JP2010077578A - Precursor fiber for carbon fiber production and method of production therefor - Google Patents

Precursor fiber for carbon fiber production and method of production therefor Download PDF

Info

Publication number
JP2010077578A
JP2010077578A JP2008250807A JP2008250807A JP2010077578A JP 2010077578 A JP2010077578 A JP 2010077578A JP 2008250807 A JP2008250807 A JP 2008250807A JP 2008250807 A JP2008250807 A JP 2008250807A JP 2010077578 A JP2010077578 A JP 2010077578A
Authority
JP
Japan
Prior art keywords
fiber
heat roller
precursor
temperature
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008250807A
Other languages
Japanese (ja)
Inventor
Hisahiro Hoshikawa
久弘 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2008250807A priority Critical patent/JP2010077578A/en
Publication of JP2010077578A publication Critical patent/JP2010077578A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precursor fiber for carbon fiber production, scarcely requiring prevention of adhesion of single fiber to each other, single fiber breakage prevention and the like and excellent in process stability, in the carbon fiber production step especially in the flameproofing treatment step. <P>SOLUTION: An acrylic precursor fiber for carbon fiber production is provided by supplying a silicone oil solution, wherein the oil solution adhesion in the precursor fiber is 0.01-0.25 mass%; the maximum shrinkage stress generated in increasing the temperature of the precursor fiber from 25°C to 100°C at 20°C/min is 5.0 mN/30 dtex or less; and the number of single fiber breakages is less than 1.5/m. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、50〜100℃に加熱したときの収縮応力が小さく且つ単糸切れ数が少ない炭素繊維製造用前駆体繊維及びその製造方法に関する。   The present invention relates to a precursor fiber for producing carbon fibers having a small shrinkage stress when heated to 50 to 100 ° C. and a small number of single yarn breakage, and a method for producing the same.

従来、炭素繊維製造用の前駆体繊維を原料として用い、これに耐炎化処理を施して耐炎化繊維を得ること、更にこの耐炎化繊維に炭素化処理を施して高性能炭素繊維を得ることは広く知られている。また、この方法は工業的にも実施されている。   Conventionally, a precursor fiber for producing carbon fiber is used as a raw material, and flameproofing treatment is performed on this to obtain a flameproofing fiber. Further, carbonization treatment is applied to this flameproofing fiber to obtain a high-performance carbon fiber. Widely known. This method is also practiced industrially.

一般に、炭素繊維製造用の前駆体繊維は、ポリアクリロニトリル(PAN)系共重合体を紡糸してPAN系の原料繊維を得、このPAN系原料繊維を水洗、乾燥後、スチーム延伸して製造される。この前駆体繊維は200〜300℃の酸化性雰囲気下で延伸又は収縮を行いながら耐炎化処理された後、300℃以上、通常1000℃以上の不活性ガス雰囲気中で炭素化されて炭素繊維が製造される。   Generally, precursor fibers for carbon fiber production are produced by spinning a polyacrylonitrile (PAN) copolymer to obtain a PAN-based raw fiber, washing the PAN-based raw fiber with water, drying, and then steam drawing. The This precursor fiber is subjected to a flameproofing treatment while being stretched or contracted in an oxidizing atmosphere of 200 to 300 ° C., and then carbonized in an inert gas atmosphere of 300 ° C. or higher, usually 1000 ° C. or higher to form carbon fibers. Manufactured.

上記前駆体繊維のうちでも、PAN系の原料繊維を製造する際の紡糸工程における溶剤として塩化亜鉛水溶液を用い、この塩化亜鉛系溶剤中で溶液重合し、この重合体を塩化亜鉛系溶剤中で湿式紡糸して得られるものが、分子量分布がシャープであることや、重合用溶媒と紡糸用溶媒が共通である等の利点があり広く用いられている。このようにして得られた炭素繊維は、高い強度、弾性率など良好な物性を有している。   Among the precursor fibers, an aqueous solution of zinc chloride is used as a solvent in the spinning process when producing the PAN-based raw fiber, and solution polymerization is performed in the zinc chloride-based solvent, and the polymer is dissolved in the zinc chloride-based solvent. What is obtained by wet spinning is widely used because it has advantages such as a sharp molecular weight distribution and a common use of a polymerization solvent and a spinning solvent. The carbon fiber thus obtained has good physical properties such as high strength and elastic modulus.

PAN系炭素繊維の製造においては、PAN系共重合体を紡糸、水洗、乾燥、スチーム延伸して炭素繊維用前駆体繊維を製造する速度と、炭素繊維用前駆体繊維を焼成(耐炎化処理、炭素化処理)して炭素繊維を製造する速度とが著しく異なる。その為、炭素繊維を製造する上で、2つの工程(前工程と後工程)に分割し、前工程で得られた中間繊維は炭素繊維用前駆体繊維として一時的に保存する事が一般的である。   In the production of the PAN-based carbon fiber, the PAN-based copolymer is spun, washed, dried, steam-stretched to produce a carbon fiber precursor fiber, and the carbon fiber precursor fiber is fired (flame-resistant treatment, The rate at which carbon fiber is produced by carbonization treatment is significantly different. Therefore, when manufacturing carbon fiber, it is generally divided into two steps (pre-process and post-process), and the intermediate fiber obtained in the pre-process is temporarily stored as a precursor fiber for carbon fiber. It is.

しかし、この保存中に炭素繊維用前駆体繊維は、繊維内部の分子の配向緩和が生じやすい。その為、前工程の最後に熱固定工程(熱セット工程)を設けて、その後の工程を安定化させて繊維内部の分子の配向緩和が起こらない様にする事もある(例えば、特許文献1参照)。   However, during this storage, the precursor fiber for carbon fiber is likely to relax the orientation of molecules inside the fiber. For this reason, a heat setting step (heat setting step) is provided at the end of the previous step, and the subsequent steps may be stabilized so that molecular orientation in the fiber does not relax (for example, Patent Document 1). reference).

特許文献1に記載の発明は、その目的が分子の配向緩和が起こらない様にして高強度炭素繊維を提供するところにある。この目的を達成するために、PANを主成分とする共重合体を紡糸、スチーム延伸した後、表面温度150〜220℃の熱ロールにより3〜10%の弛緩を与えながら乾燥処理して炭素繊維用前駆体繊維を得、得られた前駆体繊維を炭素化することによって炭素繊維を製造する方法が提案されている。   The object of the invention described in Patent Document 1 is to provide a high-strength carbon fiber so that molecular orientation does not relax. In order to achieve this object, a PAN-based copolymer is spun and steam-stretched, and then subjected to a drying treatment while giving a relaxation of 3 to 10% with a hot roll having a surface temperature of 150 to 220 ° C. There has been proposed a method for producing carbon fiber by obtaining a precursor fiber for use and carbonizing the obtained precursor fiber.

炭素繊維製造の効率を高めるためには、耐炎化処理工程において、単糸同士の接着防止・単糸切れ防止などの工程安定化を図ることが必要とされている。この工程安定化のため、紡糸してから耐炎化処理するまでの工程において、油剤、特にシリコーン系油剤を、紡糸、水洗、乾燥又はスチーム延伸後の繊維に付与することが提案されている(例えば、特許文献2参照)。   In order to increase the efficiency of carbon fiber production, it is necessary to stabilize the process such as prevention of adhesion between single yarns and prevention of single yarn breakage in the flameproofing treatment process. In order to stabilize this process, it has been proposed to apply an oil agent, particularly a silicone-based oil agent, to the fiber after spinning, washing, drying or steam drawing in a process from spinning to flameproofing treatment (for example, , See Patent Document 2).

特許文献2に記載されているように、シリコーン系油剤が過剰に付与される場合は、油剤コストが上がるばかりでなく、乾燥工程においてPAN系原料繊維から脱落して熱ロールに付着した油剤が熱ロール上でゲル化(ガムアップ)して熱ロールに原料繊維が巻付いて工程安定性も低下する。また、炭素繊維製造工程で用いる炉において特に耐炎化炉において、シリコーン系油剤の熱分解で生成するシリカパウダーが発生して炉を汚染する。   As described in Patent Document 2, when an excessive amount of silicone-based oil is applied, not only does the oil cost increase, but the oil that drops off from the PAN-based material fiber and adheres to the hot roll in the drying process is heated. Gelling (gum up) on the roll causes the raw fiber to be wound around the hot roll and process stability is also reduced. Further, in a furnace used in the carbon fiber manufacturing process, particularly in a flameproofing furnace, silica powder generated by thermal decomposition of a silicone-based oil agent is generated and contaminates the furnace.

更には、紡糸、水洗後の水膨潤状態にあるストランド形態のPAN系原料繊維に油剤を過剰に付与する場合、油剤成分がストランドの繊維間や繊維内部に過剰に残留し、炭素繊維の品質劣下の原因となる。その為、工程安定化、炭素繊維品質及び油剤コストの面から、油剤付着量を少なくすることが必要となる。   Furthermore, when an excessive amount of oil is applied to the strand-shaped PAN-based raw material fibers in a swollen state after spinning and washing with water, the oil component remains excessively between the fibers of the strands or inside the fibers, resulting in poor quality of the carbon fiber. Causes below. For this reason, it is necessary to reduce the amount of oil agent attached in terms of process stabilization, carbon fiber quality and oil agent cost.

