to a predetermined depth in the roadbed, and is formed of a double coaxial pipe made of a polyethylene bag composed of an inner pipe and an outer pipe. And

請求項2記載の発明によれば、請求項1記載の発明に於いて、前記傾斜路面の合成勾配が8(%)ないし12.5(%)の範囲に設定されたことを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention, the combined slope of the inclined road surface is set in a range of 8 (%) to 12.5 (%).

本発明に係る傾斜路システムは、上述した構成、作用を有するので次の効果がある。
すなわち、請求項1及び2記載の本発明によれば、熱供給パイプから上記熱供給管を介してリターンした循環水は左側、右側地熱採取杭の内管を杭先に向って下降した後にその外管を上昇し再び左側、右側舗装体に流送する。この繰返し動作により熱損失を生じることなく合理的手法で地中熱エネルギーを伝導し該左側、右側舗装体又は左側、右側傾斜路面に積雪された雪を速やかに融雪するという効果がある。また、車両走行の安全性及び登坂能力を確保し道路線形を緩和させ、傾斜路面のアプローチ部の長さを施工延長の短縮が図れ、都市部や土地収用に課題のある箇所などへの適用拡大が可能となると共に施工費の縮減が可能となるという効果がある。また、積雪寒冷の度合が頻繁な地域に存する道路で、合成勾配が8%とされている箇所に適用し、道路線形が道路構造令による一般的な合成勾配10%に緩和された場合においては、高低差に対して2%分程度のアプローチ部の長さの短縮が可能となるという効果がある。さらに、例えば、地中熱を採取する地熱採取杭を介してクリーンエネルギーである地中熱を熱もしくは電気エネルギーとして傾斜道路構造の内部に設けられた舗装体に供給する融雪システムが可能となり舗装体に供給された熱又は電気エネルギーを主に凍結防止や融雪機能へ利用できるという効果がある。
The ramp system according to the present invention has the following effects because it has the above-described configuration and operation.
That is, according to the present invention of mounting according to claim 1 and 2 SL, circulating water from the heat supply pipe and return through the heat supply pipe left, the inner tube of the right geothermal taken pile after descending towards the pile away The outer pipe is lifted up and sent again to the left and right pavements. This repeated operation has the effect of conducting ground heat energy in a rational manner without causing heat loss and quickly melting snow accumulated on the left side, right side pavement or left side, right side slope road surface. In addition, it ensures vehicle driving safety and climbing ability, eases road alignment, shortens the length of approach on the sloped road surface, and extends application to urban areas and places where land acquisition is a problem. As a result, the construction cost can be reduced. In addition, when the road is located in an area where the degree of snow and cold is frequent, it is applied to the place where the composite gradient is 8%, and the road alignment is relaxed to the general composite gradient of 10% by the road structure ordinance. There is an effect that the length of the approach portion can be shortened by about 2% with respect to the height difference. Further, for example, a snow melting system that supplies geothermal heat, which is clean energy, as heat or electric energy to a pavement provided inside an inclined road structure through a geothermal collection pile that collects geothermal heat becomes possible. There is an effect that heat or electric energy supplied to can be used mainly for freezing prevention and snow melting function.

以下、本発明に係る傾斜路システムの実施の形態について添付図面に基づき詳細に説明する。
図1は、本発明に係る傾斜路システムの実施の形態の一例を示す垂直断面図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a ramp system according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a vertical sectional view showing an example of an embodiment of a ramp system according to the present invention.

12はアンダーパスや跨道橋等の土木・建築構造物である。13は該土木・建築構造物12に隣接し又は下方に存在する大地又は路盤である。該路盤13は上面13Aの左・右に傾斜路面13a、13bを形成している。この左側、右側傾斜路面13a、13bは例えばそれぞれ合成勾配を10(%)に設定しており、互に反対方向に傾斜している。該左側傾斜路面13a及び右側傾斜路面13bに於けるそれぞれの道路構造の内部には左側舗装体14a及び右側舗装体14bを埋設し又は敷設している。該左側、右側舗装体14a、14bは例えば熱供給管16と同一材料のものを循環パイプの構造として構成する。
ここで、上記合成勾配とは縦断勾配と片勾配又は横断勾配とを合成した勾配であって、道路の設計速度に応じてその値が決定される。
Reference numeral 12 denotes a civil engineering / building structure such as an underpass or an overpass. Reference numeral 13 denotes a ground or roadbed adjacent to or below the civil engineering / building structure 12. The roadbed 13 forms inclined road surfaces 13a and 13b on the left and right of the upper surface 13A. The left and right inclined road surfaces 13a and 13b have, for example, a composite gradient set to 10 (%) and are inclined in opposite directions. A left pavement 14a and a right pavement 14b are buried or laid inside the respective road structures on the left inclined road surface 13a and the right inclined road surface 13b. The left and right pavement bodies 14a and 14b are made of the same material as the heat supply pipe 16, for example, as a circulation pipe structure.
Here, the composite gradient is a gradient obtained by combining a longitudinal gradient and a single gradient or a cross gradient, and the value is determined according to the road design speed.