しかし、油剤付着量を少なくしても、スチーム延伸後の熱セット工程、耐炎化工程での接触加熱時に摩擦により単糸切れなどの繊維損傷が発生して品位が悪くなり、更にはローラーへの巻付きが多くなるなど工程安定性に欠ける。例えば、特許文献1に記載の前駆体繊維は、熱ローラーによる熱セット処理を施して得られるため、油剤付着量を少なくすると、熱セット処理、耐炎化処理において上記の繊維品位悪化、工程安定性欠如などの不具合が起こる。   However, even if the amount of oil agent is reduced, fiber damage such as single yarn breakage occurs due to friction during contact heating in the heat setting process and flame resistance process after steam stretching, and the quality deteriorates. It lacks process stability, such as increased winding. For example, since the precursor fiber described in Patent Document 1 is obtained by performing a heat setting process using a heat roller, if the amount of the oil agent is reduced, the fiber quality deteriorates and the process stability described above in the heat setting process and the flame resistance process. Problems such as lack occur.

なお、繊維に付着する油剤量を低減する具体的な方法としては、例えば特許文献3に記載されているように、水洗、油剤付与し乾燥した後に前駆体繊維に付着した油剤成分を界面活性剤による洗浄工程を通過させ、余分な油剤を除去する方法がある。しかし、洗浄及び回収した油剤を処理する工程を付け加える事となり、コスト高、及び工程が煩雑となるため好ましくない。また、この特許文献3に記載の方法では、繊維に付着する油剤量を低減しても、熱セット処理、耐炎化処理における繊維品位悪化、工程安定性欠如などの不具合は起こる。   In addition, as a specific method for reducing the amount of the oil agent adhering to the fiber, for example, as described in Patent Document 3, the oil agent component adhering to the precursor fiber after washing with water, applying the oil agent and drying is used as a surfactant. There is a method of removing the excess oil agent by passing through the washing step. However, a process for treating the washed and recovered oil is added, which is not preferable because of high cost and complicated processes. Further, in the method described in Patent Document 3, even if the amount of the oil agent adhering to the fiber is reduced, problems such as deterioration in fiber quality and lack of process stability in the heat setting process and flameproofing process occur.

これに対し、特許文献4に記載されているように、乾熱ローラー等の熱ローラーによる熱セット処理を施さない場合は、前駆体繊維に残留する応力により繊維が収縮するため長期的に安定した前駆体繊維の品質を保持できない。   On the other hand, as described in Patent Document 4, when the heat setting process using a heat roller such as a dry heat roller is not performed, the fiber contracts due to the stress remaining in the precursor fiber, and thus stable for a long time. The quality of the precursor fiber cannot be maintained.

更に、熱セット工程を経ずにスチーム延伸したままの前駆体繊維をボビンに巻取り、このボビンから前駆体繊維を耐炎化炉へ投入する場合は、前駆体繊維内部の分子に経時的に配向緩和が生じて繊維が収縮しボビンを損傷する。
特開昭63−159526号公報 (特許請求の範囲) 特開2005−89884号公報 (特許請求の範囲、段落番号[0005]) 特開2007−113141号公報 (特許請求の範囲) 特開2004−60126号公報 (特許請求の範囲)
Furthermore, when a precursor fiber that has been steam-stretched without being subjected to a heat setting process is wound on a bobbin, and the precursor fiber is put into the flameproofing furnace from this bobbin, it is oriented over time to the molecules inside the precursor fiber. Relaxation occurs and the fibers contract and damage the bobbin.
JP 63-159526 A (Claims) JP 2005-89884 A (Claims, paragraph number [0005]) JP 2007-113141 A (Claims) JP 2004-60126 A (Claims)

本発明者は、上記問題を解決するため検討を重ねた結果、以下のように考えるに到った。即ち、アクリロニトリルを所定量以上含有する単量体を重合した共重合体を湿式紡糸して得られる粗アクリル系繊維に、シリコーン系油剤を付与した後、乾燥、スチーム延伸処理して得られるスチーム処理繊維は、収縮応力が残留している。   As a result of repeated studies to solve the above problems, the present inventor has come to think as follows. That is, a steam treatment obtained by applying a silicone-based oil to a crude acrylic fiber obtained by wet spinning a copolymer obtained by polymerizing a monomer containing acrylonitrile in a predetermined amount or more, followed by drying and steam stretching treatment. The fiber still has shrinkage stress.

この収縮応力は、温度上昇に対する収縮応力の上昇割合が、図1に示すように60℃付近から急激に増加し、70〜80℃でピークを迎える。   As shown in FIG. 1, the shrinkage stress increases rapidly from around 60 ° C. and reaches a peak at 70 to 80 ° C.

このことから、熱ローラーによる熱セット工程においてスチーム処理繊維を加熱する場合、繊維温度が60〜80℃に達すると繊維には急激な張力がかかり、熱ローラーと繊維との接圧が高くなり、延いては熱ローラーと繊維との間に大きな摩擦力が発生する。   From this, when heating the steam-treated fiber in the heat setting process with a heat roller, when the fiber temperature reaches 60 to 80 ° C., the fiber is subjected to a rapid tension, and the contact pressure between the heat roller and the fiber increases, As a result, a large frictional force is generated between the heat roller and the fiber.

摩擦力は繊維損傷にも繋がる為、この繊維温度が60〜80℃に達する時点において適切な弛緩率で弛緩処理を開始することにより、弛緩処理される繊維を昇温する際に発生する収縮応力が軽減されることを見出した。そのため、この弛緩処理を施すことにより、スチーム処理繊維の油剤付着量が少ない場合でも、スチーム延伸処理後の熱セット工程、耐炎化工程におけるローラーと繊維との間の摩擦が軽減され、単糸切れなどの繊維損傷の発生が少なくなって、得られる前駆体繊維、耐炎化繊維の品位が良くなり、更にはローラーへの巻付きが少なくなるなどスチーム延伸後の工程の安定性が向上することを見出し、本発明を完成するに到った。   Since the frictional force also leads to fiber damage, when the fiber temperature reaches 60 to 80 ° C., by starting the relaxation process at an appropriate relaxation rate, the contraction stress generated when the temperature of the fiber to be relaxed is raised. Has been found to be reduced. Therefore, this relaxation treatment reduces the friction between the roller and the fiber in the heat setting process and flameproofing process after the steam stretching process, even when the amount of oil applied to the steam treated fiber is small, and the single yarn breaks. This reduces the occurrence of fiber damage such as, improves the quality of the resulting precursor fiber and flame-resistant fiber, and further improves the stability of the process after steam stretching, such as less wrapping around the roller. The headline and the present invention have been completed.

よって、本発明の目的とするところは、上記問題を解決した前駆体繊維及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a precursor fiber and a method for producing the same that solve the above-described problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 シリコーン系油剤を付与してなる炭素繊維製造用アクリル系前駆体繊維であって、前記前駆体繊維中の油剤付着量が0.01〜0.25質量%であり、前記前駆体繊維を25℃から20℃/分で昇温して100℃になるまでの間に発生する最大収縮応力が5.0mN/30dtex以下であり、且つ単糸切れ数が1.5ヶ/m未満である炭素繊維製造用前駆体繊維。   [1] An acrylic precursor fiber for carbon fiber production to which a silicone-based oil agent is applied, and the amount of oil agent adhesion in the precursor fiber is 0.01 to 0.25% by mass, and the precursor fiber The maximum shrinkage stress generated between 25 ° C. and 20 ° C./min to 100 ° C. is 5.0 mN / 30 dtex or less, and the number of single yarn breakage is less than 1.5 / m A precursor fiber for carbon fiber production.

〔2〕 水蒸気を用いたガス吸着量測定装置によって測定される湿度90%での水蒸気吸着量が15cm3/g以下である〔1〕に記載の炭素繊維製造用前駆体繊維。 [2] The precursor fiber for producing a carbon fiber according to [1], wherein a water vapor adsorption amount at a humidity of 90% measured by a gas adsorption amount measuring device using water vapor is 15 cm 3 / g or less.

〔3〕 アクリロニトリルを90重量%以上含有する共重合体からなり、且つ繊維表面に襞を有する〔1〕又は〔2〕に記載の炭素繊維前駆体繊維。   [3] The carbon fiber precursor fiber according to [1] or [2], which is made of a copolymer containing 90% by weight or more of acrylonitrile and has wrinkles on the fiber surface.

〔4〕 アクリロニトリルを90質量%以上含有する単量体を重合した共重合体を湿式紡糸して得られる粗アクリル系繊維に、シリコーン系油剤を付与した後、乾燥、スチーム延伸処理し、次いで、前記スチーム処理繊維を、温度を50〜240℃に設定した熱ローラーに接触させてスチーム処理繊維を加熱し、スチーム処理繊維の温度が60〜80℃に達した時点で弛緩処理を開始し、繊維の温度が120〜150℃に達するまで弛緩処理を行うことを特徴とする〔1〕乃至〔3〕の何れかに記載の炭素繊維製造用前駆体繊維の製造方法。   [4] After applying a silicone-based oil to a crude acrylic fiber obtained by wet spinning a copolymer obtained by polymerizing a monomer containing 90% by mass or more of acrylonitrile, drying, steam stretching treatment, The steam-treated fiber is brought into contact with a heat roller whose temperature is set to 50 to 240 ° C. to heat the steam-treated fiber, and when the temperature of the steam-treated fiber reaches 60 to 80 ° C., the relaxation treatment is started. The method for producing a precursor fiber for producing carbon fibers according to any one of [1] to [3], wherein a relaxation treatment is performed until the temperature reaches 120 to 150 ° C.

本発明の炭素繊維製造用前駆体繊維は、アクリル系繊維からなり、シリコーン系油剤が付与されてなる炭素繊維製造用前駆体繊維であって、繊維昇温時に発生する収縮応力が所定の低い範囲に制御されてなるので、繊維中の油剤付着量が少ないにも拘らず、耐炎化工程、炭素化工程におけるローラーと繊維との間の摩擦が軽減され、単糸切れなどの繊維損傷の発生が少なくなって、得られる耐炎化繊維、炭素繊維の品位が良くなり、更にはローラーへの巻付きが少なくなるなど耐炎化工程、炭素化工程の安定性が向上する。   The precursor fiber for carbon fiber production of the present invention is a precursor fiber for carbon fiber production comprising an acrylic fiber and provided with a silicone-based oil agent, and the shrinkage stress generated when the temperature of the fiber is increased is within a predetermined low range. Therefore, the friction between the roller and the fiber in the flameproofing process and the carbonization process is reduced, and the occurrence of fiber damage such as single yarn breakage occurs despite the small amount of oil agent adhesion in the fiber. The quality of the obtained flame resistant fiber and carbon fiber is improved, and the stability of the flame resistant process and the carbonization process is improved, for example, the winding around the roller is reduced.

本発明の製造方法によれば、アクリロニトリルを所定量以上含有する単量体を重合した共重合体を湿式紡糸して得られる粗アクリル系繊維に、シリコーン系油剤を付与した後、乾燥、スチーム延伸処理し、次いで、得られるスチーム処理繊維と熱ローラーとの接触長、熱ローラー温度を、所定範囲に設定してスチーム処理繊維を加熱し、スチーム処理繊維が所定温度に達した時点で弛緩処理を開始しているので、上記耐炎化繊維、炭素繊維を製造するのに適した前駆体繊維を容易に安定して製造することができる。   According to the production method of the present invention, a silicone oil is applied to a crude acrylic fiber obtained by wet-spinning a copolymer obtained by polymerizing a monomer containing acrylonitrile in a predetermined amount or more, followed by drying and steam drawing. Then, the steam treated fiber is heated by setting the contact length between the steam treated fiber and the heat roller obtained and the temperature of the heat roller to a predetermined range, and when the steam treated fiber reaches the predetermined temperature, the relaxation treatment is performed. Since it has started, the precursor fiber suitable for manufacturing the flame-resistant fiber and the carbon fiber can be easily and stably manufactured.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の炭素繊維製造用前駆体繊維は、アクリル系繊維からなり、シリコーン系油剤を付与してなる前駆体繊維である。また、本発明の炭素繊維製造用前駆体繊維は、繊維中の油剤付着量が0.01〜0.25質量%、好ましくは0.03〜0.10質量%と少ない。   The precursor fiber for producing a carbon fiber of the present invention is a precursor fiber made of an acrylic fiber and provided with a silicone oil. Moreover, the precursor fiber for carbon fiber production of the present invention has an oil agent adhesion amount in the fiber of 0.01 to 0.25% by mass, preferably 0.03 to 0.10% by mass.

繊維中の油剤付着量が少ないにも拘らず、繊維を25℃から20℃/分で昇温して100℃になるまでの間に発生する収縮応力は5.0mN/30dtex以下と低い範囲に制御されてなり、且つ単糸切れ数は1.5ヶ/m未満、好ましくは1.0ヶ/m未満である。   Despite the small amount of oil agent adhering to the fiber, the shrinkage stress generated between 25 ° C. and 20 ° C./min to 100 ° C. is as low as 5.0 mN / 30 dtex or less. The number of single yarn breaks is less than 1.5 / m, preferably less than 1.0 / m.

そのため、繊維中の油剤付着量が少ないにも拘らず、この前駆体繊維を処理する耐炎化工程、炭素化工程において、ローラーと繊維との間の摩擦が軽減され、単糸切れなどの繊維損傷の発生が少なくなって、得られる耐炎化繊維、炭素繊維の品位が良くなり、更にはローラーへの巻付きが少なくなるなど耐炎化工程、炭素化工程の安定性が向上する。   Therefore, in spite of the small amount of oil agent in the fiber, the friction between the roller and the fiber is reduced in the flameproofing process and carbonization process for treating this precursor fiber, and fiber damage such as single yarn breakage As a result, the quality of the obtained flame-resistant fiber and carbon fiber is improved, and the stability of the flame-proofing process and the carbonization process is improved, for example, the winding around the roller is reduced.

本発明の炭素繊維製造用前駆体繊維は、水蒸気を用いたガス吸着量測定装置によって測定される湿度90%での水蒸気吸着量が好ましくは15cm3/g以下、より好ましくは11〜13.5cm3/gである。 The precursor fiber for producing carbon fiber of the present invention preferably has a water vapor adsorption amount at a humidity of 90% as measured by a gas adsorption amount measuring apparatus using water vapor of 15 cm 3 / g or less, more preferably 11 to 13.5 cm. 3 / g.

本発明の炭素繊維製造用前駆体繊維の製造方法、更には耐炎化繊維の製造方法、炭素繊維の製造方法は、特に限定されるものではないが、例えば、以下の方法により製造することができる。   Although the manufacturing method of the precursor fiber for carbon fiber manufacture of this invention, and also the manufacturing method of a flame-resistant fiber and the manufacturing method of carbon fiber are not specifically limited, For example, it can manufacture with the following method. .

<紡糸原液>
本例の炭素繊維製造用前駆体繊維の製造方法に用いる出発原料の粗アクリル系繊維の紡糸原液は、アクリル系炭素繊維製造用の紡糸原液であれば従来公知のものが何ら制限なく使用できる。具体的には、アクリロニトリルを90質量%以上、好ましくは94質量%以上含有する単量体を重合した共重合体からなる紡糸原液が挙げられる。アクリロニトリルと共重合する単量体としては、イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸等の公知の単量体が挙げられる。
<Spinning stock solution>
As the spinning raw solution of the crude acrylic fiber as a starting material used in the method for producing the precursor fiber for carbon fiber production of this example, any conventionally known spinning solution can be used without any limitation as long as it is a spinning raw solution for producing acrylic carbon fiber. Specifically, a stock solution for spinning composed of a copolymer obtained by polymerizing a monomer containing 90% by mass or more, preferably 94% by mass or more of acrylonitrile is exemplified. Examples of the monomer copolymerized with acrylonitrile include known monomers such as itaconic acid, methyl acrylate, ethyl acrylate, and acrylic acid.

上記単量体の重合方法としては、溶液重合、懸濁重合、乳化重合等を用いることができるが、そのまま紡糸できることから、溶液重合が好ましく、重合溶媒として塩化亜鉛溶媒を用いることが最も好ましい。   As a method for polymerizing the monomer, solution polymerization, suspension polymerization, emulsion polymerization and the like can be used. However, solution spinning is preferable because it can be spun as it is, and it is most preferable to use a zinc chloride solvent as a polymerization solvent.

紡糸する際の液(紡糸原液)は、塩化亜鉛水溶液を溶媒として用い、上記単量体を重合させた重合体溶液を、紡糸原液とすることが好ましい。   The spinning solution (spinning stock solution) is preferably a spinning solution using a polymer solution obtained by polymerizing the above monomers using an aqueous zinc chloride solution as a solvent.

紡糸原液の濃度は、炭素繊維前駆体繊維の比重に影響を与えるので、溶媒として塩化亜鉛水溶液を用いた場合、10〜40質量%が好ましく、20〜30質量%が更に好ましい。紡糸原液の濃度が低すぎる場合は、得られる炭素繊維前駆体繊維の比重が低くなり、低比重の炭素繊維が得られなくなる。一方、濃度が高すぎる場合は、ポリマーの溶媒に対する溶解度には限界があるため、紡糸原液が不均一な溶液になり好ましくない。   Since the concentration of the spinning dope affects the specific gravity of the carbon fiber precursor fiber, it is preferably 10 to 40% by mass, and more preferably 20 to 30% by mass when a zinc chloride aqueous solution is used as the solvent. When the concentration of the spinning dope is too low, the specific gravity of the obtained carbon fiber precursor fiber is low, and carbon fibers having a low specific gravity cannot be obtained. On the other hand, if the concentration is too high, there is a limit to the solubility of the polymer in the solvent, which is not preferable because the spinning dope becomes a non-uniform solution.