15aは左側地熱採取杭であって、熱供給管16を介して上記左側舗装体14aに接続されている。15bは右側地熱採取杭であって、熱供給管16を介して上記右側舗装体14bに接続されている。上記左側、右側地熱採取杭15a、15bはそれぞれ路盤13内の所定深さまで埋込まれ、地盤13内の地中熱を採取する。ここで、上記左側、右側地熱採取杭15a、15bは、例えば、内管と外管から成るポリエチレン袋の二重同軸管であって、その杭長さは約70ないし200(m)に設定され採取したい地中熱エネルギー量や路盤13の構成条件から決定される。採取された地中熱エネルギーは上記左側、右側地熱採取杭15a、15bから熱供給管16、16を経てそれぞれ左側舗装体14a及び右側舗装体14bに伝導される。そして、該左側、右側舗装体14a、14bの上面部又は左側、右側傾斜路面13a、13bに凍結し又は積雪された雪Sが存在すれば、これを融雪する。 Reference numeral 15 a denotes a left-side geothermal sampling pile, which is connected to the left-side pavement 14 a through a heat supply pipe 16. Reference numeral 15 b denotes a right-side geothermal collection pile that is connected to the right-side pavement 14 b through a heat supply pipe 16. The left and right geothermal sampling piles 15a and 15b are respectively embedded to a predetermined depth in the road bed 13 to collect underground heat in the ground 13. Here, the left and right geothermal sampling piles 15a and 15b are, for example, polyethylene bag double coaxial pipes composed of an inner pipe and an outer pipe, and the pile length is set to about 70 to 200 (m). It is determined from the amount of underground heat energy to be collected and the configuration conditions of the roadbed 13. The collected underground thermal energy is conducted from the left and right geothermal sampling piles 15a and 15b through the heat supply pipes 16 and 16 to the left pavement 14a and the right pavement 14b, respectively. The left side, right side pavement 14a, the upper surface portion or the left 14b, right inclined road surface 13a, if there is frozen or snow by snow S to 13b, you snow melting it.

次に、本発明に係る傾斜路システムの実施の形態に基づく動作等を説明する。
上記路盤(大地)13は地中熱エネルギーを保有しており、この地中熱エネルギーを左側、右側地熱採取杭15a、15bが採取する。そして、該左側、右側地熱採取杭15a、15bは熱供給管16、16により上記左側、右側舗装体14a、14bと水理的に閉ループで連結され、例えば、別置するポンプにより熱媒体としての循環水を圧送・循環させる。上記左側、右側舗装体14a、14bの内部構造を構成する循環構成された熱供給パイプから上記熱供給管16、16を介してリターンした循環水は該左側、右側地熱採取杭15a、15bの内管を杭先に向って下降した後にその外管を上昇し再び上記左側、右側舗装体14a、14bに流送する。この繰返し動作により地中熱エネルギーを伝導し該左側、右側舗装体14a、14b又は左側、右側傾斜路面13a、13bに積雪された雪Sを融雪する。
Next, the operation | movement etc. based on embodiment of the ramp system which concerns on this invention are demonstrated.
The above-mentioned roadbed (ground) 13 has geothermal energy, and the left and right geothermal sampling piles 15a and 15b collect this geothermal energy. The left and right ground heat collection piles 15a and 15b are hydraulically connected to the left and right pavement bodies 14a and 14b by heat supply pipes 16 and 16 in a closed loop. For example, a separate pump serves as a heat medium. Pump and circulate the circulating water. Circulating water returned through the heat supply pipes 16 and 16 from the circulation heat supply pipes constituting the internal structure of the left and right pavements 14a and 14b is contained in the left and right geothermal sampling piles 15a and 15b. After descending the pipe toward the pile tip, the outer pipe is raised and again sent to the left and right pavements 14a and 14b. By repeating this operation, the underground thermal energy is conducted to melt the snow S accumulated on the left and right pavements 14a and 14b or the left and right inclined road surfaces 13a and 13b.