<紡糸>
1つの紡糸口金に好ましくは1000〜30000の紡糸孔を有する紡糸口金から紡糸原液を紡出し、凝固させることにより炭素繊維製造用原料繊維の粗アクリル系繊維とする。この紡糸に際しては、低温に冷却した凝固液(紡糸する際の溶媒−水混合液)を入れた凝固浴中に紡出する方法、湿式紡糸方法又は乾湿式紡糸方法等を用いることができるが、直接凝固液に紡出する湿式紡糸方法が好ましい。乾湿式紡糸方法は、空気中にまず吐出させた後、3〜5mm程度の空間を有して凝固浴に投入し凝固させる方法である。最終的に得られた炭素繊維が表面に襞を形成し、樹脂との接着性が期待できるので、湿式紡糸方法がより好ましい。
<Spinning>
A spinning stock solution is spun from a spinneret having preferably 1,000 to 30000 spinning holes in one spinneret and solidified to obtain a raw acrylic fiber for carbon fiber production. In this spinning, a method of spinning in a coagulation bath containing a coagulating liquid cooled to a low temperature (a solvent-water mixture at the time of spinning), a wet spinning method, a dry-wet spinning method, or the like can be used. A wet spinning method of spinning directly into a coagulation liquid is preferred. The dry-wet spinning method is a method in which after first discharging into the air, it has a space of about 3 to 5 mm and is put into a coagulation bath and coagulated. Since the finally obtained carbon fiber forms wrinkles on the surface and adhesion with the resin can be expected, the wet spinning method is more preferable.

<紡糸工程油剤付与処理>
凝固して得られる上記粗アクリル系繊維は、水洗・紡糸工程油剤付与・乾燥・スチーム延伸処理し、延伸処理後の炭素繊維製造用の粗アクリル系繊維とする。
<Spinning process oil agent application treatment>
The crude acrylic fiber obtained by solidification is subjected to a washing / spinning process oiling / drying / steam stretching process to obtain a crude acrylic fiber for carbon fiber production after the stretching process.

水洗後の粗アクリル系原料繊維は、その後、紡糸工程油剤の付与処理を施す。この紡糸工程油剤の付与は、乾燥・スチーム延伸・耐炎化工程での膠着防止及び開繊性を向上させる目的で行われる。紡糸工程油剤の付着量は、紡糸工程油剤付与後の繊維質量に対し0.01〜0.25質量%、好ましくは0.03〜0.10質量%である。   The crude acrylic raw fiber after washing with water is then subjected to a spinning process oil agent application treatment. The application of the spinning process oil is performed for the purpose of preventing sticking and improving the fiber opening property in the drying, steam stretching, and flame resistance processes. The adhesion amount of the spinning process oil is 0.01 to 0.25% by mass, preferably 0.03 to 0.10% by mass with respect to the fiber mass after the spinning process oil is applied.

紡糸工程油剤としてはシリコーン系油剤を用い、このシリコーン系油剤と親水基を持つ浸透性油剤とを組み合わせて用いることが好ましい。   It is preferable to use a silicone-based oil as the spinning process oil, and to use this silicone-based oil in combination with a permeable oil having a hydrophilic group.

浸透性油剤は官能基として、スルフィン酸、スルホン酸、燐酸、カルボン酸やそのアルカリ金属塩、アンモニウム塩、その誘導体を有するものが好ましい。これらの浸透性油剤のうちでも、浸透しやすい燐酸アンモニウム若しくはその誘導体を用いるのが特に好ましい。   The osmotic oil agent preferably has sulfinic acid, sulfonic acid, phosphoric acid, carboxylic acid, its alkali metal salt, ammonium salt or its derivative as a functional group. Among these penetrating oils, it is particularly preferable to use ammonium phosphate or a derivative thereof that easily penetrates.

シリコーン系油剤は、未変性あるいは変性されたものの何れでもよいが、変性シリコーンがより好ましい。変性シリコーンの中でもエポキシ変性シリコーン、エチレンオキサイド変性シリコーン、ポリシロキサン、アミノ変性シリコーンが好ましく、特に好ましくはアミノ変性シリコーンである。   The silicone oil may be either unmodified or modified, but modified silicone is more preferable. Among the modified silicones, epoxy-modified silicone, ethylene oxide-modified silicone, polysiloxane, and amino-modified silicone are preferable, and amino-modified silicone is particularly preferable.

<乾燥処理>
乾燥工程においては、熱風乾燥機で乾燥することが好ましい。乾燥温度については、70〜150℃に適宜調節することが好ましく、80〜140℃に適宜調節することが更に好ましい。乾燥時間については、1〜10分間が好ましい。
<Drying process>
In a drying process, it is preferable to dry with a hot air dryer. About drying temperature, it is preferable to adjust suitably to 70-150 degreeC, and it is still more preferable to adjust suitably to 80-140 degreeC. The drying time is preferably 1 to 10 minutes.

<スチーム延伸処理>
スチーム延伸条件において、温度は100〜150℃、飽和スチーム圧力は0.1〜5.0MPa(絶対圧)とすることが好ましい。延伸倍率は、水洗・乾燥・スチーム延伸処理を通してのトータル延伸倍率で10〜15倍とすることが好ましい。
<Steam stretching treatment>
In the steam stretching conditions, the temperature is preferably 100 to 150 ° C., and the saturated steam pressure is preferably 0.1 to 5.0 MPa (absolute pressure). The stretching ratio is preferably 10 to 15 times as the total stretching ratio through washing, drying and steam stretching.

<弛緩処理>
上記スチーム延伸処理後の繊維は、温度を50〜240℃、好ましくは100〜200℃に設定した熱ローラーに繊維を接触させて加熱し、繊維の温度が60〜80℃に達した時点で弛緩処理を開始し、繊維の温度が120〜150℃に達するまで弛緩処理を行い、アクリル系繊維からなる炭素繊維製造用前駆体繊維を得る。
<Relaxation treatment>
The fiber after the above steam stretching treatment is heated by bringing the fiber into contact with a heat roller set at a temperature of 50 to 240 ° C., preferably 100 to 200 ° C., and relaxed when the temperature of the fiber reaches 60 to 80 ° C. The treatment is started and relaxation treatment is performed until the temperature of the fiber reaches 120 to 150 ° C. to obtain a precursor fiber for producing carbon fiber made of acrylic fiber.

この弛緩処理は、例えば熱処理室を有し、熱処理室内に段数5〜25段の熱ローラーを有する弛緩処理装置であって、熱ローラーの設定温度は、スチーム処理繊維が供給される上流から処理された繊維が搬出される下流にかけて徐々に上げ、最下流の熱ローラーの温度を130〜250℃、好ましくは150〜180℃に設定する。そして、繊維の温度が60〜80℃に達した時点の熱ローラーから繊維の温度が120〜150℃に達した時点の熱ローラーまでのローラー速度を低速にする弛緩条件で弛緩処理することにより行うことができる。   This relaxation treatment is a relaxation treatment apparatus having, for example, a heat treatment chamber and a heat roller having 5 to 25 stages in the heat treatment chamber, and the set temperature of the heat roller is processed from the upstream where the steam treatment fiber is supplied. The temperature of the hot roller on the most downstream side is set to 130 to 250 ° C, preferably 150 to 180 ° C. And it carries out by carrying out the relaxation | loosening process on the relaxation conditions which make the roller speed from the heat roller when the temperature of the fiber reaches 60 to 80 ° C. to the heat roller when the temperature of the fiber reaches 120 to 150 ° C. low. be able to.

更に具体的には、最上流の熱ローラー温度が100℃、順次温度を上げて最下流の熱ローラー温度が180℃に設定された段数10段の熱ローラー全部を粗アクリル系繊維が通過する時間が5秒の場合、粗アクリル系繊維の温度が60〜80℃に達するには、0.2〜3秒かかる。   More specifically, the time required for the crude acrylic fiber to pass through all the 10-stage heat rollers in which the temperature of the most upstream heat roller is 100 ° C., and the temperature of the most downstream heat roller is set to 180 ° C. Is 5 seconds, it takes 0.2 to 3 seconds for the temperature of the crude acrylic fiber to reach 60 to 80 ° C.

なお、弛緩処理における繊維の弛緩率[Rr(%)]は、延伸倍率をRdとすると次式
r = ( 1 − Rd ) × 100
で算出される。弛緩処理とは、弛緩率が0%を超えることであり、0.5〜5%とすることがより好ましい。
Incidentally, relaxation rate of the fibers in the relaxed [R r (%)], when the draw ratio and R d following formula R r = (1 - R d ) × 100
Is calculated by The relaxation treatment means that the relaxation rate exceeds 0%, and more preferably 0.5 to 5%.

<耐炎化工程油剤付与処理>
上記弛緩処理後のアクリル系繊維からなる炭素繊維製造用前駆体繊維は、耐炎化工程での工程安定化のため、必要に応じて耐炎化工程油剤付与処理を施す。この耐炎化工程油剤の付与は、耐炎化工程での膠着防止及び開繊性を向上させる目的で、炭素繊維の高強度化、高伸度化に有効である。耐炎化工程油剤の付着量は、前駆体繊維質量に対し0.01〜0.20質量%である。
<Flame resistance process oil agent application treatment>
The precursor fiber for carbon fiber production composed of the acrylic fiber after the relaxation treatment is subjected to a flameproofing process oil agent application treatment as necessary in order to stabilize the process in the flameproofing process. The application of the flameproofing process oil is effective for increasing the strength and elongation of the carbon fiber for the purpose of preventing sticking in the flameproofing process and improving the spreadability. The adhesion amount of the flameproofing process oil is 0.01 to 0.20 mass% with respect to the mass of the precursor fiber.

耐炎化工程油剤としては、前述の紡糸工程油剤と同じシリコーン系油剤を用いる。このシリコーン系油剤と親水基を持つ浸透性油剤とを組み合わせて用いることが好ましい。浸透性油剤は前記と同様である。   As the flameproofing process oil, the same silicone oil as the above spinning process oil is used. It is preferable to use this silicone oil agent in combination with a penetrating oil agent having a hydrophilic group. The penetrating oil is the same as described above.

<耐炎化処理>
前駆体繊維は、引き続き加熱空気中230〜260℃で30〜100分間耐炎化処理される。この耐炎化処理により、アクリル系繊維からなる前駆体繊維において、アクリル系繊維の環化反応を生じさせ、酸素結合量を増加させて不融化させて耐炎化繊維を得る。
<Flame resistance treatment>
The precursor fiber is subsequently flameproofed in heated air at 230-260 ° C. for 30-100 minutes. By this flameproofing treatment, a cyclization reaction of the acrylic fiber is caused in the precursor fiber made of the acrylic fiber, and the oxygen bond amount is increased and infusible to obtain a flameproof fiber.

この耐炎化処理は、一般的に、延伸倍率1.00〜1.20の範囲で延伸されることが好ましい。この耐炎化処理により、繊維密度1.33〜1.36g/cm3の耐炎化繊維が得られる。耐炎化時の張力は上記延伸倍率の範囲を超えない限り特に限定されない。 In general, the flameproofing treatment is preferably performed in a range of a draw ratio of 1.00 to 1.20. By this flameproofing treatment, a flameproof fiber having a fiber density of 1.33 to 1.36 g / cm 3 is obtained. The tension at the time of flame resistance is not particularly limited as long as it does not exceed the range of the draw ratio.

<第一炭素化処理>
上記耐炎化繊維は、従来の公知の方法を採用して炭素化することができる。例えば、窒素雰囲気下300〜800℃で焼成炉(第一炭素化炉)で徐々に温度勾配をかけ、耐炎化繊維の張力を制御して緊張下で1段目の炭素化(第一炭素化)をする。
<First carbonization treatment>
The flame-resistant fiber can be carbonized by employing a conventionally known method. For example, a temperature gradient is gradually applied in a firing furnace (first carbonization furnace) at 300 to 800 ° C. in a nitrogen atmosphere, and the tension of the flame-resistant fiber is controlled so that the first carbonization (first carbonization) is performed under tension. )do.

<第二炭素化処理>
より炭素化を進め且つグラファイト化(炭素の高結晶化)を進める為に、窒素等の不活性ガス雰囲気下で昇温し、焼成炉(第二炭素化炉)で徐々に温度勾配をかけ、第一炭素化繊維の張力を制御して弛緩条件で焼成する。
<Second carbonization treatment>
To further promote carbonization and graphitization (high crystallization of carbon), raise the temperature in an inert gas atmosphere such as nitrogen, gradually apply a temperature gradient in the firing furnace (second carbonization furnace), The first carbonized fiber is fired under relaxed conditions by controlling the tension.

焼成温度については、第二炭素化炉で温度勾配をかけていき、最高温度領域で、好ましくは800℃から2500℃、より好ましくは1200℃から2100℃がよい。   About a calcination temperature, a temperature gradient is applied in a 2nd carbonization furnace, Preferably it is 800 to 2500 degreeC in a maximum temperature range, More preferably, 1200 to 2100 degreeC is good.

炉内の高温部での滞留時間が長くなると、グラファイト化が進み過ぎ、脆性化した炭素繊維が得られることになるので好ましくない。   If the residence time in the high-temperature part in the furnace becomes long, graphitization proceeds too much, and brittle carbon fibers are obtained, which is not preferable.

<表面酸化処理>
上記第二炭素化処理繊維は、引き続き表面酸化処理を施す。表面酸化処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、液相処理が好ましい。液相処理のうちでも、液の安全性・安定性の面から、電解液を用いる電解処理が好ましい。電解酸化処理に用いられる電解液としては、硫酸、硝酸、塩酸等の無機酸や、水酸化ナトリウム、水酸化カリウムなどの無機水酸化物、硫酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩類などが挙げられる。
<Surface oxidation treatment>
The second carbonized fiber is subsequently subjected to surface oxidation treatment. A gas phase or liquid phase treatment can also be used for the surface oxidation treatment, but the liquid phase treatment is preferable from the viewpoint of easy process control and productivity. Among the liquid phase treatments, electrolytic treatment using an electrolytic solution is preferable from the viewpoint of liquid safety and stability. Examples of the electrolytic solution used for the electrolytic oxidation treatment include inorganic acids such as sulfuric acid, nitric acid, and hydrochloric acid, inorganic hydroxides such as sodium hydroxide and potassium hydroxide, and inorganic salts such as ammonium sulfate, sodium carbonate, and sodium bicarbonate. Can be mentioned.

<サイジング処理>
上記表面酸化処理後の繊維は、必要に応じ、引き続いてサイジング処理を施す。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
<Sizing process>
The fiber after the surface oxidation treatment is subsequently subjected to sizing treatment as necessary. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例における処理条件、並びに、スチーム延伸処理後の粗アクリル系繊維、前駆体繊維、耐炎化繊維及び炭素繊維の物性についての評価方法は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the processing conditions in each Example and a comparative example, and the evaluation method about the physical property of the rough acrylic fiber after a steam extending process, a precursor fiber, a flame-resistant fiber, and carbon fiber were implemented with the following method.

[シリコーン系油剤の付着量]
JIS L 1013に規定された方法により、油剤付与後の繊維のシリコーン系油剤付着量を測定した。
[Adhesion amount of silicone oil]
By the method prescribed | regulated to JISL1013, the silicone system oil agent adhesion amount of the fiber after oil agent provision was measured.

[水蒸気吸着量]
スチーム延伸処理後の粗アクリル系繊維の水蒸気吸着量は、粗アクリル系繊維を長さ100cm程度(0.3g程度)に切り出したものを、Quantachrome社製全自動ガス吸着量装置「AUTOSORB−1」を使用し、下記条件
吸着ガス:H2
死容積:He
吸着温度:293K
測定範囲:相対圧(P/Po) = 0〜1.0
P:測定圧、Po:H2Oの飽和蒸気圧
により測定した。湿度90%での水蒸気吸着量の値は、相対圧(P/Po)が0.9となる箇所で得た値である。
[Water vapor adsorption]
The water vapor adsorption amount of the crude acrylic fiber after the steam stretching treatment was obtained by cutting the crude acrylic fiber into a length of about 100 cm (about 0.3 g), and a fully automatic gas adsorption amount device “AUTOSORB-1” manufactured by Quantachrome. Under the following conditions Adsorption gas: H 2 O
Dead volume: He
Adsorption temperature: 293K
Measuring range: relative pressure (P / Po) = 0-1.0
P: Measurement pressure and Po: H 2 O saturated vapor pressure. The value of the water vapor adsorption amount at a humidity of 90% is a value obtained at a location where the relative pressure (P / Po) is 0.9.

[収縮応力]
Bruker AXS社製の熱機械分析装置TMA 4000Sを用い、以下
1.前駆体繊維を採取し、フィラメント30本を束ね、測定有効長1.0cmとして繊維測定用の治具に固定する。
2.定長モードに設定し、50〜100℃の間で昇温速度20℃/分の条件で、この間の荷重を測定する。
3.測定された50〜100℃における最大荷重を、下式
収縮応力=50〜100℃測定荷重(mN)/前駆体繊維試料の繊度(30dtex)
により繊度当たりに換算し、50〜100℃最大収縮応力とする。
の手法により測定した。
[Shrinkage stress]
Using a thermomechanical analyzer TMA 4000S manufactured by Bruker AXS, the following 1. Precursor fibers are collected, 30 filaments are bundled, and fixed to a fiber measurement jig with an effective measurement length of 1.0 cm.
2. The constant length mode is set, and the load during this period is measured at a temperature rising rate of 20 ° C./min between 50 and 100 ° C.
3. Measured maximum load at 50 to 100 ° C., the following formula shrinkage stress = 50 to 100 ° C. measured load (mN) / fineness of precursor fiber sample (30 dtex)
Therefore, the maximum shrinkage stress is converted to 50 to 100 ° C.
It measured by the method of.