一般的に積雪寒冷地に於いては、左側、右側傾斜路面13a、13bは凍結・積雪の際に車両の安全性や登坂能力の観点からそれ以外の地域に於ける道路勾配に関する基準により緩勾配にしなければならなく、例えば合成勾配8(%)程度以下に厳しく要求されている。すなわち本発明システムを適用する前では、左側、右側傾斜路面13a、13bの合成勾配を8(%)に設定する。そして、左側、右側の傾斜路面13a、13bの構造形態等に適合するようにその合成勾配を好ましくは8(%)ないし12.5(%)に設定するとよい。その勾配角θ01、θ02とし左側、右側傾斜路面13a、13bの基端P1から上端P2までの水平距離、すなわち左・右側傾斜路面のアプローチ部の長さL01、L02である。そして、図1に示す本発明を適用すれば車両の走行の安全性等を確保したうえで傾斜路面の勾配をやや急峻にでき、左側、右側傾斜路面13a、13bの合成勾配を10(%)程度に設定できる。図1に示すように勾配θ1、θ2とし、左側、右側傾斜路面のアプローチ部の長さL1、L2とすれば、θ1>θ01、θ2>θ02、L1<L01、L2<L02の関係となり、当該アプローチ部L1、L2を従前のアプローチ部の長さL01、L02より、短く設定できる。従って、車両の安全性及び登坂能力を確保し、道路線形を緩和させ、左側、右側傾斜路面13a、13bのアプローチ部L1、L2の長さに関し、上記例では合成勾配2(%)分の短縮化が図られ、都市部や土地収用に課題のある箇所等への適用拡大が可能となり、施工延長を行なうことなく施工費の削減が実現できた。 Generally, in cold snowy areas, the left and right inclined road surfaces 13a and 13b are gently sloping according to criteria related to road gradients in other areas from the viewpoint of vehicle safety and climbing ability during freezing and snow accumulation. For example, it is strictly required to have a synthetic gradient of about 8% or less. That is, before applying the system of the present invention, the combined gradient of the left and right inclined road surfaces 13a and 13b is set to 8 (%). The combined gradient is preferably set to 8 (%) to 12.5 (%) so as to conform to the structure of the left and right inclined road surfaces 13a and 13b. The gradient angles θ01 and θ02 are the horizontal distances from the base end P1 to the upper end P2 of the left and right inclined road surfaces 13a and 13b, that is, the lengths L01 and L02 of the approach portions of the left and right inclined road surfaces. When the present invention shown in FIG. 1 is applied, the slope of the inclined road surface can be made somewhat steep while ensuring the safety of traveling of the vehicle, and the combined gradient of the left and right inclined road surfaces 13a and 13b is 10 (%). Can be set to about. As shown in FIG. 1, when the slopes θ1 and θ2 are set, and the lengths L1 and L2 of the left and right inclined road surface approaches, the relations θ1> θ01, θ2> θ02, L1 <L01, and L2 <L02 are established. The approach portions L1 and L2 can be set shorter than the lengths L01 and L02 of the previous approach portions. Therefore, the safety and the climbing ability of the vehicle are ensured, the road alignment is relaxed, and the length of the approach portions L1 and L2 of the left and right inclined road surfaces 13a and 13b is shortened by the composite gradient 2 (%) in the above example. As a result, it has become possible to expand application to urban areas and places where there are problems with land expropriation, and construction costs could be reduced without extending construction.

本発明に係る傾斜路システムの実施例について説明する。
上述した本発明に係る傾斜路システムの実施の形態の構成例は、路盤(大地)13の上面13Aに2つの傾斜路面、すなわち左側、右側傾斜路面13a、13bを形成した場合であって、左・右2つの舗装体14a、14b及び左・右2つの地熱採取杭15a、15bを配備した融雪システムを提供する。
当該実施例による融雪システムは小規模な融雪システムであって路盤(大地)13の上面13Aに単一の傾斜面を形成し、これにより単一の地熱採取杭及び単一の舗装体を配備して構成する。このような融雪システムであっても本発明の目的を達成できる。
An embodiment of the ramp system according to the present invention will be described.
The configuration example of the embodiment of the ramp system according to the present invention described above is a case where two slope road surfaces, that is, the left and right slope road surfaces 13a and 13b are formed on the upper surface 13A of the roadbed (ground) 13, and the left A snow melting system provided with two right pavements 14a and 14b and two left and right geothermal collection piles 15a and 15b is provided.
The snow melting system according to the embodiment is a small-scale snow melting system, and forms a single inclined surface on the upper surface 13A of the roadbed (ground) 13, thereby deploying a single geothermal sampling pile and a single pavement. Configure. Even with such a snow melting system, the object of the present invention can be achieved.

また、本発明は地中熱エネルギー以外の風力、太陽熱、微生物による有機物の分解熱、摩擦・振動等の運動エネルギーを熱又は電気エネルギーに変換し、当該融雪システムに適用できる。
さらに、本発明は路盤(大地)13からの地中熱エネルギーを不凍液又は空気等の媒体を循環させ、採取し、熱媒体や電気媒体として上記左側、右側舗装体14a、14bへ供給し、その熱又は電気エネルギーを熱源とし左側、右側傾斜路面13a、13bの積雪を防止し、また凍結を防止し、路面状況の改良を図り、車両走行の安全性や登坂能力を確保する。一方、熱源の媒体すなわち、循環素材としては、上述した循環水のほか循環空気、ヒートパイプ等であり、これを通じて左側、右側舗装体14a、14b等の需要箇所に供給される。電気エネルギーの場合は電線を通じて供給する。
Further, the present invention can be applied to the snow melting system by converting kinetic energy such as wind power, solar heat, decomposition heat of organic matter by microorganisms, friction / vibration, and the like into heat or electric energy other than underground heat energy.
Further, the present invention circulates the ground thermal energy from the roadbed (ground) 13 through a medium such as antifreeze or air, supplies it to the left and right pavements 14a and 14b as the heat medium and electric medium, Using heat or electric energy as a heat source, snow accumulation on the left and right inclined road surfaces 13a and 13b is prevented, freezing is prevented, road surface conditions are improved, and vehicle running safety and climbing ability are ensured. On the other hand, the heat source medium, that is, the circulating material, is the circulating water, the heat pipe, etc. in addition to the circulating water described above, and is supplied to demand points such as the left and right pavements 14a and 14b through this. In the case of electrical energy, it is supplied through electric wires.

本発明に係る傾斜路システムの実施の形態を示す垂直断面図である。It is a vertical sectional view showing an embodiment of a ramp system according to the present invention. 従来の技術に於ける第1の例として風力利用融雪システムを示す構成図である。It is a block diagram which shows the snow melting system using a wind force as a 1st example in the prior art. 従来の技術に於ける第2の例として蓄熱材を格納した舗装道路を示す構成図である。It is a block diagram which shows the paved road which stored the thermal storage material as a 2nd example in the prior art.

12 土木・建築構造物
13 路盤(大地)
13A 路盤(大地)の上面
13a 左側傾斜路面
13b 右側傾斜路面
14a 左側舗装体
14b 右側舗装体
15a 左側地熱採取杭
15b 右側地熱採取杭
16 熱供給管
θ1 左側傾斜路面の勾配角
θ2 右側傾斜路面の勾配角
L1 左側傾斜路面のアプローチ部の長さ
L2 右側傾斜路面のアプローチ部の長さ

12 Civil engineering and building structures 13 Roadbed (Earth)
13A Top surface of roadbed (ground) 13a Left slope road surface 13b Right slope road surface 14a Left pavement 14b Right pavement 15a Left geothermal collection pile 15b Right geothermal collection pile 16 Heat supply pipe θ1 Left slope slope angle θ2 Right slope slope Angle L1 Length of approach section on left slope road surface L2 Length of approach section on right slope road surface

Claims (2)