[弛緩処理工程安定性の評価]
弛緩処理工程安定性の評価は、以下
◎ … 巻付き回数(回/1日) ≦ 0.5
○ … 0.5 < 巻付き回数(回/1日) ≦ 1
△ … 1 < 巻付き回数(回/1日) ≦ 5
× … 巻付き回数(回/1日) > 5
の四段階で評価した。
[Evaluation of relaxation process stability]
Evaluation of relaxation treatment process stability is as follows: ◎… Number of windings (times / day) ≦ 0.5
○… 0.5 <Number of windings (times / day) ≦ 1
△ ... 1 <Number of windings (times / day) ≤ 5
×… Number of windings (times / day)> 5
It was evaluated in four stages.

[単糸切れの評価]
炭素繊維前駆体繊維は油剤が付着している為に、単糸切れがあったとしても外観では確認し難い。その為、単糸切れの測定は、以下
1.前駆体繊維に付着する油剤をアセトンで洗浄する。
2.前駆体繊維を2時間風乾する。
3.前駆体繊維を1m切り出して広げ、目視にて単糸切れ数をカウントする。
の手法で行い、前駆体繊維の単糸切れ発生状態を、以下
◎ … 1ヶ/m未満
〇 … 1〜1.5ヶ/m
△ … 1.5〜2ヶ/m
× … 2ヶ/m以上
の四段階で評価した。
[Evaluation of single yarn breakage]
Since the carbon fiber precursor fiber has an oil agent attached, it is difficult to confirm the appearance even if there is a single yarn breakage. Therefore, the measurement of single yarn breakage is as follows. The oil agent adhering to the precursor fiber is washed with acetone.
2. The precursor fibers are air dried for 2 hours.
3. 1 m of the precursor fiber is cut out and spread, and the number of single yarn breakage is counted visually.
The single fiber breakage occurrence state of the precursor fiber is as follows: ◎… Less than 1 piece / m ○… 1 to 1.5 pieces / m
Δ: 1.5-2 pcs / m
X: Evaluation was made in four stages of 2 months / m or more.

[実施例1]
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を、1つの紡糸口金に3000の孔を有する紡糸口金を通して、6℃の25質量%塩化亜鉛水溶液中に吐出して凝固させ、原料繊維の粗アクリル系繊維を得た。
[Example 1]
A copolymer spinning stock consisting of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid was passed through a spinneret having 3000 holes in one spinneret, and in a 25% by mass zinc chloride aqueous solution at 6 ° C. Were discharged and solidified to obtain raw acrylic fibers.

この粗アクリル系繊維を水洗後、紡糸工程油剤処理浴に導き、紡糸工程油剤としてアミノ変性シリコーン油剤を表1に示す量を付与し、紡糸工程油剤付与粗アクリル系繊維を得た。   The crude acrylic fiber was washed with water and then introduced into a spinning process oil treatment bath, and an amino-modified silicone oil was added as the spinning process oil in the amount shown in Table 1 to obtain a spinning process oil-applied crude acrylic fiber.

この紡糸工程油剤付与粗アクリル系繊維を140℃で乾燥させた。その後、温度120℃で延伸倍率が6倍になるようにスチーム延伸を行い、フィラメント数3000のスチーム処理繊維を得た。   This spinning process oil-applied crude acrylic fiber was dried at 140 ° C. Thereafter, steam drawing was performed at a temperature of 120 ° C. so that the draw ratio was 6 times, and steam-treated fibers having 3000 filaments were obtained.

このスチーム処理繊維を、最上流の熱ローラー温度が100℃、順次温度を上げて、3番目の熱ローラー温度が105℃、最下流の熱ローラー温度が180℃に設定された段数10段の熱ローラーを有する熱処理室内を4秒で通過させて弛緩処理を施し、炭素繊維製造用前駆体繊維を得た。繊維温度は、最上流の熱ローラーで50℃に達し、最上流の熱ローラーから3番目の熱ローラーで65℃に達し、最上流の熱ローラーから8番目の熱ローラーで140℃に達し、最下流の熱ローラーで170℃に達した。上記3番目の熱ローラーから8番目までの熱ローラー間を低速で運転することにより、3番目の熱ローラーから8番目の熱ローラーまでの間を弛緩条件にした。熱処理室内通過による繊維弛緩率は2.0%であった。最上流の熱ローラーから3番目の熱ローラーまで繊維が通過するのにかかった時間(繊維予熱時間)は0.5秒であった。   The steam-treated fiber is heated at a temperature of 100 ° C. at the most upstream temperature, and the temperature is increased in order, the temperature of the third heat roller is set at 105 ° C., and the temperature of the most downstream heat roller is set at 180 ° C. A relaxation treatment was performed by passing through a heat treatment chamber having a roller in 4 seconds to obtain a precursor fiber for carbon fiber production. The fiber temperature reaches 50 ° C with the uppermost heat roller, reaches 65 ° C with the third heat roller from the uppermost heat roller, reaches 140 ° C with the eighth heat roller from the uppermost heat roller, and reaches the highest temperature. The temperature reached 170 ° C. with the downstream heat roller. By operating at a low speed between the third heat roller to the eighth heat roller, the condition between the third heat roller and the eighth heat roller was set to be relaxed. The fiber relaxation rate after passing through the heat treatment chamber was 2.0%. The time taken for the fiber to pass from the most upstream heat roller to the third heat roller (fiber preheating time) was 0.5 seconds.

得られた前駆体繊維は、油剤付着量が0.05質量%、水蒸気を用いたガス吸着量測定装置によって測定される湿度90%での水蒸気吸着量が13.1cm3/g、単糸切れの評価が○、弛緩処理工程安定性の評価が○、繊維を熱機械測定装置に置き25℃から20℃/分で昇温して100℃になるまでの間に発生する最大収縮応力が4.1mN/30dtexと良好なものであった。 The obtained precursor fiber has an oil agent adhesion amount of 0.05% by mass, a water vapor adsorption amount of 13.1 cm 3 / g at a humidity of 90% measured by a gas adsorption amount measuring apparatus using water vapor, a single yarn breakage Is rated as ◯, the stability of relaxation treatment process is evaluated as ◯, the maximum shrinkage stress generated between the temperature of 25 ° C. and 20 ° C./min after placing the fiber on a thermomechanical measuring device is 4 It was as good as 1 mN / 30 dtex.

[実施例2〜4]
実施例1で得られたスチーム処理繊維に、表1に示す熱処理室における弛緩率の条件で弛緩処理を施した以外は、実施例1と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Examples 2 to 4]
The steam-treated fiber obtained in Example 1 was treated in the same manner as in Example 1 except that it was subjected to a relaxation treatment under the conditions of the relaxation rate in the heat treatment chamber shown in Table 1. Carbon fiber having physical properties shown in Table 1 A precursor fiber for production was obtained.

[比較例1]
実施例1で得られたスチーム処理繊維が、最上流の熱ローラーから最上流の熱ローラーから8番目の熱ローラーまでの熱ローラー間において弛緩処理を施した以外は、実施例3と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Comparative Example 1]
The steam-treated fiber obtained in Example 1 was treated in the same manner as in Example 3 except that a relaxation treatment was performed between the most upstream heat roller to the eighth heat roller from the most upstream heat roller. The precursor fibers for producing carbon fibers having the physical properties shown in Table 1 were obtained.

[実施例5]
実施例1で得られたスチーム処理繊維を、最上流の熱ローラー温度が100℃、順次温度を上げて、8番目の熱ローラー温度が120℃、最下流の熱ローラー温度が180℃に設定された段数17段の熱ローラーを有する熱処理室内を6.8秒で通過させて弛緩処理を施し、炭素繊維製造用前駆体繊維を得た。繊維温度は、最上流の熱ローラーで50℃に達し、最上流の熱ローラーから8番目の熱ローラーで80℃に達し、最上流の熱ローラーから14番目の熱ローラーで140℃に達し、最下流の熱ローラーで170℃に達した。上記8番目の熱ローラーから14番目までの熱ローラー間を低速で運転することにより、8番目の熱ローラーから14番目の熱ローラーまでの間を弛緩条件にした。これらの条件以外は、実施例3と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Example 5]
The steam-treated fiber obtained in Example 1 is set to the highest temperature of the hot roller at 100 ° C., and the temperature is sequentially increased, the temperature of the eighth heat roller is set to 120 ° C., and the temperature of the most downstream heat roller is set to 180 ° C. The heat treatment chamber having a 17-stage heat roller was passed in 6.8 seconds for relaxation treatment to obtain a precursor fiber for carbon fiber production. The fiber temperature reaches 50 ° C with the most upstream heat roller, reaches 80 ° C with the 8th heat roller from the most upstream heat roller, reaches 140 ° C with the 14th heat roller from the most upstream heat roller, and reaches the maximum temperature. The temperature reached 170 ° C. with the downstream heat roller. By operating between the 8th heat roller to the 14th heat roller at a low speed, the space from the 8th heat roller to the 14th heat roller was in a relaxed condition. Except these conditions, it processed similarly to Example 3, and obtained the precursor fiber for carbon fiber manufacture of the physical property shown in Table 1.

[比較例2]
実施例1で得られたスチーム処理繊維を、最上流の熱ローラー温度が100℃、順次温度を上げて、10番目の熱ローラー温度が130℃、最下流の熱ローラー温度が180℃に設定された段数20段の熱ローラーを有する熱処理室内を8秒で通過させて弛緩処理を施し、炭素繊維製造用前駆体繊維を得た。繊維温度は、最上流の熱ローラーで50℃に達し、最上流の熱ローラーから10番目の熱ローラーで95℃に達し、最上流の熱ローラーから16番目の熱ローラーで140℃に達し、最下流の熱ローラーで170℃に達した。上記10番目の熱ローラーから16番目までの熱ローラー間を低速で運転することにより、10番目の熱ローラーから16番目の熱ローラーまでの間を弛緩条件にした。これらの条件以外は、実施例3と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Comparative Example 2]
The steam-treated fiber obtained in Example 1 was heated to the highest temperature of the hot roller at 100 ° C., and the temperature was increased in order to set the temperature of the 10th hot roller to 130 ° C. Then, a relaxation treatment was performed by passing through a heat treatment chamber having a 20-stage heat roller in 8 seconds to obtain a precursor fiber for carbon fiber production. The fiber temperature reaches 50 ° C with the most upstream heat roller, reaches 95 ° C with the 10th heat roller from the most upstream heat roller, reaches 140 ° C with the 16th heat roller from the most upstream heat roller, and reaches the highest temperature. The temperature reached 170 ° C. with the downstream heat roller. By operating between the 10th heat roller to the 16th heat roller at a low speed, the space between the 10th heat roller and the 16th heat roller was set to be relaxed. Except these conditions, it processed similarly to Example 3, and obtained the precursor fiber for carbon fiber manufacture of the physical property shown in Table 1.

[比較例3]
実施例1で得られたスチーム処理繊維を、最上流の熱ローラー温度が100℃、順次温度を上げて、8番目の熱ローラー温度が170℃、最下流の熱ローラー温度が180℃に設定された段数17段の熱ローラーを有する熱処理室内を6.8秒で通過させて弛緩処理を施し、炭素繊維製造用前駆体繊維を得た。繊維温度は、最上流の熱ローラーで50℃に達し、最上流の熱ローラーから8番目の熱ローラーで150℃に達し、最上流の熱ローラーから14番目の熱ローラーで165℃に達し、最下流の熱ローラーで170℃に達した。上記8番目の熱ローラーから14番目までの熱ローラー間を低速で運転することにより、8番目の熱ローラーから14番目の熱ローラーまでの間を弛緩条件にした。これらの条件以外は、実施例3と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Comparative Example 3]
The steam-treated fiber obtained in Example 1 is set to the highest temperature of the hot roller at 100 ° C., and the temperature is sequentially increased, the temperature of the eighth heat roller is set to 170 ° C., and the temperature of the most downstream heat roller is set to 180 ° C. The heat treatment chamber having a 17-stage heat roller was passed in 6.8 seconds for relaxation treatment to obtain a precursor fiber for carbon fiber production. The fiber temperature reaches 50 ° C with the most upstream heat roller, 150 ° C with the 8th heat roller from the most upstream heat roller, and 165 ° C with the 14th heat roller from the most upstream heat roller. The temperature reached 170 ° C. with the downstream heat roller. By operating between the 8th heat roller to the 14th heat roller at a low speed, the space from the 8th heat roller to the 14th heat roller was in a relaxed condition. Except these conditions, it processed similarly to Example 3, and obtained the precursor fiber for carbon fiber manufacture of the physical property shown in Table 1.

[比較例4]
実施例1で得られたスチーム処理繊維を、最上流の熱ローラー温度が100℃、順次温度を上げて、3番目の熱ローラー温度が105℃、最下流の熱ローラー温度が150℃に設定された段数10段の熱ローラーを有する熱処理室内を4秒で通過させて弛緩処理を施し、炭素繊維製造用前駆体繊維を得た。繊維温度は、最上流の熱ローラーで50℃に達し、最上流の熱ローラーから3番目の熱ローラーで65℃に達し、最上流の熱ローラーから8番目の熱ローラーで110℃に達し、最下流の熱ローラーで140℃に達した。上記3番目の熱ローラーから8番目までの熱ローラー間を低速で運転することにより、3番目の熱ローラーから8番目の熱ローラーまでの間を弛緩条件にした。これらの条件以外は、実施例3と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Comparative Example 4]
The steam-treated fiber obtained in Example 1 was set to the highest temperature of the hot roller at 100 ° C., and the temperature was sequentially increased, the third heat roller temperature was set to 105 ° C., and the temperature of the most downstream heat roller was set to 150 ° C. The heat treatment chamber having a 10-stage heat roller was passed in 4 seconds for relaxation treatment to obtain carbon fiber precursor fibers. The fiber temperature reaches 50 ° C. with the most upstream heat roller, reaches 65 ° C. with the third heat roller from the most upstream heat roller, and reaches 110 ° C. with the eighth heat roller from the most upstream heat roller. The temperature reached 140 ° C. with the downstream heat roller. By operating at a low speed between the third heat roller to the eighth heat roller, the condition between the third heat roller and the eighth heat roller was set to be relaxed. Except these conditions, it processed similarly to Example 3, and obtained the precursor fiber for carbon fiber manufacture of the physical property shown in Table 1.

[実施例6]
実施例1で得られたスチーム処理繊維を、最上流の熱ローラー温度が100℃、順次温度を上げて、3番目の熱ローラー温度が105℃、最下流の熱ローラー温度が170℃に設定された段数10段の熱ローラーを有する熱処理室内を4秒で通過させて弛緩処理を施し、炭素繊維製造用前駆体繊維を得た。繊維温度は、最上流の熱ローラーで50℃に達し、最上流の熱ローラーから3番目の熱ローラーで65℃に達し、最上流の熱ローラーから8番目の熱ローラーで130℃に達し、最下流の熱ローラーで160℃に達した。上記3番目の熱ローラーから8番目までの熱ローラー間を低速で運転することにより、3番目の熱ローラーから8番目の熱ローラーまでの間を弛緩条件にした。これらの条件以外は、実施例3と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Example 6]
The steam-treated fiber obtained in Example 1 is set to the highest temperature of the hot roller at 100 ° C., and the temperature is sequentially increased, the temperature of the third heat roller is set to 105 ° C., and the temperature of the most downstream heat roller is set to 170 ° C. The heat treatment chamber having a 10-stage heat roller was passed in 4 seconds for relaxation treatment to obtain carbon fiber precursor fibers. The fiber temperature reaches 50 ° C with the uppermost heat roller, reaches 65 ° C with the third heat roller from the uppermost heat roller, reaches 130 ° C with the eighth heat roller from the uppermost heat roller, and reaches the highest temperature. The temperature reached 160 ° C. with a downstream heat roller. By operating at a low speed between the third heat roller to the eighth heat roller, the condition between the third heat roller and the eighth heat roller was set to be relaxed. Except these conditions, it processed similarly to Example 3, and obtained the precursor fiber for carbon fiber manufacture of the physical property shown in Table 1.

[比較例5]
実施例1で得られたスチーム処理繊維を、最上流の熱ローラー温度が100℃、順次温度を上げて、3番目の熱ローラー温度が105℃、最下流の熱ローラー温度が200℃に設定された段数10段の熱ローラーを有する熱処理室内を4秒で通過させて弛緩処理を施し、炭素繊維製造用前駆体繊維を得た。繊維温度は、最上流の熱ローラーで50℃に達し、最上流の熱ローラーから3番目の熱ローラーで65℃に達し、最上流の熱ローラーから8番目の熱ローラーで160℃に達し、最下流の熱ローラーで190℃に達した。上記3番目の熱ローラーから8番目までの熱ローラー間を低速で運転することにより、3番目の熱ローラーから8番目の熱ローラーまでの間を弛緩条件にした。これらの条件以外は、実施例3と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Comparative Example 5]
The steam-treated fiber obtained in Example 1 was set to the highest temperature of the hot roller at 100 ° C., and the temperature was sequentially increased. The temperature of the third heat roller was set to 105 ° C., and the temperature of the most downstream heat roller was set to 200 ° C. The heat treatment chamber having a 10-stage heat roller was passed in 4 seconds for relaxation treatment to obtain carbon fiber precursor fibers. The fiber temperature reaches 50 ° C with the most upstream heat roller, reaches 65 ° C with the third heat roller from the most upstream heat roller, reaches 160 ° C with the eighth heat roller from the most upstream heat roller, and reaches the highest temperature. The temperature reached 190 ° C. with the downstream heat roller. By operating at a low speed between the third heat roller to the eighth heat roller, the condition between the third heat roller and the eighth heat roller was set to be relaxed. Except these conditions, it processed similarly to Example 3, and obtained the precursor fiber for carbon fiber manufacture of the physical property shown in Table 1.