土木・建築構造物に備えた路盤(大地)上面に所定の合成勾配を形成した傾斜路面と、該傾斜路面に埋設又は敷設しかつ該傾斜路面の上面に積雪した雪を融雪する舗装体と、上記路盤(大地)の所定深さに埋設して地中熱を採取しかつ上記舗装体に地中熱エネルギーを伝導する地熱採取杭とでなる構成に於いて、前記地熱採取杭は左側、右側地熱採取杭であってそれぞれ前記路盤内の所定深さまで埋込まれ、かつ内管と外管から成るポリエチレン袋の二重同軸管でなることを特徴とする傾斜路システム。 An inclined road surface having a predetermined composite gradient formed on the upper surface of the roadbed (earth) provided in the civil engineering / building structure; in the structure formed by the geothermal collected pile of conducting geothermal heat energy in a predetermined embedded depth was GHP were collected and the pavement of the road bed (ground), the geothermal collecting piles left, right A ramp system characterized in that the pile is a geothermal sampling pile, each of which is embedded to a predetermined depth in the roadbed, and is composed of a double coaxial pipe made of polyethylene bags composed of an inner pipe and an outer pipe . 前記傾斜路面の合成勾配が8(%)ないし12.5(%)の範囲に設定されたことを特徴とする請求項1記載の傾斜路システム。 2. The ramp system according to claim 1, wherein a composite gradient of the ramp surface is set in a range of 8 (%) to 12.5 (%).
JP2006150839A 2006-05-31 2006-05-31 Ramp system Active JP4868579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150839A JP4868579B2 (en) 2006-05-31 2006-05-31 Ramp system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150839A JP4868579B2 (en) 2006-05-31 2006-05-31 Ramp system

Publications (2)

Publication Number Publication Date
JP2007321380A JP2007321380A (en) 2007-12-13
JP4868579B2 true JP4868579B2 (en) 2012-02-01

Family

ID=38854437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150839A Active JP4868579B2 (en) 2006-05-31 2006-05-31 Ramp system

Country Status (1)

Country Link
JP (1) JP4868579B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126975A (en) * 2008-11-27 2010-06-10 Chiyoda Geotech Co Ltd Rotatingly penetrated steel pipe and method of using the same
CN107700312A (en) * 2017-10-11 2018-02-16 石河子大学 Road winter is for a long time from snow-smelting method and system

Also Published As

Publication number Publication date
JP2007321380A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
Dawson et al. Energy harvesting from pavements
CN104153269B (en) Ever-frozen ground guard method under a kind of wide cut road structure leading resistance combination
Ceylan et al. Heated transportation infrastructure Systems: existing ande emerging technologies
US20120045314A1 (en) Road With Inlayed Wind Harnessing Technology
JP4868579B2 (en) Ramp system
JP6327648B2 (en) Water heat snow melting device, water heat snow melting system, and control method thereof
KR100991089B1 (en) Pavement heating apparatus using phase change material and pavement heating system having the same
CN205223791U (en) Prevent road surface eisbahn
JP4530174B2 (en) Thermal storage system for concrete structures
CN112127457B (en) Method for collecting and processing urban road ice and snow by integrated snow storage and melting space system
JP2689400B2 (en) Solar heat storage type road surface snow melting device
US20040016740A1 (en) Method and device for heating a surface
CN105863685A (en) Phase change temperature-adjusting plate based anti-freezing thermal-insulation structure for tunnel and construction method of phase change temperature-adjusting plate based anti-freezing thermal-insulation structure for tunnel
CN106320138A (en) Rain and snow prevention pavement achieving solar phase change heat storage
JP2007291737A (en) Snow-melting pavement structure and permeable concrete slab for use in it
CN210238158U (en) Plateau high-ice-content frozen soil section railway cutting structure
JP4702556B2 (en) Solar heat underground heat storage method and equipment
JP2001107307A (en) Snow melting antifreezer
JPS60233204A (en) Concrete panel for melting snow
JPH04189906A (en) Snow melting device of solar heat storage type for road surface
RU2657310C1 (en) Embankment of the railroad on permafrost soils
JP4005612B2 (en) Snow melting equipment
Miyamoto et al. Snow-melting and de-icing system on road using natural thermal energy sources
JPH05272105A (en) Road snow melting device provided with solar device on slope face
JP2000303407A (en) Snow-melting system for road

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4868579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250