[比較例6]
実施例1で得られたスチーム処理繊維を弛緩処理せずに、そのまま炭素繊維製造用前駆体繊維にしたものであり、その物性を表1に示す。
[Comparative Example 6]
The steam-treated fiber obtained in Example 1 was used as a precursor fiber for carbon fiber production without being subjected to relaxation treatment, and the physical properties are shown in Table 1.

[比較例7]
実施例1で得られた原料繊維の粗アクリル系繊維に油剤を付与せずにスチーム処理繊維を得、このスチーム処理繊維に弛緩処理を施した以外は、実施例2と同様に処理を行った。しかし、工程の途中で糸切れが発生し、目的の繊維を得ることはできなかった。
[Comparative Example 7]
The raw material fiber obtained in Example 1 was treated in the same manner as in Example 2 except that a steam-treated fiber was obtained without applying an oil agent to the raw acrylic fiber, and the steam-treated fiber was subjected to a relaxation treatment. . However, yarn breakage occurred during the process, and the target fiber could not be obtained.

[実施例7〜10、比較例8]
実施例1で得られた原料繊維の粗アクリル系繊維に、表1に示す油剤付着量でアミノ変性シリコーン油剤を付与してスチーム処理繊維を得、このスチーム処理繊維に弛緩処理を施した以外は、実施例2と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Examples 7 to 10, Comparative Example 8]
Except that the raw acrylic fiber obtained in Example 1 was subjected to an amino-modified silicone oil with an oil agent adhesion amount shown in Table 1 to obtain a steam-treated fiber, and this steam-treated fiber was subjected to a relaxation treatment. The same treatment as in Example 2 was performed to obtain carbon fiber precursor fibers having physical properties shown in Table 1.

[比較例9〜10]
実施例1で得られた原料繊維の粗アクリル系繊維に、表1に示す油剤付着量でアミノ変性シリコーン油剤を付与してスチーム処理繊維を得、このスチーム処理繊維に弛緩処理を施さずに(繊維弛緩率0%で)熱セット処理を行った以外は、実施例2又は9と同様に処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Comparative Examples 9 to 10]
The crude acrylic fiber of the raw material fiber obtained in Example 1 was given an amino-modified silicone oil with an oil agent adhesion amount shown in Table 1 to obtain a steam-treated fiber, and this steam-treated fiber was not subjected to relaxation treatment ( Except for the heat setting treatment (with a fiber relaxation rate of 0%), treatment was carried out in the same manner as in Example 2 or 9 to obtain precursor fibers for producing carbon fibers having the physical properties shown in Table 1.

[比較例11]
実施例1で得られた原料繊維の粗アクリル系繊維に、表1に示す油剤付着量でアミノ変性シリコーン油剤を付与してスチーム処理繊維を得た以外は、比較例9と同様に弛緩処理を施さずに(繊維弛緩率0%で)熱セット処理を行い、表1に示す物性の炭素繊維製造用前駆体繊維を得た。
[Comparative Example 11]
A relaxation treatment was performed in the same manner as in Comparative Example 9, except that the crude acrylic fiber of the raw material fiber obtained in Example 1 was given an amino-modified silicone oil at an oil agent adhesion amount shown in Table 1 to obtain a steam-treated fiber. Without being applied (with a fiber relaxation rate of 0%), heat setting treatment was performed to obtain carbon fiber precursor fibers having physical properties shown in Table 1.

Figure 2010077578
Figure 2010077578

スチーム処理繊維における温度上昇に対する収縮応力の上昇を示すグラフである。It is a graph which shows the raise of the shrinkage stress with respect to the temperature rise in a steam processing fiber.

Claims (4)

シリコーン系油剤を付与してなる炭素繊維製造用アクリル系前駆体繊維であって、前記前駆体繊維中の油剤付着量が0.01〜0.25質量%であり、前記前駆体繊維を25℃から20℃/分で昇温して100℃になるまでの間に発生する最大収縮応力が5.0mN/30dtex以下であり、且つ単糸切れ数が1.5ヶ/m未満である炭素繊維製造用前駆体繊維。 An acrylic precursor fiber for carbon fiber production provided with a silicone-based oil agent, the oil agent adhesion amount in the precursor fiber is 0.01 to 0.25% by mass, and the precursor fiber is 25 ° C. Carbon fiber having a maximum shrinkage stress of 5.0 mN / 30 dtex or less and a single yarn breakage number of less than 1.5 / m Precursor fiber for production. 水蒸気を用いたガス吸着量測定装置によって測定される湿度90%での水蒸気吸着量が15cm3/g以下である請求項1に記載の炭素繊維製造用前駆体繊維。 2. The precursor fiber for producing carbon fiber according to claim 1, wherein the moisture adsorption amount at a humidity of 90% measured by a gas adsorption amount measuring apparatus using water vapor is 15 cm 3 / g or less. アクリロニトリルを90重量%以上含有する共重合体からなり、且つ繊維表面に襞を有する請求項1又は2に記載の炭素繊維前駆体繊維。 The carbon fiber precursor fiber according to claim 1 or 2, comprising a copolymer containing 90% by weight or more of acrylonitrile and having wrinkles on the fiber surface. アクリロニトリルを90質量%以上含有する単量体を重合した共重合体を湿式紡糸して得られる粗アクリル系繊維に、シリコーン系油剤を付与した後、乾燥、スチーム延伸処理し、次いで、前記スチーム処理繊維を、温度を50〜240℃に設定した熱ローラーに接触させてスチーム処理繊維を加熱し、スチーム処理繊維の温度が60〜80℃に達した時点で弛緩処理を開始し、繊維の温度が120〜150℃に達するまで弛緩処理を行うことを特徴とする請求項1乃至3の何れかに記載の炭素繊維製造用前駆体繊維の製造方法。 After applying a silicone oil to a crude acrylic fiber obtained by wet spinning a copolymer obtained by polymerizing a monomer containing 90% by mass or more of acrylonitrile, drying, steam stretching treatment, and then the steam treatment The fiber is brought into contact with a heat roller set at a temperature of 50 to 240 ° C. to heat the steam-treated fiber, and when the temperature of the steam-treated fiber reaches 60 to 80 ° C., the relaxation treatment is started. The method for producing a precursor fiber for producing carbon fibers according to any one of claims 1 to 3, wherein a relaxation treatment is performed until the temperature reaches 120 to 150 ° C.
JP2008250807A 2008-09-29 2008-09-29 Precursor fiber for carbon fiber production and method of production therefor Pending JP2010077578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008250807A JP2010077578A (en) 2008-09-29 2008-09-29 Precursor fiber for carbon fiber production and method of production therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250807A JP2010077578A (en) 2008-09-29 2008-09-29 Precursor fiber for carbon fiber production and method of production therefor

Publications (1)

Publication Number Publication Date
JP2010077578A true JP2010077578A (en) 2010-04-08

Family

ID=42208316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250807A Pending JP2010077578A (en) 2008-09-29 2008-09-29 Precursor fiber for carbon fiber production and method of production therefor

Country Status (1)

Country Link
JP (1) JP2010077578A (en)

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
US9187847B2 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
WO2000005440A1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JPH10110329A (en) Polybenzazole fiber and production thereof
KR870000533B1 (en) Carbon fiber&#39;s making method
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP5072668B2 (en) Precursor fiber, and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JPS6052206B2 (en) Method for manufacturing acrylic carbon fiber
JP2010077578A (en) Precursor fiber for carbon fiber production and method of production therefor
JP2013023801A (en) Method for producing carbon fiber bundle
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JPH0310724B2 (en)
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2011241507A (en) Flame-resistant fiber bundle, carbon fiber bundle, and method for producing them
JP5537617B2 (en) Precursor fiber, and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP2012219382A (en) Method for producing precursor fiber bundle of polyacrylonitrile-based carbon fiber, and precursor fiber bundle of polyacrylonitrile-based carbon fiber obtained by using the same
JP4919410B2 (en) Carbon fiber manufacturing method
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
JP7491673B2 (en) Manufacturing method of carbon fiber bundle
JP2002309438A (en) Method for producing acrylic fiber
US11598029B2 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
KR20150127870A (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP2010202999A (en) Acrylic carbon fiber precursor fiber bundle package and method for producing the same
JP2007332498A (en) Method for producing carbon fiber bundle